WorldWideScience

Sample records for sub-picosecond time structure

  1. Synchronization of sub-picosecond electron and laser pulses

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Le Sage, G.P.

    1999-01-01

    Sub-picosecond laser-electron synchronization is required to take full advantage of the experimental possibilities arising from the marriage of modern high intensity lasers and high brightness electron beams in the same laboratory. Two particular scenarios stand out in this regard, injection of ultra-short electron pulses in short wavelength laser-driven plasma accelerators, and Compton scattering of laser photons from short electron pulses. Both of these applications demand synchronization, which is sub-picosecond, with tens of femtosecond synchronization implied for next generation experiments. The design of a microwave timing modulator system is now being investigated in more detail. (AIP) copyright 1999 American Institute of Physics

  2. Diffractive sub-picosecond manipulation of x-rays

    International Nuclear Information System (INIS)

    Adams, B.

    2004-01-01

    A class of X-ray optical elements for the sub-picosecond manipulation of X-rays is proposed. The design of these elements is based upon a time-dependent dynamical diffraction theory that synthesizes the eikonal theory with the Takagi-Taupin theory. A brief outline of the theory is given

  3. Sub-picosecond Resolution Time-to-Digital Converter

    Energy Technology Data Exchange (ETDEWEB)

    Bratov, Vladimir [Advanced Science and Novel Technology Company, Rancho Palos Verdes, CA (United States); Katzman, Vladimir [Advanced Science and Novel Technology Company, Rancho Palos Verdes, CA (United States); Binkley, Jeb [Advanced Science and Novel Technology Company, Rancho Palos Verdes, CA (United States)

    2006-03-30

    Time-to-digital converters with sub-picosecond resolutions are needed to satisfy the requirements of time-on-flight measurements of the next generation of high energy and nuclear physics experiments. The converters must be highly integrated, power effective, low cost, and feature plug-and-play capabilities to handle the increasing number of channels (up to hundreds of millions) in future Department of Energy experiments. Current state-off-the-art time-to-digital converter integrated circuits do not have the sufficient degree of integration and flexibility to fulfill all the described requirements. During Phase I, the Advanced Science and Novel Technology Company in cooperation with the nuclear physics division of the Oak Ridge National Laboratory has developed the architecture of a novel time-to-digital converter with multiple channels connected to an external processor through a special interfacing block and synchronized by clock signals generated by an internal phase-locked loop. The critical blocks of the system including signal delay lines and delay-locked loops with proprietary differential delay cells, as well as the required digital code converter and the clock period counter have been designed and simulated using the advanced SiGe120 BiCMOS technological process. The results of investigations demonstrate a possibility to achieve the digitization accuracy within 1ps. ADSANTEC has demonstrated the feasibility of the proposed concept in computer simulations. The proposed system will be a critical component for the next generation of NEP experiments.

  4. Studies on laser material processing with nanosecond and sub-nanosecond and picosecond and sub-picosecond pulses

    Science.gov (United States)

    Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay

    2016-03-01

    In this paper, laser ablation of widely used metal (Al, Cu. stainless-steel), semiconductor (Si), transparent material (glass, sapphire), ceramic (Al2O3, AlN) and polymer (PI, PMMA) in industry were systematically studied with pulse width from nanosecond (5-100ns), picosecond (6-10ps) to sub-picosecond (0.8-0.95ps). A critical damage zone (CDZ) of up to 100um with ns laser, efficiency were also investigated. This is to explore how to provide industry users the best laser solution for device micro-fabrication with best price. Our studies of cutting and drilling with ns, ps, and sub-ps lasers indicate that it is feasible to achieve user accepted quality and speed with cost-effective and reliable laser by optimizing processing conditions.

  5. Multiphoton ionization of (Xe)/sub n/ and (NO)/sub n/ clusters using a picosecond laser

    International Nuclear Information System (INIS)

    Smith, D.B.; Miller, J.C.

    1989-01-01

    In an effort to extend the application of multiphoton ionization (MPI) spectroscopy to the study of weakly bound systems, we have begun a systematic investigation of picosecond MPI in van der Waals molecules and clusters. To our knowledge no previous picosecond MPI studies of weakly bound systems have been reported. We present here results of picosecond MPI of Xe/sub n/(n = 1-20) and (NO)/sub n/(n = 1-4) clusters. Previous MPI studies using nanosecond lasers have not detected the NO cluster series, presumably because of fast dissociation channels. The use of high peak-power allows resonant and non-resonant photon absorption to the ionization limit to compete effectively with fast dissociative processes. 10 refs., 2 figs

  6. Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning

    Energy Technology Data Exchange (ETDEWEB)

    Bieda, Matthias, E-mail: matthias.bieda@iws.fraunhofer.de [Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS), Winterbergstr. 28, 01277 Dresden (Germany); Siebold, Mathias, E-mail: m.siebold@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Lasagni, Andrés Fabián, E-mail: andres_fabian.lasagni@tu-dresden.de [Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS), Winterbergstr. 28, 01277 Dresden (Germany); Technische Universität Dresden, Institut für Fertigungstechnik, 01062 Dresden (Germany)

    2016-11-30

    Highlights: • Laser interference patterning is introduced to generate sub-micrometer surface pattern. • The two-temperature model is applied to ps-laser interference patterning of metals. • Line-like structures with a pitch of 0.7 μm were fabricated on SAE 304, Ti and Cu. • The process is governed by a photo-thermal mechanism for a pulse duration of 35 ps. • A “cold”-ablation process for metals requires a pulse duration shorter than 10 ps. - Abstract: Picosecond direct laser interference patterning (ps-DLIP) is investigated theoretically and experimentally for the bulk metals copper, stainless steel and titanium. While surface texturing with nanosecond pulses is limited to feature sizes in the micrometer range, utilizing picosecond pulses can lead to sub-micrometer structures. The modelling and simulation of ps-DLIP are based on the two-temperature model and were carried out for a pulse duration of 35 ps at 515 nm wavelength and a laser fluence of 0.1 J/cm{sup 2}. The subsurface temperature distribution of both electrons and phonons was computed for periodic line-like structures with a pitch of 0.8 μm. The increase in temperature rises for a lower absorption coefficient and a higher thermal conductivity. The distance, at which the maximum subsurface temperature occurs, increases for a small absorption coefficient. High absorption and low thermal conductivity minimize internal heating and give rise to a pronounced surface micro topography with pitches smaller than 1 μm. In order to confirm the computed results, periodic line-like surface structures were produced using two interfering beams of a Yb:YAG-Laser with 515 nm wavelength and a pulse duration of 35 ps. It was possible to obtain a pitch of 0.7 μm on the metallic surfaces.

  7. Luminescence rise time in self-activated PbWO{sub 4} and Ce-doped Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} scintillation crystals

    Energy Technology Data Exchange (ETDEWEB)

    Auffray, E. [CERN, Geneva (Switzerland); Augulis, R. [Center for Physical Sciences and Technology, Savanorių av. 231, Vilnius (Lithuania); Borisevich, A. [Research Institute for Nuclear Problems, Bobruiskaya str. 11, Minsk (Belarus); Gulbinas, V. [Center for Physical Sciences and Technology, Savanorių av. 231, Vilnius (Lithuania); Fedorov, A.; Korjik, M. [Research Institute for Nuclear Problems, Bobruiskaya str. 11, Minsk (Belarus); Lucchini, M.T. [CERN, Geneva (Switzerland); Mechinsky, V. [Research Institute for Nuclear Problems, Bobruiskaya str. 11, Minsk (Belarus); Nargelas, S. [Vilnius University, Universiteto str. 3, Vilnius (Lithuania); Songaila, E. [Center for Physical Sciences and Technology, Savanorių av. 231, Vilnius (Lithuania); Tamulaitis, G. [Vilnius University, Universiteto str. 3, Vilnius (Lithuania); Vaitkevičius, A., E-mail: augustas.vaitkevicius@ff.vu.lt [Vilnius University, Universiteto str. 3, Vilnius (Lithuania); Zazubovich, S. [Institute of Physics, University of Tartu, W. Ostwaldi Str. 1, Tartu (Estonia)

    2016-10-15

    The time resolution of scintillation detectors of ionizing radiation is one of the key parameters sought for in the current and future high-energy physics experiments. This study is encouraged by the necessity to find novel detection methods enabling a sub-10-ps time resolution in scintillation detectors and is focused on the exploitation of fast luminescence rise front. Time-resolved photoluminescence (PL) spectroscopy and thermally stimulated luminescence techniques have been used to study two promising scintillators: self-activated lead tungstate (PWO, PbWO{sub 4}) and Ce-doped gadolinium aluminum gallium garnet (GAGG, Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12}). A sub-picosecond PL rise time is observed in PWO, while longer processes in the PL response in GAGG:Ce are detected and studied. The mechanisms responsible for the PL rise time in self-activated and doped scintillators are under discussion. - Highlights: • Photoluminescence rise time is studied in two scintillators: PWO and GAGG:Ce. • Sub-picosecond photoluminescence rise time in PWO is observed for the first time. • A multicomponent luminescence rise edge is observed in GAGG:Ce. • The mechanisms behind luminescence kinetics in the crystals are under discussion.

  8. Emerging terawatt picosecond CO{sub 2} laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelsky, I V [Accelerator Test Facility, Brookhaven National Lab., Upton, NY (United States)

    1998-03-01

    The first terawatt picosecond (TWps) CO{sub 2} laser is under construction at the BNL Accelerator Test Facility (ATF). TWps-CO{sub 2} lasers, having an order of magnitude longer wavelength than the well-known table-top terawatt solid state lasers, offer new opportunities for strong-field physics research. For laser wakefield accelerators (LWFA) the advantage of the new class of lasers is due to a gain of two orders of magnitude in the ponderomotive potential. The large average power of CO{sub 2} lasers is important for the generation of hard radiation through Compton back-scattering of the laser off energetic electron beams. We discuss applications of TWps-CO{sub 2} lasers for LWFA modules of a tentative electron-positron collider, for {gamma}-{gamma} (or {gamma}-lepton) colliders, for a possible `table-top` source of high-intensity x-rays and gamma rays, and the generation of polarized positron beams. (author)

  9. Measurement of Sub-Picosecond Electron Bunches via Electro-Optic Sampling of Coherent Transition Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Timothy John [Northern Illinois U.

    2012-01-01

    Future collider applications as well as present high-gradient laser plasma wakefield accelerators and free-electron lasers operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. We present results on the single-shot electro-optic spectral decoding of coherent transition radiation from bunches generated at the Fermilab A0 photoinjector laboratory. A longitudinal double-pulse modulation of the electron beam is also realized by transverse beam masking followed by a transverse-to-longitudinal phase-space exchange beamline. Live profile tuning is demonstrated by upstream beam focusing in conjunction with downstream monitoring of single-shot electro-optic spectral decoding of the coherent transition radiation.

  10. Coherent Smith-Purcell radiation as a diagnostic for sub-picosecond electron bunch length

    International Nuclear Information System (INIS)

    Nguyen, D.C.

    1996-01-01

    We suggest a novel technique of measuring sub-picosecond electron bunch length base on coherent Smith-Purcell radiation (SPR) emitted when electrons pass close to the surface of a metal grating. With electron bunch lengths comparable to the grating period, we predict that coherent SPR will be emitted at large angles with respect to direction of beam propagation. As the bunch length shortens, the coherent SPR will be enhanced over the incoherent component that is normally observed at small angles. Furthermore, the angular distribution of the coherent SPR will be shifted toward smaller angles as the bunch length becomes much smaller than the grating period. By measuring the angular distribution of the coherent SPR, one can determine the bunch length of sub-picosecond electron pulses. This new technique is easy to implement and appears capable of measuring femtosecond electron bunch lengths

  11. Interferometrically enhanced sub-terahertz picosecond imaging utilizing a miniature collapsing-field-domain source

    Science.gov (United States)

    Vainshtein, Sergey N.; Duan, Guoyong; Mikhnev, Valeri A.; Zemlyakov, Valery E.; Egorkin, Vladimir I.; Kalyuzhnyy, Nikolay A.; Maleev, Nikolai A.; Näpänkangas, Juha; Sequeiros, Roberto Blanco; Kostamovaara, Juha T.

    2018-05-01

    Progress in terahertz spectroscopy and imaging is mostly associated with femtosecond laser-driven systems, while solid-state sources, mainly sub-millimetre integrated circuits, are still in an early development phase. As simple and cost-efficient an emitter as a Gunn oscillator could cause a breakthrough in the field, provided its frequency limitations could be overcome. Proposed here is an application of the recently discovered collapsing field domains effect that permits sub-THz oscillations in sub-micron semiconductor layers thanks to nanometer-scale powerfully ionizing domains arising due to negative differential mobility in extreme fields. This shifts the frequency limit by an order of magnitude relative to the conventional Gunn effect. Our first miniature picosecond pulsed sources cover the 100-200 GHz band and promise milliwatts up to ˜500 GHz. Thanks to the method of interferometrically enhanced time-domain imaging proposed here and the low single-shot jitter of ˜1 ps, our simple imaging system provides sufficient time-domain imaging contrast for fresh-tissue terahertz histology.

  12. The mirror symmetric centroid difference method for picosecond lifetime measurements via {gamma}-{gamma} coincidences using very fast LaBr{sub 3}(Ce) scintillator detectors

    Energy Technology Data Exchange (ETDEWEB)

    Regis, J.-M., E-mail: regis@ikp.uni-koeln.d [Institut fuer Kernphysik, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany); Pascovici, G.; Jolie, J.; Rudigier, M. [Institut fuer Kernphysik, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany)

    2010-10-01

    The ultra-fast timing technique was introduced in the 1980s and is capable of measuring picosecond lifetimes of nuclear excited states with about 3 ps accuracy. Very fast scintillator detectors are connected to an electronic timing circuit and detector vs. detector time spectra are analyzed by means of the centroid shift method. The very good 3% energy resolution of the nowadays available LaBr{sub 3}(Ce) scintillator detectors for {gamma}-rays has made possible an extension of the well-established fast timing technique. The energy dependent fast timing characteristics or the prompt curve, respectively, of the LaBr{sub 3}(Ce) scintillator detector has been measured using a standard {sup 152}Eu {gamma}-ray source. For any energy combination in the range of 200keVsub {gamma}<}1500keV, the {gamma}-{gamma} fast timing characteristics is calibrated as a function of energy with an accuracy of 2-4 ps. An extension of the centroid shift method providing very attractive features for picosecond lifetime measurements is presented. The mirror symmetric centroid difference method takes advantage of the symmetry obtained when performing {gamma}-{gamma} lifetime measurements using a pair of almost identical very fast scintillator detectors. In particular cases, the use of the mirror symmetric centroid difference method also allows the direct determination of picosecond lifetimes, hence without the need of calibrating the prompt curve.

  13. Nanosecond retinal structure changes in K-590 during the room-temperature bacteriorhodopsin photocycle: picosecond time-resolved coherent anti-stokes Raman spectroscopy

    OpenAIRE

    Weidlich, O.; Ujj, L.; Jäger, F.; Atkinson, G.H.

    1997-01-01

    Time-resolved vibrational spectra are used to elucidate the structural changes in the retinal chromophore within the K-590 intermediate that precedes the formation of the L-550 intermediate in the room-temperature (RT) bacteriorhodopsin (BR) photocycle. Measured by picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS), these vibrational data are recorded within the 750 cm-1 to 1720 cm-1 spectral region and with time delays of 50-260 ns after the RT/BR photocycle is optical...

  14. Development of a picosecond time-of-flight system in the ATLAS experiment

    International Nuclear Information System (INIS)

    Grabas, Herve

    2013-01-01

    In this thesis, we present a study of the sensitivity to Beyond Standard Model physics brought by the design and installation of picosecond time-of-flight detectors in the forward region of the ATLAS experiment at the LHC. The first part of the thesis present a study of the sensitivity to the quartic gauge anomalous coupling between the photon and the W boson, using exclusive WW pair production in ATLAS. The event selection is built considering the semi-leptonic decay of WW pair and the presence of the AFP detector in ATLAS. The second part gives a description of large area picosecond photo-detectors design and time reconstruction algorithms with a special care given to signal sampling and processing for precision timing. The third part presents the design of SamPic: a custom picosecond readout integrated circuit. At the end, its first results are reported, and in particular a world-class 5 ps timing precision in measuring the delay between two fast pulses. (author) [fr

  15. High-intensity coherent FIR radiation from sub-picosecond electron bunches

    International Nuclear Information System (INIS)

    Kung, P.H.; Lihn, Hung-chi; Wiedemann, H.; Bocek, D.

    1994-01-01

    A facility to generate high-intensity, ultra-short pulses of broad-band far-infrared radiation has been assembled and tested at Stanford. The device uses sub-picosecond relativistic electron bunches to generate coherent radiation through transition or synchrotron radiation in the far-infrared (FIR) regime between millimeter waves and wavelengths of about 100 μm and less. Experimental results show a peak radiation power of greater than 0.33 MW within a micro-bunch and an average FIR radiation power of 4 mW. The average bunch length of 2856 micro-bunches within a 1 μsec macro-pulse is estimated to be about 480 sec. Simulations experimental setup and results will be discussed

  16. Improvements in picosecond chronography

    International Nuclear Information System (INIS)

    Arthurs, E.G.; Bradley, D.J.; Liddy, Brian; O'Neill, Fergus; Roddie, A.G.; Sibbett, Wilson; Sleat, W.E.

    The durations of laser pulses as short as 1 picosecond have been measured with an electro-optical streak camera. The time resolution limit of the camera system has been directly and unambiguously demonstrated employing a flashlamp pumped mode-locked dye laser to reliably generate tunable-frequency pulses of duration between 1 and 2 psec. An argon laser pumped C.W. mode-locked dye laser has been developed using the streak camera as a diagnostic tool, to produce continuous streams of picosecond pulses. With the high light gain of the camera system, pulses of peak powers < 1 watt can be studied with picosecond time resolution. The build-up of picosecond pulses from the initial photon noise of the mode-locked laser has also been directly recorded for the first time

  17. Picosecond electron probe for direct investigation of lattice temperature and structural phase transition

    International Nuclear Information System (INIS)

    Mourou, G.; Williamson, S.

    1985-01-01

    The authors have directly observed the laser-induced melt metamorphosis of thin aluminum films. The time required for the melt to evolve is dependent on the degree to which the Al specimen is superheated. The temperature of this superheated state can also be monitored on the picosecond time scale. The picosecond electron probe not only reveals information about the structure of a material but also about the lattice temperature. The change in lattice parameter that is observed as a shift in diffracted ring diameter is directly related to the thermal expansion coefficient. Also, based on the Debye-Waller effect, a reduction in the intensity of the diffraction rings can be observed due to increased lattice vibration. Presently, a 1-kHz-1-mJ/pulse Nd:YAG laser is being used to measure the temperature overshoot of laser-induced Al films. The high repetition rate permits signal averaging to be employed thereby increasing the sensitivity of the thermometric technique

  18. Wake force computation in the time domain for long structures

    International Nuclear Information System (INIS)

    Bane, K.; Weiland, T.

    1983-07-01

    One is often interested in calculating the wake potentials for short bunches in long structures using TBCI. For ultra-relativistic particles it is sufficient to solve for the fields only over a window containing the bunch and moving along with it. This technique reduces both the memory and the running time required by a factor that equals the ratio of the structure length to the window length. For example, for a bunch with sigma/sub z/ of one picosecond traversing a single SLAC cell this improvement factor is 15. It is thus possible to solve for the wakefields in very long structures: for a given problem, increasing the structure length will not change the memory required while only adding linearly to the CPU time needed

  19. Study of the laser-induced damage of reflective components in the sub-picosecond regime

    International Nuclear Information System (INIS)

    Sozet, Martin

    2016-01-01

    In this thesis, laser-induced damage phenomenon of reflective components is investigated in the sub-picosecond regime. These components, made of stacks of dielectric materials, are widely used in powerful laser facilities such as PETAL laser. PETAL laser has been built at the CEA-CESTA in France to deliver multi-kJ/500 fs pulses at 1053 nm and reach a power higher than 6 PW. For this kind of laser systems, reflective components are commonly used instead of optics operating in transmission to limit the accumulation of non-linear phase along the beam propagation due to the high intensities. Optical components irradiated by the highest power densities are the pulse compression gratings, transport mirrors and the focusing parabola, located at the end of the laser chain. Nowadays, laser-induced damage is the main factor that limits the overall performances of powerful laser systems. This manuscript presents three study axes to better understand and control damage phenomenon. The first one concerns the conception of reflective optics for the peta-watt applications. The design of new structures has been investigated to reach high diffraction efficiencies in the case of pulse compression gratings and a high reflectivity in the case of mirrors, while reducing the Electric-field enhancement which is one of the causes of the laser-induced damage. The second axis deals with the development of a precise damage metrology with new testing tools which brings new perspectives and a new viewpoint for the assessment of the laser resistance of optical components. Finally, the third axis concerns the study the damage growth after several irradiations in the sub-picosecond regime. The evolution of the damage area during growth sequences is observed and compared to numerical simulations. It enables to improve the understanding in the growth phenomenon. In the end, these studies will allow to develop predictive models of the laser-induced damage and new tools for the conception of

  20. Diode-pumped passively mode-locked sub-picosecond Yb:LuAG ceramic laser

    International Nuclear Information System (INIS)

    Zhu Jiang-Feng; Liu Kai; Wang Jun-Li; Yang Yu; Wang Hui-Bo; Gao Zi-Ye; Jiang Li; Xie Teng-Fei; Chao-Yu Li; Pan Yu-Bai; Wei Zhi-Yi

    2017-01-01

    In this paper the laser activities of a diode-pumped Yb:LuAG ceramic which was prepared by the solid-state reactive sintering method were reported. The maximum output power was 1.86 W in the continuous wave (CW) laser operation, corresponding to a slope efficiency of 53.6%. The CW laser could be tuned from 1030 to 1096 nm by inserting a prism in the cavity. With the assist of a semiconductor saturable absorber mirror (SESAM), passive mode-locking was realized, delivering sub-picosecond pulses with 933 fs duration and an average power of 532 mW at a repetition rate of 90.35 MHz. (paper)

  1. Structure and Ionic Conductivity of Li{sub 2}S–P{sub 2}S{sub 5} Glass Electrolytes Simulated with First-Principles Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Takeshi; Kawamura, Yoshiumi, E-mail: yoshiumi_kawamura@mail.toyota.co.jp [Toyota Motor Corporation, Shizuoka (Japan)

    2016-06-02

    Lithium thiophosphate-based materials are attractive as solid electrolytes in all-solid-state lithium batteries because glass or glass-ceramic structures of these materials are associated with very high conductivity. In this work, we modeled lithium thiophosphates with amorphous structures and investigated Li{sup +} mobilities by using molecular dynamics calculations based on density functional theory (DFT-MD). The structures of xLi{sub 2}S–(100 − x)P{sub 2}S{sub 5} (x = 67, 70, 75, and 80) were created by randomly identifying appropriate compositions of Li{sup +}, PS{sub 4}{sup 3−},P{sub 2}S{sub 7}{sup 4−}, and S{sup 2−} and then annealing them with DFT-MD calculations. Calculated relative stabilities of the amorphous structures with x = 67, 70, and 75 to crystals with the same compositions were 0.04, 0.12, and 0.16 kJ/g, respectively. The implication is that these amorphous structures are metastable. There was good agreement between calculated and experimental structure factors determined from X-ray scattering. The differences between the structure factors of amorphous structures were small, except for the first sharp diffraction peak, which was affected by the environment between Li and S atoms. Li{sup +} diffusion coefficients obtained from DFT-MD calculations at various temperatures for picosecond simulation times were on the order of 10{sup −3}–10{sup −5} Å{sup 2}/ps. Ionic conductivities evaluated by the Nernst–Einstein relationship at 298.15 K were on the order of 10{sup −5} S/cm. The ionic conductivity of the amorphous structure with x = 75 was the highest among the amorphous structures because there was a balance between the number density and diffusibility of Li{sup +}. The simulations also suggested that isolated S atoms suppress Li{sup +} migration.

  2. Time-resolved study of formate on Ni( 1 1 1 ) by picosecond SFG spectroscopy

    Science.gov (United States)

    Kusafuka, K.; Noguchi, H.; Onda, K.; Kubota, J.; Domen, K.; Hirose, C.; Wada, A.

    2002-04-01

    Time-resolved vibrational measurements were carried out on formate (HCOO) adsorbed on Ni(1 1 1) surface by combining the sum-frequency generation method and picosecond laser system (time resolution of 6 ps). Rapid intensity decrease (within the time resolution) followed by intensity recovery (time constant of several tens of ps) of CH stretching signal was observed when picosecond 800 nm pulse was irradiated on the sample surface. From the results of temperature and pump fluence dependences of temporal behaviour of signal intensity, we concluded that the observed intensity change was induced by non-thermal process. Mechanism of the temporal intensity change was discussed.

  3. Shock compression and flash-heating of molecular adsorbates on the picosecond time scale

    Science.gov (United States)

    Berg, Christopher Michael

    An ultrafast nonlinear coherent laser spectroscopy termed broadband multiplex vibrational sum-frequency generation (SFG) with nonresonant suppression was employed to monitor vibrational transitions of molecular adsorbates on metallic substrates during laser-driven shock compression and flash-heating. Adsorbates were in the form of well-ordered self-assembled monolayers (SAMs) and included molecular explosive simulants, such as nitroaromatics, and long chain-length alkanethiols. Based on reflectance measurements of the metallic substrates, femtosecond flash-heating pulses were capable of producing large-amplitude temperature jumps with DeltaT = 500 K. Laser-driven shock compression of SAMs produced pressures up to 2 GPa, where 1 GPa ≈ 1 x 104 atm. Shock pressures were estimated via comparison with frequency shifts observed in the monolayer vibrational transitions during hydrostatic pressure measurements in a SiC anvil cell. Molecular dynamics during flash-heating and shock loading were probed with vibrational SFG spectroscopy with picosecond temporal resolution and sub-nanometer spatial resolution. Flash-heating studies of 4-nitrobenzenethiolate (NBT) on Au provided insight into effects from hot-electron excitation of the molecular adsorbates at early pump-probe delay times. At longer delay times, effects from the excitation of SAM lattice modes and lower-energy NBT vibrations were shown. In addition, flash-heating studies of alkanethiolates demonstrated chain disordering behaviors as well as interface thermal conductances across the Au-SAM junction, which was of specific interest within the context of molecular electronics. Shock compression studies of molecular explosive simulants, such as 4-nitrobenzoate (NBA), demonstrated the proficiency of this technique to observe shock-induced molecular dynamics, in this case orientational dynamics, on the picosecond time scale. Results validated the utilization of these refined shock loading techniques to probe the shock

  4. Tracing temperature in a nanometer size region in a picosecond time period.

    Science.gov (United States)

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-08-21

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model.

  5. Picosecond Fluorescence Dynamics of Tryptophan and 5-Fluorotryptophan in Monellin : Slow Water-Protein Relaxation Unmasked

    NARCIS (Netherlands)

    Xu, Jianhua; Chen, Binbin; Callis, Patrik Robert; Muiño, Pedro L; Rozeboom, Henriette J; Broos, Jaap; Toptygin, Dmitri; Brand, Ludwig; Knutson, Jay R

    2015-01-01

    Time Dependent Fluorescence Stokes (emission wavelength) Shifts (TDFSS) from tryptophan (Trp) following sub-picosecond excitation are increasingly used to investigate protein dynamics, most recently enabling active research interest into water dynamics near the surface of proteins. Unlike many

  6. Growth and apoptosis of HeLa cells induced by intense picosecond pulsed electric field

    Directory of Open Access Journals (Sweden)

    Yuan-yuan HUA

    2011-07-01

    Full Text Available Objective To investigate the growth and apoptosis of HeLa cells induced by intense picosecond pulsed electric field(PEF in vitro.Methods HeLa cells cultured in vitro were divided into experimental group and control group(with or without intense picosecond PEF.With constant pulse width,frequency and voltage,the cells in experimental group were divided into 6 sub-groups according to the number of pulse(100,200,500,1000,1500,2000,the growth inhibition of HeLa cells by PEF and the dose-effect relationship were analyzed by MTT.Caspase 3 protein activity was detected in the cells in 500,1000 and 2000 sub-groups.Mitochondrial transmembrane potential was detected by rhodamine 123 staining with the cells in 2000 sub-groups.Results MTT assay demonstrated that intense picosecond PEF significantly inhibited the proliferation of HeLa cells in dose-dependent manner.The survival rates of cells declined along with the increase in pulse number,and were 96.23%±0.76%,94.11%±2.42%,90.31%±1.77%,64.59%±1.59%,32.95%±0.73%,23.85%±2.38% and 100%,respectively,in 100,200,500,1000,1500,2000 sub-groups and control group(P < 0.01.The Caspase 3 protein activity was significantly enhanced by intense picosecond PEF,and the absorbancy indexes(A were 0.174±0.012,0.232±0.017,0.365±0.016 and 0.122±0.011,respectively,in 500,1000,2000 sub-groups and control group(P < 0.05.The mitochondrial transmembrane potential of HeLa cells was significantly inhibited by intense picosecond PEF,and the fluorescence intensity in 2000 sub-group(76.66±13.38 was much lower than that in control group(155.81±2.33,P < 0.05.Conclusion Intense picosecond PEF may significantly inhibit the growth of HeLa cells,and induce cell apoptosis via mitochondrial pathway.

  7. Picosecond optical shutter for particle detection

    International Nuclear Information System (INIS)

    Fan, B.; Gee, C.M.; Shapiro, G.

    1975-04-01

    Characteristics of an optical shutter utilizing Kerr effect induced by picosecond laser pulses in carbon disulfide are studied experimentally. The shutter has a gate time of 4.5 to 5 ps full width at half-maximum and a transmission of approximately 15 percent at a wavelength 0.53 μm. Such an ultrafast shutter can be used as an optical signal gate in a sampling detection scheme that has picosecond time-resolution. The picosecond optical detection scheme is envisioned to have applications in experimental high-energy physics such as to time-resolve ultrashort Cherenkov or synchrotron radiation emitted by relativistic particles. Methods of synchronizing a laser-activated Kerr shutter with a particle accelerator or synchrotron are discussed

  8. Picosecond absorption relaxation measured with nanosecond laser photoacoustics

    OpenAIRE

    Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.

    2010-01-01

    Picosecond absorption relaxation—central to many disciplines—is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, b...

  9. New and Advanced Picosecond Lasers for Tattoo Removal.

    Science.gov (United States)

    Adatto, Maurice A; Amir, Ruthie; Bhawalkar, Jayant; Sierra, Rafael; Bankowski, Richard; Rozen, Doran; Dierickx, Christine; Lapidoth, Moshe

    2017-01-01

    Early methods of tattoo removal ultimately resulted in unacceptable cosmetic outcomes. While the introduction of laser technology was an improvement over the existing chemical, mechanical, and surgical procedures, the use of nonselective tattoo removal with carbon dioxide and argon lasers led to scarring. Q-switched lasers with nanosecond (10-9) pulse domains were considered to have revolutionized tattoo treatment, by selectively heating the tattoo particles, while reducing the adverse sequelae to adjacent normal skin. Theoretical considerations of restricting pulse duration, to heat tattoo particles to higher temperatures, proposed the use of sub-nanosecond pulses to target particles with thermal relaxation times lower than the nanosecond pulses in Q-switched lasers. Initial studies demonstrated that picosecond (10-12) pulses were more effective than nanosecond pulses in clearing black tattoos. Advances in picosecond technology led to the development of commercially available lasers, incorporating several different wavelengths, to further refine pigment targeting. © 2017 S. Karger AG, Basel.

  10. Picosecond, single pulse electron linear accelerator

    International Nuclear Information System (INIS)

    Kikuchi, Riichi; Kawanishi, Masaharu

    1979-01-01

    The picosecond, single pulse electron linear accelerators, are described, which were installed in the Nuclear Engineering Laboratory of the University of Tokyo and in the Nuclear Radiation Laboratory of the Osaka University. The purpose of the picosecond, single pulse electron linear accelerators is to investigate the very short time reaction of the substances, into which gamma ray or electron beam enters. When the electrons in substances receive radiation energy, the electrons get high kinetic energy, and the energy and the electric charge shift, at last to the quasi-stable state. This transient state can be experimented with these special accelerators very accurately, during picoseconds, raising the accuracy of the time of incidence of radiation and also raising the accuracy of observation time. The outline of these picosecond, single pulse electron linear accelerators of the University of Tokyo and the Osaka University, including the history, the systems and components and the output beam characteristics, are explained. For example, the maximum energy 30 -- 35 MeV, the peak current 1 -- 8 n C, the pulse width 18 -- 40 ps, the pulse repetition rate 200 -- 720 pps, the energy spectrum 1 -- 1.8% and the output beam diameter 2 -- 5 mm are shown as the output beam characteristics of the accelerators in both universities. The investigations utilizing the picosecond single pulse electron linear accelerators, such as the investigation of short life excitation state by pulsed radiation, the dosimetry study of pulsed radiation, and the investigation of the transforming mechanism and the development of the transforming technology from picosecond, single pulse electron beam to X ray, vacuum ultraviolet ray and visual ray, are described. (Nakai, Y.)

  11. A review on high-resolution CMOS delay lines: towards sub-picosecond jitter performance.

    Science.gov (United States)

    Abdulrazzaq, Bilal I; Abdul Halin, Izhal; Kawahito, Shoji; Sidek, Roslina M; Shafie, Suhaidi; Yunus, Nurul Amziah Md

    2016-01-01

    A review on CMOS delay lines with a focus on the most frequently used techniques for high-resolution delay step is presented. The primary types, specifications, delay circuits, and operating principles are presented. The delay circuits reported in this paper are used for delaying digital inputs and clock signals. The most common analog and digitally-controlled delay elements topologies are presented, focusing on the main delay-tuning strategies. IC variables, namely, process, supply voltage, temperature, and noise sources that affect delay resolution through timing jitter are discussed. The design specifications of these delay elements are also discussed and compared for the common delay line circuits. As a result, the main findings of this paper are highlighting and discussing the followings: the most efficient high-resolution delay line techniques, the trade-off challenge found between CMOS delay lines designed using either analog or digitally-controlled delay elements, the trade-off challenge between delay resolution and delay range and the proposed solutions for this challenge, and how CMOS technology scaling can affect the performance of CMOS delay lines. Moreover, the current trends and efforts used in order to generate output delayed signal with low jitter in the sub-picosecond range are presented.

  12. Picosecond camera

    International Nuclear Information System (INIS)

    Decroisette, Michel

    A Kerr cell activated by infrared pulses of a model locked Nd glass laser, acts as an ultra-fast and periodic shutter, with a few p.s. opening time. Associated with a S.T.L. camera, it gives rise to a picosecond camera allowing us to study very fast effects [fr

  13. New theoretical approaches to atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    Energy Technology Data Exchange (ETDEWEB)

    Pabst, Stefan Ulf

    2013-04-15

    The concept of atoms as the building blocks of matter has existed for over 3000 years. A revolution in the understanding and the description of atoms and molecules has occurred in the last century with the birth of quantum mechanics. After the electronic structure was understood, interest in studying the dynamics of electrons, atoms, and molecules increased. However, time-resolved investigations of these ultrafast processes were not possible until recently. The typical time scale of atomic and molecular processes is in the picosecond to attosecond realm. Tremendous technological progress in recent years makes it possible to generate light pulses on these time scales. With such ultrashort pulses, atomic and molecular dynamics can be triggered, watched, and controlled. Simultaneously, the need rises for theoretical models describing the underlying mechanisms. This doctoral thesis focuses on the development of theoretical models which can be used to study the dynamical behavior of electrons, atoms, and molecules in the presence of ultrashort light pulses. Several examples are discussed illustrating how light pulses can trigger and control electronic, atomic, and molecular motions. In the first part of this work, I focus on the rotational motion of asymmetric molecules, which happens on picosecond and femtosecond time scales. Here, the aim is to align all three axes of the molecule as well as possible. To investigate theoretically alignment dynamics, I developed a program that can describe alignment motion ranging from the impulsive to the adiabatic regime. The asymmetric molecule SO{sub 2} is taken as an example to discuss strategies of optimizing 3D alignment without the presence of an external field (i.e., field-free alignment). Field-free alignment is particularly advantageous because subsequent experiments on the aligned molecule are not perturbed by the aligning light pulse. Wellaligned molecules in the gas phase are suitable for diffraction experiments. From the

  14. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    International Nuclear Information System (INIS)

    Piot, P.; Maxwell, T. J.; Sun, Y.-E; Ruan, J.; Lumpkin, A. H.; Thurman-Keup, R.; Rihaoui, M. M.

    2011-01-01

    We experimentally demonstrate the production of narrow-band (δf/f≅20% at f≅0.5THz) transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. The bunch train is generated via a transverse-to-longitudinal phase space exchange technique. We also show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  15. Time resolved techniques: An overview

    International Nuclear Information System (INIS)

    Larson, B.C.; Tischler, J.Z.

    1990-06-01

    Synchrotron sources provide exceptional opportunities for carrying out time-resolved x-ray diffraction investigations. The high intensity, high angular resolution, and continuously tunable energy spectrum of synchrotron x-ray beams lend themselves directly to carrying out sophisticated time-resolved x-ray scattering measurements on a wide range of materials and phenomena. When these attributes are coupled with the pulsed time-structure of synchrotron sources, entirely new time-resolved scattering possibilities are opened. Synchrotron beams typically consist of sub-nanosecond pulses of x-rays separated in time by a few tens of nanoseconds to a few hundred nanoseconds so that these beams appear as continuous x-ray sources for investigations of phenomena on time scales ranging from hours down to microseconds. Studies requiring time-resolution ranging from microseconds to fractions of a nanosecond can be carried out in a triggering mode by stimulating the phenomena under investigation in coincidence with the x-ray pulses. Time resolution on the picosecond scale can, in principle, be achieved through the use of streak camera techniques in which the time structure of the individual x-ray pulses are viewed as quasi-continuous sources with ∼100--200 picoseconds duration. Techniques for carrying out time-resolved scattering measurements on time scales varying from picoseconds to kiloseconds at present and proposed synchrotron sources are discussed and examples of time-resolved studies are cited. 17 refs., 8 figs

  16. ASIC for time-of-flight measurements with picosecond timing resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stankova, Vera; Shen, Wei; Harion, Tobias [Kirchhoff-Institute for Physics, Heidelberg Univ. (Germany)

    2015-07-01

    The Positron Emission Tomography (PET) images are especially affected by a high level of noise. This noise affects the potential to detect and discriminate the tumor in relation to the background. Including Time-of-Flight information, with picosecond time resolution, within the conventional PET scanners will improve the signal-to-noise ratio (SNR) and in sequence the quality of the medical images. A mix-mode ASIC (STIC3) has been developed for high precision timing measurements with Silicon Photomultipliers (SiPM). The STiC3 is 64-channel chip, with fully differential analog front-end for crosstalk and electronic noise immunity. It integrates Time to Digital Converters (TDC) with time binning of 50.2 ps for time and energy measurements. Measurements of the of the analog front-end show a time jitter less than 20 ps and jitter of the TDC together with the digital part is around 37 ps. Further the timing of a channel has been tested by injecting a pulse into two channels and measuring the time difference of the recorded timestamps. A Coincidence Time Resolution (CTR) of 215 ps FWHM has been obtained with 3.1 x 3.1 x 15 mm{sup 2} LYSO:Ce scintillator crystals and Hamamatsu SiPM matric (S12643-050CN(x)). Characterization measurements with the chip and its performances are presented.

  17. Picosecond absorption relaxation measured with nanosecond laser photoacoustics.

    Science.gov (United States)

    Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin; Wang, Lihong V

    2010-10-18

    Picosecond absorption relaxation-central to many disciplines-is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, were measured at 576 nm. The added advantages in dispersion susceptibility, laser-wavelength availability, reflection sensing, and expense foster the study of natural-including strongly scattering and nonfluorescent-materials.

  18. Optoelectronic Picosecond Detection of Synchrotron X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Stephen M. [Purdue Univ., West Lafayette, IN (United States)

    2017-08-04

    The goal of this research program was to develop a detector that would measure x-ray time profiles with picosecond resolution. This was specifically aimed for use at x-ray synchrotrons, where x-ray pulse profiles have Gaussian time spreads of 50-100 ps (FWHM), so the successful development of such a detector with picosecond resolution would permit x-ray synchrotron studies to break through the pulse width barrier. That is, synchrotron time-resolved studies are currently limited to pump-probe studies that cannot reveal dynamics faster than ~50 ps, whereas the proposed detector would push this into the physically important 1 ps domain. The results of this research effort, described in detail below, are twofold: 1) the original plan to rely on converting electronic signals from a semiconductor sensor into an optical signal proved to be insufficient for generating signals with the necessary time resolution and sensitivity to be widely applicable; and 2) an all-optical method was discovered whereby the x-rays are directly absorbed in an optoelectronic material, lithium tantalate, which can then be probed by laser pulses with the desired picosecond sensitivity for detection of synchrotron x-rays. This research program has also produced new fundamental understanding of the interaction of x-rays and optical lasers in materials that has now created a viable path for true picosecond detection of synchrotron x-rays.

  19. Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range

    Science.gov (United States)

    Yu, Anchi; Ye, Xiong; Ionascu, Dan; Cao, Wenxiang; Champion, Paul M.

    2005-11-01

    An electronically delayed two-color pump-probe instrument was developed using two synchronized laser systems. The instrument has picosecond time resolution and can perform scans over hundreds of nanoseconds without the beam divergence and walk-off effects that occur using standard spatial delay systems. A unique picosecond Ti :sapphire regenerative amplifier was also constructed without the need for pulse stretching and compressing optics. The picosecond regenerative amplifier has a broad wavelength tuning range, which suggests that it will make a significant contribution to two-color pump-probe experiments. To test this instrument we studied the rotational correlation relaxation of myoglobin (τr=8.2±0.5ns) in water as well as the geminate rebinding kinetics of oxygen to myoglobin (kg1=1.7×1011s-1, kg2=3.4×107s-1). The results are consistent with, and improve upon, previous studies.

  20. Picosecond image-converter diagnostics

    International Nuclear Information System (INIS)

    Schelev, M.Ya.

    1975-01-01

    A brief review is presented of the improvements in picosecond image-converter diagnostics carried out since the previous Congress in 1972. The account is given under the following headings: picosecond image converter cameras for visible and x-ray radiation diagnostics; Nd:glass and ruby mode-locked laser measurements; x-ray plasma emission diagnostics; computer treatment of pictures produced by picosecond cameras. (U.K.)

  1. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector

    International Nuclear Information System (INIS)

    Smith, Richard J.; Light, Roger A.; Johnston, Nicholas S.; Pitter, Mark C.; Somekh, Mike G.; Sharples, Steve D.

    2010-01-01

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  2. Multichannel, time-resolved picosecond laser ultrasound imaging and spectroscopy with custom complementary metal-oxide-semiconductor detector

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Richard J.; Light, Roger A.; Johnston, Nicholas S.; Pitter, Mark C.; Somekh, Mike G. [Institute of Biophysics, Imaging and Optical Science, University of Nottingham, Nottinghamshire NG7 2RD (United Kingdom); Sharples, Steve D. [Applied Optics Group, Electrical Systems and Optics Research Division, University of Nottingham, Nottinghamshire NG7 2RD (United Kingdom)

    2010-02-15

    This paper presents a multichannel, time-resolved picosecond laser ultrasound system that uses a custom complementary metal-oxide-semiconductor linear array detector. This novel sensor allows parallel phase-sensitive detection of very low contrast modulated signals with performance in each channel comparable to that of a discrete photodiode and a lock-in amplifier. Application of the instrument is demonstrated by parallelizing spatial measurements to produce two-dimensional thickness maps on a layered sample, and spectroscopic parallelization is demonstrated by presenting the measured Brillouin oscillations from a gallium arsenide wafer. This paper demonstrates the significant advantages of our approach to pump probe systems, especially picosecond ultrasonics.

  3. Analysis of picosecond pulsed laser melted graphite

    International Nuclear Information System (INIS)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm -1 and the disorder-induced mode at 1360 cm -1 , the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence

  4. Sintering time effect on crystal structure and magnetic properties of Bi{sub 0.8}La{sub 0.2}FeO{sub 3} multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ompal, E-mail: om19901990@gmail.com; Agarwal, Ashish; Sanghi, Sujata; Singh, Jogender [Department of Applied Physics Guru Jambheshwar University of Science & Technology, Hisar – 125001 (Haryana) (India)

    2016-05-06

    Effect of sintering time over the structure and magnetic properties has been studied in Bi{sub 0.8}La{sub 0.2}FeO{sub 3} multiferroic ceramics prepared by solid state reaction technique. The structure changes with the advent mixed phase rhombohedral and orthorhombic symmetry to immaculate orthorhombic structure with sintering time from 2 to 3 hour, as revealed by means of the simulation of XRD patterns via Rietveld analysis through FullProf software. The M – H plots depict decent enhancement in magnetization with values of remnant magnetization (Mr) from 0.01868emu/g to 0.09357emu/g while the sintering time is varied from 2 to 3 hour. The metamagnetic transition may be attributed to the crumpling of the modulated spin cycloid existing inherently in the pristine compound. The presented study may have considerable impact in commercial as well as advanced electronic applications.

  5. Comparison of optical transients during the picosecond laser pulse-induced crystallization of GeSbTe and AgInSbTe phase-change thin films: Nucleation-driven versus growth-driven processes

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Guangfei [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Simian [State Key Laboratory of Optoelectronic Materials and Technology, Department of Physics, Sun Yat-Sen University, Guangzhou 510275 (China); Huang, Huan [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Wang, Yang, E-mail: ywang@siom.ac.cn [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Lai, Tianshu, E-mail: stslts@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technology, Department of Physics, Sun Yat-Sen University, Guangzhou 510275 (China); Wu, Yiqun [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2013-09-01

    Direct comparison of the real-time in-situ crystallization behavior of as-deposited amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} (GeSbTe) and Ag{sub 8}In{sub 14}Sb{sub 55}Te{sub 23} (AgInSbTe) phase-change thin films driven by picosecond laser pulses was performed by a time-resolved optical pump-probe technique with nanosecond resolution. Different optical transients showed various crystallization processes because of the dissimilar nucleation- and growth-dominated mechanisms of the two materials. The effects of laser pulse fluence, thermal conductive structure, and successive pulse irradiation on their crystallization dynamics were also discussed. A schematic was then established to describe the different crystallization processes beginning from the as-deposited amorphous state. The results may provide further insight into the phase-change mechanism under extra-non-equilibrium conditions and aid the development of ultrafast phase-change memory materials.

  6. Unfolding of Ubiquitin Studied by Picosecond Time-Resolved Fluorescence of the Tyrosine Residue

    OpenAIRE

    Noronha, Melinda; Lima, João C.; Bastos, Margarida; Santos, Helena; Maçanita, António L.

    2004-01-01

    The photophysics of the single tyrosine in bovine ubiquitin (UBQ) was studied by picosecond time-resolved fluorescence spectroscopy, as a function of pH and along thermal and chemical unfolding, with the following results: First, at room temperature (25°C) and below pH 1.5, native UBQ shows single-exponential decays. From pH 2 to 7, triple-exponential decays were observed and the three decay times were attributed to the presence of tyrosine, a tyrosine-carboxylate hydrogen-bonded complex, and...

  7. A Brief Technical History of the Large-Area Picosecond Photodetector (LAPPD) Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Adams, B.W.; et al.

    2016-03-06

    The Large Area Picosecond PhotoDetector (LAPPD) Collaboration was formed in 2009 to develop large-area photodetectors capable of time resolutions measured in pico-seconds, with accompanying sub-millimeter spatial resolution. During the next three and one-half years the Collaboration developed the LAPPD design of 20 x 20 cm modules with gains greater than $10^7$ and non-uniformity less than $15\\%$, time resolution less than 50 psec for single photons and spatial resolution of 700~microns in both lateral dimensions. We describe the R\\&D performed to develop large-area micro-channel plate glass substrates, resistive and secondary-emitting coatings, large-area bialkali photocathodes, and RF-capable hermetic packaging. In addition, the Collaboration developed the necessary electronics for large systems capable of precise timing, built up from a custom low-power 15-GigaSample/sec waveform sampling 6-channel integrated circuit and supported by a two-level modular data acquisition system based on Field-Programmable Gate Arrays for local control, data-sparcification, and triggering. We discuss the formation, organization, and technical successes and short-comings of the Collaboration. The Collaboration ended in December 2012 with a transition from R\\&D to commercialization.

  8. Structure of picosecond pulses of a Q-switched and mode-locked diode-pumped Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Donin, V I; Yakovin, D V; Gribanov, A V [Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2015-12-31

    The pulse duration of a diode-pumped Nd:YAG laser, in which Q-switching with mode-locking (QML regime) is achieved using a spherical mirror and a travelling-wave acousto-optic modulator, is directly measured with a streak camera. It is found that the picosecond pulses can have a non-single-pulse structure, which is explained by excitation of several competing transverse modes in the Q-switching regime with a pulse repetition rate of 1 kHz. In the case of cw mode-locking (without Q-switching), a new (auto-QML) regime is observed, in which the pulse train repetition rate is determined by the frequency of the relaxation oscillations of the laser field while the train contains single picosecond pulses. (control of laser radiation parameters)

  9. Picosecond buildup and relaxation of intense stimulated emission in GaAs

    International Nuclear Information System (INIS)

    Ageeva, N. N.; Bronevoi, I. L.; Zabegaev, D. N.; Krivonosov, A. N.

    2013-01-01

    In support of the idea developed previously based on circumstantial evidence, we have found that stimulated emission emerges in GaAs and its intensity increases with a picosecond delay relative to the front of powerful picosecond optical pumping that produced a dense electron-hole plasma. The emission intensity relaxes with decreasing pumping with a characteristic time of ∼10 ps. We have derived the dependences of the delay time, the relaxation time, and the duration of the picosecond emission pulse on its photon energy. The estimates based on the fact that the relaxation of emission is determined by electron-hole plasma cooling correspond to the measured relaxation time.

  10. Six-frame picosecond radiation camera based on hydrated electron photoabsorption phenomena

    International Nuclear Information System (INIS)

    Coutts, G.W.; Olk, L.B.; Gates, H.A.; St Leger-Barter, G.

    1977-01-01

    To obtain picosecond photographs of nanosecond radiation sources, a six-frame ultra-high speed radiation camera based on hydrated electron absorption phenomena has been developed. A time-dependent opacity pattern is formed in an acidic aqueous cell by a pulsed radiation source. Six time-resolved picosecond images of this changing opacity pattern are transferred to photographic film with the use of a mode-locked dye laser and six electronically gated microchannel plate image intensifiers. Because the lifetime of the hydrated electron absorption centers can be reduced to picoseconds, the opacity patterns represent time-space pulse profile images

  11. Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring.

    Science.gov (United States)

    Mueller, Matthias; de la Oliva, Natalia; Del Valle, Jaume; Delgado-Martínez, Ignacio; Navarro, Xavier; Stieglitz, Thomas

    2017-12-01

    Interfacing the peripheral nervous system can be performed with a large variety of electrode arrays. However, stimulating and recording a nerve while having a reasonable amount of channels limits the number of available systems. Translational research towards human clinical trial requires device safety and biocompatibility but would benefit from design flexibility in the development process to individualize probes. We selected established medical grade implant materials like precious metals and Parylene C to develop a rapid prototyping process for novel intrafascicular electrode arrays using a picosecond laser structuring. A design for a rodent animal model was developed in conjunction with an intrafascicular implantation strategy. Electrode characterization and optimization was performed first in saline solution in vitro before performance and biocompatibility were validated in sciatic nerves of rats in chronic implantation. The novel fabrication process proved to be suitable for prototyping and building intrafascicular electrode arrays. Electrochemical properties of the electrode sites were enhanced and tested for long-term stability. Chronic implantation in the sciatic nerve of rats showed good biocompatibility, selectivity and stable stimulation thresholds. Established medical grade materials can be used for intrafascicular nerve electrode arrays when laser structuring defines structure size in the micro-scale. Design flexibility reduces re-design cycle time and material certificates are beneficial support for safety studies on the way to clinical trials.

  12. Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring

    Science.gov (United States)

    Mueller, Matthias; de la Oliva, Natalia; del Valle, Jaume; Delgado-Martínez, Ignacio; Navarro, Xavier; Stieglitz, Thomas

    2017-12-01

    Objective. Interfacing the peripheral nervous system can be performed with a large variety of electrode arrays. However, stimulating and recording a nerve while having a reasonable amount of channels limits the number of available systems. Translational research towards human clinical trial requires device safety and biocompatibility but would benefit from design flexibility in the development process to individualize probes. Approach. We selected established medical grade implant materials like precious metals and Parylene C to develop a rapid prototyping process for novel intrafascicular electrode arrays using a picosecond laser structuring. A design for a rodent animal model was developed in conjunction with an intrafascicular implantation strategy. Electrode characterization and optimization was performed first in saline solution in vitro before performance and biocompatibility were validated in sciatic nerves of rats in chronic implantation. Main results. The novel fabrication process proved to be suitable for prototyping and building intrafascicular electrode arrays. Electrochemical properties of the electrode sites were enhanced and tested for long-term stability. Chronic implantation in the sciatic nerve of rats showed good biocompatibility, selectivity and stable stimulation thresholds. Significance. Established medical grade materials can be used for intrafascicular nerve electrode arrays when laser structuring defines structure size in the micro-scale. Design flexibility reduces re-design cycle time and material certificates are beneficial support for safety studies on the way to clinical trials.

  13. Femosecond dynamics of quasi-particles in YBa sub 2 Cu sub 3 O sub 7 minus. delta. superconductor films

    Energy Technology Data Exchange (ETDEWEB)

    Han, S.G.; Vardeny, Z.V.; Symko, O.G. (Utah Univ., Salt Lake City, UT (United States). Dept. of Physics); Koren, G. (Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Physics)

    1991-03-01

    This paper reports on the transient electronic response of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} epitaxially grown HT{sub c} superconductor thin films in the femtosecond time domain, using transient photoinduced reflectivity ({Delta}R) with 60 fsec time resolution. For temperatures T {gt} T{sub c} only a bolometric signal was observed with {Delta}R {gt} O. For T {lt} T{sub c} {Delta}R {lt} O with a temperature dependent rise time of order 300 fsec followed by a relaxation (of order 3 psec) into a state with {Delta} are explained in terms of quasi-particle (QP) electronic response giving {Delta}R {lt} O. Thus the femtosecond rise time is interpreted as avalanche multiplication of QP across the gap 2{Delta} and the subsequent picosecond relaxation as QP recombination. The QP optical response is explained within the two fluid model.

  14. Study of polysilane mainchain electronic structure by picosecond pulse radiolysis

    International Nuclear Information System (INIS)

    Habara, H.; Saeki, A.; Kunimi, Y.; Seki, S.; Kozawa, T.; Yoshida, Y.; Tagawa, S.

    2000-01-01

    The electronic structure of a charged polysilane molecle is studied. The transient absorption spectroscopy was carried out for charged radicals of poly (methylphenylsilane): PMPS by pico-second and nanosecond pulse radiolysis technique. It was observed that the peak of the transient absorption spectra shifted to longer wavelength region within a few nsec, and an increase was observed in the optical density at 370 nm, which had been already assigned to the radical anions of PMPS. It is ascribed to inter-segment electron transfer (intra-molecular transfer) through polymer chain. The nanosecond pulse radiolysis experiments gave similar kinetic traces in near-UV and IR region. This suggests the presence of an interband level, that is, a polaron level occupied by an excess electron or a hole. (author)

  15. Real time observation of the excimer formation dynamics of a gas phase benzene dimer by picosecond pump-probe spectroscopy.

    Science.gov (United States)

    Miyazaki, Mitsuhiko; Fujii, Masaaki

    2015-10-21

    We observed the real-time excimer (EXC) formation dynamics of a gas phase benzene dimer (Bz2) cluster after photo-excitation to the S1 state by applying an ionization detected picosecond transient absorption method for probing the visible EXC absorption for the first time. The time evolution of the EXC absorption from the S1 0(0) level shows a rise that is well fitted by a single exponential function with a time constant of 18 ± 2 ps. The structure of the Bz dimer has a T-shaped structure in the ground electronic state, and that in the EXC state is a parallel sandwich (SW) structure. Thus, the observed rise time corresponds to the structural change from the T to the SW structures, which directly shows the EXC formation. On the other hand, the EXC formation after excitation of the S1 6(1) vibrational level of the stem site showed a faster rise of the time constant of 10 ± 2 ps. Supposing equilibrium between the EXC and the local excited states, it followed that the intramolecular vibrational energy redistribution rate of the 6(1) level is largely enhanced and becomes faster than the EXC formation reaction.

  16. Picosecond x-ray streak camera studies

    International Nuclear Information System (INIS)

    Kasyanov, Yu.S.; Malyutin, A.A.; Richardson, M.C.; Chevokin, V.K.

    1975-01-01

    Some initial results of direct measurement of picosecond x-ray emission from laser-produced plasmas are presented. A PIM-UMI 93 image converter tube, incorporating an x-ray sensitive photocathode, linear deflection, and three stages of image amplification was used to analyse the x-ray radiation emanating from plasmas produced from solid Ti targets by single high-intensity picosecond laser pulses. From such plasmas, the x-ray emission typically persisted for times of 60psec. However, it is shown that this detection system should be capable of resolving x-ray phenomena of much shorter duration. (author)

  17. Note: Space qualified photon counting detector for laser time transfer with picosecond precision and stability.

    Science.gov (United States)

    Prochazka, Ivan; Kodet, Jan; Blazej, Josef

    2016-05-01

    The laser time transfer link is under construction for the European Space Agency in the frame of Atomic Clock Ensemble in Space. We have developed and tested the flying unit of the photon counting detector optimized for this space mission. The results are summarized in this Note. An extreme challenge was to build a detector package, which is rugged, small and which provides long term detection delay stability on picosecond level. The device passed successfully all the tests required for space missions on the low Earth orbits. The detector is extremely rugged and compact. Its long term detection delay stability is excellent, it is better than ±1 ps/day, in a sense of time deviation it is better than 0.5 ps for averaging times of 2000 s to several hours. The device is capable to operate in a temperature range of -55 °C up to +60 °C, the change of the detection delay with temperature is +0.5 ps/K. The device is ready for integration into the space structure now.

  18. Atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    Science.gov (United States)

    Pabst, Stefan

    2013-04-01

    Time-resolved investigations of ultrafast electronic and molecular dynamics were not possible until recently. The typical time scale of these processes is in the picosecond to attosecond realm. The tremendous technological progress in recent years made it possible to generate ultrashort pulses, which can be used to trigger, to watch, and to control atomic and molecular motion. This tutorial focuses on experimental and theoretical advances which are used to study the dynamics of electrons and molecules in the presence of ultrashort pulses. In the first part, the rotational dynamics of molecules, which happens on picosecond and femtosecond time scales, is reviewed. Well-aligned molecules are particularly suitable for angle-dependent investigations like x-ray diffraction or strong-field ionization experiments. In the second part, the ionization dynamics of atoms is studied. The characteristic time scale lies, here, in the attosecond to few-femtosecond regime. Although a one-particle picture has been successfully applied to many processes, many-body effects do constantly occur. After a broad overview of the main mechanisms and the most common tools in attosecond physics, examples of many-body dynamics in the attosecond world (e.g., in high-harmonic generation and attosecond transient absorption spectroscopy) are discussed.

  19. Picosecond streak camera diagnostics of CO2 laser-produced plasmas

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; Marjoribanks, R.S.; Sancton, R.W.; Enright, G.D.; Richardson, M.C.

    1979-01-01

    The interaction of intense laser radiation with solid targets is currently of considerable interest in laser fusion studies. Its understanding requires temporal knowledge of both laser and plasma parameters on a picosecond time scale. In this paper we describe the progress we have recently made in analysing, with picosecond time resolution, various features of intense nanosecond CO 2 laser pulse interaction experiments. An infrared upconversion scheme, having linear response and <20 ps temporal resolution, has been utilized to characterise the 10 μm laser pulse. Various features of the interaction have been studied with the aid of picosecond IR and x-ray streak cameras. These include the temporal and spatial characteristics of high harmonic emission from the plasma, and the temporal development of the x-ray continuum spectrum. (author)

  20. The generalized centroid difference method for picosecond sensitive determination of lifetimes of nuclear excited states using large fast-timing arrays

    Energy Technology Data Exchange (ETDEWEB)

    Régis, J.-M., E-mail: regis@ikp.uni-koeln.de [Institut für Kernphysik der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany); Mach, H. [Departamento de Física Atómica y Nuclear, Universidad Complutense, 28040 Madrid (Spain); Simpson, G.S. [Laboratoire de Physique Subatomique et de Cosmologie Grenoble, 53, rue des Martyrs, 38026 Grenoble Cedex (France); Jolie, J.; Pascovici, G.; Saed-Samii, N.; Warr, N. [Institut für Kernphysik der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany); Bruce, A. [School of Computing, Engineering and Mathematics, University of Brighton, Lewes Road, Brighton BN2 4GJ (United Kingdom); Degenkolb, J. [Institut für Kernphysik der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany); Fraile, L.M. [Departamento de Física Atómica y Nuclear, Universidad Complutense, 28040 Madrid (Spain); Fransen, C. [Institut für Kernphysik der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany); Ghita, D.G. [Horia Hulubei National Institute for Physics and Nuclear Engineering, 77125 Bucharest (Romania); and others

    2013-10-21

    A novel method for direct electronic “fast-timing” lifetime measurements of nuclear excited states via γ–γ coincidences using an array equipped with N∈N equally shaped very fast high-resolution LaBr{sub 3}(Ce) scintillator detectors is presented. Analogous to the mirror symmetric centroid difference method, the generalized centroid difference method provides two independent “start” and “stop” time spectra obtained by a superposition of the N(N−1)γ–γ time difference spectra of the N detector fast-timing system. The two fast-timing array time spectra correspond to a forward and reverse gating of a specific γ–γ cascade. Provided that the energy response and the electronic time pick-off of the detectors are almost equal, a mean prompt response difference between start and stop events is calibrated and used as a single correction for lifetime determination. These combined fast-timing arrays mean γ–γ time-walk characteristics can be determined for 40keVsub γ}<1.3MeV with an accuracy less than 5 ps using a {sup 152}Eu γ-ray source. Due to reduction and cancellation of many possible systematic errors, the lifetime determination limit of the method over the total dynamic range is mainly determined by the statistics. The setup of an N=4 detector fast-timing array delivered an absolute time resolving power of 3 ps for 10 000 γ–γ events per total fast timing array start and stop time spectrum. The new method is tested over the total dynamic range by the measurements of known picosecond lifetimes in standard γ-ray sources.

  1. Insights into the photochemical disproportionation of transition metal dimers on the picosecond time scale.

    Science.gov (United States)

    Lomont, Justin P; Nguyen, Son C; Harris, Charles B

    2013-05-09

    The reactivity of five transition metal dimers toward photochemical, in-solvent-cage disproportionation has been investigated using picosecond time-resolved infrared spectroscopy. Previous ultrafast studies on [CpW(CO)3]2 established the role of an in-cage disproportionation mechanism involving electron transfer between 17- and 19-electron radicals prior to diffusion out of the solvent cage. New results from time-resolved infrared studies reveal that the identity of the transition metal complex dictates whether the in-cage disproportionation mechanism can take place, as well as the more fundamental issue of whether 19-electron intermediates are able to form on the picosecond time scale. Significantly, the in-cage disproportionation mechanism observed previously for the tungsten dimer does not characterize the reactivity of four out of the five transition metal dimers in this study. The differences in the ability to form 19-electron intermediates are interpreted either in terms of differences in the 17/19-electron equilibrium or of differences in an energetic barrier to associative coordination of a Lewis base, whereas the case for the in-cage vs diffusive disproportionation mechanisms depends on whether the 19-electron reducing agent is genuinely characterized by 19-electron configuration at the metal center or if it is better described as an 18 + δ complex. These results help to better understand the factors that dictate mechanisms of radical disproportionation and carry implications for radical chain mechanisms.

  2. Picosecond spectroscopy: The first 20 years

    International Nuclear Information System (INIS)

    Rentzepis, P.M.

    1987-01-01

    Lasers were at first operating in the pulsed mode. That was the ruby, Cr/sup 3+/, emitting at 694.3 nm with a few kilowatts power, several microseconds time width, and a rather broad non-smooth-spiky-intensity profile. Even with such a primitive laser source, several noteworthy, novel experiments were performed such as two photon processes and second harmonic generation. The advent of Q-switch lasers by means of dyes, Kerr cells and electro-optic crystals introduced the era of high power lasers and laser spectroscopy. The high intensity and rather smooth intensity versus time profile pulses emitted by ruby and Nd/sup 3+//glass lasers provided excellent means for non-linear spectroscopy studies and nanosecond Raman spectroscopy, a field which flourished ten years later. In the mid-sixties, the He/Ne laser was mode locked, and shortly thereafter, the Nd/sup 3+//glass laser was also mode locked and shown to emit picosecond duration pulses. This paper presents what one observes on the screen of an oscilloscope once a laser is set up so as to generate picosecond pulses by use of either a saturable absorbing dye or solid state modulator. What is seen is, of course, a train of pulses. It is characteristic of these pulses that their intensity is extremely high, in the gigawatt region. In this particular case, the band width is approximately twenty to thirty wavenumbers. The method utilized to measure the picosecond pulses, initially, was the two photon method. This paper also gives a more graphic illustration how this technique operates. This same procedure provides an extremely simple technique which the author believes made possible the initial development of the picosecond spectroscopy field

  3. Development of picosecond pulsed electron beam monitor. 2

    International Nuclear Information System (INIS)

    Hosono, Y.; Nakazawa, M.; Ueda, T.

    1994-01-01

    A picosecond pulsed electron beam monitor for a 35 MeV linear accelerator has been developed. The monitor consists of an electric SMA connector and aluminium pipe(inner diameter of 50mm). The following characteristics of this monitor were obtained, (a) the rise time is less than 17.5 ps (b) linearity of the monitor output voltage is proportional to the peak current of beam. It is shown that this monitor can be successfully used for bunch measurements of picosecond pulsed electron beam of 35 MeV linac. (author)

  4. Timely resolved measurements on CdSe nanoparticles; Zeitaufgeloeste Messungen an CdSe Nanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Holt, B.E. von

    2006-06-06

    By means of infrared spectroscopy the influence of the organic cover on structure and dynamics of CdSe nanoparticles was studied. First a procedure was developed, which allows to get from the static infrared spectrum informations on the quality of the organic cover and the binding behaviour of the ligands. On qualitatively high-grade and well characterized samples thereafter the dynamics of the lowest-energy electron level 1S{sub e} was time-resolvedly meausred in thew visible range. As reference served CdSe TOPO, which was supplemented by samples with the ligands octanthiole, octanic acid, octylamine, naphthoquinone, benzoquinone, and pyridine. The studied nanoparticles had a diameter of 4.86 nm. By means of the excitation-scanning or pump=probe procedure first measurements in the picosecond range were performed. The excitation wavelengths were thereby spectrally confined and so chosen that selectively the transitions 1S{sub 3/2}-1S-e and 1P{sub 3/2}-1P{sub e} but not the intermediately lyingt transition 2S{sub 3/2}-1S{sub e} were excited. The excitation energies were kept so low that the excitation of several excitons in one crystal could be avoided. The scanning wavelength in the infrared corresponded to the energy difference between the electron levels 1S{sub e} and 1P{sub e}. The transients in the picosecond range are marked by a steep increasement of the signal, on which a multi-exponential decay follows. The increasement, which reproduces the popiulation of the excited state, isa inependent on the choice of the ligands. The influence of the organic cover is first visible in the different decay times of the excited electron levels. the decay of the measurement signal of CdSe TOPO can be approximatively described by three time constants: a decay constant in the early picosecond region, a time constant around hundert picoseconds, and a time constant of some nanoseconds. At increasing scanning wavelength the decay constants become longer. By directed excitation

  5. Picosecond infrared activation of methanol in acid zeolites

    NARCIS (Netherlands)

    Bonn, Miacha; van Santen, Rutger A.; Lercher, J.A.; Kleyn, Aart W.; Bakker, H.J.; Bakker, Huib J.

    1997-01-01

    Highly porous, crystalline zeolite catalysts are used industrially to catalyze the conversion of methanol to gasoline. We have performed a picosecond spectroscopic study providing insights into both the structure and the dynamics of methanol adsorbed to acid zeolites. We reveal the adsorption

  6. Development of a new picosecond pulse radiolysis system by using a femtosecond laser synchronized with a picosecond linac. A step to femtosecond pulse radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Yoichi; Yamamoto, Tamotsu; Miki, Miyako; Seki, Shu; Okuda, Shuichi; Honda, Yoshihide; Kimura, Norio; Tagawa, Seiichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Ushida, Kiminori

    1997-03-01

    A new picosecond pulse radiolysis system by using a Ti sapphire femtosecond laser synchronized with a 20 ps electron pulse from the 38 MeV L-band linac has been developed for the research of the ultra fast reactions in primary processes of radiation chemistry. The timing jitter in the synchronization of the laser pulse with the electron pulse is less than several picosecond. The technique can be used in the next femtosecond pulse radiolysis. (author)

  7. Femtosecond optical detection of quasiparticle dynamics in high- T sub c YBa sub 2 Cu sub 3 O sub 7 minus. delta. superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Han, S.G.; Vardeny, Z.V.; Wong, K.S.; Symko, O.G. (Department of Physics, University of Utah, Salt Lake City, UT (USA)); Koren, G. (Department of Physics, Technion, 32000 Haifa (Israel))

    1990-11-19

    Femtosecond dynamics of photogenerated quasiparticles in YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} superconducting thin films shows, at {ital T}{le}{ital T}{sub {ital c}}, two main electronic processes: (i) quasiparticle avalanche production during hot-carrier thermalization, which takes about 300 fsec; (ii) recombination of quasiparticles to form Cooper pairs, which is completed within 5 psec. In contrastr, nonsuperconducting epitaxial films such as PrBa{sub 2}Cu{sub 2}O{sub 7} and YBa{sub 2}Cu{sub 3}O{sub 6} show regular picosecond electronic response.

  8. A re-evaluation of the initial yield of the hydrated electron in the picosecond time range

    International Nuclear Information System (INIS)

    Muroya, Yusa; Lin Mingzhang; Wu, Guozhong; Iijima, Hokuto; Yoshii, Koji; Ueda, Toru; Kudo, Hisaaki; Katsumura, Yosuke

    2005-01-01

    The yield of the hydrated electron in the picosecond time range has been re-evaluated with an ultrafast pulse radiolysis system using a laser photocathode RF-gun in combination with a conventional one, and a value of 4.1±0.2 per 100 eV of absorbed energy at 20 ps was derived. This is consistent with recent experimental results using a time correlation method [Bartels et al., J. Phys. Chem. A 104, 1686-1691 (2000)] and with Monte-Carlo calculations [Muroya et al., Can. J. Chem. 80 1367-1374 (2002)

  9. Electric field measurements in a dielectric barrier nanosecond pulse discharge with sub-nanosecond time resolution

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Shkurenkov, Ivan; Adamovich, Igor V; Lempert, Walter R; O’Byrne, Sean

    2015-01-01

    The paper presents the results of time-resolved electric field measurements in a nanosecond discharge between two plane electrodes covered by dielectric plates, using picosecond four-wave mixing diagnostics. For absolute calibration, the IR signal was measured in hydrogen at a pressure of 440 Torr, for electrostatic electric field ranging from 0 to 8 kV cm −1 . The calibration curve (i.e. the square root of IR signal intensity versus electric field) was shown to be linear. By measuring the intensities of the pump, Stokes, and IR signal beam for each laser shot during the time sweep across the high-voltage pulse, temporal evolution of the electric field in the nanosecond pulse discharge was determined with sub-nanosecond time resolution. The results are compared to kinetic modeling predictions, showing good agreement, including non-zero electric field offset before the main high voltage pulse, breakdown moment, and reduction of electric field in the plasma after breakdown. The difference between the experimental results and model predictions is likely due to non-1D structure of the discharge. Comparison with the kinetic modeling predictions shows that electric field in the nanosecond pulse discharge is controlled primarily by electron impact excitation and charge accumulation on the dielectric surfaces. (paper)

  10. Picosecond pulse radiolysis studies on geminate ion recombination in saturated hydrocarbon

    International Nuclear Information System (INIS)

    Tagawa, S.; Washio, M.; Kobayashi, H.; Katsumura, Y.; Tabata, Y.

    1983-01-01

    The geminate recombination kinetics of the excess electron and the electron hole are discussed, based on time-resolved data on picosecond and nanosecond time scales. The recombination times of the excess electron and the electron hole are evaluated to be 3 ps for cyclohexane on the basis of the comparison between the experimental and the calculated results. The spin correlation decay of the geminate ion pairs and the triplet state formation before the spin correlation loss have also been discussed. The rapidly decaying species with very broad absorption spectra, which are similar to the absorption spectra of the cation radicals of saturated hydrocarbons, have been observed in neat saturated hydrocarbons in the sub-nanosecond and a few nanosecond time regions. The identification of the rapidly decaying species were not definitely made but those species are tentatively assigned to the excited states and/or the tail of the geminate cation radicals of saturated hydrocarbons. (author)

  11. Photoelectric characteristics of metal-Ga{sub 2}O{sub 3}-GaAs structures

    Energy Technology Data Exchange (ETDEWEB)

    Kalygina, V. M., E-mail: Kalygina@ngs.ru; Vishnikina, V. V.; Petrova, Yu. S.; Prudaev, I. A.; Yaskevich, T. M. [National Research Tomsk State University (Russian Federation)

    2015-03-15

    We investigate the effect of thermal annealing in argon and of oxygen plasma processing on the photoelectric properties of GaAs-Ga{sub 2}O{sub 3}-Me structures. Gallium-oxide films are fabricated by photostimulated electrochemical oxidation of epitaxial gallium-arsenide layers with n-type conductivity. The as-deposited films were amorphous, but their processing in oxygen plasma led to the nucleation of β-Ga{sub 2}O{sub 3} crystallites. The unannealed films are nontransparent in the visible and ultraviolet (UV) ranges and there is no photocurrent in structures based on them. After annealing at 900°C for 30 min, the gallium-oxide films contain only β-Ga{sub 2}O{sub 3} crystallites and become transparent. Under illumination of the Ga{sub 2}O{sub 3}-GaAs structures with visible light, the photocurrent appears. This effect can be attributed to radiation absorption in GaAs. The photocurrent and its voltage dependence are determined by the time of exposure to the oxygen plasma. In the UV range, the sensitivity of the structures increases with decreasing radiation wavelength, starting at λ ≤ 230 nm. This is due to absorption in the Ga{sub 2}O{sub 3} film. Reduction in the structure sensitivity with an increase in the time of exposure to oxygen plasma can be caused by the incorporation of defects both at the Ga{sub 2}O{sub 3}-GaAs interface and in the Ga{sub 2}O{sub 3} film.

  12. Watching proteins function with picosecond X-ray crystallography and molecular dynamics simulations.

    Science.gov (United States)

    Anfinrud, Philip

    2006-03-01

    Time-resolved electron density maps of myoglobin, a ligand-binding heme protein, have been stitched together into movies that unveil with molecular dynamics (MD) calculations and picosecond time-resolved X-ray structures provides single-molecule insights into mechanisms of protein function. Ensemble-averaged MD simulations of the L29F mutant of myoglobin following ligand dissociation reproduce the direction, amplitude, and timescales of crystallographically-determined structural changes. This close agreement with experiments at comparable resolution in space and time validates the individual MD trajectories, which identify and structurally characterize a conformational switch that directs dissociated ligands to one of two nearby protein cavities. This unique combination of simulation and experiment unveils functional protein motions and illustrates at an atomic level relationships among protein structure, dynamics, and function. In collaboration with Friedrich Schotte and Gerhard Hummer, NIH.

  13. Applications of picosecond lasers and pulse-bursts in precision manufacturing

    Science.gov (United States)

    Knappe, Ralf

    2012-03-01

    Just as CW and quasi-CW lasers have revolutionized the materials processing world, picosecond lasers are poised to change the world of micromachining, where lasers outperform mechanical tools due to their flexibility, reliability, reproducibility, ease of programming, and lack of mechanical force or contamination to the part. Picosecond lasers are established as powerful tools for micromachining. Industrial processes like micro drilling, surface structuring and thin film ablation benefit from a process, which provides highest precision and minimal thermal impact for all materials. Applications such as microelectronics, semiconductor, and photovoltaic industries use picosecond lasers for maximum quality, flexibility, and cost efficiency. The range of parts, manufactured with ps lasers spans from microscopic diamond tools over large printing cylinders with square feet of structured surface. Cutting glass for display and PV is a large application, as well. With a smart distribution of energy into groups of ps-pulses at ns-scale separation (known as burst mode) ablation rates can be increased by one order of magnitude or more for some materials, also providing a better surface quality under certain conditions. The paper reports on the latest results of the laser technology, scaling of ablation rates, and various applications in ps-laser micromachining.

  14. Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Liisa M.; Le Marois, Alix; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Becker, Wolfgang; Smietana, Stefan [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Milnes, James; Conneely, Thomas [Photek Ltd., 26 Castleham Rd, Saint Leonards-on-Sea TN38 9NS (United Kingdom); Jagutzki, Ottmar [Institut für Kernphysik, Max-von-Laue-Str. 1, 60438 Frankfurt (Germany)

    2016-08-15

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reduced lifetime near the coverslip in TIR compared to epifluorescence FLIM.

  15. Superlattice-like SnSb{sub 4}/Ga{sub 3}Sb{sub 7} thin films for ultrafast switching phase-change memory application

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yifeng [Tongji University, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Shanghai (China); Jiangsu University of Technology, School of Mathematics and Physics, Changzhou (China); He, Zifang; Zhai, Jiwei [Tongji University, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Functional Materials Research Laboratory, School of Materials Science and Engineering, Shanghai (China); Wu, Pengzhi; Lai, Tianshu [Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technology, Department of Physics, Guangzhou (China); Song, Sannian; Song, Zhitang [Chinese Academy of Sciences, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Shanghai (China)

    2015-11-15

    The carrier concentration of Sb-rich phase SnSb{sub 4}, Ga{sub 3}Sb{sub 7} and superlattice-like [SnSb{sub 4}(3.5 nm)/Ga{sub 3}Sb{sub 7}(4 nm)]{sub 7} (SLL-7) thin films as a function of annealing temperature was investigated to explain the reason of resistance change. The activation energy for crystallization was calculated with a Kissinger equation to estimate the thermal stability. In order to illuminate the transition mechanisms, the crystallization kinetics of SLL-7 were explored by using Johnson-Mehl-Avrami theory. The obtained values of Avrami indexes indicate that a one-dimensional growth-dominated mechanism is responsible for the set transition of SLL-7 thin film. X-ray diffractometer and Raman scattering spectra were recorded to investigate the change of crystalline structure. The measurement of atomic force microscopy indicated that SLL-7 thin film has a good smooth surface. A picosecond laser pump-probe system was used to test and verify phase-change speed of the SLL-7 thin film. (orig.)

  16. Temporal resolution technology of a soft X-ray picosecond framing camera based on Chevron micro-channel plates gated in cascade

    Energy Technology Data Exchange (ETDEWEB)

    Yang Wenzheng [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China)], E-mail: ywz@opt.ac.cn; Bai Yonglin; Liu Baiyu [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); Bai Xiaohong; Zhao Junping; Qin Junjun [Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China)

    2009-09-11

    We describe a soft X-ray picosecond framing camera (XFC) based on Chevron micro-channel plates (MCPs) gated in cascade for ultra-fast process diagnostics. The micro-strip lines are deposited on both the input and the output surfaces of the Chevron MCPs and can be gated by a negative (positive) electric pulse on the first (second) MCP. The gating is controlled by the time delay T{sub d} between two gating pulses. By increasing T{sub d}, the temporal resolution and the gain of the camera are greatly improved compared with a single-gated MCP-XFC. The optimal T{sub d}, which results in the best temporal resolution, is within the electron transit time and transit time spread of the MCP. Using 250 ps, {+-}2.5 kV gating pulses, the temporal resolution of the double-gated Chevron MCPs camera is improved from 60 ps for the single-gated MCP-XFC to 37 ps for T{sub d}=350 ps. The principle is presented in detail and accompanied with a theoretic simulation and experimental results.

  17. Time Resolved Detection of Infrared Synchrotron Radiation at DAΦNE

    International Nuclear Information System (INIS)

    Bocci, A.; Marcelli, A.; Drago, A.; Guidi, M. Cestelli; Pace, E.; Piccinini, M.; Sali, D.; Morini, P.; Piotrowski, J.

    2007-01-01

    Synchrotron radiation is characterized by a very wide spectral emission from IR to X-ray wavelengths and a pulsed structure that is a function of the source time structure. In a storage ring, the typical temporal distance between two bunches, whose duration is a few hundreds of picoseconds, is on the nanosecond scale. Therefore, synchrotron radiation sources are a very powerful tools to perform time-resolved experiments that however need extremely fast detectors. Uncooled IR devices optimized for the mid-IR range with sub-nanosecond response time, are now available and can be used for fast detection of intense IR sources such as synchrotron radiation storage rings. We present here different measurements of the pulsed synchrotron radiation emission at DAΦNE (Double Annular Φ-factory for Nice Experiments), the collider of the Laboratori Nazionali of Frascati (LNF) of the Istituto Nazionale di Fisica Nucleare (INFN), performed with very fast uncooled infrared detectors with a time resolution of a few hundreds of picoseconds. We resolved the emission time structure of the electron bunches of the DAΦNE collider when it works in a normal condition for high energy physics experiments with both photovoltaic and photoconductive detectors. Such a technology should pave the way to new diagnostic methods in storage rings, monitoring also source instabilities and bunch dynamics

  18. Direct observation of free-exciton thermalization in quantum-well structures

    DEFF Research Database (Denmark)

    Umlauff, M.; Hoffmann, J.; Kalt, H.

    1998-01-01

    We report on a direct observation of free-exciton thermalization in quantum-well structures. A narrow energy distribution of free 1s excitons is created in ZnSe-based quantum wells by emission of one LO phonon after optical excitation of the continuum stales with picosecond laser pulses. The subs......We report on a direct observation of free-exciton thermalization in quantum-well structures. A narrow energy distribution of free 1s excitons is created in ZnSe-based quantum wells by emission of one LO phonon after optical excitation of the continuum stales with picosecond laser pulses...

  19. Studies of the mechanical properties of planar and patterned films with picosecond ultrasonics

    Science.gov (United States)

    Antonelli, George Andrew

    We describe a series of investigations of the mechanical properties of thin films and nanostructures. The experiments were performed with picosecond ultrasonics. In this method, sub-picosecond optical pulses are used to excite and detect acoustic phenomena. Several variations of the conventional experimental apparatus were developed and will be described. In the first study, we endeavor to analyze the vibrations of a nanostructure. From measurements of the change in the reflectivity, it is possible to determine the frequencies nun and damping rates Gamma n of a number of the normal modes of the structure. To understand the nature of these vibrations we developed a coarse-grained molecular dynamics model. By comparison of the measured nun and Gamma n with the frequencies and damping rates calculated from the computer simulation, we have been able to identify different normal modes and deduce their vibration patterns. We have also developed a new technique allowing the measurement of the transit time of an acoustic pulse in a thin film with great accuracy. This technique was applied to the study of elastic and anelastic effects in thin metal films. A strain was induced in the film either by heating the film-substrate system or bending the substrate. From measurements of these samples, we were able to extract a certain combination of second- and third-order elastic constants and detect the onset of plastic flow in the metal film. Finally, we describe a technique that can be used to generate high frequency surface waves. A transmission diffraction grating is formed on a transparent wafer, and then placed very close to the surface of the sample. A light pulse passing through the grating will give rise to a spatially-varying light intensity on the sample. This sets up a periodic thermal stress on the sample surface which in turn generates a standing surface acoustic wave.

  20. Timing measurements at ELBE on multigap resistive plate chamber prototypes for NeuLAND

    Energy Technology Data Exchange (ETDEWEB)

    Yakorev, Dmitry; Bemmerer, Daniel; Cowan, Tom; Stach, Daniel; Wagner, Andreas [Forschungszentrum Dresden-Rossendorf (FZD), Dresden (Germany); Aumann, Tom; Boretzky, Konstanze; Hehner, Joerg; Heil, Michael; Prokopowicz, Wawrczek; Reifarth, Rene; Schrieder, Gerhard [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Elvers, Michael; Zilges, Andreas [Universitaet Koeln (Germany); Kratz, Jens Volker; Rossi, Dominic [Johannes-Gutenberg-Universitaet, Mainz (Germany)

    2009-07-01

    The NeuLAND detector for fast neutrons (0.2-1 GeV) at the R3B experiment at FAIR aims for high time and spatial resolutions ({sigma}{sub t}<100 ps, {sigma}{sub x,y,z}<1 cm). The detector will consist of about 60 sequences of a stacked structure from iron converter material and multigap resistive plate chambers (MRPC's). The secondary charged particles stemming from hadronic interactions of the high energetic neutrons in the converter will be detected in the MRPC's, with excellent timing properties. As part of the ongoing development of the NeuLAND detector, MRPC prototypes designed for this application have been studied at the superconducting electron linac ELBE in Dresden with its picosecond time structure. The ELBE experiments show that the prototypes studied so far have efficiency {>=}90% for minimum ionizing particles in a 2 x 2 gap structure and fulfill the called for time resolution.

  1. Proton Radiography of Laser-Plasma Interactions with Picosecond Time Resolution

    International Nuclear Information System (INIS)

    Mackinnon, A J; Patel, P K; Town, R J; Hatchett, S P; Hicks, D; Phillips, T H; Wilks, S C; Price, D; Key, M H; Lasinski, B; Langdon, B; Borghesi, M; Romagnani, L; Kar, S

    2005-01-01

    Radiography of laser-produced plasmas with MeV protons has the potential to provide new information on plasma conditions in extreme states of matter. Protons with energies up to many hundreds MeV, produced by large scale accelerators have been recently been used to obtain mass density radiographs of the behavior of large samples which have been shocked on microsecond timescales with approximately mm spatial resolution. The recent discovery of laminar proton beams accelerated to multi-MeV energies by picosecond duration laser beams has provided the opportunity to probe dense plasmas with hitherto unparalleled temporal and spatial resolution

  2. Resonance Raman spectroscopy in the picosecond time scale: the carboxyhemoglobin photointermediate

    International Nuclear Information System (INIS)

    Terner, J.; Spiro, T.G.; Nagumo, M.; Nicol, M.F.; El-Sayed, M.A.

    1980-01-01

    A picosecond resonance Raman detection technique is described. The technique is described as specifically applied to the analysis of carboxyhemoglobin (COHb). Irradiaton of COHb with a tightly focused laser produced three distinct bands between 1540 and 1620cm -1 that are distinct from bands of COHb or deoxyHb, and the bands are attributed to an intermediate in the photolysis of COHb which develops within 30ps of the excitation. Computer subtraction of the COHb spectrum yielded a spectrum of the photointermediate

  3. Time-resolved photoelectron spectroscopy using synchrotron radiation time structure

    International Nuclear Information System (INIS)

    Bergeard, N.; Silly, M.G.; Chauvet, C.; Guzzo, M.; Ricaud, J.P.; Izquierdo, M.; Sirotti, F.; Krizmancic, D.; Guzzo, M.; Stebel, L.; Pittana, P.; Sergo, R.; Cautero, G.; Dufour, G.; Rochet, F.

    2011-01-01

    Synchrotron radiation time structure is becoming a common tool for studying dynamic properties of materials. The main limitation is often the wide time domain the user would like to access with pump-probe experiments. In order to perform photoelectron spectroscopy experiments over time scales from milliseconds to picoseconds it is mandatory to measure the time at which each measured photoelectron was created. For this reason the usual CCD camera based two-dimensional detection of electron energy analyzers has been replaced by a new delay-line detector adapted to the time structure of the SOLEIL synchrotron radiation source. The new two-dimensional delay-line detector has a time resolution of 5 ns and was installed on a Scienta SES 2002 electron energy analyzer. The first application has been to characterize the time of flight of the photo emitted electrons as a function of their kinetic energy and the selected pass energy. By repeating the experiment as a function of the available pass energy and of the kinetic energy, a complete characterization of the analyzer behaviour in the time domain has been obtained. Even for kinetic energies as low as 10 eV at 2 eV pass energy, the time spread of the detected electrons is lower than 140 ns. These results and the time structure of the SOLEIL filling modes assure the possibility of performing pump-probe photoelectron spectroscopy experiments with the time resolution given by the SOLEIL pulse width, the best performance of the beamline and of the experimental station. (authors)

  4. Picosecond energy relaxation in La0.67Ca0.33MnO3

    International Nuclear Information System (INIS)

    Dorosinets, Vladimir; Richter, Pablo; Mohler, Ernst; Roskos, Hartmut G.; Jakob, Gerhard

    2005-01-01

    Investigating the reflectance response dynamics of La 0.67 Ca 0.33 MnO 3 thin films after excitation by femtosecond laser pulses, we identify for the first time a picosecond relaxation step which only exists below the Curie temperature T C . The relaxation time increases from zero at T C to several picoseconds at low temperatures. The data can be explained with the existence of a magnetization-related effective energy gap, and assuming relaxation between these states to be mediated by a Frohlich-type electron-lattice interaction

  5. Dynamic Characterization of Fiber Optical Chirped Pulse Amplification for Sub-ps Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation.......We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation....

  6. Measurements of Electron Transport in Foils Irradiated with a Picosecond Time Scale Laser Pulse

    International Nuclear Information System (INIS)

    Brown, C. R. D.; Hoarty, D. J.; James, S. F.; Swatton, D.; Hughes, S. J.; Morton, J. W.; Guymer, T. M.; Hill, M. P.; Chapman, D. A.; Andrew, J. E.; Comley, A. J.; Shepherd, R.; Dunn, J.; Chen, H.; Schneider, M.; Brown, G.; Beiersdorfer, P.; Emig, J.

    2011-01-01

    The heating of solid foils by a picosecond time scale laser pulse has been studied by using x-ray emission spectroscopy. The target material was plastic foil with a buried layer of a spectroscopic tracer material. The laser pulse length was either 0.5 or 2 ps, which resulted in a laser irradiance that varied over the range 10 16 -10 19 W/cm 2 . Time-resolved measurements of the buried layer emission spectra using an ultrafast x-ray streak camera were used to infer the density and temperature conditions as a function of laser parameters and depth of the buried layer. Comparison of the data to different models of electron transport showed that they are consistent with a model of electron transport that predicts the bulk of the target heating is due to return currents.

  7. Structural and magnetic evolution of nanostructured Co{sub 40}Fe{sub 10}Zr{sub 10}B{sub 40} prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Raanaei, Hossein, E-mail: hraanaei@yahoo.com [Department of Physics, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Abbasi, Sadeq [Department of Physics, Persian Gulf University, Bushehr 75169 (Iran, Islamic Republic of); Behaein, Saeed [Department of Physics, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2015-06-15

    The structural and magnetic properties of nanocrystalline alloy powder Co{sub 40}Fe{sub 10}Zr{sub 10}B{sub 40} prepared by mechanical alloying have been characterized by using X-ray diffraction (XRD), scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and differential scanning calorimeter (DSC). It is shown that the crystallite size has been decreased significantly to about 15 nm after 8 h milling time. On continuing the milling time mechanical crystallization and subsequently the alloying process were noticed up to 190 h. Saturation magnetization decreased during the whole process while coercivity achieved the highest value at the crystallization stage. Post treatment of milled powder at 190 h revealed crystalline constituent elements. - Highlights: • This article focuses on mechanical alloying of Co{sub 40}Fe{sub 10}Zr{sub 10}B{sub 40} system. • Mechanical crystallization is observed. • Structural and magnetic properties were investigated. • The heat treatment revealed the crystalline phases of constituent elements.

  8. Synthesis and characterization of (Lu{sub 1−x−y}Y{sub x}Ce{sub y}){sub 2}SiO{sub 5} luminescent powders with fast decay time

    Energy Technology Data Exchange (ETDEWEB)

    Aburto-Crespo, M. [Programa de Posgrado en Física de Materiales CICESE-UNAM, Km. 107 Carretera Tij-Ens, Ensenada, B. C. 22860, México (Mexico); Hirata, G.A., E-mail: hirata@cnyn.unam.mx [Centro de Nanociencias y Nanotecnología-Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada, Ensenada, B. C. 22860, México (Mexico); McKittrick, J. [University of California at San Diego, La Jolla, CA 92093-0411 (United States)

    2013-04-15

    The structural and luminescent properties of blue-emitting (Lu{sub 1−x−y}Y{sub x}Ce{sub y}){sub 2}SiO{sub 5} (0.1≤x≤0.4, y=0.05, 0.005) phosphors prepared by combustion synthesis and post-annealed at 1200 °C for different annealing times are reported. X-ray diffraction analysis revealed the formation of a (Lu,Y){sub 2}SiO{sub 5} solid solution as a majority phase with small traces of a residual phase that was identified as Lu{sub 2}SiO{sub 7}. Under long-UV excitation, the powders yield a very bright blue-emission consisting of two bands with maximum emissions located at λ=405 nm and λ=440 nm, both corresponding to the Ce{sup 3+} allowed transitions {sup 2}D{sub 3/2}→{sup 2}F{sub 5/2} and {sup 2}D{sub 5/2}→{sup 2}F{sub 7/2}, respectively. Moreover, luminescence decay times of 38–45 ns were measured, which depend on the composition, making these powders excellent candidates for application as scintillators in medical imaging. -- Highlights: ► A facile technique to fabricate (Lu,Y)-oxyorthosilicate nanophosphors is presented. ► The structural and excellent luminescent properties including excitation, emission and short decay times are reported. ► The Ce-doped oxyorthosilicates nanophosphors present a fast decay time of the order of 38–45 ns.

  9. Generation of fast-rise time, repetitive, (sub) nanosecond, high-voltage pulses

    NARCIS (Netherlands)

    Huiskamp, T.; Pemen, A.J.M.

    2017-01-01

    In this contribution we present our fast-rise time nanosecond pulse generator, capable of generating up to 50 kV (positive and negative) rectangular pulses at a repetition rate of up to 1 kHz and with a rise time of less than 200 picoseconds. We focus on the general concepts involved in the design

  10. Porous nanostructured ZnO films deposited by picosecond laser ablation

    International Nuclear Information System (INIS)

    Sima, Cornelia; Grigoriu, Constantin; Besleaga, Cristina; Mitran, Tudor; Ion, Lucian; Antohe, Stefan

    2012-01-01

    Highlights: ► We deposite porous nanostructured ZnO films by picoseconds laser ablation (PLA). ► We examine changes of the films structure on the experimental parameter deposition. ► We demonstrate PLA capability to produce ZnO nanostructured films free of particulates. - Abstract: Porous nanostructured polycrystalline ZnO films, free of large particulates, were deposited by picosecond laser ablation. Using a Zn target, zinc oxide films were deposited on indium tin oxide (ITO) substrates using a picosecond Nd:YVO 4 laser (8 ps, 50 kHz, 532 nm, 0.17 J/cm 2 ) in an oxygen atmosphere at room temperature (RT). The morpho-structural characteristics of ZnO films deposited at different oxygen pressures (150–900 mTorr) and gas flow rates (0.25 and 10 sccm) were studied. The post-deposition influence of annealing (250–550 °C) in oxygen on the film characteristics was also investigated. At RT, a mixture of Zn and ZnO formed. At substrate temperatures above 350 °C, the films were completely oxidized, containing a ZnO wurtzite phase with crystallite sizes of 12.2–40.1 nm. At pressures of up to 450 mTorr, the porous films consisted of well-distinguished primary nanoparticles with average sizes of 45–58 nm, while at higher pressures, larger clusters (3.1–14.7 μm) were dominant, leading to thicker films; higher flow rates favored clustering.

  11. Picosecond lasers for tattoo removal: a systematic review.

    Science.gov (United States)

    Reiter, Ofer; Atzmony, Lihi; Akerman, Lehavit; Levi, Assi; Kershenovich, Ruben; Lapidoth, Moshe; Mimouni, Daniel

    2016-09-01

    Given that the pigment particles in tattoos have a relaxation time of tattoo removal. To systematically review the evidence regarding the effectiveness and safety of picosecond lasers for tattoo removal, Pubmed, Cochrane Central Register of Controlled Trials (CENTRAL), ClinicalTrials.gov, and reference lists were searched for relevant trials. The primary outcome was >70 % clearance of tattoo pigment. Secondary outcomes were 90-100 % clearance of tattoo pigment, number of laser sessions required, and adverse effects. Eight trials were included, six with human participants (160 participants) and 2 with animal models. Seven of the eight trials explored the usage of either 755, 758, 795, 1064, or 1064/532-nm picosecond lasers for black and blue ink tattoos. In the human trials, 69-100 % of tattoos showed over 70 % clearance of pigment after 1-10 laser treatments. Reported side effects included pain, hyperpigmentation and hypopigmentation, blister formation and transient erythema, edema, and pinpoint bleeding. Included articles varied in type of laser investigated, mostly non-comparative studies and with a medium to high risk of bias. There is sparse evidence that picosecond lasers are more effective than their nanosecond counterparts for mainly black and blue ink tattoo removal, with minor side effects.

  12. Structural study of U(Pd sub 1 sub - sub x Fe sub x) sub 2 Ge sub 2 at high pressure

    CERN Document Server

    Sikolenko, V V; Pomjakushina, E V; Pomjakushin, V Y; Balagurov, A M; Keller, L; Glazkov, V P; Gribanov, A V; Goncharenko, I N; Savenko, B N

    2003-01-01

    The crystal structure of the U(Pd sub 1 sub - sub x Fe sub x) sub 2 Ge sub 2 compounds with Fe content x = 0- 0.03 and the crystal and magnetic structure of U(Pd sub 0 sub . sub 9 sub 8 Fe sub 0 sub . sub 0 sub 2) sub 2 Ge sub 2 at high external pressures up to 4.5 GPa were studied by means of powder neutron diffraction in the temperature range 1.5-300 K. With increasing Fe content the values of the lattice parameters and interatomic distances change only slightly, but it is known from previous experiments that the magnetic structure changes drastically for x >= 0.015. In contrast to this, high external pressure modifies the crystal structure more significantly while the magnetic structure remains unchanged. The results obtained allow one to infer that drastic changes in the magnetic structure of the U(Pd sub 1 sub - sub x Fe sub x) sub 2 Ge sub 2 compounds with increasing Fe content are a consequence of modification of the RKKY-type (RKKY standing for Ruderman, Kittel, Kasuya and Yosida) indirect exchange in...

  13. Si nanostructures grown by picosecond high repetition rate pulsed laser deposition

    International Nuclear Information System (INIS)

    Pervolaraki, M.; Komninou, Ph.; Kioseoglou, J.; Athanasopoulos, G.I.; Giapintzakis, J.

    2013-01-01

    One-step growth of n-doped Si nanostructures by picosecond ultra fast pulsed laser deposition at 1064 nm is reported for the first time. The structure and morphology of the Si nanostructures were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy. Transmission electron microscopy studies revealed that the shape of the Si nanostructures depends on the ambient argon pressure. Fibrous networks, cauliflower formations and Si rectangular crystals grew when argon pressure of 300 Pa, 30 Pa and vacuum (10 −3 Pa) conditions were used, respectively. In addition, the electrical resistance of the vacuum made material was investigated

  14. Si nanostructures grown by picosecond high repetition rate pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pervolaraki, M., E-mail: pervolaraki@ucy.ac.cy [Nanotechnology Research Center and Department of Mechanical and Manufacturing Engineering, University of Cyprus, 75 Kallipoleos Av., PO Box 20537, 1678 Nicosia (Cyprus); Komninou, Ph.; Kioseoglou, J. [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Athanasopoulos, G.I. [Nanotechnology Research Center and Department of Mechanical and Manufacturing Engineering, University of Cyprus, 75 Kallipoleos Av., PO Box 20537, 1678 Nicosia (Cyprus); Giapintzakis, J., E-mail: giapintz@ucy.ac.cy [Nanotechnology Research Center and Department of Mechanical and Manufacturing Engineering, University of Cyprus, 75 Kallipoleos Av., PO Box 20537, 1678 Nicosia (Cyprus)

    2013-08-01

    One-step growth of n-doped Si nanostructures by picosecond ultra fast pulsed laser deposition at 1064 nm is reported for the first time. The structure and morphology of the Si nanostructures were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy. Transmission electron microscopy studies revealed that the shape of the Si nanostructures depends on the ambient argon pressure. Fibrous networks, cauliflower formations and Si rectangular crystals grew when argon pressure of 300 Pa, 30 Pa and vacuum (10{sup −3} Pa) conditions were used, respectively. In addition, the electrical resistance of the vacuum made material was investigated.

  15. Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, T. T. D.; Petit, A.; Semmar, N., E-mail: nadjib.semmar@univ-orleans.fr [GREMI, UMR7344, CNRS/University of Orleans, 14 rue d' Issoudun, BP6744, 45067 Orleans Cedex 2 (France); Vayer, M. [ICMN, UMR 7374, CNRS/University of Orleans, 1b rue de la Ferollerie, CS 40059, 45071 Orleans Cedex (France); Sauldubois, A. [CME, UFR Sciences, University of Orleans, 1 Rue de Chartres, BP 6759, 45067 Orleans Cedex 2 (France)

    2015-11-09

    Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm{sup 2}). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shown the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.

  16. SrBeB{sub 2}O{sub 5}: Growth, crystal structure and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Wenjiao; Wang, Xiaoshan [Center for Crystal Research and Development, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Huang, Hongwei [National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Xu, Tao; Jiang, Xingxing [Center for Crystal Research and Development, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wang, Xiaoyang [Center for Crystal Research and Development, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Lin, Zheshuai, E-mail: zslin@mail.ipc.ac.cn [Center for Crystal Research and Development, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Chuangtian [Center for Crystal Research and Development, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-04-01

    Graphical abstract: The crystal displays a layered configuration along c axis with the wrinkled infinite (BeB{sub 2}O{sub 5}){sub ∞} layers. Display Omitted - Highlights: • A new beryllium borate SrBeB{sub 2}O{sub 5} was synthesized. • A layered structure (BeB{sub 2}O{sub 5}){sub ∞} was formed by BO{sub 3} triangles and B/BeO{sub 4} tetrahedrons. • SrBeB{sub 2}O{sub 5} has a very wide transparency range of wavelengths from 200 nm to 1800 nm. • A-site ions impact greatly on the structures of beryllium borates. - Abstract: A novel beryllium borate SrBeB{sub 2}O{sub 5} is discovered for the first time through traditional solid state reaction and high temperature solution method. The framework of the structure is composed by two-dimensional [BeB{sub 2}O{sub 5}] layers determined from single-crystal X-ray diffraction data. The further structural analysis of beryllium borates reveals that the arrangement of anionic groups attributes to the structural stability. Moreover, the influences of the A-site cations on the structural features of fundamental building blocks in the alkaline or alkaline earth beryllium borates are discussed. The UV–Vis–NIR diffuse-reflectance pattern reveals that this compound has a very wide transparency range of wavelengths down to 200 nm. In addition, the properties of SrBeB{sub 2}O{sub 5} were also characterized by powder X-ray diffraction, differential scanning calorimetry, and IR spectroscopy.

  17. Electric field measurements in a nanosecond pulse discharge by picosecond CARS/4-wave mixing

    Science.gov (United States)

    Goldberg, Ben; Shkurenkov, Ivan; Adamovich, Igor; Lempert, Walter

    2014-10-01

    Time-resolved electric field measurements in hydrogen by picosecond CARS/4-wave mixing are presented. Measurements are carried out in a high voltage nanosecond pulse discharge in hydrogen in plane-to-plane geometry, at pressures of up to several hundred Torr, and with a time resolution of 0.2 ns. Absolute calibration of the diagnostics is done using a sub-breakdown high voltage pulse of 12 kV/cm. A diffuse discharge is obtained by applying a peak high voltage pulse of 40 kV/cm between the electrodes. It is found that breakdown occurs at a lower field, 15--20 kV/cm, after which the field in the plasma is reduced rapidly due to plasma self shielding The experimental results are compared with kinetic modeling calculations, showing good agreement between the measured and the predicted electric field.

  18. Quaternary (FeIn{sub 2}S{sub 4}){sub x}(MnIn{sub 2}S{sub 4}){sub 1-x} alloys and photosensitive structures on their basis

    Energy Technology Data Exchange (ETDEWEB)

    Bodnar, I. V. [Belarusian State University of Informatics and Radioelectronics (Belarus); Rud, V. Yu., E-mail: rudvas.spb@gmail.com [St. Petersburg State Polytechnical University (Russian Federation); Rud, Yu. V. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Lozhkin, D. V. [Belarusian State University of Informatics and Radioelectronics (Belarus)

    2011-07-15

    Using directional crystallization of the melt of the (FeIn{sub 2}S{sub 4}){sub x}(MnIn{sub 2}S{sub 4}){sub 1-x} alloy, homogeneous crystals of a similar atomic composition are grown over the entire range of compositions 1 {>=} x {>=} 0. It is established that the crystals of the continuous series of quaternary alloys in the range x = 0-1 crystallize in the spinel structure and lattice parameter a linearly depends on x. It is established that it is possible to obtain In(Al)/(FeIn{sub 2}S{sub 4}){sub x}(MnIn{sub 2}S{sub 4}){sub 1-x} photosensitive structures. Room-temperature spectra of relative quantum efficiency of photoconversion of the In(Al)/(FeIn{sub 2}S{sub 4}){sub x}(MnIn{sub 2}S{sub 4}){sub 1-x} structures fabricated for the first time are obtained. From the analysis of these spectra, activation energies of direct and indirect band-to-band transitions for the crystals of the (FeIn{sub 2}S{sub 4}){sub x}(MnIn{sub 2}S{sub 4}){sub 1-x} alloys are determined and the dependence of these parameters on the composition of the position-disordered phases of mentioned alloys is discussed. It is concluded that the crystals of the (FeIn{sub 2}S{sub 4}){sub x}(MnIn{sub 2}S{sub 4}){sub 1-x} alloys can be used in broadband photoconverters of optical radiation.

  19. The Li–Si–(O)–N system revisited: Structural characterization of Li{sub 21}Si{sub 3}N{sub 11} and Li{sub 7}SiN{sub 3}O

    Energy Technology Data Exchange (ETDEWEB)

    Casas-Cabanas, M. [CIC energiGUNE, Parque Tecnológico de Álava, Albert Einstein 48, ED.CIC, 01510 Miñano (Spain); Santner, H. [Institut de Ciència de Materials de Barcelona (CSIC) Campus UAB, 08193 Bellaterra, Catalonia (Spain); Palacín, M.R., E-mail: rosa.palacin@icmab.es [Institut de Ciència de Materials de Barcelona (CSIC) Campus UAB, 08193 Bellaterra, Catalonia (Spain)

    2014-05-01

    A systematic study of the Li–Si–(O)–N system is presented. The synthetic conditions to prepare Li{sub 2}SiN{sub 2}, Li{sub 5}SiN{sub 3}, Li{sub 18}Si{sub 3}N{sub 10}, Li{sub 21}Si{sub 3}N{sub 11} and Li{sub 7}SiN{sub 3}O are described and the structure of the last two compounds has been solved for the first time. While Li{sub 21}Si{sub 3}N{sub 11} crystallizes as a superstructure of the anti-fluorite structure with Li and Si ordering, Li{sub 7}SiN{sub 3}O exhibits the anti-fluorite structure with both anion and cation disorder. - Graphical abstract: A systematic study of the Li–Si–(O)–N system is presented. Li{sub 21}Si{sub 3}N{sub 11} crystallizes as a superstructure of the anti-fluorite structure with Li and Si ordering, Li{sub 7}SiN{sub 3}O exhibits the anti-fluorite structure with both anion and cation disorder. - Highlights: • Li{sub 2}SiN{sub 2}, Li{sub 5}SiN{sub 3}, Li{sub 18}Si{sub 3}N{sub 10}, Li{sub 21}Si{sub 3}N{sub 11} and Li{sub 7}SiN{sub 3}O are prepared. • The structures of Li{sub 21}Si{sub 3}N{sub 11} and Li{sub 7}SiN{sub 3}O are presented. • Li{sub 21}Si{sub 3}N{sub 11} exhibits an anti-fluorite superstructure with Li and Si ordering.

  20. ELYSE, a new picosecond electron accelerator at Orsay

    International Nuclear Information System (INIS)

    Belloni, J.D.; Gaillard, M.; Monard, H.; Larbre, J.-P.; Gobert, F.; Mostafavi, M.; Lampre, I.; Marignier, J.-L.

    2003-01-01

    ELYSE is a new instrument allowing to study fast kinetics processes at picosecond range by the complementary techniques of pulse radiolysis and laser photochemistry which was installed by the Laboratoire de Chimie Physique, University Paris-Sud, at Orsay. It was designed and constructed by the Linear Accelerator Laboratory, Orsay. The accelerator is a RF photocathode electron gun type which will deliver electron pulses of less than 5 ps FWHM. The Cs 2 Te cathode was chosen because of its high efficiency and long life time. Photoelectrons are generated by a picosecond synchronized laser system with a normal incidence. The charge per pulse is 1 nC with a dark current less than 1 % and a repetition frequency 1 to 50 Hz. Other detailed specifications of the accelerator, of the laser and of the optical spectroscopy detection set-up are described

  1. Formation, stability and structural characterization of ternary MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun-Yeop; Yun, Jong-Il [KAIST, Daejeon (Korea, Republic of). Dept. of Nuclear and Quantum Engineering; Vespa, Marika; Gaona, Xavier; Dardenne, Kathy; Rothe, Joerg; Rabung, Thomas; Altmaier, Marcus [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Nuclear Waste Disposal

    2017-06-01

    The formation of ternary Mg-UO{sub 2}-CO{sub 3} complexes under weakly alkaline pH conditions was investigated by time-resolved laser fluorescence spectroscopy (TRLFS) and extended X-ray absorption fine structure (EXAFS) and compared to Ca-UO{sub 2}-CO{sub 3} complexes. The presence of two different Mg-UO{sub 2}-C{sub 3} complexes was identified by means of two distinct fluorescence lifetimes of 17±2 ns and 51±2 ns derived from the multi-exponential decay of the fluorescence signal. Slope analysis in terms of fluorescence intensity coupled with fluorescence intensity factor as a function of log [Mg(II)] was conducted for the identification of the Mg-UO{sub 2}-CO{sub 3} complexes forming. For the first time, the formation of both MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) species was confirmed and the corresponding equilibrium constants were determined as log β {sub 113}=25.8±0.3 and β {sub 213}=27.1±0.6, respectively. Complementarily, fundamental structural information for both Ca-UO{sub 2}-CO{sub 3} and Mg-UO{sub 2}-CO{sub 3} complexes was gained by extended EXAFS revealing very similar structures between these two species, except for the clearly shorter U-Mg distance (3.83 Aa) compared with U-Ca distance (4.15 Aa). These results confirmed the inner-sphere character of the Ca/Mg-UO{sub 2}-CO{sub 3} complexes. The formation constants determined for MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) species indicate that ternary Mg-UO{sub 2}-CO{sub 3} complexes contribute to the relevant uranium species in carbonate saturated solutions under neutral to weakly alkaline pH conditions in the presence of Mg(II) ions, which will induce notable influences on the U(VI) chemical species under seawater conditions.

  2. Formation of Porous Structure with Subspot Size under the Irradiation of Picosecond Laser Pulses

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2013-01-01

    Full Text Available A study was presented in this paper on porous structure with microsize holes significantly smaller than laser spot on the stainless steel 304 target surface induced by a picosecond Nd:van regenerative amplified laser, operating at 1064 nm. The target surface variations were studied in air ambience. The estimated surface damage threshold was 0.15 J/cm2. The target specific surface changes and phenomena observed supported a complementary study on the formation and growth of the subspot size pit holes on metal surface with dependence of laser pulse number of 50–1000 and fluences of 0.8 and 1.6 J/cm2. Two kinds of porous structures were presented: periodic holes are formed from Coulomb Explosion during locally spatial modulated ablation, and random holes are formed from the burst of bubbles in overheated liquid during phase explosion. It can be concluded that it is effective to fabricate a large metal surface area of porous structure by laser scanning regime. Generally, it is also difficult for ultrashort laser to fabricate the microporous structures compared with traditional methods. These porous structures potentially have a number of important applications in nanotechnology, industry, nuclear complex, and so forth.

  3. Spectroscopy and picosecond dynamics of aqueous NO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gadegaard, Ane Riis; Thøgersen, Jan; Jensen, Svend Knak; Nielsen, Jakob Brun; Jensen, Frank; Keiding, Søren Rud, E-mail: keiding@chem.au.dk [Department of Chemistry, Aarhus University, Langelandsgade 140, DK 8000 Aarhus C (Denmark); Jena, Naresh K.; Odelius, Michael [Department of Physics, Albanova University Center, Stockholm University, S-106 91 Stockholm (Sweden)

    2014-08-14

    We investigate the formation of aqueous nitrogen dioxide, NO{sub 2} formed through femtosecond photolysis of nitrate, NO{sub 3}{sup −}(aq) and nitromethane CH{sub 3}NO{sub 2}(aq). Common to the experiments is the observation of a strong induced absorption at 1610 ± 10 cm{sup −1}, assigned to the asymmetric stretch vibration in the ground state of NO{sub 2}. This assignment is substantiated through isotope experiments substituting {sup 14}N by {sup 15}N, experiments at different pH values, and by theoretical calculations and simulations of NO{sub 2}–D{sub 2}O clusters.

  4. Magnetic and Structural Properties of the Mechanically Alloyed Nd{sub 2}(Fe{sub 100-x}Nb{sub x}){sub 14}B System

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, D. Oyola, E-mail: doyola@ut.edu.co [University of Tolima, Department of Physics (Colombia); Zamora, L. E.; Perez Alcazar, G. A. [University of Valle, Department of Physics (Colombia); Rojas, Y. A.; Bustos, H. [University of Tolima, Department of Physics (Colombia); Greneche, J. M. [UMR CNRS 6087, Laboratoire de Physique de l' Etat Condense (France)

    2005-02-15

    In this work we report the magnetic and structural properties obtained by Moessbauer spectrometry, Vibrating Sample Magnetometer and X-ray diffraction of milled powders with initial composition Nd{sub 2}(Fe{sub 100-x}Nb{sub x}){sub 14}B with x = 0 and x = 4. The mixtures were ball milled for different times up to 240 h. Structural and microstructural parameters were derived from high statistics X-ray patterns and discussed as a function of milling time. The Moessbauer spectra of the samples were fitted by means of a sextet and an hyperfine field distribution, associated to a pure iron phase ({alpha}-Fe) and a disordered iron-based phase, respectively. The {alpha}-Fe grain size decreases from 50 nm for 6 h up to 5 nm for 240 h milling time. The Vibrating Sample Magnetometer results allow to conclude that these samples behave as soft ferromagnets.

  5. Vibrational spectrum of the K-590 intermediate in the bacteriorhodopsin photocycle at room temperature: picosecond time-resolved resonance coherent anti-Raman spectroscopy

    Science.gov (United States)

    Ujj, L.; Jäger, F.; Popp, A.; Atkinson, G. H.

    1996-12-01

    The vibrational spectrum of the K-590 intermediate, thought to contribute significantly to the energy storage and transduction mechanism in the bacteriorhodopsin (BR) photocycle, is measured at room temperature using picosecond time-resolved resonance coherent anti-Stokes Raman scattering (PTR/CARS). The room-temperature BR photocycle is initiated by the 3 ps, 570 nm excitation of the ground-state species, BR-570, prepared in both H 2O and D 2O suspensions of BR. PTR/CARS data, recorded 50 ps after BR-570 excitation, at which time only BR-570 and K-590 are present, have an excellent S/N which provides a significantly more detailed view of the K-590 vibrational degrees of freedom than previously available. Two picosecond (6 ps FWHM) laser pulses, ω1 (633.4 nm) and ωS (675-700 nm), are used to record PTR/CARS data via electronic resonance enhancement in both BR-570 and K-590, each of which contains a distinct retinal structure (assigned as 13- rans, 15- anti, 13- cis, respectively). To obtain the vibrational spectrum of K-590 separately, the PTR/CARS spectra from the mixture of isomeric retinals is quantitatively analyzed in terms of third-order susceptibility ( η(3)) relationships. PTR/CARS spectra of K-590 recorded from both H 2O and D 2O suspensions of BR are compared with the analogous vibrational data obtained via spontaneous resonance Raman (RR) scattering at both low (77 K) and room temperature. Analyses of these vibrational spectra identify temperature-dependent effects and changes assignable to the substitution of deuterium at the Schiff-base nitrogen not previously reported.

  6. Crystal structure relation between tetragonal and orthorhombic CsAlD{sub 4}: DFT and time-of-flight neutron powder diffraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Bernert, Thomas; Krech, Daniel; Felderhoff, Michael; Weidenthaler, Claudia [Department of Heterogeneous Catalysis, Max-Planck-Institut fuer Kohlenforschung, Muelheim/Ruhr (Germany); Kockelmann, Winfried [Rutherford Appleton Laboratory, Harwell Oxford, Didcot (United Kingdom); Frankcombe, Terry J. [Research School of Chemistry, The Australian National University, Canberra, ACT (Australia); School of Physical, Environmental and Mathematic Sciences, The University of New South Wales, Canberra, ACT (Australia)

    2015-11-15

    The crystal structures of orthorhombic and tetragonal CsAlD{sub 4} were refined from time-of-flight neutron powder diffraction data starting from atomic positions predicted from DFT calculations. The earlier proposed crystal structure of orthorhombic CsAlH{sub 4} is confirmed. For tetragonal CsAlH{sub 4}, DFT calculations predicted a crystal structure in I4{sub 1}/amd as potential minimum structure, while from neutron diffraction studies of CsAlD{sub 4} best refinement is obtained for a disordered structure in the space group I4{sub 1}/a, with a = 5.67231(9) Aa, c = 14.2823(5) Aa. While the caesium atoms are located on the Wyckoff position 4b and aluminium at Wyckoff position 4a, there are two distinct deuterium positions at the Wyckoff position 16f with occupancies of 50 % each. From this structure, the previously reported phase transition between the orthorhombic and tetragonal polymorphs could be explained. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Exploration of R<sub>2sub>XM>2sub> (R=Sc, Y, Ti, Zr, Hf, rare earth; X=main group element; M=transition metal, Si, Ge): Structural Motifs, the novel Compound Gd<sub>2sub>AlGe>2sub> and Analysis of the U<sub>3sub>Si>2sub> and Zr<sub>3sub>Al>2 sub>Structure Types

    Energy Technology Data Exchange (ETDEWEB)

    McWhorter, Sean William [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    In the process of exploring and understanding the influence of crystal structure on the system of compounds with the composition Gd<sub>5sub>(SixGe>1-xsub>)>4sub> several new compounds were synthesized with different crystal structures, but similar structural features. In Gd<sub>5sub>(SixGe>1-xsub>)>4sub>, the main feature of interest is the magnetocaloric effect (MCE), which allows the material to be useful in magnetic refrigeration applications. The MCE is based on the magnetic interactions of the Gd atoms in the crystal structure, which varies with x (the amount of Si in the compound). The crystal structure of Gd<sub>5sub>(SixGe>1-xsub>)>4sub> can be thought of as being formed from two 32434 nets of Gd atoms, with additional Gd atoms in the cubic voids and Si/Ge atoms in the trigonal prismatic voids. Attempts were made to substitute nonmagnetic atoms for magnetic Gd using In, Mg and Al. Gd<sub>2sub>MgGe>2sub> and Gd<sub>2sub>InGe>2sub> both possess the same 32434 nets of Gd atoms as Gd<sub>5sub>(SixGe>1-xsub>)>4sub>, but these nets are connected differently, forming the Mo<sub>2sub>FeB>2sub> crystal structure. A search of the literature revealed that compounds with the composition R<sub>2sub>XM>2sub> (R=Sc, Y, Ti, Zr, Hf, rare earth; X=main group element; M=transition metal, Si, Ge) crystallize in one of four crystal structures: the Mo<sub>2sub>FeB>2sub>, Zr<sub>3sub>Al>2sub>, Mn<sub>2sub>AlB>2sub> and W<sub>2sub>CoB>2sub> crystal structures. These crystal structures are described, and the relationships between them are highlighted. Gd<sub>2sub>AlGe>2sub> forms an entirely new crystal structure, and the details of its synthesis and characterization are given. Electronic structure calculations are performed to understand the nature of bonding in this compound and how

  8. A protection system for picosecond accelerator

    International Nuclear Information System (INIS)

    Cao Hongping; Chinese Academy of Sciences, Beijing; Chen Huanguang; Xu Ruinian; Tang Junlong; Li Deming

    2006-01-01

    A personnel and machine protection system for the picosecond accelerator has been built. The key of the system is to send on/off of three triggering signals which are those of electron gun, 2856 MHz and 476 MHz, respectively, to ensure the safety of users and the accelerator. This paper describes the emergencies interlocked by ADAM5511 and timing trigger processor, and some secondary functions which improve the efficiency of the protection system completed in upper layer software. (authors)

  9. Characterisation of weld zone reactions in dissimilar glass-to-aluminium pulsed picosecond laser welds

    Energy Technology Data Exchange (ETDEWEB)

    Ciuca, Octav P., E-mail: octav.ciuca@manchester.ac.uk [School of Materials, University of Manchester, Manchester, M13 9PL (United Kingdom); Carter, Richard M. [Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS (United Kingdom); Prangnell, Philip B. [School of Materials, University of Manchester, Manchester, M13 9PL (United Kingdom); Hand, Duncan P. [Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS (United Kingdom)

    2016-10-15

    Precision welded joints, produced between fused silica glass and aluminium by a newly-developed picosecond-pulse laser technique, have been analysed for the first time using a full range of electron microscopy methods. The welds were produced as lap joints by focusing a 1.2 μm diameter laser beam through the transparent glass top sheet, slightly below the surface of the metal bottom sheet. Despite the extremely short interaction time, extensive reaction was observed in the weld zone, which involved the formation of nanocrystalline silicon and at least two transitional alumina phases, γ- and δ-Al{sub 2}O{sub 3}. The weld formation process was found to be complex and involved: the formation of a constrained plasma cavity at the joint interface, non-linear absorption in the glass, and the creation of multiple secondary keyholes in the metal substrate by beam scattering. The joint area was found to expand outside of the main interaction volume, as the energy absorbed into the low conductivity and higher melting point silica glass sheet melted the aluminium surface across a wider contact area. The reasons for the appearance of nanocrystalline Si and transitional alumina reaction products within the welds are discussed. - Highlights: •Pulsed laser welding of dissimilar materials causes extensive chemical reactivity. •Metastable Al{sub 2}O{sub 3} phases form due to laser-induced highly-transient thermal regime. •Fused silica is reduced by Al to form nanocrystalline Si. •Mechanism of joint formation is discussed.

  10. Freezing hot electrons. Electron transfer and solvation dynamics at D{sub 2}O and NH{sub 3}-metal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Staehler, A.J.

    2007-05-15

    The present work investigates the electron transfer and solvation dynamics at the D{sub 2}O/Cu(111), D{sub 2}O/Ru(001), and NH{sub 3}/Cu(111) interfaces using femtosecond time-resolved two-photon photoelectron spectroscopy. Within this framework, the influence of the substrate, adsorbate structure and morphology, solvation site, coverage, temperature, and solvent on the electron dynamics are studied, yielding microscopic insight into the underlying fundamental processes. Transitions between different regimes of ET, substrate-dominated, barrier-determined, strong, and weak coupling are observed by systematic variation of the interfacial properties and development of empirical model descriptions. It is shown that the fundamental steps of the interfacial electron dynamics are similar for all investigated systems: Metal electrons are photoexcited to unoccupied metal states and transferred into the adlayer via the adsorbate's conduction band. The electrons localize at favorable sites and are stabilized by reorientations of the surrounding polar solvent molecules. Concurrently, they decay back two the metal substrate, as it offers a continuum of unoccupied states. However, the detailed characteristics vary for the different investigated interfaces: For amorphous ice-metal interfaces, the electron transfer is initially, right after photoinjection, dominated by the substrate's electronic surface band structure. With increasing solvation, a transient barrier evolves at the interface that increasingly screens the electrons from the substrate. Tunneling through this barrier becomes the rate-limiting step for ET. The competition of electron decay and solvation leads to lifetimes of the solvated electrons in the order of 100 fs. Furthermore, it is shown that the electrons bind in the bulk of the ice layers, but on the edges of adsorbed D{sub 2}O clusters and that the ice morphology strongly influences the electron dynamics. For the amorphous NH{sub 3}/Cu(111

  11. Hydration and temperature interdependence of protein picosecond dynamics.

    Science.gov (United States)

    Lipps, Ferdinand; Levy, Seth; Markelz, A G

    2012-05-14

    We investigate the nature of the solvent motions giving rise to the rapid temperature dependence of protein picoseconds motions at 220 K, often referred to as the protein dynamical transition. The interdependence of picoseconds dynamics on hydration and temperature is examined using terahertz time domain spectroscopy to measure the complex permittivity in the 0.2-2.0 THz range for myoglobin. Both the real and imaginary parts of the permittivity over the frequency range measured have a strong temperature dependence at >0.27 h (g water per g protein), however the permittivity change is strongest for frequencies 1 THz, and 0.27 h for frequencies <1 THz. The data are consistent with the dynamical transition solvent fluctuations requiring only clusters of ~5 water molecules, whereas the enhancement of lowest frequency motions requires a fully spanning water network. This journal is © the Owner Societies 2012

  12. A new front-face optical cell for measuring weak fluorescent emissions with time resolution in the picosecond time scale.

    Science.gov (United States)

    Gryczynski, Z; Bucci, E

    1993-11-01

    Recent developments of ultrafast fluorimeters allow measuring time-resolved fluorescence on the picosecond time scale. This implies one is able to monitor lifetimes and anisotropy decays of highly quenched systems and of systems that contain fluorophores having lifetimes in the subnanosecond range; both systems that emit weak signals. The combination of weak signals and very short lifetimes makes the measurements prone to distortions which are negligible in standard fluorescence experiments. To cope with these difficulties, we have designed a new optical cell for front-face optics which offers to the excitation beam a horizontal free liquid surface in the absence of interactions with optical windows. The new cell has been tested with probes of known lifetimes and anisotropies. It proved very useful in detecting tryptophan fluorescence in hemoglobin. If only diluted samples are available, which cannot be used in front-face optics, regular square geometry can still be utilized by inserting light absorbers into a cuvette of 1 cm path length.

  13. Observation of stimulated Raman scattering in polar tetragonal crystals of barium antimony tartrate trihydrate, Ba[Sb{sub 2}((+)C{sub 4}H{sub 2}O{sub 6}){sub 2}].3H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Kaminskii, Alexander A. [Institute of Crystallography, Russian Academy of Sciences, Moscow (Russian Federation); Rhee, Hanjo; Eichler, Hans J.; Lux, Oliver [Institute of Optics and Atomic Physics, Technical University of Berlin (Germany); Nemec, Ivan [Department of Inorganic Chemistry, Faculty of Science, Charles University, Prague (Czech Republic); Yoneda, Hitoki; Shirakawa, Akira [Institute for Laser Science, University of Electro-Communications, Tokyo (Japan); Becker, Petra; Bohaty, Ladislav [Section Crystallography, Institute of Geology and Mineralogy, University of Cologne (Germany)

    2017-04-15

    The non-centrosymmetric polar tetragonal (P4{sub 1}) barium antimony tartrate trihydrate, Ba[Sb{sub 2}((+)C{sub 4}H{sub 2}O{sub 6}){sub 2}].3H{sub 2}O, was found to be an attractive novel semi-organic crystal manifesting numerous χ{sup (2)}- and χ{sup (3)}-nonlinear optical interactions. In particular, with picosecond single- and dual-wavelength pumping SHG and THG via cascaded parametric four-wave processes were observed. High-order Stokes and anti-Stokes lasing related to two SRS-promoting vibration modes of the crystal, with ω{sub SRS1} ∼ 575 cm{sup -1} and ω{sub SRS2} ∼ 2940 cm{sup -1}, takes place. Basing on a spontaneous Raman investigation an assignment of the two SRS-active vibration modes is discussed. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. The picosecond laser for tattoo removal.

    Science.gov (United States)

    Hsu, Vincent M; Aldahan, Adam S; Mlacker, Stephanie; Shah, Vidhi V; Nouri, Keyvan

    2016-11-01

    The prevalence of tattoos continues to grow as modern society's stigma towards this form of body art shifts towards greater acceptance. Approximately one third of Americans aged 18-25 and 40 % of Americans aged 26-40 are tattooed. As tattoos continue to rise in popularity, so has the demand for an effective method of tattoo removal such as lasers. The various colors of tattoo inks render them ideal targets for specific lasers using the principle of selective photothermolysis. Traditional laser modalities employed for tattoo removal operate on pulse durations in the nanosecond domain. However, this pulse duration range is still too long to effectively break ink into small enough particles. Picosecond (10 -12 ) lasers have emerged at the forefront of laser tattoo removal due to their shorter pulse lengths, leading to quicker heating of the target chromophores, and consequently, more effective tattoo clearance. Recent studies have cited more effective treatment outcomes using picosecond lasers. Future comparative studies between picosecond lasers of various settings are necessary to determine optimal laser parameters for tattoo clearance.

  15. Solvothermal synthesis, crystal structure, and second-order nonlinear optical properties of a new noncentrosymmetric gallium-organic framework material, [N(C{sub 3}H{sub 7}){sub 4}]{sub 3}Ga{sub 3}[C{sub 6}H{sub 3}(CO{sub 2}){sub 3}]{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Woo; Jo, Vinna [Department of Chemistry, Chung-Ang University, Seoul, 156-756 (Korea, Republic of); Ok, Kang Min, E-mail: kmok@cau.ac.kr [Department of Chemistry, Chung-Ang University, Seoul, 156-756 (Korea, Republic of)

    2012-10-15

    A novel noncentrosymmetric (NCS) gallium-organic framework material, [N(C{sub 3}H{sub 7}){sub 4}]{sub 3}Ga{sub 3}[C{sub 6}H{sub 3}(CO{sub 2}){sub 3}]{sub 4} (CAUMOF-11) has been synthesized by a solvothermal reaction using Ga(NO{sub 3}){sub 3}{center_dot}xH{sub 2}O, 1,3,5-C{sub 6}H{sub 3}(CO{sub 2}H){sub 3}, N(C{sub 3}H{sub 7}){sub 4}Cl, HNO{sub 3}, and HCON(CH{sub 3}){sub 2} at 180 Degree-Sign C. The structure of the reported material has been determined by single-crystal X-ray diffraction. CAUMOF-11 has an anionic three-dimensional framework with aligned four-coordinate GaO{sub 4} tetrahedra and 1,3,5-benzenetricarboxylate groups. Tetrapropylammonim cations reside within the channel and maintain the charge balance. Detailed structural analyses with full characterization including infrared spectroscopy, thermogravimetric analysis, elemental analysis, ion-exchange reactions, topotactic decomposition, and gas adsorption experiments are reported. Powder second-harmonic generating (SHG) measurements on CAUMOF-11, using 1064 nm radiation, exhibit SHG efficiency of 15 times that of {alpha}-SiO{sub 2} and the material is phase-matchable (type-1). - Graphical Abstract: Second-order nonlinear optical measurements on CAUMOF-11 reveal that the material is phase-matchable (type-1) with SHG efficiency of 15 times that of {alpha}-SiO{sub 2}. Highlights: Black-Right-Pointing-Pointer A new NCS Ga-organic framework was solvothermally synthesized. Black-Right-Pointing-Pointer CAUMOF-11 exhibits SHG efficiency of 15 times that of {alpha}-SiO{sub 2}. Black-Right-Pointing-Pointer Thermal decomposition of CAUMOF-11 crystal maintains the original morphology.

  16. Unveiling the Structural Evolution of Ag<sub>1.2sub>Mn>8sub>O>16sub> under Coulombically Controlled (De)Lithiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianping [Department; Hu, Xiaobing [Energy; Brady, Alexander B. [Department; Wu, Lijun [Energy; Zhu, Yimei [Energy; Takeuchi, Esther S. [Department; Energy; Department; Marschilok, Amy C. [Department; Department; Takeuchi, Kenneth J. [Department; Department

    2018-01-02

    MnO<sub>2sub> materials are considered promising cathode materials for rechargeable lithium, sodium, and magnesium batteries due to their earth abundance and environmental friendliness. One polymorph of MnO<sub>2sub>, α-MnO<sub>2sub>, has 2 × 2 tunnels (4.6 Å × 4.6 Å) in its structural framework, which provide facile diffusion pathways for guest ions. In this work, a silver-ion-containing α-MnO<sub>2sub> (Ag<sub>1.2sub>Mn>8sub>O>16sub>) is examined as a candidate cathode material for Li based batteries. Electrochemical stability of Ag<sub>1.2sub>Mn>8sub>O>16sub> is investigated through Coulombically controlled reduction under 2 or 4 molar electron equivalents (e.e.). Terminal discharge voltage remains almost constant under 2 e.e. of cycling, whereas it continuously decreases under repetitive reduction by 4 e.e. Thus, detailed structural analyses were utilized to investigate the structural evolution upon lithiation. Significant increases in lattice a (17.7%) and atomic distances (~4.8%) are observed when x in Li<sub>xAg>1.2sub>Mn>8sub>O>16sub> is >4. Ag metal forms at this level of lithiation concomitant with a large structural distortion to the Mn–O framework. In contrast, lattice a only expands by 2.2% and Mn–O/Mn-Mn distances show minor changes (~1.4%) at x < 2. The structural deformation (tunnel breakage) at x > 4 inhibits the recovery of the original structure, leading to poor cycle stability at high lithiation levels. This report establishes the correlation among local structure changes, amorphization processes, formation of Ag0, and long-term cycle stability for this silver-containing α-MnO<sub>2sub> type material at both low and high lithiation levels.

  17. Anomalous intensities of Ne-like ion resonance line in plasma produced by picosecond laser pulse

    International Nuclear Information System (INIS)

    Bryunetkin, B.A.; Skobelev, I.Yu.; Faenov, A.Ya.; Kalashnikov, M.P.; Nikles, P.; Shnyupep, M.

    1995-01-01

    An anomalous structure of intensities of spectral lines of CuXX and GeXXX Ne-like ions emitted by plasma produced by laser pulses of picosecond duration and up to 2x10 18 W/cm 2 flux density is recorded for the first time. It is shown that spectrum maximum of these ions is emitted from a plasma region whose density is significantly above the critical value of the length of heating laser radiation wave. 9 refs.; 3 figs

  18. ZnFe{sub 2}O{sub 4} antiferromagnetic structure redetermination

    Energy Technology Data Exchange (ETDEWEB)

    Kremenović, Aleksandar, E-mail: akremenovic@rgf.bg.ac.rs [Laboratory for Crystallography, Faculty of Mining and Geology, University of Belgrade, Đušina 7, Belgrade 11000 (Serbia); Antić, Bratislav [Condensed Matter Physics Laboratory, Institute of Nuclear Sciences “Vinča”, University of Belgrade, P.O. Box 522, Belgrade 11001 (Serbia); Vulić, Predrag [Laboratory for Crystallography, Faculty of Mining and Geology, University of Belgrade, Đušina 7, Belgrade 11000 (Serbia); Blanuša, Jovan [Condensed Matter Physics Laboratory, Institute of Nuclear Sciences “Vinča”, University of Belgrade, P.O. Box 522, Belgrade 11001 (Serbia); Tomic, Aleksandra [Condensed Matter Physics Laboratory, Institute of Nuclear Sciences “Vinča”, University of Belgrade, P.O. Box 522, Belgrade 11001 (Serbia); Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027 (United States)

    2017-03-15

    Magnetic structure of ZnFe{sub 2}O{sub 4} normal spinel is re-examined. Antiferromagnetic structure non-collinear model is established within C{sub a}2 space group having four different crystallographic/magnetic sites for 32 Fe{sup 3+} spins within magnetic unit cell. - Highlights: • Magnetic structure of ZnFe{sub 2}O{sub 4} normal spinel is re-examined. • Antiferromagnetic non-collinear structure model is established within C{sub a}2 space group. • Four different crystallographic/magnetic sites contain 32 Fe{sup 3+} spins within magnetic unit cell.

  19. The Gd{sub 14}Ag{sub 51} structure type and its relation to some complex amalgam structures

    Energy Technology Data Exchange (ETDEWEB)

    Tambornino, Frank; Sappl, Jonathan; Hoch, Constantin, E-mail: constantin.hoch@cup.uni-muenchen.de

    2015-01-05

    Highlights: • The Gd{sub 14}Ag{sub 51} structure type has been revisited on the basis of single crystal diffraction data. • Symmetry analysis from electron density and TEM shows the space group P6/m to be true. • Gd{sub 14}Ag{sub 51} shows good metallic behaviour. • Structure relations to alkali, alkaline-earth and rare-earth metal amalgams can be established. • Complexity values for the RE{sub 14}Ag{sub 51} structure family were calculated. - Abstract: A plethora of binary and ternary intermetallic compounds has been assigned to the Gd{sub 14}Ag{sub 51} structure type, crystallising in the hexagonal system (space group P6/m, a = 1264.30(18) pm, c = 933.58(11) pm for Gd{sub 14}Ag{sub 51}). Starting in the late 1960s, much work has been invested in the structural elucidation of these crystal structures. However, reliable single crystal data are scarce, and most structure type assignments have been performed merely on the basis of powder data. We have redetermined four representatives of the binary RE{sub 14}Ag{sub 51} structure type (RE = Y, Ce, Gd, Tb) with modern high-precision single crystal X-ray methods. The assignment of the Gd{sub 14}Ag{sub 51} structure type to space group P6/m was additionally verified by careful analysis of high resolution transmission electron micrographs. We emphasise the close relation of the Gd{sub 14}Ag{sub 51} structure type to the structures of some recently described amalgams of similar composition focussing on disorder phenomena and structural complexity. Furthermore, we provide detailed information on synthesis as well as electrical and magnetic properties for Gd{sub 14}Ag{sub 51}, the parent compound of this structure family.

  20. Picosecond excitation energy transfer of allophycocyanin studied in solution and in crystals.

    Science.gov (United States)

    Ranjbar Choubeh, Reza; Sonani, Ravi R; Madamwar, Datta; Struik, Paul C; Bader, Arjen N; Robert, Bruno; van Amerongen, Herbert

    2018-03-01

    Cyanobacteria perform photosynthesis with the use of large light-harvesting antennae called phycobilisomes (PBSs). These hemispherical PBSs contain hundreds of open-chain tetrapyrrole chromophores bound to different peptides, providing an arrangement in which excitation energy is funnelled towards the PBS core from where it can be transferred to photosystem I and/or photosystem II. In the PBS core, many allophycocyanin (APC) trimers are present, red-light-absorbing phycobiliproteins that covalently bind phycocyanobilin (PCB) chromophores. APC trimers were amongst the first light-harvesting complexes to be crystallized. APC trimers have two spectrally different PCBs per monomer, a high- and a low-energy pigment. The crystal structure of the APC trimer reveals the close distance (~21 Å) between those two chromophores (the distance within one monomer is ~51 Å) and this explains the ultrafast (~1 ps) excitation energy transfer (EET) between them. Both chromophores adopt a somewhat different structure, which is held responsible for their spectral difference. Here we used spectrally resolved picosecond fluorescence to study EET in these APC trimers both in crystallized and in solubilized form. We found that not all closely spaced pigment couples consist of a low- and a high-energy pigment. In ~10% of the cases, a couple consists of two high-energy pigments. EET to a low-energy pigment, which can spectrally be resolved, occurs on a time scale of tens of picoseconds. This transfer turns out to be three times faster in the crystal than in the solution. The spectral characteristics and the time scale of this transfer component are similar to what have been observed in the whole cells of Synechocystis sp. PCC 6803, for which it was ascribed to EET from C-phycocyanin to APC. The present results thus demonstrate that part of this transfer should probably also be ascribed to EET within APC trimers.

  1. Bismuth zinc vanadate, BiZn{sub 2}VO{sub 6}: New crystal structure type and electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Eliziario Nunes, Sayonara [Department of Chemistry, Durham University, South Road, Durham DH1 3LE (United Kingdom); Department of Materials Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP (Brazil); Wang, Chun-Hai; So, Karwei; Evans, John S.O. [Department of Chemistry, Durham University, South Road, Durham DH1 3LE (United Kingdom); Evans, Ivana Radosavljević, E-mail: ivana.radosavljevic@durham.ac.uk [Department of Chemistry, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2015-02-15

    We report a combined experimental and computational study of the crystal structure and electronic properties of bismuth zinc vanadate, BiZn{sub 2}VO{sub 6}, known for its visible light photocatalytic activity. The crystal structure has been solved from laboratory powder X-ray diffraction data using the repeated minimisations from random starting values method. BiZn{sub 2}VO{sub 6} adopts a new structure type, based on the following building blocks: corner- and edge-sharing ZnO{sub 4} tetrahedra, ZnO{sub 6} octahedra and VO{sub 4} tetrahedra, and Bi{sub 2}O{sub 12} dimers. It is the only known member of the BiM{sub 2}AO{sub 6} (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family which does not appear to be structurally closely related to others. The electronic structure of BiZn{sub 2}VO{sub 6}, calculated by DFT methods, shows that it is an indirect gap semiconductor with a calculated band gap of 1.6 eV, which compares favourably to the experimentally measured value of 2.4 eV. - Graphical abstract: The crystal structure of BiZn{sub 2}VO{sub 6}, a new structure type in the BiM{sub 2}AO{sub 6} (M=Mg, Ca, Cd, Cu, Pb, Mn, Zn; A=V, P, As) family. - Highlights: • Structure solution from PXRD data by repeated minimisations from random starting values. • New structure type in the BiM{sub 2}AO{sub 6} (M=Pb, Ca, Cd, Mn, Zn, Mg, Cu; A=V, P, As) family. • Electronic structure calculation.

  2. Structural and compositional optimization of the LiNi{sub 0.8}Co{sub 0.2}O{sub 2} electrode by new synthesis conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mosqueda L, Y.; Milian P, C. R.; Pomares A, M.; Rodriguez H, J.; Perez C, E., E-mail: yodalgis@imre.oc.uh.cu [Havana University, Institute of Materials Science and Technology, Zapata y G, Plaza de la Revolucion, Vedado, 10400 Havana (Cuba)

    2012-07-01

    The optimization of citrate precursor method to obtain the LiNi{sub 0.8}Co{sub 0.2}O{sub 2} oxide from the thermal decomposition of the citrate precursor (NH{sub 4}){sub 3}LiNi{sub 0.8}Co{sub 0.2}(C{sub 6}H{sub 5}O{sub 7}) is presented. The optimization procedure consists of both the lithium atmosphere and the reaction time control during the decomposition of the citrate precursor. Were obtained and characterized two kind of the (Li{sub l-x}Ni{sub x})(Ni{sub 0.8}Co{sub 0.2})O{sub 2} oxides, with and without optimized synthesis conditions, identified as A and B oxides, respectively. The A and B oxides are characterized by compositional, structural and electrochemical studies. The results showed that is possible to reach the ordered oxide phase at smaller reaction time if the lithium atmosphere is controlled. From the combination of the chemical analysis by Icp and the DRX Rietveld structural refinement it is possible to establish the Li, Ni(II), Ni(III) and Co(III) composition with great accuracy. The resulted structural and compositional transformations have a close relation with technological parameters of the rechargeable lithium battery using Li Ni{sub 0.8}Co{sub 0.2}O{sub 2} oxide as cathode. (Author)

  3. A sub-structure method for multidimensional integral transport calculations

    International Nuclear Information System (INIS)

    Kavenoky, A.; Stankovski, Z.

    1983-03-01

    A new method has been developed for fine structure burn-up calculations of very heterogeneous large size media. It is a generalization of the well-known surface-source method, allowing coupling actual two-dimensional heterogeneous assemblies, called sub-structures. The method has been applied to a rectangular medium, divided into sub-structures, containing rectangular and/or cylindrical fuel, moderator and structure elements. The sub-structures are divided into homogeneous zones. A zone-wise flux expansion is used to formulate a direct collision probability problem within it (linear or flat flux expansion in the rectangular zones, flat flux in the others). The coupling of the sub-structures is performed by making extra assumptions on the currents entering and leaving the interfaces. The accuracies and computing times achieved are illustrated by numerical results on two benchmark problems

  4. Theoretical study of structures of Ga{sub 5}N{sub 5} cluster

    Energy Technology Data Exchange (ETDEWEB)

    Song Bin; Cao Peilin

    2002-12-23

    The structures and energies of a Ga{sub 5}N{sub 5} cluster have been calculated using a full-potential linear-muffin-tin-orbital (FP-LMTO) method, combined with molecular dynamics technique. Twenty-four structures for a Ga{sub 5}N{sub 5} cluster have been obtained. The most stable structure is a C{sub 1} planar structure with a N{sub 3} subunit. The Ga{sub 5}N{sub 5} clusters show a preference for a N{sub 3} subunit, revealing the same behavior as in the Ga{sub 3}N{sub 3} and Ga{sub 4}N{sub 4} clusters. The existence of strong N-N bonds dominates the structure of a Ga{sub 5}N{sub 5} cluster. Through the calculation of the density of states we found that the most stable structure of Ga{sub 5}N{sub 5} clusters presented semiconductor-like properties.

  5. The structure of Na sub 3 H sub 2 As sub 3 O sub 10. Structure d'un triarseniate: Na sub 3 H sub 2 As sub 3 O sub 10

    Energy Technology Data Exchange (ETDEWEB)

    Driss, A.; Jouini, T. (Tunis Univ. (Tunisia). Dept. de Chimie)

    1990-07-15

    Na{sub 3}H{sub 2}As{sub 3}O{sub 10}, M{sub r}=455.75, monoclinic, C2/c, a=10.860 (3), b=9.323 (3), c=18.270 (5) A, {beta}=103.00 (2)deg, V=1802 (1) A{sup 3}, Z=8, D{sub x}=3.27, D{sub m} (in bromobenzene) = 3.30 Mg m{sup -3}, {lambda}(Mo K anti {alpha})=0.7107 A, {mu}=11.5 mm{sup -1}, F(000)=1712, room temperature, final R=0.035 and wR=0.038 for 578 reflections. This structure contains a triarsenate anion H{sub 2}As{sub 3}O{sub 10}{sup 3-} formed from three AsO{sub 4} tetrahedra pointing in the same direction. They are connected by hydrogen bonds to form layers parallel to held (10anti 1) together by interleaved Na{sup +} cations. Only few triarsenate structures are known. The corresponding phosphate is unknown. An explanation is proposed. (orig.).

  6. Laser ablation comparison by picosecond pulses train and nanosecond pulse

    Science.gov (United States)

    Lednev, V. N.; Filippov, M. N.; Bunkin, A. F.; Pershin, S. M.

    2015-12-01

    A comparison of laser ablation by a train of picosecond pulses and nanosecond pulses revealed a difference in laser craters, ablation thresholds, plasma sizes and spectral line intensities. Laser ablation with a train of picosecond pulses resulted in improved crater quality while ablated mass decreased up to 30%. A reduction in laser plasma dimensions for picosecond train ablation was observed while the intensity of atomic/ionic lines in the plasma spectra was greater by a factor of 2-4 indicating an improved excitation and atomization in the plasma.

  7. Synthesis and structural characterization of Li{sub 3}K{sub 3}Eu{sub 7}(BO{sub 3}){sub 9}

    Energy Technology Data Exchange (ETDEWEB)

    Braeuchle, Sebastian; Huppertz, Hubert [Innsbruck Univ. (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie; Seibald, Markus [OSRAM GmbH, Schwabmuenchen (Germany). Corporate Innovation

    2017-07-01

    Li{sub 3}K{sub 3}Eu{sub 7}(BO{sub 3}){sub 9} was prepared by high-temperature solid state synthesis at 900 C in a platinum crucible from lithium carbonate, potassium carbonate, boric acid, and europium(III) oxide. The title compound crystallizes in the orthorhombic space group Pca2{sub 1} (no. 29) (Z = 4). The structure was refined from single-crystal X-ray diffraction data: a = 21.126(2), b = 6.502(2), c = 17.619(2) Aa, V = 2420.1(2) Aa{sup 3}, R1 = 0.0183 and wR2 = 0.0412 for all data. The crystal structure of Li{sub 3}K{sub 3}Eu{sub 7}(BO{sub 3}){sub 9} is isotypic to Li{sub 3}K{sub 3}Y{sub 7}(BO{sub 3}){sub 9} featuring isolated BO{sub 3} units and LiO{sub 6} octahedra forming [Li{sub 3}B{sub 4}O{sub 21}] units in the ac plane, which are linked by additional BO{sub 3} units. The K{sup +} and Eu{sup 3+} cations are arranged in the cavities of the structure.

  8. Picosecond transient absorption study of photodissociated carboxy hemoglobin and myoglobin

    International Nuclear Information System (INIS)

    Janes, S.M.; Dalickas, G.A.; Eaton, W.A.; Hochstrasser, R.M.

    1988-01-01

    The optical transient absorption spectra at 30 ps and 6.5 ns after photolysis are compared for both carboxy hemoglobin (HbCO) and carboxy myoglobin (MbCO). Both 355- and 532-nm excitation pulses were used. In all cases the shapes of the optical difference spectra thus generated are stationary over the complete time-scale studied. The photolysis spectra for MbCO are not significantly different from the equilibrium difference spectra generated on the same picosecond spectrometer when measured to an accuracy of +/- 0.5 nm. In addition, spectral parameters for delegated HbCO generated on the same spectrometer but detected by two different techniques, either by a Vidicon detector or point by point with photomultiplier tubes, are reported; the results are different from some of the previously reported picosecond experiments

  9. Synthesis, crystal structure and characterizations of a new red phosphor K{sub 3}EuB{sub 6}O{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan, E-mail: iamzd1996@163.com [College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000 (China); State Key Laboratory of Structural Chemistry, Fuzhou, Fujian, 350002 (China); Ma, Fa-Xue; Wu, Zhi-Qiang; Zhang, Lei [College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000 (China); Wei, Wei, E-mail: wwei@cnu.edu.cn [Department of Chemistry, Capital Normal University, Beijing, 100048 (China); Yang, Juan; Zhang, Rong-Hua; Chen, Peng-Fei; Wu, Shan-Xuan [College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, 454000 (China)

    2016-10-01

    A new potassium europium borate K{sub 3}EuB{sub 6}O{sub 12} has been prepared using a high temperature molten salt method and structurally characterized by single crystal X-ray diffraction (SC-XRD) analyses. Its structure features a three-dimensional (3D) framework composed of isolated [B{sub 5}O{sub 10}]{sup 5−} anions that are bridged by K{sup +} and Eu{sup 3+} ions. In this structure, one crystallographic distinct atom site is mixed occupied by K/Eu at a molar ratio of 1:1. The self-activated photoluminescence (PL) of K{sub 3}EuB{sub 6}O{sub 12} was studied. The excitation spectrum covers a wide range from 322 to 466 nm, which suggests that the K{sub 3}EuB{sub 6}O{sub 12} phosphors can be effectively excited by a near-UV light source. The emission spectrum consists of groups of lines in the red spectral region due to the {sup 5}D{sub 0}→{sup 7}F{sub j} (j = 1, 2, 3, 4) electronic transitions of Eu{sup 3+} ions, with the most intense line at 611 nm. We may expect that K{sub 3}EuB{sub 6}O{sub 12} has the potential to be a red phosphor pumped by near-UV LED chips. - Highlights: • A new red phosphor K{sub 3}EuB{sub 6}O{sub 12} was prepared. • The crystal structure of K{sub 3}EuB{sub 6}O{sub 12} was determined for the first time. • The photoluminescence properties of K{sub 3}EuB{sub 6}O{sub 12} are studied. • K{sub 3}EuB{sub 6}O{sub 12} show intense self-activated red emission under near-UV light excitation.

  10. Structure of RbAlAs[sub 2]O[sub 7]. Structure de RbAlAs[sub 2]O[sub 7

    Energy Technology Data Exchange (ETDEWEB)

    Boughzala, H. (Dept. de Chimie, Faculte des Sciences, Tunis (Tunisia)); Driss, A. (Dept. de Chimie, Faculte des Sciences, Tunis (Tunisia)); Jouini, T. (Dept. de Chimie, Faculte des Sciences, Tunis (Tunisia))

    1993-03-15

    Rubidium aluminium pyroarsenate, M[sub r]=374.29, triclinic, P anti 1, a=8.233(5), b=6.34(2), c=6.241(5) A, [alpha]=102.6(1), [beta]=103.89(7), [gamma]=96.7(1) , V=303.9 A[sup 3], Z=2, D[sub m]=3.9(3) (pycnometry), D[sub x]=4.09 g cm[sup -3], [lambda](Ag K anti [alpha])=0.5608 A, [mu]=108.14 cm[sup -1], F(000)=344, T=296 K, R=0.049, wR=0.053 for 2193 reflections. The first structural investigation on a pyroarsenate is reported. It is built from AlAs[sub 2]O[sub 11] units comprising one AlO[sub 6] octahedron and one As[sub 2]O[sub 7] pyroarsenate group in which two AsO[sub 4] tetrahedra point in opposite directions. These units are connected by heteropolyhedral linkages to form a three-dimensional framework having intersecting tunnels where the Rb[sup +] ions are located. Although this structure is not isotypic with the phosphate analogues, it is closely related to that of the pyrophosphates of type I represented by KAlP[sub 2]O[sub 7]. (orig.).

  11. High power industrial picosecond laser from IR to UV

    Science.gov (United States)

    Saby, Julien; Sangla, Damien; Pierrot, Simonette; Deslandes, Pierre; Salin, François

    2013-02-01

    Many industrial applications such as glass cutting, ceramic micro-machining or photovoltaic processes require high average and high peak power Picosecond pulses. The main limitation for the expansion of the picosecond market is the cost of high power picosecond laser sources, which is due to the complexity of the architecture used for picosecond pulse amplification, and the difficulty to keep an excellent beam quality at high average power. Amplification with fibers is a good technology to achieve high power in picosecond regime but, because of its tight confinement over long distances, light undergoes dramatic non linearities while propagating in fibers. One way to avoid strong non linearities is to increase fiber's mode area. Nineteen missing holes fibers offering core diameter larger than 80μm have been used over the past few years [1-3] but it has been shown that mode instabilities occur at approximately 100W average output power in these fibers [4]. Recently a new fiber design has been introduced, in which HOMs are delocalized from the core to the clad, preventing from HOMs amplification [5]. In these so-called Large Pitch Fibers, threshold for mode instabilities is increased to 294W offering robust single-mode operation below this power level [6]. We have demonstrated a high power-high efficiency industrial picosecond source using single-mode Large Pitch rod-type fibers doped with Ytterbium. Large Pitch Rod type fibers can offer a unique combination of single-mode output with a very large mode area from 40 μm up to 100μm and very high gain. This enables to directly amplify a low power-low energy Mode Locked Fiber laser with a simple amplification architecture, achieving very high power together with singlemode output independent of power level or repetition rate.

  12. Structure and optical properties of [In{sub 1−2x}Sn{sub x}Zn{sub x}]GaO{sub 3}(ZnO){sub m}

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, Simon; Mader, Werner, E-mail: mader@uni-bonn.de

    2016-01-15

    Compounds of [In{sub 1−2x}Sn{sub x}Zn{sub x}]GaO{sub 3}(ZnO){sub 1} (x≤0.22) and [In{sub 1−2x}Sn{sub x}Zn{sub x}]GaO{sub 3}(ZnO){sub 2} (x≤0.42) were prepared by solid state processing proving a substantial solid solution of Sn in the layered compounds InGaO{sub 3}(ZnO){sub m} (m=1, 2). Single crystal X-ray diffraction of the compounds reveals two In{sup 3+} ions to be substituted by one Sn{sup 4+} and one Zn{sup 2+} at the octahedral layer preserving the average charge of +3 at these sites. The substitution does not lead to an ordering of the ions but proves for the first time that the octahedral site can be occupied by different ions while all characteristics of the layered structures remain unchanged. Consequences of indium substitution are (i) decrease of the a axis compared to InGaO{sub 3}(ZnO){sub m} according to smaller ionic radii of Sn{sup 4+} and Zn{sup 2+} compared to In{sup 3+} and (ii) shift of the optical band gap to higher energies shown by UV–vis measurements. - Graphical abstract: Substitution limits of indium in InGaO{sub 3}(ZnO){sub m} (IGZO) by Sn and Zn are studied for m=1, 2 by single crystal X-ray diffraction and micro-chemical analysis. - Highlights: • New Oxides [In{sub 1−2x}Sn{sub x}Zn{sub x}]GaO{sub 3}(ZnO){sub m} (m=1, 2) with IGZO type structure. • Sn and Zn substitute for In at octahedral sites. • Crystal structures were characterized by single crystal X-ray diffraction. • Optical band gap energies were determined by UV–vis spectroscopy.

  13. Laser diagnostics in combustion. Elastic scattering and picosecond laser-induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Ossler, Frederik

    1999-05-01

    Elastic scattering and the Lorenz-Mie (LM) theory in particular is used for the characterization of sub-micron- and micron-sized droplets of organic fuels in sprays and aerosols. Calculations on the Lorenz-Mie theory show that backward-sideward scattered visible radiation can be used for unambiguous detection of ensembles of homogeneous droplets of organic substances with diameters around 1 micrometer (size parameter between 2 and 6). A backward feature in the polarization ratio appears with a value considerably higher than one, on the opposite to the case of the rainbow observed for larger droplets. A comparison between measurements and LM calculations showed that a large amount of droplets in aerosols and well-atomized sprays were smaller than one micrometer in diameter. The LM theory was also used to characterize different size groups in a burning spray. A 3 - D technique based on a picosecond laser and a streak camera was demonstrated for measurements of fast and turbulent biphase flows. The entire 3 - D information was obtained within a time-span of less than 15 nanoseconds. A 2 - D technique for lifetime measurements based on a picosecond laser and a streak camera has been demonstrated on static objects. An analysis indicates that the technique may be applied to measurements of lifetimes around or below one picosecond employing femtosecond lasers and femtosecond streak-cameras. The technique may in principle be used to study dynamic systems when two detectors are used. Fluorescence lifetime measurements on hydrogen and oxygen atoms in flames at atmospheric pressure demonstrate the need of lasers with suiting spectral properties such as jitter and linewidth and the need of detectors with high sensitivity in the near IR in the case of oxygen atoms. The fluorescence lifetimes of gas phase acetone and 3-pentanone at 266 nm excitation wavelength have been measured for mixtures with nitrogen and air at temperatures between 323 and 723 K and pressures between 0

  14. The structures of P{sub 8} and P{sub 9} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Song Bin; Cao Peilin; Zhao Wei; Li Baoxing [Zhejiang Univ., Hangzhou, ZJ (China). Dept. of Physics

    2001-08-01

    Full-potential linear-muffin-tin-orbital molecular-dynamics (FP-LMTO MD) calculations have been performed to investigate the structures and energies of P{sub 8} and P{sub 9} clusters. We get fourteen stable structures for P{sub 8} and fifteen stable structures for P{sub 9}. The results confirm that ''cuneane'' structure is the most stable isomer of P{sub 8} clusters. However, the distortion of a D{sub 3h} prism, which has not been reported so far, is the most stable among the fifteen P{sub 9} isomers. (orig.)

  15. Unusual antiferromagnetic structure of YbCo{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mufti, N. [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Department of Physics, State University of Malang, Malang (Indonesia); Kaneko, K. [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Quantum Beam Science Center, Japan Atomic Energy Agency, Tokai (Japan); Hoser, A. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Gutmann, M. [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot (United Kingdom); Geibel, C.; Stockert, O. [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Krellner, C. [Max-Planck-Institut fuer Chemische Physik fester Stoffe, Dresden (Germany); Physikalisches Institut, Goethe-Universitaet Frankfurt, Frankfurt (Germany)

    2016-07-01

    We report on extensive powder and single crystal neutron diffraction experiments to study the magnetic structure in YbCo{sub 2}Si{sub 2} below the Neel temperature T{sub N} = 1.7 K in detail. Representation analysis has been used to find the possible magnetic structure models compatible with the experiments. Two different magnetically ordered phases can clearly be distinguished. At lowest temperatures a commensurate magnetic structure with a propagation vector k{sub 1} = (0.25 0.25 1) and equal moments or about 1.4 μ{sub B}/Yb is found, while the intermediate phase (T > 0.9 K) is characterized by an incommensurate amplitude-modulated magnetic structure with k{sub 2} = (0.25 0.086 1). The magnetic structure in YbCo{sub 2}Si{sub 2} is in stark contrast to all other compounds of the RCo{sub 2}Si{sub 2} family (R = rare earth element) likely due to some itineracy of the Yb 4f states being responsible for the magnetism.

  16. Direct observation of an isopolyhalomethane O-H insertion reaction with water: Picosecond time-resolved resonance Raman (ps-TR3) study of the isobromoform reaction with water to produce a CHBr2OH product

    International Nuclear Information System (INIS)

    Kwok, W.M.; Zhao Cunyuan; Li Yunliang; Guan Xiangguo; Phillips, David Lee

    2004-01-01

    Picosecond time-resolved resonance Raman (ps-TR 3 ) spectroscopy was used to obtain the first definitive spectroscopic observation of an isopolyhalomethane O-H insertion reaction with water. The ps-TR 3 spectra show that isobromoform is produced within several picoseconds after photolysis of CHBr 3 and then reacts on the hundreds of picosecond time scale with water to produce a CHBr 2 OH reaction product. Photolysis of low concentrations of bromoform in aqueous solution resulted in noticeable formation of HBr strong acid. Ab initio calculations show that isobromoform can react with water to produce a CHBr 2 (OH) O-H insertion reaction product and a HBr leaving group. This is consistent with both the ps-TR 3 experiments that observe the reaction of isobromoform with water to form a CHBr 2 (OH) product and photolysis experiments that show HBr acid formation. We briefly discuss the implications of these results for the phase dependent behavior of polyhalomethane photochemistry in the gas phase versus water solvated environments

  17. Microstructure study of the rare-earth intermetallic compounds R<sub>5sub>(SixGe>1-xsub>)>4sub> and R<sub>5sub>(SixGe>1-xsub>)>3sub>

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qing [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    The unique combination of magnetic properties and structural transitions exhibited by many members of the R<sub>5sub>(SixGe>1-xsub>)>4sub> family (R = rare earths, 0 ≤ x ≤ 1) presents numerous opportunities for these materials in advanced energy transformation applications. Past research has proven that the crystal structure and magnetic ordering of the R<sub>5sub>(SixGe>1-xsub>)>4sub> compounds can be altered by temperature, magnetic field, pressure and the Si/Ge ratio. Results of this thesis study on the crystal structure of the Er<sub>5sub>Si>4sub> compound have for the first time shown that the application of mechanical forces (i.e. shear stress introduced during the mechanical grinding) can also result in a structural transition from Gd<sub>5sub>Si>4sub>-type orthorhombic to Gd<sub>5sub>Si>2sub>Ge>2sub>-type monoclinic. This structural transition is reversible, moving in the opposite direction when the material is subjected to low-temperature annealing at 500 °C.

  18. Synthesis, crystal structure and electronic structure of the binary phase Rh{sub 2}Cd{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Koley, Biplab [Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Chatterjee, S. [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Jana, Partha P., E-mail: ppj@chem.iitkgp.ernet.in [Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2017-02-15

    A new phase in the Rh-Cd binary system - Rh{sub 2}Cd{sub 5} has been identified and characterized by single crystal X-ray diffraction and Energy dispersive X-ray analysis. The stoichiometric compound Rh{sub 2}Cd{sub 5} crystallizes with a unit cell containing 14 atoms, in the orthorhombic space group Pbam (55). The crystal structure of Rh{sub 2}Cd{sub 5} can be described as a defect form of the In{sub 3}Pd{sub 5} structure with ordered vacancies, formed of two 2D atomic layers with the stacking sequence: ABAB. The A type layers consist of (3.6.3.6)-Kagomé nets of Cd atoms while the B type layers consist of (3{sup 5}) (3{sup 7})- nets of both Cd and Rh atoms. The stability of this line phase is investigated by first principle electronic structure calculations on the model of ordered Rh{sub 2}Cd{sub 5}. - Graphical abstract: (3.6.3.6)-Kagomé nets of cadmium atoms (top) and (3{sup 5}) (3{sup 7})- nets of both cadmium and rhodium atoms (bottom) in the structure of Rh{sub 2}Cd{sub 5}.

  19. Nonlinear optical characteristics of monolayer MoSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Le, Chinh Tam; Ullah, Farman; Senthilkumar, Velusamy; Kim, Yong Soo [Department of Physics and Energy Harvest Storage Research Center, University of Ulsan (Korea, Republic of); Clark, Daniel J.; Jang, Joon I. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY (United States); Sim, Yumin; Seong, Maeng-Je [Department of Physics, Chung-Ang University, Seoul (Korea, Republic of); Chung, Koo-Hyun [School of Mechanical Engineering, University of Ulsan (Korea, Republic of); Park, Hyoyeol [Electronics, Communication and Semiconductor Applications Department, Ulsan College (Korea, Republic of)

    2016-08-15

    In this study, we utilized picosecond pulses from an Nd:YAG laser to investigate the nonlinear optical characteristics of monolayer MoSe{sub 2}. Two-step growth involving the selenization of pulsed-laser-deposited MoO{sub 3} film was employed to yield the MoSe{sub 2} monolayer on a SiO{sub 2}/Si substrate. Raman scattering, photoluminescence (PL) spectroscopy, and atomic force microscopy verified the high optical quality of the monolayer. The second-order susceptibility χ{sup (2)} was calculated to be ∝50 pm V{sup -1} at the second harmonic wavelength λ{sub SHG} ∝810 nm, which is near the optical gap of the monolayer. Interestingly, our wavelength-dependent second harmonic scan can identify the bound excitonic states including negatively charged excitons much more efficiently, compared with the PL method at room temperature. Additionally, the MoSe{sub 2} monolayer exhibits a strong laser-induced damage threshold ∝16 GW cm{sup -2} under picosecond-pulse excitation{sub .} Our findings suggest that monolayer MoSe{sub 2} can be considered as a promising candidate for high-power, thin-film-based nonlinear optical devices and applications. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Pattern analysis of laser-tattoo interactions for picosecond- and nanosecond-domain 1,064-nm neodymium-doped yttrium-aluminum-garnet lasers in tissue-mimicking phantom.

    Science.gov (United States)

    Ahn, Keun Jae; Zheng, Zhenlong; Kwon, Tae Rin; Kim, Beom Joon; Lee, Hye Sun; Cho, Sung Bin

    2017-05-08

    During laser treatment for tattoo removal, pigment chromophores absorb laser energy, resulting in fragmentation of the ink particles via selective photothermolysis. The present study aimed to outline macroscopic laser-tattoo interactions in tissue-mimicking (TM) phantoms treated with picosecond- and nanosecond-domain lasers. Additionally, high-speed cinematographs were captured to visualize time-dependent tattoo-tissue interactions, from laser irradiation to the formation of photothermal and photoacoustic injury zones (PIZs). In all experimental settings using the nanosecond or picosecond laser, tattoo pigments fragmented into coarse particles after a single laser pulse, and further disintegrated into smaller particles that dispersed toward the boundaries of PIZs after repetitive delivery of laser energy. Particles fractured by picosecond treatment were more evenly dispersed throughout PIZs than those fractured by nanosecond treatment. Additionally, picosecond-then-picosecond laser treatment (5-pass-picosecond treatment + 5-pass-picosecond treatment) induced greater disintegration of tattoo particles within PIZs than picosecond-then-nanosecond laser treatment (5-pass-picosecond treatment + 5-pass-nanosecond treatment). High-speed cinematography recorded the formation of PIZs after repeated reflection and propagation of acoustic waves over hundreds of microseconds to a few milliseconds. The present data may be of use in predicting three-dimensional laser-tattoo interactions and associated reactions in surrounding tissue.

  1. Structural relaxations in the bulk amorphous alloy Fe{sub 61}Co{sub 10}Ti{sub 3}Y{sub 6}B{sub 20}

    Energy Technology Data Exchange (ETDEWEB)

    Błoch, K., E-mail: 23kasia1@wp.pl; Nabiałek, M.; Gondro, J.

    2017-05-01

    The paper presents studies of annealing effect on the disaccommodation phenomenon in bulk amorphous alloy Fe{sub 61}Co{sub 10}Ti{sub 3}Y{sub 6}B{sub 20}. The investigated sample was prepared by suction-casting method in the form of rod. The annealing process has been performed at temperature well below the crystallisation temperature. The amorphous structure has been confirmed using X-ray diffractometer. The susceptibility and its disaccommodation were determined using completely automated set up. The disaccommodation curve was decomposed into three elementary processes, each of them was described by Gaussian distribution of relaxation times. The obtained results indicate that the disaccommodation phenomenon in studied alloy is related with directional ordering of atom pairs near the free volumes; this is in agreement with H. Kronmüller's theorem.

  2. Structure and magnetic properties of Gd{sub x}Y{sub 1−x}FeO{sub 3} obtained by mechanosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bolarín-Miró, A.M. [Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo Mineral de la Reforma, Hidalgo 42184 (Mexico); Sánchez-De Jesús, F., E-mail: fsanchez@uaeh.edu.mx [Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo Mineral de la Reforma, Hidalgo 42184 (Mexico); Cortés-Escobedo, C.A. [Centro de Investigación e Innovación Tecnológica del IPN, Distrito Federal 02250 (Mexico); Valenzuela, R. [Depto. de Materiales Metálicos y Cerámicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Ammar, S. [ITODYS, UMR 7086, Université de Paris-Diderot, 75250 Paris Cedex (France)

    2014-02-15

    Highlights: • Orthohombic GDxY1-xFeO3 was obtained by mechanosynthesis after 5 h of milling. • Mechanosynthesized GdxY1-xFeO3 show weak ferromagnetic behavior. • Mechanosynthesis promotes unexpected magnetic properties in GdxY1-xFeO3. • The maximum magnetization that was reached 7.7 emu/g for Gdo.75Y0.25FeO3. • For Gd0.5Y0.5FeO3, the magnetization decreases down to 2.1 emu/g. -- Abstract: Solid solutions of yttrium–gadolinium orthoferrites Gd{sub x}Y{sub 1−x}FeO{sub 3} (0 ⩽ x ⩽ 1) were prepared by high-energy ball milling. The aim of this work was to study the influence of the synthesis parameters on the crystal structure and the magnetic behavior of these solid solutions. The precursors, Fe{sub 2}O{sub 3}, Y{sub 2}O{sub 3} and Gd{sub 2}O{sub 3}, mixed in a stoichiometric ratio to obtain these orthoferrites, were milled for different times (up to 5 h). X-ray diffraction and Rietveld refinement were used to elucidate the phase transformation as a function of the milling time. Results showed the complete formation of orthoferrite with an orthorhombic structure (S.G. Pbnm) without any annealing after 5 h of milling for all of the compositions. The effect of the synthesis process and the x value on the crystal structure and the magnetic properties were also studied. All of the synthesized powders demonstrated weak ferromagnetic behavior. In particular, an increase in the maximum magnetization for all the compositions was found, with a maximum that reached 7.7 emu/g for Gd{sub 0.75}Y{sub 0.25}FeO{sub 3}. For Gd{sub 0.5}Y{sub 0.5}FeO{sub 3}, the magnetization decreases down to 2.1 emu/g. A small contamination of metallic Fe was confirmed through electron spin resonance experiments.

  3. PLEIADES: A picosecond Compton scattering x-ray source for advanced backlighting and time-resolved material studies

    International Nuclear Information System (INIS)

    Gibson, David J.; Anderson, Scott G.; Barty, Christopher P.J.; Betts, Shawn M.; Booth, Rex; Brown, Winthrop J.; Crane, John K.; Cross, Robert R.; Fittinghoff, David N.; Hartemann, Fred V.; Kuba, Jaroslav; Le Sage, Gregory P.; Slaughter, Dennis R.; Tremaine, Aaron M.; Wootton, Alan J.; Hartouni, Edward P.; Springer, Paul T.; Rosenzweig, James B.

    2004-01-01

    The PLEIADES (Picosecond Laser-Electron Inter-Action for the Dynamical Evaluation of Structures) facility has produced first light at 70 keV. This milestone offers a new opportunity to develop laser-driven, compact, tunable x-ray sources for critical applications such as diagnostics for the National Ignition Facility and time-resolved material studies. The electron beam was focused to 50 μm rms, at 57 MeV, with 260 pC of charge, a relative energy spread of 0.2%, and a normalized emittance of 5 mm mrad horizontally and 13 mm mrad vertically. The scattered 820 nm laser pulse had an energy of 180 mJ and a duration of 54 fs. Initial x rays were captured with a cooled charge-coupled device using a cesium iodide scintillator; the peak photon energy was approximately 78 keV, with a total x-ray flux of 1.3x10 6 photons/shot, and the observed angular distribution found to agree very well with three-dimensional codes. Simple K-edge radiography of a tantalum foil showed good agreement with the theoretical divergence-angle dependence of the x-ray energy. Optimization of the x-ray dose is currently under way, with the goal of reaching 10 8 photons/shot and a peak brightness approaching 10 20 photons/mm 2 /mrad 2 /s/0.1% bandwidth

  4. Real-Time, Single-Shot Temporal Measurements of Short Electron Bunches, Terahertz CSR and FEL Radiation

    CERN Document Server

    Berden, G; Van der Meer, A F G

    2005-01-01

    Electro-optic detection of the Coulomb field of electron bunches is a promising technique for single-shot measurements of the bunch length and shape in the sub-picosecond time domain. This technique has been applied to the measurement of 50 MeV electron bunches in the FELIX free electron laser, showing the longitudinal profile of single bunches of around 650 fs FWHM [Phys. Rev. Lett. 93, 114802 (2004)]. The method is non-destructive and real-time, and therefore ideal for online monitoring of the longitudinal shape of single electron bunches. At FELIX we have used it for real-time optimization of sub-picosecond electron bunches. Electro-optic detection has also been used to measure the electric field profiles of far-infrared (or terahertz) optical pulses generated by the relativistic electrons. We have characterised the far-infrared output of the free electron laser, and more recently, we have measured the temporal profile of terahertz optical pulses generated at one of the bending magnets.

  5. High pressure structural investigation on alluaudites Na{sub 2}Fe{sub 3}(PO{sub 4}){sub 3}-Na{sub 2}FeMn{sub 2}(PO{sub 4}){sub 3} system

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jing [Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Huang, Weifeng [College of Engineering, Peking University, Beijing 100871 (China); Qin, Shan [Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Wu, Xiang, E-mail: wuxiang@cug.edu.cn [State key laboratory of geological processes and mineral resources, China University of Geosciences, Wuhan 430074 (China)

    2017-03-15

    Alluaudites are promising electrochemical materials benefited from the open structure. Structural variations of alluaudites Na{sub 2}M{sub 3}(PO{sub 4}){sub 3} (M{sub 3}=Fe{sub 3}, Fe{sub 2}Mn and FeMn{sub 2}) system have been studied by synchrotron radiation X-ray diffraction combined with diamond anvil cell technique up to ~10 GPa at room temperature. No phase transition is observed. The excellent structural stability is mainly due to the flexible framework plus strong covalent P-O bond. Mn{sup 2+} instead of Fe can be described as Na{sup +}+2Fe{sup 2+}→Mn{sup 2+}+Fe{sup 3+}+□ where □ represents a lattice vacancy. The replacement of Fe with larger Mn{sup 2+} is equivalent to applying negative chemical pressure to the material. And it causes a more compressible b-axis, lattice expansion, structural compressibility and intensifies the core/electron-electron interactions of Fe. External pressure effect produces anisotropic lattice shrinkage. Structural considerations related to these variations and promising application prospects are discussed. - Graphical abstract: Figure 1 The crystal structure of alluaudites Na{sub 2}M{sub 3}(PO{sub 4}){sub 3} (M{sub 3}=Fe{sub 3}, Fe{sub 2}Mn and FeMn{sub 2}) projected along the c-axis. Alluaudites adopt a flexible framework plus strong covalent P-O bond, which contribute to excellent structural stability up to ~10 GPa. Mn{sup 2+} instead of Fe can be described as Na{sup ++}2Fe{sup 2+}→Mn{sup 2+}+Fe{sup 3+}+□ where □ represents a lattice vacancy, and it is equivalent to applying negative chemical pressure to the host. The substitution causes a more compressible b-axis, lattice expansion, structural compressibility and intensifies the core/electron-electron interactions of Fe.

  6. The first picosecond terawatt CO2 laser at the Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.; Ben-Zvi, I.; Babzien, M.

    1998-02-01

    The first terawatt picosecond CO 2 laser will be brought to operation at the Brookhaven Accelerator Test Facility in 1998. System consists of a single-mode TEA oscillator, picosecond semiconductor optical switch, multi-atmosphere. The authors report on design, simulation, and performance tests of the 10 atm final amplifier that allows for direct multi-joule energy extraction in a picosecond laser pulse

  7. Structure of Na/sub 2/As/sub 4/O/sub 11/

    Energy Technology Data Exchange (ETDEWEB)

    Driss, A.; Jouini, T.; Omezzine, M.

    1988-05-15

    Disodium tetraarsenate, M/sub r/=521.66, monoclinic, C2/c, a=9.049(3), b=8.287(3), c=11.508(5) A, ..beta..=102.74(4)/sup 0/, V=842(2) A/sup 3/, Z=4, D/sub m/=4.06 (by flotation), D/sub x/=4.11 Mg m/sup -3/, lambda(AgK anti ..cap alpha..)=0.5608 A, ..mu..=8.6 mm/sup -1/, F(000)=968, room temperature, final R=0.046 and ..omega..R=0.048 for 1153 independent reflections. The main feature of this structure is the existence of the first three-dimensional anion (As/sub 4/O/sub 11/)/sub n//sup 2n-/ in the chemistry of the condensed arsenates. It has the lowest O/As ratio (2.75) of the known arsenates showing marked condensation: all the O atoms are shared except one per AsO/sub 4/ tetrahedron. The structural unit is the As/sub 4/O/sub 15/ ring with point symmetry 2, built up from alternate AsO/sub 4/ tetrahedra and AsO/sub 6/ octahedra sharing corners. In addition, the two octahedra share one O atom located on the 2 axis. The As/sub 4/O/sub 15/ ring derives from the known centrosymmetric As/sub 4/O/sub 14/ ring by the cleavage of one As-O-As linkage between the two octahedra of the ring to form two new As-O-As linkages with AsO/sub 4/ tetrahedra connecting two rings, leading to a decrease of the O/As ratio. The As/sub 4/O/sub 15/ rings are further linked by sharing edges of AsO/sub 6/ octahedra to form a three-dimensional framework. This completes the set of the already known arrangements of the As/sub 4/O/sub 14/ ring (isolated units, infinite chains, layers).

  8. Structure of Ti{sub 3}SiC{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Rawn, C.J.; Payzant, E.A.; Hubbard, C.R. [Oak Ridge National Lab., TN (United States); Barsoum, M.W.; El-Raghy, T. [Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Engineering

    1998-11-01

    Earlier high temperature structure analysis by neutron powder diffraction suggested that Si vacancies were created when Ti{sub 3}SiC{sub 2} was heated. A specimen that was heated to 906 C overnight was later examined at room temperature. For this subsequent room temperature data set refinement of the Si site occupancies in the Ti{sub 3}SiC{sub 2} structure did not support the hypothesis that Si vacancies were being created when the sample was held at elevated temperatures in a vacuum furnace.

  9. Structural, morphological and luminescence properties of nanocrystalline up-converting Y{sub 1.89}Yb{sub 0.1}Er{sub 0.01}O{sub 3} phosphor particles synthesized through aerosol route

    Energy Technology Data Exchange (ETDEWEB)

    Lojpur, V.; Mancic, L. [Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, K. Mihailova 35/IV, 11000 Belgrade (Serbia); Rabanal, M.E. [University Carlos III of Madrid, Avd. Universidad 30, 28911 Leganes, Madrid (Spain); Dramicanin, M.D. [Vinca Institute of Nuclear Science, University of Belgrade, P.O. Box 522, Belgrade (Serbia); Tan, Z.; Hashishin, T.; Ohara, S. [JWRI, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Milosevic, O., E-mail: olivera.milosevic@itn.sanu.ac.rs [Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, K. Mihailova 35/IV, 11000 Belgrade (Serbia)

    2013-12-15

    Highlights: •The Y{sub 1.89}Yb{sub 0.1}Er{sub 0.01}O{sub 3} phosphor particles are synthesized via aerosol route. •We report influence of process parameters on the particle structure and morphology. •Spherical, submicronic size and nano-crystalline particle morphology are confirmed. •The particles show improved luminescence properties and decay time. •Synthesized powders exhibit the temperature dependant up-conversion emission. -- Abstract: Nanocrystalline up-converting Y{sub 2}O{sub 3}:Yb{sup 3+}, Er{sup 3+} phosphor particles were processed in a dispersed system-aerosol, generated ultrasonically at 1.3 MHz from common nitrate precursor solution having fixed ytterbium-to-erbium concentration ratio. The appropriate process parameters: residence time 21 s, carrier gas (air) flow rate 1.6 dm{sup 3}/min, synthesis temperature 900 °C, led to the formation of un-agglomerated spherical nanostructured secondary particles, having mean particle size of approx 450 nm, composed of primary nanoscaled (20 nm) subunits. In order to reach targeting phase crystallinity, the as-prepared particles were additionally annealed at 1100 °C in air for 12, 24 and 48 h, respectively. Particle structure, morphology and purity were analyzed by X-ray powder diffraction (XRPD), scanning electron microscopy (FESEM/SEM), analytical and high resolution transmission electron microscopy (TEM/HRTEM) in combination with energy dispersive X-ray analysis and Fourier Transform Infrared Spectroscopy (FTIR). All samples crystallized in a cubic bixbyte-structure, space group Ia-3. The crystallite size changed with annealing time from 30 nm in as-prepared sample to 135 nm in sample annealed for 48 h, respectively. Emission spectra were assigned to the following trivalent erbium f–f electronic transitions: {sup 2}H{sub 9/2} → {sup 4}I{sub 15/2} (blue: 407–420 nm), ({sup 2}H{sub 11/2}, {sup 4}S{sub 3/2}) → {sup 4}I{sub 15/2} (green: 510–590 nm), and {sup 4}F{sub 9/2} → {sup 4}I{sub 15

  10. High Efficiency Solar-based Catalytic Structure for CO<sub>2sub> Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Menkara, Hisham [PhosphorTech Corporation, Kennesaw, GA (United States)

    2013-09-30

    Throughout this project, we developed and optimized various photocatalyst structures for CO<sub>2sub> reforming into hydrocarbon fuels and various commodity chemical products. We also built several closed-loop and continuous fixed-bed photocatalytic reactor system prototypes for a larger-scale demonstration of CO<sub>2sub> reforming into hydrocarbons, mainly methane and formic acid. The results achieved have indicated that with each type of reactor and structure, high reforming yields can be obtained by refining the structural and operational conditions of the reactor, as well as by using various sacrificial agents (hole scavengers). We have also demonstrated, for the first time, that an aqueous solution containing acid whey (a common bio waste) is a highly effective hole scavenger for a solar-based photocatalytic reactor system and can help reform CO<sub>2sub> into several products at once. The optimization tasks performed throughout the project have resulted in efficiency increase in our conventional reactors from an initial 0.02% to about 0.25%, which is 10X higher than our original project goal. When acid whey was used as a sacrificial agent, the achieved energy efficiency for formic acid alone was ~0.4%, which is 16X that of our original project goal and higher than anything ever reported for a solar-based photocatalytic reactor. Therefore, by carefully selecting sacrificial agents, it should be possible to reach energy efficiency in the range of the photosynthetic efficiency of typical crop and biofuel plants (1-3%).

  11. Magnetic structure of Co(Cr{sub 0.925}Fe{sub 0.075}){sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ram; Padam, R.; Pal, D., E-mail: dpal@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039 (India); Rayaprol, Sudhindra; Siruguri, Vasudeva [UGC-DAE CSR, Mumbai Centre, R-5 Shed, BARC Campus, Mumbai 400085 (India); Ramakrishnan, S. [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai-400005 (India)

    2016-05-23

    We report results of neutron diffraction (ND) measurements on Co(Cr{sub 0.925}Fe{sub 0.075}){sub 2}O{sub 4} compound and determination of its magnetic structure. ND data at 90 K shows ferrimagnetic structure which is consistent with the bulk magnetization transition temperature, T{sub C} (~ 120 K). Appearance of additional peaks at 20 K coincides with the view that a magnetostructural transition occurs at T{sub S} (~ 26 K) in bulk magnetization of the sample.

  12. Magnetic structures of Er{sub 6}Mn{sub 23} and Dy{sub 6}Mn{sub 23}

    Energy Technology Data Exchange (ETDEWEB)

    Ouladdiaf, B. [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France); Deportes, J. [Laboratoire de Magnetisme L. Neel, C.N.R.S., BP 166, 38042 Grenoble Cedex 9 (France); Rodriguez-Carvajal, J. [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)]|[Laboratoire Leon Brillouin (CEA-CNRS), Centre d`Etudes de Saclay, Gif sur Yvette (France)

    1995-08-01

    The R{sub 6}Mn{sub 23} (R=rare earth) compounds crystallize in the cubic Th{sub 6}Mn{sub 23}-type structure with space group Fm3m. Powder neutron-diffraction experiments were performed on Dy{sub 6}Mn{sub 23} and Er{sub 6}Mn{sub 23}. The magnetic unit cell coincides with the chemical one. The R moments have a ferromagnetic non-collinear arrangement, whereas the Mn moments are parallel to the [1 1 1] direction. The magnetic structures belong to the three-dimensional {Gamma}{sub 5g} irreducible representation of Fm3m associated with the wave vector K=[0 0 0]. The spin configurations in both compounds result from the competition between the R-R, R-Mn magnetic interactions and the crystal electric field on the R ions. (orig.).

  13. Quench-free concentration measurements in high-temperature systems by picosecond LIF

    International Nuclear Information System (INIS)

    Buelter, A.; Rahmann, U.; Brockhinke, A.

    2001-01-01

    In the present work, a picosecond laser is used in conjunction with an intensified streak camera to study energy transfer processes in OH and to obtain quench-free results from the time-resolved spectra. Quantitative concentration profiles for OH and H are presented in a counterflow burner interacting with a vortex

  14. Crystal structure and magnetic properties of Y{sub 2}(Cu{sub 1−x}Mg{sub x}){sub 2}O{sub 5} obtained by SHS method

    Energy Technology Data Exchange (ETDEWEB)

    Gebrel, Z., E-mail: z_gebrel@yahoo.com; Blanusa, J.; Kusigerski, V.; Spasojevic, V.; Mrakovic, A.; Perovic, M.; Alqat, A.

    2014-01-05

    Highlights: • Y{sub 2}(Cu{sub 1−x}Mg{sub x}){sub 2}O{sub 5} solid solutions were synthesized for the first time by SHS method. • Ferromagnetic interactions are weakened by the induced structure changes. • Metamagnetism of the Y{sub 2}Cu{sub 2}O{sub 5} is preserved up to 15% of Mg concentration. • Significant influence of finite-size Cu–O chains is observed at low temperatures. -- Abstract: The single-phase polycrystalline samples of Y{sub 2}(Cu{sub 1−x}Mg{sub x}){sub 2}O{sub 5}, x = 0.0, 0.05, 0.15 were successfully synthesized by a modified self-propagating high temperature synthesis. Effects of Mg{sup +2} substitution for Cu{sup +2} in metamagnetic Y{sub 2}Cu{sub 2}O{sub 5} on its crystal structure and magnetic properties have been analyzed by X-ray diffraction and magnetic measurements performed within 2–300 K range. Mg doping was found to introduce small distortions in the main intradimmer superexchange paths so that ferromagnetic correlations decrease with Mg concentration. More significant impact of Cu substitution was found on the low temperature magnetism due to the breaking of infinite Cu–O chains. The formation of finite size chains introduces low temperature paramagnetic contribution and reduction in Néel temperature. Overall results give a strong indication that the antiferromagnetic ordering as well as metamagnetism persists up to the 15% of the Mg concentration.

  15. Picosecond resolution programmable delay line

    International Nuclear Information System (INIS)

    Suchenek, Mariusz

    2009-01-01

    The note presents implementation of a programmable delay line for digital signals. The tested circuit has a subnanosecond delay range programmable with a resolution of picoseconds. Implementation of the circuit was based on low-cost components, easily available on the market. (technical design note)

  16. Broadly tunable picosecond ir source

    International Nuclear Information System (INIS)

    Campillo, A.J.; Hyer, R.C.; Shapiro, S.L.

    1979-01-01

    A completely grating tuned (1.9 to 2.4 μm) picosecond traveling wave IR generator capable of controlled spectral bandwidth operation down to the Fourier Transform limit is reported. Subsequent down conversion in CdSe extends tuning to 10 to 20 μm

  17. The first 3D malonate bridged copper [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O]: Structure, properties and electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Seguatni, A., E-mail: seguatni@gmail.com [LBPC-INSERM U 698, Institut Galilee, Universite Paris XIII, 99, avenue J. B. Clement 93430, Villetaneuse (France); Fakhfakh, M. [Unite de recherche UR 12-30, Synthese et Structure de Materiaux Inorganiques, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); Departement de Chimie, Universite du Quebec a Montreal, C.P. 8888, Succ. Centre-ville, Montreal, Que., H3C 3P8 (Canada); Smiri, L.S. [Unite de recherche UR 12-30, Synthese et Structure de Materiaux Inorganiques, Faculte des Sciences de Bizerte, 7021 Zarzouna (Tunisia); Gressier, P.; Boucher, F. [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Jouini, N. [Departement de Chimie, Universite du Quebec a Montreal, C.P. 8888, Succ. Centre-ville, Montreal, Que., H3C 3P8 (Canada)

    2012-03-15

    A new inorganic-organic compound [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O] ([Cumal]) was hydrothermally synthesized and characterized by IR spectroscopy, thermal analysis and single crystal X-ray diffraction. [Cumal] is the first three-dimensional compound existing in the system Cu(II)-malonic acid-H{sub 2}O. Its framework is built up through carboxyl bridged copper where CuO{sub 6} octahedra are elongated with an almost D{sub 4h} symmetry (4+2) due to the Jahn-Teller effect. The magnetic properties were studied by measuring its magnetic susceptibility in the temperature range of 2-300 K indicating the existence of weak ferromagnetic interactions. The electronic structure of [Cumal] was calculated within the density functional theory (DFT) framework. Structural features are well reproduced using DFT structural optimizations and the optical spectra, calculated within the dielectric formalism, explain very well the light blue colour of the compound. It is shown that a GGA+U approach with a U{sub eff} value of about 6 eV is necessary for a better correlation with the experiment. - Graphical abstract: [Cu(O{sub 2}C-CH{sub 2}-CO{sub 2}H){sub 2}{center_dot}2H{sub 2}O]: the first 3D hybrid organic-inorganic compound built up carboxyl groups. The network presents a diamond-like structure achieved via carboxyl. Highlights: Black-Right-Pointing-Pointer A new organic-inorganic material with an unprecedented topology is synthesized. Black-Right-Pointing-Pointer Crystallographic structure is determined using single crystal X-ray diffraction. Black-Right-Pointing-Pointer Electronic structure is obtained from DFT, GGA+U calculation. Black-Right-Pointing-Pointer Framework can be described as formed from CuC{sub 4} tetrahedron sharing four corners. Black-Right-Pointing-Pointer This structure can be classified as an extended diamond structure.

  18. Loading clusters composed of nanoparticles on ZrO{sub 2} support via a perovskite-type oxide of La{sub 0.95}Ce{sub 0.05}Co{sub 0.7}Cu{sub 0.3}O{sub 3} for ethanol synthesis from syngas and its structure variation with reaction time

    Energy Technology Data Exchange (ETDEWEB)

    Song, Zhaoyu [Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering, Tianjin University, Tianjin 300354 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300354 (China); Shi, Xiangpeng [Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300354 (China); Key Laboratory of Green Chemical Technology of Ministry of Education, School of Chemical Engineering, Tianjin University, Tianjin 300354 (China); Ning, Hongyan; Liu, Guilong; Zhong, Huixian [Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering, Tianjin University, Tianjin 300354 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300354 (China); Liu, Yuan, E-mail: yuanliu@tju.edu.cn [Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering, Tianjin University, Tianjin 300354 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300354 (China)

    2017-05-31

    Highlights: • La{sub 0.95}Ce{sub 0.05}Co{sub 0.7}Cu{sub 0.3}O{sub 3}/ZrO{sub 2} catalyst has showed good activity and high selectivity to ethanol. • After reaction for 1000 h, the catalyst was covered by a membrane-like coating. • Carbon deposition is the main reason for the deactivation of the catalyst. - Abstract: A new scheme was proposed to intensify interactions between copper with cobalt and between Cu−Co with the promoters, namely, the ions of copper, cobalt, lanthanum and cerium were confined into La{sub 0.95}Ce{sub 0.05}Co{sub 0.7}Cu{sub 0.3}O{sub 3} with perovskite structure and were supported on zirconia. The catalyst was prepared by impregnation method and used for ethanol synthesis (ES) from syngas and was characterized by using XRD, TG, BET, XPS, ICP-MS and TEM techniques. La{sub 0.95}Ce{sub 0.05}Co{sub 0.7}Cu{sub 0.3}O{sub 3}/ZrO{sub 2} showed very good catalytic performance with selectivity to total alcohols higher than 60% and selectivity to ethanol about 50% in the total alcohols. After reduction, clusters composed of Cu−Co alloy nanoparticles, ceria and lanthanum oxide was formed and loaded on zirconia. Investigation on the variation of the catalyst structure with reaction time showed that with the reaction going on, the clusters spread over the surface of ZrO{sub 2} and at last, all the clusters fused together to form a membrane loaded on the ZrO{sub 2} and the whole catalyst was covered by a membrane-like coating formed by Co{sub 2}C. The characterization results showed that the carbon deposition was the main reason for the deactivation of La{sub 0.95}Ce{sub 0.05}Co{sub 0.7}Cu{sub 0.3}O{sub 3}/ZrO{sub 2} catalyst. This catalyst design scheme could be extended for preparing a lot of catalyst for many reactions.

  19. Structure and physical properties of RT{sub 2}Cd{sub 20} (R=rare earth, T=Ni, Pd) compounds with the CeCr{sub 2}Al{sub 20}-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, V.W.; Yazici, D.; White, B.D. [Department of Physics and Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States); Dilley, N.R. [Quantum Design, 6325 Lusk Boulevard, San Diego, CA 92121 (United States); Friedman, A.J.; Brandom, B. [Department of Physics and Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States); Maple, M.B., E-mail: mbmaple@physics.ucsd.edu [Department of Physics and Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States)

    2014-07-01

    Eleven new compounds, R Ni{sub 2}Cd{sub 20} (R=Y, La–Nd, Sm, Gd, Tb) and R Pd{sub 2}Cd{sub 20} (R=Ce, Pr, Sm), were grown as single crystals in high temperature cadmium-rich solutions. They crystallize in the cubic CeCr{sub 2}Al{sub 20}-type structure (Fd3{sup ¯}m, Z=8) as characterized by measurements of powder X-ray diffraction. Electrical resistivity, magnetization, and specific heat measurements were performed on R Ni{sub 2}Cd{sub 20} (R=Y, La–Nd, Sm, Gd, Tb) single crystals. Whereas YNi{sub 2}Cd{sub 20} and LaNi{sub 2}Cd{sub 20} exhibit unremarkable metallic behavior, when magnetic moments from localized 4f electron states (Gd{sup 3+}–Tb{sup 3+}) are embedded into this host, they exhibit ferromagnetic order with values of the Curie temperature T{sub C} for R Ni{sub 2}Cd{sub 20} (R=Gd, and Tb) which scale with the de Gennes factor. - Graphical abstract: Specific heat divided by temperature C/T vs. T for single crystals of R Ni{sub 2}Cd{sub 20} (R=Y, La–Nd, Gd, and Tb). Left inset: Low temperature C/T vs. T{sup 2} for LaNi{sub 2}Cd{sub 20}. The solid line represents a linear fit of the data. Right inset: Low-temperature C/T data vs. T for R=Ce–Nd, Gd, and Tb; magnetic ordering temperatures are indicated by arrows. - Highlights: • R Ni{sub 2}Cd{sub 20} (R=Y, La–Nd, Sm, Gd, Tb) single crystals synthesized for the first time. • R Pd{sub 2}Cd{sub 20} (R=Ce, Pr, Sm) single crystals synthesized for the first time. • Single crystals are of good metallurgical quality (large RRR values). • NdNi{sub 2}Cd{sub 20} orders antiferromagnetically at T{sub N}=1.5 K. • R Ni{sub 2}Cd{sub 20} (R=Sm, Gd, Tb) order ferromagnetically.

  20. Electronic structures of ReS sub 2 , ReSe sub 2 and TcS sub 2 in the real and the hypothetical undistorted structures

    CERN Document Server

    Fang, C M; Haas, C; Groot, R A D

    1997-01-01

    The transition-metal dichalcogenides ReX sub 2 (X = S or Se) and TcS sub 2 with a d sup 3 electron configuration have distorted CdCl sub 2 and Cd(OH) sub 2 structures, respectively, with the Re(Tc) atoms in each layer forming parallelogram-shaped connected clusters (diamond chain). Ab-initio band-structure calculations were performed for ReX sub 2 and TcS sub 2 , and the hypothetical undistorted 1T-TcS sub 2 and 3R-ReX sub 2 structures. The calculations show that ReS sub 2 , ReSe sub 2 and TcS sub 2 are semiconductors with energy gaps of about 1.0 eV, 0.5 eV and 0.7 eV, respectively, while for the undistorted structures the Fermi level is in the partly filled band of d sub x sub sup 2 sub - sub y sub sup 2 and d sub x sub y orbitals of the t sub 2 sub g manifold. X-ray photoemission spectra for the core levels and valence band of ReSe sub 2 and ReS sub 2 are presented. The valence x-ray photoemission spectra showed that ReS sub 2 is a p-type semiconductor with an energy gap of about 1.5 eV, while ReSe sub 2 i...

  1. Effect of structural packing on the luminescence properties in tungsten bronze compounds M{sub 2}KNb{sub 5}O{sub 15} (M=Ca, Sr, Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Yin Xin; Shi Liu [State Key Laboratory of High Performance Ceramics and Superfine Microstructures and CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Wei Ang, E-mail: iamawei@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays, 9 Wenyuan Road, Nanjing 210046 (China); Wan Dongyun; Wang Yaoming [State Key Laboratory of High Performance Ceramics and Superfine Microstructures and CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Huang Fuqiang, E-mail: huangfq@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructures and CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2012-08-15

    Tungsten bronze compounds M{sub 2}KNb{sub 5}O{sub 15} (M=Ca, Sr, Ba) were successfully synthesized, and the luminescence properties were investigated. Among the three compounds, Ca{sub 2}KNb{sub 5}O{sub 15} showed an obviously broad band of host luminescence at 460 nm with exciting at 269 nm. By doping Eu{sup 3+} into the M sites, Ca{sub 2}KNb{sub 5}O{sub 15}:Eu{sup 3+} displayed strong red emission from Eu{sup 3+} ions characteristic transitions, nearly four times higher than Sr{sub 2}KNb{sub 5}O{sub 15}:Eu{sup 3+} and seven times higher than Ba{sub 2}KNb{sub 5}O{sub 15}:Eu{sup 3+}. Crystal packing factor (PF) was introduced to account for this luminescence difference, lower PF being correlated to higher luminescence intensity for perovskite-related structure. Both the as-prepared compounds and the literature examples were proved to fit this correlation. This can be explained through the influence of the structural packing on the environment distortion and crystal field splitting of the doping site. - Graphical abstract: Tungsten bronze compounds M{sub 2}KNb{sub 5}O{sub 15} (M=Ca, Sr, Ba) show the dependence of luminescence properties on structural packing, among which Ca{sub 2}KNb{sub 5}O{sub 15} has the superior luminescence. Highlights: Black-Right-Pointing-Pointer Tungsten bronze compounds were synthesized by solid state reaction. Black-Right-Pointing-Pointer Ca{sub 2}KNb{sub 5}O{sub 15} displayed remarkably blue host luminescence. Black-Right-Pointing-Pointer Ca{sub 2}KNb{sub 5}O{sub 15}:Eu{sup 3+} showed more intense red emission than M{sub 2}KNb{sub 5}O{sub 15}:Eu{sup 3+} (M=Sr, Ba). Black-Right-Pointing-Pointer The relationship between crystal packing factor and luminescence was obtained.

  2. Structural and magnetic properties and superconductivity in Ba(Fe<sub>1-xsub>TMx)>2sub>As>2sub>

    Energy Technology Data Exchange (ETDEWEB)

    Thaler, Alexander [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    We studied the effects on structural and magnetic phase transitions and the emergence of superconductivity in transition metal substituted BaFe<sub>2sub>As>2sub>. We grew four series of Ba(Fe<sub>1-xsub>TM>2sub>)>2sub>As>2sub> (TM=Ru, Mn, Co+Cr and Co+Mn) and characterized them by crystallographic, magnetic and transport measurements. We also subjected Ba(Fe<sub>1-xsub>Crx)>2sub>As>2sub> and Ba(Fe<sub>1-xsub>Cox)>2sub>As>2sub> to heat treatment to explore what changes might be induced.

  3. New theoretical approaches to atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    International Nuclear Information System (INIS)

    Pabst, Stefan Ulf

    2013-04-01

    The concept of atoms as the building blocks of matter has existed for over 3000 years. A revolution in the understanding and the description of atoms and molecules has occurred in the last century with the birth of quantum mechanics. After the electronic structure was understood, interest in studying the dynamics of electrons, atoms, and molecules increased. However, time-resolved investigations of these ultrafast processes were not possible until recently. The typical time scale of atomic and molecular processes is in the picosecond to attosecond realm. Tremendous technological progress in recent years makes it possible to generate light pulses on these time scales. With such ultrashort pulses, atomic and molecular dynamics can be triggered, watched, and controlled. Simultaneously, the need rises for theoretical models describing the underlying mechanisms. This doctoral thesis focuses on the development of theoretical models which can be used to study the dynamical behavior of electrons, atoms, and molecules in the presence of ultrashort light pulses. Several examples are discussed illustrating how light pulses can trigger and control electronic, atomic, and molecular motions. In the first part of this work, I focus on the rotational motion of asymmetric molecules, which happens on picosecond and femtosecond time scales. Here, the aim is to align all three axes of the molecule as well as possible. To investigate theoretically alignment dynamics, I developed a program that can describe alignment motion ranging from the impulsive to the adiabatic regime. The asymmetric molecule SO 2 is taken as an example to discuss strategies of optimizing 3D alignment without the presence of an external field (i.e., field-free alignment). Field-free alignment is particularly advantageous because subsequent experiments on the aligned molecule are not perturbed by the aligning light pulse. Wellaligned molecules in the gas phase are suitable for diffraction experiments. From the

  4. Structures for capturing CO.sub.2, methods of making the structures, and methods of capturing CO.sub.2

    Science.gov (United States)

    Jones, Christopher W; Hicks, Jason C; Fauth, Daniel J; McMahan, Gray

    2012-10-30

    Briefly described, embodiments of this disclosure, among others, include carbon dioxide (CO.sub.2) sorption structures, methods of making CO.sub.2 sorption structures, and methods of using CO.sub.2 sorption structures.

  5. Pleiades: A Sub-picosecond Tunable X-ray Source at the LLNL Electron Linac

    International Nuclear Information System (INIS)

    Slaughter, Dennis; Springer, Paul; Le Sage, Greg; Crane, John; Ditmire, Todd; Cowan, Tom; Anderson, Scott G.; Rosenzweig, James B.

    2002-01-01

    The use of ultra fast laser pulses to generate very high brightness, ultra short (fs to ps) pulses of x-rays is a topic of great interest to the x-ray user community. In principle, femto-second-scale pump-probe experiments can be used to temporally resolve structural dynamics of materials on the time scale of atomic motion. The development of sub-ps x-ray pulses will make possible a wide range of materials and plasma physics studies with unprecedented time resolution. A current project at LLNL will provide such a novel x-ray source based on Thomson scattering of high power, short laser pulses with a high peak brightness, relativistic electron bunch. The system is based on a 5 mm-mrad normalized emittance photo-injector, a 100 MeV electron RF linac, and a 300 mJ, 35 fs solid-state laser system. The Thomson x-ray source produces ultra fast pulses with x-ray energies capable of probing into high-Z metals, and a high flux per pulse enabling single shot experiments. The system will also operate at a high repetition rate (∼ 10 Hz). (authors)

  6. Synthesis, structural, electronic and linear electro-optical features of new quaternary Ag{sub 2}Ga{sub 2}SiS{sub 6} compound

    Energy Technology Data Exchange (ETDEWEB)

    Piasecki, M., E-mail: m.piasecki@ajd.czest.pl [Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, PL-42-201 Czestochowa (Poland); Myronchuk, G.L. [Department of Solid State Physics, Lesya Ukrainka Eastern European National University, 13 Voli Ave., Lutsk 43025 (Ukraine); Parasyuk, O.V. [Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, 13 Voli Ave., Lutsk 43025 (Ukraine); Khyzhun, O.Y. [Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky St., Kyiv 03142 (Ukraine); Fedorchuk, A.O. [Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies, 50 Pekarska Street, Lviv 79010 (Ukraine); Pavlyuk, V.V. [Department of Inorganic Chemistry, Ivan Franko National University of Lviv, 6 Kyryla and Mefodiya St., 79005 Lviv (Ukraine); Institute of Chemistry, Environment Protection and Biotechnology, Jan Dlugosz University, al. Armii Krajowej 13/15, 42-200 Czestochowa (Poland); Kozer, V.R.; Sachanyuk, V.P. [Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, 13 Voli Ave., Lutsk 43025 (Ukraine); El-Naggar, A.M. [Physics Department, Faculty of Science, Ain Shams University, Abassia, Cairo 11566 (Egypt); Research Chair of Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Albassam, A.A. [Research Chair of Exploitation of Renewable Energy Applications in Saudi Arabia, Physics & Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Jedryka, J.; Kityk, I.V. [Faculty of Electrical Engineering, Czestochowa University Technology, Armii Krajowej 17, Czestochowa (Poland)

    2017-02-15

    For the first time phase equilibria and phase diagram of the AgGaS{sub 2}–SiS{sub 2} system were successfully explored by differential thermal and X-ray phase analysis methods. Crystal structure of low-temperature (LT) modification of Ag{sub 2}Ga{sub 2}SiS{sub 6} (LРў- Ag{sub 2}Ga{sub 2}SiS{sub 6}) was studied by X-ray powder method and it belongs to tetragonal space group I-42d, with unit cell parameters a=5.7164(4) Å, c=9.8023(7) Å, V=320.32(7) Å{sup 3}. Additional details regarding the crystal structure exploration are available at the web page Fachinformationszentrum Karlsruhe. X-ray photoelectron core-level and valence-band spectra were measured for pristine LРў- Ag{sub 2}Ga{sub 2}SiS{sub 6} crystal surface. In addition, the X-ray photoelectron valence-band spectrum of LРў-Ag{sub 2}Ga{sub 2}SiS{sub 6} was matched on a common energy scale with the X-ray emission S Kβ{sub 1,3} and Ga Kβ{sub 2} bands, which give information on the energy distribution of the S 3p and Ga 4p states, respectively. The presented X-ray spectroscopy results indicate that the valence S p and Ga p atomic states contribute mainly to the upper and central parts of the valence band of LРў-Ag{sub 2}Ga{sub 2}SiS{sub 6}, respectively, with a less significant contribution also to other valence-band regions. Band gap energy was estimated by measuring the quantum energy in the spectral range of the fundamental absorption. We have found that energy gap Eg is equal to 2.35 eV at 300 K. LT-Ag{sub 2}Ga{sub 2}SiS{sub 6} is a photosensitive material and reveals two spectral maxima on the curve of spectral photoconductivity spectra at λ{sub max1} =590 nm and λ{sub max2} =860 nm. Additionally, linear electro-optical effect of LT-Ag{sub 2}Ga{sub 2}SiS{sub 6} for the wavelengths of a cw He-Ne laser at 1150 nm was explored. - Graphical abstract: Manuscript present the technology of growth and investigation of properties a new quaternary compound Ag{sub 2}Ga{sub 2}SiS{sub 6

  7. Ab-initio electronic structure calculations and properties of [Si{sub x}Sn{sub 1−x}]{sub 3}N{sub 4} ternary nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Pavloudis, Th. [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Zervos, M. [Nanostructured Materials and Devices Laboratory, Department of Mechanical and Manufacturing Engineering, PO Box 20537, Nicosia 1678 (Cyprus); Komninou, Ph. [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Kioseoglou, J., E-mail: sifisl@auth.gr [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)

    2016-08-31

    We carry out ab initio electronic structure calculations of (Si{sub x}Sn{sub 1−x}){sub 3}N{sub 4} using density functional theory with projector augmented-wave potentials under the generalized gradient approximation. We find that the energetically favorable structure of Sn{sub 3}N{sub 4} is the face-centered cubic spinel structure, followed by the hexagonal structure which has energy band gaps of 1.85 eV and 1.44 eV respectively. The (Si{sub x}Sn{sub 1−x}){sub 3}N{sub 4} ternary compound can exhibit both cubic and hexagonal crystal structures over the full range of x. However, the cubic structure is found to be energetically favorable for x < 0.3 above which the hexagonal structure of (Si{sub x}Sn{sub 1−x}){sub 3}N{sub 4} dominates. The energy band gap can be tuned continuously from 1.44 eV up to 5.8 eV in the case of the hexagonal crystal structure of (Si{sub x}Sn{sub 1−x}){sub 3}N{sub 4} and from 1.85 eV to 4.82 eV in the case of cubic (Si{sub x}Sn{sub 1−x}){sub 3}N{sub 4}. Nevertheless the energy gap of (Si{sub x}Sn{sub 1−x}){sub 3}N{sub 4} is direct only for x < 0.3 when it is cubic and for x < 0.5 when hexagonal. - Highlights: • (Si{sub x}Sn{sub 1−x}){sub 3}N{sub 4} exhibits both cubic and hexagonal crystal structures. • The cubic structure is favorable for x < 0.3 and the hexagonal structure for x > 0.3. • The bandgap of hexagonal (Si{sub x}Sn{sub 1−x}){sub 3}N{sub 4} may be tuned from 1.44 eV up to 5.8 eV. • The bandgap may be tuned from 1.85 eV to 4.82 eV for the cubic (Si{sub x}Sn{sub 1−x}){sub 3}N{sub 4}. • Bandgaps are direct for x < 0.3 (cubic) and for x < 0.5 3 (hexagonal (Si{sub x}Sn{sub 1−x}){sub 3}N{sub 4}).

  8. Electronic Structure of TIBa(sub 2)CaCu(sub 2)O(sub 7-delta)

    Science.gov (United States)

    Vasquez, R. P.; Novikov, D. L.; Freeman, A. J.; Siegal, M. P.

    1996-01-01

    The core levels of TIBa(sub 2)CaCu(sub 2)O(sub 7-delta) epitaxial films have been measured with x-ray photoelectron spectroscopy (XPS). The valence electronic structure has been determined using the full-potential linear muffin tin orbital band structure method and measured with XPS.

  9. Picosecond pulse radiolysis study of primary reactions in solutions

    International Nuclear Information System (INIS)

    El-Omar, Abdel Karim

    2013-01-01

    Following the discovery of ionizing radiations and their chemical effects, it was important to study and comprehend the formation mechanisms of short lived free radicals and molecular products. In order to perform such studies, researchers and research groups worked on developing tools allowing both formation and detection of those species at short time scales. Nowadays, pulse radiolysis imposed itself as a fundamental and efficient tool allowing scientists to probe chemical effects as well as reaction mechanisms in studied media. The Laboratoire de Chimie Physique d'Orsay 'LCP' is an interdisciplinary laboratory hosting the platform of fast kinetics known as 'ELYSE'. Due to its femtosecond laser and its picosecond electron accelerator, we have the possibility to study chemical effects of ionizing radiations interaction with media at ultrashort times up to ∼5 ps.Knowing that we are interested in primary reactions induced in aqueous media by ionizing radiations, ELYSE represents the essential tool in performing our studies. The obtained results concern:- First direct determination of hydroxyl radical 'HO*' radiolytic yield as function of time at picosecond time scale;- Direct effect of ionizing radiation in highly concentrated aqueous solutions as well as investigation of the ultrafast electron transfer reaction between solute molecules and positive holes 'H 2 O*+' formed upon water radiolysis;- Study at room temperature of electron transfer reaction between solvated electron (electron donor) and organic solutes (electron acceptors) en viscous medium;- Study at room temperature of electron's solvation dynamics in ethylene glycol and 2-propanol. (author)

  10. Electronic structure determination of R{sub 3}T{sub 4}Sn{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoye; Tan, HongEn; Klintberg, Lina E.; Tompsett, David A.; Grosche, F. Malte; Sutherland, Michael [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom); Goh, Swee K. [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom); The Chinese University of Hong Kong, Department of Physics, Hong Kong (China); Friedemann, Sven [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom); University of Bristol, HH Wills Physics Laboratory, Bristol (United Kingdom); Yang, Jinhu; Chen, Bin [Hangzhou Normal University, Department of Physics, Hangzhou (China); Kyoto University, Department of Chemistry, Kyoto (Japan); Yoshimura, Kazuyoshi [Kyoto University, Department of Chemistry, Kyoto (Japan); Yu, Wing Chi [The Chinese University of Hong Kong, Department of Physics, Hong Kong (China)

    2016-07-01

    The quasi-skutterudite superconducting material family R{sub 3}T{sub 4}Sn{sub 13} (R = Ca, Sr, T = Ir, Rh) was recently shown to have a composition and pressure induced structural quantum phase transition. The end member material Sr{sub 3}Ir{sub 4}Sn{sub 13} at ambient pressure and above T* = 147 K adopts a simple cubic structure (I phase, Pm-3n). Below this temperature, the compound enters the I* phase, thought to result from a superlattice distortion of the I phase with twice the original lattice constant. We compare our quantum oscillation data for Sr{sub 3}Ir{sub 4}Sn{sub 13}, measured at a wide range of angles, with DFT calculations for the I and I* phases, as well as other proposed possibilities such as merohedral twining domains. We complement this comparison with thermal conductivity measurements of other materials in the family to provide important insights into the nature of the superlattice distortion.

  11. Crystal structure of vanuralite, Al[(UO{sub 2}){sub 2}(VO{sub 4}){sub 2}](OH) . 8.5H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Plasil, Jakub [Czech Academy of Sciences, Praha (Czech Republic). Inst. of Physics

    2017-07-01

    Vanuralite, Al[(UO{sub 2}){sub 2}(VO{sub 4}){sub 2}](OH) . 8.5H{sub 2}O, is a rare supergene uranyl vanadate that forms during hydration-oxidation weathering of uraninite in oxide zones of U deposits. On the basis of single-crystal X-ray diffraction data it is monoclinic, space group P2{sub 1}/n, with a = 10.4637(10), b = 8.4700(5), c = 20.527(2) Aa, β = 102.821(9) , V=1773.9(3) Aa{sup 3} and Z = 4, D{sub calc.} = 3.561 g cm{sup -3}. The structure of vanuralite (R = 0.058 for 2638 unique observed reflections) contains uranyl vanadate sheets of francevillite topology of the composition [(UO{sub 2}){sub 2}(VO{sub 4}){sub 2}]{sup 2-}. Sheets are stacked perpendicular to c, and an interstitial complex {sup [6]}Al(OH)(H{sub 2}O){sub 4}(H{sub 2}O){sub 4.5}; adjacent structural sheets are linked through an extensive network of hydrogen bonds. Vanuralite is the most complex mineral among uranyl vanadates, with 961 bits/cell. The scarcity of occurrences is probably caused by the less common combination of elements present in the structure, as well as the relatively high complexity of the structure (compared to related minerals), arising namely from the complicated network of H-bonds.

  12. Development of sub-nanosecond, high gain structures for time-of-flight ring imaging in large area detectors

    International Nuclear Information System (INIS)

    Wetstein, Matthew

    2011-01-01

    Microchannel plate photomultiplier tubes (MCPs) are compact, imaging detectors, capable of micron-level spatial imaging and timing measurements with resolutions below 10 ps. Conventional fabrication methods are too expensive for making MCPs in the quantities and sizes necessary for typical HEP applications, such as time-of-flight ring-imaging Cherenkov detectors (TOF-RICH) or water Cherenkov-based neutrino experiments. The Large Area Picosecond Photodetector Collaboration (LAPPD) is developing new, commercializable methods to fabricate 20 cm 2 thin planar MCPs at costs comparable to those of traditional photo-multiplier tubes. Transmission-line readout with waveform sampling on both ends of each line allows the efficient coverage of large areas while maintaining excellent time and space resolution. Rather than fabricating channel plates from active, high secondary electron emission materials, we produce plates from passive substrates, and coat them using atomic layer deposition (ALD), a well established industrial batch process. In addition to possible reductions in cost and conditioning time, this allows greater control to optimize the composition of active materials for performance. We present details of the MCP fabrication method, preliminary results from testing and characterization facilities, and possible HEP applications.

  13. Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution.

    Science.gov (United States)

    Henn, T; Kiessling, T; Ossau, W; Molenkamp, L W; Biermann, K; Santos, P V

    2013-12-01

    We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast "white light" supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

  14. Structural, dielectric and magnetic properties of (Pb{sub 1−x}Ca{sub x})(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} solid solution ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Puri, Maalti; Bahel, Shalini [Guru Nanak Dev University, Punjab (India); Raevski, I.P. [Southern Federal University, Rostov-on-Don (Russian Federation); Narang, Sukhleen Bindra [Guru Nanak Dev University, Punjab (India)

    2016-06-01

    Ceramic samples of (Pb{sub 1−x}Ca{sub x})(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} with x=0.0, 0.20, 0.40, 0.45, 0.50, 0.55, 0.60 and 1.0 were fabricated by columbite precursor method. All the synthesized samples have a perovskite structure and unit cell volume decreases with increasing Ca content. The substitution of Ca for Pb has been found to have a pronounced effect on structural, dielectric and magnetic properties. Saturated magnetic loops were observed at room temperature for compositions with x≥0.40. The observed maximal magnetization at room temperature is rather small and varies non-monotonically with increasing Ca contents. It is supposed that room-temperature magnetic properties of (Pb{sub 1−x}Ca{sub x})(Fe{sub 0.5}Nb{sub 0.5})O{sub 3} ceramics might be due to the presence of ferromagnetic impurity, presumably PbFe{sub 12}O{sub 19} and/or CaFe{sub 12}O{sub 19}. - Highlights: • Ceramic samples have been synthesized using columbite precursor method. • The substitution of Ca for Pb has a pronounced effect on various properties. • Low losses at high frequencies make these ceramics suitable for microwave applications. • M–H loops at room temperature are reported first time.

  15. Electronic structure of Ti/sub 2/O/sub 3/, V/sub 2/O/sub 3/, and Cr/sub 2/O/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, T N; Zhurakovskii, E A; Dzeganovskii, V P [AN Ukrainskoj SSR, Kiev. Inst. Problem Materialovedeniya

    1975-11-01

    Electronic structure of oxides Ti/sub 2/O/sub 3/, V/sub 2/O/sub 3/, Cr/sub 2/O/sub 3/ was elucidated by means of X-ray and ESCA methods and the results were compared with the data obtained by other methods and with the available models of electronic structures. Energy diagram of V/sub 2/O/sub 3/ and common energy scale of X-ray spectra of Ti and Cr in Ti/sub 2/O/sub 3/ and Cr/sub 2/O/sub 3/ are presented. X-ray spectra show that these oxides possess the states which are related genetically to the M4p-states i.e. the X-ray data complement essentially to the result of optical and electrophysical measurements. MO and M/sub 2/O/sub 3/ compounds in the region of Fermi level have overlapping emission and absorption spectra which is specific to the matters with the metallic type of bonding. Actually TiO, VO, Ti/sub 2/O/sub 3/ and V/sub 2/O/sub 3/ have metallic type of bonding. However such overlap was observed in Cr/sub 2/O/sub 3/ as well whose forbidden zone according to photoconductivity measurments is about 3 eV. Absence of energy gap between emission and absorption spectra in Cr/sub 2/O/sub 3/ may be explained by traces of impurities which convert dielectrics conductors - impurities act as agents caus:ng filling or generation of vacancies rather than independent allowing additives. On the other hand this may be due to the defects in Cr/sub 2/O/sub 3/ lattice which may cause appearance of excited states in forbidden zone. These investigations enable to draw energy diagram of V/sub 2/O/sub 3/ and to combine the spectra of M in Ti/sub 2/O/sub 3/ into common energy scheme. Analysis of the diagram and combined spectra revealed great similarity in the electronic structures of M/sub 2/O/sub 3/ oxides (M - Ti, V, Cr) .

  16. A structural study of the pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 at high pressure

    CERN Document Server

    Kozlenko, D P; Hull, S; Knorr, K; Savenko, B N; Shchennikov, V V; Voronin, V I

    2002-01-01

    The structure of the pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 has been studied by means of X-ray and neutron powder diffraction at pressure up to 8.5 GPa. A phase transition from the cubic zinc blende structure to the hexagonal cinnabar structure was observed at P approx 1 GPa. The obtained structural parameters were used for the analysis of the geometrical relationship between the zinc blende and the cinnabar phases. The zinc blende-cinnabar phase transition is discussed in the framework of the Landau theory of phase transitions. It was found that the possible order parameter for the structural transformation is the spontaneous strain e sub 4. This assignment agrees with previously observed high pressure behaviour of the elastic constants of other mercury chalcogenides

  17. Structure of the non-superconducting phase La/sub 3/Ba/sub 3/Cu/sub 6/Osub(14+ x) and its relation to the high - Tc superconductor YBa/sub 2/Cu/sub 3/Osub(7 -delta)

    Energy Technology Data Exchange (ETDEWEB)

    David, W.I.F.; Harrison, W.T.A.; Ibberson, R.M.; Grasmeder, J.R.; Lanchester, P.

    1987-07-23

    The authors report time-of-flight neutron powder diffraction results, which confirm that the structure of La/sub 3/Ba/sub 3/Cu/sub 6/Osub(14 + x) is isomorphous with the tetragonal variant of YBa/sub 2/Cu/sub 3/Osub(7-delta); in particular, the copper coordination and calculated valencies of both compounds agree closely. The apparent contradiction of stoichiometries between these two phases is resolved by ordering of the large cations consistent with a formulation La(Lasub(0.25)Basub(0.75))/sub 2/Cu/sub 3/Osub(7 + 1/2x). The present results indicate that there is a remarkable structural stability from RA/sub 2/Cu/sub 3/O/sub 6/ to RA/sub 2/Cu/sub 3/Osub(7.2), although superconductivity appears to be confined to the range RA/sub 2/Cu/sub 3/Osub(6.5) to Ra/sub 2/Cu/sub 3/O/sub 7/.

  18. Structural and Magnetothermal Properties of Compounds: Yb<sub>5sub>SixGe>4-xsub>,Sm>5sub>SixGe>4-xsub>, EuO, and Eu<sub>3sub>O>4sub>

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Kyunghan [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    The family of R<sub>5sub>SixGe>4-xsub> alloys demonstrates a variety of unique physical phenomena related to magneto-structural transitions associated with reversible breaking and reforming of specific bonds that can be controlled by numerous external parameters such as chemical composition, magnetic field, temperature, and pressure. Therefore, R<sub>5sub>SixGe>4-xsub> systems have been extensively studied to uncover the mechanism of the extraordinary magneto-responsive properties including the giant magnetoresistance (GMR) and colossal magnetostriction, as well as giant magnetocaloric effect (GMCE). Until now, more than a half of possible R<sub>5sub>SixGe>4-xsub> pseudobinary systems have been completely or partially investigated with respect to their crystallography and phase relationships (R = La, Pr, Nd, Gd, Tb, Dy, Er, Lu, Y). Still, there are other R<sub>5sub>SixGe>4-xsub> systems (R = Ce, Sm, Ho, Tm, and Yb) that are not studied yet. Here, we report on phase relationships and structural, magnetic, and thermodynamic properties in the Yb<sub>5sub>SixGe>4-xsub>and Sm<sub>5sub>SixGe>4-xsub> pseudobinary systems, which may exhibit mixed valence states. The crystallography, phase relationships, and physical properties of Yb<sub>5sub>SixGe>4-xsub> alloys with 0 ≤ x ≤ 4 have been examined by using single crystal and powder x-ray diffraction at room temperature, and dc magnetization and heat capacity measurements between 1.8 K and 400 K in magnetic fields ranging from 0 to 7 T. Unlike the majority of R<sub>5sub>SixGe>4-xsub> systems studied to date, where R is the rare earth metal, all Yb-based germanide-silicides with the 5:4 stoichiometry crystallize in the same Gd<sub>5sub>Si>4sub>-type structure. The magnetic properties of Yb<sub>5sub>SixGe>4-xsub> materials are nearly composition

  19. A new solid solution compound with the Sr{sub 21}Mn{sub 4}Sb{sub 18} structure type. Sr{sub 13}Eu{sub 8}Cd{sub 3}Mn{sub 1}Sb{sub 18}

    Energy Technology Data Exchange (ETDEWEB)

    Kunz Wille, Elizabeth L.; Cooley, Joya A.; Fettinger, James C.; Kazem, Nasrin; Kauzlarich, Susan M. [California Univ., Davis, CA (United States). Dept. of Chemistry

    2017-09-01

    The title compound with the nominal formula, Sr{sub 13}Eu{sub 8}Cd{sub 3}Mn{sub 1}Sb{sub 18}, was synthesized by Sn-flux. Structure refinement was based on single-crystal X-ray diffractometer data. Employing the exact composition, the formula is Sr{sub 13.23}Eu{sub 7.77}Cd{sub 3.12}Mn{sub 0.88}Sb{sub 18} for the solid solution Sr{sub 21-x}Eu{sub x}Cd{sub 4-y}Mn{sub y}Sb{sub 18}. This phase adopts the Sr{sub 21}Mn{sub 4}Sb{sub 18} type structure with site preferences for both Eu and Cd. The structure crystallizes in the monoclinic system in space group C2/m and Z=4: a=18.1522(11), b=17.3096(10), c=17.7691(10) Aa, β=91.9638(8) , 6632 F{sup 2} values, 216 variables, R1=0.0254 and wR2=0.0563. Site selectivity of the elements in this new compound will be discussed in relationship with the Sr{sub 21}Mn{sub 4}Sb{sub 18} type structure and other related structure types. Temperature dependent magnetic susceptibility data reveal Curie-Weiss paramagnetism with an experimental moment of 19.3 μ{sub B}/f.u. and a Weiss constant of 0.4 K. Magnetic ordering is seen at low temperatures, with a transition temperature of 3.5 K.

  20. Synthesis, crystal structure and electrical properties of the tetrahedral quaternary chalcogenides CuM{sub 2}InTe{sub 4} (M=Zn, Cd)

    Energy Technology Data Exchange (ETDEWEB)

    Nolas, George S., E-mail: gnolas@usf.edu [Department of Physics, University of South Florida, Tampa, FL 33620 (United States); Hassan, M. Shafiq; Dong, Yongkwan [Department of Physics, University of South Florida, Tampa, FL 33620 (United States); Martin, Joshua [Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States)

    2016-10-15

    Quaternary chalcogenides form a large class of materials that continue to be of interest for energy-related applications. Certain compositions have recently been identified as possessing good thermoelectric properties however these materials typically have the kesterite structure type with limited variation in composition. In this study we report on the structural, optical and electrical properties of the quaternary chalcogenides CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} which crystallize in the modified zinc-blende crystal structure, and compare their properties with that of CuZn{sub 2}InSe{sub 4}. These p-type semiconductors have direct band gaps of about 1 eV resulting in relatively high Seebeck coefficient and resistivity values. This work expands on the research into quaternary chalcogenides with new compositions and structure types in order to further the fundamental investigation of multinary chalcogenides for potential thermoelectrics applications. - Graphical abstract: The structural, optical and electrical properties of the quaternary chalcogenides CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} are reported for the first time. The unique crystal structure allows for relatively good electrical transports and therefore potential for thermoelectric applications. - Highlights: • The physical properties of CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} are reported for the first time. • These materials have potential for thermoelectric applications. • Their direct band gaps also suggest potential for photovoltaics applications.

  1. Synthesis and structure of Li{sub 4}GeS{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Y [National Inst. of Materials and Chemical Research, Tsukuba (Japan). High Pressure Lab.; Kanatzidis, M G [Michigan State Univ., East Lansing, MI (United States). Dept. of Chemistry

    1998-01-01

    The compound Li{sub 4}GeS{sub 4} has been prepared as transparent, light yellow moisture-sensitive crystals. Li{sub 4}GeS{sub 4} belongs to the space group Pnma with a = 14.107(6) A, b = 7.770(3) A and c = 6.162(2) A. The crystal structure was solved by direct-methods. The final R and R{sub w}-values are 1.85 and 1.65% for 866 observed reflections. The Li{sub 4}GeS{sub 4} structure has three crystallographically independent lithium sites and one germanium site. The lithium atoms adopt two different coordination types. The Li1 atom is coordinated to five sulfur atoms in a square pyramidal geometry, while the Li2 and Li3 atoms have distorted tetrahedral coordination. The Ge atom is tetrahedrally coordinated by four sulfur atoms and is found as [GeS{sub 4}]{sup 4-} units. The anisotropic three-dimensional crystal structure of Li{sub 4}GeS{sub 4} is described. (orig.) 57 refs.

  2. Theoretical study of the structure of a Ga{sub 6}N{sub 6} cluster

    Energy Technology Data Exchange (ETDEWEB)

    Song Bin; Cao Peilin; Li Baoxing

    2003-08-25

    The structures and energies of a Ga{sub 6}N{sub 6} cluster have been calculated using a full-potential linear-muffin-tin-orbital (FP-LMTO) method, combined with molecular dynamics and simulated annealing techniques. We obtained 19 structures for a Ga{sub 6}N{sub 6} cluster. The most stable structure we obtained is a C{sub s} three-dimensional structure with a N{sub 2} and N{sub 3} subunits. The calculated results show that the existence of strong N-N bonds still dominates the structure of a Ga{sub 6}N{sub 6} cluster, supporting the previous result made by Kandalam et al. [J. Phys. Chem. B 106 (2002) 1945]. Through the calculation of the density of states we found that the most stable structure of Ga{sub 6}N{sub 6} clusters presented semiconductor-like properties.

  3. Synthesis, crystal and electronic structures and optical properties of (HIm)<sub>2sub> Hg<sub>3sub>Cl>8sub> and (HIm)HgI<sub>3sub> (HIm = imidazolium)

    Energy Technology Data Exchange (ETDEWEB)

    Nhalil, Hariharan [Univ. of Oklahoma, Norman, OK (United States). Dept. of Chemistry and Biochemistry; Whiteside, Vincent R. [Univ. of Oklahoma, Norman, OK (United States). Homer L. Dodge Dept. of Physics & Astronomy; Sellers, Ian R. [Univ. of Oklahoma, Norman, OK (United States). Homer L. Dodge Dept. of Physics & Astronomy; Ming, Wenmei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Du, Mao-Hua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Saparov, Bayrammurad [Univ. of Oklahoma, Norman, OK (United States). Dept. of Chemistry and Biochemistry

    2017-11-22

    Here, we report synthesis, crystal and electronic structures, and optical properties of two new Hg-based zero-dimensional hybrid organic-inorganic halides (HIm)2Hg3Cl8 and (HIm)HgI3 (HIm = imidazolium). (HIm)<sub>2sub>Hg>3sub>Cl>8sub> crystallizes in the triclinic P-1 space group with a pseudo-layered structure made of organic imidazolium cation layers and anionic inorganic layers containing [Hg<sub>2sub>Cl>6sub>]2- units and linear [HgCl<sub>2sub>]0 molecules. (HIm)HgI<sub>3sub> crystallizes in the monoclinic P2<sub>1sub>/c space group featuring anionic [HgI<sub>3sub>]- units that are surrounded by imidazolium cations. Based on density functional theory calculations, (HIm)<sub>2sub>Hg>3sub>Cl>8sub> has an indirect band gap, whereas (HIm)HgI<sub>3sub> has a direct band gap with the measured onsets of optical absorption at 3.43 and 2.63 eV, respectively. (HIm)<sub>2sub>Hg>3sub>Cl>8sub> and (HIm)HgI<sub>3sub> are broadband light emitters with broad photoluminescence peaks centered at 548 nm (2.26 eV) and 582 nm (2.13 eV), respectively. In conclusion, following the crystal and electronic structure considerations, the PL peaks are assigned to self-trapped excitons.

  4. Structural studies of CaAl{sub 12}O{sub 19}, SrAl{sub 12}O{sub 19}, La{sub 2/3+δ}Al{sub 12-δ}O{sub 19}, and CaAl{sub 10}NiTiO{sub 19} with the hibonite structure; indications of an unusual type of ferroelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Medina, Elena A.; Sleight, Arthur W.; Subramanian, M.A. [Oregon State University, Corvallis, OR (United States). Dept. of Chemistry; Stalick, Judith K. [National Institute of Standards and Technology (NIST), Gaithersburg, MD (United States). Center for Neutron Research

    2016-08-01

    Various oxides with the hibonite structure were synthesized and structurally analyzed using powder neutron diffraction. The structure of CaAl{sub 12}O{sub 19} at 298 and 11 K shows dipoles that are apparently too dilute to order unless subjected to a suitable electric field. Magnetoplumbites, such as BaFe{sub 12}O{sub 19}, are isostructural with hibonite. These compounds possess ferromagnetic properties, which combined with the electric dipoles may influence multiferroic behavior. Our SrAl{sub 12}O{sub 19} sample showed two distinct hexagonal phases, a major phase with the normal hibonite structure and a minor phase having a closely related structure. Our sample of the defect hibonite phase La{sub 2/3+δ}Al{sub 12-δ}O{sub 19} shows a distinctly higher δ value (0.25) vs. that reported (∝ 0.15) for samples made from the melt. Finally, we used to advantage the negative scattering length of Ti to determine the site occupancies of Ni and Ti in CaAl{sub 10}NiTiO{sub 19}.

  5. Preparation and crystal structure of SrCu/sub 2/Sb/sub 2/ and SrZnBi/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, G; Eisenmann, B; Schaefer, H [Technische Hochschule Darmstadt (Germany, F.R.). Fachbereich Anorganische Chemie und Kernchemie

    1976-10-01

    SrCu/sub 2/Sb/sub 2/ and SrZnBi/sub 2/ have been prepared and analytically and structurally characterized. SrCu/sub 2/Sb/sub 2/ crystallizes tetragonal in the CaBe/sub 2/Ge/sub 2/ structure type. SrZnBi/sub 2/ has its own structure type. In both structures the transition metal atoms form with the semimetal atoms tetragonal pyramids, which are connected by common edges of the basis to twodimensional sheets. These sheets are separated in the case of SrCu/sub 2/Sb/sub 2/ by single sheets of strontium atoms, in the case of SrZnBi/sub 2/ by double sheets of strontium atoms in which fourfold nets of Bi atoms are located.

  6. Crystal structure of HgGa{sub 2}Se{sub 4} under compression

    Energy Technology Data Exchange (ETDEWEB)

    Gomis, Oscar, E-mail: osgohi@fis.upv.es [Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Vilaplana, Rosario [Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Manjón, Francisco Javier [Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Santamaría-Pérez, David [Departamento de Química Física I, Universidad Complutense de Madrid, MALTA Consolider Team, Avenida Complutense s/n, 28040 Madrid (Spain); Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100 Valencia (Spain); Errandonea, Daniel [Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, Burjassot, 46100 Valencia (Spain); and others

    2013-06-01

    Highlights: ► Single crystals of HgGa{sub 2}Se{sub 4} with defect-chalcopyrite structure were synthesized. ► HgGa{sub 2}Se{sub 4} exhibits a phase transition to a disordered rock salt structure at 17 GPa. ► HgGa{sub 2}Se{sub 4} undergoes a phase transition below 2.1 GPa to a disordered zinc blende. - Abstract: We report on high-pressure x-ray diffraction measurements up to 17.2 GPa in mercury digallium selenide (HgGa{sub 2}Se{sub 4}). The equation of state and the axial compressibilities for the low-pressure tetragonal phase have been determined and compared to related compounds. HgGa{sub 2}Se{sub 4} exhibits a phase transition on upstroke toward a disordered rock-salt structure beyond 17 GPa, while on downstroke it undergoes a phase transition below 2.1 GPa to a phase that could be assigned to a metastable zinc-blende structure with a total cation-vacancy disorder. Thermal annealing at low- and high-pressure shows that kinetics plays an important role on pressure-driven transitions.

  7. Description and crystal structure of albrechtschraufite, MgCa{sub 4}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]{sub 2}.17-18H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Mereiter, K. [Vienna Univ. of Technology (Austria). Inst. of Chemical Technologies and Analytics

    2013-04-15

    Albrechtschraufite, MgCa{sub 4}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]{sub 2}.17-18H{sub 2}O, triclinic, space group P anti 1, a = 13.569(2), b = 13.419(2), c = 11.622(2) Aa, α = 115.82(1), β = 107.61(1), γ = 92.84(1) (structural unit cell, not reduced), V = 1774.6(5) Aa{sup 3}, Z = 2, Dc = 2.69 g/cm{sup 3} (for 17.5 H{sub 2}O), is a mineral that was found in small amounts with schroeckingerite, NaCa{sub 3}F[UO{sub 2}(CO{sub 3}){sub 3}](SO{sub 4}).10H{sub 2}O, on a museum specimen of uranium ore from Joachimsthal (Jachymov), Czech Republic. The mineral forms small grain-like subhedral crystals (= 0.2 mm) that resemble in appearance liebigite, Ca{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}]. ∝ 11H{sub 2}O. Colour pale yellow-green, luster vitreous, transparent, pale bluish green fluorescence under ultraviolet light. Optical data: Biaxial negative, nX = 1.511(2), nY = 1.550(2), nZ = 1.566(2), 2V = 65(1) (λ = 589 nm), r < v weak. After qualitative tests had shown the presence of Ca, U, Mg, CO{sub 2} and H{sub 2}O, the chemical formula was determined by a crystal structure analysis based on X-ray four-circle diffractometer data. The structure was later on refined with data from a CCD diffractometer to R1 = 0.0206 and wR2 = 0.0429 for 9,236 independent observed reflections. The crystal structure contains two independent [UO{sub 2}(CO{sub 3}){sub 3}]{sup 4-} anions of which one is bonded to two Mg and six Ca while the second is bonded to only one Mg and three Ca. Magnesium forms a MgF{sub 2}(O{sub carbonate}){sub 3}(H{sub 2}O) octahedron that is linked via the F atoms with three Ca atoms so as to provide each F atom with a flat pyramidal coordination by one Mg and two Ca. Calcium is 7- and 8-coordinate forming CaFO{sub 6}, CaF{sub 2}O{sub 2}(H{sub 2}O){sub 4}, CaFO{sub 3}(H{sub 2}O){sub 4} and CaO{sub 2}(H{sub 2}O){sub 6} coordination polyhedra. The crystal structure is built up from MgCa{sub 3}F{sub 2}[UO{sub 2}(CO{sub 3}){sub 3}].8H{sub 2}O layers parallel to (001) which

  8. The compositional, structural, and magnetic properties of a Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN spin injecting hetero-structure grown by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhonghua; Huang, Shimin [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Tang, Kun, E-mail: ktang@nju.edu.cn [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Gu, Shulin, E-mail: slgu@nju.edu.cn [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Zhu, Shunming [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Ye, Jiandong [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China); Nanjing University Institute of Optoelectronics at Yangzhou, Yangzhou 225009 (China); Xu, Mingxiang [Department of Physics, Southeast University, Nanjing 210096 (China); Wang, Wei; Zheng, Youdou [Nanjing National Laboratory of Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210023 (China)

    2016-12-01

    Highlights: • The Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN hetero-structure has been fabricated by MOCVD successfully. • The formation mechanism of different layers in sample was revealed in details. • The properties of the hetero-structure have been presented and discussed extensively. • The effect of Ga diffusion on the magnetic properties of Fe{sub 3}O{sub 4} film has been shown. - Abstract: In this article, the authors have designed and fabricated a Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN spin injecting hetero-structure by metal-organic chemical vapor deposition. The compositional, structural, and magnetic properties of the hetero-structure have been characterized and discussed. From the characterizations, the hetero-structure has been successfully grown generally. However, due to the unintentional diffusion of Ga ions from Ga{sub 2}O{sub 3}/GaN layers, the most part of the nominal Fe{sub 3}O{sub 4} layer is actually in the form of Ga{sub x}Fe{sub 3−x}O{sub 4} with gradually decreased x values from the Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3} interface to the Fe{sub 3}O{sub 4} surface. Post-annealing process can further aggravate the diffusion. Due to the similar ionic radius of Ga and Fe, the structural configuration of the Ga{sub x}Fe{sub 3−x}O{sub 4} does not differ from that of pure Fe{sub 3}O{sub 4}. However, the ferromagnetism has been reduced with the incorporation of Ga into Fe{sub 3}O{sub 4}, which has been explained by the increased Yafet-Kittel angles in presence of considerable amount of Ga incorporation. A different behavior of the magnetoresistance has been found on the as-grown and annealed samples, which could be modelled and explained by the competition between the spin-dependent and spin-independent conduction channels. This work has provided detailed information on the interfacial properties of the Fe{sub 3}O{sub 4}/Ga{sub 2}O{sub 3}/GaN spin injecting hetero-structure, which is the solid basis for further improvement and application of

  9. Crystal growth and structure of KLnP/sub 4/O/sub 12/

    International Nuclear Information System (INIS)

    Guangyan, H.; Shuzhen, L.; Shuying, Y.; Mingyu, C.

    1985-01-01

    Potassium rare earth tetraphosphates KLnP/sub 4/O/sub 12/ are a kind of polyphosphates of rare earths with unique properties and structures. KNdP/sub 4/O/sub 12/ is a high-Nd-concentration laser material with a non-centrosymmetric space group P2, yielding linear and nonlinear optical properties. α-KErP/sub 4/O/sub 12/ might be used as a material for engineering device purpose. KTbP/sub 4/O/sub 12/ can emit strong green fluorescence, it might be a kind of a new crystal material for laser or luminescence. In order to search for new crystal materials and to study the correlations among the composition, structures and the properties of rare earth compounds, the crystal growth of KLnP/sub 4/O/sub 12/ and their structures are studied in this paper

  10. Measurement of transient atomic displacements in thin films with picosecond and femtometer resolution

    Directory of Open Access Journals (Sweden)

    M. Kozina

    2014-05-01

    Full Text Available We report measurements of the transient structural response of weakly photo-excited thin films of BiFeO3, Pb(Zr,TiO3, and Bi and time-scales for interfacial thermal transport. Utilizing picosecond x-ray diffraction at a 1.28 MHz repetition rate with time resolution extending down to 15 ps, transient changes in the diffraction angle are recorded. These changes are associated with photo-induced lattice strains within nanolayer thin films, resolved at the part-per-million level, corresponding to a shift in the scattering angle three orders of magnitude smaller than the rocking curve width and changes in the interlayer lattice spacing of fractions of a femtometer. The combination of high brightness, repetition rate, and stability of the synchrotron, in conjunction with high time resolution, represents a novel means to probe atomic-scale, near-equilibrium dynamics.

  11. Structure and physical properties of Cr{sub 5}B{sub 3}-type Ta{sub 5}Si{sub 3} and Ta{sub 5}Ge{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Fang; Forbes, Scott [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada); Ramachandran, Krishna Kumar [Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada); Mozharivskyj, Yurij, E-mail: mozhar@mcmaster.ca [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)

    2015-11-25

    The Cr{sub 5}B{sub 3}-type Ta{sub 5}Si{sub 3} phase was prepared by arc-melting, while the Cr{sub 5}B{sub 3}-type Ta{sub 5}Ge{sub 3} one was synthesized through sintering at 1000 °C. X-ray single crystal diffraction was employed to elucidate their structure. According to the magnetization measurements, both Ta{sub 5}Si{sub 3} and Ta{sub 5}Ge{sub 3} are Pauli paramagnets, with Ta{sub 5}Ge{sub 3} showing a Curie-Weiss-like paramagnetic behavior at low temperatures likely due to presence of paramagnetic impurity. Both Ta{sub 5}Si{sub 3} and Ta{sub 5}Ge{sub 3} display a very low electrical resistivity from 2 to 300 K. The resistivity is constant below 20 K, but displays a positive temperature coefficient above 20 K. Electronic structure calculations with the TB-LMTO-ASA method support the metallic character of the two phases and suggest that the bonding is optimized in both phases. - Highlights: • Synthesis of Cr{sub 5}B{sub 3}-type Ta{sub 5}Si{sub 3} and Ta{sub 5}Ge{sub 3} phases with high purity by arc-melting and sintering, respectively. • Magnetization data and electrical resistivity of the Cr{sub 5}B{sub 3}-type Ta{sub 5}Si{sub 3} and Ta{sub 5}Ge{sub 3} phases. • Crystal and electronic structure analysis for Ta{sub 5}Si{sub 3} and Ta{sub 5}Ge{sub 3} phase by X-ray diffraction and TB-LMTO-ASA calculations.

  12. Development of picosecond pulsed electron beam monitor

    International Nuclear Information System (INIS)

    Hosono, Y.; Nakazawa, M.; Ueda, T.; Kobayasi, T.; Yosida, Y.; Ohkuma, J.; Okuda, S.; Suemine, S.

    1993-01-01

    For the picosecond pulsed electron beam of a linear accelerator a simple monitor using an electric connector has been developed which is constructed with SMA, BNC, N type electric connector through pipe (inner diameter = 50 mm or 100 mm). Under the measurement conditions of peak current (26A-900A) and narrow pulse width (Pw = 10 ps(FWHM), Pw = 30 ps(FWHM)), the following characteristics of this monitor were obtained, (A) rise time is less than 25 ps (B) the amplitude of the monitor output pulse is proportional directly to the area of cross section of the electrode. (author)

  13. Er{sub 1.33}Pt{sub 3}Ga{sub 8}: A modulated variant of the Er{sub 4}Pt{sub 9}Al{sub 24}-structure type

    Energy Technology Data Exchange (ETDEWEB)

    Oswald, Iain W.H. [Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080 (United States); Gourdon, Olivier [Research and Development, ZS Pharma, Coppell, TX 75109 (United States); Bekins, Amy; Evans, Jess [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019 (United States); Treadwell, LaRico J. [Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080 (United States); Chan, Julia Y., E-mail: Julia.Chan@utdallas.edu [Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080 (United States); Macaluso, Robin T., E-mail: robin.macaluso@uta.edu [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019 (United States); Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO 80639 (United States)

    2016-10-15

    Single crystals of Er{sub 1.33}Pt{sub 3}Ga{sub 8} were synthesized in a molten Ga flux. Er{sub 1.33}Pt{sub 3}Ga{sub 8} can be considered to be a modulated variant of the Er{sub 4}Pt{sub 9}Al{sub 24}-structure type, where the partial occupancies are ordered. Indeed, the presence of weak satellite reflections indicates a complex organization and distribution of the Er and Ga atoms within the [ErGa] slabs. The structure has been solved based on single crystal X-ray diffraction data in the monoclinic superspace group X2/m(0β0)00 with a commensurate modulated vector q=1/3b*. Precession images also indicate diffusion in the perpendicular direction indicating a partial disorder of this arrangement from layer to layer. In addition, Er{sub 1.33}Pt{sub 3}Ga{sub 8} shows antiferromagnetic ordering at T{sub N}~5 K. - Graphical abstract: A precession image of the hk0 zone showing weak, periodic, unindexed reflections indicating modulation and representation of the commensurate [ErGa] layer showing the waving modulated occupation. - Highlights: • Single crystals of Er{sub 1.33}Pt{sub 3}Ga{sub 8} were grown from gallium flux. • The structure of Er{sub 1.33}Pt{sub 3}Ga{sub 8} is compared to Er{sub 4}Pt{sub 9}Al{sub 24}. • Structure has been solved in the monoclinic superspace group X2/m(0β0)00 with a commensurate modulated vector q=1/3b*.

  14. Zn{sub x-1}Cu{sub x}Mn{sub 2}O{sub 4} spinels; synthesis, structural characterization and electrical evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Mendez M, F.; Lima, E.; Bosch, P.; Pfeiffer, H. [UNAM, Instituto de Investigaciones en Materiales, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Gonzalez, F., E-mail: pfeiffer@iim.unam.m [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)

    2010-07-01

    This work presents the structural characterization and electrical evaluation of Zn{sub x-1}Cu{sub x}Mn{sub 2}O{sub 4} spinels, which are materials presented as secondary phases into the vari stor ceramic systems. Samples were analyzed by X-ray diffraction, solid-state nuclear magnetic resonance, infrared spectroscopy, scanning electron microscopy and impedance spectroscopy. Although, the addition of copper to the ZnMn{sub 2}O{sub 4} spinel did not produce morphological changes, the structure and electrical behaviors changed considerably. Structurally, copper addition induced the formation of partial inverse spinels, and its addition increases significantly the electrical conductivity. Therefore, the formation of Zn{sub x-1}Cu{sub x}Mn{sub 2}O{sub 4} spinels, as secondary phases into the vari stor materials, may compromise significantly the vari stor efficiency. (Author)

  15. First-principles prediction of the structural, elastic, thermodynamic, electronic and optical properties of Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} quaternary nitride

    Energy Technology Data Exchange (ETDEWEB)

    Boudrifa, O. [Laboratory for Developing New Materials and their Characterization, University of Setif 1, 19000 Setif (Algeria); Bouhemadou, A., E-mail: a_bouhemadou@yahoo.fr [Laboratory for Developing New Materials and their Characterization, University of Setif 1, 19000 Setif (Algeria); Guechi, N. [Department of Physics, Faculty of Science, University of Setif 1, 19000 Setif (Algeria); Bin-Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Department of Physics, Faculty of Science and Humanitarian Studies, Salman Bin Abdalaziz University, Alkharj 11942 (Saudi Arabia); Al-Douri, Y. [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique (LPQ3M), Département de Technologie, Université de Mascara, 29000 Mascara (Algeria)

    2015-01-05

    Highlights: • Some physical properties of the quaternary nitride Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} have been predicted. • Elastic parameters reveal that Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} is mechanically stable but anisotropi. • Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} is an indirect semiconductor. • The fundamental indirect band gap changes to direct one under pressure effect. • The optical properties exhibit noticeable anisotropy. - Abstract: Structural parameters, elastic constants, thermodynamic properties, electronic structure and optical properties of the monoclinic Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} quaternary nitride are investigated theoretically for the first time using the pseudopotential plane-wave based first-principles calculations. The calculated structural parameters are in excellent agreement with the experimental data. This serves as a proof of reliability of the used theoretical method and gives confidence in the predicted results on aforementioned properties of Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6}. The predicted elastic constants C{sub ij} reveal that Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} is mechanically stable but anisotropic. The elastic anisotropy is further illustrated by the direction-dependent of the linear compressibility and Young’s modulus. Macroscopic elastic parameters, including the bulk and shear moduli, the Young’s modulus, the Poisson ratio, the velocities of elastic waves and the Debye temperature are numerically estimated. The pressure and temperature dependence of the unit cell volume, isothermal bulk modulus, volume expansion coefficient, specific heat and Debye temperature are investigated through the quasiharmonic Debye model. The band structure and the density of states of Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} are analyzed, which reveals the semiconducting character of Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6}. The complex dielectric function, refractive index, extinction coefficient, absorption coefficient, reflectivity

  16. Temperature-dependent structural relaxation in As{sub 40}Se{sub 60} glass

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R., E-mail: roman_ya@yahoo.com [Lviv Sci. and Res. Institute of Materials of SRC ' Carat' , 202 Stryjska str., 79031 Lviv (Ukraine); Kozdras, A. [Opole University of Technology, 75, Ozimska str., Opole, PL-45370 (Poland); Academy of Management and Administration, 18 Niedzialkowski str., Opole, PL-45085 (Poland); Shpotyuk, O. [Jan Dlugosz University, 13/15, al. Armii Krajowej, 42201, Czestochowa (Poland); Gorecki, Cz. [Opole University of Technology, 75, Ozimska str., Opole, PL-45370 (Poland); Kovalskiy, A.; Jain, H. [Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States)

    2011-08-01

    The origin of structural relaxation in As{sub 40}Se{sub 60} glass at different annealing temperatures is studied by differential scanning calorimetry (DSC) and in situ extended X-ray absorption fine structure (EXAFS) methods. Strong physical aging effect, expressed through the increase of endothermic peak area in the vicinity of T{sub g}, is recorded by DSC technique at the annealing temperatures T{sub a}>90{sup o}C. EXAFS data show that the observed structural relaxation is not associated with significant changes in the short-range order of this glass. An explanation is proposed for this relaxation behavior assuming temperature-dependent constraints. -- Highlights: → In this study we report experimental evidence for temperature-dependent constraints theory. → Structural relaxation of As{sub 2}Se{sub 3} glass at higher annealing temperatures is studied by DSC technique. → Accompanied changes in the structure are monitored by in situ EXAFS measurements.

  17. Structural and magnetic properties of Fe{sub 60}Al{sub 40} alloys prepared by means of a magnetic mill

    Energy Technology Data Exchange (ETDEWEB)

    Bernal-Correa, R. [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales (Colombia); Rosales-Rivera, A., E-mail: arosalesr@unal.edu.c [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales (Colombia); Pineda-Gomez, P. [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales (Colombia); Universidad de Caldas, Manizales (Colombia); Salazar, N.A. [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales (Colombia)

    2010-04-16

    A study on synthesis, structural and magnetic characterization of Fe{sub 60}Al{sub 40} (at.%) alloys prepared by means of mechanical alloying process is presented. The mechanical alloying was performed using a milling device with magnetically controlled ball movement (Uni-Ball-Mill 5 equipment) at several milling times. The characterization was carried out via X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The effects of milling time on the structural state, morphological evolution and magnetic behaviour of the Fe{sub 60}Al{sub 40} (at.%) alloys are discussed. Besides, in this current study we emphasize the result that indicating a ferro-para-ferromagnetic transition from a correlation between X-ray diffraction and magnetization data.

  18. Li{sub 4}Ba[BN{sub 2}]{sub 2} - structure and vibrational spectra

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Stefan; Rodewald, Ute C.; Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany); Somer, Mehmet; Kiraz, Kamil [Chemistry Department, Koc University, Sariyer-Istanbul (Turkey)

    2017-12-13

    The nitridoborate Li{sub 4}Ba[BN{sub 2}]{sub 2} was synthesized from a 4:1 molar ratio of Li{sub 3}[BN]{sub 2} and Ba{sub 3}[BN{sub 2}]{sub 2} in an arc-welded niobium ampoule at a maximum annealing temperature of 1173 K. The structure was refined from single-crystal X-ray diffractometer data: new type, P1, a = 533.9(2), b = 585.0(3), c = 860.6(4) pm, α = 80.72(3), β = 73.84(6), γ = 89.87(4) , wR{sub 2} = 0.1196, 1429 F{sup 2} values, 50 variables. The Li{sub 4}Ba[BN{sub 2}]{sub 2} structure contains two crystallographically independent [BN{sub 2}]{sup 3-} units with 134 pm B-N distance, which are slightly bent: 178 for N2-B1-N1 and 175 for N4-B2-N3. Due to the high lithium content both [BN{sub 2}]{sup 3-} units have a strongly distorted coordination by 8Li{sup +} + 3Ba{sup 2+}. The four crystallographically independent lithium cations show distorted tetrahedral coordination by [BN{sub 2}]{sup 3-} units with Li-N distances ranging from 195 to 247 pm. IR and Raman spectra show the typical vibrations of the [BN{sub 2}] unit along with a well-resolved splitting of the ν({sup 10}B) and ν({sup 11}B) frequencies. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Electronic structure and vibrational properties of KRbAl{sub 2}B{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Adichtchev, S.V. [Laboratory of Condensed Matter Spectroscopy, Institute of Automation and Electrometry, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Bazarov, B.G.; Bazarova, Zh.G. [Laboratory of Oxide Systems, Baikal Institute of Nature Management, SB RAS, Ulan-Ude 47, 670047 (Russian Federation); Gavrilova, T.A. [Laboratory of Nanodiagnostics and Nanolithography, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Grossman, V.G. [Laboratory of Oxide Systems, Baikal Institute of Nature Management, SB RAS, Ulan-Ude 47, 670047 (Russian Federation); Kesler, V.G. [Laboratory of Physical Principles for Integrated Microelectronics, Institute of Semiconductor Physics, Novosibirsk, 630090 (Russian Federation); Meng, G.S. [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China); Lin, Z.S., E-mail: zslin@mail.ipc.ac.cn [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Surovtsev, N.V. [Laboratory of Condensed Matter Spectroscopy, Institute of Automation and Electrometry, SB RAS, Novosibirsk 90, 630090 (Russian Federation)

    2013-03-15

    Graphical abstract: With the KRbAl{sub 2}B{sub 2}O{sub 7} powder formed by solid state synthesis (left), Raman spectrum (right upper) and XPS valence electronic states (right lower) were measured, agreed with the first-principles results. Highlights: ► KRbAl{sub 2}B{sub 2}O{sub 7} powder was obtained by solid state synthesis. ► Vibrational properties of KRbAl{sub 2}B{sub 2}O{sub 7} were determined by unpolarized Raman spectrum. ► Electronic structures of KRbAl{sub 2}B{sub 2}O{sub 7} were measured by XPS. ► Experimental electronic structure is consistent with the first-principles result. ► KRbAl{sub 2}B{sub 2}O{sub 7} has a noticeable refractive indices increase and small NLO effects decrease compared to K{sub 2}Al{sub 2}B{sub 2}O{sub 7}. - Abstract: The physical properties of KRbAl{sub 2}B{sub 2}O{sub 7} have been considered in comparison with those of K{sub 2}Al{sub 2}B{sub 2}O{sub 7} and Rb{sub 2}Al{sub 2}B{sub 2}O{sub 7}. The vibrational parameters of KRbAl{sub 2}B{sub 2}O{sub 7} have been measured by Raman spectroscopy as very similar to those of K{sub 2}Al{sub 2}B{sub 2}O{sub 7}. The electronic structures of KRbAl{sub 2}B{sub 2}O{sub 7} have been evaluated by X-ray photoelectron spectroscopy and ab initio computations using CASTEP package. A noticeable refractive indices increase and small decrease of nonlinear optical properties have been found in KRbAl{sub 2}B{sub 2}O{sub 7} in reference to optical parameters of K{sub 2}Al{sub 2}B{sub 2}O{sub 7}.

  20. NATO Advanced Research Workshop on Applications of Picosecond Spectroscopy to Chemistry

    CERN Document Server

    1984-01-01

    With the development of lasers that can generate light 11 14 pulses ranging from 10- - 10- sec duration, and capable of 13 peak powers in excess of 10 watts scientists have been able to investigate the interactions of light with matter in a time and power domain not previously possible. These ultrashort laser pulses provide a powerful tool for the study of chemical phenomena at the most fundamental level. Many of the elementary processes of importance in chemistry including energy dissipa­ tion, molecular motions, structural and chemical changes occur on a very short time scale and thus require special approaches. Th~ use of ultrashort laser pulses to perturb and to probe systems of interest affords a direct approach to the time reso­ lution of very rapid chemical phenomena. It was recognition of the impact of these relatively new approaches to chemical phenomena that motivated NATO to sponsor a meeting on the applications of picosecond spectroscopy in chemistry. The primary aim of the NATO workshop was to ...

  1. Structure and superconductivity in (Bi{sub 0.35}Cu{sub 0.65})Sr{sub 2}YCu{sub 2}O{sub 7} and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, R.A.; Williams, S.P.; Greaves, C. [Univ. of Birmingham (United Kingdom)

    1994-12-31

    The recently reported (Bi/Cu)Sr{sub 2}YCu{sub 2}O{sub 7} phase has been studied by time of flight powder neutron diffraction. The proposed 1212 structure has been confirmed and refinements have shown the oxygen in the (Bi/Cu)O layer is displaced by 0.78{angstrom} from the ideal (1/2,1/2,0) site (P4/mmm space group) along (100). Bond Valence Sum calculations have suggested oxidation states of Bi{sup 5+} and Cu{sup 2+} for the cations in the (Bi/Cu)O layers. The material is non-superconducting and all attempts to induce superconductivity have been unsuccessful. Work on the related material (Ce/Cu)Sr{sub 2}YCu{sub 2}O{sub y} has shown the ideal Ce content to be 0.5 Ce per formula unit. The introduction of Ba (10%) onto the Sr site dramatically increases phase stability and also induces superconductivity (62K).

  2. Direct Structural and Chemical Characterization of the Photolytic Intermediates of Methylcobalamin Using Time-Resolved X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Ganesh; Zhang, Xiaoyi; Kodis, Gerdenis; Kong, Qingyu; Liu, Cunming; Chizmeshya, Andrew; Weierstall, Uwe; Spence, John

    2018-04-05

    Cobalt−carbon bond cleavage is crucial to most natural and synthetic applications of the cobalamin class of compounds, and here we present the first direct electronic and geometric structural characteristics of intermediates formed following photoexcitation of methylcobalamin (MeCbl) using time-resolved X-ray absorption spectroscopy (XAS). We catch transients corresponding to two intermediates, in the hundreds of picoseconds and a few microseconds. Highlights of the picosecond intermediate, which is reduced in comparison to the ground state, are elongation of the upper axial Co−C bond and relaxation of the corrin ring. This is not so with the recombining photocleaved products captured at a few microseconds, where the Co−C bond almost (yet not entirely) reverts to its ground state configuration and a substantially elongated lower axial Co−NIm bond is observed. The reduced cobalt site here confirms formation of methyl radical as the photoproduct.

  3. Structural features of layered iron pnictide oxides (Fe{sub 2}As{sub 2})(Sr{sub 4}M{sub 2}O{sub 6})

    Energy Technology Data Exchange (ETDEWEB)

    Ogino, H., E-mail: tuogino@mail.ecc.u-tokyo.ac.j [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST-TRIP, Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Sato, S.; Matsumura, Y.; Kawaguchi, N.; Ushiyama, K. [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST-TRIP, Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Katsura, Y. [Magnetic Materials Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Horii, S. [JST-TRIP, Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Kochi University of Technology, Kami, Kochi 782-8502 (Japan); Kishio, K.; Shimoyama, J. [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST-TRIP, Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan)

    2010-12-15

    Structural features of newly found perovskite-based iron pnictide oxide system have been studied. Compared to REFePnO system, perovskite-based system tend to have smaller Pn-Fe-Pn angle and higher pnictogen height owing to low electronegativity of alkaline earth metal and small repulsive force between pnictogen and oxigen atoms. As-Fe-As angles of (Fe{sub 2}As{sub 2})(Sr{sub 4}Cr{sub 2}O{sub 6}), (Fe{sub 2}As{sub 2})(Sr{sub 4}V{sub 2}O{sub 6}) and (Fe{sub 2}Pn{sub 2})(Sr{sub 4}MgTiO{sub 6}) are close to ideal tetrahedron and those pnictogen heights of about 1.40 A are close to NdFeAsO with optimized carrier concentration. These structural features of this system may lead to realization of high-T{sub c} superconductivity in this system.

  4. Structure and properties of ZnO-B{sub 2}O{sub 3}-P{sub 2}O{sub 5}-TeO{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mosner, Petr, E-mail: petr.mosner@upce.cz [Department of General and Inorganic Chemistry, University of Pardubice, Faculty of Chemical Technology, 53210 Pardubice (Czech Republic); Vosejpkova, Katerina; Koudelka, Ladislav [Department of General and Inorganic Chemistry, University of Pardubice, Faculty of Chemical Technology, 53210 Pardubice (Czech Republic); Montagne, Lionel; Revel, Bertrand [Unite de Catalyse et de Chimie du Solide - UCCS, Univ Lille Nord de France, F-59000, CNRS UMR 8181, USTL F-59655, ENSCL F-59652, Villeneuve d' Ascq (France)

    2010-11-01

    Zinc borophosphate glasses doped with TeO{sub 2} were studied in the compositional series (100 - x)[0.5ZnO-0.1B{sub 2}O{sub 3}-0.4P{sub 2}O{sub 5}]-xTeO{sub 2} in a broad concentration range of x = 0-80 mol% TeO{sub 2}. The structure of the glasses was studied by Raman and IR spectroscopy and by {sup 31}P and {sup 11}B MAS NMR spectroscopy. According to the Raman and IR spectra, TeO{sub 2} is incorporated in the structural network in the form of TeO{sub 3}, TeO{sub 3+1} and TeO{sub 4} structural units. The ratio of TeO{sub 4}/TeO{sub 3} increases with increasing TeO{sub 2} content in the glasses. The incorporation of TeO{sub x} units into the glass network is associated with the depolymerisation of phosphate chains, as revealed by Raman spectroscopy. The incorporation of TeO{sub 2} modifies also the coordination of boron atoms, where B(OP){sub 4} structural units are gradually replaced by B(OP){sub 4-n}(OTe){sub n} units. The addition of TeO{sub 2} to the parent zinc borophosphate glass results in a decrease of glass transition temperature associated with the replacement of stronger P-O and B-O bonds by weaker Te-O bonds. Chemical durability of glasses reveals a minimum at the glass containing 10 mol% TeO{sub 2}, but with further additions of TeO{sub 2} it improves and the glasses with a high TeO{sub 2} content reveal better durability than the parent zinc borophosphate glass.

  5. Picosecond X-ray streak camera dynamic range measurement

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, C., E-mail: celine.zuber@cea.fr; Bazzoli, S.; Brunel, P.; Gontier, D.; Raimbourg, J.; Rubbelynck, C.; Trosseille, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Fronty, J.-P.; Goulmy, C. [Photonis SAS, Avenue Roger Roncier, BP 520, 19106 Brive Cedex (France)

    2016-09-15

    Streak cameras are widely used to record the spatio-temporal evolution of laser-induced plasma. A prototype of picosecond X-ray streak camera has been developed and tested by Commissariat à l’Énergie Atomique et aux Énergies Alternatives to answer the Laser MegaJoule specific needs. The dynamic range of this instrument is measured with picosecond X-ray pulses generated by the interaction of a laser beam and a copper target. The required value of 100 is reached only in the configurations combining the slowest sweeping speed and optimization of the streak tube electron throughput by an appropriate choice of high voltages applied to its electrodes.

  6. Influence of structural disorder on the optical and transport properties of Co sub 0 sub . sub 5 sub 0 Ti sub 0 sub . sub 5 sub 0 alloy films

    CERN Document Server

    Kim, K W; Rhee, J Y; Kudryavtsev, Y V; Ri, H C

    2000-01-01

    Co sub 0 sub . sub 5 sub 0 Ti sub 0 sub . sub 5 sub 0 alloy films with a total thickness of about 100 nm were prepared by flash evaporation of the crushed alloy powders onto heated (730 K for the ordered state) and LN sub 2 -cooled (150 K for the disordered state) substrates. Structural analysis of the films was performed by suing transmission electron microscopy. The optical conductivity (OC) of the samples was measured at room temperature in a spectral range of 265 -2500 nm (4.7 - 0.5 eV). The resistivity measurements were carried out by using the four-probe technique in a temperature range of 4.2 - 300 K. The experimental OC spectra for the Co sub 0 sub . sub 5 sub 0 Ti sub 0 sub . sub 5 sub 0 alloys show the most significant change in the infrared region upon the order-disorder transformation. The structural disorder in the Co sub 0 sub . sub 5 sub 0 Ti sub 0 sub . sub 5 sub 0 alloy film leads to a change in the sign of the temperature coefficient of the resistivity from positive to negative. The observed...

  7. Crystal structure of the new ternary thorium indide Th{sub 4}Pd{sub 10}In{sub 21}

    Energy Technology Data Exchange (ETDEWEB)

    Hlukhyy, V.; Zaremba, V.; Stepien-Damm, J.; Troc, R

    2003-03-24

    The structure of Th{sub 4}Pd{sub 10}In{sub 21} was refined from single crystal X-ray diffraction data. The compound crystallizes in the monoclinic system, space group C2/m, mC70; with lattice parameters a=23.024(5) A, b=4.512(1) A, c=17.224(3) A, {beta}=124.57(3) deg. The crystal structure was refined using the SHELXL-97 program (R{sub 1}=0.0477, 2561 F{sup 2} values for 108 variables). This compound adopts the Ho{sub 4}Ni{sub 10}Ga{sub 21}-type structure. The crystal chemistry and relationships of this phase to other ones are briefly discussed.

  8. Phase structure, dielectric, and piezoelectric properties of (K{sub 0.94-x}Na{sub x}Li{sub 0.06})(Nb{sub 0.94}Sb{sub 0.06})O{sub 3} lead-free ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Lingling; Lin, Dunmin; Zheng, Qiaoji; Wu, Xiaochun; Xu, Chenggang [College of Chemistry and Materials Science, and Visual Computing and Virtual Reality Key Laboratory of Sichuan Province, Sichuan Normal University, Chengdu 610066 (China)

    2012-11-15

    Lead-free piezoelectric ceramics (K{sub 0.94-x}Na{sub x}Li{sub 0.06})(Nb{sub 0.94}Sb{sub 0.06})O{sub 3} have been fabricated by a conventional ceramic technique and the effects of K{sup +}/Na{sup +} ratio on the structure and piezoelectric properties of the ceramics have been studied. All the ceramics possess a pure perovskite structure. The coexistence of tetragonal and orthorhombic phases is formed at room temperature in the ceramics with 0.45 {<=} x {<=} 0.55. The tetragonal-orthorhombic phase-transition temperature T{sub O-T} decreases from 110 to 54 C with x increasing from 0.35 to 0.55 and then increases from 84 to 144 C with x further increasing from 0.6 to 0.7, while the Curie temperature T{sub C} deceases from 388 to 348 C with x increasing from 0.35 to 0.70. Because of the coexistence of the two phases near room temperature, the ceramics with x = 0.50 exhibit the optimum piezoelectric properties: d{sub 33} = 230 pC/N and k{sub p} = 49%. The ceramics possess good time stability of piezoelectric properties. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Structure evolution upon chemical and physical pressure in (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Tiittanen, T.; Karppinen, M., E-mail: maarit.karppinen@aalto.fi

    2017-02-15

    Here we demonstrate the gradual structural transformation from the monoclinic I2/m to tetragonal I4/m, cubic Fm-3m and hexagonal P6{sub 3}/mmc structure upon the isovalent larger-for-smaller A-site cation substitution in the B-site ordered double-perovskite system (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6}. This is the same transformation sequence previously observed up to Fm-3m upon heating the parent Sr{sub 2}FeSbO{sub 6} phase to high temperatures. High-pressure treatment, on the other hand, transforms the hexagonal P6{sub 3}/mmc structure of the other end member Ba{sub 2}FeSbO{sub 6} back to the cubic Fm-3m structure. Hence we may conclude that chemical pressure, physical pressure and decreasing temperature all work towards the same direction in the (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6} system. Also shown is that with increasing Ba-for-Sr substitution level, i.e. with decreasing chemical pressure effect, the degree-of-order among the B-site cations, Fe and Sb, decreases. - Graphical abstract: In the (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6} double-perovskite system the gradual structural transformation from the monoclinic I2/m to tetragonal I4/m, cubic Fm-3m and hexagonal P6{sub 3}/mmc structure is seen upon the isovalent larger-for-smaller A-site cation substitution. High-pressure treatment under 4 GPa extends stability of the cubic Fm-3m structure within a wider substitution range of x. - Highlights: • Gradual structural transitions upon A-cation substitution in (Sr{sub 1−x}Ba{sub x}){sub 2}FeSbO{sub 6.} • With increasing x structure changes from I2/m to I4/m, Fm-3m and P6{sub 3}/mmc. • Degree of B-site order decreases with increasing x and A-site cation radius. • High-pressure treatment extends cubic Fm-3m phase stability for wider x range. • High-pressure treatment affects bond lengths mostly around the A-cation.

  10. Structural and electronic properties of Pb-doped Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}: Comparison of LDA and GGA calculations

    Energy Technology Data Exchange (ETDEWEB)

    Camargo-Martínez, J.A., E-mail: jcamargo@unitropico.edu.co [Grupo de Investigación en Ciencias Básicas, Aplicación e Innovación - CIBAIN, Fundación Universitaria Internacional del Trópico Americano– Unitrópico, Yopal, Casanare (Colombia); Martínez-Pieschacón, D.J. [Departamento de Ciencias Básicas, Universidad Santo Tomás, Tunja, Boyaca (Colombia); Baquero, R. [Departamento de Física, CINVESTAV-IPN, Av. IPN 2508, 07360, México (Mexico)

    2017-04-15

    Highlights: • We present for the first time the effects of Pb doping on structural and electronic properties of Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} (Bi2223) using GGA, compared with LDA results. • We found the Pb concentration for which the Bi–O pockets disappear from the Fermi Surface in the Bi2223 compound using GGA and LDA, respectively. - Abstract: We use Density Functional Theory to study the effects on the crystal structure and the electronic band structure of substituting Pb for Bi in Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}. We further use the Local Density Approximation (LDA) and the Generalized Gradient Approximation (GGA). The Virtual Crystal Approximation (VCA) was used to account for the substitution. We found that GGA reproduces better the lattice parameters although in both cases the internal coordinates were reproduced with some uncertainties. We further looked at the behavior of the so called Bi–O pockets, some electronic states that originate on the Bi–O planes and that appear on the Fermi surface (FS) in contradiction to the experimental evidence. We found that LDA and GGA differ on that subject. With 26% Pb and using LDA, the Bi–O pockets run away from the FS. But when GGA is used, it is needed up to 35% Pb to make the Bi–O pockets disappear from the FS. In the last case, once the Bi–O pockets are removed from the FS, we get a very good agreement with angular resolved photo-emission (ARPES) and nuclear magnetic resonance (NMR) experiments.

  11. One-step synthesis of g-C{sub 3}N{sub 4} hierarchical porous structure nanosheets with dramatic ultraviolet light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jing; Wang, Yong; Huang, Jianfeng, E-mail: huangjfsust@126.com; Cao, Liyun; Li, Jiayin; Hai, Guojuan; Bai, Zhe

    2016-12-15

    Highlights: • g-C{sub 3}N{sub 4} nanosheets with hierarchical porous structure were synthesized via one step. • The band gap of the nanosheets was wider and investigated in detail. • The nanosheets can degrade almost all of the RhB within 9 min. • The photocurrent of the nanosheets is 5.97 times as high as that of the P-25. - Abstract: Graphitic carbon nitride (g-C{sub 3}N{sub 4}) nanosheets with hierarchical porous structure were synthesized via one-step thermal condensation-oxidation process. The microstructure of g-C{sub 3}N{sub 4} was characterized to explain the dramatic ultraviolet light photocatalytic activity. The results showed that g-C{sub 3}N{sub 4} hierarchical aggregates were assembled by nanosheets with a length of 1–2 μm and a thickness of 20–30 nm. And the N{sub 2}-adsorption/desorption isotherms further informed the presence of fissure form mesoporous structure. An enhanced photocurrent of 37.2 μA was obtained, which is almost 5 times higher than that of P-25. Besides, the g-C{sub 3}N{sub 4} nanosheets displayed the degradation of Rhodamine B with 99.4% removal efficiency in only 9 min. Such highly photocatalytic activity could be attributed to the nano platelet morphology which improves electron transport ability along the in-plane direction. In addition, the hierarchical porous structure adapted a wider band gap of C{sub 3}N{sub 4}. Therefore, the photoinduced electron-hole pairs have a stronger oxidation-reduction potential for photocatalysis.

  12. Structural and magnetic properties of Mg-Zn ferrites (Mg{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4}) prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Rodríguez, Pamela Yajaira, E-mail: pamela2244_4@hotmail.com [Cinvestav-Unidad Saltillo, Av. Industrial Metalúrgica #1062, Parque Industrial Saltillo-Ramos Arizpe, CP 25900, México (Mexico); Cortés-Hernández, Dora Alicia; Escobedo-Bocardo, José Concepción; Almanza-Robles, José Manuel; Sánchez-Fuentes, Héctor Javier; Jasso-Terán, Argentina; De León-Prado, Laura Elena [Cinvestav-Unidad Saltillo, Av. Industrial Metalúrgica #1062, Parque Industrial Saltillo-Ramos Arizpe, CP 25900, México (Mexico); Méndez-Nonell, Juan [Centro de Investigación en Materiales Avanzados, Ave. Miguel Cervantes #120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, México (Mexico); Hurtado-López, Gilberto Francisco [Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo #140, CP 25294 Saltillo, Coahuila, México (Mexico)

    2017-04-01

    In this study, the Mg{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} nanoparticles (x=0–0.9) were prepared by sol-gel method. These ferrites exhibit an inverse spinel structure and the lattice parameter increases as the substitution of Zn{sup 2+} ions is increased. At lower Zn content (0.1≤x≤0.5), saturation magnetization (Ms) increases, while it decreases at higher Zn content (x≥6). The remnant magnetization (0.17–2.0 emu/g) and coercive field (6.0–60 Oe) indicate a ferrimagnetic behavior. The average core diameter of selected ferrites is around 15 nm and the nanoparticles morphology is quasi spherical. The heating ability of some Mg{sub 0.9}Zn{sub 0.1}Fe{sub 2}O{sub 4} and Mg{sub 0.7}Zn{sub 0.3}Fe{sub 2}O{sub 4} aqueous suspensions indicates that the magnetic nanoparticles can increase the medium temperature up to 42 °C in a time less than 10 min - Highlights: • Magnetic nanoparticles of Mg{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} were synthesized by sol-gel method. • Nanoparticles showing a single spinel crystalline structure were obtained. • Aqueous suspensions of Mg{sub 0.7}Zn{sub 0.3}Fe{sub 2}O{sub 4} and Mg{sub 0.9}Zn{sub 0.1}Fe{sub 2}O{sub 4} show heating ability.

  13. AgLnSb/sub 2/O/sub 7/ compounds with weberite structure

    Energy Technology Data Exchange (ETDEWEB)

    Lopatin, S S; Aver' yanova, L N; Belyaev, I N; Zvyagintsev, B I; Dyatlov, Eh V [Rostovskij-na-Donu Gosudarstvennyj Univ. (USSR)

    1982-11-01

    The interaction between AgSbO/sub 3/ and LnSbO/sub 4/ in the solid phase at 1100-1150 deg C has been investigated. AgLnSb/sub 2/O/sub 7/ compounds with weberite crystal structure are formed in Ln=La, Pr, Nd, Sm cases but in Ln=Eu, Cd, Dy, Er cases the formation of termary oxides of the indicated composition has not been observed. Inasmuch as compounds of the general formula A/sub 2/B/sub 2/O/sub 7/ with average cation radii Rsub(B) >0.60 A and 1.65 <= Rsub(A)/Rsub(B) <= 2.20 can crystallize in weberite, pyrochlore and laminated perovskite-like structurer, conditions of the existence of the above mentioned structures depending on A and B dimensions and electronegativity are discussed.

  14. Picosecond trigger system useful in mode-locked laser pulse measurements

    International Nuclear Information System (INIS)

    Cunin, B.; Miehe, J.A.; Sipp, B.; Thebault, J.

    1976-01-01

    A highly sensitive tunnel diode trigger useful in temporal intensity build-up measurements of mode-locked lasers has been developed; the device reduces notably the time walk due to the lack of repeatability in intensity of the laser output. The performance of the trigger have been established by means of a GHz wideband-0.1V/cm sensitive real-time oscilloscope and of an image converter camera having a picosecond resolution: the experimental results show that a variation of the amplitude of the laser pulse train of a factor 5 leads to a time jitter of less than 30 ps (Auth.)

  15. Reactivity, structure and physical properties of SrCo{sub 2.5+{delta}} and La{sub 2}CoO{sub 4.0+{delta}}. In situ X-ray diffraction and neutrons study; Reactivite, structure et proprietes physiques de SrCoO{sub 2.5+{delta}} et La{sub 2}CoO{sub 4.0+{delta}}. Etude par diffraction des rayons X et des neutrons in situ

    Energy Technology Data Exchange (ETDEWEB)

    Le Toquin, R.

    2003-11-15

    This work was devoted to the study of the reactivity and more specifically the influence of the intercalated oxygen amount {delta} on the structure and physical properties of SrCoO{sub 2.5+{delta}} et La{sub 2}CoO{sub 4.0+{delta}} We controlled the oxidation level by means of reversible electrochemical red ox reaction at room temperature. Structural modifications, especially disorder, and electronic properties were studied for the first time on large orientated single crystal. In the SrCoO{sub 2.5+{delta}} system, after structural and electronic characterisation of the end phases, we studied the real structure of the brownmillerite SrCoO{sub 2.5} phase using single crystal. Moreover, we investigated structural and magnetic evolution upon red ox cycle using X-ray diffraction on 6 times twinned single crystal and in situ neutron powder diffraction. Two intermediate SrCoO{sub 2.75} and SrCoO{sub 2.82} phases have been observed. The reaction on single crystal has evidenced the evolution of domain structure. For the La{sub 2}CoO{sub 4+{delta}} system, we synthesised a large variety of single crystal with stoichiometry {delta} 0.0, 0.09, 0.12, 0.16, 0.20 and 0.25. Using single crystal X-ray and neutron diffraction, we showed a disorder-order transition of the apical and interstitial oxygen for the higher {delta} values. (author)

  16. Structure and dielectric properties of (Ba{sub 0.7}Sr{sub 0.3}){sub 1-x}Na{sub x}(Ti{sub 0.9}Sn{sub 0.1}){sub 1-x}Nb{sub x}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ghoudi, Hanen; Khirouni, Kamel [Universite de Gabes, Laboratoire de Physique des Materiaux et des Nanomateriaux Appliquee a l' Environnement (La Phy MNE), Faculte des Sciences de Gabes, Gabes (Tunisia); Chkoundali, Souad [Universite de Sfax, Laboratoire des Materiaux Multifonctionnels et Applications (LaMMA), Faculte des Sciences de Sfax (FSS), Sfax (Tunisia); Aydi, Abdelhedi [Universite de Gabes, Laboratoire de Physique des Materiaux et des Nanomateriaux Appliquee a l' Environnement (La Phy MNE), Faculte des Sciences de Gabes, Gabes (Tunisia); Universite de Sfax, Laboratoire des Materiaux Multifonctionnels et Applications (LaMMA), Faculte des Sciences de Sfax (FSS), Sfax (Tunisia)

    2017-11-15

    (Ba{sub 0.7}Sr{sub 0.3}){sub 1-x}Na{sub x}(Ti{sub 0.9}Sn{sub 0.1}){sub 1-x}Nb{sub x}O{sub 3} ceramics with compositions x = 0.6, 0.7, 0.8 and 0.9 were synthesized using the solid-state reaction method. These ceramics were examined by X-ray diffraction and dielectric measurements over a broad temperature and frequency ranges. X-ray diffraction patterns revealed a single-perovskite phase crystallized in a cubic structure, for x < 0.8, and in tetragonal, for x ≥ 0.8, with Pm3m and P4mm spaces groups, respectively. Two types of behaviors, classical ferroelectric or relaxor, were observed depending on the x composition. It is noted that temperatures T{sub C} (the Curie temperature) or T{sub m} (the temperature of maximum permittivity) rise when x increases and the relaxor character grows more significantly when x composition decreases. To analyze the dielectric relaxation degree of relaxor, various models were considered. It was proven that an exponential function could well describe the temperature dependence of the static dielectric constant and relaxation time. (orig.)

  17. Structural order parameter in the pyrochlore superconductor Cd sub 2 Re sub 2 O sub 7

    CERN Document Server

    Sergienko, I A

    2003-01-01

    It is shown that both structural phase transitions in Cd sub 2 Re sub 2 O sub 7 , which occur at T sub s sub 1 = 200 K and T sub s sub 2 = 120 K, are due to an instability of the Re tetrahedral network with respect to the same doubly degenerate long-wavelength phonon mode. The primary structural order parameter transforms according to the irreducible representation E sub u of the point group O sub h. We argue that the transition at T sub s sub 1 may be of the second order, in accordance with experimental data. We obtain the phase diagram in the space of phenomenological parameters and propose a thermodynamic path that Cd sub 2 Re sub 2 O sub 7 follows upon cooling. Coupling of the itinerant electronic system and localized spin states in pyrochlores and spinels to atomic displacements are discussed. (author)

  18. Structural stability and oxygen permeability of BaCo{sub 1−x}Nb{sub x}O{sub 3−δ} ceramic membranes for air separation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chengzhang, E-mail: wucz@shu.edu.cn [Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China); Gai, Yongqian; Zhou, Jianfang; Tang, Xia; Zhang, Yunwen; Ding, Weizhong [Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China); Sun, Chenghua [School of Chemistry, Monash University, Clayton, VIC 3800 (Australia)

    2015-07-25

    Highlights: • BCNx membranes with high oxygen permeation flux were prepared. • Oxygen permeability of BCNx membranes is stable at 900 °C. • Phase transition is governed by oxygen partial pressure and temperature. • Degradation mechanism of BCNx membrane is suggested. - Abstract: BaCo{sub 1−x}Nb{sub x}O{sub 3−δ} (BCNx, x = 0.1–0.2) membranes were synthesized through conventional solid-phase reactions. The introduction of niobium facilitates the formation of the cubic perovskite structure and decreases oxygen nonstoichiometry. BCNx membranes possess higher oxygen permeation flux compared with BaCo{sub 0.7}Fe{sub 0.2}Nb{sub 0.1}O{sub 3−δ} membrane at the same condition. A stable permeation flux as high as 2.61 ml cm{sup −2} min{sup −1} is obtained through BaCo{sub 0.9}Nb{sub 0.1}O{sub 3−δ} membrane at 900 °C under the Air/He gradient. Long-time permeation study shows that the oxygen fluxes of BCNx membranes are stable at 900 °C but degrade slowly with time at 850 °C. XRD and TG–DSC results indicate that the degradation behavior occured at 850 °C is due to the phase transition from the cubic perovskite to monoclinic or orthorhombic structure, which is governed by the oxygen partial pressure and temperature. The oxidation of cobalt ion is considered to be the nature for the phase transition, which makes the tolerance factor increasing and results in structural destabilization.

  19. Second International Conference on 'Transient Chemical Structures in Dense Media' - TCSDM 2010. Book of Abstracts

    International Nuclear Information System (INIS)

    2010-01-01

    A number of experimental techniques now exist that allow for the direct observation of temporally varying molecular geometries that occur during a chemical reaction. The most commonly used method is femtosecond laser spectroscopy. Another technique is picosecond pulse radiolysis, employing accelerator generated electron beams. Finally, highly promising new opportunities are provided by time-resolved X-ray diffraction/absorption: the pulses having duration of a few tens of picoseconds are generated by large synchrotron X-ray sources. Similar opportunities are being realized with the recent implementation of sub-picosecond electron diffraction. The recent advances in X-ray sources (SLAC and XFEL) enable the use of sub-picosecond pulse that will push forward our understanding of a chemical reaction. The use of those experimental techniques will certainly be fruitful in the fields of basic energy sciences and biochemistry. The conference will highlight such applications. Theoretical analysis of experimental data is based on statistical mechanics of nonlinear optical processes. Methods of molecular dynamics simulation, both classical and quantum mechanical, are also required. These methods have penetrated unequally in the three disciplines just mentioned: widely present in laser spectroscopy, they are less extensively used in pulsed radiolysis and in time resolved X-ray spectroscopy. We are currently at the edge of a new revolution in computing sciences that will enable the simulation of large quantum mechanical systems in dense media. Topics of the conference: - Femtosecond laser spectroscopy: Multidimensional spectroscopy, Raman spectroscopy, femto-chemistry in dense media and at interface. - Picosecond pulsed radiolysis: Time-resolved detection techniques, space distribution of absorbed energy, electron and proton transfer processes, micro-heterogeneous and polymeric systems. - New laser based sources for particle acceleration and X-ray experiments. - Ultrafast X

  20. Nano/micro Sr{sub 2}Bi{sub 4}Ti{sub 5}O{sub 18} crystallites: Size dependent structural, second harmonic and piezoelectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Tukaram, Shet; Bhimireddi, Rajasekhar; Varma, K.B.R., E-mail: kbrvarma@mrc.iisc.ernet.in

    2016-09-15

    Graphical abstract: Synthesis of Sr{sub 2}Bi{sub 4}Ti{sub 5}O{sub 18} nano/micro crystallites and their size dependent non-linear optical and piezoelectric responses. - Highlights: • Nano/microcrystallites of Sr{sub 2}Bi{sub 4}Ti{sub 5}O{sub 18} were synthesized via sol-gel route. • Crystallite size dependent structural and physical properties were studied. • SHG intensity (1.4 times that of KDP powder) from these crystallites was recorded. • PFM studies on isolated crystallite of 480 nm exhibited d{sub 33} as high as 27 pm/V. • Single domain nature of the crystallites below 160 nm was observed. - Abstract: Strontium bismuth titanate (Sr{sub 2}Bi{sub 4}Ti{sub 5}O{sub 18}) powders comprising crystallites of average sizes in the range of 94–1400 nm were prepared via citrate-assisted sol-gel route. With an increase in the average crystallite size there was a change in the lattice parameters and shift in the Raman vibration modes. Second harmonic signal (532 nm) intensity of the Sr{sub 2}Bi{sub 4}Ti{sub 5}O{sub 18} powders increased with the increase in the average crystallite size and the maximum intensity obtained in the reflection mode was 1.4 times as high as that of the powdered KH{sub 2}PO{sub 4}. Piezo Force Microscopic analyses carried out on isolated crystallite of size 74 nm, established a single domain nature with the coercive field as high as 347 kV/cm. There was a systematic increase in the d{sub 33} value with an increase in the size of the isolated crystallites and a high piezoelectric coefficient of ∼27 pm/V was obtained from an isolated crystallite of size 480 nm.

  1. The use of lasers for studying ultrahigh speed phenomena (picoseconds): equipement of a picosecond spectroscopy laboratory using synchronized mode lasers

    International Nuclear Information System (INIS)

    Goujon, P.; Pochon, E.; Clerc, M.

    1975-01-01

    The spectroscopy laboratory is equipped with a dye laser and a neodymium glass laser. Detection is one case is made by means of a streak picosecond camera capable of a 5 ps time interval. A second detection method uses a CS 2 Kerr cell switch based on the Duguay principle. The first qualitative results concerning the fluorescence of DODCI and chlorophyll in vivo as well as the bleaching and recovering of the absorption of the electron solvated in liquid ammonia, have shown that this equipment could effectively enable the observation of physical-chemical processes as brief as 5 ps [fr

  2. Picosecond multiphoton ionization of atomic and molecular clusters

    International Nuclear Information System (INIS)

    Miller, J.C.; Smith, D.B.

    1990-01-01

    High peak-power picosecond laser pulses have been used for the first time to effect nonresonant or resonant multiphoton ionization (MPI) of clusters generated in a supersonic nozzle expansion. The resulting ions are subsequently detected and characterized by time-of-flight mass spectroscopy. Specifically, we present results involving MPI of clusters of xenon and nitric oxide. Previous MPI studies of many molecular clusters using nanosecond lasers have not been successful in observing the parent ion, presumably due to fast dissociation channels. It is proposed that the present technique is a new and rather general ionization source for cluster studies which is complementary to electron impact but may, in addition, provide unique spectroscopic or dynamical information. 23 refs., 5 figs

  3. High-pressure synthesis and crystal structure of In{sub 3}B{sub 5}O{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Vitzthum, Daniela; Schauperl, Michael; Liedl, Klaus R.; Huppertz, Hubert [Univ. Innsbruck (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie

    2017-03-01

    Orthorhombic In{sub 3}B{sub 5}O{sub 12} was synthesized in a Walker-type multianvil apparatus under high-pressure/high-temperature conditions of 12.2 GPa and 1500 C. Its structure is isotypic to the rare earth analogs RE{sub 3}B{sub 5}O{sub 12} (RE=Sc, Er-Lu). In the field of indium borate chemistry, In{sub 3}B{sub 5}O{sub 12} is the third known ternary indium borate besides InBO{sub 3} and InB{sub 5}O{sub 9}. The crystal structure of In{sub 3}B{sub 5}O{sub 12} has been determined via single-crystal X-ray diffraction data collected at room temperature. It crystallizes in the orthorhombic space group Pmna with the lattice parameters a=12.570(2), b=4.5141(4), c=12.397(2) Aa, and V=703.4(2) Aa{sup 3}. IR and Raman bands of In{sub 3}B{sub 5}O{sub 12} were theoretically determined and assigned to experimentally recorded spectra.

  4. Electronic structure of layered ferroelectric high-k titanate Pr{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V., E-mail: atuchin@thermo.isp.nsc.ru [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Gavrilova, T.A. [Laboratory of Nanodiagnostics and Nanolithography, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Grivel, J.-C. [Materials Research Division, National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, DK-4000, Roskilde (Denmark); Kesler, V.G. [Laboratory of Physical Bases of Integrated Microelectronics, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Troitskaia, I.B. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation)

    2012-11-15

    The spectroscopic parameters and electronic structure of binary titanate Pr{sub 2}Ti{sub 2}O{sub 7} have been studied by IR-, Raman and X-ray photoelectron spectroscopy (XPS) for the powder sample prepared by solid state synthesis. The spectral features of valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in Pr{sub 2}Ti{sub 2}O{sub 7} have been determined as {alpha}{sub Ti}=872.8 and {alpha}{sub O}=1042.3 eV. Variations of cation-anion bond ionicity have been discussed using binding energy differences {Delta}{sub Ti}=(BE O 1s-BE Ti 2p{sub 3/2})=71.6 eV and {Delta}{sub Pr}=BE(Pr 3d{sub 5/2})-BE(O 1s)=403.8 eV as key parameters in comparison with those of other titanium- and praseodymium-bearing oxides. Highlights: Black-Right-Pointing-Pointer Solid state synthesis of polar titanate Pr{sub 2}Ti{sub 2}O{sub 7}. Black-Right-Pointing-Pointer Structural and spectroscopic properties and electronic structure determination. Black-Right-Pointing-Pointer Ti-O and Pr-O bonding analysis using Ti 2p{sub 3/2}, Pr 3d{sub 5/2} and O 1s core levels.

  5. Structure-dependent performance of TiO<sub>2sub>/C as anode material for Na-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    He, Hanna; Gan, Qingmeng; Wang, Haiyan; Xu, Gui-Liang; Zhang, Xiaoyi; Huang, Dan; Fu, Fang; Tang, Yougen; Amine, Khalil; Shao, Minhua

    2018-02-01

    The performance of energy storage materials is highly dependent on their nanostructures. Herein, hierarchical rod-in-tube TiO<sub>2sub> with a uniform carbon coating is synthesized as the anode material for sodium-ion batteries by a facile solvothermal method. This unique structure consists of a tunable nanorod core, interstitial hollow spaces, and a functional nanotube shell assembled from two-dimensional nanosheets. By adjusting the types of solvents used and reaction time, the morphologies of TiO<sub>2sub>/C composites can be tuned to nanoparticles, microrods, rod-in-tube structures, or microtubes. Among these materials, rod-in-tube TiO<sub>2sub> with a uniform carbon coating shows the highest electronic conductivity, specific surface area (336.4 m(2) g(-1)), and porosity, and these factors lead to the best sodium storage capability. Benefiting from the unique structural features and improved electronic/ionic conductivity, the as-obtained rod-in-tube TiO2/C in coin cell tests exhibits a high discharge capacity of 277.5 and 153.9 mAh g(-1) at 50 and 5000 mA g(-1), respectively, and almost 100% capacity retention over 14,000 cycles at 5000 mA g(-1). In operando high-energy X-ray diffraction further confirms the stable crystal structure of the rod-in-tube TiO<sub>2sub>/C during Na+ insertion/extraction. This work highlights that nanostructure design is an effective strategy to achieve advanced energy storage materials.

  6. Study of structural and morphological properties of thermally evaporated Sn{sub 2}Sb{sub 6}S{sub 11} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ben Mehrez, N., E-mail: najia.benmehrez@gmail.com [Université Tunis El Manar, Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère, 1002 Tunis (Tunisia); Khemiri, N. [Université Tunis El Manar, Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère, 1002 Tunis (Tunisia); Kanzari, M. [Université Tunis El Manar, Laboratoire de Photovoltaïque et Matériaux Semi-conducteurs, ENIT, BP 37, Le belvédère, 1002 Tunis (Tunisia); Institut Préparatoire aux Etudes d’Ingénieurs de Tunis Montfleury, Université de Tunis (Tunisia)

    2016-10-01

    In this study, we report the structural and morphological properties of the new material Sn{sub 2}Sb{sub 6}S{sub 11} thin films prepared on glass substrates by vacuum thermal evaporation at various substrate temperatures (30, 60, 100, 140, 180 and 200 °C). Sn{sub 2}Sb{sub 6}S{sub 11} ingot was synthesized by the horizontal Bridgman technique. The structural properties of Sn{sub 2}Sb{sub 6}S{sub 11} powder were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy. The films were characterized for their structural properties by using XRD. All films were polycrystalline in nature. The variations of the structural parameters of the films with the substrate temperature were investigated. The results show that the crystallite sizes increase as the substrate temperature increases. The morphological properties of the films were analyzed by atomic force microscopy (AFM). The roughness and the topography of the surface of the films strongly depend on the substrate temperature. - Highlights: • Sn{sub 2}Sb{sub 6}S{sub 11} powder was successfully synthesized by the horizontal Bridgman technique. • Sn{sub 2}Sb{sub 6}S{sub 11} films were grown by thermal evaporation at different substrate temperatures. • Structural properties of Sn{sub 2}Sb{sub 6}S{sub 11} powder were investigated. • The effect of the substrate temperature on structural and morphological of Sn{sub 2}Sb{sub 6}S{sub 11} films properties was studied.

  7. Sub-structure

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-04-01

    Full Text Available in Conventional Sub-structure Element Concrete Volume (m 3 ) kgCO2/m 3 (see footnote) Total CO2 (kg) Foundations 1 3.69 209 2 771 Foundation walls 3 1.79 174 4 311 Concrete slab 5 4.09 250 6 1022 Total 9.57 2104 Raft foundations...

  8. Synthesis, crystal structure and properties of a new lead fluoride borate, Pb{sub 3}OBO{sub 3}F

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Wenwu [Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Pan, Shilie, E-mail: slpan@ms.xjb.ac.cn [Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011 (China); Dong, Xiaoyu [Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Li, Junjie; Tian, Xuelin; Fan, Xiaoyun [Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011 (China); Chen, Zhaohui [Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011 (China); Physical and Chemical Detecting Center, Xinjiang University, Urumqi 830046 (China); Zhang, Fangfang [Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011 (China)

    2012-04-15

    Graphical abstract: The structure of Pb{sub 3}OBO{sub 3}F consists of two distortional Pb-centered tetrahedra and BO{sub 3} triangles which are all symmetrical with each other respectively in the gestalt structure to the extent that the Pb{sub 3}OBO{sub 3}F compound crystallizes in the symmetrical space group. Highlights: Black-Right-Pointing-Pointer Pb{sub 3}OBO{sub 3}F has been grown from PbO-PbF{sub 2}-B{sub 2}O{sub 3} system for the first time. Black-Right-Pointing-Pointer It crystallizes in the orthorhombic system, space group Pbcm. Black-Right-Pointing-Pointer Pb{sub 3}OBO{sub 3}F consists of Pb(1)O{sub 3}F tetrahedra, Pb(2)O{sub 4} tetrahedra and BO{sub 3} triangles. -- Abstract: A new compound, Pb{sub 3}OBO{sub 3}F, has been grown by the high temperature solution method from the PbO-PbF{sub 2}-B{sub 2}O{sub 3} system. It crystallizes in the orthorhombic system, space group Pbcm with unit-cell parameters a = 7.6313(14) Angstrom-Sign , b = 6.5229(12) Angstrom-Sign , c = 11.906(2) Angstrom-Sign , Z = 4, volume = 592.66(19) Angstrom-Sign {sup 3}. The structure of the compound is solved by the direct methods and refined to R{sub 1} = 0.0528 and wR{sub 2} = 0.1400. Pb{sub 3}OBO{sub 3}F consists of Pb(1)O{sub 3}F tetrahedra, Pb(2)O{sub 4} tetrahedra and BO{sub 3} triangles which build up the symmetrical chains extended along the c-axis. The powder X-ray diffraction pattern of the Pb{sub 3}OBO{sub 3}F has been measured. Functional groups presented in the sample were identified by Fourier transform infrared spectrum.

  9. Radiation chemistry and advanced polymer materials studied by picosecond pulse radiolysis combined with femtosecond laser

    International Nuclear Information System (INIS)

    Tagawa, S.; Yoshida, Y.; Miki, M.; Yamamoto, T.; Ushida, K.; Izumi, Y.

    1996-01-01

    We have synchronized a single picosecond MeV electron pulse from L-band linear accelerator (linac) of The Institute of Scientific and Industrial Research of Osaka University to a single femtosecond laser pulse of Ti:Sapphire laser. It is an essential technique for the future femtosecond pulse radiolysis and is also applied to many kinds of combined application of more than two different beams from accelerators in very short time range. Radiation chemistry and new type of polymers have been studied by LL (laser-linac) twin picosecond pulse radiolysis. Especially the early events in radiation chemistry such as geminate recombination processes of electrons and radical cations are have been studied in both liquids and solids. (author)

  10. Interface properties of bilayer structure Alq{sub 3}/Fe{sub 65}Co{sub 35}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen, E-mail: wangzhen@chd.edu.cn [Department of Applied Physics, Chang’an University, Xi’an 710064 (China); Xu, Chunlong; Wang, Jinguo; Chang, Qiaoli [Department of Applied Physics, Chang’an University, Xi’an 710064 (China); Zuo, Yalu; Xi, Li [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2015-04-01

    Highlights: • Bilayer structure of Alq{sub 3}/FeCo was fabricated in a dual ultra high vacuum chamber. • Organic layer reacts partially with the FeCo film. • Electronic injection barrier is 0.76 eV in the interface. • The induced uniaxial anisotropy appears in Alq{sub 3}/FeCo. - Abstract: The interface between the organic and magnetic electrodes is a fundamental problem in organic spintronics devices. Therefore, bilayer structure of Alq{sub 3}/FeCo was fabricated in a dual ultra high vacuum chamber. The electronic structure of Alq{sub 3}–FeCo interface has been studied by X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy with Argon ion etching technique. It was found that organic layer reacts partially with the FeCo film, forming complex binding of metallic carbide and/or oxidation state in the interfacial region. Electronic injection barrier is 0.76 eV in the interface. The structural variation of the contact region is proposed to be one of the possible factors resulting in spin-injection failure. The magnetic properties of FeCo film with different thicknesses on glass substrate and Alq{sub 3} layer are also investigated. The induced uniaxial anisotropy only presents in 3 nm FeCo thickness for glass/FeCo, while it appears in 3–5 nm FeCo for Alq{sub 3}/FeCo.

  11. Electron beam-induced structural transformations of MoO{sub 3} and MoO{sub 3-x} crystalline nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Droguett, D. E., E-mail: dodiaz@fis.puc.cl [Pontificia Universidad Catolica de Chile, Departamento de Fisica, Facultad de Fisica (Chile); Zuniga, A. [Universidad de Chile, Departamento de Ingenieria Mecanica, Facultad de Ciencias Fisicas y Matematicas (Chile); Solorzano, G. [PUC-RIO, Departamento de Ciencia dos Materiais e Metalurgia, DCMM (Brazil); Fuenzalida, V. M. [Universidad de Chile, Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas (Chile)

    2012-01-15

    Electron beam-induced damage and structural changes in MoO{sub 3} and MoO{sub 3-x} single crystalline nanostructures were revealed by in situ transmission electron microscopy (TEM) examination (at 200 kV) after few minutes of concentrating the electron beam onto small areas (diameters between 25 and 200 nm) of the samples. The damage was evaluated recording TEM images, while the structural changes were revealed acquiring selected area electron diffraction patterns and high resolution transmission electron microscopy (HRTEM) images after different irradiation times. The as-received nanostructures of orthorhombic MoO{sub 3} were transformed to a Magneli's phase of the oxide ({gamma}-Mo{sub 4}O{sub 11}) after {approx}10 min of electron beam irradiation. The oxygen loss from the oxide promoted structural changes. HRTEM observations showed that, in the first stage of the reduction, oxygen vacancies generated by the electron beam are accommodated by forming crystallographic shear planes. At a later stage of the reduction process, a polycrystalline structure was developed with highly oxygen-deficient grains. The structural changes can be attributed to the local heating of the irradiated zone combined with radiolysis.

  12. Mercury vacancies as divalent acceptors in Hg{sub y}Te{sub 1} {sub –} {sub y}/Cd{sub x}Hg{sub 1} {sub –} {sub x}Te structures with quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, D. V., E-mail: dvkoz@ipmras.ru; Rumyantsev, V. V.; Morozov, S. V.; Kadykov, A. M.; Fadeev, M. A. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Varavin, V. S.; Mikhailov, N. N.; Dvoretsky, S. A. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Teppe, F. [Laboratoire Charles Coulomb (L2C) (France)

    2016-12-15

    A long-wavelength band caused by transitions between states related to the valence band is detected in the photoconductivity spectra of Hg{sub y}Te{sub 1–y}/Cd{sub x}Hg{sub 1–x}Te (CMT) structures with quantum wells. The energy states of mercury vacancies in quantum wells of CMT structures is calculated taking into account a chemical shift. It is shown that the long-wavelength band observed in the photoconductivity spectra of these structures is associated with the ionization of divalent acceptor centers which are such vacancies.

  13. Synthesis and structure of bis[(2E)-3-(2-furyl)prop-2-enoato]triphenylantimony Ph{sub 3}Sb[O{sub 2}CCH=CH(C{sub 4}H{sub 3}O)]{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kalistratova, O. S., E-mail: Olga.Kalistratova@yandex.ru; Andreev, P. V.; Gushchin, A. V.; Somov, N. V.; Chuprunov, E. V. [Lobachevsky State University of Nizhny Novgorod (Russian Federation)

    2016-05-15

    Bis[(2E)-3-(2-furyl)prop-2-enoato]triphenylantimony Ph{sub 3}Sb[O{sub 2}CCH=CH(C{sub 4}H{sub 3}O)]{sub 2} is obtained for the first time by the reaction of triphenylantimony, hydrogen peroxide, and 2-furylpropene acid. The X-ray diffraction data show that the central atom of antimony is coordinated in the shape of a distorted trigonal bipyramid. The base of the bipyramid is formed by carbon atoms of phenyl ligands, and the apical vertices are occupied by acid residues. The IR and NMR spectra agree with the composition and structure of the compound.

  14. Effect of Mg substitution on crystal structure and hydrogenation of Ce{sub 2}Ni{sub 7}-type Pr{sub 2}Ni{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Iwase, Kenji, E-mail: fbiwase@mx.ibaraki.ac.jp [Department of Materials Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511 (Japan); Mori, Kazuhiro [Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Sennan, Osaka 590-0494 (Japan); Terashita, Naoyoshi [Japan Metals & Chemicals Co., Ltd., Nishiokitama-gun, Yamagata 999-1351 (Japan); Tashiro, Suguru; Suzuki, Tetsuya [Department of Materials Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511 (Japan)

    2017-03-15

    The effect of Pr being substituted by Mg in Pr{sub 2}Ni{sub 7} with a Ce{sub 2}Ni{sub 7}-type structure was investigated by X-ray diffraction (XRD) and pressure−composition (P−C) isotherm measurements. The maximum hydrogen capacity of Pr{sub 2}Ni{sub 7} reached 1.24 H/M in the first absorption process. However, 0.61 H/M hydrogen remained in the sample after the first desorption and the reversible hydrogen capacity decreased to 0.63 H/M. Severe peak broadening was observed in the XRD profile of Pr{sub 2}Ni{sub 7}H{sub 5.4} after the first P−C isotherm cycle. The metal sublattice of Pr{sub 2}Ni{sub 7}H{sub 5.4} is deformed and changes from the Ce{sub 2}Ni{sub 7}-type structure to a lower symmetry during hydrogenation, with no detection of an amorphous phase. Pr{sub 1.5}Mg{sub 0.5}Ni{sub 7} consists of two phases: 80% Gd{sub 2}Co{sub 7}-type and 20% PuNi{sub 3}-type phases. Mg substitution leads to the relative stability of the Gd{sub 2}Co{sub 7}-type and PuNi{sub 3}-type structures. The Gd{sub 2}Co{sub 7}-type and PuNi{sub 3}-type structures are retained after the P-C isotherm. The reversible hydrogen capacity reached 1.05 H/M. The structural change during the hydrogen absorption−desorption cycle and the hydrogenation characteristics are changed by Mg atoms replacing Pr in the MgZn{sub 2}-type cell. - Graphical abstract: The maximum hydrogen capacity is 1.2 H/M in the first absorption process and the reversible capacity is 0.63 H/M.

  15. Electronic structure of LaFe{sub 2}X{sub 2} (X = Si,Ge)

    Energy Technology Data Exchange (ETDEWEB)

    Hase, I., E-mail: i.hase@aist.go.jp [Electronics and Photonics Research Institute, AIST, Tsukuba, Ibaraki 305-8568 (Japan); Yanagisawa, T. [Electronics and Photonics Research Institute, AIST, Tsukuba, Ibaraki 305-8568 (Japan)

    2011-11-15

    We have calculated the electronic structure of LaFe{sub 2}Si{sub 2} and LaFe{sub 2}Ge{sub 2} from first-principles. The obtained Fermi surfaces of LaFe{sub 2}Si{sub 2} and LaFe{sub 2}Ge{sub 2} resemble those of LaRu{sub 2}Ge{sub 2}, which well explains the result of the dHvA experiments of CeRu{sub 2}Ge{sub 2}. Their density of states curves show the common feature with CaFe{sub 2}As{sub 2}. D(E{sub F}) strongly depends on the distortion of the FeX{sub 4} tetrahedra and/or the height of the X atom, as also found in iron-pnictide system. Recently found iron-pnictide superconductor (Ba,K)Fe{sub 2}As{sub 2} and the heavy-fermion superconductor CeCu{sub 2}Si{sub 2} both have the same crystal structure. In this paper we have calculated the electronic structure of LaFe{sub 2}Si{sub 2} and LaFe{sub 2}Ge{sub 2} from first-principles. These compounds also have the same crystal structure and closely related to both of (Ba,K)Fe{sub 2}As{sub 2} and CeRu{sub 2}Ge{sub 2}. The obtained Fermi surfaces of LaFe{sub 2}Si{sub 2} and LaFe{sub 2}Ge{sub 2} resemble those of LaRu{sub 2}Ge{sub 2}, which are already found that they well explain the results of the dHvA experiments of CeRu{sub 2}Ge{sub 2}. Their density of states curves show the common feature with CaFe{sub 2}As{sub 2}. The density of states at the Fermi level strongly depends on the distortion of the FeX{sub 4} tetrahedra and/or the height of the X atom from the two-dimensional Fe plane, as also found in iron-pnictide system. The electronic specific heat coefficient is 11.8 mJ/mol K{sup 2} for LaFe{sub 2}Si{sub 2} and 12.5 mJ/mol K{sup 2} for LaFe{sub 2}Ge{sub 2}, which is about 1/3 and 1/2 of experimental results, respectively.

  16. Terahertz Induced Electromigration

    DEFF Research Database (Denmark)

    Strikwerda, Andrew; Zalkovskij, Maksim; Iwaszczuk, Krzysztof

    2014-01-01

    We report the first observation of THz-field-induced electromigration in subwavelength metallic gap structures after exposure to intense single-cycle, sub-picosecond electric field transients of amplitude up to 400 kV/cm.......We report the first observation of THz-field-induced electromigration in subwavelength metallic gap structures after exposure to intense single-cycle, sub-picosecond electric field transients of amplitude up to 400 kV/cm....

  17. Crystal structure of a novel cerium indide Ce{sub 6}Pt{sub 11}In{sub 14}

    Energy Technology Data Exchange (ETDEWEB)

    Stepien-Damm, J.; Bukowski, Z.; Zaremba, V.I.; Pikul, A.P.; Kaczorowski, D

    2004-10-06

    The crystal structure of a new intermetallic compound Ce{sub 6}Pt{sub 11}In{sub 14} has been determined from single crystal X-ray data and was refined by a full-matrix least-squares method down to R{sub 1}=0.0497 for 1215 structure factors and 96 parameters. The unit cell is monoclinic, space group C2/m, Z=2 with the lattice parameters: a=22.729(5) A, b=4.3960(10) A, c=14.780(3) A and {beta}=118.35(3) deg. . It represents a new type of crystal structure of intermetallic compounds.

  18. Synthesis, structure and electronic configuration of [Rh{sub 6}Te{sub 8}(PPh{sub 3}){sub 6}].4C{sub 6}H{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, Guenther; Balmer, Markus [Marburg Univ. (Germany). Fachbereich Chemie; Dehnen, Stefanie [Marburg Univ. (Germany). Fachbereich Chemie and Wissenschaftliches Zentrum fuer Materialwissenschaften

    2016-08-01

    [Rh{sub 6}Te{sub 8}(PPh{sub 3}){sub 6}].4C{sub 6}H{sub 6}, the first compound with a molecular Chevrel-type [Rh{sub 6}Te{sub 8}] cluster core has been synthesized and structurally characterized. By means of quantum chemical calculation, the close relationship of its electronic configuration to that of the lighter homologue has been demonstrated. The different crystal solvent content prevents an isostructural crystallization.

  19. Hydrothermal synthesis and crystal structures of Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen; Mei, Dajiang; Sun, Chuanling; Liu, Yunsheng; Wu, Yuandong [College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science (China)

    2017-09-04

    The selenites, Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4}, were synthesized under hydrothermal conditions. The crystal structures of Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O and Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} were determined by single-crystal X-ray diffractions. Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O crystallizes in the triclinic space group P1 (no. 2) with unit cell parameters a = 4.8493(9), b = 12.013(2), c = 12.077(2) Aa, and Z = 2, whereas Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} crystallizes in the monoclinic space group C2/m (no. 12) with lattice cell parameters a = 12.596(6), b = 7.297(4), c = 16.914(8) Aa, and Z = 2. Na{sub 2}Be{sub 3}(SeO{sub 3}){sub 4}.H{sub 2}O features a three-dimensional open framework structure formed by BeO{sub 4} tetrahedra and SeO{sub 3} trigonal pyramids. Na cations and H{sub 2}O molecules are located in different tunnels. Cs{sub 2}[Mg(H{sub 2}O){sub 6}]{sub 3}(SeO{sub 3}){sub 4} has a structure composed of isolated [Mg(H{sub 2}O){sub 6}] octahedra and SeO{sub 3} trigonal pyramids interacted by hydrogen bonds, and Cs cations are resided in-between. Both compounds were characterized by thermogravimetric analysis and FT-IR spectroscopy. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Stable structures for Al{sub 20} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Yao Changhong [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)]. E-mail: phych@zju.edu.cn; Song Bin [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Cao Peilin [Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2005-06-20

    The low-lying energy structures of Al{sub 20} cluster are obtained by full-potential linear-muffin-tin-orbital molecular-dynamics (FP-LMTO-MD) method. A set of new low-lying energy structures including a new lowest energy structure, were found in our calculation. The waist-capped double icosahedral structure, which was considered as the global minimum previously, is merely one of the low-lying structures. Comparison and discussion between Al{sub 20} and Si{sub 20} have been made.

  1. Picosecond anti-Stokes generation in a photonic-crystal fiber for interferometric CARS microscopy

    DEFF Research Database (Denmark)

    Keiding, Søren Rud

    2006-01-01

    We generate tunable picosecond anti-Stokes pulses by four-wave mixing of two picosecond pump and Stokes pulse trains in a photonic-crystal fiber. The visible, spectrally narrow anti-Stokes pulses with shifts over 150 nm are generated without generating other spectral features. As a demonstration,...

  2. Multiphoton ionization of (Xe)n and (NO)n clusters using a picosecond laser

    International Nuclear Information System (INIS)

    Smith, D.B.; Miller, J.C.

    1989-01-01

    Mass-resolved multiphoton ionization (MPI) spectroscopy is an established technique for detecting and analyzing van der Waals molecules and larger clusters. MPI spectroscopy provides excellent detection sensitivity, moderately high resolution, and selectivity among cluster species. In addition to information provided by the analysis of photoions following MPI, photoelectron spectroscopy can reveal details regarding the structure of ionic states. Unfortunately, the technique is limited by its tendency to produce extensive fragmentation. Fragmentation is also a problem with other ionization techniques (e.g., electron impact ionization), but the intense laser beams required for MPI cause additional dissociation channels to become available. These channels include absorption of additional photons by parent ions (ion ladder mechanism), absorption of additional photons by fragment ions (ladder switching mechanism), and resonances with dissociative states in the neutral manifold. The existence of these dissociation channels can preclude the use of MPI spectroscopy in many situations. Recently, MPI studies of stable molecules using picosecond lasers (pulse length = 1 - 10 ps) have indicated that limitations due to fragmentation might be subdued. With picosecond lasers, dissociation mechanisms can be altered and in some cases fragmentation can be eliminated or reduced. Additional photon absorption competes effectively with dissociation channels when a very short laser pulse or, perhaps more importantly, a sufficiently high peak-power is used. In the case where ionic absorption and fragmentation occurs, it has been shown that picosecond MPI might favor the ion ladder mechanism rather than the ladder switching mechanism

  3. Structure of Na/sub 2/AlBAs/sub 4/O/sub 14/, a condensed aluminoboroarsenate

    Energy Technology Data Exchange (ETDEWEB)

    Driss, A.; Jouini, T.

    1988-05-15

    M/sub r/=607.45, monoclinic, P2/sub 1//c, a=4.5916(5), b=20.706(3), c=10.933(1) A, ..beta..=90.39(1)/sup 0/, V=1039.4 A/sup 3/, Z=4, D/sub x/=3.88, D/sub m/ (in bromobenzene)=3.93 Mg m/sup -3/, MoK anti ..cap alpha.., lambda=0.7107 A, ..mu..=13.7 mm/sup -1/, F(000)=1136, T=293 K, R=0.035, ..omega..R=0.047 for 1029 independent reflections. The main feature of this structure is the existence of a novel aluminoboroarsenate anion (Al/sub 2/B/sub 2/As/sub 8/O/sub 28/)/sup 4n-//sub n/ built up from centrosymmetrical B/sub 2/As/sub 4/O/sub 18/ rings formed by corner-sharing of AsO/sub 4/ and BO/sub 4/ tetrahedra and having two As/sub 2/O/sub 7/ pyroarsenate branches. The rings form infinite chains parallel to the a direction by As-O-B linkages. The chains are linked by sharing edges of AsO/sub 4/ tetrahedra and AlO/sub 6/ octahedra to form an infinite three-dimensional framework containing tunnels parallel to the chains where the Na/sup +/ cations are located. This structure is the first ternary heteropolyanion including B, Al and As atoms.

  4. Investigation of structural imitation and lattice vibrations of Pr{sub 2}Fe{sub 17-} {sub x} Mn {sub x} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shen Jiang [Institute of Applied Physics, University of Science and Technology Beijing, 30 Xueyuou Road, HaiDian District, Beijing 100083 (China)]. E-mail: shenj@sas.ustb.edu.cn; Qian Ping [Institute of Applied Physics, University of Science and Technology Beijing, 30 Xueyuou Road, HaiDian District, Beijing 100083 (China); Chen Nanxian [Institute of Applied Physics, University of Science and Technology Beijing, 30 Xueyuou Road, HaiDian District, Beijing 100083 (China); Department of Physics, Tsinghua University, Beijing 100084 (China)

    2005-03-15

    We have investigated the structural properties of Pr{sub 2}Fe{sub 17-} {sub x} Mn {sub x} compounds by using quasi-ab initio pair potentials {phi} {sub Fe-Fe}(r), {phi} {sub Pr-Fe}(r), {phi} {sub Pr-Pr}(r), {phi} {sub Pr-Mn}(r), {phi} {sub Fe-Mn}(r) and {phi} {sub Mn-Mn}(r). In Pr{sub 2}Fe{sub 17-} {sub x} Mn {sub x} , the ternary elements Mn substitute for Fe atoms without changing the crystal structure. The calculated cohesive energy curves show that for all values of x, Mn preferentially substitutes for Fe in the 6c site and randomly substitutes for Fe in the 18f and 18h site. The calculated lattice constants coincide quite well with experimental values. Furthermore, the phonon density, specific heat and vibrational entropy of these compounds are also calculated. It is interesting that simple pair potentials can describe these extremely anisotropic materials.

  5. Picosecond electron bunches from GaAs/GaAsP strained superlattice photocathode

    International Nuclear Information System (INIS)

    Jin, Xiuguang; Matsuba, Shunya; Honda, Yosuke; Miyajima, Tsukasa; Yamamoto, Masahiro; Utiyama, Takashi; Takeda, Yoshikazu

    2013-01-01

    GaAs/GaAsP strained superlattices are excellent candidates for use as spin-polarized electron sources. In the present study, picosecond electron bunches were successfully generated from such a superlattice photocathode. However, electron transport in the superlattice was much slower than in bulk GaAs. Transmission electron microscopy observations revealed that a small amount of variations in the uniformity of the layers was present in the superlattice. These variations lead to fluctuations in the superlattice mini-band structure and can affect electron transport. Thus, it is expected that if the periodicity of the superlattice can be improved, much faster electron bunches can be produced. - Highlights: • GaAs/GaAsP strained superlattices are excellent candidates for spin-polarized electron beam. • Pulse spin-polarized electron beam is required for investigating the magnetic domain change. • Picosecond electron bunches were achieved from GaAs/GaAsP superlattice photocathode. • TEM observation revealed a small disorder of superlattice layers. • Improvement of superlattice periodicity can achieve much faster electron bunches

  6. Fabrication and hydrophobic characteristics of micro / nanostructures on polydimethylsiloxane surface prepared by picosecond laser

    Science.gov (United States)

    Bin, Wang; Dong, Shiyun; Yan, Shixing; Gang, Xiao; Xie, Zhiwei

    2018-03-01

    Picosecond laser has ultrashort pulse width and ultrastrong peak power, which makes it widely used in the field of micro-nanoscale fabrication. polydimethylsiloxane (PDMS) is a typical silicone elastomer with good hydrophobicity. In order to further improve the hydrophobicity of PDMS, the picosecond laser was used to fabricate a grid-like microstructure on the surface of PDMS, and the relationship between hydrophobicity of PDMS with surface microstructure and laser processing parameters, such as processing times and cell spacing was studied. The results show that: compared with the unprocessed PDMS, the presence of surface microstructure significantly improved the hydrophobicity of PDMS. When the number of processing is constant, the hydrophobicity of PDMS decreases with the increase of cell spacing. However, when the cell spacing is fixed, the hydrophobicity of PDMS first increases and then decreases with the increase of processing times. In particular, when the times of laser processing is 6 and the cell spacing is 50μm, the contact angle of PDMS increased from 113° to 154°, which reached the level of superhydrophobic.

  7. Calcium substitution in rare-earth metal germanides with the hexagonal Mn{sub 5}Si{sub 3} structure type. structural characterization of the extended series RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Rare-earth metal)

    Energy Technology Data Exchange (ETDEWEB)

    Suen, Nian-Tzu; Broda, Matthew; Bobev, Svilen, E-mail: bobev@udel.edu

    2014-09-15

    Reported are the synthesis and the structural characterization of an extended family of rare-earth metal–germanides with a general formula RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Y, Ce–Nd, Sm, Gd–Tm and Lu; x<2). All twelve phases are isotypic, crystallizing with the Mn{sub 5}Si{sub 3} structure type (Pearson index hP16, hexagonal space group P6{sub 3}/mcm); they are the Ca-substituted variants of the corresponding RE{sub 5}Ge{sub 3} binaries. Across the series, despite some small variations in the Ca-uptake, the unit cell volumes decrease monotonically, following the lanthanide contraction. Temperature dependent DC magnetization measurements reveal paramagnetic behavior in the high temperature range, and the obtained effective moments are consistent with free-ion RE{sup 3+} ground state, as expected from prior studies of the binary RE{sub 5}Ge{sub 3} phases. The onset of magnetic ordering is observed in the low temperature range, and complex magnetic interactions (ferromagnetic/ferrimagnetic) can be inferred, different from the binary phases RE{sub 5}Ge{sub 3}, which are known as antiferromagnetic. In order to understand the role of Ca in the bonding, the electronic structures of the La{sub 5}Ge{sub 3} and the hypothetical compounds La{sub 2}Ca{sub 3}Ge{sub 3} and La{sub 3}Ca{sub 2}Ge{sub 3} with ordered metal atoms are compared and discussed. - Graphical abstract: The family of rare-earth metal–calcium–germanides with the general formula RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Y, Ce–Nd, Sm, Gd–Tm and Lu) crystallize in the hexagonal space group P6{sub 3}/mcm (No. 193, Pearson symbol hP16) with a structure that is a variant of the Mn{sub 5}Si{sub 3} structure type. - Highlights: • The newly synthesized RE{sub 5–x}Ca{sub x}Ge{sub 3} (RE=Y, Ce–Nd, Sm, Gd–Tm and Lu) constitute an extended family. • The structure is a substitution variant of the hexagonal Mn{sub 5}Si{sub 3} structure type. • Ca-uptake is the highest in the early members, and

  8. Structure and crystallization kinetics of Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Yin [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Xiao Hanning [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China)]. E-mail: zjbcy@126.com; Guo Wenming [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Guo Weiming [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China)

    2006-05-15

    The experimental IR (infrared spectra) and differential scanning calorimetry (DSC) curves of Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses, containing 30-60 mol% Bi{sub 2}O{sub 3}, have been investigated in the article. The composition dependence of IR absorption suggests that addition of Bi{sub 2}O{sub 3} results in a change in the short-range order structure of the borate matrix. The increase of Bi{sub 2}O{sub 3} content causes a progressive conversion of [BO{sub 3}] to [BO{sub 4}] units. Bi{sub 2}O{sub 3}, in the form of [BiO{sub 6}] octahedral units, plays the role of glass former. The crystallization kinetics of Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses were described by thermal stability indexes (k {sub gl}, {delta}T), activation energy (E) for crystallization and numerical factors(n, m) depending on the nucleation process and growth morphology, which were calculated by Satava method and the modified Ozawa-Chen method. When Bi{sub 2}O{sub 3} {<=} 45 mol%, the increase of Bi{sub 2}O{sub 3} tends to improve the thermal stabilities of the glasses. In this case, k {sub gl} may be more suitable for estimating the glass thermal stability in above composition range than {delta}T. A further increase of Bi{sub 2}O{sub 3} content will increase the crystallization trends of investigated glasses. Two possible kinds of growth mechanisms were involved in Bi{sub 2}O{sub 3}-B{sub 2}O{sub 3} glasses: one-dimensional growth and two-dimensional growth. Moreover, structures of crystallized glasses were observed by X-ray diffraction (XRD). BiBO{sub 3} crystal with special non-linear optical properties can be obtained when Bi{sub 2}O{sub 3} {>=} 50 mol%.

  9. Synthesis, structure, and characterization of two new bismuth(III) selenite/tellurite nitrates: [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) and [Bi(TeO{sub 3})](NO{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Chang-Yu; Wei, Ming-Fang [Department of Chemistry and Materials, Yulin Normal University,Yulin, Guangxi 537000 (China); Geng, Lei, E-mail: lgeng.cn@gmail.com [Department of Materials Science and Engineering, Huaibei Normal University, Huaibei, Anhui 235000 (China); Hu, Pei-Qing; Yu, Meng-Xia [Department of Chemistry and Materials, Yulin Normal University,Yulin, Guangxi 537000 (China); Cheng, Wen-Dan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2016-07-15

    Two new bismuth(III) selenite/tellurite nitrates, [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) and [Bi(TeO{sub 3})](NO{sub 3}), have been synthesized by conventional facile hydrothermal method at middle temperature 200 °C and characterized by single-crystal X-ray diffraction, powder diffraction, UV–vis–NIR optical absorption spectrum, infrared spectrum and thermal analylsis. Both [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) and [Bi(TeO3)](NO3) crystallize in the monoclinic centronsymmetric space group P2{sub 1}/c with a=9.9403(4) Å, b=9.6857(4) Å, c=10.6864(5) Å, β=93.1150(10)° for [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) and a=8.1489(3) Å, b=9.0663(4) Å, c=7.4729(3) Å, β=114.899(2)° for Bi(TeO3)(NO3), respectively. The two compounds, whose structures are composed of three different asymmetric building units, exhibit two different types of structures. The structure of [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) features a three-dimensional (3D) bismuth(III) selenite cationic tunnel structure [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}] {sup 3}{sub ∞} with NO{sub 3}{sup −} anion group filling in the 1D tunnel along b axis. The structure of [Bi(TeO{sub 3})](NO{sub 3}) features 2D bismuth(III) tellurite [Bi(TeO{sub 3}){sub 2}]{sup 2}{sub ∞} layers separated by NO{sub 3}{sup −} anion groups. The results of optical diffuse-reflectance spectrum measurements and electronic structure calculations based on density functional theory methods show that the two compounds are wide band-gap semiconductors. - Graphical abstract: Two novel bismuth{sup III} selenite/tellurite nitrates [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) with 3D tunnel structure and [Bi(TeO{sub 3})](NO{sub 3}) with 2D layer structure have been firstly synthesized and characterized. Display Omitted - Highlights: • Two novel bismuth{sup III} nitrates [(Bi{sub 3}O{sub 2})(SeO{sub 3}){sub 2}](NO{sub 3}) and [Bi(TeO{sub 3})](NO{sub 3}) were firstly

  10. Structural and spectroscopic studies of Ba{sub 2}Y{sub 1−δ}UO{sub 6+x}

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Emily; Kennedy, Brendan J. [School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia); Avdeev, Maxim; Thorogood, Gordon J.; Zhang, Zhaoming [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234 (Australia); Brand, Helen E.A. [Australian Synchrotron, 800 Blackburn Rd, Clayton, Victoria 3168 (Australia)

    2016-11-15

    A combination of S-XRD and NPD demonstrate the structure of Ba{sub 2}Y{sub 0.879}UO{sub 6+x} to be monoclinic in space group I2/m. That the U is hexavalent is evident from the U L{sub 2}-edge XANES measurements. This appears to be a rare example of a double perovskite containing vacancies at the octahedral B-sites and interstitial oxygen defects, which combine to stabilise hexavalent U and appears to be a consequence of the preparation of the sample in air. The Y vacancies, coupled with anion disorder, results in a distortion of the BO{sub 6} octahedra. - Graphical abstract: The structure of Ba{sub 2}Y{sub 0.879}UO{sub 6+x} is shown to be a rare example of a double perovskite containing vacancies at the octahedral B-sites and interstitial oxygen defects. - Highlights: • Structure of Ba{sub 2}Y{sub 0.879}UO{sub 6+x} refined. • U L-edge XANES demonstrates the U is hexavalent. • Rare example of a perovskite containing vacancies at the octahedral B-site. • Y vacancies result in a distortion of the BO{sub 6} octahedra.

  11. Structural, catalytic and magnetic properties of Cu{sub 1-X}Co{sub X}Fe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Briceno, Sarah, E-mail: sbriceno@ivic.gob.ve [Laboratorio de Fisica de la Materia Condensada, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of); Del Castillo, Hector [Laboratorio de Cinetica y Catalisis, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101-A (Venezuela, Bolivarian Republic of); Sagredo, V. [Laboratorio de Magnetismo, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101-A (Venezuela, Bolivarian Republic of); Bramer-Escamilla, Werner; Silva, Pedro [Laboratorio de Fisica de la Materia Condensada, Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas (IVIC), Apartado 20632, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Cu{sub 1-X}Co{sub X}Fe{sub 2}O{sub 4} ferrite synthesized by sol-gel auto-combustion method. Black-Right-Pointing-Pointer Structural identification, magnetic and catalytic properties were investigated. Black-Right-Pointing-Pointer Characterization by TGA, DTA, XRD, SEM, TEM and VSM techniques. Black-Right-Pointing-Pointer Magnetic properties decrease with the increase of Cu{sup 2+} doping. Black-Right-Pointing-Pointer The selective conversion to N{sub 2} is higher for Cu-Co mixed ferrites. - Abstract: Copper substituted cobalt ferrite Cu{sub 1-X}Co{sub X}Fe{sub 2}O{sub 4} (0 {<=}x {<=} 1) have been synthesized using sol-gel auto combustion method with citric acid as fuel. Structural identification, magnetic and catalytic properties were investigated using thermogravimetric and differential thermal analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry and their application in the selective catalytic reduction of NOx were studied. Analysis of structural properties reveals that all samples have cubic spinel structure. Room temperature magnetic hysteresis measurements as a function of magnetic field infer that the magnetic properties decrease with Cu{sup 2+} doping which may be due to the difference of the magnetic moment of Cu{sup 2+} and Co{sup 2+} ions. The higher activity of the samples in NO selective reduction to N{sub 2} occurs at 350 Degree-Sign C, reaching a maximum of 38% NO conversion and 95% of selective conversion to N{sub 2}. The compositions containing both Cu{sup 2+} and Co{sup 2+} ions are more active to the products selectivity to N{sub 2}, suggesting a synergistic effect on the active surface of ferrite and the effect of Co{sup 2+} is more pronounced than Cu{sup 2+} towards NO conversion.

  12. Optical properties of a new Bi{sub 38}Mo{sub 7}O{sub 78} semiconductor with fluorite-type δ-Bi{sub 2}O{sub 3} structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zuoshan; Bi, Shala; Wan, Yingpeng [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Huang, Pengjie [College of Textile and Clothing Engineering, Soochow University, Suzhou 215006 (China); Zheng, Min, E-mail: zhengmin@suda.edu.cn [College of Textile and Clothing Engineering, Soochow University, Suzhou 215006 (China)

    2017-03-31

    Highlights: • Bi{sub 38}Mo{sub 7}O{sub 78} semiconductor nanoparticles were synthesized by sol-gel method. • Bi{sub 38}Mo{sub 7}O{sub 78} keeps the structural characteristics of the patrimonial δ-Bi{sub 2}O{sub 3} structure. • Bi{sub 38}Mo{sub 7}O{sub 78} show an efficient optical absorption in visible light. • Photocatalytic property was markedly enhanced for Bi{sub 38}Mo{sub 7}O{sub 78} nanoparticles. • The mechanism of this photocatalysis system was proposed. - Abstract: Bi{sup 3+}-containing inorganic materials usually show rich optical and electronic properties due to the hybridization between 6s and 6p electronic components together with the lone pair in Bi{sup 3+} ions. In this work, a new semiconductor of bismuth molybdate Bi{sub 38}Mo{sub 7}O{sub 78} (19Bi{sub 2}O{sub 3}·7MoO{sub 3}) was synthesized by the sol-gel film coating and the following heat process. The samples developed into nanoparticles with average size of 40 nm. The phase formation was verified via the XRD Rietveld structural refinement. Orthorhombic Bi{sub 38}Mo{sub 7}O{sub 78} can be regarded to be derived from the cubic δ-phase Bi{sub 2}O{sub 3} structure. The microstructure was investigated by SEM, EDX, TEM, BET and XPS measurements. The UV-vis absorption spectra showed that the band gap of Bi{sub 38}Mo{sub 7}O{sub 78} (2.38 eV) was greatly narrowed in comparison with Bi{sub 2}O{sub 3} (2.6 eV). This enhances the efficient absorption of visible light. Meanwhile, the conduction band of is wider and shows more dispersion, which greatly benefits the mobility of the light-induced charges taking part in the photocatalytic reactions. Bi{sub 38}Mo{sub 7}O{sub 78} nanoparticles possess efficient activities on the photodegradation of methylene blue (MB) solutions under the excitation of visible-light. The photocatalysis activities and mechanisms were discussed on the crystal structure characteristics and the measurements such as photoluminescence, exciton lifetime and XPS results.

  13. Electronic structure and optical properties of ABP{sub 2}O{sub 7} double phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Hizhnyi, Yu. [Faculty of Physics, Kyiv National Taras Shevchenko University, 2, Block 1, Acad. Hlushkova Ave., 03680 Kyiv (Ukraine)], E-mail: hizhnyi@univ.kiev.ua; Gomenyuk, O.; Nedilko, S.; Oliynyk, A.; Okhrimenko, B. [Faculty of Physics, Kyiv National Taras Shevchenko University, 2, Block 1, Acad. Hlushkova Ave., 03680 Kyiv (Ukraine); Bojko, V. [National Agriculture University, 5 Geroiv Oborony Str., 03041 Kyiv (Ukraine)

    2007-04-15

    Luminescence and luminescence excitation under VUV radiation of ABP{sub 2}O{sub 7} (A=Na, K, Cs; B=Al, In) double phosphates are studied. Two emission bands peaking near 330 and 420 nm are common for investigated ABP{sub 2}O{sub 7} crystals. The band structure and partial densities of electronic states of perfect KAlP{sub 2}O{sub 7}, LiInP{sub 2}O{sub 7} and NaTiP{sub 2}O{sub 7} crystals are calculated by the full-potential linear-augmented-plane-wave (FLAPW) method. It is found that the structures of the conduction bands of ABP{sub 2}O{sub 7} crystals, which have different B cations, are appreciably different. Experimental results are compared with results of calculations of the electronic structure. Assumptions concerning the origin of luminescence in double phosphates are made.

  14. Predicted electronic and structural properties of B{sub x}In{sub 1-x}As

    Energy Technology Data Exchange (ETDEWEB)

    Tayebi, N. [Laboratory of Applied Materials, University of Sidi Bel Abbes, 31 rue de Madagascar, Sidi Bel Abbes (Algeria); Benkabou, K., E-mail: kbenkabou@yahoo.fr [Laboratory of Applied Materials, University of Sidi Bel Abbes, 31 rue de Madagascar, Sidi Bel Abbes (Algeria); Aoumeur-Benkabou, F.Z. [Laboratory of Applied Materials, University of Sidi Bel Abbes, 31 rue de Madagascar, Sidi Bel Abbes (Algeria)

    2012-07-15

    Structural and electronic properties of the B{sub x}In{sub 1-x}As ternary alloy are studied using the tight binding method. The optical band gap bowing is calculated for the first time in the full range of Boron composition x. It is found to be strong. A small deviation from virtual crystal approximation is found for the bond length. New results on elastic constants are reported. The obtained results are in good agreement with the available data in the literature.

  15. Crystal and magnetic structure of TbFe{sub 0.25}Ge{sub 2} compound

    Energy Technology Data Exchange (ETDEWEB)

    Gil, A., E-mail: a.gil@ajd.czest.pl [Faculty of Mathematics and Natural Sciences, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa (Poland); Hoser, A. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14-109 Berlin (Germany); Penc, B.; Szytuła, A. [M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków (Poland)

    2013-10-15

    The crystal and magnetic structure of polycrystalline TbFe{sub 0.25}Ge{sub 2} sample have been determined. X-ray and neutron diffraction studies indicate that this compound has the orthorhombic CeNiSi{sub 2}-type crystal structure (space group Cmcm). The magnetic ordering, based on the neutron diffraction data in low temperature, is described by two components: a collinear antiferromagnetic G-type and a cosine-wave modulated one. In the collinear G-type structure the Tb magnetic moment is equal to 3.81(5) µ{sub B} and it is parallel to the c-axis. The modulated structure is described by the propagation vector k=(0.460(8), 0, 0.305(1)), the Tb magnetic moment equals 7.75(8) µ{sub B,} lies in b–c and forms an angle 23(2)° with the c-axis. The collinear component decreases to zero at 22.6 K while the modulated one at 190.8 K. - Highlights: • We determine crystal and magnetic structure of TbFe{sub 0.25}Ge{sub 2} compound. • We compare the results with other TbT{sub x}Ge{sub 2} compounds. • We observe the complex magnetic structure in TbFe{sub 0.25}Ge{sub 2} with two components: collinear and cosine-wave modulated. • T (3d) element have got significant influence on the interactions in Tb sublattice.

  16. Synthesis and crystal structure of triammine pentafluorido tantalum(V) [TaF{sub 5}(NH{sub 3}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Sebastian A.; Kraus, Florian [Department Chemie, Technische Universitaet Muenchen, Lichtenbergstrasse 4, 85747 Garching (Germany); Lozinsek, Matic [Department of Inorganic Chemistry and Technology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2013-07-01

    [Sr(HF){sub 3}(TaF{sub 6}){sub 2}] reacts with liquid ammonia under the formation of colorless crystals of triammine pentafluorido tantalum(V) [TaF{sub 5}(NH{sub 3}){sub 3}] (1). The structure was elucidated by low-temperature X-ray structure analysis. Compound 1 crystallizes in the monoclinic space group P2{sub 1}/c with a = 5.1525(6), b = 11.736(1), c = 10.171(1) Aa, β = 94.843(9) , V = 612.8(1) Aa{sup 3} at 123 K with Z = 4. Its structure displays discrete TaF{sub 5}(NH{sub 3}){sub 3} molecules, which are interconnected by N-H..F hydrogen bonds to form a complex three-dimensional network. The title compound is a rare example of a neutral, molecular, eight-coordinate tantalum species. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Ba/sub 2/Ge/sub 2/Te/sub 5/, a new telluridogermanate(III) with chain structure

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, C; Eisenmann, B; Schaefer, H [Technische Hochschule Darmstadt (Germany, F.R.). Fachbereich Anorganische Chemie und Kernchemie

    1984-10-01

    The new compound Ba/sub 2/Ge/sub 2/Te/sub 5/ crystallizes in the orthorhombic system (space group: Pna2/sub 1/ (No. 33)). The lattice constants are given. In the structure distorted Ge/sub 2/Te/sub 6/-trigonal prisms are connected by common corners to infinite chains.

  18. Probing Dense Sprays with Gated, Picosecond, Digital Particle Field Holography

    Directory of Open Access Journals (Sweden)

    James Trolinger

    2011-12-01

    Full Text Available This paper describes work that demonstrated the feasibility of producing a gated digital holography system that is capable of producing high-resolution images of three-dimensional particle and structure details deep within dense particle fields of a spray. We developed a gated picosecond digital holocamera, using optical Kerr cell gating, to demonstrate features of gated digital holography that make it an exceptional candidate for this application. The Kerr cell gate shuttered the camera after the initial burst of ballistic and snake photons had been recorded, suppressing longer path, multiple scattered illumination. By starting with a CW laser without gating and then incorporating a picosecond laser and an optical Kerr gate, we were able to assess the imaging quality of the gated holograms, and determine improvement gained by gating. We produced high quality images of 50–200 μm diameter particles, hairs and USAF resolution charts from digital holograms recorded through turbid media where more than 98% of the light was scattered from the field. The system can gate pulses as short as 3 mm in pathlength (10 ps, enabling image-improving features of the system. The experiments lead us to the conclusion that this method has an excellent capability as a diagnostics tool in dense spray combustion research.

  19. The complex structure of liquid Cu{sub 6}Sn{sub 5} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Qin Jingyu; Gu Tingkun; Bian Xiufang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Southern Campus, Jinan 250061 (China); Liu Hui [Shandong High Performance Computing Center, Shandong University, Southern Campus, Jinan 250061 (China)

    2009-04-15

    By applying ab initio molecular dynamics simulation to liquid Cu{sub 6}Sn{sub 5} alloy, the hetero-coordination tendency is discovered by Bathia-Thornton partial correlation functions and a chemical short-range parameter. However the local structural environment of Sn in l-Cu{sub 6}Sn{sub 5} alloy resembles that of liquid Sn by Voronoi analysis. A new feature, i.e. a subpeak in between the first and second peaks, is discovered by the present method which implies that topologically disordered {beta}-Sn-type structural units may exist in l-Cu{sub 6}Sn{sub 5} alloy. The local density states of electrons show that both Cu-Sn and Sn-Sn bonding exist in l-Cu{sub 6}Sn{sub 5} alloy. This work suggests that chemical short-range order between unlike atoms and self-coordination between Sn atoms coexists in l-Cu{sub 6}Sn{sub 5} alloy.

  20. Refinement in the structural and magnetic properties of Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} and its application as laser micro-propellant using ablation confinement

    Energy Technology Data Exchange (ETDEWEB)

    Raza Ahmad, Muhammad, E-mail: mrazaahmad@gmail.com [Centre for Advanced Studies in Physics (CASP), GC University, Lahore, Punjab (Pakistan); Jamil, Yasir, E-mail: yasirjamil@yahoo.com [Department of Physics, University of Agriculture, Faisalabad, Punjab (Pakistan); Tabasuum, Ayesha [Department of Physics, University of Agriculture, Faisalabad, Punjab (Pakistan); Hussain, Tousif [Centre for Advanced Studies in Physics (CASP), GC University, Lahore, Punjab (Pakistan)

    2015-06-15

    The transition metal-substituted cobalt ferrite nanoparticles Co{sub 0.5}X{sub 0.5}Fe{sub 2}O{sub 4} (with X=Cu, Zn, Mn and Ni) exhibit a wide range of properties that result in their application in low loss magnetic core materials, vertical recording heads, antenna rods, memory elements, ferrofluids, biomedical applications, sensors and laser propulsion. Keeping in view its importance we investigated for the first time the structural and magnetic properties of the Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} samples that were subsequently subjected to thermal treatments for different time durations. The average crystallite sizes of the synthesized samples were found in the range of 24–46 nm. The values of the saturation magnetization and coercivity varied from 25.7 to 31.2 emu/g and 523.59 to 927.62 O{sub e}, respectively. The XRD patterns showed that increase in thermal treatment time resulted in the refinement of the structure whereas the SEM micrographs depicted a uniform particle size distribution of the synthesized material. We also explored the application of the synthesized material as a micro-thruster. It was found that the confinement of the laser induced plasma of Co{sub 0.5}×{sub 0.5}Fe{sub 2}O{sub 4} led to an increase in the value of coupling coefficient from the range of 5.747×10{sup −5}–7.0644×10{sup −5} N-s/J for unconfined to that of 1.41×10{sup −4}–2.68×10{sup −4}N-s/J for confined plasma corresponding to the Nd:YAG laser fluencies of 4×10{sup 9} J/m{sup 2}–6×10{sup 9} J/m{sup 2}. - Highlights: • Thermal treatment modifies the properties of Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4}. • Change in magnetic properties with increase in calcination time. • Confinement increases the laser propulsion parameters of Co{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4}.

  1. Synthesis and structure of novel lithium-ion conductor Li{sub 7}Ge{sub 3}PS{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yuki [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan); Suzuki, Kota [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan); Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan); Matsui, Naoki [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan); Hirayama, Masaaki [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan); Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan); Kanno, Ryoji, E-mail: kanno@echem.titech.ac.jp [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan); Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8502 (Japan)

    2017-02-15

    The novel lithium-ion conductor Li{sub 7}Ge{sub 3}PS{sub 12} was synthesized by slow cooling from the ternary Li{sub 2}S–GeS{sub 2}–P{sub 2}S{sub 5} system, and was shown to exhibit a cubic argyrodite-type structure. The phase composition was determined by varying the ratio of starting materials; the observed monophasic properties were close to those for the Li{sub 7}Ge{sub 3}PS{sub 12} composition. The lattice parameter (a =9.80192(3) Å) of Li{sub 7}Ge{sub 3}PS{sub 12} was slightly smaller than that of Li{sub 7}PS{sub 6} (a =9.993 Å), indicating that substitution of a Li cation by the smaller Ge cation contracted the cubic lattice. In addition, the novel structure consisted of a framework composed of four isolated (Ge/P)S{sub 4} tetrahedra. Li{sup +} ions occupied tetrahedral sites within the framework, forming a three-dimensional conduction pathway. Finally, Li{sub 7}Ge{sub 3}PS{sub 12} exhibited a high ionic conductivity of 1.1×10{sup −4} S cm{sup −1} at 25 °C and an activation energy of 25 kJ mol{sup −1}. - Graphical abstract: A novel Li{sub 7}Ge{sub 3}PS{sub 12} solid lithium ion conductor, with cubic argyrodite strucuture, shows high ion conductivity of 1.1×10{sup –4} S cm{sup –1} with an activation energy of 25 kJ mol{sup –1}. The argyrodite structure consists of (Ge/P)S{sub 4} tetrahedra units along with partial occupation of lithium and germanium at 48 h site. - Highlights: • A novel lithium-ion conductor Li{sub 7}Ge{sub 3}PS{sub 12} was detected. • This was achieved through slow cooling of the ternary Li{sub 2}S–GeS{sub 2}–P{sub 2}S{sub 5} system. • This novel conductor revealed a cubic argyrodite-type structure. • Li{sub 7}Ge{sub 3}PS{sub 12} exhibited a high ionic conductivity of 1.1×10{sup −4} S cm{sup −1} at 25 °C. • These properties will aid in the design of superior lithium-ion conductors.

  2. Cation composition and oxygen content dependence of crystal structure and T sub c for Tl sub 2 sub - sub x Ba sub 2 Ca sub 2 Cu sub 3 sub + sub z O sub y

    CERN Document Server

    Idemoto, Y; Koura, N; Kamiyama, T; Oikawa, K; Izumi, F

    2003-01-01

    Tl sub 2 sub - sub x Ba sub 2 Ca sub 2 Cu sub 3 sub + sub z O sub y (Tl-2223 system) superconducting oxides with various Tl contents and Cu contents were prepared. We investigated the relation between crystal structure and superconducting property dependence of Tl and Cu content. First, we obtained an almost single-phase material at a Tl content 2-x = 1.7 and the Tl-2223 phase remained the main phase in the region of 2 - x >= 0.631 of Tl sub 2 sub - sub x Ba sub 2 Ca sub 2 Cu sub 3 O sub y. T sub c was about 120 K for the Tl-2223 in a wide range of 0.631 <= 2 - x <= 1.761. Second, we obtained a single-phase at 2 - x = 1.777 and Cu content 3 + z = 3.284 of Tl sub 2 sub - sub x Ba sub 2 Ca sub 2 Cu sub 3 sub + sub z O sub y. The T sub c (zero) dependence of Cu/Tl ratio, showed a maximum value of 122 K at Cu/Tl ratio = 2.026. Based on results of crystal structure refinements by powder neutron diffraction, it was found that the change in bond length and angle dependence of average Cu valence were similar fo...

  3. Electronic structure and high thermoelectric properties of a new material Ba{sub 3}Cu{sub 20}Te{sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gui, E-mail: kuiziyang@126.com [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan, 455000 (China); Wu, Jinghe [Department of Physics and Electronic Engineering, Henan Institute of Education, Zhengzhou, 450046 (China); Zhang, Jing; Ma, Dongwei [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan, 455000 (China)

    2016-09-05

    The electronic structure and high thermoelectric properties of Ba{sub 3}Cu{sub 20}Te{sub 13} are studied using first principles calculations and the semiclassical Boltzmann theory. The coexistence of ionic and covalent bonding in Ba{sub 3}Cu{sub 20}Te{sub 13} indicates that it is a Zintl phase compound. The calculated band structure shows that the compound is a semiconductor with an indirect band gap ∼0.45 eV, which is an appropriate band for the high thermoelectric performance. The transport calculations based on the electronic structure indicate that it exhibits relatively large Seebeck coefficients, high electrical conductivities, and high power factor. For Ba{sub 3}Cu{sub 20}Te{sub 13}, the n-type doping may achieve a higher thermoelectric performance than that of p-type doping. It is worth noting that the thermoelectric parameters of Ba{sub 3}Cu{sub 20}Te{sub 13} are comparable or larger than that of Ca{sub 5}Al{sub 2}Sb{sub 6}, a typical Zintl compound representative with high thermoelectric performance. - Highlights: • The electronic structure and thermoelectric(TE) properties are firstly studied. • The heavy and light bands near the Fermi level benefit TE properties. • The comparison indicates Ba{sub 3}Cu{sub 20}Te{sub 13} is a potential high TE material.

  4. Structure and Phase Transformation in the Giant Magnetostriction Laves-Phase SmFe<sub>2sub>

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaonan; Lin, Kun; Gao, Qilong; Zhu, He; Li, Qiang; Cao, Yili; Liu, Zhanning; You, Li; Chen, Jun; Ren, Yang [Argonne National Laboratory, X-Ray Science Division, Argonne, Illinois 60439, United States; Huang, Rongjin [Key Laboratory; Lapidus, Saul H. [Argonne National Laboratory, X-Ray Science Division, Argonne, Illinois 60439, United States; Xing, Xianran

    2017-10-13

    As one class of the most important intermetallic compounds, the binary Laves-phase is well-known for their abundant magnetic properties. Samarium-iron alloy system, SmFe<sub>2sub>, is a prototypical Laves compound that shows strong negative magnetostriction but relatively weak magnetocrystalline anisotropy. SmFe<sub>2sub> has been identified as a cubic Fd$ \\overline{3}\\ $m structure at room temperature, however, the cubic symmetry does not match the spontaneous magnetization along the [111]<sub>cubic> direction. Here we studied the crystal structure of SmFe<sub>2sub> by high-resolution synchrotron X-ray powder diffraction and X-ray total scattering methods. SmFe<sub>2sub> is found to adopt a centrosymmetric trigonal R$ \\overline{3}\\ $m structure at room temperature, which transforms to an orthorhombic Imma structure at 200 K. This transition is in agreement with the changes of easy magnetization direction from [111]<sub>cubic> to [110]<sub>cubic> direction, and is further evidenced by the inflexion of thermal expansion behavior, the sharp decline of the magnetic susceptibility in the FC-ZFC curve, and the anomaly in the specific heat capacity measurement. The revised structure and phase transformation of SmFe<sub>2sub> could be useful to understand the magnetostriction and related physical properties of other RM<sub>2sub>-type pseudo-cubic Laves-phase intermetallic compounds.

  5. The crystal structure of Cs{sub 2}S{sub 2}O{sub 3}.H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Verena; Schlosser, Marc; Pfitzner, Arno [Regensburg Univ. (Germany). Inst. fuer Anorganische Chemie

    2016-08-01

    A reinvestigation of the alkali metal thiosulfates has led to the new phase Cs{sub 2}S{sub 2}O{sub 3}.H{sub 2}O. At first cesium thiosulfate monohydrate was obtained as a byproduct of the synthesis of Cs{sub 4}In{sub 2}S{sub 5}. Further investigations were carried out using the traditional synthesis reported by J. Meyer and H. Eggeling. Cs{sub 2}S{sub 2}O{sub 3}.H{sub 2}O crystallizes in transparent, colorless needles. The crystal structure of the title compound was determined by single crystal X-ray diffraction at room temperature: space group C2/m (No. 12), unit cell dimensions: a = 11.229(4), b = 5.851(2), c = 11.260(5) Aa, β = 95.89(2) , with Z = 4 and a cell volume of V = 735.9(5) Aa{sup 3}. The positions of all atoms including the hydrogen atoms were located in the structure refinement. Cs{sub 2}S{sub 2}O{sub 3}.H{sub 2}O is isotypic with Rb{sub 2}S{sub 2}O{sub 3}.H{sub 2}O. Isolated tetrahedra [S{sub 2}O{sub 3}]{sup 2-} are coordinated by the alkali metal cations, and in addition they serve as acceptors for hydrogen bonding. For both Cs atoms the shortest distances are observed to oxygen atoms of the S{sub 2}O{sub 3}{sup 2-} anions whereas the terminating sulfur atom has its shortest contacts to the water hydrogen atoms. Thus, an extended hydrogen bonding network is formed. The title compound has also been characterized by IR spectroscopy. IR spectroscopy reveals the vibrational bands of the water molecules at 3385 cm{sup -1}. They show a red shift in the OH stretching and bending modes as compared to free water. This is due both to the S..H hydrogen bonding and to the coordination of H{sub 2}O molecules to the cesium atoms.

  6. Laser diagnostics for picosecond e-beams

    International Nuclear Information System (INIS)

    Pogorelsky, I.; Ben-Zvi, I.

    1992-01-01

    We propose a novel approach to picosecond e-bunch/laser pulse synchronization and spatial alignment based upon refraction and reflection of a laser beam on a plasma column created by relativistic electrons traveling through a gas or solid optical material. The technique may be used in laser accelerators and for general subpicosecond e-beam diagnostics

  7. Comparison in the electronic structure of YBa{sub 2}Fe{sub 3}O{sub 8} insulator with YBa{sub 2}Cu{sub 3}O{sub 7} and SmFeAsO{sub 0.8}F{sub 0.2} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Guan, X.Y. [Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, Superconductivity R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Cheng, C.H. [School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Pan, M. [Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, Superconductivity R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, H. [Department of Physics, Peking University, Beijing 100871 (China); Zhao, Y., E-mail: yzhao@home.swjtu.edu.cn [Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education, Superconductivity R and D Center, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia)

    2013-10-15

    Highlights: • The electronic structure of YBa{sub 2}Fe{sub 3}O{sub 8}, YBa{sub 2}Cu{sub 3}O{sub 7} and SmFeAsO{sub 0.8}F{sub 0.2} were investigated by XPS. • The core-level and valence-band structures of these systems are different. • The density of states at Fermi level is related to the superconductivity. -- Abstract: The electronic structure and chemical states of relevant elements of YBa{sub 2}Fe{sub 3}O{sub 8} are investigated using X-ray photoemission spectroscopy (XPS), compared with those of YBa{sub 2}Cu{sub 3}O{sub 7} and SmFeAsO{sub 0.8}F{sub 0.2} superconductors. The typical differences and similarities in core-level and valence-band structures of these systems have been detected, strongly suggesting that the superconductivity have the finite density of states around Fermi level. Several features of O1s, Y3d, Ba3d, and Fe2p core lines in XPS spectra are also carefully compared and analyzed.

  8. Changing structural properties of mixed crystals [N(CH{sub 3}){sub 4}]{sub 2}Zn{sub 1-x}Co{sub x}Cl{sub 4} (x = 0, 0.5, 0.7, 0.9, and 1) by magic angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ae Ran, E-mail: aeranlim@hanmail.net [Department of Science Education, Jeonju University, Jeonju 560-759 (Korea, Republic of); Department of Carbon Fusion Engineering, Jeonju University, Jeonju 560-759 (Korea, Republic of)

    2016-03-01

    Temperature dependences of the chemical shift and spin-lattice relaxation time in the rotating frame T{sub 1ρ} were measured for {sup 1}H and {sup 13}C nuclei in mixed crystals of the form [N(CH{sub 3}){sub 4}]{sub 2}Zn{sub 1-x} Co{sub x}Cl{sub 4} (x = 0, 0.5, 0.7, 0.9, and 1). The mixed crystals varied in color according to the amount of Co{sup 2+} ions, whereas the phase transition temperatures remained nearly unchanged. [N(CH{sub 3}){sub 4}]{sub 2}ZnCl{sub 4} and [N(CH{sub 3}){sub 4}]{sub 2}CoCl{sub 4} crystals contain two nonequivalent types of a-N(CH{sub 3}){sub 4} and b-N(CH{sub 3}){sub 4}. The two crystallographically different ions a-N(CH{sub 3}){sub 4} and b-N(CH{sub 3}){sub 4} were distinguished using {sup 13}C CP/MAS NMR spectroscopy. The NMR spectrum and T{sub 1ρ} for {sup 1}H and {sup 13}C in case of x = 0.5 and x = 0.7 were similar to those for [N(CH{sub 3}){sub 4}]{sub 2}ZnCl{sub 4}, whereas those for x = 0.9 were absolutely different. Additionally, [N(CH{sub 3}){sub 4}]{sub 2}Zn{sub 0.1}Co{sub 0.9}Cl{sub 4} exhibited the structural properties of both [N(CH{sub 3}){sub 4}]{sub 2}ZnCl{sub 4} and [N(CH{sub 3}){sub 4}]{sub 2}CoCl{sub 4}. - Highlights: • Chemical shift and spin-lattice relaxation time in rotating frame. • Two crystallographically different ions a-N(CH{sub 3}){sub 4} and b-N(CH{sub 3}){sub 4}. • Structural properties of mixed crystals.

  9. Synthesis, crystal structure, and properties of KSbO{sub 3}-type Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11}

    Energy Technology Data Exchange (ETDEWEB)

    Li Manrong; Retuerto, Maria; Bok Go, Yong; Emge, Thomas J. [Department of Chemistry and Chemical Biology, Rutgers, State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854 (United States); Croft, Mark; Ignatov, Alex [Department of Physics and Astronomy, Rutgers, State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Ramanujachary, Kandalam V. [Department of Chemistry and Biochemistry, Rowan University, 210 Mullica Hill Road, Glassboro, NJ 08028 (United States); Dachraoui, Walid; Hadermann, Joke [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Tang Meibo; Zhao Jingtai [Key Laboratory of Transparent Opto-Functional Inorganic Materials of Chinese Academy of Sciences, Shanghai Institute of Ceramics, Shanghai 200050 (China); Greenblatt, Martha, E-mail: martha@rutchem.rutgers.edu [Department of Chemistry and Chemical Biology, Rutgers, State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854 (United States)

    2013-01-15

    Single crystals of Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} were prepared from NaCl+KCl flux. This compound adopts KSbO{sub 3}-type crystal structure as evidenced by electron and single crystal X-ray diffraction analysis. The three-dimensional channel structure is formed by corner-sharing octahedral (Mn{sub 0.63}Te{sub 0.37}){sub 2}O{sub 10} dimers and two identical (Bi1){sub 4}(Bi2){sub 2} interpenetrating lattices. The intra-dimer Mn/Te-Mn/Te distances in Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} are short and are consistent with weak metal-metal interactions. The mixed oxidation state of manganese and the edge-sharing octahedral features are confirmed by X-ray near edge absorption spectroscopy measurements, which indicate Bi{sub 3}(Mn{sup III}{sub 1.1}Mn{sup IV}{sub 0.8})Te{sup VI}{sub 1.1}O{sub 11} with 57.7% Mn{sup 3+} and 42.3% Mn{sup 4+}. The partial substitution of Te for Mn perturbs long-range magnetic interactions, thereby destroying the ferromagnetic ordering found in Bi{sub 3}Mn{sub 3}O{sub 11} (T{sub C}=150 K). - Graphical abstract: Single crystal of Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} was grown from NaCl+KCl binary flux, suggesting that the high pressure Bi{sub 3}Mn{sub 3}O{sub 11} phase can be stabilized by partial substitution of Mn by Te at ambient pressure. Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} adopts a typical three dimensional KSbO{sub 3}-type crystal structure with three interpenetrating lattices and weak intra-dimmer metal-metal interaction caused by the d electrons of Mn. The edge-shared (Mn{sub 0.63}Te{sub 0.37}){sub 2}O{sub 10} octahedral dimer and mixed oxidation state of manganese (Bi{sub 3}(Mn{sup III}{sub 1.1}Mn{sup IV}{sub 0.8})Te{sup VI}{sub 1.1}O{sub 11} with 57.7% Mn{sup 3+} and 42.3% Mn{sup 4+}) features were evidenced by X-ray absorption near edge spectroscopy. Compared with Bi{sub 3}Mn{sub 3}O{sub 11}, the Te substituted Bi{sub 3}Mn{sub 1.9}Te{sub 1.1}O{sub 11} relaxes the crystal structure, but destroys the long

  10. NQR and X-ray crystal structure studies of cadmium halide complexes: [C(NH{sub 2}){sub 3}]CdI{sub 3} and [4-ClC{sub 6}H{sub 5}NH{sub 3}]{sub 3}CdBr{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Gesing, Thorsten M.; Lork, Enno [Bremen Univ. (Germany). MAPEX Center for Material and Processes; Terao, Hiromitsu [Tokushima Univ. (Japan). Faculty of Integrated Arts and Sciences; Ishihara, Hideta [Saga Univ. (Japan). Faculty of Culture and Education

    2016-05-01

    The crystal structures of [C(NH{sub 2}){sub 3}]CdI{sub 3} (1) and [4-ClC{sub 6}H{sub 5}NH{sub 3}]{sub 3}CdBr{sub 5} (2) have been determined at 100 K: monoclinic, Cc, a = 828.75(3) pm, b = 1615.31(5) pm, c = 810.64(3) pm, and β = 106.5820(10) for 1; monoclinic, P2{sub 1}/c, a = 1486.93(5) pm, b = 794.31(3) pm, c = 2290.59(7) pm, and β = 99.6830(10) for 2. The structure of 1 has an infinite chain of anions consisting of [CdI{sub 4}] tetrahedra sharing two corners. The structure of 2 has an infinite chain of anions consisting of [CdBr{sub 6}] octahedra sharing two corners in cis positions. In both structures, isolated cations are connected to the anion chains through weak hydrogen bonds Cd-X..H to result in three-dimensional network structures. In accordance with the crystal structures, three {sup 127}I (m = ±1/2 <-> m = ±3/2), five {sup 81}Br, and three {sup 35}Cl nuclear quadrupole resonance (NQR) lines were observed for 1 and 2. The NQR spectra reflect the anion chain structures and their weak hydrogen bonds. The MO calculations of the models [Cd{sub 5}I{sub 16}]{sup 6-} for 1 and [Cd{sub 3}Br{sub 16}]{sup 10-} for 2 estimate only about half the values for the NQR frequencies but give accurate electric field gradient directions.

  11. Effect of vacancies on the structure and properties of Ga{sub 2}(Se{sub 0.33}Te{sub 0.67}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Abdul-Jabbar, N. M. [Department of Nuclear Engineering, University of California, Berkeley, California 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Materials Department, University of California, Santa Barbara, California 93106 (United States); Forrest, T. R. [European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex (France); Department of Physics, University of California, Berkeley, California 94720 (United States); Gronsky, R. [Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Bourret-Courchesne, E. D. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Wirth, B. D. [Department of Nuclear Engineering, University of California, Berkeley, California 94720 (United States); Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-08-28

    Ga{sub 2}(Se{sub 0.33}Te{sub 0.67}){sub 3} belongs to a family of materials with large intrinsic vacancy concentrations that are being actively studied due to their potential for diverse applications that include thermoelectrics and phase-change memory. In this article, the Ga{sub 2}(Se{sub 0.33}Te{sub 0.67}){sub 3} structure is investigated via synchrotron x-ray diffraction, electron microscopy, and x-ray absorption experiments. Diffraction and microscopy measurements showed that the extent of vacancy ordering in Ga{sub 2}(Se{sub 0.33}Te{sub 0.67}){sub 3} is highly dependent on thermal annealing. It is posited that stoichiometric vacancies play a role in local atomic distortions in Ga{sub 2}(Se{sub 0.33}Te{sub 0.67}){sub 3} (based on the fine structure signals in the collected x-ray absorption spectra). The effect of vacancy ordering on Ga{sub 2}(Se{sub 0.33}Te{sub 0.67}){sub 3} material properties is also examined through band gap and Hall effect measurements, which reveal that the Ga{sub 2}(Se{sub 0.33}Te{sub 0.67}){sub 3} band gap redshifts by ≈0.05 eV as the vacancies order and accompanied by gains in charge carrier mobility. The results serve as an encouraging example of altering material properties via intrinsic structural rearrangement as opposed to extrinsic means, such as doping.

  12. New tetragonal derivatives of cubic NaZn{sub 13}-type structure: RNi{sub 6}Si{sub 6} compounds, crystal structure and magnetic ordering (R=Y, La, Ce, Sm, Gd–Yb)

    Energy Technology Data Exchange (ETDEWEB)

    Pani, M.; Manfrinetti, P.; Provino, A. [INFM and Dipartimento di Chimica e Chimica Industriale, Universita‘ di Genova, Via Dodecaneso 31, 16146 Genova (Italy); Yuan, Fang; Mozharivskyj, Y. [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4M1 (Canada); Morozkin, A.V., E-mail: morozkin@general.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Knotko, A.V.; Garshev, A.V. [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Geological Faculty, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Isnard, O. [Université Grenoble Alpes, Inst NEEL, BP166, F-38042 Grenoble (France); CNRS, Institut NEEL, 25 rue des martyrs, F-38042 Grenoble (France)

    2014-02-15

    Novel RNi{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure for R=La–Ce (tP52, space group P4/nbm N 125-1) and new YNi{sub 6}Si{sub 6}-type structure for R=Y, Sm, Gd–Yb (tP52, space group P4{sup ¯}b2N 117) that are tetragonal derivative of NaZn{sub 13}-type structure, like LaCo{sub 9}Si{sub 4}-type. The CeNi{sub 6}Si{sub 6}, GdNi{sub 6}Si{sub 6}, TbNi{sub 6}Si{sub 6}, DyNi{sub 6}Si{sub 6} and HoNi{sub 6}Si{sub 6} compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 5 K. However, the inverse paramagnetic susceptibility of LaNi{sub 6}Si{sub 6} does not follow Curie–Weiss law. The DyNi{sub 6}Si{sub 6} shows ferromagnetic-like saturation behaviour at 5 K in applied fields of 50 kOe, giving rise to a magnetic moment value of 6.5 μ{sub B}/f.u. in 50 kOe. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi{sub 6}Si{sub 6} with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. - Graphical abstract: Novel (La, Ce)Ni{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure and (Y, Sm, Gd–Yb) adopt the new YNi{sub 6}Si{sub 6}-type structure that are tetragonal derivative of NaZn{sub 13}-type structure, like LaCo{sub 9}Si{sub 4}-type. The CeNi{sub 6}Si{sub 6}, GdNi{sub 6}Si{sub 6}, TbNi{sub 6}Si{sub 6}, DyNi{sub 6}Si{sub 6} and HoNi{sub 6}Si{sub 6} compounds are Curie–Weiss paramagnets down to ∼30 K, and do not order magnetically down to 4.2 K. The powder neutron diffraction study in zero applied filed indicates square modulated the c-collinear antiferromagnetic ordering of TbNi{sub 6}Si{sub 6} with K=[±1/4, ±1/4, 0] wave vector below ∼10 K. Display Omitted - Highlights: • The new (La, Ce)Ni{sub 6}Si{sub 6} compounds adopt the new CeNi{sub 6}Si{sub 6}-type structure. • The new (Y, Sm, Gd–Yb)Ni{sub 6}Si{sub 6} compounds adopt the new YNi{sub 6}Si{sub 6}-type structure. • TbNi{sub 6}Si{sub

  13. Magneto-structural transformations in Ni{sub 50}Mn{sub 37.5}Sn{sub 12.5−x}In{sub x} Heusler powders

    Energy Technology Data Exchange (ETDEWEB)

    Maziarz, Wojciech; Wójcik, Anna; Czaja, Paweł [Instituite of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str, 30-059 Kraków (Poland); Żywczak, Antoni [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Kraków (Poland); Jan Dutkiewicz [Instituite of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str, 30-059 Kraków (Poland); Hawełek, Łukasz [Institute of Non-Ferrous Metals, ul. Sowinskiego 5, 44-100 Gliwice (Poland); Cesari, Eduard [Department de Física, Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, Palma de Mallorca E-07122 (Spain)

    2016-08-15

    The effect of ball milling and subsequently annealing of melt spun ribbons on magneto-structural transformations in Ni{sub 50}Mn{sub 37.5}Sn{sub 12.5−x}In{sub x} (x=0, 2, 4, 6) ribbons is presented. Short time vibration milling allows to obtain chemically homogenous powders of angular particle shapes and size within 10–50 μm. Milling does not change the characteristic temperatures of martensitic transformation in comparison to the melt spun ribbons. The effect of In substitution for Sn on martensitic transformation has a complex mechanism, associated with electron density change. Substitution of Sn by In in both milled and annealed powders leads to decrease of Curie temperature of austenite and increase of martensitic transformation temperature, stabilizing martensitic phase. The coexistence of magnetic transformation of austenite and martensitic transformation at low magnetic field was observed. The intermartensitic transformation of 4O martensite to L1{sub 0} martensite was observed during cooling at low magnetic field and this was confirmed by TEM microstructure observations. The annealing process of as-milled powders leads to the change of their martensitic structure due to relaxation of internal stresses associated with anisotropic columnar grain microstructure formed during melt spinning process. The level of stresses introduced during milling of ribbons has no significant influence on martensitic transformation. The annealing process of as milled powders leads to enhancement of their magnetic properties, decrease of Curie temperature of austenite, and marginal change of temperature of martenisitic transformation. - Highlights: • Vibration milling of ribbons allows to obtain angular powders of size 10–50 μm. • Vibration milling improves chemical homogeneity of alloys. • Indium addition changes the magneto-structural transformations in Ni–Mn–Sn–In alloys. • Complex character of magneto-structural transformations is visible. • Multistep

  14. The energy band structure of A{sub x}Fe{sub 2}Se{sub 2} (A = K, Rb) superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zabidi, Noriza A. [Physics Department, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 59200 (Malaysia); Azhan, Muhd. Z. [Defence Science Department, Faculty of Defence Science and Technology, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 59200 (Malaysia); Rosli, A. N. [Faculty of Science and Technology, Universiti Sains Islam Malaysia, Nilai 71800, Negeri Sembilan (Malaysia); Shrivastava, Keshav N. [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2014-03-05

    We study the band structure of antiferromagnetic A{sub x}Fe{sub 2}Se{sub 2} (A = K, Rb) superconductors by using first-principles electronic structure calculations which is density functional theory. In the vicinity of iron-vacancy, we identify the valence electrons of A{sub x}Fe{sub 2}Se{sub 2} will be filled up to the Fermi level and no semiconducting gap is observed. Hence, the A{sub x}Fe{sub 2}Se{sub 2} is a metallic instead of semiconducting which leads to superconductivity in the orbital-selective Mott phase. Similarly, there is non-vanishing density of states at the Fermi level.

  15. Picosecond Water Radiolysis at High Temperature. Br- Oxidation - Experiments and MC-Simulations

    International Nuclear Information System (INIS)

    Baldacchino, G.; Saffre, D.; Jeunesse, J.P.; Schmidhammer, U.; Larbre, J.P.; Mostafavi, M.; Beuve, M.; Gervais, B.

    2012-09-01

    Acidic solutions of bromhydric acid have been irradiated by picosecond pulses of 7 MeV-electrons provided by ELYSE accelerator (LCP Orsay). At elevated temperatures up to 350 deg. C, salts like NaBr or KBr usually precipitate and organic compound are decomposed. Another choice of OH-scavenger may be acidic halogenates like HBr or HCl. In this situation, the processes involving H + and Br - must be considerate: while hydrated electrons are scavenged by H + , . OH reacts with Br - . Then the formations of BrOH . and Br 2 .- have been investigated by using a devoted picosecond pump-probe setup. A dedicated small-size high temperature optical flow cell has been developed for fitting the picosecond duration of the electron pulses. This cell replaces the one used also with nanosecond resolution. The picosecond time resolution remains roughly not affected by the material crossed by electrons (0.4 mm of Inconel 718) and by the white light continuum (20 mm of Sapphire windows and 6 mm of liquid solution). Depending on the concentration of HBr, the growing up of the signal can be attributed to mainly BrOH . or Br2 .- . Actually with a relatively low scavenging power ([HBr] = 25 mM), Br 2 .- is formed with a reaction between Br . and Br - which delays of around 4 ns the apparition of Br2 .- . In this particular case we then assume the absorbance is due to BrOH . . With higher and higher temperature, from 100 deg. C to 300 deg. C, the rate constant of this formation is lightly less and less. This observation must be associated to the fact that the formation of BrOH . is actually equilibrium with a lower and lower equilibrium constant value when temperature is increased. This presentation tries to explain this fact in detail by also considering Monte Carlo simulations. This will allows following all transient species from ps to μs. (authors)

  16. Structure and magnetic properties of La{sub 2/3}Sr{sub 1/3}MnO{sub 3}/CaMnO{sub 3} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Granada, Mara [Centro Atomico Bariloche and Instituto Balseiro, CNEA-UNC, Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina)]. E-mail: granadam@cab.cnea.gov.ar; Sirena, Martin [Centro Atomico Bariloche and Instituto Balseiro, CNEA-UNC, Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Steren, Laura B. [Centro Atomico Bariloche and Instituto Balseiro, CNEA-UNC, Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina); Leyva, Gabriela [Depto. de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz y Constituyentes, 1650 San Martin (Argentina)

    2004-12-31

    Structural and magnetic properties of manganite-based multilayers, La{sub 2/3}Sr{sub 1/3}MnO{sub 3}/CaMnO{sub 3}, composed of ferromagnetic metals and antiferromagnetic insulator barriers are investigated in this work. Compounds of similar lattice parameters were used to build the samples, so we expect an excellent stacking of the different layers along the structure. To get a first insight of this system, the crystalline structure of a series of samples, grown on (1 0 0) SrTiO{sub 3} and (1 0 0) MgO single-crystalline substrates, has been studied. X-ray diffraction patterns show that the structure is strongly textured in the (1 0 0) direction when grown on SrTiO{sub 3}, regardless the composition of the bottom layer. A different result is found on the same system grown on MgO: when the buffer layer is CaMnO{sub 3}, the structure grows in the (1 1 0) orientation while it grows in the (1 0 0) direction when the bottom layer is La{sub 2/3}Sr{sub 1/3}MnO{sub 3}. Magnetic coupling of the ferromagnetic layers across the antiferromagnetic spacer has been studied with magnetization measurements.

  17. Crystal structures and magnetic properties of iron (III)-based phosphates: Na{sub 4}NiFe(PO{sub 4}){sub 3} and Na{sub 2}Ni{sub 2}Fe(PO{sub 4}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Essehli, Rachid, E-mail: rachid_essehli@yahoo.fr [Laboratory of Mineral Solid and Analytical Chemistry ' LCSMA' , Department of Chemistry, Faculty of Sciences, University Mohamed I, Po. Box 717, 60000 Oujda (Morocco); Bali, Brahim El [Laboratory of Mineral Solid and Analytical Chemistry ' LCSMA' , Department of Chemistry, Faculty of Sciences, University Mohamed I, Po. Box 717, 60000 Oujda (Morocco); Benmokhtar, Said [LCMS, Laboratoire de Chimie des Materiaux Solides, Departement de chimie, Faculte des Sciences Ben M' SIK, Casablanca (Morocco); Bouziane, Khalid [Physics Department, College of Science, Sultan Qaboos University, PO Box 36, Postal Code 123 Al Khod, Sultanate of Oman (Oman); Manoun, Bouchaib [Laboratoire de Physico-Chimie des Materiaux, Departement de Chimie, FST Errachidia, University Moulay Ismail, B.P. 509 Boutalamine, Errachidia (Morocco); Abdalslam, Mouner Ahmed [Materials Science, Technical University Darmstadt, Darmstadt (Germany); Ehrenberg, Helmut [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany)

    2011-01-28

    Graphical abstract: A perspective view of the Na{sub 2}Ni{sub 2}Fe(PO{sub 4}){sub 3} structure along the [0 0 1] direction. Both compounds seem to exibit antiferromagnetic interactions between magnetic entities at low temperature. Display Omitted Research highlights: > Nasicon and Alluaudite compounds, Iron(III)-based phosphates, Crystal structures of Na{sub 4}NiFe(PO{sub 4}){sub 3} and Na{sub 2}Ni{sub 2}Fe(PO{sub 4}){sub 3}. > Magnetism behaviours of Na{sub 4}NiFe(PO{sub 4}){sub 3} and Na{sub 2}Ni{sub 2}Fe(PO{sub 4}){sub 3}. > Antiferromagnetism interactions. > Mossbauer spectroscopy. - Abstract: Crystal structures from two new phosphates Na{sub 4}NiFe(PO{sub 4}){sub 3} (I) and Na{sub 2}Ni{sub 2}Fe(PO{sub 4}){sub 3} (II) have been determined by single crystal X-ray diffraction analysis. Compound (I) crystallizes in a rhombohedral system (S. G: R-3c, Z = 6, a = 8.7350(9) A, c = 21.643(4) A, R{sub 1} = 0.041, wR{sub 2}=0.120). Compound (II) crystallizes in a monoclinic system (S. G: C2/c, Z = 4, a = 11.729(7) A, b = 12.433(5) A, c = 6.431(2) A, {beta} = 113.66(4){sup o}, R{sub 1} = 0.043, wR{sub 2}=0.111). The three-dimensional structure of (I) is closely related to the Nasicon structural type, consisting of corner sharing [(Ni/Fe)O{sub 6}] octahedra and [PO{sub 4}] tetrahedra forming [NiFe(PO{sub 4}){sub 3}]{sup 4+} units which align in chains along the c-axis. The Na{sup +} cations fill up trigonal antiprismatic sites within these chains. The crystal structure of (II) belongs to the alluaudite type. Its open framework results from [Ni{sub 2}O{sub 10}] units of edge-sharing [NiO{sub 6}] octahedra, which alternate with [FeO{sub 6}] octahedra that form infinite chains. Coordination of these chains yields two distinct tunnels in which site Na{sup +}. The magnetization data of compound (I) reveal antiferromagnetic (AFM) interactions by the onset of deviations from a Curie-Weiss behaviour at low temperature as confirmed by Moessbauer measurements performed at 4.2 K. The

  18. Electronic structures of (Pb sub 2 Cu)Sr sub 2 Eu sub x Ce sub n sub - sub x Cu sub 2 O sub 2 sub n sub + sub 6 (n=2, 3): Effect of fluorite blocks between adjacent CuO sub 2 layers

    CERN Document Server

    Arai, M

    2003-01-01

    The electronic structures of (Pb sub 2 Cu)Sr sub 2 Eu sub x Ce sub n sub - sub x Cu sub 2 O sub 2 sub n sub + sub 6 (n = 2, 3) compounds which have fluorite blocks between two adjacent CuO sub 2 layers have been studied by using ab-initio method. It is found that the anisotropy is enhanced by inserting the fluorite blocks. The Fermi velocity perpendicular to the CuO sub 2 layers decreases as the thickness of fluorite blocks increases. The Eu substitution is found to affect both the atomic positions and electronic structures. The distance between apical oxygen and copper becomes shorter by the Eu substitution. The energy bands derived from oxygens in the fluorite blocks approach Fermi energy as the content of Eu substitution increases. (author)

  19. Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Gregorčič, Peter, E-mail: peter.gregorcic@fs.uni-lj.si [Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana (Slovenia); Sedlaček, Marko; Podgornik, Bojan [Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana (Slovenia); Reif, Jürgen [Brandenburgische Technische Universitaet – BTU Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046 Cottbus (Germany)

    2016-11-30

    Highlights: • Low number of differently polarized ps laser pulses is superimposed on tool steel. • Last pulses determine the ripples orientation for single spot and coherent traces. • Previously formed structures are overridden by later incident pulses. • Ripples contrast depends on total exposure, independent on pulses’ polarization. • Weak role of pre-formed structures makes interference scenarios questionable. - Abstract: Laser-induced periodic surface structures (LIPSS) are produced on cold work tool steel by irradiation with a low number of picosecond laser pulses. As expected, the ripples, with a period of about 90% of the laser wavelength, are oriented perpendicular to the laser polarization. Subsequent irradiation with the polarization rotated by 45° or 90° results in a corresponding rotation of the ripples. This is visible already with the first pulse and becomes almost complete – erasing the previous orientation – after as few as three pulses. The phenomenon is not only observed for single-spot irradiation but also for writing long coherent traces. The experimental results strongly defy the role of surface plasmon-polaritons as the predominant key to LIPSS formation.

  20. Preparation and crystal structure of Ca/sub 4/Sb/sub 2/O

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, B; Limartha, H; Schaefer, H; Graf, H A

    1980-12-01

    The formerly described compound Ca/sub 2/Sb is to be corrected to Ca/sub 4/Sb/sub 2/O as shown by X-ray diffractometer data of single crystals and neutron diffraction diagrams of powders. The compound crystallizes in the K/sub 2/NiF/sub 4/ type structure.

  1. Structural and electrical properties of La{sub 0.5}Ca{sub 0.5}Mn{sub 0.95}Fe{sub 0.05}O{sub 3+{delta}} perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, E.A., E-mail: emanattamohammed@yahoo.com [Department of Physics, Faculty of Science (Girl' s Branch), Al Azhar University, Nasr City, Cairo (Egypt)

    2012-12-05

    Highlights: Black-Right-Pointing-Pointer La{sub 0.5}Ca{sub 0.5}Mn{sub 0.95}Fe{sub 0.05}O{sub 3+{delta}} synthesis has been achieved by co-precipitation process. Black-Right-Pointing-Pointer Moessbauer results show an evidence for the local distortion of Mn(Fe)O{sub 6} octahedron. Black-Right-Pointing-Pointer Metal-Semiconductor transition temperature (T{sub p}) is observed. - Abstract: La{sub 0.5}Ca{sub 0.5}Mn{sub 0.95}Fe{sub 0.05}O{sub 3+{delta}} was synthesized by co-precipitation method. The structure refinement by using the Rietveld method indicates that the sample was single phase with the presence of small impurities (Mn{sub 3}O{sub 4}) and crystallizes in an orthorhombic (Pbmn) structure. The room temperature (RT) Moessbauer spectrum shows clear evidence of the local structural distortion of the Mn(Fe)O{sub 6} octahedron on the basis of non-zero nuclear quadrupole interactions for high-spin Fe{sup 3+} ions. The Jahn-Teller coupling strength (E{sub JT}) was estimated from the Moessbauer results. Metal-Semiconductor transition temperature (T{sub p}) is observed at 80 K. At high temperature (T{sub P} < T < {theta}{sub D}/2) conductivity data satisfy the variable range hopping (VRH) model. For T > {theta}{sub D}/2 the small polaron hopping model is more appropriate than the VRH model.

  2. Structural, mechanical, and electronic properties of monoclinic N{sub 2}H{sub 5}N{sub 3} under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Qi-Jun, Liu; Fu-Sheng, Liu, E-mail: qijunliu@home.swjtu.edu.cn [School of Physical Science and Technology, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Chengdu (China); Bond and Band Engineering Group, Sichuan Provincial Key Laboratory (for Universities) of High Pressure Science and Technology, Southwest Jiaotong University, Chengdu (China); Zheng-Tang, Liu [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an, (China)

    2015-08-15

    Structural, elastic, mechanical, and electronic properties of monoclinic N{sub 2}H{sub 5}N{sub 3} at zero and high pressure have been investigated using the plane-wave ultrasoft pseudopotential method within the density-functional theory (DFT). The pressure dependences of structural parameters, elastic constants, mechanical properties, band gaps, and density of states of monoclinic N{sub 2}H{sub 5}N{sub 3} have been calculated and discussed. The obtained results show that monoclinic N{sub 2}H{sub 5}N{sub 3} is unstable at pressures exceeding the value 126.1 GPa. The ratio of B/G and the Cauchy’s pressure indicate that monoclinic N{sub 2}H{sub 5}N{sub 3} behaves in ductile nature with pressure ranging from 0 to 200 GPa. (author)

  3. Synthesis, structural and electrical properties of [C{sub 2}H{sub 10}N{sub 2}][(SnCl(NCS){sub 2}]{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Karoui, Sahel [Laboratoire genie de materiaux et environnement, ENIS, BP.1173,3038- Sfax, Universite de Sfax (Tunisia); Kamoun, Slaheddine, E-mail: slah.kamoun@gmail.com [Laboratoire genie de materiaux et environnement, ENIS, BP.1173,3038- Sfax, Universite de Sfax (Tunisia); Jouini, Amor [Laboratoire de Chimie du Solide, Departement de Chimie, Faculte des Sciences de Monastir, 5019 Monastir (Tunisia)

    2013-01-15

    Synthesis, structural and electrical properties are given for a new organic stannous pseudo halide material. The structure of the [C{sub 2}H{sub 10}N{sub 2}][(SnCl(NCS){sub 2}]{sub 2} reveals that the adjacent Sn(II) centres are bridged by a pair of SCN{sup -} anions to form a 1-D array giving rise to the anionic chains (SnCl(NCS){sub 2}){sub n}{sup n-}. These chains are themselves interconnected by means of N-H Horizontal-Ellipsis Cl(S) hydrogen bonds originating from the organic cation [(NH{sub 3}){sub 2}(CH{sub 2}){sub 2}]{sup 2+}. The AC impedance measurements were performed as a function of both frequency and temperature. The electrical conduction and dielectric relaxation have been studied. The activation energy associated with the electrical relaxation determined from the electric modulus spectra was found close to that of the activation energy obtained for DC conductivity. The conduction mechanisms are attributed to the quantum mechanical tunneling model in phase I and to the proton hopping among hydrogen vacancies in phase II. - Graphical abstract: Atomic coordination in [C2H10N2][SnCl(NCS)2)2]. Highlights: Black-Right-Pointing-Pointer X-ray diffraction analysis shows the 1D network character of the structure. Black-Right-Pointing-Pointer DSC experiments show a phase transition at 336 K. Black-Right-Pointing-Pointer The AC conductivity is interpreted in terms of Jonsher's law. Black-Right-Pointing-Pointer Two conduction mechanisms are proposed for phase I and II.

  4. Preparation and crystal structure of the phosphato-niobate Tl sub 3 NaNb sub 4 O sub 9 (PO sub 4 ) sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Fakhfakh, M. (Tunis Univ. (Tunisia). Faculte des Sciences); Verbaere, A. (Nantes Univ., 44 (France)); Jouini, N. (Ecole Normale Superieure de l' Enseignement Technique, Tunis (TN))

    1992-01-01

    Chemical preparation and crystal structure are described. The symmetry is orthorhombic, space group C2cm. The crystal structure has been determined using. The structure is built up from NbO{sub 6} octahedra sharing corners and PO{sub 4} tetrahedra sharing three of their corners with octahedra to form chains running along c. These chains are connected together by isolted NbO{sub 6} octahedra leasing to a three-dimensional framework which delimits cavities and tunnels occupied by the Tl and Na ions.

  5. High-pressure synthesis and crystal structures of the strontium oxogallates Sr{sub 2}Ga{sub 2}O{sub 5} and Sr{sub 5}Ga{sub 6}O{sub 14}

    Energy Technology Data Exchange (ETDEWEB)

    Kahlenberg, Volker, E-mail: volker.kahlenberg@uibk.ac.at [Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, Innsbruck A-6020 (Austria); Goettgens, Valerie; Mair, Philipp; Schmidmair, Daniela [Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, Innsbruck A-6020 (Austria)

    2015-08-15

    High-pressure synthesis experiments in a piston–cylinder apparatus at 1.5 GPa/3.0 GPa and 1000 °C resulted in the formation of single-crystals of Sr{sub 2}Ga{sub 2}O{sub 5} and Sr{sub 5}Ga{sub 6}O{sub 14}, respectively. The structures of both compounds have been solved from single-crystal diffraction data sets using direct methods. The first compound is orthorhombic with space group type Pbca (a=10.0021(4) Å, b=9.601(4) Å, c=10.6700(4) Å, V=1024.6(4) Å{sup 3}, M{sub r}=394.68 u, Z=8, D{sub x}=5.12 g/cm{sup 3}) and belongs to the group of single layer gallates. Individual sheets are parallel to (0 0 1) and can be built from the condensation of unbranched vierer single chains running along [0 1 0]. The layers are characterized by the presence of four- and strongly elliptical eight-membered rings of corner connected tetrahedra in UUDD and UUUUDDDD conformation. Strontium atoms are sandwiched between the tetrahedral layers for charge compensation and are coordinated by six and seven oxygen ligands, respectively. Sr{sub 2}Ga{sub 2}O{sub 5} is isotypic with several other double sulfides and selenides. To the best of our knowledge, it is the first example of an oxide with this structure type. From a structural point of view, Sr{sub 5}Ga{sub 6}O{sub 14} is a phyllogallate as well. The crystal structure adopts the monoclinic space group P2{sub 1}/c (a=8.1426(3) Å, b=8.1803(3) Å, c=10.8755(4) Å, β=91.970(4)° V=723.98(5) Å{sup 3}, M{sub r}=1080.42 u, Z=2, D{sub x}=4.96 g/cm{sup 3}). Individual sheets extend along (0 0 1). Basic building units are unbranched dreier single chains parallel to [1 0 0]. The layers contain tertiary (Q{sup 3}) und quaternary (Q{sup 4}) connected [GaO{sub 4}]-tetrahedra in the ratio 2:1 resulting in a Ga:O ratio of 3:7 and the formation of exclusively five-membered rings. Linkage between adjacent tetrahedral sheets is provided by three symmetrically independent strontium ions which are surrounded by six to eight oxygen atoms. The layers

  6. Synthesis and structural characterization of the hexagonal anti-perovskite Na{sub 2}CaVO{sub 4}F

    Energy Technology Data Exchange (ETDEWEB)

    Green, Robert L., E-mail: rgreen@flpoly.org [Chemistry, Florida Polytechnic University, Lakeland, FL 33805 (United States); Avdeev, Maxim [Australian Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia); Vogt, Thomas [NanoCenter and Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States)

    2017-06-15

    The structural details of the ordered hexagonal oxyfluoride Na{sub 2}CaVO{sub 4}F prepared by solid-state synthesis using stoichiometric amounts of V{sub 2}O{sub 5}, CaCO{sub 3}, Na{sub 2}CO{sub 3} and NaF were characterized using high-resolution neutron powder diffraction. The structural changes between 25 °C and 750 °C revealed that the two structural subunits in this material behave different when heated: there is an expansion of the face-shared FNa{sub 4}Ca{sub 2} octahedra while the VO{sub 4} tetrahedra due to increased thermal disorder reveal marginal bond contractions. Bond valences and the global instability index point to significant structural disorder at 750 °C. - Graphical abstract: The structure of the novel oxyfluoride Na{sub 2}CaVO{sub 4}F is studied at room temperature and high-temperatures. The structure can be viewed as layers of compression and elongation of polyhedral subunits, which change as a function of temperature. - Highlights: • The novel oxyfluoride, Na{sub 2}CaVO{sub 4}F, is synthesized via solid-state method. • High-resolution neutron diffraction data is used to analyze the structure of Na{sub 2}CaVO{sub 4}F. • Structural subunits exhibit expansion and contraction with increasing temperature. • Higher temperatures increase instability within the structure of Na{sub 2}CaVO{sub 4}F.

  7. Structural and intrinsic Josephson properties of Bi{sub 2}Sr{sub 2}Ca{sub 1−y}Y{sub y}Cu{sub 2}O{sub 8+δ} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yamaki, K., E-mail: kyamaki@cc.utsunomiya-u.ac.jp; Murata, K.; Irie, A.

    2016-10-15

    Highlights: • Single crystals of yttrium-doped BSCCO (BSCYCO) were grown by a self-flux method. • T{sub c} and c-axis lattice constant of BSCYCO were controlled by the substitution of Y. • A multibranch structure was observed up to y = 0.10 (Bi{sub 2}Sr{sub 2}Ca{sub 1−y}Y{sub y}Cu{sub 2}O{sub 8+δ}). • The BSCYCO mesa has higher maximum voltage compared with nondoped BSCCO. - Abstract: In this study, Bi{sub 2}Sr{sub 2}Ca{sub 1−y}Y{sub y}Cu{sub 2}O{sub 8+δ} (BSCYCO) single crystals with yttrium doping content of y = 0–0.30 were synthesized by a self-flux method. The critical temperature and c-axis lattice constant of BSCYCO were controlled by the substitution of yttrium at the calcium site. A 290 × 90 × 0.4 µm{sup 3} mesa structure was fabricated using photolithography and argon-ion milling. A multibranch structure in current–voltage characteristics was successfully observed for mesas of BSCYCO (y = 0–0.10). The critical current of intrinsic Josephson junctions (IJJs) in BSCYCO mesas was systematically investigated.

  8. Enhancement of photoluminescence properties and modification of crystal structures of Si{sub 3}N{sub 4} doping Li{sub 2}Sr{sub 0.995}SiO{sub 4}:0.005Eu{sup 2+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kaixin, E-mail: kxsong@hdu.edu.cn [College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zhang, Fangfang [College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Chen, Daqin [College of Materials Sciences and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Song; Zheng, Peng [College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Qingming [Instrument Analysis and Testing Center, Fuzhou University, Fuzhou 350002 (China); Jiang, Jun [Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xu, Junming; Qin, Huibin [College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-10-15

    Highlights: • Si{sub 3}N{sub 4} modified Li{sub 2}Sr{sub 0.995}SiO{sub 4}:0.005Eu{sup 2+} phosphors were prepared. • The luminescence intensity of Li{sub 2}Sr{sub 0.995}SiO{sub 4}:Eu{sup 2+} was enhanced by doping Si{sub 3}N{sub 4}. • The fluorescence decay times and thermal stability were enhanced by doping Si{sub 3}N{sub 4}. - Abstract: Si{sub 3}N{sub 4} modified Li{sub 2}Sr{sub 0.995}SiO{sub 4}:0.005Eu{sup 2+} (Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+}) phosphors were synthesized with the conventional solid-state reaction in the reduced atmosphere. The crystal structure and vibrational modes were analyzed by X-ray diffraction, Raman scattering spectroscopy and Rietveld crystal structure refinement. Photoluminescence (PL) and photoluminescence excitation (PLE) spectra showed that Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} powder exhibited a broad yellow emission band centered at 560 nm under the excitation of 460 nm visible light, due to the 4f{sup 6}5d{sup 1} → 4f{sup 7} transition of Eu{sup 2+}. The partial nitridation of Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} (x = 0.01) phosphors led to a large enhancement in the luminescence intensity, as much as 190%. At the same time, the fluorescence decay behavior curves further showed that the photoluminescence efficiencies of Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} phosphors were enhanced by addition of Si{sub 3}N{sub 4}. The temperature quenching characteristics confirmed that the oxynitride based Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} showed slightly higher stability. It is implied that Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} phosphors had a possible potential application on white LEDs to match blue light chips.

  9. Syntheses, crystal Structures and electronic Structures of new metal chalcoiodides Bi{sub 2}CuSe{sub 3}I and Bi{sub 6}Cu{sub 3}S{sub 10}I

    Energy Technology Data Exchange (ETDEWEB)

    Liang, I-Chu [Department of Chemistry, and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Bilc, Daniel I. [Department of Molecular & Biomolecular Physics, National Institute for Research & Development of Isotopic & Molecular Technologies, Cluj-Napoca 400293 (Romania); Manoli, Maria [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus); Chang, Wei-Yun; Lin, Wen-Fu [Department of Chemistry, and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Kyratsi, Theodora [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus); Hsu, Kuei-Fang [Department of Chemistry, and Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China)

    2016-02-15

    Two new metal chalcoiodides were synthesized by solid-state reactions at 400 °C. Crystal Data: Bi{sub 2}CuSe{sub 3}I, 1, monoclinic, C2/m, a=14.243(2) Å, b=4.1937(7) Å, c=14.647(2) Å, β=116.095(2)°, V=785.7(2) Å{sup 3}, and Z=4; Bi{sub 6}Cu{sub 3}S{sub 10}I, 2, orthorhombic, Pnma, a=17.476(2) Å, b=4.0078(4) Å, c=27.391(2) Å, V=1918.5(3) Å{sup 3}, and Z=4. Compound 1 adopts a three-dimensional structure formed by two alternative layers, which consist of BiSe{sub 5} square pyramids, BiSe{sub 4}I{sub 2} octahedra, CuSe{sub 4} tetrahedra, and CuSe{sub 2}I{sub 2} tetrahedra. Compound 2 possesses a new open framework built up of BiS{sub 5} square pyramides, BiS{sub 6} octahedra, BiS{sub 8} polyhedra, and CuS{sub 4} tetrahedra where I{sup −} anions are uniquely trapped within the tunnels. Both electronic structures reveal that bismuth and chalcogenide orbitals dominate the bandgaps. The Cu d and I p states contribute to the top of valence bands, in which the distribution of I orbitals may correspond to the relative bonding interactions in 1 and 2. The optical bandgaps determined by the diffuse reflectance spectra are 0.68 eV and 0.72 eV for 1 and 2, respectively. 1 is a p-type semiconductor with high Seebeck coefficients of 460–575 μV/K in the temperature range of 300–425 K. The electrical conductivity is 0.02 S/cm at 425 K for the undoped sample. The thermal conductivity is 0.22 W/mK at 425 K. - Graphical abstract: The hybridization of chalcogenides and iodides produces two new solids Bi2CuSe3I and Bi6Cu3S10I. The I{sup −} anions participate in distinct bonding interactions within the two structures and that is consistent with the analyses of density of states. 1 is a p-type semiconductor with an optical bandgap of 0.68 eV, which possesses high Seebeck coefficient and low lattice thermal conductivity in 300–425 K.

  10. Structure of the new Tl(Ba sub 1.0 Sr sub 1.0) PrCu sub 2 O sub 7-x by Rietveld analysis

    International Nuclear Information System (INIS)

    Yang, P.; Fun, H. K.; Lee, T.J.; Ku, H.C.; Lai, C.C.

    1994-01-01

    The crystalline structure of Tl(Ba sub 1.0 Sr sub 1.0)PrCu sub 2 O sub 7-x was obtained at room temperature from x-ray powder diffraction with CuK sub α radiation using Rietveld analysis. Tl(Ba sub 1.0 Sr sub 1.0)PrCu sub 2 O sub 7-x isomorphous at both room temperature (300 K) and low temperature (100 K) with TlBa sub 2 ca Cu sub 2 O sub 7-x type (1212) structure, crystallized with space group P4/mmm and one formula in the unit cell. At 300 K, cell parameters a=3.8892(2) A, c=12.3099(6) A, the structure was refined with 25 parameters to R sub WP = 6.30%, R sub P = 4.38% for 3551 step intensities and R sub b = 5.01%, R sub f = 4.20% for 156 reflections. The goodness of fitting S=3.18. At 100K, cell parameters a=3.8866(4) A, c= 12.289(1) A, the structure was refined with 26 parameters to R sub WP = 8.42%, R sub P = 6.21% for 2676 step intensities and R sub b = 6.72%, R sub f = 5.28% for 120 reflections. The goodness of fitting S=2.32. Reasonable anisotropic thermal parameters were obtained. The compositions of Ba and Sr atoms were refined to about Ba sub 1.1 Sr sub 0.9 compared with the stoichiometric Ba sub 1.0 Sr sub 1.0

  11. Sub-50 fs excited state dynamics of 6-chloroguanine upon deep ultraviolet excitation.

    Science.gov (United States)

    Mondal, Sayan; Puranik, Mrinalini

    2016-05-18

    The photophysical properties of natural nucleobases and their respective nucleotides are ascribed to the sub-picosecond lifetime of their first singlet states in the UV-B region (260-350 nm). Electronic transitions of the ππ* type, which are stronger than those in the UV-B region, lie at the red edge of the UV-C range (100-260 nm) in all isolated nucleobases. The lowest energetic excited states in the UV-B region of nucleobases have been investigated using a plethora of experimental and theoretical methods in gas and solution phases. The sub-picosecond lifetime of these molecules is not a general attribute of all nucleobases but specific to the five primary nucleobases and a few xanthine and methylated derivatives. To determine the overall UV photostability, we aim to understand the effect of more energetic photons lying in the UV-C region on nucleobases. To determine the UV-C initiated photophysics of a nucleobase system, we chose a halogen substituted purine, 6-chloroguanine (6-ClG), that we had investigated previously using resonance Raman spectroscopy. We have performed quantitative measurements of the resonance Raman cross-section across the Bb absorption band (210-230 nm) and constructed the Raman excitation profiles. We modeled the excitation profiles using Lee and Heller's time-dependent theory of resonance Raman intensities to extract the initial excited state dynamics of 6-ClG within 30-50 fs after photoexcitation. We found that imidazole and pyrimidine rings of 6-ClG undergo expansion and contraction, respectively, following photoexcitation to the Bb state. The amount of distortions of the excited state structure from that of the ground state structure is reflected by the total internal reorganization energy that is determined at 112 cm(-1). The contribution of the inertial component of the solvent response towards the total reorganization energy was obtained at 1220 cm(-1). In addition, our simulation also yields an instantaneous response of the first

  12. Synthetic shibkovite K(K{sub 1.67}H{sub 2}O{sub 0.33})(Ca{sub 1.3}Na{sub 0.7})[Zn{sub 3}Si{sub 12}O{sub 30}]: the crystal structure and comparative crystal chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kiriukhina, G. V., E-mail: g-biralo@yandex.ru; Yakubovich, O. V.; Dimitrova, O. V. [Moscow State University, Faculty of Geology (Russian Federation)

    2015-01-15

    The structure of a single crystal of a synthetic analog of mineral shibkovite K(K{sub 1.67}H{sub 2}O{sub 0.33})(Ca{sub 1.3}Na{sub 0.7})[Zn{sub 3}Si{sub 12}O{sub 30}] (milarite structure type) obtained by hydrothermal synthesis in the AlPO{sub 4}-K{sub 3}PO{sub 4}-CaCO{sub 3}-Na{sub 2}CO{sub 3}-ZnCO{sub 3}-SiO{sub 2}-H{sub 2}O system has been solved (R = 0.0406) by X-ray diffraction analysis: a = 10.5327(2) Å, c = 14.2019(3) Å, sp. gr. P6/mcc, Z = 2, and ρ{sub calcd} = 2.90 g/cm{sup 3}. The crystal-chemical features of the new phase are studied in comparison with the other terms of the milarite group. It is shown that the crystallization conditions for minerals and synthetic analogs of this group determine the presence or absence of crystallization water in the structures of compounds.

  13. Structural and magnetic properties of Co substituted Li{sub 0.5}Fe{sub 2.5}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Patil, R.P., E-mail: raj_rbm_raj@yahoo.co.in [Department of Chemistry, M.H. Shinde Mahavidyalaya, Tisangi 416206, MH (India); Patil, S.B. [Department of Physics, Krantisinh Nana Patil College Walwa, Sangli 416313, MH (India); Jadhav, B.V. [Department of Chemistry, Changu Kana Thakur Arts, Commerce and Science College, New Panvel 400035, MH (India); Delekar, S.D.; Hankare, P.P. [Department of Chemistry, Shivaji University, Kolhapur 416004, MH (India)

    2016-03-01

    Nanocrystalline Li{sub 0.5}Fe{sub 2.5−x}Co{sub x}O{sub 4} (2.5≥x≥0) system was prepared by sol–gel route. Formation of single phase cubic spinel structure for all the compositions was confirmed from their X-ray diffraction studies. These ferrite samples existed as homogenous and uniform grains as observed from Scanning Electron Microscopy technique. The magnetic studies indicated that, the ferrimagnetic behavior decreases with Cobalt substitution. In general, the substitution of cobalt plays an important role in changing the structural and magnetic properties of these ferrites. - Highlights: • Novel Co doped Li{sub 0.5}Fe{sub 2.5}O{sub 4} system. • Sol–gel method synthesized Co–Lithium ferrites. • Single Phase Cubic spinel structure. • Homogenous and uniform grain size of samples. • Ferrimagnetic behavior for all the samples.

  14. Structural flexibility in magnetocaloric RE<sub>5sub>T>4sub> (RE=rare-earth; T=Si,Ge,Ga) materials: Effect of chemical substitution on structure, bonding and properties

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Sumohan [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    The binary, ternary and multicomponent intermetallic compounds of rare-earth metals (RE) with group 14 elements (Tt) at the RE<sub>5sub>Tt>4sub> stoichiometry have been known for over 30 years, but only in the past decade have these materials become a gold mine for solid-state chemistry, materials science and condensed matter physics. It all started with the discovery of a giant magnetocaloric effect in Gd<sub>5sub>Si>2sub>Ge>2sub>, along with other extraordinary magnetic properties, such as a colossal magnetostriction and giant magnetoresistance. The distinctiveness of this series is in the remarkable flexibility of the chemical bonding between well-defined, subnanometer-thick slabs and the resultant magnetic, transport, and thermodynamic properties of these materials. This can be controlled by varying either or both RE and Tt elements, including mixed rare-earth elements on the RE sites and different group 14 (or T = group 13 or 15) elements occupying the Tt sites. In addition to chemical means, the interslab interactions are also tunable by temperature, pressure, and magnetic field. Thus, this system provides a splendid 'playground' to investigate the interrelationships among composition, structure, physical properties, and chemical bonding. The work presented in this dissertation involving RE<sub>5sub>T>4sub> materials has resulted in the successful synthesis, characterization, property measurements, and theoretical analyses of various new intermetallic compounds. The results provide significant insight into the fundamental magnetic and structural behavior of these materials and help us better understand the complex link between a compound's composition, its observed structure, and its properties.

  15. Synthesis, crystal structure, thermal analysis and dielectric properties of [(C{sub 4}H{sub 9}){sub 4}N]{sub 3}Bi{sub 2}Cl{sub 9} compound

    Energy Technology Data Exchange (ETDEWEB)

    Trigui, W., E-mail: walatrigui@yahoo.fr; Oueslati, A.; Chaabane, I.; Hlel, F.

    2015-07-15

    A new organic–inorganic tri-tetrabutylammonium nonachlorobibismuthate(III) compound was prepared. It was found to crystallize in the monoclinic system (P2{sub 1}/n space group) with the following lattice parameters: a=11.32(2) Å, b=22.30(3) Å, c=28.53(2) Å and β=96.52(0)°. The [Bi{sub 2}Cl{sub 9}]{sup 3−} anions are surrounded by six [(C{sub 4}H{sub 9})N]{sup +} cations, forming an octahedral configuration. These octahedra are sharing corners in order to provide the tri-dimensional network cohesion. The differential scanning calorimetry reveals four order-disorder reversible phase transitions located at 214, 238, 434 and 477 K. The Raman and infrared spectra confirm the presence of both cationic [(C{sub 4}H{sub 9})N]{sup +} and anionic [Bi{sub 2}Cl{sub 9}]{sup 3−} parts. The dielectric parameters, real and imaginary dielectric permittivity (ε′ and ε″), and dielectric loss tangent (tg δ), were measured in the frequency range of 209 kHz–5 MHz at different temperatures. The variations of dielectric dispersion (ε') and dielectric absorption (ε″) with frequency show a distribution of relaxation times, which is probably related to the change in the dynamical state of the [(C{sub 4}H{sub 9}){sub 4}N]{sup +} cations and the [Bi{sub 2}Cl{sub 9}]{sup 3−} anions. - Graphical abstract: Projection of the atomic arrangement of the [(C{sub 4}H{sub 9}){sub 4}N]{sub 3}Bi{sub 2}Cl{sub 9} compound along the b axis. - Highlights: • The structure of the (TBA){sub 3}Bi{sub 2}Cl{sub 9} compound was solved and reported. • The cristal belongs to the monoclinic system with P2{sub 1}/n space group. • DSC discloses four order–disorder reversible phases transitions. • The temperature-dependent permittivity ε' and ε″ has been investigated.

  16. Structural, magnetic, and dielectric properties of multiferroic Co{sub 1−x}Mg{sub x}Cr{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kamran, M.; Ullah, A. [Nanomagnetism and Nanotechnology Laboratory, International Islamic University, Islamabad 44000 (Pakistan); Rahman, S. [Department of Material Science and Engineering, University of Science and Technology of China Hefei, Anhui 230026 (China); Tahir, A. [Department of Physics, Quaid-e-Azam University, Islamabad 44000 (Pakistan); Nadeem, K., E-mail: kashif.nadeem@iiu.edu.pk [Nanomagnetism and Nanotechnology Laboratory, International Islamic University, Islamabad 44000 (Pakistan); Beijing National Laboratory for Condensed Matter Physics, National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190 (China); Anis ur Rehman, M. [Applied Thermal Physics Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan); Hussain, S. [Magnetism Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)

    2017-07-01

    Highlights: • Properties of multiferroic Co{sub 1−x}Mg{sub x}Cr{sub 2}O{sub 4} nanoparticles have been studied. • XRD showed that CoCr{sub 2}O{sub 4} and MgCr{sub 2}O{sub 4} are cubic normal spinel structure. • Rietveld refinement of XRD showed no impurity phases. • T{sub c} and T{sub s} showed decreasing trend with increasing Mg concentration. • Dielectric properties were improved for x = 0.6 Mg concentration. - Abstract: We examined the structural, magnetic, and dielectric properties of Co{sub 1−x}Mg{sub x}Cr{sub 2}O{sub 4} nanoparticles with composition x = 0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1 in detail. X-ray diffraction (XRD) revealed normal spinel structure for all the samples. Rietveld refinement fitting results of the XRD showed no impurity phases which signifies the formation of single phase Co{sub 1−x}Mg{sub x}Cr{sub 2}O{sub 4} nanoparticles. The average crystallite size showed a peak behaviour with maxima at x = 0.6. Raman and Fourier transform infrared (FTIR) spectroscopy also confirmed the formation of single phase normal spinel for all the samples and exhibited dominant vibrational changes for x ≥ 0.6. For x = 0 (CoCr{sub 2}O{sub 4}), zero field cooled/field cooled (ZFC/FC) magnetization curves showed paramagnetic (PM) to ferrimagnetic (FiM) transition at T{sub c} = 97 K and a conical spiral magnetic order at T{sub s} = 30 K. The end members CoCr{sub 2}O{sub 4} (x = 0) and MgCr{sub 2}O{sub 4} (x = 1) are FiM and antiferromagnetic (AFM), respectively. T{sub c} and T{sub s} showed decreasing trend with increasing x, followed by an additional AFM transition at T{sub N} = 15 K for x = 0.6. The system finally stabilized and changed to highly frustrated AFM structure at x = 1 due to formation of pure MgCr{sub 2}O{sub 4}. High field FC curves (5T) depicted nearly no effect on spiral magnetic state, which is attributed to strong exchange B-B magnetic interactions at low temperatures. Dielectric parameters showed a non-monotonous behaviour with

  17. Low temperature time resolved photoluminescence in ordered and disordered Cu{sub 2}ZnSnS{sub 4} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Raadik, Taavi, E-mail: taavi.raadik@ttu.ee [Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Krustok, Jüri; Kauk-Kuusik, M.; Timmo, K.; Grossberg, M. [Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Ernits, K. [crystalsol OÜ, Akadeemia tee 15a, 12618 Tallinn (Estonia); Bleuse, J. [CEA-CNRS-UGA group “Nanophysique et Semiconducteurs”, Univ. Grenoble Alpes, INAC-PHELIQS, CEA, INAC-PHELIQS, CNRS, PLUM, F-38000 Grenoble (France)

    2017-03-01

    In this work we performed time-resolved micro-photoluminescence (TRPL) studies of Cu{sub 2}ZnSnS{sub 4} (CZTS) single crystals grown in molten KI salt. The order/disorder degree of CZTS was varied by the thermal post treatment temperature. Photoluminescence spectra measured at T=8 K showed an asymmetric band with a peak position of 1.33 eV and 1.27 eV for partially ordered and disordered structures, respectively. Thermal activation energies were found to be E{sub T} {sub (PO)} =65±9 meV for partially ordered and E{sub T(PD)} =27±4 meV for partially disordered. These low activation energy values indicating to the defect cluster recombination model for both partially ordered and disordered structures. TRPL was measured for both crystals and their decay curves were fitted with a stretched exponential function, in order to describe the charge carriers’ recombination dynamics at low temperature.

  18. Picosecond high power laser systems and picosecond diagnostic technique in laser produced plasma

    International Nuclear Information System (INIS)

    Kuroda, Hiroto; Masuko, H.; Maekawa, Shigeru; Suzuki, Yoshiji; Sugiyama, Masaru.

    1979-01-01

    Highly repetitive, high power YAG and Glass laser systems have been developed and been successfully used for the studies of laser-plasma interactions. Various picosecond diagnostic techniques have been developed for such purposes in the regions from optical to X-ray frequency. Recently highly sensitive X-ray (1 - 10 KeV) streak camera for highly repetitive operations have been developed. Preliminary experiment shows the achievement of 28ps temporal resolution (100μm slit) and good sensitivity with detectable minimum number of 10E3-1KeV photons/shot/slit area. (author)

  19. Electronic structure and photocatalytic activities of (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Wenjie; Hu, Jinli; Huang, Jing; Wu, Xin; Lin, Sen, E-mail: slin@fzu.edu.cn; Huang, Caijin; Qiu, Xiaoqing, E-mail: qiuxq@fzu.edu.cn

    2015-12-01

    Highlights: • (Bi{sub 2−δ}Y{sub δ})Sn2O7 solid solutions were synthesized by one-step hydrothermal method. • The contribution of Bi 6s orbitals to electronic structures can be continuously tuned. • The high photocatalytic activity should originate from the good band dispersions. - Abstract: A series of (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} solid solutions were prepared by a one-step hydrothermal method to investigate the correlation between the electronic structures and photocatalytic activity. All the (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} samples were characterized by X-ray diffraction, transmission electron microscopy, infrared and UV–vis absorption spectroscopy, and the Brunauer–Emmett–Teller technique. The effects of Bi 6s orbitals in (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} solid solutions on the electronic structures and photogradation of colorless 2-naphthol solution were investigated experimentally and theoretically. It is found that the introduction of Y{sup 3+} induces the shrinkage of the lattice of (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} solid solutions. Consequently, the contribution of Bi 6s orbitals to electronic structures of (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} solid solutions can be continuously tuned by Y{sup 3+} substitution for Bi{sup 3+}. Density function theory calculations reveal that the Bi 6s and O 2p states dominate the top of valence band of Bi{sub 2}Sn{sub 2}O{sub 7}, while the bottom of conduction band mainly consists of the states of Sn 5s, O 2p and Bi 6p. Once the Bi{sup 3+} ions are substituted by Y{sup 3+}, the intensity of Bi 6s states is weakening at the top of valence band while the bottom of conduction band retains the same feature observed for pure Bi{sub 2}Sn{sub 2}O{sub 7}. Moreover, the band dispersions of valence band and conduction band become narrower after Y{sup 3+} introduction into the lattice of (Bi{sub 2−δ}Y{sub δ})Sn{sub 2}O{sub 7} solid solutions. As a result, the

  20. Recent results on solvation dynamics of electron and spur reactions of solvated electron in polar solvents studied by femtosecond laser spectroscopy and picosecond pulse radiolysis

    International Nuclear Information System (INIS)

    Mostafavi, M.

    2006-01-01

    . Nevertheless, the results show that the effect of the molecular structure of the solvents on solvation dynamics of electron is not negligible. The first study of picosecond pulse radiolysis of neat tetrahydrofuran (THF) by pulse-probe method was performed using the ELYSE picosecond pulse electron facility. ELYSE is a laser triggered electron accelerator that delivers at repetition rate of 1-50 Hz, electron pulses with a duration 5-15 ps, a charge of 2-7 nC and a kinetic energy tuneable in the range 2-9 MeV. The pulse- probe study of neat THF shows a fast decay of absorbance at 790 nm within 2.5 ns (Figure 2). This decay is assigned to the solvated electron. From the decay we deduced the time dependent G-value of solvated electron in the picosecond time range. The ratio between the initial absorbance (at 30 ps) and at 2.5 ns is about 2. In similar conditions, the same ratio in water and in the alcohols is 1.15, 1.25, respectively. In fact, the G-value of solvated electron in THF is much more time dependent that those in polar solvents like water and alcohols. We compared the time dependent G value for solvated electron between two methods: direct time resolved measurement and scavenging method. The analysis suggests either that the initial yield in THF (at zero time) is lower than in water or that a very fast decay occurs within the electron pulse.Eventually, the first pulse radiolysis measurements at picosecond range and at elevated temperature in water is studied by pulse-probe method using a high temperature high pressure cell. This study is done in collaboration with the Radiolysis laboratory of CEA/Saclay. The kinetics of the hydrated electron are found to be temperature dependent (Figure 3) and are qualitatively in agreement with radiolytic yield values obtained at elevated temperature after spur reactions. Assuming the same initial G value at picosecond time range for different temperatures, we deduce that at 350 degree C the yield at nanosecond range becomes almost the

  1. Structural studies of the rhombohedral and orthorhombic monouranates: CaUO{sub 4}, α-SrUO{sub 4}, β-SrUO{sub 4} and BaUO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Gabriel [School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia); Kennedy, Brendan J., E-mail: kennedyb@chem.usyd.edu.au [School of Chemistry, The University of Sydney, Sydney, NSW 2006 (Australia); Johannessen, Bernt; Kimpton, Justin A. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia); Avdeev, Maxim; Griffith, Christopher S.; Thorogood, Gordon J.; Zhang, Zhaoming [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234 (Australia)

    2016-05-15

    The structures of some AUO{sub 4} (A=Ca, Sr, or Ba) oxides have been determined using a combination of neutron and synchrotron X-ray diffraction, supported by X-ray absorption spectroscopic measurements at the U L{sub 3}-edge. The smaller Ca cation favours a rhombohedral AUO{sub 4} structure with 8-coordinate UO{sub 8} moieties whilst an orthorhombic structure based on UO{sub 6} groups is found for BaUO{sub 4}. Both the rhombohedral and orthorhombic structures can be stabilised for SrUO{sub 4}. The structural studies suggest that the bonding requirements of the A site cation play a significant role in determining which structure is favoured. In the rhombohedral structure, Bond Valence Sums demonstrate the A site is invariably overbonded, which, in the case of rhombohedral α-SrUO{sub 4}, is compensated for by the formation of vacancies in the oxygen sub-lattice. The uranium cation, with its flexible oxidation state, is able to accommodate this by inducing vacancies along its equatorial coordination site as demonstrated by neutron powder diffraction. - Graphical abstract: Diffraction studies of AUO{sub 4} (A = Ca, Sr, or Ba) oxides reveal the importance of the bonding requirements of the A site cation in determining whether the structure is rhombohedral or orthorhombic. - Highlights: • Structures of AUO{sub 4} ( A = Ca Sr, Ba) refined against X-ray and Neutron diffraction. • The alkali cations size has a dramatic effect on the crystal structure. • Smaller cations favouring a rhombohedral structure. • Oxygen vacancies to stabilise the rhombohedral structure in SrUO{sub 4}.

  2. Structural characterization of the CeO{sub 2}/Gd{sub 2}O{sub 3} mixed system by synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Artini, Cristina, E-mail: c.artini@ge.ieni.cnr.it [Dipartimento di Chimica e Chimica Industriale, Universita degli Studi di Genova, Via Dodecaneso 31, 16146 Genova (Italy); Costa, Giorgio A., E-mail: costa@chimica.unige.it [Dipartimento di Chimica e Chimica Industriale, Universita degli Studi di Genova, Via Dodecaneso 31, 16146 Genova (Italy); CNR-SPIN Genova, Corso Perrone 24, 16152 Genova (Italy); Pani, Marcella, E-mail: marcella@chimica.unige.it [Dipartimento di Chimica e Chimica Industriale, Universita degli Studi di Genova, Via Dodecaneso 31, 16146 Genova (Italy); Lausi, Andrea, E-mail: andrea.lausi@elettra.trieste.it [Sincrotrone Trieste S.C.p.A., ss 14, km 163, 5, 34149 Basovizza, Trieste (Italy); Plaisier, Jasper, E-mail: jasper.plaisier@elettra.trieste.it [Sincrotrone Trieste S.C.p.A., ss 14, km 163, 5, 34149 Basovizza, Trieste (Italy)

    2012-06-15

    The structural determination of the CeO{sub 2}/Gd{sub 2}O{sub 3} mixed system is a non-trivial problem because of the close resemblance between the ionic sizes of Ce{sup 4+} and Gd{sup 3+} and between the crystal structures of CeO{sub 2} and Gd{sub 2}O{sub 3}. (Ce{sub 1-x}Gd{sub x})O{sub 2-x/2} powder samples with x ranging between 0 and 1 have been synthesized by coprecipitation of mixed oxalates and subsequent thermal decomposition in air at 1200 Degree-Sign C followed by slow cooling. Synchrotron powder X-ray diffraction data were collected and refined by the Rietveld method. Lattice parameters do not follow Vegard's law and no peak splitting has been observed for any composition, meaning that no biphasic regions exist over the whole compositional range. The same hybrid structural model - a proper mixture of the structures of the two pure oxides - was used for the refinements, allowing to account for the data observed. - graphical abstract: Substituting Ce{sup 4+} by Gd{sup 3+}, a gradual transition from the F structure (typical of CeO{sub 2}) to the C structure (typical of Gd{sub 2}O{sub 3}) takes place. The lattice parameters do not follow Vegard's law. Highlights: Black-Right-Pointing-Pointer A structural study of Ce-Gd mixed oxides has been performed. Black-Right-Pointing-Pointer In (Ce{sub 1-x}Gd{sub x})O{sub 2-x/2} a solid solution forms for 0{<=}x{<=}0.3. Black-Right-Pointing-Pointer For x>0.3 a gradual transition from the C to the F structure is observed. Black-Right-Pointing-Pointer Lattice parameters do not follow Vegard's law.

  3. Structural and superconducting properties of oxygen-deficient NdBa sub 2 Cu sub 3 O sub 7 minus. delta

    Energy Technology Data Exchange (ETDEWEB)

    Shaked, H. (Nuclear Research Center-Negev, Post Office Box 9001, Beer Sheva, Israel (IL) Ben Gurion University of the Negev, Post Office Box 653, Beer Sheva, Israel (IL)); Veal, B.W.; Faber, J. Jr.; Hitterman, R.L.; Balachandran, U.; Tomlins, G.; Shi, H.; Morss, L.; Paulikas, A.P. (Argonne National Laboratory, Argonne, Illinois 60439 (USA))

    1990-03-01

    Neutron diffraction was used to determine the structural properties of oxygen deficient NdBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} for 0.09{lt}{delta}{lt}0.74. It was found that superconductivity disappears at the orthorhombic-to-tetragonal phase transition which occurs at {delta}{sub {ital O}{ital T}}=0.45. Structural parameters vary smoothly with {delta} but exhibit a change in slope at the orthorhombic-to-tetragonal transition. The structural properties exhibit the same features found in YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} where {delta}{sub {ital O}{ital T}}=0.65. It is shown that the repulsion energy of oxygen atoms in the O(1) and O(5) sites in NdBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} is smaller than in YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}}. This lower repulsion energy stabilizes the orthorhombic phase at lower values of {delta}. It is argued that the disappearance of superconductivity at the orthorhombic-to-tetragonal transition is an inherent property of the {ital R}Ba{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} ({ital R} denotes rare earth) system.

  4. New high-pressure polymorph of In{sub 2}S{sub 3} with defect Th{sub 3}P{sub 4}-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Xiaojing; Zhu, Feng; Wu, Ye; Huang, Rong [Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, Peking University, Beijing 100871 (China); School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Wu, Xiang, E-mail: xiang.wu@pku.edu.cn [Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, Peking University, Beijing 100871 (China); School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Zhang, Qian [Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, Peking University, Beijing 100871 (China); School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Yang, Ke [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China); Qin, Shan, E-mail: sqin@pku.edu.cn [Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, Peking University, Beijing 100871 (China); School of Earth and Space Sciences, Peking University, Beijing 100871 (China)

    2014-02-15

    The high pressure behavior of β-In{sub 2}S{sub 3} (I4{sub 1}/amd and Z=16) has been studied by in situ synchrotron radiation X-ray diffraction combined with diamond anvil cell up to 71.7 GPa. Three pressure-induced phase transitions are evidenced at ∼6.6 GPa, ∼11.1 GPa at room temperature and 35.6 GPa after the high-temperature annealing using a portable laser heating system. The new polymorph of In{sub 2}S{sub 3} at 35.6 GPa is assigned to the denser cubic defect Th{sub 3}P{sub 4} structure (I4¯3d and Z=5.333), whose unit-cell parameters are a=7.557(1) Å and V=431.6(2) Å{sup 3}. The Th{sub 3}P{sub 4}-type phase can be stable at least up to 71.7 GPa and cannot be preserved at ambient pressure. The pressure–volume relationship is well described by the second-order Birch–Murnaghan Equation of State, which yields B{sub 0}=63(3) GPa and B{sub 0}′=4 (fixed) for the β-In{sub 2}S{sub 3} phase and B{sub 0}=87(3) GPa and B{sub 0}′=4 (fixed) for the defect Th{sub 3}P{sub 4}-type phase respectively. - Graphical abstract: The structure and Rietveld refinement of new polymorph the defect Th{sub 3}P{sub 4}-type In{sub 2}S{sub 3}. This structure was observed at 35.6 GPa after laser heating by X-ray diffraction. Display Omitted - Highlights: Three pressure-induced phase transitions of β-In{sub 2}S{sub 3} were observed. β-In{sub 2}S{sub 3} was stable up to 6.6 GPa. The defect Th{sub 3}P{sub 4}-type In{sub 2}S{sub 3} was identified at 35.6 GPa after laser heating and was stable up to 71.7 GPa. Elastic properties of β-In{sub 2}S{sub 3} and Th{sub 3}P{sub 4}-type In{sub 2}S{sub 3} are well presented by Birch–Murnaghan EoS.

  5. Two crystal structures of Ag sup + -and Tl sup + -exchanged zeolite X, Ag sub 2 sub 7 Tl sub 6 sub 5 -X and Ag sub 2 sub 3 Tl sub 6 sub 9 -X

    CERN Document Server

    Kim, S Y; Kim, Y

    2002-01-01

    Two crystal structures of dehydrated Ag sup + -and Tl sup + -exchanged zeolite X (Ag sub 2 sub 7 Tl sub 6 sub 5 -X and Ag sub 2 sub 3 Tl sub 6 sub 9 -X) have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at 21(1) .deg. C (a = 24.758(4) A, a = 24.947(4) A, respectively). Their structures were refined to the final error indices R sub 1 = 0.055 and wR sub 2 = 0.057 with 375 reflections, and R sub 1 = 0.058 and wR sub 2 = 0.057 with 235 reflections, respectively, for which I> 3 sigma(I). In the structure of Ag sub 2 sub 7 Tl sub 6 sub 5 -X, 27 Ag sup + ions were found at two crystallographic sites: 15 Ag sup + ions at site I at the center of the hexagonal prism and the remaining 12 Ag sup + ions at site II' in the sodalite cavity. Sixty-five Tl sup + ions were located at three crystallographic sites: 20 Tl sup + ions at site II opposite single six-rings in the supercage, 18 Tl sup + ions at site I' in the sodalite cavity opposite the D6Rs, and the remaining 27 Tl sup ...

  6. La{sub 3}Cu{sub 4}P{sub 4}O{sub 2} and La{sub 5}Cu{sub 4}P{sub 4}O{sub 4}Cl{sub 2}. Synthesis, structure and {sup 31}P solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Timo; Eul, Matthias; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Benndorf, Christopher; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. of Physics

    2016-04-01

    The phosphide oxides La{sub 3}Cu{sub 4}P{sub 4}O{sub 2} and La{sub 5}Cu{sub 4}P{sub 4}O{sub 4}Cl{sub 2} were synthesized from lanthanum, copper(I) oxide, red phosphorus, and lanthanum(III) chloride through a ceramic technique. Single crystals can be grown in a NaCl/KCl flux. Both structures were refined from single crystal X-ray diffractometer data: I4/mmm, a = 403.89(4), c = 2681.7(3) pm, wR2 = 0.0660, 269 F{sup 2} values, 19 variables for La{sub 3}Cu{sub 4}P{sub 4}O{sub 2} and a = 407.52(5), c = 4056.8(7) pm, wR2 = 0.0905, 426 F{sup 2} values, 27 variables for La{sub 5}Cu{sub 4}P{sub 4}O{sub 4}Cl{sub 2}. Refinement of the occupancy parameters revealed full occupancy for the oxygen sites in both compounds. The structures are composed of cationic (La{sub 2}O{sub 2}){sup 2+} layers and covalently bonded (Cu{sub 4}P{sub 4}){sup 5-} polyanionic layers with metallic characteristics, and an additional La{sup 3+} between two adjacent (Cu{sub 4}P{sub 4}){sup 5-} layers. The structure of La{sub 5}Cu{sub 4}P{sub 4}O{sub 4}Cl{sub 2} comprises two additional LaOCl slabs per unit cell. Temperature-dependent magnetic susceptibility studies revealed Pauli paramagnetism. The phosphide substructure of La{sub 3}Cu{sub 4}P{sub 4}O{sub 2} was studied by {sup 31}P solid state NMR spectroscopy. By using a suitable dipolar re-coupling approach the two distinct resonances belonging to the P{sub 2}{sup 4-} and the P{sup 3-} units could be identified.

  7. Synthesis, crystal structure, and vibrational spectroscopic and UV-visible studies of Cs{sub 2}MnP{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Kaoua, Saida; Krimi, Saida [LPCMI, Faculte des Sciences Aien Chok, UH2C, Casablanca (Morocco); Pechev, Stanislav; Gravereau, Pierre; Chaminade, Jean-Pierre [CNRS, Universite de Bordeaux, ICMCB, 87, Avenue du Dr. A. Schweitzer, Pessac (France); Couzi, Michel [CNRS, Universite de Bordeaux, ISM, UMR 5255, F-33400 Talence (France); El Jazouli, Abdelaziz, E-mail: eljazouli_abdelaziz@yahoo.fr [LCMS, URAC 17, Faculte des Sciences Ben M' Sik, UH2MC, Casablanca (Morocco)

    2013-02-15

    A new member of the A{sub 2}MP{sub 2}O{sub 7} diphosphate family, Cs{sub 2}MnP{sub 2}O{sub 7}, has been synthesized and structurally characterized. The crystal structure was determined by single crystal X-Ray diffraction. Cs{sub 2}MnP{sub 2}O{sub 7} crystallizes in the orthorhombic system, space group Pnma ( Music-Sharp-Sign 62), with the unit cell parameters a=16.3398(3), b=5.3872(1), c=9.8872(2) A, Z=4 and V=870.33(3) A{sup 3}. The structure parameters were refined to a final R{sub 1}/wR{sub 2}=0.0194/0.0441 for 1650 observed reflections. The 2D framework of Cs{sub 2}MnP{sub 2}O{sub 7} structure consists of P{sub 2}O{sub 7} and MnO{sub 5} units. The corner-shared MnO{sub 5} and P{sub 2}O{sub 7} units are alternately arranged along the b axis to form [(MnO)P{sub 2}O{sub 7}]{sub {infinity}} chains. These chains are interconnected by an oxygen atom to form sheets parallel to the (b, c) plane. The cesium atoms are located between the sheets in 9- and 10-fold coordinated sites. The infrared and Raman vibrational spectra have been investigated. A factor group analysis leads to the determination of internal modes of (P{sub 2}O{sub 7}) groups. UV-visible spectrum consists of weak bands, between 340 and 700 nm, assigned to the forbidden d-d transitions of Mn{sup 2+} ion, and of a strong band around 250 nm, attributed to the O--Mn charge transfer. - Graphical abstract: Structure of Cs{sub 2}MnP{sub 2}O{sub 7}: The 2D structure of Cs{sub 2}MnP{sub 2}O{sub 7} is built from P{sub 2}O{sub 7} diphosphate groups and MnO{sub 5} square pyramids which share corners and form [(MnO)P{sub 2}O{sub 7}]{sub {infinity}} chains along b axis. These chains are interconnected by an oxygen atom to form wavy (MnP{sub 2}O{sub 7}){sup 2-} sheets parallel to the (b, c) plane. The cesium ions are located between these sheets in the inter-layers space, in zigzag positions. Highlights: Black-Right-Pointing-Pointer A new diphosphate, Cs{sub 2}MnP{sub 2}O{sub 7}, has been synthesized and structurally

  8. Triangular Zn{sub 3} and Ga{sub 3} units in Sr{sub 2}Au{sub 6}Zn{sub 3}, Eu{sub 2}Au{sub 6}Zn{sub 3}, Sr{sub 2}Au{sub 6}Ga{sub 3}, and Eu{sub 2}Au{sub 6}Ga{sub 3}. Structure, magnetism, {sup 151}Eu Moessbauer and {sup 69;71}Ga solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gerke, Birgit; Niehaus, Oliver; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Korthaus, Alexander; Haarmann, Frank [RWTH Aachen Univ. (Germany). Inst. fuer Anorganische Chemie

    2016-08-01

    The gold-rich intermetallic compounds Sr{sub 2}Au{sub 6}Zn{sub 3}, Eu{sub 2}Au{sub 6}Zn{sub 3}, Sr{sub 2}Au{sub 6}Ga{sub 3}, and Eu{sub 2}Au{sub 6}Ga{sub 3} were synthesized from the elements in sealed tantalum ampoules in induction or muffle furnaces. The europium compounds are reported for the first time and their structures were refined from single crystal X-ray diffractometer data: Sr{sub 2}Au{sub 6}Zn{sub 3} type, R anti 3c, a = 837.7(1), c = 2184.5(4) pm, wR2 = 0.0293, 572 F{sup 2} values for Eu{sub 2}Au{sub 6.04}Zn{sub 2.96} and a = 838.1(2), c = 2191.7(5) pm, wR2 = 0.0443, 513 F{sup 2} values for Eu{sub 2}Au{sub 6.07}Ga{sub 2.93} with 20 variables per refinement. The structures consist of a three-dimensional gold network with a 6R stacking sequence, similar to the respective diamond polytype. The cavities of the network are filled in a ratio of 2:1 by strontium (europium) atoms and Ga{sub 3} (Zn{sub 3}) triangles in an ordered manner. Sr{sub 2}Au{sub 6}Zn{sub 3} and Sr{sub 2}Au{sub 6}Ga{sub 3} are diamagnetic with room temperature susceptibilities of -3.5 x 10{sup -4} emu mol{sup -1}. Temperature dependent susceptibility and {sup 151}Eu Moessbauer spectroscopic measurements show a stable divalent ground state for both europium compounds. Eu{sub 2}Au{sub 6}Zn{sub 3} and Eu{sub 2}Au{sub 6}Ga{sub 3} order antiferromagnetically below Neel temperatures of 16.3 and 12.1 K, respectively. Anisotropic electrical conductivity of Sr{sub 2}Au{sub 6}Ga{sub 3} is proven by an alignment of the crystallites in the magnetic field. Orientation-dependent {sup 69;71}Ga NMR experiments combined with quantum mechanical calculations (QM) give evidence for a highly anisotropic charge distribution of the Ga atoms.

  9. Structure, chemistry and luminescence properties of dielectric La{sub x}Hf{sub 1-x}O{sub y} films

    Energy Technology Data Exchange (ETDEWEB)

    Kaichev, V.V., E-mail: vvk@catalysis.ru [Boreskov Institute of Catalysis, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Smirnova, T.P.; Yakovkina, L.V. [Nikolaev Institute of Inorganic Chemistry, Novosibirsk (Russian Federation); Ivanova, E.V.; Zamoryanskaya, M.V. [Ioffe Physical-Technical Institute, St. Petersburg (Russian Federation); Saraev, A.A. [Boreskov Institute of Catalysis, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Pustovarov, V.A. [Ural State Technical University, Ekaterinburg (Russian Federation); Perevalov, T.V.; Gritsenko, V.A. [Novosibirsk State University, Novosibirsk (Russian Federation); Rzhanov Institute of Semiconductor Physics, Novosibirsk (Russian Federation)

    2016-06-01

    Dielectric films of La{sub 2}O{sub 3}, HfO{sub 2}, and La{sub x}Hf{sub 1-x}O{sub y} were synthesized by metal-organic chemical vapor deposition. Structural, chemical, and luminescence properties of the films were studied using X-ray photoelectron spectroscopy, methods of X-ray diffraction and selected area electron diffraction, high-resolution transmission electron microscopy, and a cathodoluminescence technique. It was found that doping of hafnium oxide with lanthanum leads to the formation of a continuous series of solid solutions with a cubic structure. This process is accompanied by the formation of oxygen vacancies in the HfO{sub 2} lattice. Cathodoluminescence spectra of the La{sub x}Hf{sub 1-x}O{sub y}/Si films exhibited a wide band with the maximum near 2.4–2.5 eV, which corresponds to the blue emission. Quantum-chemical calculations showed that this blue band is due to oxygen vacancies in the HfO{sub 2} lattice. - Highlights: • HfO{sub 2} and solid solution La{sub x}Hf{sub 1-x}O{sub y} films were synthesized by MOCVD. • The continuous series of solid solutions with a cubic structure was formed at La doping of HfO{sub 2}. • Cathodoluminescence band at 2.4–2.5 eV is observed due to the oxygen vacancies in La{sub x}Hf{sub 1-x}O{sub y}. • The cathodoluminescence decreases in intensity when the La concentration increases.

  10. Structural and optical properties of glancing angle deposited In{sub 2}O{sub 3} columnar arrays and Si/In{sub 2}O{sub 3} photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, A.; Shougaijam, B.; Goswami, T.; Dhar, J.C.; Singh, N.K. [National Institute of Technology, Department of Electronics and Communication Engineering, Agartala (India); Choudhury, S. [North Eastern Hill University, Department of Electronics and Communication Engineering, Shillong (India); Chattopadhay, K.K. [Jadavpur University, Department of Physics, Kolkata (India)

    2014-04-15

    Ordered and perpendicular columnar arrays of In{sub 2}O{sub 3} were synthesized on conducting ITO electrode by a simple glancing angle deposition (GLAD) technique. The as-deposited In{sub 2}O{sub 3} columns were investigated by field emission gun-scanning electron microscope (FEG-SEM). The average length and diameter of the columns were estimated ∝400 nm and ∝100 nm, respectively. The morphology of the structure was examined by transmission electron microscopy (TEM). X-ray diffraction (XRD) analysis shows the polycrystalline nature of the sample which was verified by selective area electron diffraction (SAED) analysis. The growth mechanism and optical properties of the columns were also discussed. Optical absorption shows that In{sub 2}O{sub 3} columns have a high band to band transition at ∝3.75 eV. The ultraviolet and green emissions were obtained from the In{sub 2}O{sub 3} columnar arrays. The P-N junction was formed between In{sub 2}O{sub 3} and P-type Si substrate. The GLAD synthesized In{sub 2}O{sub 3} film exhibits low current conduction compared to In{sub 2}O{sub 3} TF. However, the Si/GLAD-In{sub 2}O{sub 3} detector shows ∝1.5 times enhanced photoresponsivity than that of Si/In{sub 2}O{sub 3} TF. (orig.)

  11. Thermally-induced electronic relaxation in structurally-modified Cu{sub 0.1}Ni{sub 0.8}Co{sub 0.2}Mn{sub 1.9}O{sub 4} spinel ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O., E-mail: shpotyuk@novas.lviv.ua [Institute of Materials, Scientific Research Company “Carat”, 202, Stryjska Street, Lviv 79031 (Ukraine); Institute of Physics, Jan Dlugosz University, 13/15, al. Armii Krajowej, Czestochowa 42200 Poland (Poland); Balitska, V. [Institute of Materials, Scientific Research Company “Carat”, 202, Stryjska Street, Lviv 79031 (Ukraine); Lviv State University of Vital Activity Safety, 35, Kleparivska Street, Lviv 79007 (Ukraine); Brunner, M. [Fachhochschule Köln/University of Applied Sciences, 2, Betzdorfer Strasse, Köln 50679 (Germany); Hadzaman, I. [Institute of Materials, Scientific Research Company “Carat”, 202, Stryjska Street, Lviv 79031 (Ukraine); Drohobych Ivan Franko State Pedagogical University, 24, I. Franko Street, Drohobych 82100 (Ukraine); Klym, H. [Institute of Materials, Scientific Research Company “Carat”, 202, Stryjska Street, Lviv 79031 (Ukraine); Lviv Polytechnic National University, 12, Bandera Street, Lviv 79013 (Ukraine)

    2015-02-15

    Thermally-induced electronic relaxation in structurally-modified Cu{sub 0.1}Ni{sub 0.8}Co{sub 0.2}Mn{sub 1.9}O{sub 4} spinel ceramics is shown to be adequately described by stretched exponential function on time. This kinetics is defined by microsctructure perfectness of the relaxing media, showing obvious onset to stretched exponential behaviour with non-exponentionality index attaining close to 0.43 values for high-monolith ceramics and smaller ones in fine-grained ceramics. Percolation threshold in relaxation-degradation kinetics is detected for ceramics with 10% of NiO extractions, showing the smallest but most prolonged single-path degradation effect. This finding is treated in terms of Phillips’ axiomatic diffusion-to-trap model, where only one of two relaxation channels (caused by operative short-range forces) occurs to be effective, while additional non-operative channels contribute to electronic relaxation in fine-grained ceramics.

  12. Synthesis, crystal structure, and ionic conductivity of a new layered metal phosphate, Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Chul; Kwak, Hyun-Jung [Department of Energy Systems Research, Ajou University, Suwon 16499 (Korea, Republic of); Yoo, Chung-Yul [Advanced Materials & Devices Laboratory, Korea Institute of Energy Research, Daejeon 34129 (Korea, Republic of); Yun, Hoseop [Department of Energy Systems Research, Ajou University, Suwon 16499 (Korea, Republic of); Kim, Seung-Joo, E-mail: sjookim@ajou.ac.kr [Department of Energy Systems Research, Ajou University, Suwon 16499 (Korea, Republic of)

    2016-11-15

    A new layered metal phosphate, Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3}, was synthesized in the form of either a single-crystal or polycrystalline powder using the molten hydroxide flux method or a solid-state reaction, respectively. Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3} crystallizes to the P2{sub 1}/n (Z=4) monoclinic space group with lattice parameters a≈4.95 Å, b≈22.06 Å, c≈8.63 Å, and β≈91.5°. The structure is composed of stacked [LiSrAl(PO{sub 4}){sub 2}] layers alternating regularly with [LiSrPO{sub 4}] layers. In the [LiSrAl(PO{sub 4}){sub 2}] sublattice, the AlO{sub 6} octahedra and PO{sub 4} tetrahedra are tilted cooperatively to form an anionic, corrugated, two-dimensional [Al(PO{sub 4}){sub 2}]{sup 3−} framework that can be regarded as a “distorted-glaserite” structure. The [LiSrPO{sub 4}] sublattice is that of a layered block containing a six-membered ring formed from alternating linkages of LiO{sub 4} and PO{sub 4} tetrahedra. The six-membered rings show a boat-type arrangement with the up(U) or down(D) pointing sequence, UUDUUD. The interspace between the two sublattices generates a two-dimensional pathway for Li{sup +} ion conduction. The impedance measurement indicated that Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3} had a moderate ion conductivity (σ≈1.30×10{sup −4} S cm{sup −1} at 667 K), with an activation energy E{sub a}≈1.02 eV. - Graphical abstract: Polyhedral view of Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3}. Li{sup +} ions are represented by green spheres, Sr atoms by white spheres, AlO{sub 6} groups by octahedra, and PO{sub 4} groups by tetrahedra. - Highlights: • New compound Li{sub 2}Sr{sub 2}Al(PO{sub 4}){sub 3} is reported. • The crystal structure is investigated by single-crystal XRD analysis. • The structure is formed by the alternate stacking of two different sublattices. • Correlation between the crystal structure and ionic conductivity is discussed.

  13. Syntheses and structural characterization of vanado-tellurites and vanadyl-selenites: SrVTeO{sub 5}(OH), Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}, Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O and Ba{sub 2}VSe{sub 3}O{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Konatham, Satish; Vidyasagar, Kanamaluru, E-mail: kvsagar@iitm.ac.in

    2017-05-15

    Four new quaternary vanado-tellurites and vanadyl-selenites, namely, SrVTeO{sub 5}(OH)(1), Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}(2), Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O(3) and Ba{sub 2}VSe{sub 3}O{sub 10}(4) have been synthesized and structurally characterized by single crystal X-ray diffraction. The oxidation state of vanadium is +5 in tellurites 1 and 2 and +4 in selenites 3 and 4. The structures of SrVTeO{sub 5}(OH)(1) and Cd{sub 2}V{sub 2}Te{sub 2}O{sub 11}(2) compounds consist of (VTeO{sub 5}(OH)){sup 2-} and (V{sub 2}Te{sub 2}O{sub 11}){sup 4-}anionic chains respectively, which are built from tetrahedral VO{sub 4} and disphenoidal TeO{sub 4} moieties. Similarly the structures of Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O(3) and Ba{sub 2}VSe{sub 3}O{sub 10}(4) respectively contain (VSe{sub 2}O{sub 7}){sup 2-} and (VSe{sub 3}O{sub 10}){sup 4-} anionic chains, which are made up of octahedral VO{sub 6} and pyramidal SeO{sub 3} units. Compounds 1 and 3 have been characterized by thermogravimetric and infrared spectroscopic methods. Compounds 1 and 2 are wide band gap semiconductors. - Graphical abstract: Ca{sub 3}VSe{sub 4}O{sub 13}·H{sub 2}O and Ba{sub 2}VSe{sub 3}O{sub 10} compounds contain (VSe{sub 2}O{sub 7}){sup 2-} and (VSe{sub 3}O{sub 10}){sup 4-} chains. - Highlights: • Four new vanado-tellurites and vanadyl-selenites are synthesized. • Their structural features are different. • The vanado-tellurites are wide band gap semiconductors.

  14. Luminescence from ZnSe excited by picosecond mid-infrared FEL pulses

    International Nuclear Information System (INIS)

    Mitsuyu, T.; Suzuki, T.; Tomimasu, T.

    1998-01-01

    We have observed blue band-edge emission from a ZnSe crystal under irradiation of mid-infrared picosecond free electron laser (FEL) pulses. The emission characteristics including spectrum, excitation power dependence, excitation wavelength dependence, and decay time have been investigated. The experimental results have indicated that it is difficult to understand the excitation process by multiphoton excitation, thermal excitation, or excitation through mid-gap levels. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Crystallographic isomorphism in the structural type of α-HgI{sub 2} by example of KHgI{sub 3} · H{sub 2}O, β-Ag{sub 2}HgI{sub 4}, and β-Cu{sub 2}HgI{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Borisov, S. V., E-mail: borisov@niic.nsc.ru; Magarill, S. A.; Pervukhina, N. V. [Russian Academy of Sciences, Nikolaev Institute of Inorganic Chemistry, Siberian Branch (Russian Federation)

    2017-03-15

    The structure of KHgI{sub 3} · H{sub 2}O is assigned to the family of crystal structures having the three-layer cubic packing of iodine anions with cations in the tetrahedral voids (the structures of α-HgI{sub 2}, β-Ag{sub 2}HgI{sub 4}, and β-Cu{sub 2}HgI{sub 4} among them). Crystallographic analysis shows that the nodes of the three-layer close packing are populated by iodine anions and K cations in the ratio 3/4: 1/4. Transformation of the structure of α-HgI{sub 2} into the structure of KHgI{sub 3} · H{sub 2}O can be formally represented as the replacement of (HgI){sub n}{sup +} fragments by (KH{sub 2}O){sub n}{sup +} fragments: (Hg{sub 2}I{sub 4})–(HgI){sup +} + (KH{sub 2}O){sub n}{sup +} = KHgI{sub 3} · H{sub 2}O. Perforated layers of vertex-sharing HgI{sub 4} tetrahedra break down into parallel isolated chains. Channels formed in place of I–Hg–I–Hg–fragments are occupied by–H{sub 2}O–K–-H{sub 2}-O-K-H{sub 2}O-chains weakly bound to neighbors.

  16. Picosecond x-ray measurements from 100 eV to 30 keV

    International Nuclear Information System (INIS)

    Attwood, D.T.; Kauffman, R.L.; Stradling, G.L.

    1980-01-01

    Picosecond x-ray measurements relevant to the Livermore Laser Fusion Program are reviewed. Resolved to 15 picoseconds, streak camera detection capabilities extend from 100 eV to higher than 30 keV, with synchronous capabilities in the visible, near infrared, and ultraviolet. Capabilities include automated data retrieval using charge coupled devices (CCD's), absolute x-ray intensity levels, novel cathodes, x-ray mirror/reflector combinations, and a variety of x-ray imaging devices

  17. Synthesis and photoluminescence properties of Sm{sup 3+}substituted glaserite-type orthovanadates K{sub 3}Y[VO{sub 4}]{sub 2} with monoclinic structure

    Energy Technology Data Exchange (ETDEWEB)

    Duke John David, A., E-mail: dukejohndavid02@gmail.com [Voorhees College, Vellore, Tamil Nadu (India); Muhammad, G. Shakil [Islamiah College, Vaniyambadi, Tamil Nadu (India); Sivakumar, V. [National Institute of Technology (NIT), Rourkela (India)

    2016-09-15

    A novel phosphor of Glaserite type Orthovanadate K{sub 3}Y[VO{sub 4}]{sub 2} substituted with the trivalent rare-earth Sm{sup 3+} ions were synthesized by the conventional high temperature solid-state reaction method, their structural characterization and photoluminescent properties were investigated by X-ray diffraction and spectrofluorimetry. The phase-purity of glaserite structure in the synthesized compound was verified by XRD study. The morphology was measured by FESEM. Host lattice emits broad-band green color and it is originated from the [VO{sub 4}]{sup 3−}. Photoluminescence studies of Sm{sup 3+} activated samples show orange red emission. The charge transfer behaviours from [VO{sub 4}]{sup 3−} to Sm{sup 3+} ions (host to activator) in K{sub 3}Y{sub (1−x)}[VO{sub 4}]{sub 2}: {sub x}Sm{sup 3+} phosphors have been confirmed by photoluminescence and PL decay life time measurement. No concentration quenching was observed even for higher concentration of the dopant Sm{sup 3+} ions. The CIE chromaticity color coordinate values were calculated and it is very much closer to the NTSC standards. All the results clearly indicate that self-activated K{sub 3}Y{sub 1−x}[VO{sub 4}]{sub 2} with the rare earth {sub x}Sm{sup 3+} activated phosphors show great potential as a phosphor material for near-UV based white LEDs.

  18. Electronic structure and properties of NbS{sub 2} and TiS{sub 2} low dimensional structures

    Energy Technology Data Exchange (ETDEWEB)

    Gueller, F., E-mail: guller@tandar.cnea.gov.ar [Centro Atomico Constituyentes, GIyANN, CNEA, San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, C1033AAJ Buenos Aires (Argentina); Helman, C. [Centro Atomico Constituyentes, GIyANN, CNEA, San Martin, Buenos Aires (Argentina); Llois, A.M. [Centro Atomico Constituyentes, GIyANN, CNEA, San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, C1033AAJ Buenos Aires (Argentina); Departamento de Fisica Juan Jose Giambiagi, FCEyN, UBA, Buenos Aires (Argentina)

    2012-08-15

    Transition metal dichalcogenides have a laminar structure, weakly bound through van der Waals interactions. Due to their technological applications in catalytic processes the bulk structure of many of them has been widely studied in the last 30 years. Some of them, such as NbTe{sub 2} and TiSe{sub 2}, show superconductivity and have been, therefore, the subject of intense study. Novoselov et al. (2005) achieved to isolate not only graphene but also other bidimensional crystals, among them layers of some dichalcogenides. These bidimensional crystals preserve their monocrystallinity under normal ambient conditions, keeping the crystal structure of the bulk. In this contribution we calculate the magnetic and electronic properties of 2D layers of NbS{sub 2} (non-magnetic metal in 3D) and TiS{sub 2} (non-magnetic semimetal in 3D) as well as quasi 1D chains cut out from these layers.

  19. Effect of pelletization pressure on structural properties and critical current hysteresis of ceramic superconducting Bi sub 1 sub . sub 7 Pb sub 0 sub . sub 3 Sr sub 2 Ca sub 2 Cu sub 3 O sub y

    CERN Document Server

    Tepe, M; Abukay, D

    2003-01-01

    The effect of pelletization pressures on structural properties and critical current hysteresis of Bi sub 1 sub . sub 7 Pb sub 0 sub . sub 3 Sr sub 2 Ca sub 2 Cu sub 3 O sub y samples was investigated. The samples used in this study were prepared by classical solid-state reaction at the pressures from 100 up to 500 MPa. The obtained samples were characterized by resistance vs. temperature, (R-T), critical current density vs. applied magnetic field, (J sub c -H), material density vs. pressure, (rho-P), XRD, SEM, and EDAX. The results of this study showed that the quality of electrical and structural properties of Bi-2223 bulk superconductors strongly depends on the pelletization pressure. Pressing of bulk samples at 400 MPa produces textured grain alignment and associates microstructural modifications in order to enhance flux pinning and thus increases current carrying capacities. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  20. Synthesis, structure and magnetic properties of crystallographically aligned CuCr{sub 2}Se{sub 4} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Esters, Marco [Department of Chemistry, University of Oregon, Eugene, OR 97403 (United States); Liebig, Andreas [Institut für Physik, Universität Augsburg, 86159 Augsburg (Germany); Ditto, Jeffrey J.; Falmbigl, Matthias [Department of Chemistry, University of Oregon, Eugene, OR 97403 (United States); Albrecht, Manfred [Institut für Physik, Universität Augsburg, 86159 Augsburg (Germany); Johnson, David C., E-mail: davej@uoregon.edu [Department of Chemistry, University of Oregon, Eugene, OR 97403 (United States)

    2016-06-25

    We report the low temperature synthesis of highly textured CuCr{sub 2}Se{sub 4} thin films using the modulated elemental reactant (MER) method. The structure of CuCr{sub 2}Se{sub 4} is determined for the first time in its thin film form and exhibits cell parameters that are smaller than found in bulk CuCr{sub 2}Se{sub 4}. X-ray diffraction and precession electron diffraction show a strong degree of crystallographic alignment of the crystallites, where the <111> axis is oriented perpendicular to the substrate surface, while being rotationally disordered within the plane. Temperature and field dependent in-plane and out-of-plane magnetization measurements show that the film is ferromagnetic with a Curie temperature of 406 K CuCr{sub 2}Se{sub 4} synthesized utilizing the MER method shows stronger magnetic anisotropy (effective anisotropy: 1.82 × 10{sup 6} erg cm{sup −3}; shape anisotropy: 1.07 × 10{sup 6} erg cm{sup −3}), with the easy axis lying out of plane, and a larger magnetic moment (6 μ{sub B}/f.u.) than bulk CuCr{sub 2}Se{sub 4}. - Highlights: • Crystallographically aligned, phase pure CuCr{sub 2}Se{sub 4} were synthesized. • The degree of alignment decreases with annealing time. • The films are ferromagnetic with the easy axis along the <111> direction. • The magnetization is larger than bulk CuCr{sub 2}Se{sub 4} or other CuCr{sub 2}Se{sub 4} films made to date.

  1. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Shaheen, M.E.; Gagnon, J.E.; Fryer, B.J.

    2015-01-01

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using 66 Zn/ 63 Cu, 208 Pb/ 238 U, 232 Th/ 238 U, 66 Zn/ 232 Th and 66 Zn/ 208 Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%). - Highlights: • Fractionation and ICP-MS signal response were investigated for two different pulse widths using NIST 610 and Naval Brass. • Dependence of fractionation indices on repetition rate and pulse width. • Higher ablation rate was observed in picosecond compared to femtosecond laser ablation of NIST 610 and Brass

  2. Nd{sub 39}Ir{sub 10.98}In{sub 36.02}. A complex intergrowth structure with CsCl- and AlB{sub 2}-related slabs

    Energy Technology Data Exchange (ETDEWEB)

    Dominyuk, Nataliya; Zaremba, Vasyl' I. [Ivan Franko National Univ., Lviv (Ukraine). Dept. of Inorganic Chemistry; Rodewald, Ute C.; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2015-11-01

    The ternary indide Nd{sub 39}Ir{sub 10.98}In{sub 36.02} was synthesized by arc-melting and characterized by single crystal X-ray diffraction. Nd{sub 39}Ir{sub 10.98}In{sub 36.02} crystallizes with a new structure type: Pearson code oP172, Pbam, a = 3175.4(6), b = 3762.5(8), c = 378.02(8) pm, wR2 = 0.0828, 5544 F{sup 2} values, and 262 variables. Although the structure contains 44 crystallographically independent sites, it can easily be explained as an intergrowth structure of CsCl and AlB{sub 2} related slabs. The larger indium atoms fill all distorted CsCl slabs. The trigonal prismatic (AlB{sub 2}) slabs have no uniform size. The larger ones are filled by indium and the smaller ones by the iridium atoms. Additionally, one trigonal prism shows a mixed occupancy by indium and iridium. The crystal chemistry of Nd{sub 39}Ir{sub 10.98}In{sub 36.02} is discussed in the context of other intergrowth structures with the same simple slabs.

  3. Interface structure and electronic properties of SrTiO{sub 3} and YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} crystals and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Thiess, S.

    2007-07-01

    Two new extensions of the X-ray standing wave (XSW) technique, made possible by the intense highly collimated X-ray beams from undulators at the ESRF, are described in this thesis. First, the XSW method was applied in a structural study to solve the nucleation mechanism of the high temperature superconductor YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} on the (001) surface of SrTiO{sub 3}. Second, the valence electronic structures of SrTiO{sub 3} and YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} were investigated. Finally, recent developments in the field of photoelectron spectroscopy in the hard X-ray region are described. The X-ray standing wave method is used in combination with fluorescence, Auger or photoelectron spectroscopy and lends very high spatial resolution power to these analytical techniques. Previously, the XSW method has been used for structure determination of surfaces and interfaces. The currently available X-ray intensities permit extensions to the XSW technique. Two recently established applications, described in this thesis, are XSW real space imaging and XSW valence electronic structure analysis. XSW real space imaging was employed to analyse the atomic structure of 0.5 and 1.0 layers of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} deposited on SrTiO{sub 3}(001). Three-dimensional images of the atomic distributions were reconstructed for each of the elements from experimentally determined Fourier components of the atomic distribution functions. The images confirmed the formation of a perovskite precursor phase prior to the formation of the YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} phase during the growth of the first monolayer of the film. XSW valence electronic structure analysis applied to SrTiO{sub 3} identified the valence band contributions arising from the strontium, titanium, and oxygen sites of the crystal lattice. Relations between the site-specific valence electronic structure and the lattice structure were established. The experimental results agree very well with

  4. Moulding of Sub-micrometer Surface Structures

    DEFF Research Database (Denmark)

    Pranov, Henrik; Rasmussen, Henrik K.; Larsen, Niels Bent

    2006-01-01

    The experiments strongly suggest that the possibility to injection mould sub-micrometer surface structures in polymers mainly relates to the forces originating from the adhesive energy between polymer and shim.......The experiments strongly suggest that the possibility to injection mould sub-micrometer surface structures in polymers mainly relates to the forces originating from the adhesive energy between polymer and shim....

  5. Hierarchically structured carbon-coated SnO{sub 2}-Fe{sub 3}O{sub 4} microparticles with enhanced lithium storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Xiaohan; Shi, Chunsheng [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072 (China); Liu, Enzuo [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Li, Jiajun [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072 (China); Zhao, Naiqin [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, 300072 (China); He, Chunnian, E-mail: cnhe08@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072 (China); Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University, Tianjin, 300072 (China)

    2016-01-15

    Graphical abstract: Hierarchically structured SnO{sub 2}-Fe{sub 3}O{sub 4}@C microparticles for lithium-ion battery anode are developed by a facile and scalable strategy. - Highlights: • Hierarchically structured SnO{sub 2}-Fe{sub 3}O{sub 4}@C micrometer-sized particles were synthesized. • The SnO{sub 2}-Fe{sub 3}O{sub 4}@C micrometer-sized particles deliver high reversible lithium storage capacity. • The wrapped carbon layer can buffer the volume expansion of SnO{sub 2}-Fe{sub 3}O{sub 4}. - Abstract: A facile and scalable strategy was developed to fabricate SnO{sub 2}-Fe{sub 3}O{sub 4}@C micrometer-sized particles as a good lithium-ion battery anode. The obtained materials were constructed by aggregated nanoclusters (100–200 nm) consisting of SnO{sub 2}-Fe{sub 3}O{sub 4}@C nanospheres (20 ∼ 30 nm), in which SnO{sub 2} and Fe{sub 3}O{sub 4} nanoparticles (5 ∼ 8 nm) were homogeneously embedded in a percolating carbonaceous network with an average thickness of about 3 nm. SnO{sub 2}-Fe{sub 3}O{sub 4}@C microparticles were synthesized by a one-pot hydrothermal process followed by annealing under Ar and subsequent chemical vapor transformation (CVT) under vacuum. The peculiar strategy allows to obtain hierarchical structure of micrometer-sized particles including nanospheres, nanoclusters and micro-scale particles, and the combination of SnO{sub 2} and Fe{sub 3}O{sub 4} could promote the synergistic effects to enhance the reversible capacity as well as the structural stability. Meanwhile, the carbon layer, homogeneously covering the nanoparticles does not only accommodate the volume change of active materials to maintain the structural integrity but also forms a conductive network throughout the whole micro-sized structure during charge/discharge processes. As a result, the electrode of SnO{sub 2}-Fe{sub 3}O{sub 4}@C microparticles exhibits good rate performance (1056 mAh g{sup −1} at 0.1 C, 734 mAh g{sup −1} at 0.2 C, 449 mAh g{sup −1} at 0.5 C, 212

  6. Synthesis by two methods and crystal structure determination of a new pyrochlore-related compound Sm{sub 2}FeTaO{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Martinez, Leticia M., E-mail: lettorresg@yahoo.com [Departamento de Ecomateriales y Energia, Facultad de Ingenieria Civil, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Ruiz-Gomez, Miguel A. [Departamento de Ecomateriales y Energia, Facultad de Ingenieria Civil, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, San Luis Potosi, S.L.P. 78290 (Mexico); Figueroa-Torres, M.Z.; Juarez-Ramirez, Isaias [Departamento de Ecomateriales y Energia, Facultad de Ingenieria Civil, Universidad Autonoma de Nuevo Leon, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Moctezuma, Edgar [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Manuel Nava 6, San Luis Potosi, S.L.P. 78290 (Mexico); and others

    2012-04-16

    Graphical abstract: The monoclinic (space group C2/c) structure of a new compound, Sm{sub 2}FeTaO{sub 7} shows an alternating Sm-O and Fe/Ta-O layers. In the Fe/Ta-O layer, Fe/Ta1 and Fe/Ta3 cations are coordinated by six oxygen atoms, forming irregular octahedral interconnected into a hexagonal tungsten bronze (HTB) type network. The HTB layer is a fundamental framework in the pyrohlore-related structure. Highlights: Black-Right-Pointing-Pointer Pyrochlore-related compound Sm{sub 2}FeTaO{sub 7} prepared by solid state reaction and sol-gel. Black-Right-Pointing-Pointer Sm{sub 2}FeTaO{sub 7} crystallizes with a monoclinic crystal structure and space group C2/c. Black-Right-Pointing-Pointer The compound is synthesized by sol-gel at lower temperature and time than solid state. Black-Right-Pointing-Pointer Surface area of sol-gel Sm{sub 2}FeTaO{sub 7} is 10 times higher than that prepared by solid state. - Abstract: This paper reports on the synthesis of a new pyrochlore-related compound Sm{sub 2}FeTaO{sub 7} by both solid state reaction and sol-gel synthesis routes. Structural features were determined by X-ray powder diffraction and Rietveld refinement and were corroborated using Transmission Electron Microscopy (TEM). The results revealed that Sm{sub 2}FeTaO{sub 7} crystallized in the monoclinic system with space group C2/c and the following cell parameters: a = 13.1307(5) Angstrom-Sign , b = 7.5854(3) Angstrom-Sign , c = 11.6425(4) Angstrom-Sign and {beta} = 100.971(2) Degree-Sign . The monoclinic structure of Sm{sub 2}FeTaO{sub 7} showed an arrangement of alternating Sm-O and Fe/Ta-O layers and two types of irregular octahedra of Fe/Ta-O, which are interconnected into a hexagonal tungsten bronze (HTB)-type network. On the other hand, Sm{sub 2}FeTaO{sub 7} prepared by sol-gel was obtained with lower particle sizes than the solid state produced compound. The difference in particle size causes a difference of one order of magnitude in the specific surface area. In

  7. Picosecond laser damage of fused silica at 355 nm

    International Nuclear Information System (INIS)

    Meng Xiangjie; Liu Hongjie; Wang Fang; Zhang Zhen; An Xinyou; Huang Jin; Jiang Xiaodong; Wu Weidong; Ren Weiyi

    2013-01-01

    This paper studies the initiated damage threshold, the damage morphology and the subsequent damage growth on fused silica's input-surface and exit-surface under picosecond laser irradiation at 355 nm. Defects induced fluorescence on surface of the optical component is observed. The results demonstrate a significant dependence of the initiated damage on pulse duration and surface defects, and that of the damage growth on self-focusing, sub-surface defects. The damage-threshold is 3.98 J/cm 2 of input surface and 2.91 J/cm 2 of exit surface. The damage morphologies are quite different between input surface and exit surface. Slow growth behavior appears for the diameter of exit-surface and linear growth one for the depth of exit-surface in the lateral side of damage site with the increase of shot number. Defects have changed obviously compared with nanosecond laser damage in the damage area. Several main reasons such as electric intensification and self-focusing for the observed initiated damage and damage growth behavior are discussed. (authors)

  8. Crystal structure and X-ray photoelectron spectroscopy study of the transition-metal oxides LaFe sub 1 sub - sub x Cr sub x O sub 3

    CERN Document Server

    Chen Zhi Gang; Yu Jun; Ibrahim, K; Dong Yu Hui; Wu Zi Yu; Wei Long; Wang Yu Tian

    2002-01-01

    LaFe sub 1 sub - sub x Cr sub x O sub 3 systematic compounds were prepared by Cr sup 3 sup + doping into the end component LaFeO sub 3. The crystal constants have been evaluated by using MarqX code. The analysis of the XRD data confirms that the perovskite compounds are in their single-phase state. The authors have also performed O 1s core-level photoemission experiments using photon energies above and below Fe 2p absorption edge, respectively, in order to investigate the crystal structure variation trend in terms of electronic structure. A preliminary conclusion has been drawn that the charge transfer amount from 0 2p to Cr 3d varies regularly with the doping level of Cr sup 3 sup + in LaFe sub 1 sub - sub x Cr sub x O sub 3

  9. Spectroscopic and structural properties of polycrystalline Y{sub 2}Si{sub 2}O{sub 7} doped with Er{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Marciniak, L., E-mail: L.Marciniak@int.pan.wroc.pl [Institute for Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland); Hreniak, D.; Strek, W. [Institute for Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland); Piccinelli, F., E-mail: fabio.piccinelli@univr.it [Laboratorio di Chimica dello Stato Solido, DB, Università di Verona and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona (Italy); Speghini, A.; Bettinelli, M. [Laboratorio di Chimica dello Stato Solido, DB, Università di Verona and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona (Italy); Miritello, M., E-mail: maria.miritello@ct.infn.it [CNR-IMM MATIS and Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Lo Savio, R.; Cardile, P.; Priolo, F. [CNR-IMM MATIS and Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2016-02-15

    Powders of yttrium disilicate (Y{sub 2}Si{sub 2}O{sub 7}) doped with Er{sup 3+} have been prepared by the sol–gel method. The structure of the obtained powders has been determined. Room temperature emission spectra have been recorded and excited state decay profiles have been analyzed. Differences between the spectroscopic properties of Er{sup 3+} in monoclinic α-Y{sub 2}Si{sub 2}O{sub 7} (space group P-1) and β-Y{sub 2}Si{sub 2}O{sub 7} (space group C2/m) polymorphs have been investigated and shown. The significant broadening of the emission spectra recorded for the α phase compared to the one for the β phase was discussed in terms of higher number of Y{sup 3+} sites (4) present in the α phase with respect to only one Y{sup 3+} site in the case of β phase. The higher value of the luminescence decay time of β phase (11.2 ms) compared to the α phase (8.5 ms) is associated with the higher site symmetry of β-Y{sub 2}Si{sub 2}O{sub 7}. Moreover it was found that Er{sup 3+} concentration affects the shape of the {sup 4}I{sub 13/2}→{sup 4}I{sub 15/2} emission band. It results in changes of the relative emission intensities of peaks localized at 1527 nm and 1532 nm; this indicates changes of the Y{sup 3+} sites occupation on increasing the Er{sup 3+} concentration. The luminescence lifetime was observed to decrease with the increase of Er{sup 3+} concentration. The spectroscopic results have been compared with the ones relative to thin films of Y{sub 2}Si{sub 2}O{sub 7}:Er{sup 3+} with a similar composition. The lower value of the luminescence decay time observed for thin films compared to the powder of α phase was explained with the changes of the particles packing resulting in the change of the effective refractive index.

  10. Crystal structure, {sup 139}La NMR and transport properties of the As-based filled skutterudites LaOs{sub 4}As{sub 12} and PrOs{sub 4}As{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Wawryk, R.; Zogal, O.; Pietraszko, A.; Paluch, S.; Cichorek, T. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland); Yuhasz, W.M.; Sayles, T.A.; Ho, P.-C.; Yanagisawa, T.; Butch, N.P.; Maple, M.B. [Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego (United States); Henkie, Z. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland)], E-mail: Z.Henkie@int.pan.wroc.pl

    2008-02-28

    We have grown single crystals of LaOs{sub 4}As{sub 12} and PrOs{sub 4}As{sub 12}, which crystallize in the LaFe{sub 4}P{sub 12}-type structure (Im3-bar space group) with the lattice parameters of 8.542(1) A and 8.520(1) A, respectively. From a narrow {sup 139}La NMR line, we estimated an appreciable Knight shift ({sup 139}K) and a relatively long spin-lattice-relaxation time in the non-4f electron system LaOs{sub 4}As{sub 12}. Surprisingly, while {sup 139}K vary non-monotonically with temperature, the magnetic susceptibility increases upon cooling over the whole temperature range. Interestingly, the high-temperature dependence of the thermoelectric power of LaOs{sub 4}As{sub 12} is remarkably similar to that one of PrOs{sub 4}As{sub 12}.

  11. TECHNICAL DESIGN NOTE: Picosecond resolution programmable delay line

    Science.gov (United States)

    Suchenek, Mariusz

    2009-11-01

    The note presents implementation of a programmable delay line for digital signals. The tested circuit has a subnanosecond delay range programmable with a resolution of picoseconds. Implementation of the circuit was based on low-cost components, easily available on the market.

  12. Crystal structure of ferroelectric Bi{sub 2}VO{sub 5.5}

    Energy Technology Data Exchange (ETDEWEB)

    Sooryanarayana, K.; Guru Row, T.N.; Varma, K.B.R. [Indian Inst. of Science, Bangalore (India)

    1997-12-01

    The structure of the {alpha}-phase of bismuth vanadate Bi{sub 2}VO{sub 5.5} has been determined using single crystal X-ray diffraction data in the space group Aba2. The refinement involves a well defined disorder at the vanadium site, which incorporates the features of the superlattice structure with vanadium tetrahedra and oxygen-deficient octahedra that is displaced about the twofold axis.

  13. SrAu{sub 4.76}In{sub 1.24} with YbMo{sub 2}Al{sub 4}-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Muts, Ihor [Ivan Franko National Univ., Lviv (Ukraine). Inorganic Chemistry Dept.; Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Matar, Samir F. [CNRS, Univ. de Bordeaux, Pessac (France). ICMCB; Rodewald, Ute C.; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Zaremba, Vasyl' I. [Ivan Franko National Univ., Lviv (Ukraine). Inorganic Chemistry Dept.

    2011-10-15

    The gold-rich intermetallic compound SrAu{sub 4.76}In{sub 1.24} was synthesized by high-frequence-melting of the elements in a sealed tantalum tube and subsequent annealing. The structure was refined from single-crystal X-ray diffraction data: YbMo{sub 2}Al{sub 4}-type, I4/mmm, Z = 2, a = 718.77(7), c = 552.79(9) pm, wR2 = 0.0760, 149 F{sup 2} values and 11 parameters. The 4d (0.62 In + 0.38 Au) Wyckoff position shows mixed occupancy leading to the composition SrAu{sub 4.76}In{sub 1.24} for the investigated crystal. The strontium atoms are located in a large cage built up by 12 Au + 8 In atoms. The gold and indium atoms show segregation into substructures. The striking structural motifs are Au4 squares (278 pm Au-Au) and indium chains (276 pm In-In). The squares and chains are connected via weaker Au-Au (299 pm) and Au-In (295 pm) bonds to a three-dimensional network. The In chains show the motif of rod packing. Electronic structure calculations show anisotropy within the structure with different responses to compressions along In-In chains and Au planes, also illustrated by the electron localization contour plots. The metallic behavior is found to be of itinerant electron type (like Cu), and the chemical bonding includes stabilizing Au-In interactions. (orig.)

  14. Nucleon structure functions in noncommutative space-time

    Energy Technology Data Exchange (ETDEWEB)

    Rafiei, A.; Rezaei, Z.; Mirjalili, A. [Yazd University, Physics Department, Yazd (Iran, Islamic Republic of)

    2017-05-15

    In the context of noncommutative space-time we investigate the nucleon structure functions which play an important role in identifying the internal structure of nucleons. We use the corrected vertices and employ new vertices that appear in two approaches of noncommutativity and calculate the proton structure functions in terms of the noncommutative tensor θ{sub μν}. To check our results we plot the nucleon structure function (NSF), F{sub 2}(x), and compare it with experimental data and the results from the GRV, GJR and CT10 parametrization models. We show that with the new vertex that arises the noncommutativity correction will lead to a better consistency between theoretical results and experimental data for the NSF. This consistency will be better for small values of the Bjorken variable x. To indicate and confirm the validity of our calculations we also act conversely. We obtain a lower bound for the numerical values of Λ{sub NC} scale which correspond to recent reports. (orig.)

  15. Study of structural and optical properties of Cd{sub 1-x}Zn{sub x}Se thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wahab, L.A., E-mail: aly_lo2003@yahoo.com [National Center for Radiation Research and Technology, Nasr City, Cairo (Egypt); Zayed, H.A. [University Collage of Women for Art, Science and Education, Ain Shams University, Cairo (Egypt); El-Galil, A.A. Abd [National Center for Radiation Research and Technology, Nasr City, Cairo (Egypt)

    2012-06-01

    Cd{sub 1-x}Zn{sub x}Se (x = 0, 0.5 and 1) thin films have been deposited onto glass substrates using thermal evaporation technique. The lattice constants, grain size, microstrain and dislocation density were studied by using X-ray diffraction. In addition the optical constants were calculated in the wavelength range 400-2500 nm. Transmittance and reflectance were used to calculate the absorption coefficient {alpha} and the optical band gap E{sub g}. The linear relation of ({alpha}h{upsilon}){sup 2} as a function of photon energy h{upsilon} for the thin films illustrated that the films exhibit a direct band gap, which increases with increasing Zn content. This increasing of optical band gap was interpreted in accordance to the increasing in the cohesive energy. Optical constants, such as refractive index n, optical conductivity {sigma}{sub opt}, complex dielectric constant, relaxation time {tau} and dissipation factor tan{delta} were determined. The optical dispersion parameters E{sub 0}, E{sub d} were determined according to Wemple and Di Domenico method. - Highlights: Black-Right-Pointing-Pointer ZnSe thin film has cubic zinc blende structure while CdSe and Cd{sub 0.5}Zn{sub 0.5}Se thin films have hexagonal structure. Black-Right-Pointing-Pointer Grain size of Cd{sub 1-x}Zn{sub x}Se decreases with increasing x (x = 0, 0.5 and 1). Black-Right-Pointing-Pointer Optical band gap increases with increasing x.

  16. Structural and electric properties of La{sub 0.7}Sr{sub 0.25}Na{sub 0.05}Mn{sub 0.9}Ti{sub 0.1}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kossi, S. EL., E-mail: safwene666@hotmail.com [Laboratoire de la Matiére Condensée et des Nanosciences, Département de Physique, Faculté des Sciences University de Monastir, 5019 (Tunisia); Rhouma, F.I.H. [Laboratoire de la Matiére Condensée et des Nanosciences, Département de Physique, Faculté des Sciences University de Monastir, 5019 (Tunisia); Laboratoire de Photovoltaique, Centre de Recherches et des Tehnologies de l' Energie, BP Hammam-Lif 2050 (Tunisia); Dhahri, J. [Laboratoire de la Matiére Condensée et des Nanosciences, Département de Physique, Faculté des Sciences University de Monastir, 5019 (Tunisia); Khirouni, K. [Laboratoire de Physique des Matériaux et des Nanomatériaux Appliquée à L’environnement, Faculté des Sciences de Gabes Cité Erriadh, 6079 Gabes (Tunisia)

    2014-05-01

    This work studies structural and various electrical properties of polycrystalline La{sub 0.7}Sr{sub 0.25} Na{sub 0.05} Mn{sub 0.9}Ti{sub 0.1}O{sub 3} (LSNMTi), which were prepared by standard solid state reaction technique. The formation of a single phase rhombohedral structure of the composition was confirmed by the X-ray diffraction study. The electrical behavior of sintered pellets investigated by impedance spectra has shown frequency dependent behavior. Both conductivity and electric modulus formalisms have been used to study the relaxation dynamics of charge carriers. The variation of ac conductivity with frequency at different temperatures obeys the universal Jonscher's power law (σ{sub ac}αw).

  17. Generation of picosecond pulsed coherent state superpositions

    DEFF Research Database (Denmark)

    Dong, Ruifang; Tipsmark, Anders; Laghaout, Amine

    2014-01-01

    We present the generation of approximated coherent state superpositions-referred to as Schrodinger cat states-by the process of subtracting single photons from picosecond pulsed squeezed states of light. The squeezed vacuum states are produced by spontaneous parametric down-conversion (SPDC...... which exhibit non-Gaussian behavior. (C) 2014 Optical Society of America...

  18. Structural evolution and dielectric properties of (Ba{sub 1−x}Nd{sub x})(Ti{sub 1−y}Fe{sub y})O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.-D. [Research Center for Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022 (China); College of Chemistry, Northeast Normal University, Changchun 130024 (China); Lu, D.-Y., E-mail: cninjp11232000@yahoo.com [Research Center for Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022 (China); Sun, X.-Y. [Research Center for Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin 132022 (China)

    2013-11-05

    Highlights: •Structural evolution and dielectric properties of (Ba{sub 1−x}Nd{sub x})(Ti{sub 1−y}Fe{sub y})O{sub 3} were studied. •A cubic ceramic with x = y = 0.05 exhibits a high-k Y5V behavior (ε{sub RT}{sup ′} = 6790). •The T{sub m} in BNTF with x = 0.05 decreased linearly at a rate of −5 °C/mol% Fe ions. •Evolution in the 840 cm{sup −1} Raman band gives evidence for Nd{sup 3+}–Fe{sup 3+} complex formation. •Defect chemistry associated with structure evolution is discussed. -- Abstract: The influence of donor and acceptor co-doping on structure and dielectric properties of (Ba{sub 1−x}Nd{sub x})(Ti{sub 1−y}Fe{sub y})O{sub 3} (BNTF) (x = 0.05, y = 0.01–0.07; and x = 0–0.08, y = 0.05) ceramics was investigated with X-ray diffraction (XRD), scanning electron microscopy (SEM), electron paramagnetic resonance (EPR), Raman spectroscopy, and dielectric measurements. When x < y, two types of Nd{sup 3+}–Fe{sup 3+} and Fe{sup 3+}–V{sub O}–Fe{sup 3+} defect complexes formed and could not coexist, leading to the mixed phases of cubic and hexagonal. A single-phase ceramic with a cubic or tetragonal structure formed for x ⩾ y and the dielectric-peak temperature (T{sub m}) in BNTF with x = 0.05 decreased linearly with increasing y at a rate of −5 °C/mol% Fe ions. A high-k Y5V behavior can be realized at x = y = 0.05 (i.e., C-N5F5). The same concentrations of Nd{sup 3+} and Fe{sup 3+} formed Nd{sup 3+}–Fe{sup 3+} complexes, which could effectively suppress the dielectric loss and silence the 840 cm{sup −1} band called “Raman charge effect” associated with Nd{sup 3+} donors. C-N5F5 exhibited a cubic structure, medium-sized grains (3.3 μm), low dielectric loss (<0.06), and high-k Y5V behavior (ε{sub RT}{sup ′} = 6790). Defect chemistry associated with structure evolution is discussed.

  19. Structure and decomposition of the silver formate Ag(HCO{sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Puzan, Anna N., E-mail: anna_puzan@mail.ru; Baumer, Vyacheslav N.; Mateychenko, Pavel V.

    2017-02-15

    Crystal structure of the silver formate Ag(HCO{sub 2}) has been determined (orthorhombic, sp.gr. Pccn, a=7.1199(5), b=10.3737(4), c=6.4701(3)Å, V=477.88(4) Å{sup 3}, Z=8). The structure contains isolated formate ions and the pairs Ag{sub 2}{sup 2+} which form the layers in (001) planes (the shortest Ag–Ag distances is 2.919 in the pair and 3.421 and 3.716 Å between the nearest Ag atoms of adjacent pairs). Silver formate is unstable compound which decompose spontaneously vs time. Decomposition was studied using Rietveld analysis of the powder diffraction patterns. It was concluded that the diffusion of Ag atoms leads to the formation of plate-like metal particles as nuclei in the (100) planes which settle parallel to (001) planes of the silver formate matrix. - Highlights: • Silver formate Ag(HCO{sub 2}) was synthesized and characterized. • Layered packing of Ag-Ag pairs in the structure was found. • Decomposition of Ag(HCO{sub 2}) and formation of metal phase were studied. • Rietveld-refined micro-structural characteristics during decomposition reveal the space relationship between the matrix structure and forming Ag phase REPLACE with: Space relationship between the matrix structure and forming Ag phase.

  20. Structural study of Sr{sub 2}CuO{sub 3+delta} by neutron powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shimakawa, Y. [NEC Corp., Tsukuba (Japan). Fundamental Research Labs.; Jorgensen, J.D.; Mitchell, J.F.; Hunter, B.A. [Argonne National Lab., IL (United States); Shaked, S. [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev][Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Physics; Hinks, D.G.; Hitterman, R.L. [Argonne National Lab., IL (United States); Hiroi, Z.; Takano, M. [Kyoto Univ., Uji (Japan). Inst. for Chemical Research

    1996-11-01

    Average crystal structures of superconducting Sr{sub 2}CuO{sub 3+{delta}} synthesized at ambient pressure from a hydroxometallate precursor were refined from neutron powder diffraction data. A simplified model was used to fit the modulated superstructures. Both compounds have an oxygen deficient La{sub 2}CuO{sub 4}-type tetragonal T structure with O vacancies located in the CuO{sub 2} planes, not in the Sr{sub 2}O{sub 2} layers. This raises important questions about the superconductivity in Sr{sub 2}CuO{sub 3+{delta}} reported to be a 70 K superconductor.

  1. Time-resolved SFG study of formate on a Ni( 1 1 1 ) surface under irradiation of picosecond laser pulses

    Science.gov (United States)

    Noguchi, H.; Okada, T.; Onda, K.; Kano, S. S.; Wada, A.; Domen, K.

    2003-03-01

    Time-resolved sum-frequency generation spectroscopy was carried out on a deuterated formate (DCOO) adsorbed on Ni(1 1 1) surface to investigate the surface reaction dynamics under instantaneous surface temperature jump induced by the irradiation by picosecond laser pulses. The irradiation of pump pulse (800 nm) caused the rapid intensity decrease of both CD and OCO stretching modes of bridged formate on Ni(1 1 1). Different temporal behaviors of intensity recovery between these two vibrational modes were observed, i.e., CD stretching mode recovered faster than OCO. This is the first result to show that the dynamics of adsorbates on metals strongly depends on the observed vibrational mode. From the results of temperature and pump fluence dependence, we concluded that the observed intensity change was not due to the decomposition or desorption, but was induced by a non-thermal process.

  2. Electronic structure of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} by DFT and QMC

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, Aliakbar; Janowitz, Christoph; Manzke, Recardo [Institute of Physics, Humboldt University of Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Haghighi Mood, Kaveh [Dept. of Physics, Science and Research Branch (IAU), Tehran (Iran, Islamic Republic of)

    2012-07-01

    The electronic structure of high-T{sub c} cuprates superconductors (HTCS) is among the most interesting issues of condensed matter physics since their discovery by Bednorz and Mueller. It has been proven that the antiferromagnetic ground state of the parent compound of the HTCS is not accessible by using local density approximation (LDA) and generalized gradient approximation (GGA) as exchange-correlation energy functionals within density functional theory (DFT). Therefore, we calculated the electronic structure of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} by adding the Hubbard parameter to DFT(GGA+U) and quantum Monte Carlo (QMC) methods. The calculations have been performed by Wien2k and Casino codes for GGA+U and QMC, respectively.

  3. Neutron diffraction study of structural transformations in ternary systems of HgSe sub 1 sub - sub x S sub x mercury chalcogenides at high pressure

    CERN Document Server

    Voronin, V I; Berger, I F; Glazkov, V P; Kozlenko, D P; Savenko, B N; Tikhomirov, S V

    2001-01-01

    The structure of the ternary systems of the HgSe sub 1 sub - sub x S sub x mercury chalcogenides is studied at high pressures up to 35 kbar. It is established that by increase in the pressure in the HgSe sub 1 sub - sub x S sub x there takes place the transition from the sphalerite type cubic structure to the cinnabar type hexagonal structure, which is accompanied by the jump-like change in the elementary cell volume and interatomic distances. The parameters of the elementary cell and positional parameters of the Hg and Se/S for the hexagonal phase of high pressure are determined. The existence of the two-phase state in the area of the phase transformation is determined

  4. Structure of Na(Al/sub 1,5/As/sub 0,5/)(As/sub 2/O/sub 7/)/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Driss, A.; Jouini, T.

    1989-03-15

    M/sub r/=624.60, triclinic, Panti 1, a=7.727 (4), b=7.118 (2), c=4.839 (2) A, ..cap alpha..=104.43 (3), ..beta..=93.71 (3), ..gamma..=90.07 (4)/sup 0/, V=257.2 A/sup 3/, Z=1, D/sub m/ (in bromobenzene)=4.02, D/sub x/=4.03 Mg m/sup -3/, lambda(AgK..cap alpha..)=0.5608 A, ..mu..=8.23 mm/sup -1/, F(000)=291, final R=0.038 and wR=0.038 for 1102 independent reflections. This structure provides the first example of the partial replacement of aluminium by arsenic giving rise to mixed X(1)O/sub 6/ and X(2)O/sub 6/ octahedra containing different amounts of Al/sup III/ and As/sup V/. The preferential distribution and the X-O bond lengths are discussed in terms of the substitution ratios. The title compound is shown not to be a solid solution by deducing from the invariance of the powder patterns obtained from various mixtures that the tie lines converge to a single point on the corresponding phase diagram. This structure may be decomposed into layers of XO/sub 6/ octahedra sharing oxygen corners with As/sub 2/O/sub 7/ groups. Successive layers are linked together by two opposite oxygen atoms of X(2)O/sub 6/ forming X(2)-O-As bonds. The result is a three-dimensional framework having tunnels running along the c direction; these tunnels are occupied by sodium ions which are slightly off-centred in order to be surrounded by six oxygen atoms. Isomorphous replacement of arsenic by phosphorus in this salt is possible.

  5. Structure, properties, and disorder in the new distorted-Hollandite PbIr{sub 4}Se{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Trump, Benjamin A., E-mail: btrump1@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218 (United States); Department of Physics and Astronomy, Institute for Quantum Matter, Johns Hopkins University, Baltimore, MD 21218 (United States); McQueen, Tyrel M., E-mail: mcqueen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218 (United States); Department of Physics and Astronomy, Institute for Quantum Matter, Johns Hopkins University, Baltimore, MD 21218 (United States); Department of Material Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2016-10-15

    The synthesis and physical properties of the new distorted-Hollandite PbIr{sub 4}Se{sub 8} are reported. Powder X-ray diffraction and transmission electron microscopy show that the structure consists of edge- and corner-sharing IrSe{sub 6} octahedra, with one-dimensional channels occupied by Pb. The structure contains Se-Se anion-anion bonding, leading to an electron count of Pb{sup 2+}(Ir{sup 3+}){sub 4}(Se{sub 2}){sup 2-}(Se{sup 2−}){sub 6}, confirmed by bond-valence sums and diamagnetic behavior. Structural and heat capacity measurements demonstrate disorder on the Pb site, due to the combination of lone-pair effects and the large size of the one-dimensional channels. Comparisons are made to known Hollandite and pseudo-Hollandite structures, which demonstrates that the anion-anion bonding in PbIr{sub 4}Se{sub 8} distorts its structure, to accommodate the Ir{sup 3+} state. An electronic structure calculation indicates semiconductor character with a band gap of 0.76(11) eV.

  6. Electrochemical formation of GaAs honeycomb structure using a fluoride-containing (NH{sub 4}){sub 2}SO{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Yoshitaka, E-mail: morisita@cc.tuat.ac.jp; Yamamoto, Hitoshi; Yokobori, Kuniyuki

    2014-04-01

    GaAs substrates were anodized in the (NH{sub 4}){sub 2}SO{sub 4} electrolyte with various fluoride concentrations. Scanning electron microscope (SEM) observation showed that highly regular honeycomb hollows were formed on the substrates anodized in the (NH{sub 4}){sub 2}SO{sub 4} electrolyte with a small amount of HF concentration. The regularity of hollows decreased with the increase of HF concentration. The average diameter of hollows increased with increasing anodizing voltage. The regularity of hollow diameters increased with the increase of anodizing time, irrespective of the anodizing voltage. Cross-sectional SEM image showed that the average depth of regular hollows was about 5 nm. In addition to the peak in the region of fundamental adsorption of GaAs with the peak wavelength at about 870 nm, photoluminescence spectra of samples anodized in the (NH{sub 4}){sub 2}SO{sub 4} electrolyte with HF concentration of 0.5 ml showed several peaks at about 610, 635, 670 and 720 nm. - Highlights: • We report on the electrochemical formation of GaAs honeycomb structure. • High regular hollows were formed by anodization in HF-containing (NH{sub 4}){sub 2}SO{sub 4} solution. • A thin porous layer was formed by anodization in HF-containing (NH{sub 4}){sub 2}SO{sub 4} solution. • This process is useful for preparing patterned substrate with a thin porous layer.

  7. Structural characterization of two new quaternary chalcogenides: CuCo{sub 2}InTe{sub 4} and CuNi{sub 2}InTe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Gerzon E.; Grima-Gallardo, Pedro; Nieves, Luis, E-mail: gerzon@ula.ve [Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Cabrera, Humberto [Centro Multidisciplinario de Ciencias, Instituto Venezolano de Investigaciones Cientificas (IVIC), Merida (Venezuela, Bolivarian Republic of); Glenn, Jennifer R.; Aitken, Jennifer A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA (United States)

    2016-11-15

    The crystal structure of the chalcogenide compounds CuCo{sub 2}InTe{sub 4} and CuNi{sub 2}InTe{sub 4} , two new members of the I-II{sub 2}-III-VI{sub 4} family, were characterized by Rietveld refinement using X-ray powder diffraction data. Both materials crystallize in the tetragonal space group I4-bar 2m (No. 121), Z = 2, with a stannite-type structure, with the binaries CoTe and NiTe as secondary phases. (author)

  8. A non-linear optical ''photograph'' of picosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Sukhorukova, A.K.; Sukhorukov, A.P.; Telegin, L.S.; Yankina, I.B.

    1981-01-01

    Results are given of experimental and theoretical studies on the conversion of the temporary structure of picosecond pulses into a spatial diagram with noncollinated lasing of the sum frequency. Correlations are found for the crystal parameters, the pumping emission and the interaction geometry, which are needed in measuring durations in a range from 10 /sup -10/ all the way up to 10 /sup -13/ seconds. The proposed optical recording circuit in the relatively simple experiment makes it possible to measure the duration of the super short pulses of weak signals.

  9. Local structure of liquid Ge{sub 1}Sb{sub 2}Te{sub 4} for rewritable data storage use

    Energy Technology Data Exchange (ETDEWEB)

    Sun Zhimei; Zhou Jian [Department of Materials Science and Engineering, College of Materials, Xiamen University, 361005 (China); Blomqvist, Andreas; Ahuja, Rajeev [Division for Materials Theory, Department of Physics and Materials Science, Uppsala University, Box 530, SE-751 21, Uppsala (Sweden); Xu Lihua [Department of Inorganic Non-metallic Materials Science, School of Materials and Engineering, University of Science and Technology Beijing, 100083 (China)], E-mail: zhmsun2@yahoo.com, E-mail: zmsun@xmu.edu.cn

    2008-05-21

    Phase-change materials based on chalcogenide alloys have been widely used for optical data storage and are promising materials for nonvolatile electrical memory use. However, the mechanism behind the utilization is unclear as yet. Since the rewritable data storage involved an extremely fast laser melt-quenched process for chalcogenide alloys, the liquid structure of which is one key to investigating the mechanism of the fast reversible phase transition and hence rewritable data storage, here by means of ab initio molecular dynamics we have studied the local structure of liquid Ge{sub 1}Sb{sub 2}Te{sub 4}. The results show that the liquid structure gives a picture of most Sb atoms being octahedrally coordinated, and the coexistence of tetrahedral and fivefold coordination at octahedral sites for Ge atoms, while Te atoms are essentially fourfold and threefold coordinated at octahedral sites, as characterized by partial pair correlation functions and bond angle distributions. The local structure of liquid Ge{sub 1}Sb{sub 2}Te{sub 4} generally resembles that of the crystalline form, except for the much lower coordination number. It may be this unique liquid structure that results in the fast and reversible phase transition between crystalline and amorphous states.

  10. Sweep devices for picosecond image-converter streak cameras

    International Nuclear Information System (INIS)

    Cunin, B.; Miehe, J.A.; Sipp, B.; Schelev, M.Ya.; Serduchenko, J.N.; Thebault, J.

    1979-01-01

    Four different sweep devices based on microwave tubes, avalanche transistors, krytrons, and laser-triggered spark gaps are treated in detail. These control circuits are developed for picosecond image-converter cameras and generate sweep pulses providing streak speeds in the range of 10 7 to 5x10 10 cm/sec with maximum time resolution better than 10 -12 sec. Special low-jitter triggering schemes reduce the jitter to less than 5x10 -11 sec. Some problems arising in the construction and matching of the sweep devices and image-streak tube are discussed. Comparative parameters of nanosecond switching elements are presented. The results described can be used by other authors involved in streak camera development

  11. Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.

    Science.gov (United States)

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-03-01

    This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.

  12. Crystal structure and bonding analysis of (La{sub 0.8}Ca{sub 0.2})(Cr{sub 0.9-x}Co{sub 0.1}Cu{sub x})O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Thenmozhi, N. [NMSSVN College, Madurai (India). PG and Research Dept. of Physics; Saravanan, R. [The Madura College, Madurai (India). Research Centre and Post Graduate Dept. of Physics; Fu, Yen-Pei [National Dong-Hwa Univ., Hualien, Taiwan (China). Dept. of Materials Science and Engineering

    2017-07-01

    In this article, structural properties and bonding behaviours of codoped lanthanum chromites (La{sub 0.8}Ca{sub 0.2})(Cr{sub 0.9-x}Co{sub 0.1}Cu{sub x})O{sub 3} (x=0.00, 0.03, and 0.12) were investigated in detail. Polycrystalline chromite samples (La{sub 0.8}Ca{sub 0.2})(Cr{sub 0.9-x}Co{sub 0.1}Cu{sub x})O{sub 3} (x=0.00, 0.03, and 0.12) were prepared by a standard solid-state reaction process. The synthesised samples were characterised for their structural, morphological, optical, and magnetic properties using powder XRD, SEM/EDS, UV-Vis, and VSM. XRD data showed that the samples were crystallised into a single phase with orthorhombic structure. Powder profile refinement analysis suggested the reduction in lattice parameters and cell volume with the addition of Cu. The electron density distributions and the bonding features of the prepared samples have been investigated using maximum entropy method (MEM). The mid bond electron density values revealed the enhancement of ionic nature between lanthanum and oxygen ions and a reduction in covalent nature between chromium and oxygen ions. Heterogeneous distribution of particles with different sizes was observed through SEM micrographs. EDS spectra confirms the presence of constituent elements in the prepared samples. Optical band gap values are decreasing with the addition of Cu. Antiferromagnetic ordering was observed from M-H curves obtained at room temperature. The structural and the magnetic properties are correlated.

  13. Specific features of the domain structure of (Gd sub 1-x Nd sub x ) sub 2 (MoO sub 4 ) sub 3 crystals. Osobennosti domennoj struktury kristallov (Gd sub 1-x Nd sub x ) sub 2 (MoO sub 4 ) sub 3

    Energy Technology Data Exchange (ETDEWEB)

    Bryzgalov, A N; Slepchenko, B M; Virachev, B P [Cherepovetskij Gosudarstvennyj Pedagogicheskij Inst., Cherepovets (USSR)

    1989-11-01

    Formation of the domain structures by sample transfer into thermodynamically metastable state using a simultaneous effect of electric field and temperature change is investigated in Gd{sub 1.7}Nd{sub 0.3}(MoO{sub 4}){sub 3} monocrystals (GMO). Some new results obtained under investigations into GMO domain structure using neodymium by means of hydrothermal etching and polarization-optical method are presented.

  14. Synthesis and structural characterization of the Zintl phases Na{sub 3}Ca{sub 3}TrPn{sub 4}, Na{sub 3}Sr{sub 3}TrPn{sub 4}, and Na{sub 3}Eu{sub 3}TrPn{sub 4} (Tr=Al, Ga, In; Pn=P, As, Sb)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi [Department of Chemistry & Biochemistry, University of Delaware, 304A Drake Hall, Newark, DE 19716 (United States); Suen, Nian-Tzu [Department of Chemistry & Biochemistry, University of Delaware, 304A Drake Hall, Newark, DE 19716 (United States); College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Kunene, Thabiso; Stoyko, Stanislav [Department of Chemistry & Biochemistry, University of Delaware, 304A Drake Hall, Newark, DE 19716 (United States); Bobev, Svilen, E-mail: bobev@udel.edu [Department of Chemistry & Biochemistry, University of Delaware, 304A Drake Hall, Newark, DE 19716 (United States)

    2017-05-15

    15 new quaternary Zintl phases have been synthesized by solid-state reactions from the respective elements, and their structures have been determined by single-crystal X-ray diffraction. Na{sub 3}E{sub 3}TrPn{sub 4} (E=Ca, Sr, Eu; Tr=Al, Ga, In; Pn=P, As, Sb) crystallize in the hexagonal crystal system with the non-centrosymmetric space group P6{sub 3}mc (No. 186). The structure represents a variant of the K{sub 6}HgS{sub 4} structure type (Pearson index hP22) and features [TrPn{sub 4}]{sup 9–} tetrahedral units, surrounded by Na{sup +} and Ca{sup 2+}, Sr{sup 2+}, Eu{sup 2+} cations. The nominal formula rationalization [Na{sup +}]{sub 3}[E{sup 2+}]{sub 3}[TrPn{sub 4}]{sup 9–} follows the octet rule, suggesting closed-shell configurations for all atoms and intrinsic semiconducting behavior. However, structure refinements for several members hint at disorder and mixing of cations that potentially counteract the optimal valence electron count. - Graphical abstract: The hexagonal, non-centrosymmetric structure of Na{sub 3}E{sub 3}TrPn{sub 4} (E=Ca, Sr, Eu; Tr=Al, Ga, In; Pn=P, As, Sb) features [TrPn{sub 4}]{sup 9–} tetrahedral units, surrounded by Na{sup +} and Ca{sup 2+}, Sr{sup 2+}, Eu{sup 2+} cations. - Highlights: • 15 quaternary phosphides, arsenides, and antimonides are synthesized and structurally characterized. • The structure is a variant of the hexagonal K{sub 6}HgS{sub 4}-type, with distinctive pattern for the cations. • Occupational and/or positional disorder of yet unknown origin exists for some members of the series.

  15. Electronic structure and X-ray spectroscopic properties of YbNi{sub 2}P{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Shcherba, I.D., E-mail: ishcherba@gmail.com [Institute of Technology, University of Pedagogy, Podchorazych 2, 30-084 Krakow (Poland); Lviv National University by Ivan Franko, Lviv (Ukraine); Bekenov, L.V.; Antonov, V.N. [Institute for Metal Physics, 36 Vernadsky Street, 03142 Kiev (Ukraine); Noga, H. [Institute of Technology, University of Pedagogy, Podchorazych 2, 30-084 Krakow (Poland); Uskokovic, D. [Institute of Technical Sciences, SASA, Belgrade (Serbia); Zhak, O.; Kovalska, M.V. [Lviv National University by Ivan Franko, Lviv (Ukraine)

    2016-10-15

    Highlights: • We present new experimental and theoretical data for YbNi{sub 2}P{sub 2}. • The presence of divalent and trivalent Yb ion found in YbNi{sub 2}P{sub 2}. • The calculation show good agreement with the experimental measurements. - Abstract: X-ray absorption spectrum at the Yb L{sub 3} edge and X-ray emission spectra of Ni and P at the K and L{sub 2,3} edges have been studied experimentally and theoretically in the mixed valent compound YbNi{sub 2}P{sub 2} with ThCr{sub 2}Si{sub 2} type crystal structure. The electronic structure of YbNi{sub 2}P{sub 2} is investigated using the fully relativistic Dirac linear muffin-tin orbital (LMTO) band-structure method. The effect of the spin–orbit (SO) interaction and Coulomb repulsion U on the electronic structure of YbNi{sub 2}P{sub 2} is examined in the frame of the LSDA + SO + U method. The core-hole effect in the final states as well as the effect of the electric quadrupole E{sub 2} transitions have been investigated. A good agreement between the theory and the experiment was found. Both the trivalent and the divalent Yb ions in YbNi{sub 2}P{sub 2} are reflected in the experimentally measured Yb L{sub 3} X-ray absorption spectrum simultaneously. We found that the best agreement between the experimental spectrum and sum of the theoretically calculated Yb{sup 2+} and Yb{sup 3+} spectra is achieved with 73% ytterbium ions in 2+ state and 27% ions in 3+ state.

  16. Effects of processing parameters on the morphology, structure, and magnetic properties of Cu{sub 1−x}Fe{sub x}Cr{sub 2}Se{sub 4} nanoparticles synthesized with chemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Ivantsov, R.D. [Kirensky Institute of Physics, Russian Academy of Sciences, Krasnoyarsk, 660036 (Russian Federation); Edelman, I.S., E-mail: ise@iph.krasn.ru [Kirensky Institute of Physics, Russian Academy of Sciences, Krasnoyarsk, 660036 (Russian Federation); Zharkov, S.M.; Velikanov, D.A. [Kirensky Institute of Physics, Russian Academy of Sciences, Krasnoyarsk, 660036 (Russian Federation); Siberian Federal University, Krasnoyarsk, 660041 (Russian Federation); Petrov, D.A. [Kirensky Institute of Physics, Russian Academy of Sciences, Krasnoyarsk, 660036 (Russian Federation); Ovchinnikov, S.G. [Kirensky Institute of Physics, Russian Academy of Sciences, Krasnoyarsk, 660036 (Russian Federation); Siberian Federal University, Krasnoyarsk, 660041 (Russian Federation); Lin, Chun-Rong [National Pingtung University, Pingtung City, Pingtung County, 90003, Taiwan (China); Li, Oksana [Siberian Federal University, Krasnoyarsk, 660041 (Russian Federation); National Pingtung University, Pingtung City, Pingtung County, 90003, Taiwan (China); Tseng, Yaw-Teng [National Pingtung University, Pingtung City, Pingtung County, 90003, Taiwan (China)

    2015-11-25

    Cu{sub 1−x}Fe{sub x}Cr{sub 2}Se{sub 4} nanoparticles with x = 0, 0.2, and 0.4 were synthesized via thermal decomposition of metal nitrate or chloride salts and selenium powder using different precursor compositions and processing details. Single crystalline nano-belts or nano-rods coexist in the synthesized powder samples with hexagon-shaped plates in dependence on the precursor composition. The belts gathered into conglomerates forming “hierarchical” particles. Visible magnetic circular dichroism (MCD) of Cu{sub 1−x}Fe{sub x}Cr{sub 2}Se{sub 4} nanoparticles embedded into a transparent matrix was investigated for the first time. The similarity of the MCD spectra of all samples showed the similarity of the nanoparticles electronic structure independent of their morphology. Basing on the MCD spectral maxima characteristics, electron transitions from the ground to the excited states were identified with the help of the conventional band theory and the multi-electron approach. - Highlights: • Single crystalline Cu{sub 1−x}Fe{sub x}Cr{sub 2}Se{sub 4} nanoparticles with x = 0, 0.2, 0.4 were synthesized. • Correlation between synthesis conditions and nanoparticles morphology were obtained. • The nanoparticles magnetization behavior was studied. • Visible MCD of the Cu{sub 1−x}Fe{sub x}Cr{sub 2}Se{sub 4} nanoparticles were studied for the first time.

  17. Mechanosynthesis and structural characterization of nanocrystalline Ce{sub 1–x}Y{sub x}O{sub 2–δ} (x=0.1–0.35) solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Fabián, Martin, E-mail: fabianm@saske.sk [Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice (Slovakia); Antić, Bratislav [“Vinča” Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Girman, Vladimír [Institute of Physics, P. J. Šafárik University, Park Angelinum 9, 04154 Košice (Slovakia); Vučinić-Vasić, Milica [Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21000 Novi Sad (Serbia); Kremenović, Aleksandar [Laboratory of Crystallography, Faculty of Mining and Geology, University of Belgrade, Djusina 7, 11001 Belgrade (Serbia); Suzuki, Shigeru [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, 980-8577 Sendai (Japan); Hahn, Horst [Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Šepelák, Vladimír [Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice (Slovakia)

    2015-10-15

    A series of nanostructured fluorite-type Ce{sub 1–x}Y{sub x}O{sub 2–δ} (0≤x≤0.35) solid solutions, prepared via high-energy milling of the CeO{sub 2}/Y{sub 2}O{sub 3} mixtures, are investigated by XRD, HR-TEM, EDS and Raman spectroscopy. For the first time, complementary information on both the long-range and short-range structural features of mechanosynthesized Ce{sub 1–x}Y{sub x}O{sub 2–δ}, obtained by Rietveld analysis of XRD data and Raman spectroscopy, is provided. The lattice parameters of the as-prepared solid solutions decrease with increasing yttrium content. Rietveld refinements of the XRD data reveal increase in microstrains in the host ceria lattice as a consequence of yttrium incorporation. Raman spectra are directly affected by the presence of oxygen vacancies; their existence is evidenced by the presence of vibration modes at ~560 and ~600 cm{sup –1}. The detailed spectroscopic investigations enable us to separate extrinsic and intrinsic origin of oxygen vacancies. It is demonstrated that mechanosynthesis can be successfully employed in the one-step preparation of nanocrystalline Ce{sub 1–x}Y{sub x}O{sub 2–δ} solid solutions. - Graphical abstract: Mechanosynthesis of nanocrystalline Ce{sub 1–x}Y{sub x}O{sub 2–δ} (x=0.1–0.35) solid solutions. - Highlights: • One-step mechanosynthesis of nanoscale Ce{sub 1–x}Y{sub x}O{sub 2–δ} (0≤x≤0.35) solid solutions. • Complementary information on the long-range and short-range structural features of mechanosynthesized Ce{sub 1–x}Y{sub x}O{sub 2–δ} is provided. • Structural variations as a response to the yttrium doping. • Separation of extrinsic and intrinsic origin of the induced oxygen vacancies.

  18. Comparative study of structural and morphological properties of CuIn{sub 3}S{sub 5} and CuIn{sub 7}S{sub 11} materials

    Energy Technology Data Exchange (ETDEWEB)

    Khemiri, N., E-mail: naoufel_khemiri@yahoo.f [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT BP 37, Le belvedere 1002-Tunis (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT BP 37, Le belvedere 1002-Tunis (Tunisia)

    2010-02-15

    CuIn{sub 3}S{sub 5} and CuIn{sub 7}S{sub 11} powders were prepared by solid-state reaction method using high-purity elemental copper, indium and sulphur. The films prepared from CuIn{sub 3}S{sub 5} and CuIn{sub 7}S{sub 11} powders were grown by thermal evaporation under vacuum (10{sup -6} Torr) on glass substrates at different substrate temperature Ts varying from room temperature to 200 deg. C. The powders and thin films were characterized for their structural properties by using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). Both powders were polycrystalline with chalcopyrite and spinel structure, respectively. From the XRD data, we calculated the lattice parameters of the structure for the compounds. For CuIn{sub 3}S{sub 5} powder, we also calculated the cation-anion bond lengths. The effect of substrate temperature Ts on the structural properties of the films, such as crystal phase, preferred orientation and crystallinity was investigated. Indeed, X-ray diffraction analysis revealed that the films deposited at a room temperature (30 deg. C) are amorphous in nature while those deposited on heated were polycrystalline with a preferred orientation along (1 1 2) of the chalcopyrite phase and (3 1 1) of the spinel phase for CuIn{sub 3}S{sub 5} and CuIn{sub 7}S{sub 11} films prepared from powders, respectively. The morphology of the films was determined by atomic force microscopy AFM. The surface roughness and the grain size of the films increase on increasing the substrate temperature.

  19. Structural and magnetic properties of transition metal substituted BaFe<sub>2sub>As>2sub> compounds studied by x-ray and neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Gyu [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    The purpose of my dissertation is to understand the structural and magnetic properties of the newly discovered FeAs-based superconductors and the interconnection between superconductivity, antiferromagnetism, and structure. X-ray and neutron scattering techniques are powerful tools to directly observe the structure and magnetism in this system. I used both x-ray and neutron scattering techniques on different transition substituted BaFe<sub>2sub>As>2sub> compounds in order to investigate the substitution dependence of structural and magnetic transitions and try to understand the connections between them.

  20. Effect of antimony concentration on structural and transport properties of (Bi{sub 1-x}Sb{sub x}){sub 2}Te{sub 3} mixed crystal

    Energy Technology Data Exchange (ETDEWEB)

    Malik, K.; Das, Diptasikha; Bandyopadhyay, S.; Banerjee, S.; Banerjee, Aritra, E-mail: aritrabanerjee.cu@gmail.com [Department of Physics, University of Calcutta, 92 A P C Road, Kolkata-700009 (India)

    2015-06-24

    Polycrystalline (Bi{sub 1-x}Sb{sub x}){sub 2}Te{sub 3} (0.60≤x≤0.68) alloys have been synthesized by solid state reaction method. Structural characterizations have been done using X-Ray Diffraction (XRD). Lattice parameter decreases with antimony (Sb) concentration. Sb doping leads to the modification in band structure and Fermi surface geometry. Band gap calculated from thermal variation of resistivity (ρ-T) data, decreases with Sb concentration. Sb concentration dependent power factor near room temperature have been calculated from obtained resistivity and thermopower data. Highest power factor obtained for (Bi{sub 0.40}Sb{sub 0.60}){sub 2}Te{sub 3} alloy.

  1. Preparation and structural properties of nonlinear optical borates K{sub 2(1-x)}Rb{sub 2x}Al{sub 2}B{sub 2}O{sub 7}, 0 < x < 0.75

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V., E-mail: atuchin@thermo.isp.nsc.ru [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Bazarov, B.G. [Laboratory of Oxide Systems, Baikal Institute of Nature Management, SB RAS, Ulan-Ude 47, 670047 (Russian Federation); Gavrilova, T.A. [Laboratory of Nanodiagnostics and Nanolithography, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Grossman, V.G. [Laboratory of Oxide Systems, Baikal Institute of Nature Management, SB RAS, Ulan-Ude 47, 670047 (Russian Federation); Molokeev, M.S. [Laboratory of Crystal Physics, Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Bazarova, Zh.G. [Laboratory of Oxide Systems, Baikal Institute of Nature Management, SB RAS, Ulan-Ude 47, 670047 (Russian Federation)

    2012-02-25

    Highlights: Black-Right-Pointing-Pointer Solid solutions K{sub 2(1-x)}Rb{sub 2x}Al{sub 2}B{sub 2}O{sub 7} are synthesized over wide composition range up to x {approx} 0.83. Black-Right-Pointing-Pointer Crystal structure of K{sub 2(1-x)}Rb{sub 2x}Al{sub 2}B{sub 2}O{sub 7} solutions is determined in space group P321. Black-Right-Pointing-Pointer Second harmonic generation is observed in KRbAl{sub 2}B{sub 2}O{sub 7}. Black-Right-Pointing-Pointer Drastic variation of cell parameters is found over KABO-type crystal family. - Abstract: The structures of K{sub 2(1-x)}Rb{sub 2x}Al{sub 2}B{sub 2}O{sub 7}, x = 0.25, 0.5, 0.75, have been determined in space group P321 through Rietveld analysis of X-ray powder diffraction data. The solubility limit in K{sub 2(1-x)}Rb{sub 2x}Al{sub 2}B{sub 2}O{sub 7} crystals has been estimated as x {approx} 0.83-0.9. Nonlinear optical properties of KRbAl{sub 2}B{sub 2}O{sub 7} have been verified by powder Kurtz-Perry method. Mechanisms of structural parameter variation in K{sub 2}Al{sub 2}B{sub 2}O{sub 7} crystal family have been discussed.

  2. Light emissions from LiNbO sub 3 /SiO sub 2 /Si structures

    CERN Document Server

    Wu, X L; Tang, N; Deng, S S; Bao, X M

    2003-01-01

    LiNbO sub 3 (LN) films with a high degree of (006) texture were deposited on Si-based dense SiO sub 2 layers by pulsed laser deposition. After annealing, the LN/SiO sub 2 /Si structures were revealed to have ultraviolet-, green-, and red-emitting properties related to self-trapped excitons and E' defect pairs in the SiO sub 2 surface, which are induced by the photorefractive effect of the LN films. The emission wavelength can be tuned by introducing different dopants into the LN films. Waveguiding properties of the structures were demonstrated. The results obtained indicate that the LN/SiO sub 2 /Si structures could be expected to have important applications in modern optoelectronic integration. (letter to the editor)

  3. 2D-2D stacking of graphene-like g-C{sub 3}N{sub 4}/Ultrathin Bi{sub 4}O{sub 5}Br{sub 2} with matched energy band structure towards antibiotic removal

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Mengxia; Di, Jun; Ge, Yuping; Xia, Jiexiang, E-mail: xjx@ujs.edu.cn; Li, Huaming, E-mail: lhm@ujs.edu.cn

    2017-08-15

    Highlights: • 2D-2D graphene-like g-C{sub 3}N{sub 4}/ultrathin Bi{sub 4}O{sub 5}Br{sub 2} materials have been prepared. • With matched energy band structure, the effective charge separation can be achieved. • The holes and O{sub 2}{sup −} are determined to be the main active species. - Abstract: A novel visible-light-driven 2D-2D graphene-like g-C{sub 3}N{sub 4}/ultrathin Bi{sub 4}O{sub 5}Br{sub 2} photocatalyst was prepared via a facile solvothermal method in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C{sub 16}mim]Br) for the first time. FT-IR, XPS and TEM analysis results demonstrated the successful introduction of the 2D graphene-like g-C{sub 3}N{sub 4} material to the Bi{sub 4}O{sub 5}Br{sub 2} system. DRS and BET analysis results indicated the existence of the g-C{sub 3}N{sub 4} could lead to the broaden absorption edge and larger surface area of the ultrathin Bi{sub 4}O{sub 5}Br{sub 2} nanosheets. The electrochemical analysis implied a fast transfer of the interfacial electrons and low recombination rate of photogenerated charge carriers in g-C{sub 3}N{sub 4}/Bi{sub 4}O{sub 5}Br{sub 2}, which could be assigned to the sufficient and tight contact between ultrathin Bi{sub 4}O{sub 5}Br{sub 2} and graphene-like g-C{sub 3}N{sub 4}. The quinolone antibiotic ciprofloxacin (CIP) was chosen as the target pollutant to evaluate the photocatalytic performance of the as-prepared samples under visible light irradiation. 1 wt% g-C{sub 3}N{sub 4}/Bi{sub 4}O{sub 5}Br{sub 2} composite exhibited the highest photocatalytic degradation performance among all of the as-prepared photocatalysts. The enhancement of photocatalytic activity was attributed to the maximum contact between graphene-like g-C{sub 3}N{sub 4} and ultrathin Bi{sub 4}O{sub 5}Br{sub 2} material with matched energy band structure, which enable the efficient charge seperation. A possible photocatalytic mechanism also was proposed.

  4. Exploration on anion ordering, optical properties and electronic structure in K{sub 3}WO{sub 3}F{sub 3} elpasolite

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Isaenko, L.I. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090 (Russian Federation); Kesler, V.G. [Laboratory of Physical Principles for Integrated Microelectronics, Institute of Semiconductor Physics, Novosibirsk 630090 (Russian Federation); Lin, Z.S., E-mail: zslin@mail.ipc.ac.cn [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Molokeev, M.S. [Laboratory of Crystal Physics, Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Yelisseyev, A.P.; Zhurkov, S.A. [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090 (Russian Federation)

    2012-03-15

    Room-temperature modification of potassium oxyfluorotungstate, G2-K{sub 3}WO{sub 3}F{sub 3}, has been prepared by low-temperature chemical route and single crystal growth. Wide optical transparency range of 0.3-9.4 {mu}m and forbidden band gap E{sub g}=4.32 eV have been obtained for G2-K{sub 3}WO{sub 3}F{sub 3} crystal. Meanwhile, its electronic structure has been calculated with the first-principles calculations. The good agreement between the theorectical and experimental results have been achieved. Furthermore, G2-K{sub 3}WO{sub 3}F{sub 3} is predicted to possess the relatively large nonlinear optical coefficients. - Graphical abstract: Using the cm-size K{sub 3}WO{sub 3}F{sub 3} crystal (left upper), the transmission spectrum (right upper) and XPS valence electronic states (left lower) were measured, agreed with the ab initio results (right lower). Highlights: Black-Right-Pointing-Pointer The cm-size G2-K{sub 3}WO{sub 3}F{sub 3} single crystals are obtained. Black-Right-Pointing-Pointer Optical absorption edge and transmission range are defined for G2-K{sub 3}WO{sub 3}F{sub 3} crystal. Black-Right-Pointing-Pointer Crystal structures of all known K{sub 3}WO{sub 3}F{sub 3} polymorph modifications are determined. Black-Right-Pointing-Pointer Experimental electronic structure is consistent with the first-principles result. Black-Right-Pointing-Pointer G2-K{sub 3}WO{sub 3}F{sub 3} is predicted as a crystal with large NLO coefficients.

  5. Picosecond mid-infrared amplifier for high average power.

    CSIR Research Space (South Africa)

    Botha, LR

    2007-04-01

    Full Text Available High pressure CO2 lasers are good candidates for amplifying picosecond mid infrared pulses. High pressure CO2 lasers are notorious for being unreliable and difficult to operate. In this paper a high pressure CO2 laser is presented based on well...

  6. Picosecond ion pulses from an EN tandem created by a femtosecond Ti:sapphire laser

    International Nuclear Information System (INIS)

    Carnes, K.D.; Cocke, C.L.; Chang, Z.; Ben-Itzhak, I.; Needham, H.V.; Rankin, A.

    2007-01-01

    As the James R. Macdonald Laboratory at Kansas State University continues its transformation from an ion collisions facility to an ultrafast laser/ion collisions facility, we are looking for novel ways to combine our traditional accelerator expertise with our new laser capabilities. One such combination is to produce picosecond pulses of stripping gas ions in the high energy accelerating tube of our EN tandem by directing ∼100 fs, sub-milliJoule laser pulses up the high energy end of the tandem toward a focusing mirror at the terminal. Ion pulses from both stripping and residual gas have been produced and identified, with pulse widths thus far on the order of a nanosecond. This width represents an upper limit, as it is dominated by pulse-to-pulse jitter in the ion time-of-flight (TOF) and is therefore not a true representation of the actual pulse width. In this paper, we describe the development process and report on the results to date. Conditions limiting the minimum temporal pulse width, such as tandem terminal ripple, thermal motion of the gas and space charge effects, are also outlined

  7. Luminescence and scintillation timing characteristics of (Lu{sub x}Gd{sub 2−x})SiO{sub 5}:Ce single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yawai, Nattasuda; Chewpraditkul, Warut; Sakthong, Ongsa [Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok10140 (Thailand); Chewpraditkul, Weerapong, E-mail: weerapong.che@kmutt.ac.th [Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok10140 (Thailand); Wantong, Kriangkrai [Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok10140 (Thailand); Szczesniak, Tomasz; Swiderski, Lukasz; Moszynski, Marek [National Centre for Nuclear Research, A. Soltana 7, PL 05-400 Otwock-Swierk (Poland); Sidletskiy, Oleg [Institute for Scintillation Materials NAS of Ukraine, 60 Nauky Avenue, 61001 Kharkiv (Ukraine)

    2017-02-01

    The luminescence and scintillation characteristics of cerium-doped lutetium-gadolinium orthosilicate (Lu{sub x}Gd{sub 2−x}SiO{sub 5}:Ce; x=0, 0.8, 1.8) single crystals were investigated. At 662 keV γ-rays, the light yield of 29,800±3000 ph MeV{sup −1} obtained for Lu{sub 1.8}Gd{sub 0.2}SiO{sub 5}:Ce is higher than that of 20,200±2000 and 11,800±1200 ph MeV{sup −1} obtained for Lu{sub 0.8}Gd{sub 1.2}SiO{sub 5}:Ce and Gd{sub 2}SiO{sub 5}:Ce, respectively. The fast component decay time of 32, 18 and 17 ns was measured in the scintillation decay of Gd{sub 2}SiO{sub 5}:Ce, Lu{sub 0.8}Gd{sub 1.2}SiO{sub 5}:Ce and Lu{sub 1.8}Gd{sub 0.2}SiO{sub 5}:Ce, respectively. The coincidence time spectra for 511 keV annihilation quanta were measured in reference to a fast BaF{sub 2} detector and time resolution was discussed in terms of a number of photoelectrons and decay time of the fast component. The mass attenuation coefficient for studied crystals at 60 and 662 keV γ-rays was also evaluated and discussed. - Highlights: • Scintillation timing characteristics of Lu{sub x}Gd{sub 2−x}SiO{sub 5}:Ce crystals are studied. • Lu{sub 1.8}Gd{sub 0.2}SiO{sub 5}:Ce exhibits excellent light yield and timing response. • Energy resolution of 6% @662 keV is obtained for Lu{sub 0.8}Gd{sub 1.2}SiO{sub 5}:Ce. • Coincidence time resolution of 368 ps is obtained for Lu{sub 1.8}Gd{sub 0.2}SiO{sub 5}:Ce.

  8. Protonation and structural/chemical stability of Ln{sub 2}NiO{sub 4+δ} ceramics vs. H{sub 2}O/CO{sub 2}: High temperature/water pressure ageing tests

    Energy Technology Data Exchange (ETDEWEB)

    Upasen, S. [Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, 75005 Paris (France); CNRS-IP2CT, UMR 8233, MONARIS, F-75005 Paris (France); Batocchi, P.; Mauvy, F. [ICMCB, ICMCB-CNRS-IUT-Université de Bordeaux, 33608 Pessac Cedex (France); Slodczyk, A. [Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, 75005 Paris (France); CNRS-IP2CT, UMR 8233, MONARIS, F-75005 Paris (France); Colomban, Ph., E-mail: philippe.colomban@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, 75005 Paris (France); CNRS-IP2CT, UMR 8233, MONARIS, F-75005 Paris (France)

    2015-02-15

    Highlights: • High temperature/water pressure autoclave is used to study the reaction/corrosion at SOFC/HTSE electrode. • High stability of Pr{sub 2}NiO{sub 4+δ} (PNO) and Nd{sub 2}NiO{sub 4+δ} (NNO) dense ceramics vs. water pressure is demonstrated. • Protonated rare-earth nickelates retain the perovskite-type structure and their H-content is determined. • Very low laser illumination power is required to avoid RE nickelate phase transition. • Nickelates show increasing stability from La to Pr/Nd vs. CO{sub 2}-rich high temperature water vapor. - Abstract: Mixed ionic-electronic conductors (MIEC) such as rare-earth nickelates with a general formula Ln{sub 2}NiO{sub 4+δ} (Ln = La, Pr, Nd) appear as potential for energy production and storage systems: fuel cells, electrolysers and CO{sub 2} converters. Since a good electrode material should exhibit important stability in operating conditions, the structural and chemical stability of different nickelate-based, well-densified ceramics have been studied using various techniques: TGA, dilatometry, XRD, Raman scattering and IR spectroscopy. Consequently, La{sub 2}NiO{sub 4+δ} (LNO), Pr{sub 2}NiO{sub 4+δ} (PNO) and Nd{sub 2}NiO{sub 4+δ} (NNO) have been exposed during 5 days to high water vapor pressure (40 bar) at intermediate temperature (550 °C) in an autoclave device, the used water being almost free or saturated with CO{sub 2}. Such protonation process offers an accelerating stability test and allows the choice of the most pertinent composition for industrial applications requiring a selected material with important life-time. In order to understand any eventual change of crystal structure, the ceramics were investigated in as-prepared, pristine state as well as after protonation and deprotonation (due to thermal treatment till 1000 °C under dry atmosphere). The results show the presence of traces or second phases originating from undesirable hydroxylation and carbonation, detected in the near

  9. New crystals of the CsHSO{sub 4}–CsH{sub 2}PO{sub 4}–H{sub 2}O system

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, I. P., E-mail: makarova@crys.ras.ru; Grebenev, V. V.; Komornikov, V. A.; Selezneva, E. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation)

    2016-11-15

    Cs{sub 6}H(HSO{sub 4}){sub 3}(H{sub 2}PO{sub 4}){sub 4} crystals, grown for the first time based on an analysis of the phase diagram of the CsHSO{sub 4}–CsH{sub 2}PO{sub 4}–H{sub 2}O ternary system, have been investigated by structural analysis using synchrotron radiation. The atomic structure of the crystals is determined and its specific features are analyzed.

  10. Elemental fractionation in 785 nm picosecond and femtosecond laser ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shaheen, M.E., E-mail: mshaheen73@science.tanta.edu.eg [Department of Physics, Faculty of Sciences, Tanta University, Tanta (Egypt); Gagnon, J.E.; Fryer, B.J. [Great Lakes Institute for Environmental Research (GLIER), University of Windsor, Windsor, Ontario N9B 3P4 (Canada); Department of Earth and Environmental Sciences, University of Windsor, Windsor, Ontario N9B 3P4 (Canada)

    2015-05-01

    Elemental fractionation and ICP-MS signal response were investigated for two different pulse width laser beams originating from the same laser system. Femtosecond and picosecond laser beams at pulse widths of 130 fs and 110 ps, respectively, and wavelength of 785 nm were used to ablate NIST 610 synthetic glass and SRM 1107 Naval Brass B at the same spot for 800 to 1000 laser pulses at different repetition rates (5 to 50 Hz). Elemental fractionation was found to depend on repetition rate and showed a trend with femtosecond laser ablation that is opposite to that observed in picosecond laser ablation for most measured isotopes. ICP-MS signal intensity was higher in femtosecond than picosecond LA-ICP-MS in both NIST 610 and naval brass when ablation was conducted under the same fluence and repetition rate. The differences in signal intensity were partly related to differences in particle size distribution between particles generated by femtosecond and picosecond laser pulses and the consequent differences in transport and ionization efficiencies. The main reason for the higher signal intensity resulting from femtosecond laser pulses was related to the larger crater sizes compared to those created during picosecond laser ablation. Elemental ratios measured using {sup 66}Zn/{sup 63}Cu, {sup 208}Pb/{sup 238}U, {sup 232}Th/{sup 238}U, {sup 66}Zn/{sup 232}Th and {sup 66}Zn/{sup 208}Pb were found to change with the number of laser pulses with data points being more scattered in picosecond than femtosecond laser pulses. Reproducibility of replicate measurements of signal intensities, fractionation and elemental ratios was better for fs-LA-ICP-MS (RSD ~ 3 to 6%) than ps-LA-ICP-MS (RSD ~ 7 to 11%). - Highlights: • Fractionation and ICP-MS signal response were investigated for two different pulse widths using NIST 610 and Naval Brass. • Dependence of fractionation indices on repetition rate and pulse width. • Higher ablation rate was observed in picosecond compared to

  11. Picosecond x-ray streak cameras

    Science.gov (United States)

    Averin, V. I.; Bryukhnevich, Gennadii I.; Kolesov, G. V.; Lebedev, Vitaly B.; Miller, V. A.; Saulevich, S. V.; Shulika, A. N.

    1991-04-01

    The first multistage image converter with an X-ray photocathode (UMI-93 SR) was designed in VNIIOFI in 1974 [1]. The experiments carried out in IOFAN pointed out that X-ray electron-optical cameras using the tube provided temporal resolution up to 12 picoseconds [2]. The later work has developed into the creation of the separate streak and intensifying tubes. Thus, PV-003R tube has been built on base of UMI-93SR design, fibre optically connected to PMU-2V image intensifier carrying microchannel plate.

  12. Structure and electrical conduction of the system La sub(1-x)Ca sub(x)FeO sub(3-. cap alpha. )

    Energy Technology Data Exchange (ETDEWEB)

    Hombo, Jukichi; Urabe, Noriake [Kumamoto Univ. (Japan). Faculty of Engineering; Hiroshige, Gota; Hamada, Kotaro

    1982-08-01

    Perovskite phases in the system, La sub(1-x)Ca sub(x)FeO sub(3-..cap alpha..) were prepared with La/sub 2/O/sub 3/, CaCO/sub 3/, and Fe/sub 2/O/sub 3/ by firing in air and in vacuo. The compositions of samples fired in vacuo and in air are represented as La sub(1-x)Ca sub(x)FeO sub(3-x 2) and La sub(1-x)Ca sub(x)Fe sub(1-y)sup(3+)Fe sub(y)sup(4+)O sub(3-x/2+y/2), respectively. That is, samples fired in vacuo contain some oxygen vacancies and no tetravalent iron; in contrast, samples fired in air contain both oxygen vacancies and tetravalent iron in the structures. The electrical conductivities of these synthesized oxides depended extensively upon the content of tetravalent iron. For instance, the conductivity of the sample x = 0.6 fired in air was larger by 10/sup 6/ than that of the sample fired in vacuo. In this system, except for the two terminal compositions of x = 0 and x = 1.0, the values of activation energy for conduction are considerably small, and from the results of thermo-electromotive force measurement, the charge carrier was positive. Furthermore, the conductivity increased somewhat with time during the conductivity measurement by the direct-current method. These facts suggest that the electric conduction would not be ionic but electronic. The electrical conduction would then be carried out by the so-called hopping mechanism by which the positive charge is transferred.

  13. Reducing agent (NaBH{sub 4}) dependent structure, morphology and magnetic properties of nickel ferrite (NiFe{sub 2}O{sub 4}) nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Saravanakumar, B.; Rani, B. Jansi; Ravi, G. [Nanomaterials Laboratory, Department of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India); Thambidurai, M. [Luminous Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical & Electronic Engineering, The Photonics Institute (TPI), Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Yuvakkumar, R., E-mail: yuvakkumar@gmail.com [Nanomaterials Laboratory, Department of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India)

    2017-04-15

    Nickel ferrite (Ni-Fe{sub 2}O{sub 4}) nanorods were synthesized employing a simple chemical reduction method. Reducing agent (NaBH{sub 4}) influence on structural, morphological and magnetic properties of NiFe{sub 2}O{sub 4} nanorods was investigated. XRD results clearly revealed the presence of inverse cubic spinel nickel ferrite structure characteristic peaks and confirmed the site inversion of inverse spinel structure of Fe{sup 3+} tetrahedral A site and Ni{sup 2+} octahedral B site. The observed Raman characteristic peak at 488 and 683 cm{sup −1} were corresponded to E{sub 1} {sub g} and A{sub 1} {sub g} mode whereas A and B site respectively corresponded to tetrahedral and octahedral site of NiFe{sub 2}O{sub 4} inverse spinel structure. The obtained PL peaks at 530 and 542 nm were attributed to the emission spectra of Fe{sup 3+} ions in site A of inverse spinel structure and Ni{sup 2+} ions in site B of inverse spinel structure respectively. SEM result clearly revealed that increase in NaBH{sub 4} concentration had remarkable impact on nanorods formation, nano-octahedron structure, homogeneity and regularity of Ni-Ferrites. VSM studies clearly revealed the soft ferromagnetic nature of NiFe{sub 2}O{sub 4} and increase in NaBH{sub 4} concentration further induced raise in metal cations concentration in A- and B- site which might impact the resultant magnetization of ferrites. - Highlights: • Nano rod formation has been initiated while increase of NaBH{sub 4} concentration. • Further increasing NaBH{sub 4} concentration favors nano-octahedron formation. • VSM studies revealed soft ferromagnetic nature of NiFe{sub 2}O{sub 4}.

  14. Structures and solid solution mechanisms of pyrochlore phases in the systems Bi{sub 2}O{sub 3}-ZnO-(Nb, Ta){sub 2}O{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K.B., E-mail: tankb@science.upm.edu.m [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Khaw, C.C. [Department of Engineering, Universiti Tunku Abdul Rahman, 53300 Setapak, Kuala Lumpur (Malaysia); Lee, C.K. [Academic Science Malaysia, 902-4 Jalan Tun Ismail, 50480 Kuala Lumpur (Malaysia); Zainal, Z. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Miles, G.C. [Department of Engineering Materials, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2010-10-22

    Research highlights: {yields} Combined XRD and ND Rietveld structural refinement of pyrochlores. {yields} Structures and solid solution mechanisms of Bi-pyrochlores. {yields} Bi and Zn displaced off-centre to different 96g A-site positions. {yields} Summary of composition-structure-property of Bi-pyrochlores. - Abstract: The crystal structures of two pyrochlore phases have been determined by Rietveld refinement of combined X-ray and neutron powder diffraction data. These are stoichiometric, Bi{sub 1.5} ZnTa{sub 1.5}O{sub 7} and non-stoichiometric Bi{sub 1.56}Zn{sub 0.92}Nb{sub 1.44}O{sub 6.86}. In both structures, Zn is distributed over A- and B-sites; Bi and Zn are displaced off-centre, to different 96g A-site positions; of the three sets of oxygen positions, O(1) are full, O(2) contain vacancies and O(3) contain a small number of oxygen, again in both cases. Comparisons between these structures, those of related Sb analogues and literature reports are made.

  15. LiCa{sub 4}Si{sub 4}N{sub 8}F and LiSr{sub 4}Si{sub 4}N{sub 8}F. Nitridosilicate fluorides with a BCT-zeolite-type network structure

    Energy Technology Data Exchange (ETDEWEB)

    Horky, Katrin; Schnick, Wolfgang [Department of Chemistry, Inorganic Solid-State, Chemistry, University of Munich (LMU), Butenandtstrasse 5-13, 81377, Munich (Germany)

    2017-02-17

    LiCa{sub 4}Si{sub 4}N{sub 8}F and LiSr{sub 4}Si{sub 4}N{sub 8}F were synthesized from Si{sub 3}N{sub 4}, LiNH{sub 2}, CaH{sub 2}/SrH{sub 2}, and LiF through a metathesis reaction in a radiofrequency furnace. The crystal structures of both compounds were solved and refined on the basis of single-crystal X-ray diffraction data [LiCa{sub 4}Si{sub 4}N{sub 8}F: P2{sub 1}/c (no. 14), a = 10.5108(3), b = 9.0217(3), c = 10.3574(3) Aa, β = 117.0152(10) , R{sub 1} = 0.0422, wR{sub 2} = 0.0724, Z = 4; LiSr{sub 4}Si{sub 4}N{sub 8}F: P4nc (no. 104), a = 9.3118(4), b = 9.3118(4), c = 5.5216(2) Aa, R{sub 1} = 0.0160, wR{sub 2} = 0.0388, Z = 2]. The silicate substructure of both compounds is built up of vertex-sharing SiN{sub 4} tetrahedra, thereby forming a structure analogous to the BCT zeolite with Ca{sup 2+}/Sr{sup 2+}, Li{sup +}, and F{sup -} ions filling the voids. The crystal structure of LiSr{sub 4}Si{sub 4}N{sub 8}F is homeotypic with that of Li{sub 2}Sr{sub 4}Si{sub 4}N{sub 8}O as it exhibits the same zeolite-type [SiN{sub 2}]{sup 2-} framework, but incorporates LiF instead of Li{sub 2}O. In contrast to the respective Sr compound, LiCa{sub 4}Si{sub 4}N{sub 8}F shows a distortion of the BCT-zeolite-type network as well as an additional site for F. Both F sites in LiCa{sub 4}Si{sub 4}N{sub 8}F exhibit different coordination spheres to LiSr{sub 4}Si{sub 4}N{sub 8}F. The title compounds are the first reported lithium alkaline-earth nitridosilicates containing fluorine. The crystal structures were confirmed by lattice-energy calculations (MAPLE), energy-dispersive X-ray spectroscopy (EDX) measurements, and powder X-ray diffraction. IR spectra confirmed the absence of N-H bonds. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. The structure and magnetic moment distribution in the antiferromagnetic phase of U sub 1 sub 4 Au sub 5 sub 1

    CERN Document Server

    Brown, P J; Neumann, K U; Smith, J G; Ziebeck, K R A

    1997-01-01

    The antiferromagnetic structure of the intermetallic compound U sub 1 sub 4 Au sub 5 sub 1 has been determined from neutron polarimetric measurements and refined by combining these data with integrated intensity measurements. The structure was found to be non-collinear with the U moments confined to the a-b plane. The moments of U atoms in each of the two sets of sixfold sites are arranged hexagonally with rotations of 60 deg. between them and the two sets are rotated with respect to one another by 50 deg. The third (twofold) set of U atoms has no ordered moment. These conclusions are in disagreement with a previous determination of the structure from powder data which gave a collinear structure with moments parallel to the c axis. Magnetization measurements made on single crystals in the temperature range 300-2 K can be understood in terms of a transition to a non-collinear easy plane antiferromagnetic structure stable below 22 K. Polarized neutron measurements have been used to determine the contribution of...

  17. Structure and mechanical properties of swift heavy ion irradiated tungsten-bearing delta-phase oxides Y{sub 6}W{sub 1}O{sub 12} and Yb{sub 6}W{sub 1}O{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Tang, M., E-mail: mtang@lanl.gov [Materials Science and Technology Division, Mail-Stop G755, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Wynn, T.A. [Materials Physics and Application Division, Mail-Stop K771, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Patel, M.K.; Won, J. [Materials Science and Technology Division, Mail-Stop G755, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Monnet, I. [CIMAP, CEA-CNRS-ENSICAEN-Universite de Caen Normandie, Bd Henri Becquerel, BP 5133, F-14070, Caen Cedex 5 (France); Pivin, J.C. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, CNRS-IN2P3-Universite Paris Sud, UMR 8609, Bat. 108, 91405 Orsay (France); Mara, N.A. [Materials Physics and Application Division, Mail-Stop K771, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sickafus, K.E. [Materials Science and Technology Division, Mail-Stop G755, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2012-06-15

    We report on the relationship between structure and mechanical properties of complex oxides whose structures are derivatives of fluorite, following irradiation with swift heavy ion (92 MeV Xe) which approximately simulates fission product irradiation, where the electronic energy loss dominates. The two compounds of interest in this paper are Y{sub 6}W{sub 1}O{sub 12} and Yb{sub 6}W{sub 1}O{sub 12}. These compounds possess an ordered, fluorite derivative crystal structure known as the delta ({delta}) phase, a rhombohedral structure belonging to space group R3{sup Macron}. Structural changes induced by irradiation were examined using X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD investigations indicated an irradiation-induced amorphization in these compounds. This result is consistent with our previous study on Y{sub 6}W{sub 1}O{sub 12} under displacive radiation environment in which the nuclear energy loss is dominant. High resolution TEM also revealed that individual ion tracks was amorphized. The mechanical properties of both irradiated compounds, were determined by cross-sectional nano-indentation measurements as a function of ion penetration depth. The decreases in Young's modulus, E, and hardness, H (both by about 40% at the irradiated surface) suggest amorphization beyond simple defect accumulation occurs under this irradiation condition.

  18. Synthesis, structural and spectroscopic properties of acentric triple molybdate Cs{sub 2}NaBi(MoO{sub 4}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Savina, A.A. [Laboratory of Oxide Systems, Baikal Institute of Nature Management, SB RAS, Ulan-Ude 670047 (Russian Federation); Department of Chemistry, Buryat State University, Ulan-Ude 670000 (Russian Federation); Atuchin, V.V., E-mail: atuchin@isp.nsc.ru [Laboratory of Optical Materials and Structures, Rzhanov Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Functional Electronics Laboratory, Tomsk State University, Tomsk 634050 (Russian Federation); Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Solodovnikov, S.F. [Laboratory of Crystal Chemistry, Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Solodovnikova, Z.A. [Laboratory of Crystal Chemistry, Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Krylov, A.S. [Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Maximovskiy, E.A. [Laboratory of Epitaxial Layers, Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Laboratory of Research Methods of Composition and Structure of Functional Materials, Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Molokeev, M.S. [Laboratory of Crystal Structure, Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Oreshonkov, A.S [Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Department of Photonics and Laser Technology, Siberian Federal University, Krasnoyarsk 660079 (Russian Federation); Pugachev, A.M. [Laboratory of Condenced Matter Spectroscopy, Institute of Automation and Electrometry, SB RAS, Novosibirsk 90, 630090 (Russian Federation); and others

    2015-05-15

    New ternary molybdate Cs{sub 2}NaBi(MoO{sub 4}){sub 3} is synthesized in the system Na{sub 2}MoO{sub 4}–Cs{sub 2}MoO{sub 4}–Bi{sub 2}(MoO{sub 4}){sub 3}. The structure of Cs{sub 2}NaBi(MoO{sub 4}){sub 3} of a new type is determined in noncentrosymmetric space group R3c, a=10.6435(2), c=40.9524(7) Å, V=4017.71(13) Å{sup 3}, Z=12 in anisotropic approximation for all atoms taking into account racemic twinning. The structure is completely ordered, Mo atoms are tetrahedrally coordinated, Bi(1) and Bi(2) atoms are in octahedra, and Na(1) and Na(2) atoms have a distorted trigonal prismatic coordination. The Cs(1) and Cs(2) atoms are in the framework cavities with coordination numbers 12 and 10, respectively. No phase transitions were found in Cs{sub 2}NaBi(MoO{sub 4}){sub 3} up to the melting point at 826 K. The compound shows an SHG signal, I{sub 2w}/I{sub 2w}(SiO{sub 2})=5 estimated by the powder method. The vibrational properties are evaluated by Raman spectroscopy, and 26 narrow lines are measured. - Graphical abstract: - Highlights: • The crystal structure of Cs{sub 2}NaBi(MoO{sub 4}){sub 3} is defined. • The molybdate Cs{sub 2}NaBi(MoO{sub 4}){sub 3} is stable up to melting point at 826 K. • Vibrational properties of Cs{sub 2}NaBi(MoO{sub 4}){sub 3} are evaluated by Raman spectroscopy.

  19. V{sub 1+x}Nb{sub 1-x}IrB{sub 2} (x ∼ 0.1), the first quaternary metal-rich -boride adopting the Mo{sub 2}IrB{sub 2}-type structure: Synthesis, crystal and electronic structure and bonding analysis

    Energy Technology Data Exchange (ETDEWEB)

    Goerens, Christian; Fokwa, Boniface P.T. [Institute of Inorganic Chemistry, RWTH Aachen University (Germany)

    2013-02-15

    Polycrystalline samples and single crystals of the new metal-rich boride V{sub 1+x}Nb{sub 1-x}IrB{sub 2} (x ∼ 0.1), were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere and characterized by X-ray diffraction and EDX measurements. The crystal structure was refined on the basis of single crystal data. The new phase adopts the Mo{sub 2}IrB{sub 2}-type structure (space group Pnnm, no. 58) with the lattice parameters a = 7.301(7) Aa, b = 9.388(9) Aa and c = 3.206(5) Aa. It is the first quaternary representative of Mo{sub 2}IrB{sub 2}-type structure. The structure contains zigzag B{sub 4}-fragments with boron-boron distances of 1.83-1.85 Aa. The electronic density of states and crystal orbital Hamilton population (for bonding analysis) were calculated, using the linear muffin-tin orbital atomic sphere approximation (LMTO-ASA) method. According to these calculations, this metal-rich compound should be metallic, as expected. Furthermore, very strong boron-boron interactions are observed in the zigzag B{sub 4}-fragment and two significantly different Ir-B interactions are observed in the new phase and the prototype Mo{sub 2}IrB{sub 2}. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Synthesis and crystal structure of K{sub 2}NiF{sub 4}-type novel Gd{sub 1+x}Ca{sub 1−x}AlO{sub 4−x}N{sub x} oxynitrides

    Energy Technology Data Exchange (ETDEWEB)

    Masubuchi, Yuji, E-mail: yuji-mas@eng.hokudai.ac.jp; Hata, Tomoyuki; Motohashi, Teruki; Kikkawa, Shinichi

    2014-01-05

    Highlights: • Novel gadolinium calcium aluminum oxynitride was prepared by solid state reaction. • Crystal structure of the oxynitride was refined by using synchrotron X-ray diffraction. • Gd{sub 1.2}Ca{sub 0.8}AlO{sub 3.8}N{sub 0.2} has a layered K{sub 2}NiF{sub 4}-type structure with the I4mm space group. • Nitride ions preferentially occupy the apical site of aluminum octahedron. -- Abstract: Novel gadolinium calcium aluminum oxynitrides, Gd{sub 1+x}Ca{sub 1−x}AlO{sub 4−x}N{sub x}, were prepared in x = 0.15–0.25 by the solid state reaction of a nitrogen–rich mixture with AlN as an aluminum source; the mixture was sintered twice at 1500 °C for 5 h under 0.5 MPa of nitrogen gas. Shift in the optical absorption edge was observed in their diffuse reflectance spectra from 4.46 eV for the oxide (x = 0) to 2.94 eV for the oxynitride at x = 0.2. The crystal structure of Gd{sub 1.2}Ca{sub 0.8}AlO{sub 3.8}N{sub 0.2} at x = 0.2 was refined using a synchrotron X-ray diffraction data as a layered K{sub 2}NiF{sub 4}-type structure with the I4mm space group. Longer Al–O/N bond lengths in the oxynitride than those in GdCaAlO{sub 4} suggest that the nitride ions are in the apical site of aluminum polyhedron, similar to those in Nd{sub 2}AlO{sub 3}N.

  1. Structural analysis of quaternary Se{sub 85−x}Sb{sub 10}In{sub 5}Ag{sub x} bulk glassy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rita, E-mail: reetasharma2012@gmail.com; Sharma, Shaveta; Kumar, Praveen; Chander, Ravi; Thangaraj, R.; Mian, M. [Semiconductors Laboratory, Department of Physics, GND University, Amritsar (India)

    2015-08-28

    The physical properties of chalcogenide semiconductor have attracted much attention recently due to their applications in optical recording media and inorganic resist due to photo induced structural transformations observed in these materials. The bulk samples of Se{sub 85-x}Sb{sub 10}In{sub 5}Ag{sub x} system are prepared by melt-quenching technique. X-ray diffraction technique and RAMAN spectroscopy have been used to study the role of Ag additive on the amorphous/crystalline nature and molecular structure of Se{sub 85}Sb{sub 10}In{sub 5} glassy alloys. The phases Sb{sub 2}Se{sub 3}, In-Sb and In{sub 2}Se{sub 3} has been observed by X-ray diffraction. The formation of AgInSe{sub 2} phase along with the enhancement in intensity has been observed with the Ag addition.Three bands observed by raman spectroscopy for Se85Sb10In5 are at 70 cm-1, 212cm-1 and 252cm-1. The formation of small bands up to wavenumber 188cm{sup -1} and shifting in second band along with the increase in intensity up to sample x=5 has been observed with the Ag addition. The enhancement in intensity in third band with Ag content has been observed.

  2. Structural and Mössbauer studies of nanocrystalline Mn{sup 4+}-doped Li{sub 0.5}Fe{sub 2.5}O{sub 4} particles prepared by mechanical milling

    Energy Technology Data Exchange (ETDEWEB)

    Widatallah, H. M., E-mail: hishammw@squ.edu.om; Al-Mabsali, F. N.; Al-Hajri, F. S. [Sultan Qaboos University, Physics Department, College of Science (Oman); Khalifa, N. O. [University of Khartoum, Physics Department, Faculty of Science (Sudan); Gismelseed, A. M.; Al-Rawas, A. D.; Elzain, M.; Yousif, A. [Sultan Qaboos University, Physics Department, College of Science (Oman)

    2016-12-15

    The structure and magnetic properties of spinel-related Mn{sup 4+}-doped Li{sub 0.5}Fe{sub 2.5}O{sub 4} nanocrystalline particles of the composition Li{sub 0.5}Fe{sub 2.25}Mn{sub 0.1875}O{sub 4}, prepared by milling a pristine sample for different times, were investigated. The average crystallite and particle size, respectively, decreased form ∼40 nm to ∼10 nm and ∼2.5 μm to ∼10 nm with increasing milling time from 0 h to 70 h. Rietveld refinement of the XRD data of the non-milled sample show the Mn{sup 4+} dopant ions to substitute for Fe{sup 3+} at the octahedral B-sites of the spinel-related structure. The Mössbauer spectra of the milled ferrites indicate that more particles turn superparamagnetic with increasing milling time. The Mössbauer data collected at 78 K suggest that while in the non-milled sample the Mn{sup 4+} ions substitute for Fe{sup 3+} at the octahedral B-sites, this is reversed as milling proceeds with doped Mn{sup 4+} ions, balancing Fe{sup 3+} vacancies and possibly Li{sup +} ions progressively migrate to the tetrahedral A-sites. This is supported by the slight increase observed in the magnetization of the milled samples relative to that of the non-milled one. The magnetic data suggest that in addition to the increasing superparamagentic component of the milled particles, thermal spin reversal and/or spin canting effects are possible at the surface layers of the nanoparticles.

  3. Fabrication of periodical surface structures by picosecond laser irradiation of carbon thin films: transformation of amorphous carbon in nanographite

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, C.; Dorcioman, G. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele RO-077125 (Romania); Bita, B. [National Institute for Research and Development in Microtechnologies, 126A Erou Iancu Nicolae Street, Voluntari RO-077190 (Romania); Faculty of Physics, 405 Atomistilor Street, Magurele RO-077125 (Romania); Besleaga, C.; Zgura, I. [National Institute of Materials Physics, 105bis Atomistilor Street, Magurele RO-077125 (Romania); Himcinschi, C. [Institute of Theoretical Physics, TU Bergakademie Freiberg, Freiberg D-09596 (Germany); Popescu, A.C., E-mail: andrei.popescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele RO-077125 (Romania)

    2016-12-30

    Highlights: • Ripples obtained on carbon films after irradiation with visible ps laser pulses. • Amorphous carbon was transformed in nanographite following irradiation. • Ripples had a complex morphology, being made of islands of smaller ripples. • Hydrophilic carbon films became hydrophobic after surface structuring. - Abstract: Thin films of carbon were synthesized by ns pulsed laser deposition in vacuum on silicon substrates, starting from graphite targets. Further on, the films were irradiated with a picosecond laser source emitting in visible at 532 nm. After tuning of laser parameters, we obtained a film surface covered by laser induced periodical surface structures (LIPSS). They were investigated by optical, scanning electron and atomic force microscopy. It was observed that changing the irradiation angle influences the LIPSS covered area. At high magnification it was revealed that the LIPSS pattern was quite complex, being composed of other small LIPSS islands, interconnected by bridges of nanoparticles. Raman spectra for the non-irradiated carbon films were typical for a-C type of diamond-like carbon, while the LIPSS spectra were characteristic to nano-graphite. The pristine carbon film was hydrophilic, while the LIPSS covered film surface was hydrophobic.

  4. Effect of B{sub 2}O{sub 3}/P{sub 2}O{sub 5} substitution on the properties and structure of tin boro-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Akira, E-mail: asaito@ehime-u.ac.jp [Graduate School of Science and Engineering, Ehime University, Matsuyama, 3 Bunkyo-cho (Japan); Tricot, Grégory [LASIR UMR-CNRS 8516, Université de Lille 1, Villeneuve d' Ascq 59655 (France); UCCS UMR-CNRS 8181, Université de Lille 1, Villeneuve d' Ascq 59655 (France); Rajbhandari, Prashant [UCCS UMR-CNRS 8181, Université de Lille 1, Villeneuve d' Ascq 59655 (France); Anan, Shoji; Takebe, Hiromichi [Graduate School of Science and Engineering, Ehime University, Matsuyama, 3 Bunkyo-cho (Japan)

    2015-01-15

    Effect of B{sub 2}O{sub 3}/P{sub 2}O{sub 5} substitution on the properties and structure of the ternary 67SnO–(33–x)P{sub 2}O{sub 5}–xB{sub 2}O{sub 3} composition line (from x = 0–33 mol%) are examined in this contribution. We show that density and glass transition temperature increase while molar volume and thermal expansion coefficient decrease with increasing B{sub 2}O{sub 3} concentration. Density and thermal properties experience an original three-domain evolution with rapid (region I: 0 ≤ x < 5), substantial (II: 5 < x ≤ 15), and moderate (III: 15 < x ≤ 33) increase. In order to explain this unconventional behaviour, the glass structure has been investigated using high magnetic field 1 dimensional {sup 31}P and {sup 11}B MAS–NMR, micro-Raman and infrared spectroscopies. {sup 11}B MAS–NMR experiments allow to (i) monitor the 3- and 4-fold coordinated borate species proportion and (ii) highlight the presence of unreported 4-fold coordinated species in the region (III). Finally, it is shown that substitution of P{sub 2}O{sub 5} by B{sub 2}O{sub 3} induces an alteration of the dimeric phosphate network and formation of mixed anion structure that consists of Q{sup 0} phosphate units, 3- and 4-fold coordinated borate units and their combinations. - Highlights: • We examined B{sub 2}O{sub 3}/P{sub 2}O{sub 5} substitution effect on the ternary SnO–P{sub 2}O{sub 5}–B{sub 2}O{sub 3} glasses. • We show a three-domains evolution for density and thermal properties. • The structure was investigated by {sup 31}P and {sup 11}B NMR, Raman and IR spectroscopies. • 3 and 4-folded borate species and unreported 4-folded species are revealed. • Mixed anion structure consists of Q{sup 0} phosphate unit and 3- and 4-folded borate units.

  5. Synthesis, structure, and polymorphism of A{sub 3}LnSi{sub 2}O{sub 7} (A=Na, K; Ln=Sm, Ho, Yb)

    Energy Technology Data Exchange (ETDEWEB)

    Latshaw, Allison M.; Yeon, Jeongho; Smith, Mark D.; Loye, Hans-Conrad zur, E-mail: zurloye@mailbox.sc.edu

    2016-03-15

    Four new members of the A{sub 3}LnSi{sub 2}O{sub 7} family, K{sub 3}SmSi{sub 2}O{sub 7}, Na{sub 3}HoSi{sub 2}O{sub 7}, and two polymorphs of Na{sub 3}YbSi{sub 2}O{sub 7}, are reported. K{sub 3}SmSi{sub 2}O{sub 7} crystallizes in the hexagonal space group P6{sub 3}/mcm, Na{sub 3}HoSi{sub 2}O{sub 7} and Na{sub 3}YbSi{sub 2}O{sub 7} crystallize in the hexagonal space group P6{sub 3}/m, and Na{sub 3}YbSi{sub 2}O{sub 7} crystallizes in the trigonal space group P31c. The Na{sub 3}YbSi{sub 2}O{sub 7} composition that crystallizes in P31c is a new structure type. The magnetic properties for the Ho and Yb analogs are reported. - Graphical abstract: The different structure types and polymorphs of the A{sub 3}LnSi{sub 2}O{sub 7} family reported. - Highlights: • Four new members of the A{sub 3}LnSi{sub 2}O{sub 7} family are presented. • Na{sub 3}YbSi{sub 2}O{sub 7} is reported as two polymorphs, one is a new structure type. • Crystals synthesized out of molten fluoride fluxes.

  6. Synthesis, crystal structure, optical, and electronic study of the new ternary thorium selenide Ba{sub 3}ThSe{sub 3}(Se{sub 2}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Jai [Department of Chemistry, Northwestern University, Evanston, IL 60208-3113 (United States); Mesbah, Adel [Department of Chemistry, Northwestern University, Evanston, IL 60208-3113 (United States); ICSM, UMR 5257 CEA/CNRS/UM2/ENSCM, Site de Marcoule-Bât. 426, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Beard, Jessica [Department of Chemistry, Northwestern University, Evanston, IL 60208-3113 (United States); Lebègue, Sébastien [Laboratoire de Cristallographie, Résonance Magnétique et Modélisations (CRM2, UMR CNRS 7036), Institut Jean Barriol, Université de Lorraine, BP 239, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy (France); Malliakas, Christos D. [Department of Chemistry, Northwestern University, Evanston, IL 60208-3113 (United States); Ibers, James A., E-mail: ibers@chem.northwestern.edu [Department of Chemistry, Northwestern University, Evanston, IL 60208-3113 (United States)

    2015-11-15

    The compound Ba{sub 3}ThSe{sub 3}(Se{sub 2}){sub 2} has been synthesized by solid-state methods at 1173 K. Its crystal structure features one-dimensional chains of {sup 1}{sub ∞}[Th(Se){sub 3}(Se{sub 2}){sub 2}{sup 6−}] separated by Ba{sup 2+} cations. Each Th atom in these chains is coordinated to two Se–Se single-bonded pairs and four Se atoms to give rise to a pseudooctahedral geometry around Th. The Th–Se distances are consistent with Th{sup 4+} and hence charge balance of Ba{sub 3}ThSe{sub 3}(Se{sub 2}){sub 2} is achieved as 3×Ba{sup 2+}, 1×Th{sup 4+}, 3×Se{sup 2−}, and 2×Se{sub 2}{sup 2−}. From optical measurements the band gap of Ba{sub 3}ThSe{sub 3}(Se{sub 2}){sub 2} is 1.96(2) eV. DFT calculations indicate that the compound is a semiconductor. - Graphical abstract: Local coordination environment of Th atoms in the Ba{sub 3}ThSe{sub 3}(Se{sub 2}){sub 2} structure. - Highlights: • Ba{sub 3}ThSe{sub 3}(Se{sub 2}){sub 2} has been synthesized by solid-state methods at 1173 K. • The structure features chains of {sup 1}{sub ∞}[Th(Se){sub 3}(Se{sub 2}){sub 2}{sup 6−}] separated by Ba{sup 2+} cations. • Ba{sub 3}ThSe{sub 3}(Se{sub 2}){sub 2} is a semiconductor with a band gap of 1.96(2) eV.

  7. Crystal structures of MBi{sub 2}Br{sub 7} (M = Rb, Cs) - filled variants of AX{sub 7} sphere packing

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jen-Hui; Wolff, Alexander [Fachrichtung Chemie und Lebensmittelchemie, Technische Universitaet Dresden, 01062 Dresden (Germany); Ruck, Michael [Fachrichtung Chemie und Lebensmittelchemie, Technische Universitaet Dresden, 01062 Dresden (Germany); Max-Planck-Institut fuer Chemische Physik fester Stoffe, Noethnitzer Str. 40, 01187 Dresden (Germany)

    2016-03-15

    The reinvestigation of the pseudo-binary systems MBr-BiBr{sub 3} (M = Rb, Cs) revealed two new phases with composition MBi{sub 2}Br{sub 7}. Both compounds are hygroscopic and show brilliant yellow color. The crystal structures were solved from X-ray single crystal diffraction data. The isostructural compounds adopt a new structure type in the triclinic space group P anti 1. The lattice parameters are a = 755.68(3) pm, b = 952.56(3) pm, c = 1044.00(4) pm, α = 76.400(2) , β = 84.590(2) , γ = 76.652(2) for RbBi{sub 2}Br{sub 7} and a = 758.71(5) pm, b = 958.23(7) pm, c = 1060.24(7) pm, α = 76.194(3) , β = 83.844(4) , γ = 76.338(3) for CsBi{sub 2}Br{sub 7}. The crystal structures consist of M{sup +} cations in anticuboctahedral coordination by bromide ions and bromidobismuthate(III) layers {sup 2}{sub ∞}[Bi{sub 2}Br{sub 7}]{sup -}. The 2D layers comprise pairs of BiBr{sub 6} octahedra sharing a common edge. The Bi{sub 2}Br{sub 10} double octahedra are further connected by common vertices. The bismuth(III) atoms increase their mutual distance in the double octahedra by off-centering so that the BiBr{sub 6} octahedra are distorted. The CsBi{sub 2}Br{sub 7} type can be interpreted as a common hexagonal close sphere packing of M and Br atoms, in which 1/4 of the octahedral voids are filled by Bi atoms. The structure type was systematically analyzed and compared with alternative types of common packings. The existence of a compound with the suggested composition CsBiBr{sub 4} could not be verified experimentally. (Copyright copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Picosecond relaxation of X-ray excited GaAs

    Czech Academy of Sciences Publication Activity Database

    Tkachenko, V.; Medvedev, Nikita; Lipp, V.; Ziaja, B.

    2017-01-01

    Roč. 24, Sep (2017), s. 15-21 ISSN 1574-1818 Institutional support: RVO:68378271 Keywords : GaAS * X-ray excitation * picosecond relaxation Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 0.908, year: 2016

  9. Enhanced visible light photocatalytic activity in SnO{sub 2}@g-C{sub 3}N{sub 4} core-shell structures

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Hao; Zhao, Xiaoru, E-mail: xrzhao@nwpu.edu.cn; Duan, Libing; Liu, Ruidi; Li, Hui

    2017-04-15

    Highlights: • Novel SnO{sub 2}@g-C{sub 3}N{sub 4} core-shell structures were successfully synthesized. • The core-shell structures exhibited enhanced visible light photocatalytic activity. • The enhanced photocatalytic activity was due to synergic action of SnO{sub 2} and g-C{sub 3}N{sub 4}. - Abstract: SnO{sub 2}@g-C{sub 3}N{sub 4} core-shell structures were successfully synthesized by simple calcination of SnO{sub 2} microspheres and urea in a muffle furnace. The investigation of morphologies and microstructures showed that g-C{sub 3}N{sub 4} was wrapped tightly on the surface of SnO{sub 2} microspheres with large intimate interface contact areas between the g-C{sub 3}N{sub 4} shells and SnO{sub 2} cores. The X-ray photoelectron spectroscopy results and photoluminescence spectra demonstrated that the intimate interface contacts could facilitate the transfer and separation of the photogenerated charge carriers at their interface, thus the recombination of the photogenerated electron-hole pairs was impeded. The photocatalytic activity of the synthesized composites was evaluated by the photodegradation of methyl orange under visible light irradiation. It was found that SnO{sub 2}@g-C{sub 3}N{sub 4} exhibited higher photodegradation rate (k = 0.013 min{sup −1}) than that of g-C{sub 3}N{sub 4} (k = 0.008 min{sup −1}) and pure SnO{sub 2}. The enhanced photocatalytic activity could be attributed to the synergic action of SnO{sub 2} and g-C{sub 3}N{sub 4}.

  10. Order and disorder in the local and long-range structure of the spin-glass pyrochlore, Tb{sub 2}Mo{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yu; Huq, Ashfia; Booth, Corwin H.; Ehlers, Georg; Greedan, John E.; Gardner, Jason S.

    2011-02-11

    To understand the origin of the spin-glass state in molybdate pyrochlores, the structure of Tb{sub 2}Mo{sub 2}O{sub 7} is investigated using two techniques: the long-range lattice structure was measured using neutron powder diffraction (NPD), and local structure information was obtained from the extended x-ray absorption fine structure (EXAFS) technique. While the long-range structure appears generally well ordered, enhanced mean-squared site displacements on the O(1) site and the lack of temperature dependence of the strongly anisotropic displacement parameters for both the Mo and O(1) sites indicate some disorder exists. Likewise, the local structure measurements indicate some Mo-Mo and Tb-O(1) nearest-neighbor disorder exists, similar to that found in the related spin-glass pyrochlore, Y{sub 2}Mo{sub 2}O{sub 7}. Although the freezing temperature in Tb{sub 2}Mo{sub 2}O{sub 7}, 25 K, is slightly higher than in Y{sub 2}Mo{sub 2}O{sub 7}, 22 K, the degree of local pair distance disorder is actually less in Tb{sub 2}Mo{sub 2}O{sub 7}. This apparent contradiction is considered in light of the interactions involved in the freezing process.

  11. R{sub 4}Ir{sub 13}Ge{sub 9} (R=La, Ce, Pr, Nd, Sm) and RIr{sub 3}Ge{sub 2} (R=La, Ce, Pr, Nd): Crystal structures with nets of Ir atoms

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, Maksym [Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str, 6, UA-79005 Lviv (Ukraine); Swiss Federal Laboratories for Materials Science and Technology (EMPA), Ueberlandstr. 129, CH-8600 Duebendorf (Switzerland); Zaremba, Oksana; Gladyshevskii, Roman [Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya Str, 6, UA-79005 Lviv (Ukraine); Hlukhyy, Viktor, E-mail: viktor.hlukhyy@lrz.tu-muenchen.de [Department Chemie, Technische Universitaet Muenchen, Lichtenbergstr. 4, D-85747 Garching (Germany); Faessler, Thomas F. [Department Chemie, Technische Universitaet Muenchen, Lichtenbergstr. 4, D-85747 Garching (Germany)

    2012-12-15

    The crystal structures of the new ternary compounds Sm{sub 4}Ir{sub 13}Ge{sub 9} and LaIr{sub 3}Ge{sub 2} were determined and refined on the basis of single-crystal X-ray diffraction data. They belong to the Ho{sub 4}Ir{sub 13}Ge{sub 9} (oP52, Pmmn) and CeCo{sub 3}B{sub 2} (hP5, P6/mmm) structure types, respectively. The formation of isotypic compounds R{sub 4}Ir{sub 13}Ge{sub 9} with R=La, Ce, Pr, Nd, and RIr{sub 3}Ge{sub 2} with R=Ce, Pr, Nd, was established by powder X-ray diffraction. The RIr{sub 3}Ge{sub 2} (R=La, Ce, Pr, Nd) compounds exist only in as-cast samples and decompose during annealing at 800 Degree-Sign C with the formation of R{sub 4}Ir{sub 13}Ge{sub 9}. The structure of Sm{sub 4}Ir{sub 13}Ge{sub 9} contains intersecting, slightly puckered nets of Ir atoms (4{sup 4})(4{sup 3}.6){sub 2}(4.6{sup 2}){sub 2} and (4{sup 4}){sub 2}(4{sup 3}.6){sub 4}(4.6{sup 2}){sub 2} that are perpendicular to [0 1 1] as well as to [0 -1 1] and [0 0 1]. The Ir atoms are surrounded by Ge atoms that form tetrahedra or square pyramids (where the layers intersect). The Sm and additional Ir atoms (in trigonal-planar coordination) are situated in channels along [1 0 0] (short translation vector). In the structure of LaIr{sub 3}Ge{sub 2} the Ir atoms form planar Kagome nets (3.6.3.6) perpendicular to [0 0 1]. These nets alternate along the short translation vector with layers of La and Ge atoms. - Graphical abstract: The crystal structures contain the nets of Ir atoms as main structural motif: R{sub 4}Ir{sub 13}Ge{sub 9} contains intersecting slightly puckered nets of Ir atoms, whereas in the structure of RIr{sub 3}Ge{sub 2} the Ir atoms form planar Kagome nets. Highlights: Black-Right-Pointing-Pointer The Ir-rich ternary germanides R{sub 4}Ir{sub 13}Ge{sub 9} (R=La, Ce, Pr, Nd, Sm) and RIr{sub 3}Ge{sub 2} (R=La, Ce, Pr, Nd) have been synthesized. Black-Right-Pointing-Pointer The RIr{sub 3}Ge{sub 2} compounds exist only in as-cast samples and decompose during annealing at 800

  12. Magnetic and structural properties of mechanically alloyed Tb{sub 0.257-x}Nd{sub x}Fe{sub 0.743} alloys, with x = 0 and 0.257

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Martinez, Y., E-mail: yarojas@ut.edu.co; Bustos Rodriguez, H.; Oyola Lozano, D. [University of Tolima, Department of Physics (Colombia); Perez Alcazar, G. A.; Paz, J. C. [University of Valle, Department of Physics (Colombia)

    2007-02-15

    The alloys between a transition metal and a rare earth present magnetic and magneto optical properties of exceptional interest for the production of magnetic devices for information storage. In this work we report the magnetic and structural properties, obtained by Moessbauer spectrometry (MS) and X-ray diffraction (XRD), of Tb{sub 0.257-x}Nd{sub x}Fe{sub 0.743} alloys with x = 0 and 0.257 prepared by mechanical alloying during 12, 24 and 48 h, to study the influence of the milling time in their magnetic and structural properties. The X-rays results show for all the samples that the {alpha} and an amorphous phase are always present. The first decreases and the second increases with the increase of the milling time. Moessbauer results show that the amorphous phase in samples with Nd is ferromagnetic and appears as a hyperfine field distribution and a broad doublet, and that as the milling time increases the paramagnetic contribution increases. For samples with Tb the amorphous phase is paramagnetic and appears as a broad doublet which increases with the milling time and for 48 h milling it appears an additional broad singlet.

  13. Phase transformation of Ca{sub 4}[Al{sub 6}O{sub 12}]SO{sub 4} and its disordered crystal structure at 1073 K

    Energy Technology Data Exchange (ETDEWEB)

    Kurokawa, Daisuke [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); R and D Center, Taiheiyo Cement Corporation, Chiba 285-8655 (Japan); Takeda, Seiya [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Colas, Maggy [Science des Proce' de' s Ce' ramiques et de Traitements de Surface (SPCTS), UMR 7315 CNRS, Universite' de Limoges, Centre Europe' en de la Ce' ramique, 12 Rue Atlantis, 87068 Limoges Cedex (France); Asaka, Toru [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Thomas, Philippe [Science des Proce' de' s Ce' ramiques et de Traitements de Surface (SPCTS), UMR 7315 CNRS, Universite' de Limoges, Centre Europe' en de la Ce' ramique, 12 Rue Atlantis, 87068 Limoges Cedex (France); Fukuda, Koichiro, E-mail: fukuda.koichiro@nitech.ac.jp [Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan)

    2014-07-01

    The phase transformation of Ca{sub 4}[Al{sub 6}O{sub 12}]SO{sub 4} and the crystal structure of its high-temperature phase were investigated by differential thermal analysis, temperature-dependent Raman spectroscopy and high-temperature X-ray powder diffraction (CuKα{sub 1}). We determined the starting temperature of the orthorhombic-to-cubic transformation during heating (=711 K) and that of the reverse transformation during cooling (=742 K). The thermal hysteresis was negative (=−31 K), suggesting the thermoelasticity of the transformation. The space group of the high temperature phase is I4{sup ¯}3m with the unit-cell dimensions of a=0.92426(2) nm and V=0.78955(2) nm{sup 3} (Z=2) at 1073 K. The initial structural model was derived by the direct methods and further refined by the Rietveld method. The final structural model showed the orientational disordering of SO{sub 4} tetrahedra. The maximum-entropy method-based pattern fitting method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. At around the transformation temperature during heating, the vibrational spectra, corresponding to the Raman-active SO{sub 4} internal stretching mode, showed the continuous and gradual change in the slope of full width at half maximum versus temperature curve. This strongly suggests that the orthorhombic-to-cubic phase transformation would be principally accompanied by the statistical disordering in orientation of the SO{sub 4} tetrahedra, without distinct dynamical reorientation. - Graphical abstract: (Left) Three-dimensional electron-density distributions of the SO{sub 4} tetrahedron with the split-atom model, and (right) a bird's eye view of electron densities on the plane parallel to (111). - Highlights: • Crystal structure of Ca{sub 4}[Al{sub 6}O{sub 12}]SO{sub 4} at 1073 K is determined by powder XRD. • The atom arrangements are represented by the split

  14. A kilohertz picosecond x-ray pulse generation scheme

    International Nuclear Information System (INIS)

    Guo, W.; Borland, M.; Harkay, K. C.; Wang, C.-X.; Yang, B.

    2007-01-01

    The duration of the x-ray pulse generated at a synchrotron light source is typically tens of picoseconds. Shorter pulses are highly desired by the users. In electron storage rings, the vertical beam size is usually orders of magnitude less than the bunch length due to radiation damping; therefore, a shorter pulse can be obtained by slitting the vertically tilted bunch. Zholents proposed tilting the bunch using rf deflection. We found that tilted bunches can also be generated by a dipole magnet kick. A vertical tilt is developed after the kick in the presence of nonzero chromaticity. The tilt was successfully observed and a 4.2-ps pulse was obtained from a 27-ps electron bunch at the Advanced Photon Source. Based on this principle we propose a short-pulse generation scheme that produces picosecond x-ray pulses at a repetition rate of 1 utilde2 kHz, which can be used for pump-probe experiments

  15. Electronic structures and Eu{sup 3+} photoluminescence behaviors in Y{sub 2}Si{sub 2}O{sub 7} and La{sub 2}Si{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiya, E-mail: zhangzhiya@lzu.edu.cn [Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 (China); Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000 (China); Wang Yuhua [Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 (China); Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000 (China); Zhang Feng [Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 (China); Cao Haining [Computational Science Center, Korea Institute of Science and Technology, Seoul, 136-791 (Korea, Republic of)

    2011-04-14

    Research highlights: > Host excitation near the band gap of Y{sub 2}Si{sub 2}O{sub 7} and La{sub 2}Si{sub 2}O{sub 7} is analyzed. > The calculated result well explains Eu{sup 3+} PL behaviors in Y{sub 2}Si{sub 2}O{sub 7} and La{sub 2}Si{sub 2}O{sub 7}. > The electronic structure and Eu{sup 3+} VUV PL in La{sub 2}Si{sub 2}O{sub 7} are first estimated. - Abstract: The electronic structures and linear optical properties of Y{sub 2}Si{sub 2}O{sub 7} (YSO) and La{sub 2}Si{sub 2}O{sub 7} (LSO) are calculated by LDA method based on the theory of DFT. Both YSO and LSO are direct-gap materials with the direct band gap of 5.89 and 6.06 eV, respectively. The calculated total and partial density of states indicate that in both YSO and LSO the valence band (VB) is mainly constructed from O 2p and the conduction band (CB) is mostly formed from Y 4d or La 5d. Both the calculated VB and CB of YSO exhibit relatively wider dispersion than that of LSO. In addition, the CB of YSO presents more electronic states. Meanwhile, the VB of LSO shows narrower energy distribution with higher electronic states density. The theoretical absorption of YSO shows larger bandwidth and higher intensity than that of LSO. The results are compared with the experimental host excitations and impurity photoluminescence in Eu{sup 3+}-doped YSO and LSO.

  16. X-ray and NQR studies of bromoindate(III) complexes. [C{sub 2}H{sub 5}NH{sub 3}]{sub 4}InBr{sub 7}, [C(NH{sub 2}){sub 3}]{sub 3}InBr{sub 6}, and [H{sub 3}NCH{sub 2}C(CH{sub 3}){sub 2}CH{sub 2}NH{sub 3}]InBr{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Iwakiri, Takeharu; Ishihara, Hideta [Saga Univ. (Japan). Faculty of Culture and Education; Terao, Hiromitsu [Tokushima Univ. (Japan). Faculty of Integrated Arts and Sciences; Lork, Enno; Gesing, Thorsten M. [Bremen Univ. (Germany). Inst. of Inorganic Chemistry and Crystallography

    2017-03-01

    The crystal structures of [C{sub 2}H{sub 5}NH{sub 3}]{sub 4}InBr{sub 7}(1), [C(NH{sub 2}){sub 3}]{sub 3}InBr{sub 6}(2), and [H{sub 3}NCH{sub 2}C(CH{sub 3}){sub 2}CH{sub 2}NH{sub 3}]InBr{sub 5}(3) were determined at 100(2) K: monoclinic, P2{sub 1}/n, a=1061.94(3), b=1186.40(4), c=2007.88(7) pm, β= 104.575(1) , Z=4 for 1; monoclinic, C2/c, a=3128.81(12), b=878.42(3), c=2816.50(10) pm, β=92.1320(10) , Z=16 for 2; orthorhombic, P2{sub 1}2{sub 1}2{sub 1}, a=1250.33(5), b=1391.46(6), c=2503.22(9) pm, Z=4 for 3. The structure of 1 contains an isolated octahedral [InBr{sub 6}]{sup 3-} ion and a Br{sup -} ion. The structure of 2 contains three different isolated octahedral [InBr{sub 6}]{sup 3-} ions. The structure of 3 has a corner-shared double-octahedral [In{sub 2}Br{sub 11}]{sup 5-} ion and an isolated tetrahedral [InBr{sub 4}]{sup -} ion. The {sup 81}Br nuclear quadrupole resonance (NQR) lines of the terminal Br atoms of the compounds are widely spread in frequency, and some of them show unusual positive temperature dependence. These observations manifest the N-H..Br-In hydrogen bond networks developed between the cations and anions to stabilize the crystal structures. The {sup 81}Br NQR and differential thermal analysis (DTA) measurements have revealed the occurrence of unique phase transitions in 1 and 3. When the bond angles were estimated from the electric field gradient (EFG) directions calculated by the molecular orbital (MO) methods, accurate values were obtained for [InBr{sub 6}]{sup 3-} of 1 and for [In{sub 2}Br{sub 11}]{sup 5-} and [InBr{sub 4}]{sup -} of 3, except for several exceptions in those for the latter two ions. On the other hand, the calculations of {sup 81}Br NQR frequencies have produced up to 1.4 times higher values than the observed ones.

  17. Effect of the structure distortion on the high photocatalytic performance of C{sub 60}/g-C{sub 3}N{sub 4} composite

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaojuan; Li, Xinru; Li, Mengmeng; Ma, Xiangchao; Yu, Lin, E-mail: yu-lin@sdu.edu.cn; Dai, Ying, E-mail: daiy60@sina.com

    2017-08-31

    Highlights: • The adsorption of C{sub 60} can induce an irreversible structure distortion for g-C{sub 3}N{sub 4} from flat to wrinkle. • The structure distortion of g-C{sub 3}N{sub 4} plays a crucial role in enhancing photocatalytic performances. • Stability, optical absorption and band edge all have positive correlations with wrinkle degree for g-C{sub 3}N{sub 4} monolayers. - Abstract: C{sub 60}/g-C{sub 3}N{sub 4} composite was reported experimentally to be of high photocatalytic activity in degrading organics. To investigate the underlying mechanism of high photocatalytic performance, the structural and electronic properties of g-C{sub 3}N{sub 4} monolayers with adsorbing and removing fullerene C{sub 60} are studied by means of density functional theory calculations. After 25 possible configurations examination, it is found that C{sub 60} prefers to stay upon the “junction nitrogen” with the carbon atom of fullerene being nearest to monolayers. Correspondingly, a type-I band alignment appears. Our results further demonstrate that the adsorption of C{sub 60} can lead to an irreversible structure distortion for g-C{sub 3}N{sub 4} from flat to wrinkle, which plays a crucial role in improving photocatalytic performance other than the separation of carriers at interface due to the formation of type-II heterojunctions as previous report. Compared to flat one, the light absorption of wrinkled structure shows augmented, the valence band maximum shifts towards lower position along with a stronger photo-oxidation capability. Interestingly, the results indicate that the energy, light absorption and band edge all have a particular relationship with wrinkle degree. The work presented here can be helpful to understand the mechanism behind the better photocatalytic performance for C{sub 60} modified g-C{sub 3}N{sub 4}.

  18. Cooling rate dependence of simulated Cu{sub 64.5}Zr{sub 35.5} metallic glass structure

    Energy Technology Data Exchange (ETDEWEB)

    Ryltsev, R. E. [Institute of Metallurgy, Ural Branch of Russian Academy of Sciences, 101 Amundsen Str., 620016 Ekaterinburg (Russian Federation); Ural Federal University, 19 Mira Str., 620002 Ekaterinburg (Russian Federation); L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 2 Kosygina Str., 119334 Moscow (Russian Federation); Klumov, B. A. [L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 2 Kosygina Str., 119334 Moscow (Russian Federation); Aix-Marseille-Université, CNRS, Laboratoire PIIM, UMR 7345, 13397 Marseille Cedex 20 (France); High Temperature Institute, Russian Academy of Sciences, 13/2 Izhorskaya Str., 125412 Moscow (Russian Federation); Chtchelkatchev, N. M. [Institute of Metallurgy, Ural Branch of Russian Academy of Sciences, 101 Amundsen Str., 620016 Ekaterinburg (Russian Federation); L.D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, 2 Kosygina Str., 119334 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 9 Institutskiy Per., Dolgoprudny, 141700 Moscow Region (Russian Federation); All-Russia Research Institute of Automatics, 22 Sushchevskaya, 127055 Moscow (Russian Federation); Shunyaev, K. Yu. [Institute of Metallurgy, Ural Branch of Russian Academy of Sciences, 101 Amundsen Str., 620016 Ekaterinburg (Russian Federation); Ural Federal University, 19 Mira Str., 620002 Ekaterinburg (Russian Federation)

    2016-07-21

    Using molecular dynamics simulations with embedded atom model potential, we study structural evolution of Cu{sub 64.5}Zr{sub 35.5} alloy during the cooling in a wide range of cooling rates γ ∈ (1.5 ⋅ 10{sup 9}, 10{sup 13}) K/s. Investigating short- and medium-range orders, we show that the structure of Cu{sub 64.5}Zr{sub 35.5} metallic glass essentially depends on cooling rate. In particular, a decrease of the cooling rate leads to an increase of abundances of both the icosahedral-like clusters and Frank-Kasper Z16 polyhedra. The amounts of these clusters in the glassy state drastically increase at the γ{sub min} = 1.5 ⋅ 10{sup 9} K/s. Analysing the structure of the glass at γ{sub min}, we observe the formation of nano-sized crystalline grain of Cu{sub 2}Zr intermetallic compound with the structure of Cu{sub 2}Mg Laves phase. The structure of this compound is isomorphous with that for Cu{sub 5}Zr intermetallic compound. Both crystal lattices consist of two types of clusters: Cu-centered 13-atom icosahedral-like cluster and Zr-centered 17-atom Frank-Kasper polyhedron Z16. That suggests the same structural motifs for the metallic glass and intermetallic compounds of Cu–Zr system and explains the drastic increase of the abundances of these clusters observed at γ{sub min}.

  19. Structure and electrical conduction of the system La sub(1-x)Ca sub(x)FeO sub(3-α)

    International Nuclear Information System (INIS)

    Hombo, Jukichi; Urabe, Noriake; Hiroshige, Gota; Hamada, Kotaro.

    1982-01-01

    Perovskite phases in the system, La sub(1-x)Ca sub(x)FeO sub(3-α) were prepared with La 2 O 3 , CaCO 3 , and Fe 2 O 3 by firing in air and in vacuo. The compositions of samples fired in vacuo and in air are represented as La sub(1-x)Ca sub(x)FeO sub(3-x 2) and La sub(1-x)Ca sub(x)Fe sub(1-y)sup(3+)Fe sub(y)sup(4+)O sub(3-x/2+y/2), respectively. That is, samples fired in vacuo contain some oxygen vacancies and no tetravalent iron; in contrast, samples fired in air contain both oxygen vacancies and tetravalent iron in the structures. The electrical conductivities of these synthesized oxides depended extensively upon the content of tetravalent iron. For instance, the conductivity of the sample x = 0.6 fired in air was larger by 10 6 than that of the sample fired in vacuo. In this system, except for the two terminal compositions of x = 0 and x = 1.0, the values of activation energy for conduction are considerably small, and from the results of thermo-electromotive force measurement, the charge carrier was positive. Furthermore, the conductivity increased somewhat with time during the conductivity measurement by the direct-current method. These facts suggest that the electrical conducted would not be ionic but electronic. The electrical conduction would then be carried out by the so-called hopping mechanism by which the positive charge is transferred. (author)

  20. Observation of growth-related magnetic structures in La{sub 0.67}Sr{sub 0.33}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, M.E.; Brown, G.W.; Kwon, C. [Los Alamos National Lab., NM (United States)

    1998-12-31

    Ambient observation of magnetic structures by magnetic force microscopy (MFM) in La{sub 0.67}Sr{sub 0.33}MnO{sub 3} films has not yet been clearly correlated with stresses induced by the kinetic or thermodynamic growth processes or the compressive (LaAlO{sub 3}) or tensile (SrTiO{sub 3}) nature of the substrate lattice-mismatch. Although domain-like magnetic structures have been seen in some as-grown films on LAO and related to substrate-induced stress and film thickness, no magnetic structure has been seen for films on STO and other films grown under different kinetic conditions on LAO. In this study, the authors have identified a set of pulsed-laser deposition conditions with the substrate temperature as a variable to determine the relationship between growth and stress-induced magnetic structures. Results from scanning tunneling, atomic force, and MFM microscopies, magnetization, and coercivity measurements will be presented.

  1. Reaction of ReH sub 7 (PPh sub 3 ) sub 2 with silanes: Preparation and characterization of the first silyl polyhydride complexes, ReH sub 6 (SiR sub 3 )(PPh sub 3 ) sub 2 (SiR sub 3 = SiPh sub 3 , SiEt sub 3 , SiHEt sub 2 )

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaoliang; Baudry, D.; Boydell, P.; Charpin, P.; Nierlich, M.; Ephritikhine, M.; Crabtree, R.H. (Yale Univ., New Haven, CT (USA) CEA-CEN Saclay, Gif-sur-Yvette (France))

    1990-04-18

    Reaction of silanes with ReH{sub 7}(PPh{sub 3}){sub 2} (1) gives the novel rhenium silyl hexahydride complexes ReH{sub 6}(SiR{sub 3})(PPh{sub 3}){sub 2} (SiR{sub 3} = SiPh{sub 3} (2a), SiEt{sub 3} (2b), SiHEt{sub 2} (2c)), which have been fully characterized by IR and {sup 1}H, {sup 31}P, and {sup 13}C NMR spectroscopy and, in the case of 2a, by single-crystal x-ray crystallography. The spectroscopic and x-ray diffraction data suggest that 2a-c probably have a classical nine-coordinate tricapped trigonal-prismatic structure with the two phosphine ligands and the silyl group occupying the three equatorial sites and the six hydride ligands occupying the six axial positions. 2a has been obtained in two crystalline forms, one solvated (CH{sub 2}Cl{sub 2}) and the other unsolvated, and structures were determined on both. The crystal structures of crystals of unsolvated 2a and 2a {times} CH{sub 2} Cl{sub 2} are reported. The Re-Si bond lengths, 2.474 (4) {angstrom} (2a) and 2.475 (4) {angstrom} (2a {times} CH{sub 2}Cl{sub 2}), are shorter than the sum of the covalent radii of the Re and Si atoms (2.65 {angstrom}), which is unusual for a transition-metal silyl complex with a formal d{sup 0} configuration. 35 refs., 2 figs., 4 tabs.

  2. Syntheses, crystal structures, and properties of the isotypic pair [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O and [In(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Van, Nguyen-Duc; Kleeberg, Fabian M.; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2015-11-15

    Single crystals of [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O and [In(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O were obtained by reactions of aqueous solutions of the acid (H{sub 3}O){sub 2}[B{sub 12}H{sub 12}] with chromium(III) hydroxide and indium metal shot, respectively. The title compounds crystallize isotypically in the trigonal system with space group R anti 3c (a = 1157.62(3), c = 6730.48(9) pm for the chromium, a = 1171.71(3), c = 6740.04(9) pm for the indium compound, Z = 6). The arrangement of the quasi-icosahedral [B{sub 12}H{sub 12}]{sup 2-} dianions can be considered as stacking of two times nine layers with the sequence..ABCCABBCA.. and the metal trications arrange in a cubic closest packed..abc.. stacking sequence. The metal trications are octahedrally coordinated by six water molecules of hydration, while another fifteen H{sub 2}O molecules fill up the structures as zeolitic crystal water or second-sphere hydrating species. Between these free and the metal-bonded water molecules, bridging hydrogen bonds are found. Furthermore, there is also evidence of hydrogen bonding between the anionic [B{sub 12}H{sub 12}]{sup 2-} clusters and the free zeolitic water molecules according to B-H{sup δ-}..{sup δ+}H-O interactions. Vibrational spectroscopy studies prove the presence of these hydrogen bonds and also show slight distortions of the dodecahydro-closo-dodecaborate anions from their ideal icosahedral symmetry (I{sub h}). Thermal decomposition studies for the example of [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O gave no hints for just a simple multi-stepwise dehydration process. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Tuning magneto-structural properties of Ni{sub 44}Co{sub 6}Mn{sub 39}Sn{sub 11} Heusler alloy ribbons by Fe-doping

    Energy Technology Data Exchange (ETDEWEB)

    Wójcik, Anna, E-mail: a.wojcik@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Kraków (Poland); Maziarz, Wojciech; Szczerba, Maciej J. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Kraków (Poland); Sikora, Marcin [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków (Poland); Dutkiewicz, Jan [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Kraków (Poland); Cesari, Eduard [Departament de Física, Universitat de les Illes Balears, Ctra. De Valldemossa, km 7.5, E-07122 Palma de Mallorca (Spain)

    2016-07-15

    Graphical abstract: - Highlights: • Fe substitution for Ni in Ni{sub 44}Co{sub 6}Mn{sub 39}Sn{sub 11} causes a drastic decrease of M{sub T} temperature. • The type of structure changes with increasing of iron (12M → 10M + L2{sub 1} → L2{sub 1}). • Content of Fe above 1 at.% has a negative influence on magneto-structural properties. - Abstract: Microstructure, martensitic transformation behavior and magnetic properties of Ni{sub 44−x}Fe{sub x}Co{sub 6}Mn{sub 39}Sn{sub 11} (x = 0, 1, 2 at.%) melt spun ribbons have been investigated. The influence of iron addition has been thoroughly studied by means of electron microscopy, X-ray diffraction and vibrating sample magnetometry. The results show that addition of 1 at.% of iron into quaternary Ni–Co–Mn–Sn Heusler alloy drastically decreases the martensitic transformation temperature by more than 100 K. Higher concentration of iron leads to complete suppression of martensitic transition. The structure of samples change from fully martensite (12 M) through mixed austenite-martensite (L2{sub 1} + 10 M) to fully austenite (L2{sub 1}) with increase of iron content. Addition of 1 at.% of iron leads to enhance magnetization of both austenitic and martensitic phases and also a small increase of Curie temperature occurs. The largest change of magnetic entropy under 15 kOe measured 2.9 and 0.65 J kg{sup −1} K{sup −1} for alloys where x = 0 and 1, respectively.

  4. YBCO/manganite layered structures on NdGaO{sub 3} substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nurgaliev, T [Institute of Electronics BAS, 72 Tsarigradsko Chaussee, 1784 Sofia (Bulgaria); Blagoev, B [Institute of Electronics BAS, 72 Tsarigradsko Chaussee, 1784 Sofia (Bulgaria); Donchev, T [Institute of Electronics BAS, 72 Tsarigradsko Chaussee, 1784 Sofia (Bulgaria); Miteva, S [Institute of Electronics BAS, 72 Tsarigradsko Chaussee, 1784 Sofia (Bulgaria); Mozhaev, P B [Institute of Physics and Technology RAS, Nakhimovsky ave. 36, 117218 Moscow (Russian Federation); Mozhaeva, J E [Institute of Physics and Technology RAS, Nakhimovsky ave. 36, 117218 Moscow (Russian Federation); Ovsyannikov, G A [Institute of Radio Engineering and Electronics RAS, Mokhovaya st.11, 103907 Moscow (Russian Federation); Kotelyanskii, I M [Institute of Radio Engineering and Electronics RAS, Mokhovaya st.11, 103907 Moscow (Russian Federation); Jacobsen, C [Technical University of Denmark, Building 307-309, DK-2800, Kgs.Lyngby, Denmark (Denmark)

    2006-06-01

    Results of deposition of YBa{sub 2}Cu{sub 3}O{sub 7-x}/CeO{sub 2}/(La{sub 0.7}Ca{sub 0.3}MnO{sub 3} or La{sub 0.7}Sr{sub 0.3}MnO{sub 3}) structures on the standard oriented and tilted ( 8{sup 0}) NdGaO{sub 3} substrates and results of investigation of electrical parameters of YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) films in such structures are presented. The YBCO component of the structure exhibits lower value of the critical parameters in comparison with those of single YBCO films. The contribution of the magnetic layer to the microwave losses of the YBCO film in the layered structure is evaluated.

  5. (Sr{sub 1-x}Na{sub x})(Cd{sub 1-x}Mn{sub x}){sub 2}As{sub 2}: A new charge and spin doping decoupled diluted magnetic semiconductors with CaAl{sub 2}Si{sub 2}-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bijuan; Deng, Zheng; Li, Wenmin; Gao, Moran; Zhao, Guoqiang; Yu, Shuang; Wang, Xiancheng; Liu, Qingqing [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Zhi [School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China); Jin, Changqing, E-mail: Jin@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China)

    2016-08-28

    We report the synthesis and characterization of a new bulk diluted ferromagnetic semiconductor via Na and Mn co-doping in SrCd{sub 2}As{sub 2} with a hexagonal CaAl{sub 2}Si{sub 2}-type structure. Together with carrier doping via (Sr,Na) substitution, spin doping via (Cd,Mn) substitution results in ferromagnetic order with Curie temperature of T{sub C} up to 13 K. Negative magnetoresistance is assigned to weak localization at low temperatures, where the magnetization of samples becomes saturated. The hexagonal structure of (Sr{sub 1−x}Na{sub x})(Cd{sub 1−x}Mn{sub x}){sub 2}As{sub 2} can be acted as a promising candidate for spin manipulations owing to its relatively small coercive field of less than 24 Oe.

  6. Structural transformations of mechanically induced top-down approach BaFe{sub 12}O{sub 19} nanoparticles synthesized from high crystallinity bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Low, Zhi Huang [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan (Malaysia); Chen, Soo Kien [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan (Malaysia); Department of Physics, Faculty of Science, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan (Malaysia); Ismail, Ismayadi, E-mail: kayzen@gmail.com [Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan (Malaysia); Tan, Kim Song [Advanced Imaging Centre, Malaysian Rubber Board, RRIM Sungai Buloh, 47000 Selangor (Malaysia); Liew, J.Y.C. [Department of Physics, Faculty of Science, University Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan (Malaysia)

    2017-05-01

    In this work, a top-down approach was applied to high crystallinity BaFe{sub 12}O{sub 19} bulks, breaking them into smaller nanoparticles by mechanochemical route. The effects of milling time, reaction mechanisms and structural information were investigated. Interestingly, three distinct stages of the mechanochemical mechanism were observed. The XRD results indicated that the BaFe{sub 12}O{sub 19} phase existed even though the mechanical energy had induced the formation of an amorphous phase in the material. The average crystallite size decreased during the first stage and the intermediate stage, and increased during the final stage of the mechanical alloying. A Rietveld refinement analysis suggested the deformation of a mechanically-triggered polyhedral in the magnetoplumbite structure. FESEM micrographs indicated that fragmentation predominated during the first and intermediate stages, until a steady equilibrium state was achieved at in the final stage, where a narrow particle size distribution was observed. HRTEM micrographs suggested the formation of a non-uniform nanostructure shell surrounding the ordered core materials at the edge-interface region. The thickness of the amorphous surface layer extended up to 12 nm during the first and intermediate stages, and diminished to approximately 3 nm after 20 h milling. VSM results showed a mixture of ferromagnetic, superparamagnetic, and paramagnetic behaviours. However, different magnetic behaviours predominated at different milling time, which strongly related to the defects, distorted polyhedra, and non-equilibrium amorphous layers of the material. - Highlights: • Nanoparticles of BaFe{sub 12}O{sub 19} are successfully prepared. • Morphological and structural properties rely on mechanochemical mechanism. • Three stages of mechanochemical mechanism was observed. • Core shell structures (3–12 nm) was found during by extending the milling time. • Magnetic properties were strongly related with the

  7. Crystal structure of the alluaudite Ag{sub 2}Mn{sub 3}(VO{sub 4}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yahia, Hamdi Ben; Essehli, Rachid; Belharouak, Ilias [Hamad Bin Khalifa Univ., Doha (Qatar). Qatar Environment and Energy Research Inst.; Shikano, Masahiro [National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka (Japan). Research Inst. of Electrochemical Energy

    2016-07-01

    The new compound Ag{sub 2}Mn{sub 3}(VO4){sub 3} was synthesized by hydrothermal and solid state reaction routes, and its crystal structure was determined from single-crystal X-ray diffraction data. Ag{sub 2}Mn{sub 3}(VO4){sub 3} crystallizes with a monoclinic symmetry, space group C2/c, with a=11.8968(11) Aa, b=13.2057(13) Aa, c=6.8132(7) Aa, β=111.3166(15) ( ) and V=997.16(17) Aa{sup 3} (Z=4). Its crystal refinement yielded the residual factors R(F)=0.0249 and wR(F{sup 2})=0.0704 for 95 parameters and 1029 independent reflections at a 3σ(I) level. Ag{sub 2}Mn{sub 3}(VO4){sub 3} can be considered as a new member of the AA{sup '}MM{sup '}{sub 2}(XO4){sub 3} alluaudite family. The specific arrangement of M and M{sup '} octahedral sites and of X tetrahedral sites gives rise to two different channels aligned along the crystallographic c-axis and containing the A and A{sup '} sites. The A, A{sup '}, M, and X sites are fully occupied by Ag{sup +}, Mn{sup 2+}, and V{sup 5+}, respectively; whereas a Mn{sup 2+}/Mn{sup 3+} mixture is observed in the M{sup '} site.

  8. A novel dual-wavelength, Nd:YAG, picosecond-domain laser safely and effectively removes multicolor tattoos.

    Science.gov (United States)

    Bernstein, Eric F; Schomacker, Kevin T; Basilavecchio, Lisa D; Plugis, Jessica M; Bhawalkar, Jayant D

    2015-07-14

    Although nanosecond-domain lasers have been the mainstay of laser tattoo removal for decades, recent disruptive innovations in laser design have introduced a new class of commercial Q-switched lasers that generate picosecond-domain pulses. A picosecond-domain, Nd:YAG laser with a KTP frequency-doubling crystal was used to treat 31 decorative tattoos in 21 subjects. Safety and effectiveness were determined by blinded evaluation of digital images in this prospective clinical study. The average clearance overall as evaluated by blinded observers evaluating randomized digital photographs was 79 ± 0.9% (mean ± sem) after an average of 6.5 treatments. Of the 31 tattoos completing treatment, 6 had evidence of mild hyper- or hypo-pigmentation by evaluation of photographs. The 350 picosecond, 532 nm, and 450 picosecond 1,064 nm Nd:YAG laser is safe and effective for removing decorative tattoos. Lasers Surg. Med. © 2015 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc. © 2015 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.

  9. Magnetic structure of the magnetocaloric compound AlFe{sub 2}B{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Cedervall, Johan, E-mail: johan.cedervall@kemi.uu.se [Department of Chemistry – Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala (Sweden); Andersson, Mikael Svante; Sarkar, Tapati [Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala (Sweden); Delczeg-Czirjak, Erna K. [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Bergqvist, Lars [Department of Materials and Nano Physics and Swedish e-Science Research Centre (SeRC), Royal Institute of Technology (KTH), Electrum 229, SE-164 40 Kista (Sweden); Hansen, Thomas C. [Institut Laue-Langevin, B.P. 156, Grenoble Cedex 9, 38042 France (France); Beran, Premysl [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rez, 25068 Czech Republic (Czech Republic); Nordblad, Per [Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala (Sweden); Sahlberg, Martin [Department of Chemistry – Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala (Sweden)

    2016-04-15

    The crystal and magnetic structures of AlFe{sub 2}B{sub 2} have been studied with a combination of X-ray and neutron diffraction and electronic structure calculations. The magnetic and magnetocaloric properties have been investigated by magnetisation measurements. The samples have been produced using high temperature synthesis and subsequent heat treatments. The compound crystallises in the orthorhombic crystal system Cmmm and it orders ferromagnetically at 285 K through a second order phase transition. At temperatures below the magnetic transition the magnetic moments align along the crystallographic a-axis. The magnetic entropy change from 0 to 800 kA/m was found to be −1.3 J/K kg at the magnetic transition temperature. - Graphical abstract: The magnetic structure of AlFe{sub 2}B{sub 2} has been investigated using neutron diffraction and the magnetic spins have been found to align ferromagnetically along the crystallographic a-axis. - Highlights: • The crystal and magnetic structures of AlFe{sub 2}B{sub 2} have been studied. • Orders ferromagnetically at 285 K via a second order phase transition. • The magnetic moments are found to be aligned along the crystallographic a-axis. • The magnetic entropy change from 0 to 800 kA/m was found to be −1.3 J/K kg.

  10. Structural study of quasi-one-dimensional vanadium pyroxene LiVSi{sub 2}O{sub 6} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Yuto [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan); Matsushita, Yoshitaka [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Oda, Migaku; Yoshida, Hiroyuki [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan)

    2017-02-15

    Single crystals of quasi-one-dimensional vanadium pyroxene LiVSi{sub 2}O{sub 6} were synthesized and the crystal structures at 293 K and 113 K were studied using X-ray diffraction experiments. We found a structural phase transition from the room-temperature crystal structure with space group C2/c to a low-temperature structure with space group P2{sub 1}/c, resulting from a rotational displacement of SiO{sub 4} tetrahedra. The temperature dependence of magnetic susceptibility shows a broad maximum around 116 K, suggesting an opening of the Haldane gap expected for one-dimensional antiferromagnets with S=1. However, an antiferromagnetic long-range order was developed below 24 K, probably caused by a weak inter-chain magnetic coupling in the compound. - Graphical abstract: Low temperature crystal structure of LiVSi{sub 2}O{sub 6} and an orbital arrangement within the V-O zig-zag chain along the c-axis. - Highlights: • A low temperature structure of LiVSi{sub 2}O{sub 6} was determined by single crystal X-ray diffraction measurements. • The origin of the structural transition is a rotational displacement of SiO{sub 4} tetrahedra. • The uniform orbital overlap in the V-O zigzag chain makes the system a quasi one-dimensional antiferromagnet.

  11. Semiconducting La{sub 2}AuP{sub 3}, the metallic conductor Ce{sub 2}AuP{sub 3}, and other rare-earth gold phosphides Ln{sub 2}AuP{sub 3} with two closely related crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Eschen, M.; Kotzyba, G.; Kuennen, B.; Jeitschko, W. [Anorganisch-Chemisches Inst. der Westfaelischen Wilhelms-Univ., Muenster (Germany)

    2001-07-01

    The compounds Ln{sub 2}AuP{sub 3} were synthesized by reaction of the elemental components in evacuated silica tubes. Their crystal structures were determined from single-crystal diffractometer data. The compounds with Ln = La, Ce, and Pr crystallize with an orthorhombic U{sub 2}NiC{sub 3} type structure (Pnma, Z = 4). The structure refinement for Ce{sub 2}AuP{sub 3} resulted in a = 774.14(6) pm, b = 421.11(4) pm, c = 1612.3(1) pm, R = 0.019 for 1410 structure factors and 38 variable parameters. For Pr{sub 2}AuP{sub 3} a residual of R = 0.024 was obtained. Nd{sub 2}AuP{sub 3} crystallizes with a monoclinic distortion of this structure: P2{sub 1}/c, Z = 4, a = 416.14(4) pm, b = 768.87(6) pm, c = 1647.1(2) pm, {beta} = 104.06(1) , R = 0.022 for 1361 F values and 56 variables. The near-neighbor coordinations of the two structures are nearly the same. In both structures the gold and phosphorus atoms form two-dimensionally infinite nets, where the gold atoms are tetrahedrally coordinated by phosphorus atoms with Au-P distances varying between 245.8 and 284.2 pm. Two thirds of the phosphorus atoms form pairs with single-bond distances varying between 217.7 and 218.9 pm. Thus, using oxidation numbers the structures can be rationalized with the formulas (Ln{sup +3}){sub 2}[AuP{sub 3}]{sup -6} and (Ln{sup +3}){sub 2}Au{sup +1}(P{sub 2}){sup -4}P{sup -3}. Accordingly, La{sub 2}AuP{sub 3} is a diamagnetic semiconductor. Pr{sub 2}AuP{sub 3} is semi-conducting with an antiferromagnetic ground state, showing metamagnetism with a critical field of B{sub c} = 0.5({+-}0.1) T. In contrast, the cerium compound is a metallic conductor, even though its cell volume indicates that the cerium atoms are essentially trivalent, as is also suggested by the ferro- or ferrimagnetic behavior of the compound. (orig.)

  12. Synthesis, crystal structure, and magnetic properties of novel 2D kagome materials RE{sub 3}Sb{sub 3}Mg{sub 2}O{sub 14} (RE = La, Pr, Sm, Eu, Tb, Ho): Comparison to RE{sub 3}Sb{sub 3}Zn{sub 2}O{sub 14} family

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, M.B.; Baroudi, K.M.; Krizan, J.W.; Mukadam, O.A.; Cava, R.J. [Department of Chemistry, Princeton University, Princeton, NJ (United States)

    2016-10-15

    The crystal structures and magnetic properties of RE{sub 3}Sb{sub 3}Mg{sub 2}O{sub 14} (RE = La, Pr, Sm, Eu, Tb, Ho) with a perfect kagome lattice are presented and compared to RE{sub 3}Sb{sub 3}Zn{sub 2}O{sub 14}. Rietveld structure refinements were performed using X-ray diffraction data, indicating that the layered compounds are fully structurally ordered. The compounds crystallize in a rhombohedral supercell of the cubic pyrochlore structure, in the space group R-3m. Magnetic susceptibility measurements show no signs of magnetic ordering above 2 K. The RE{sub 3}Sb{sub 3}Mg{sub 2}O{sub 14} family is similar to that of RE{sub 3}Sb{sub 3}Zn{sub 2}O{sub 14}; however, the series reported here features a fully ordered distribution of cations in both the nonmagnetic antimony and magnetic rare earth kagome lattices. Unlike the offsite disorder that Zn{sup 2+} experiences in RE{sub 3}Sb{sub 3}Zn{sub 2}O{sub 14}, the magnesium sites in RE{sub 3}Sb{sub 3}Mg{sub 2}O{sub 14} are completely ordered. Here we compare the magnetic properties in both series of kagome compounds to determine how significant Zn{sup 2+}'s positional ordering is within this structure type. The compounds reported here appear to be relatively defect-free and are therefore model systems for investigating magnetic frustration on an ideal 2D rare earth kagome lattice. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Structure refinement of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-d} as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Nurhamidah, E-mail: nurhamidahzakaria@yahoo.com; Idris, Mohd Sobri, E-mail: sobri@unimap.edu.my [Centre of Excellence for Frontier Materials Research, School of Materials Engineering, Universiti Malaysia Perlis (UniMAP), Taman Muhibbah, Jejawi 02600, Arau, Perlis (Malaysia); Osman, Rozana A. M., E-mail: rozana@unimap.edu.my [School of Microelectronics Engineering, Universiti Malaysia Perlis (UniMAP), Pauh Putra, 02600, Arau, Perlis (Malaysia)

    2016-07-19

    Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} was successfully prepared using modified solid-state synthesis routes. The lowest temperature to obtained single phase of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} is about 900°C for 15 hours. Longer period of time are required compared to only 5 hours at 950°C as established in literatures. The X-ray Diffraction (XRD) data confirmed that Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} is formed a cubic perovskite with the space group of Pm-3m. The lattice parameters of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} are a = 3.990 (1) Å and unit cell volume is V = 63.5 (1) Å{sup 3}. The Rietveld refinement of XRD data revealed that the crystal structure of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-δ} slightly changes as a function of temperature.

  14. Preparation, structural characterization, and enhanced electrical conductivity of pyrochlore-type (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Xia, X.L. [Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin (China); Institute of Oceanography Instruments, Shandong Academy of Science, Chinese National Engineering Research Center for Marine Monitoring Equipment, Qingdao (China); Liu, Z.G.; Ouyang, J.H. [Institute for Advanced Ceramics, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin (China); Zheng, Y. [Institute of Oceanography Instruments, Shandong Academy of Science, Chinese National Engineering Research Center for Marine Monitoring Equipment, Qingdao (China)

    2012-08-15

    (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} (0 {<=} x {<=} 1.0) samples are prepared by solid state reaction method using Sm{sub 2}O{sub 3}, Eu{sub 2}O{sub 3}, and ZrO{sub 2} as starting materials. The phase composition and microstructure of (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} ceramics are investigated by X-ray diffraction (XRD), scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM) coupled with selected area electron diffraction and Raman spectroscopy. XRD and TEM show that all the samples exhibit a single pyrochlore-type structure. HRTEM observation indicates that the whole grain interior of Sm{sub 2}Zr{sub 2}O{sub 7} ceramic is a perfect crystal free of any dislocation. Raman spectroscopy reveals that the degree of structural disorder of (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} ceramics increases gradually with increasing Eu content. The electrical conductivity of (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} ceramics is investigated by impedance spectroscopy in the air and hydrogen atmospheres, respectively. The electrical conductivity of (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} ceramics increases with increasing Eu content at identical temperature levels. Both the activation energy E{sub g} and the pre-exponential factor {sigma}{sub 0g} for the grain conductivity gradually increase with increasing Eu content. As the ionic conductivity shows no obvious change in both air and hydrogen atmospheres, the conduction of (Sm{sub 1-x}Eu{sub x}){sub 2}Zr{sub 2}O{sub 7} is purely ionic with negligible electronic conduction. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Facile preparation, optical and electrochemical properties of layer-by-layer V{sub 2}O{sub 5} quadrate structures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yifu, E-mail: yfzhang@dlut.edu.cn; Zheng, Jiqi; Wang, Qiushi; Hu, Tao; Tian, Fuping; Meng, Changgong

    2017-03-31

    Highlights: • Layer-by-layer V{sub 2}O{sub 5} structures self-assembly by quadrate sheets like “multilayer cake” were synthesized. • Carbon spheres is as the structure-directing reagent like adhesive to guide the formation of layer-by-layer structures. • UV–vis spectrum shows two major absorption bands at about 340 and 478 nm and PL spectrum exhibits the emission peak at 545 nm for V{sub 2}O{sub 5} layer-by-layer structures. • The electrochemical properties of layer-by-layer V{sub 2}O{sub 5} structures are significantly improved in organic electrolyte. - Abstract: Layer-by-layer V{sub 2}O{sub 5} structures self-assembly by quadrate sheets like “multilayer cake” were successfully synthesized using NH{sub 4}VO{sub 3} as the vanadium sources by a facile hydrothermal route and combination of the calcination. The structure and composition were characterized by field emission scanning electron microscopy, energy-dispersive X-ray spectrometer, X-ray powder diffraction, Raman and Fourier transform infrared spectroscopy. The optical properties of the as-obtained V{sub 2}O{sub 5} layer-by-layer structures were investigated by the Ultraviolet–visible spectroscopy and photoluminescence spectrum. The electrochemical properties of the as-obtained V{sub 2}O{sub 5} layer-by-layer structures as electrodes in supercapacitor device were measured by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) both in the aqueous and organic electrolyte. The specific capacitance is 347 F g{sup −1} at 1 A g{sup −1} in organic electrolyte, which is improved by 46% compared with 238 F g{sup −1} in aqueous electrolyte. During the cycle performance, the specific capacitances of V{sub 2}O{sub 5} layer-by-layer structures after 100 cycles are 30% and 82% of the initial discharge capacity in the aqueous and organic electrolyte, respectively, indicating the cycle performance is significantly improved in organic electrolyte. Our results turn out that layer

  16. Structural change of Li{sub 1-x}Ni{sub 0.5}Mn{sub 0.5}O{sub 2} cathode materials for lithium-ion batteries by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Arachi, Yoshinori; Tanaka, Minoru; Asai, Takeshi [Kansai Univ., Faculty of Engineering, Unit of Chemistry, Suita, Osaka (Japan); Kobayashi, Hironori [National Inst. of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka (Japan); Emura, Shuichi [Osaka Univ., ISIR, Ibaraki, Osaka (Japan); Nakata, Yoshiyuki [Iwakimeisei Univ., Faculty of Science and Engineering, Iwaki, Fukushima (Japan)

    2003-01-01

    Synchrotron X-ray diffraction and XAFS measurement have been employed to investigate structural change and the charging process of a layered LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} cathode material. The structure of charged Li{sub 1-x}Ni{sub 0.5}Mn{sub 0.5}O{sub 2} (x = 0.5), which corresponds to the composition for showing rechargeable capacity, was determined. The results showed that divalent nickel metal was oxidized to trivalent after charging, in association with the phase transition from hexagonal (R3-bar m) to monoclinic (C2/m) resulting from the ordering of cations in the layered structure. (author)

  17. Moessbauer determination of magnetic structure of Fe/sub 3/BO/sub 6/ crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, P.P.; Labushkin, V.G.; Ovsepyan, A.K.; Sarkisov, Eh.R.; Smirnov, E.V.; Prokopov, A.R.; Seleznev, V.N.

    1984-10-01

    The magnetic structure of a Fe/sub 3/BO/sub 6/ crystal belonging to space group Dsub(2h)sup(16)(Psub(nma)) is determined by the Moessbauer ..gamma..-radiation diffraction. The bragg reflection (700) of Moessbauer 14.4 keV ..gamma..-quanta from the Fe/sub 3/BO/sub 6/ monocrystal has been studied experimentally. A high sensitivity of the interference of ..gamma..-quantum diffraction scattering on Fe nuclei being in crystallographically non-equivalent 8d- and 4s-positions to the type of magnetic ordering in the crystal is used for determination of the magnetic structure. Agreement of the experimental results with the theoretical calculations, conducted for types of magnetic ordering resolved by the symmetry of the crystal, permitted to reliably determine the magnetic structure of this compound. The results obtained confirm the data of neutrondiffraction studies on magnetic ordering in Fe/sub 3/BO/sub 6/. Advantages of the Moessbauer-diffraction study, as compared to the magnetic neutrondiffraction method, in particular, for investigation of crystals, in which the hyperfine magnetic fields on Fe nuclei have different values, are revealed and discussed in detail.

  18. Local structure and influence of bonding on the phase-change behavior of the chalcogenide compounds K{sub 1-} {sub x} Rb {sub x} Sb{sub 5}S{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, J B [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Chrissafis, K [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Petkov, V [Department of Physics, Central Michigan University, Mount Pleasant, MI 48859 (United States); Malliakas, C D [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Bilc, D [Department of Physics, Central Michigan University, Mount Pleasant, MI 48859 (United States); Kyratsi, Th [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Paraskevopoulos, K M [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Mahanti, S D [Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Torbruegge, T [Institut fuer Physikalische Chemie, Westf. Wilhelms-Universitaet Muenster (Germany); Eckert, H [Institut fuer Physikalische Chemie, Westf. Wilhelms-Universitaet Muenster (Germany); Kanatzidis, M.G. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States)], E-mail: m-kanatzidis@northwestern.edu

    2007-02-15

    KSb{sub 5}S{sub 8} and its solid solution analogs with Rb and Tl were found to exhibit a reversible and tunable glass{sup {yields}}crystal{sup {yields}}glass phase transition. Selected members of this series were analyzed by differential scanning calorimetry to measure the effect of the substitution on the thermal properties. The solid solutions K{sub 1-} {sub x} Rb {sub x} Sb{sub 5}S{sub 8} exhibited clear deviations in melting and crystallization behavior and temperatures from the parent structure. The crystallization process of the glassy KSb{sub 5}S{sub 8} as a function of temperature could clearly be followed with Raman spectroscopy. The thermal conductivity of both glassy and crystalline KSb{sub 5}S{sub 8} at room temperature is {approx}0.40 W/m K, among the lowest known values for any dense solid-state material. Electronic band structure calculations carried out on KSb{sub 5}S{sub 8} and TlSb{sub 5}S{sub 8} show the presence of large indirect band-gaps and confirm the coexistence of covalent Sb-S bonding and predominantly ionic K(Tl)...S bonding. Pair distribution function analyses based on total X-ray scattering data on both crystalline and glassy K{sub 1-} {sub x} Rb {sub x} Sb{sub 5}S{sub 8} showed that the basic structure-defining unit is the same and it involves a distorted polyhedron of 'SbS{sub 7}' fragment of {approx}7 A diameter. The similarity of local structure between the glassy and crystalline phases accounts for the facile crystallization rate in this system. - Graphical abstract: The KSb{sub 5}S{sub 8} is a good example of a phase-change material with a mixed ionic/covalent bonding. The members of the K{sub 1-} {sub x} Rb {sub x} Sb{sub 5}S{sub 8} series exhibit phase-change properties with greater glass forming ability (GFA) than KSb{sub 5}S{sub 8}. The GFA increases with increasing Rb content. In this case, the random alloy disorder in the alkali metal sublattice seems to predominate over the increased degree of ionicity in going from K

  19. Single crystal structures of the new vanadates CuMgVO{sub 4} and AgMgVO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Ben Yahia, Hamdi, E-mail: Hyahia@qf.org.qa [Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 5825, Doha (Qatar); Shikano, Masahiro, E-mail: shikano.masahiro@aist.go.jp [Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Essehli, Rachid; Belharouak, Ilias [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO Box 5825, Doha (Qatar)

    2016-08-01

    The new compounds CuMgVO{sub 4} and AgMgVO{sub 4} have been synthesized by a solid state reaction route. Their crystal structures were determined from single-crystal X-ray diffraction data. CuMgVO{sub 4} crystallizes with Na{sub 2}CrO{sub 4}-type structure with space group Cmcm, a = 5.6932 (10), b = 8.7055 (15), c = 6.2789 (10) Å, V = 311.20 (9) Å{sup 3}, and Z = 4, whereas AgMgVO{sub 4} crystallizes in the maricite-type structure with space group Pnma, a = 9.4286 (14), b = 6.7465 (10), c = 5.3360 (8) Å, V = 339.42 (9) Å{sup 3}, and Z = 4. Both structures of CuMgVO{sub 4}, and AgMgVO{sub 4} contain MgO{sub 4} chains made up of edge-sharing MgO{sub 6} octahedra. In CuMgVO{sub 4} the MgO{sub 4} chains are interconnected through CuVO{sub 4} double chains made up of VO{sub 4} and CuO{sub 4} tetrahedra sharing corners and edges, however in AgMgVO{sub 4} the chains are interlinked by the VO{sub 4} and AgO{sub 4} tetrahedra sharing only corners. - Highlights: • We have been able to grow CuMgVO{sub 4} and AgMgVO{sub 4} single crystals. • We solved their crystal structures using single crystal data. • We compared the crystal structures of CuMgVO{sub 4} and AgMgVO{sub 4}.

  20. Measurement of the electron structure function F{sub 2}{sup e} at LEP energies

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J. [LPNHE, IN2P3-CNRS, Univ. Paris VI et VII, 4 place Jussieu, FR-75252 Paris Cedex 05 (France); Abreu, P. [LIP, IST, FCUL, Av. Elias Garcia, 14-1" o, PT-1000 Lisboa Codex (Portugal); Adam, W. [Institut für Hochenergiephysik, Österr. Akad. d. Wissensch., Nikolsdorfergasse 18, AT-1050 Vienna (Austria); Adzic, P. [Institute of Nuclear Physics, N.C.S.R. Demokritos, P.O. Box 60228, GR-15310 Athens (Greece); Albrecht, T. [Institut für Experimentelle Kernphysik, Universität Karlsruhe, Postfach 6980, DE-76128 Karlsruhe (Germany); Alemany-Fernandez, R. [CERN, CH-1211 Geneva 23 (Switzerland); Allmendinger, T. [Institut für Experimentelle Kernphysik, Universität Karlsruhe, Postfach 6980, DE-76128 Karlsruhe (Germany); Allport, P.P. [Department of Physics, University of Liverpool, P.O. Box 147, Liverpool L69 3BX (United Kingdom); Amaldi, U. [Dipartimento di Fisica, Univ. di Milano-Bicocca and INFN-Milano, Piazza della Scienza 3, IT-20126 Milan (Italy); Amapane, N. [Dipartimento di Fisica Sperimentale, Università di Torino and INFN, Via P. Giuria 1, IT-10125 Turin (Italy); Amato, S. [Univ. Federal do Rio de Janeiro, C.P. 68528 Cidade Univ., Ilha do Fundão, BR-21945-970 Rio de Janeiro (Brazil); Anashkin, E. [Dipartimento di Fisica, Università di Padova and INFN, Via Marzolo 8, IT-35131 Padua (Italy); Andreazza, A. [Dipartimento di Fisica, Università di Milano and INFN-Milano, Via Celoria 16, IT-20133 Milan (Italy); Andringa, S.; Anjos, N. [LIP, IST, FCUL, Av. Elias Garcia, 14-1" o, PT-1000 Lisboa Codex (Portugal); Antilogus, P. [LPNHE, IN2P3-CNRS, Univ. Paris VI et VII, 4 place Jussieu, FR-75252 Paris Cedex 05 (France); and others

    2014-10-07

    The hadronic part of the electron structure function F{sub 2}{sup e} has been measured for the first time, using e{sup +}e{sup −} data collected by the DELPHI experiment at LEP, at centre-of-mass energies of √(s)=91.2–209.5 GeV. The data analysis is simpler than that of the measurement of the photon structure function. The electron structure function F{sub 2}{sup e} data are compared to predictions of phenomenological models based on the photon structure function. It is shown that the contribution of large target photon virtualities is significant. The data presented can serve as a cross-check of the photon structure function F{sub 2}{sup γ} analyses and help in refining existing parameterisations.

  1. Structural, optical, and magnetic properties of Fe doped In{sub 2}O{sub 3} powders

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, N. Sai [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632 014, Tamilnadu (India); Kaleemulla, S., E-mail: skaleemulla@gmail.com [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632 014, Tamilnadu (India); Amarendra, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India); UGC-DAE-CSR, Kalpakkam Node, Kokilamedu 603 104, Tamilnadu (India); Rao, N. Madhusudhana; Krishnamoorthi, C.; Kuppan, M.; Begam, M. Rigana [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632 014, Tamilnadu (India); Reddy, D. Sreekantha [Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Omkaram, I. [Department of Electronics and Radio Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2015-01-15

    Highlights: • Synthesis of Fe doped In{sub 2}O{sub 3} powders using a solid state reaction. • Characterization of the samples using XRD, UV–vis-NIR, FT-IR, and VSM. • All Fe doped In{sub 2}O{sub 3} powders exhibited the cubic structure of In{sub 2}O{sub 3}. • All the Fe doped In{sub 2}O{sub 3} samples exhibited room temperature ferromagnetism. - Abstract: Iron doped indium oxide dilute magnetic semiconductor (In{sub 1−x}Fe{sub x}){sub 2}O{sub 3} (x = 0.00, 0.03, 0.05, and 0.07) powders were synthesized by standard solid state reaction method followed by vacuum annealing. The effect of Fe concentration on structural, optical, and magnetic properties of the (In{sub 1−x}Fe{sub x}){sub 2}O{sub 3} powders have been systematically studied. X-ray diffraction patterns confirmed the polycrystalline cubic structure of all the samples. An optical band gap increases from 3.12 eV to 3.16 eV while Fe concentration varying from 0.03 to 0.07. Magnetic studies reveal that virgin/undoped In{sub 2}O{sub 3} is diamagnetic. However, all the Fe-doped In{sub 2}O{sub 3} samples are ferromagnetic. The saturation magnetization (M{sub s}) of ferromagnetic (In{sub 1−x}Fe{sub x}){sub 2}O{sub 3} (x = 0.03, 0.05, and 0.07) samples increases from 11.56 memu/g to 148.64 memu/g with x = 0.03–0.07. The observed ferromagnetism in these samples was attributed to magnetic nature of the dopant (Fe) as well as defects created in the samples during vacuum annealing.

  2. Investigation of organometallic reaction mechanisms with one and two dimensional vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cahoon, James Francis [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    One and two dimensional time-resolved vibrational spectroscopy has been used to investigate the elementary reactions of several prototypical organometallic complexes in room temperature solution. The electron transfer and ligand substitution reactions of photogenerated 17-electron organometallic radicals CpW(CO)<sub>3sub> and CpFe(CO)<sub>2sub> have been examined with one dimensional spectroscopy on the picosecond through microsecond time-scales, revealing the importance of caging effects and odd-electron intermediates in these reactions. Similarly, an investigation of the photophysics of the simple Fischer carbene complex Cr(CO)<sub>5sub>[CMe(OMe)] showed that this class of molecule undergoes an unusual molecular rearrangement on the picosecond time-scale, briefly forming a metal-ketene complex. Although time-resolved spectroscopy has long been used for these types of photoinitiated reactions, the advent of two dimensional vibrational spectroscopy (2D-IR) opens the possibility to examine the ultrafast dynamics of molecules under thermal equilibrium conditions. Using this method, the picosecond fluxional rearrangements of the model metal carbonyl Fe(CO)<sub>5sub> have been examined, revealing the mechanism, time-scale, and transition state of the fluxional reaction. The success of this experiment demonstrates that 2D-IR is a powerful technique to examine the thermally-driven, ultrafast rearrangements of organometallic molecules in solution.

  3. Study of the structure and ferroelectric behavior of BaBi{sub 4-x}La{sub x}Ti{sub 4}O{sub 15} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Khokhar, Anita, E-mail: mails4anita@gmail.com; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi-110 007 (India); Goyal, Parveen K. [Department of Physics, ARSD College, University of Delhi, Dhaula Kuan, New Delhi-110 021 (India); Thakur, O. P. [Electroceramics Group, Solid State Physics Laboratory, Lucknow Road, Delhi 110 054 (India)

    2015-06-24

    The structure and ferroelectric properties of Lanthanum substituted barium bismuth titanate BaBi{sub 4-x}La{sub x}Ti{sub 4}O{sub 15} (0 ≤ x ≤ 0.5) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material. The distribution of lanthanum into the perovskite layers and (Bi{sub 2}O{sub 2}){sup 2+} layers of BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics have been revealed through Raman spectroscopy. At lower value of x, it is seen that La{sup 3+} ions prefer to substitute A-site Bi{sup 3+} ions in the perovskite layers while for higher x values, La{sup 3+} ions get incorporated into the (Bi{sub 2}O{sub 2}){sup 2+} layers. A critical La content of x ∼ 0.2 in BaBi{sub 4-x}La{sub x}Ti{sub 4}O{sub 15} is seen to exhibit a large remnant polarization (P{sub r}) with low coercive field (E{sub c}). The improvement in the ferroelectric properties of La substituted BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of lanthanum ion.

  4. Structural, photoluminescence and radioluminescence properties of Eu{sup 3+} doped La{sub 2}Hf{sub 2}O{sub 7} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wahid, Kareem; Pokhrel, Madhab; Mao, Yuanbing, E-mail: yuanbing.mao@utrgv.edu

    2017-01-15

    This study presents the structural, optical, and radioluminescent characterization of newly synthesized europium-doped lanthanum hafnate (La{sub 2}Hf{sub 2}O{sub 7}:xmol%Eu{sup 3+}, x=0 to 35) nanoparticles (NPs) for use as phosphors and scintillation materials. Samples prepared through a combined co-precipitation and molten salt synthetic process were found to crystalize in the pyrochlore phase, a radiation tolerant structure related to the fluorite structure. These samples exhibit red luminescence under ultraviolet and X-ray excitation. Under these excitations, the optical intensity and quantum yield of the La{sub 2}Hf{sub 2}O{sub 7}:xmol%Eu{sup 3+} NPs depend on the Eu{sup 3+} concentration and are maximized at 5%. It is proposed that there is a trade-off between the quenching due to defect states/cross-relaxation and dopant concentration. An optimal dopant concentration allows the La{sub 2}Hf{sub 2}O{sub 7}:5 mol%Eu{sup 3+} NPs to show the best luminescent properties of all the samples. - Graphical abstract: Incident X-ray and UV photons interact with La{sub 2}Hf{sub 2}O{sub 7}: xmol%Eu{sup 3+}(x=1–35) nanoparticles (NPs) to yield strong red luminescence centered at 612 nm. Colored spheres inside NP diagram represent pyrochlore coordination environment of La{sub 2}Hf{sub 2}O{sub 7}:xmol%Eu{sup 3+}. Blue, red, yellow, green and black spheres represent hafnium(IV) atoms, lanthanum(III)/europium(III) atoms, oxygen atoms at 48f site, oxygen atoms at 8b site and oxygen vacancies, respectively. - Highlights: • La{sub 2}Hf{sub 2}O{sub 7}:xmol%Eu{sup 3+} (x=0–35) nanoparticles with weakly-ordered pyrochlore structures were synthesized. • Optically and X-ray excited emission spectra showed strong luminescence centered at 612 nm. • Photoluminescence quantum yield increases with doping concentration up to 5% and decreases at higher concentrations.

  5. Structure and crystallization of B{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Yin, E-mail: zjbcy@126.co [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); Xiao Hanning [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Shuguang Chen; Tang Bingzhong [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China)

    2009-05-01

    B{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2} glasses with different B{sub 2}O{sub 3}/Al{sub 2}O{sub 3} ratios of 0.4-1.3 were prepared by the melting-quenching method at 1500-1600 deg. C for 2 h. Fragility index F was used to estimate the glass-forming ability. The infrared (IR) absorption curves and differential scanning calorimetry (DSC) curves of the glasses have been investigated for estimating the influence of the B{sub 2}O{sub 3}/Al{sub 2}O{sub 3} ratio on glass structure and crystallization of the B{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2} glass system. The crystallization kinetics of the glasses were described by activation energy (E) for crystallization and calculated by the Kissinger method. X-ray diffraction (XRD) and SEM analyses were also used to describe the types and morphologies of the crystals precipitated from the B{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2} glasses. The results show that with the increase of B{sub 2}O{sub 3}/Al{sub 2}O{sub 3} ratio, glass stability improves and the trend of crystallization decreases relatively. However, when the B{sub 2}O{sub 3}/Al{sub 2}O{sub 3} ratio reaches 1.3, boron-abnormal phenomenon appears and results in the raising trend of crystallization. Rod-like crystals of Al{sub 4}B{sub 2}O{sub 9} and Al{sub 20}B{sub 4}O{sub 36} were observed in the crystallized samples.

  6. Theory of structural phase transition in MgTi{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Talanov, V. M., E-mail: valtalanov@mail.ru [South Russian State Polytechnical University (Russian Federation); Shirokov, V. B. [Russian Academy of Sciences, South Science Centre (Russian Federation); Ivanov, V. V. [South Russian State Polytechnical University (Russian Federation); Talanov, M. V. [South Federal University (Russian Federation)

    2015-01-15

    A theory of phase transition in MgTi{sub 2}O{sub 4} is proposed based on a study of the order-parameter symmetry, thermodynamics, and mechanisms of formation of the atomic and orbital structure of the low-symmetry MgTi{sub 2}O{sub 4} phase. The critical order parameter (which induces a phase transition) is determined. It is shown that the calculated MgTi{sub 2}O{sub 4} tetragonal structure is a result of displacements of magnesium, titanium, and oxygen atoms; ordering of oxygen atoms; and the participation of d{sub xy}, d{sub xz}, and d{sub yz} orbitals. The contribution of noncritical representations to ion displacements is proven to be insignificant. The existence of various metal clusters in the tetragonal phase has been established by calculation in correspondence with experimental data. It is shown (within the Landau theory of phase transitions) that phase states can be changed as a result of both first- and second-order phase transitions: the high-symmetry phase borders two low-symmetry phases by second-order transition lines, while the border between low-symmetry phases is a first-order transition line.

  7. A comparative study of charge trapping in HfO{sub 2}/Al{sub 2}O{sub 3} and ZrO{sub 2}/Al{sub 2}O{sub 3} based multilayered metal/high-k/oxide/Si structures

    Energy Technology Data Exchange (ETDEWEB)

    Spassov, D., E-mail: d_spassov@abv.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Skeparovski, A. [Institute of Physics, Faculty of Natural Sciences and Mathematics, University “Ss. Cyril and Methodius”, Arhimedova 3, 1000 Skopje (Macedonia, The Former Yugoslav Republic of); Paskaleva, A. [Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussee 72, Sofia 1784 (Bulgaria); Novkovski, N. [Institute of Physics, Faculty of Natural Sciences and Mathematics, University “Ss. Cyril and Methodius”, Arhimedova 3, 1000 Skopje (Macedonia, The Former Yugoslav Republic of)

    2016-09-01

    The electrical properties of multilayered HfO{sub 2}/Al{sub 2}O{sub 3}/HfO{sub 2}/SiO{sub 2} and ZrO{sub 2}/Al{sub 2}O{sub 3}/ZrO{sub 2}/SiO{sub 2} metal-oxide semiconductor capacitors were investigated in order to evaluate the possibility of their application in charge-trapping non-volatile memory devices. The stacks were deposited by reactive radiofrequency magnetron sputtering on Si substrates with thermal SiO{sub 2} with a thickness ranging from 2 to 5 nm. Both types of stacks show negative initial oxide charge and its density is higher for HfO{sub 2}-based structures. Memory window up to 6V at sweeping voltage range of ± 16V was obtained for HfO{sub 2}-based stacks. The hysteresis in these structures is mainly due to a trapping of electrons injected from the Si substrate. The charge-trapping properties of ZrO{sub 2}-based samples are compromised by the high leakage currents and the dielectric breakdown. The conduction through the capacitors at low applied voltages results from hopping of thermally excited electrons from one isolated state to another. The energy depth of the traps participating in the hopping conduction was determined as ~ 0.7 eV for the HfO{sub 2}-based layers and ~ 0.6 eV for ZrO{sub 2}-based ones, originating from negatively charged oxygen vacancies. At high electric fields, the current voltage characteristics were interpreted in terms of space charge limited currents, Fowler–Nordheim tunneling, Schottky emission, and Poole–Frenkel mechanism. The charge retention characteristics do not depend on the thickness of the tunnel SiO{sub 2}. - Highlights: • Sputtered HfO{sub 2}/Al{sub 2}O{sub 3}/HfO{sub 2} and ZrO{sub 2}/Al{sub 2}O{sub 3}/ZrO{sub 2} charge-trapping layers were studied. • HfO{sub 2}/Al{sub 2}O{sub 3}/HfO{sub 2} stacks show memory window up to 6 V and good retention times. • Negatively charged oxygen vacancies were identified as main defects in the stacks. • Electrical breakdown compromise the charge-trapping properties

  8. Thermal expansion of the nuclear fuel-sodium reaction product Na{sub 3}(U{sub 0.84(2)},Na{sub 0.16(2)})O{sub 4} - Structural mechanism and comparison with related sodium-metal ternary oxides

    Energy Technology Data Exchange (ETDEWEB)

    Illy, Marie-Claire [Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005 Paris (France); European Commission, Joint Research Centre, P.O. Box 2340, 76125 Karlsruhe (Germany); Smith, Anna L. [European Commission, Joint Research Centre, P.O. Box 2340, 76125 Karlsruhe (Germany); Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science & Technology, Nuclear Energy and Radiation Applications (NERA), Mekelweg 15, 2629 JB, Delft (Netherlands); Wallez, Gilles, E-mail: gilles.wallez@upmc.fr [Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005 Paris (France); Sorbonne University, UPMC Université, Paris 06, 75005 Paris (France); Raison, Philippe E.; Caciuffo, Roberto; Konings, Rudy J.M. [European Commission, Joint Research Centre, P.O. Box 2340, 76125 Karlsruhe (Germany)

    2017-07-15

    Na{sub 3.16(2)}U{sup V,VI}{sub 0.84(2)}O{sub 4} is obtained from the reaction of sodium with uranium dioxide under oxygen potential conditions typical of a sodium-cooled fast nuclear reactor. In the event of a breach of the steel cladding, it would be the dominant reaction product forming at the rim of the mixed (U,Pu)O{sub 2} fuel pellets. High-temperature X-ray diffraction measurements show that a distortion of the uranium environment in Na{sub 3.16(2)}U{sup V,VI}{sub 0.84(2)}O{sub 4} results in a strongly anisotropic thermal expansion. A comparison with several related sodium metallates Na{sub n-2}M{sup n+}O{sub n-1} - including Na{sub 3}SbO{sub 4} and Na{sub 3}TaO{sub 4}, whose crystal structures are reported for the first time - has allowed us to assess the role played in the lattice expansion by the M{sup n+} cation radius and the Na/M ratio. On this basis, the thermomechanical behavior of the title compound is discussed, along with those of several related double oxides of sodium and actinide elements, surrogate elements, or fission products. - Highlights: •Thermal expansion and structural mechanism of Na{sub 3}(U{sub 0.84(2)},Na{sub 0.16(2)})O{sub 4}, main product of the reaction of sodium with nuclear fuel. •Thermomechanical behavior of sodium uranate suggests possible strains on the fuel cladding and risks of de-cohesion with the fuel pin. •Effect of homo- and aliovalent cation substitutions allows to predict the thermomechanical behavior of sodium metallates involving fission products or minor actinide elements. •Crystal structure of new compounds Na{sub 3}SbO{sub 4} and Na{sub 3}TaO{sub 4}.

  9. Synthesis, structural characteristics and dielectric properties of a new K{sub 2}NiF{sub 4}-type phase Sr{sub 2}Mn{sub 0.5}Ti{sub 0.5}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Chupakhina, T.I., E-mail: chupakhina@ihim.uran.ru [Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences, 91, Pervomaiskaya Str., Ekaterinburg (Russian Federation); Melnikova, N.V. [Ural Federal University, 19, Mira Str., Ekaterinburg (Russian Federation); Gyrdasova, O.I. [Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences, 91, Pervomaiskaya Str., Ekaterinburg (Russian Federation)

    2016-06-15

    A new K{sub 2}NiF{sub 4}-type phase Sr{sub 2}Mn{sub 0,5}Ti{sub 0,5}O{sub 4} have been synthesized by a sol–gel procedure and characterized by X-ray powder diffraction, thermogravimetric analysis and scanning electron microscopy. There are no oxide ion vacancies in these materials; oxidation states of manganese and titanium were estimated as +4. Rietveld profile analysis shows that the phase crystallizes with tetragonal unit cell in the space group I4/mmm. Substitution of Ti{sup 4+} for Mn{sup 4+} does not affect the distortion of coordination polyhedra (Mn,Ti)O{sub 6} and SrO{sub 9}. The dielectric properties of the ceramic samples are caused by structural and charge characteristics, regular coordination polyhedra SrO{sub 9} and lack of charge ordering, which can lead to significant permittivity. Increase of the dielectric constant at temperatures above 453 K is caused mainly by the grain boundary processes explained in terms of the Maxwell–Wagner polarization model. - Highlights: • The new complex oxide Sr{sub 2}Mn{sub 0,5}Ti{sub 0,5}O{sub 4} was prepared. • The structures of the compound were analyzed by Rietveld refinement. • Distortions of SrO{sub 9} and (Mn,Ti)O{sub 6} polyhedra are not strong. • Dielectric properties are determined by regular structure and lack of charge ordering. • Permittivity increase under heat is associated with processes at the grain boundaries.

  10. Monolithic millimeter-wave and picosecond electronic technologies

    International Nuclear Information System (INIS)

    Talley, W.K.; Luhmann, N.C.

    1996-01-01

    Theoretical and experimental studies into monolithic millimeter-wave and picosecond electronic technologies have been undertaken as a collaborative project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Coherent Millimeter-Wave Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. The work involves the design and fabrication of monolithic frequency multiplier, beam control, and imaging arrays for millimeter-wave imaging and radar, as well as the development of high speed nonlinear transmission lines for ultra-wideband radar imaging, time domain materials characterization and magnetic fusion plasma applications. In addition, the Coherent Millimeter-Wave Group is involved in the fabrication of a state-of-the-art X-band (∼8-11 GHz) RF photoinjector source aimed at producing psec high brightness electron bunches for advanced accelerator and coherent radiation generation studies

  11. Synthesis and crystal structure of the quaternary compound AgFe{sub 2}GaTe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Gerzon E., E-mail: gerzon@ula.ve [Laboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101 (Venezuela, Bolivarian Republic of); Quintero, Eugenio; Tovar, Rafael; Grima-Gallardo, Pedro; Quintero, Miguel [Centro de Estudio de Semiconductores, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101 (Venezuela, Bolivarian Republic of)

    2014-11-15

    Highlights: • New quaternary compound. • Synthesis from solid state reaction. • Crystal structure. • Rietveld refinement. - Abstract: The crystal structure of the quaternary compound AgFe{sub 2}GaTe{sub 4}, belonging to the system I–II{sub 2}–III–VI{sub 4}, was characterized by Rietveld refinement using X-ray powder diffraction data. The powder pattern was composed by 84.5% of the principal phase AgFe{sub 2}GaTe{sub 4} and 15.5% of the secondary phase FeTe. This material crystallizes with stannite structure in the tetragonal space group I-42m (N° 121), Z = 2, unit cell parameters a = 6.3409(2) Å, c = 12.0233(4) Å, V = 483.42(3) Å{sup 3}, and is isostructural with CuFe{sub 2}InSe{sub 4}.

  12. Structural study of (N{sub 2}H{sub 5},H){sub 2.9}U{sub 1.1}Ce{sub 0.9}(C{sub 2}O{sub 4}){sub 5}·10H{sub 2}O from a conventional X-ray diffraction diagram obtained on a powder synthesized by a fast vortex process

    Energy Technology Data Exchange (ETDEWEB)

    Brackx, E., E-mail: Emmanuelle.brackx@cea.fr [CEA, DEN, DTEC, SGCS, LMAC, Marcoule, 30207 Bagnols sur Cèze (France); Laval, J.P. [Centre Européen de la Céramique, SPCTS, UMR-CNRS 7315, Université de Limoges, Faculté des Sciences, 12 rue Atlantis, 87068 Limoges (France); Dugne, O. [CEA, DEN, DTEC, SGCS, LMAC, Marcoule, 30207 Bagnols sur Cèze (France); Feraud, J.P. [CEA, DEN, DTEC, SGCS, LGCI, Marcoule, 30207 Bagnols sur Cèze (France); Arab-Chapelet, B. [CEA, DEN, DRCP, SCPS, LC2A, Marcoule, 30207 Bagnols sur Cèze (France)

    2015-01-15

    In the context of research on U/minor actinides for nuclear fuel reprocessing in the transmutation process, developments are first studied with surrogates containing uranium and lanthanides to facilitate testing. The tests consist of precipitating and calcining a hydrazinium uranium/cerium oxalate. The structure of this oxalate had not been previously determined, but was necessary to validate the physicochemical mechanisms involved. The present study, firstly demonstrates the structural similarity of the U/Ce oxalate phase (N{sub 2}H{sub 5},H){sub 2.9}U{sub 1.1}Ce{sub 0.9}(C{sub 2}O{sub 4}){sub 5}·10H{sub 2}O, synthesized using a vortex precipitator for continuous synthesis of actinide oxalates, with previously known oxalates, crystallizing in P6{sub 3}/mmc symmetry, obtained by more classical methods. This fast precipitation process induces massive nucleation of fine powders. Their structural and microstructural determination confirms that the raw and dried phases belong to the same structural family as (NH{sub 4}){sub 2}U{sub 2}(C{sub 2}O{sub 4}){sub 5}·0.7H{sub 2}O whose structure was described by Chapelet-Arab in P6{sub 3}/mmc symmetry, using single crystal data. However, they present an extended disorder inside the tunnels of the structure, even after drying at 100 °C, between water and hydrazinium ions. This disorder is directly related to the fast vortex method. This structure determination can be used as a basis for further semi-quantitative analysis on the U/minor actinides products formed under various experimental conditions. - Highlights: • Uranium cerium oxalate precipitate characterization by X-ray powder diffraction. • Morphology characterization by SEM analysis. • Structure determination by unit cell Rietveld refinement.

  13. Ternary gallides RE{sub 4}Rh{sub 9}Ga{sub 5}, RE{sub 5}Rh{sub 12}Ga{sub 7} and RE{sub 7}Rh{sub 18}Ga{sub 11} (RE=Y, La-Nd, Sm, Gd, Tb). Intergrowth structures with MgCu{sub 2} and CaCu{sub 5} related slabs

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Stefan; Rodewald, Ute C.; Poettgen, Rainer [Univ. Muenster (Germany). Inst. fuer Anorganische und Analytische Chemie; Janka, Oliver [Univ. Oldenburg (Germany). Inst. fuer Chemie

    2017-07-01

    Fourteen ternary gallides RE{sub 4}Rh{sub 9}Ga{sub 5}, RE{sub 5}Rh{sub 12}Ga{sub 7} and RE{sub 7}Rh{sub 18}Ga{sub 11} (RE=Y, La-Nd, Sm, Gd, Tb) were synthesized from the elements by arc-melting, followed by different annealing sequences either in muffle or induction furnaces. The samples were characterized through Guinier powder patterns and the crystal structures of Ce{sub 4}Rh{sub 9}Ga{sub 5}, Ce{sub 5}Rh{sub 12}Ga{sub 7}, Ce{sub 7}Rh{sub 18}Ga{sub 11}, Nd{sub 5}Rh{sub 10.44(4)}Ga{sub 8.56(4)}, Nd{sub 4}Rh{sub 9}Ga{sub 5} and Gd{sub 4}Rh{sub 9}Ga{sub 5} were refined from single crystal X-ray diffractometer data. The new gallides are the n=2, 3 and 5 members of the RE{sub 2+n} Rh{sub 3+3n} Ga{sub 1+2n} structure series in the Parthe intergrowth concept. The slabs of these intergrowth structures derive from the cubic Laves phase MgCu{sub 2} (Mg{sub 2}Ni{sub 3}Si as ternary variant) and CaCu{sub 5} (CeCo{sub 3}B{sub 2} as ternary variant). Only the Nd{sub 5}Rh{sub 10.44(4)}Ga{sub 8.56(4)} crystal shows Rh/Ga mixing within the Laves type slabs. Magnetic susceptibility measurements reveal Pauli paramagnetism for Y{sub 4}Rh{sub 9}Ga{sub 5} and Curie-Weiss paramagnetism for Gd{sub 4}Rh{sub 9}Ga{sub 5} and Tb{sub 4}Rh{sub 9}Ga{sub 5}. Low-temperature data show ferromagnetic ordering at T{sub C}=78.1 (Gd{sub 4}Rh{sub 9}Ga{sub 5}) and 55.8 K (Tb{sub 4}Rh{sub 9}Ga{sub 5}).

  14. Synthesis, structure, and electronic structure calculation of a new centrosymmetric borate Pb{sub 2}O[BO{sub 2}(OH)] based on anion-centered OPb{sub 4} tetrahedra

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Feng [College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054 (China); Wang, Li, E-mail: wangliresearch@163.com [College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054 (China); Stoumpos, Constantinos C. [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States)

    2016-08-15

    The synthesis, structure, and characterization of a new centrosymmetric borate Pb{sub 2}O[BO{sub 2}(OH)] based on anion-centered OPb{sub 4} tetrahedra are reported. Pb{sub 2}O[BO{sub 2}(OH)] crystallizes in monoclinic space group C2/m with a=12.725(7) Å, b=5.698(3) Å, c=7.344(4) Å, β=116.277(6)°. The electronic band structure and density of states of Pb{sub 2}O[BO{sub 2}(OH)] have been calculated via the density functional theory (DFT). Electron density difference calculation indicates that lone-pair electrons of Pb{sup 2+} cation should be stereoactive. - Graphical abstract: An indirect gap compound of Pb{sub 2}O[BO{sub 2}(OH)] with 2D inorganic layers motif based on OPb{sub 4} tetrahedra has been synthesized and full characterized by crystallographic, IR, TG, UV–vis-NIR Diffuse Reflectance, and theoretical calculations. Display Omitted - Highlights: • A centrosymmetric borate Pb{sub 2}O[BO{sub 2}(OH)] was synthesized and characterized. • The crystalstructure, electronic band and density states was analyzed. • The lone-pair electrons of Pb{sup 2+} were proved to be stereoactive.

  15. Structural evolution of Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} from BaTiO{sub 3} using a series of Ba(Ti{sub 1−5x}Nb{sub 4x})O{sub 3} solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Barrientos Hernández, F.R., E-mail: frbh68@hotmail.com [Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, Road Pachuca-Tulancingo km 4.5, Mineral de la Reforma zip code 42184, Hidalgo (Mexico); Department of Metallurgical and Materials Engineering, ESIQIE, National Polytechnic Institute, UPALM, Zacatenco, Mexico City, zip code 07738 (Mexico); Lira Hernández, I.A. [Department of Metallurgical and Materials Engineering, ESIQIE, National Polytechnic Institute, UPALM, Zacatenco, Mexico City, zip code 07738 (Mexico); Industrial Engineering Department, Technological Institute of Pachuca, Road México-Pachuca km. 87.5, Pachuca de Soto zip code 42080, Hidalgo (Mexico); Gómez Yáñez, C. [Department of Metallurgical and Materials Engineering, ESIQIE, National Polytechnic Institute, UPALM, Zacatenco, Mexico City, zip code 07738 (Mexico); Arenas Flores, A. [Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, Road Pachuca-Tulancingo km 4.5, Mineral de la Reforma zip code 42184, Hidalgo (Mexico); Cabrera Sierra, R. [Department of Metallurgical and Materials Engineering, ESIQIE, National Polytechnic Institute, UPALM, Zacatenco, Mexico City, zip code 07738 (Mexico); Pérez Labra, M. [Academic Area of Earth Sciences and Materials, Autonomous University of Hidalgo State, Road Pachuca-Tulancingo km 4.5, Mineral de la Reforma zip code 42184, Hidalgo (Mexico)

    2014-01-15

    Highlights: • The evolution phase Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} was obtained through the mechanism Ba(Ti{sub 1-5x}Nb{sub 4x})O{sub 3}. • Addition of niobium can accelerate grain growth of BaTiO{sub 3} ceramics. • Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} presents a dielectric loss of 0.0035 and permittivity value of 54.6. • Electrical measurements showed that Nb{sup 5+} content drops Curie temperature. • Samples with x ⩾ 0.0625 shows an insulating behavior. -- Abstract: In this work, the structural evolution of hexagonal phase Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} by adding Nb{sub 2}O{sub 5} to perovskite structure of BaTiO{sub 3} was investigated. The compositions Ba(Ti{sub 1-5x}Nb{sub 4x})O{sub 3} ceramics, with 0.00025 ⩽ x ⩽ 0.125 were prepared by the conventional solid state route in air atmosphere, the powders precursors, BaTiO{sub 3}, BaCO{sub 3} and Nb{sub 2}O{sub 5}, were mixed in stoichiometric proportions and ground in a ball mill using alumina balls and acetone. The mixed powders were calcined at temperatures up to 1500 °C. The phase transformation of Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} from BaTiO{sub 3} was studied by DRX, Raman spectroscopy, SEM, electrical measurements (relative permittivity and P–E hysteresis loops); Rietveld’s refinement was used to structurally characterize the samples. For the devices obtained capacitance was measured at 1 kHz; with these values we calculated the relative permittivity. The samples show typical P–E hysteresis loops at room temperature accompanied by saturation polarization (Ps) and remnant polarization (Pr). The DRX and Rietveld’s refinement results show x ⩽ 0.01 has a ferroelectric behavior. When the doped level is increased x ⩾ 0.02, a peak displacement is observed, this is due to the phase transformation of tetragonal to cubic into the unit cell. Finally, with x = 0.125 the crystal structure transforms to the characteristic hexagonal phase Ba{sub 8}Ti{sub 3}Nb{sub 4}O{sub 24} which

  16. Structural analysis of co-evaporated In{sub 2}S{sub 3} and In{sub 2}S{sub 3}:V for solar cell absorber applications

    Energy Technology Data Exchange (ETDEWEB)

    Waegele, Leonard A.; Rata, Diana; Scheer, Roland [Institute of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle (Saale) (Germany); Gurieva, Galina [Department Structure and Dynamics of Energy Materials, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany)

    2017-06-15

    In this study we use co-evaporation to grow In{sub 2}S{sub 3} thin films on glass substrates and X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) to analyse the structural properties of annealed In{sub 2}S{sub 3} and V-doped In{sub 2}S{sub 3} for intermediate band solar cell application. We find co-evaporated In{sub 2}S{sub 3} to be polycrystalline on float glass and with improved crystallinity after annealing in S-atmosphere. We confirm that excessive incorporation of vanadium into the host structure is possible without formation of secondary crystalline phases. The analysis indicates a reduced crystalline quality after V doping. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Time effects and glassy state behaviour in superconducting Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7-x}

    Energy Technology Data Exchange (ETDEWEB)

    Altinkok, A.; Yetis, H.; Olutas, M.; Kilic, K. [Abant Izzet Baysal University, Department of Physics, Turgut Gulez Research Laboratory, 14280 Bolu (Turkey); Kilic, A. [Abant Izzet Baysal University, Department of Physics, Turgut Gulez Research Laboratory, 14280 Bolu (Turkey)], E-mail: kilic_a@ibu.edu.tr

    2007-10-01

    The quenched disorder in the moving entity is investigated in a polycrystalline bulk sample of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) by slow transport relaxation measurements (V-t curves) on long time scales. The time evolution of sample voltage (V-t curve) are correlated to spatial reorganization of the driving current together with increasing or decreasing of resistive and non-resistive flow channels in a multiple connected network. In addition, it is shown that the voltage decays appearing in V-t curves are characterized by an exponential time dependence which is analogous to the glassy state relaxation.

  18. Fabrication and characterization of Ba sub x Sr sub 1 sub - sub x TiO sub 3 /YBa sub 2 Cu sub 3 O sub x /SrTiO sub 3 structure

    CERN Document Server

    Choi, J; Park, S Y; Lee Jae Sik; No, K; Sung, T H; Park, Y

    2002-01-01

    Ba sub x Sr sub 1 sub - sub x TiO sub 3 (BST)/YBa sub 2 Cu sub 3 O sub x (YBCO)/SrTiO sub 3 (STO) structures were deposited, and the microstructure, orientation and electrical characteristics were investigated. (00l) oriented YBCO thin films were deposited on STO substrates using pulsed laser deposition, and (h00) oriented BST thin films were deposited on YBCO/STO substrates using electron cyclotron resonance (ECR) plasma assisted metal organic chemical vapor deposition (MOCVD). A new phase was formed at the interface between YBCO and BST films and was speculated to be (Ba sub x Y sub 1 sub - sub x)(Ti sub y Y sub 1 sub - sub y)O sub 3. Ba-rich BST films showed a higher dielectric loss than Sr-rich BST films did, which indicates that Sr-rich BST films are more suited for application to microwave devices. The dielectric loss of the films was reduced as temperature decreased, which may be due to the conductivity change of YBCO film and the formation of a conduction path rather than a dielectric property change ...

  19. Crystal structure of the β<sub>2sub> adrenergic receptor-Gs protein complex

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Søren G.F.; DeVree, Brian T; Zou, Yaozhong; Kruse, Andrew C; Chung, Ka Young; Kobilka, Tong Sun; Thian, Foon Sun; Chae, Pil Seok; Pardon, Els; Calinski, Diane; Mathiesen, Jesper M; Shah, Syed T.A.; Lyons, Joseph A; Caffrey, Martin; Gellman, Samuel H; Steyaert, Jan; Skiniotis, Georgios; Weis, William I; Sunahara, Roger K; Kobilka, Brian K [Brussels; (Trinity); (Michigan); (Stanford-MED); (Michigan-Med); (UW)

    2011-12-07

    G protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The β<sub>2sub> adrenergic receptor (β<sub>2sub>AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling. Here we present the crystal structure of the active state ternary complex composed of agonist-occupied monomeric β<sub>2sub>AR and nucleotide-free Gs heterotrimer. The principal interactions between the β<sub>2sub>AR and Gs involve the amino- and carboxy-terminal α-helices of Gs, with conformational changes propagating to the nucleotide-binding pocket. The largest conformational changes in the β<sub>2sub>AR include a 14Å outward movement at the cytoplasmic end of transmembrane segment 6 (TM6) and an α-helical extension of the cytoplasmic end of TM5. The most surprising observation is a major displacement of the α-helical domain of Gαs relative to the Ras-like GTPase domain. This crystal structure represents the first high-resolution view of transmembrane signalling by a GPCR.

  20. Crystal structures of Ni sup 2 sup + -and Tl sup + -exchanged zeolite X, Ni sub 1 sub 7 Tl sub 5 sub 8 Si sub 1 sub 0 sub 0 Al sub 9 sub 2 O sub 3 sub 8 sub 4 and Ni sub 1 sub 2 Tl sub 6 sub 8 Si sub 1 sub 0 sub 0 Al sub 9 sub 2 O sub 3 sub 8 sub 4

    CERN Document Server

    Song, M K; Kim, Y

    2001-01-01

    The crystal structures of fully dehydrated Ni sup 2 sup + - and Tl sup + -exchanged zeolite X (Ni sub 1 sub 7 Tl sub 5 sub 8 -X, and Ni sub 1 sub 2 Tl sub 6 sub 8 -X; X=Si sub 1 sub 0 sub 0 Al sub 9 sub 2 O sub 3 sub 8 sub 4) have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd3 at 21(1) .deg. C (a=24.380(4) A, 24.660(4) A, respectively). Their structures have been refined to the final error indices R sub 1 =0.037 and R sub 2 =0.043 with 485 reflections, and R sub 1 =0.039 and R sub 2 =0.040 with 306 reflections, respectively, for which I>3 sigma(I). In Ni sub 1 sub 7 Tl sub 5 sub 8 -X, 17 Ni sup 2 sup + ions per unit cell were found at only two sites: 15 at site I at the center of the hexagonal prism (Ni-O=2.203(9) A). and the remaining 2 at site II near single six-oxygen rings in the supercage (Ni-O=2.16(3) A). Fifty-eight Tl sup + ions were found at five crystallographic sites: 28 at site II (Tl-O=2.626(8) A, 2 at site I' in the sodalite cavity near the hexagonal ...

  1. Electronic structure of layered ferroelectric high-k titanate La{sub 2}Ti{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V V [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Gavrilova, T A [Laboratory of Electron Microscopy and Submicron Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Grivel, J-C [Materials Research Department, National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, DK-4000, Roskilde (Denmark); Kesler, V G, E-mail: atuchin@thermo.isp.nsc.r [Laboratory of Physical Bases of Integrated Microelectronics, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation)

    2009-02-07

    The electronic structure of binary titanate La{sub 2}Ti{sub 2}O{sub 7} has been studied by x-ray photoelectron spectroscopy. Spectral features of valence band and all constituent element core levels have been considered. The Auger parameters of titanium and oxygen in La{sub 2}Ti{sub 2}O{sub 7} are determined as alpha{sub Ti} = 872.4 and alpha{sub O} = 1042.3 eV. Chemical bonding effects have been discussed with binding energy (BE) differences DELTA{sub Ti} = (BE O 1s - BE Ti 2p{sub 3/2}) = 71.6 eV and DELTA{sub La} = (BE La 3d{sub 5/2} - BE O 1s) = 304.7 eV as key parameters in comparison with those in several titanium- and lanthanum-bearing oxides.

  2. High-pressure synthesis and crystal structure of α-Y{sub 2}B{sub 4}O{sub 9}

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Martin K.; Huppertz, Hubert [Innsbruck Univ. (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie

    2017-07-01

    α-Y{sub 2}B{sub 4}O{sub 9} was synthesized in a high-pressure/high-temperature experiment at 12.3 GPa/1020 C. The crystal structure has been determined via single-crystal X-ray diffraction. α-Y{sub 2}B{sub 4}O{sub 9} is isotypic to the lanthanide borates α-Ln{sub 2}B{sub 4}O{sub 9} (Ln = Sm-Ho) and crystallizes in the monoclinic space group C2/c (no. 15) with the following lattice parameters: a = 25.084(2), b = 4.3913(2), c = 24.726(2) Aa, and β = 99.97(1) . The compound was further characterized via X-ray powder diffraction as well as IR and Raman spectroscopy.

  3. Rewritable phase-change optical recording in Ge2Sb2Te5 films induced by picosecond laser pulses

    International Nuclear Information System (INIS)

    Siegel, J.; Schropp, A.; Solis, J.; Afonso, C.N.; Wuttig, M.

    2004-01-01

    The phase transformation dynamics induced in Ge 2 Sb 2 Te 5 films by picosecond laser pulses were studied using real-time reflectivity measurements with subnanosecond resolution. Evidence was found that the thermal diffusivity of the substrate plays a crucial role in determining the ability of the films to crystallize and amorphize. A film/substrate configuration with optimized heat flow conditions for ultrafast phase cycling with picosecond laser pulses was designed and produced. In this system, we achieved reversible phase transformations with large optical contrast (>20%) using single laser pulses with a duration of 30 ps within well-defined fluence windows. The amorphization (writing) process is completed within less than 1 ns, whereas crystallization (erasing) needs approximately 13 ns to be completed

  4. Reassessment of the electronic state, magnetism, and superconductivity in high-T{sub c} cuprates with the Nd{sub 2}CuO{sub 4} structure

    Energy Technology Data Exchange (ETDEWEB)

    Naito, Michio, E-mail: minaito@cc.tuat.ac.jp [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan); Krockenberger, Yoshiharu; Ikeda, Ai; Yamamoto, Hideki [NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198 (Japan)

    2016-04-15

    Highlights: • The 30-year history of “electron-doped” cuprates is reviewed, including basic physics and material issues. • Undoped cuprates with the Nd{sub 2}CuO{sub 4} (T’) structure are superconducting with T{sub c} over 30 K. • Electron doping by Ce in T’-RE{sub 2}CuO{sub 4} lowers T{sub c} and the highest T{sub c} is obtained at no doping. - Abstract: The electronic phase diagram of the cuprates remains enigmatic and is still a key ingredient to understand the mechanism of high-T{sub c} superconductivity. It has been believed for a long time that parent compounds of cuprates were universally antiferromagnetic Mott insulators (charge-transfer insulators) and that high-T{sub c} superconductivity would develop upon doping holes or electrons in a Mott–Hubbard insulator (“doped Mott-insulator scenario”). However, our recent discovery of superconductivity in the parent compounds of square-planar cuprates with the Nd{sub 2}CuO{sub 4} (T’) structure and the revised electronic phase diagram in T’ cuprates urged a serious reassessment to the above scenario. In this review, we present the main results derived from our synthesis and experiments on T’ cuprates in the undoped or heavily underdoped regime over 20 years, including material issues and basic physics. The key material issue is how to remove excess oxygen ions at the apical site without introducing oxygen vacancies in the CuO{sub 2} planes. In order to put this into practice, the basic knowledge of complex solid-state chemistry in T’ cuprates is required, which is also included in this review.

  5. Structural stability and fission product behaviour in U{sub 3}Si

    Energy Technology Data Exchange (ETDEWEB)

    Middleburgh, S.C., E-mail: simon.middleburgh@hotmail.co.uk [IME, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales (Australia); Westinghouse Electric Sweden AB, SE-72163 Västerås (Sweden); Burr, P.A. [Department of Materials, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); King, D.J.M.; Edwards, L.; Lumpkin, G.R. [IME, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales (Australia); Grimes, R.W. [Department of Materials, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom)

    2015-11-15

    The crystalline and amorphous structures of U{sub 3}Si have been investigated using density functional theory techniques for the first time. The effects of disorder and the impact of fission products has been separated to understand the swelling characteristics of U{sub 3}Si in both crystalline and amorphous U{sub 3}Si. Initially, the stability of the three experimentally observed polymorphs of U{sub 3}Si were explored. Subsequently, we modelled the amorphous U{sub 3}Si system and conclude that initial increase in volume observed experimentally at low temperature corresponds well with the volume change that occurs with the observed amorphisation of the material. The solubility of Xe and Zr into both the crystalline and amorphous systems was subsequently investigated.

  6. Hexagonal perovskites with cationic vacancies. 12. Structure determination on Ba/sub 6/W/sub 4/vacant/sub 2/O/sub 18/

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S; Treiber, U [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1979-08-01

    The stacking polytype Ba/sub 6/W/sub 4/vacant/sub 2/O/sub 18/ is the first oxide variant of the Cs/sub 3/Tl/sub 2/Cl/sub 9/-type. The structure determination gave for the space group R3c with the sequence (h)/sub 6/, Z = 3, the refined, intensity related R' value of 6.8%. The octahedral net consists of groups of two face sharing WO/sub 6/ octahedra (W/sub 2/ Osub(6/2)O/sub 6/), which are in the (110) plane displaced against each other. In the double octahedra the tungsten atoms are shifted away from their ideal central position (W-W:2.32/sub 7/ A) with the result, that the W-W distance has increased to 2.90/sub 5/ A.

  7. Facile synthesis technology of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C adding H{sub 2}O{sub 2} in ball mill process

    Energy Technology Data Exchange (ETDEWEB)

    Min, Xiujuan [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, School of Chemistry and Chemical Engineering, Harbin 150001 (China); Mu, Deying [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, School of Chemistry and Chemical Engineering, Harbin 150001 (China); Department of Environmental Engineering, Harbin University of Commerce, Harbin 150076 (China); Li, Ruhong [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, School of Chemistry and Chemical Engineering, Harbin 150001 (China); Dai, Changsong, E-mail: changsd@hit.edu.cn [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, School of Chemistry and Chemical Engineering, Harbin 150001 (China)

    2016-11-15

    Highlights: • Sintering time of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} reduced to 6 hours by adding hydrogen peroxide. • Electrochemical performance of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} was improved by reducing sintering time. • The Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} production process was simplified during material synthesis stage. - Abstract: Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C has stable structure, high theory specific capacity and good safety performance, therefore it has become the research focus of lithium-ion batteries in recent years. The facile synthesis technology of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C was characterized by adding different amounts of H{sub 2}O{sub 2}. Structure and morphology characteristics were examined by XRD, TG, Raman Spectroscopy, XPS and SEM. Electrochemical performance was investigated by constant current charging and discharging test. The results revealed that the Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C electrochemical performance of adding 15 mL H{sub 2}O{sub 2} was better after sintering during 6 h. At the charge cut-off voltage of 4.3 V, the first discharge capacity at 0.2 C rate reached 127 mAh g{sup −1}. Because of adding H{sub 2}O{sub 2} in the ball-mill dispersant, the vanadium pentoxide formed the wet sol. The molecular-leveled mixture increased the homogeneity of raw materials. Therefore, the addition of H{sub 2}O{sub 2} shortened the sintering time and significantly improved the electrochemical performance of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C.

  8. Effect of oxygen pressure on the structure and luminescence of Eu-doped Gd{sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wellenius, Patrick; Muth, John F. [Department of Electrical and Computer Engineering, NC State University, Raleigh, NC 27606 (United States); Smith, Eric R. [Kratos Defense and Security Solutions, Inc., 5030 Bradford Dr., Huntsville, AL 35805 (United States); Wu, Pae C [Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 (United States); Everitt, Henry O. [Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708 (United States); Army Aviation and Missile RD and E Center, Redstone Arsenal, AL 35898 (United States)

    2010-08-15

    Europium-doped gadolinium oxide (Gd{sub 2}O{sub 3}) thin films were deposited on sapphire substrates by pulsed laser deposition (PLD). The effect of oxygen pressure during deposition on the structure of the thin films, investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD), was correlated to photoluminescence spectra. The polycrystalline films, like the one deposited in 5 mTorr oxygen environment, were primarily monoclinic phase; however the rarer cubic phase was achieved at 50 mTorr pressure. Time-integrated and time-resolved photoluminescence (TIPL and TRPL) spectra of the bright {sup 5}D{sub 0} to {sup 7}F{sub 2} radiative transition revealed how the differing host material phases altered the local environment of the Eu dopants. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. Synthesis and characterization of CoFe{sub 2}O{sub 4} magnetic nanotubes, nanorods and nanowires. Formation of magnetic structured elastomers by magnetic field-induced alignment of CoFe{sub 2}O{sub 4} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Antonel, P. Soledad [Universidad de Buenos Aires, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE) (Argentina); Oliveira, Cristiano L. P. [Universidade de São Paulo, Grupo de Fluidos Complexos, Instituto de Física (Brazil); Jorge, Guillermo A. [Universidad Nacional de General Sarmiento, Instituto de Ciencias (Argentina); Perez, Oscar E. [Universidad de Buenos Aires, Departamento de Industrias, Facultad de Ciencias Exactas y Naturales (Argentina); Leyva, A. Gabriela, E-mail: leyva@tandar.cnea.gov.ar [Universidad Nacional de San Martín, Grupo de Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (Argentina); Escuela de Ciencia y Tecnología (Argentina); Negri, R. Martín, E-mail: rmn@qi.fcen.uba.ar [Universidad de Buenos Aires, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE) (Argentina)

    2015-07-15

    Magnetic CoFe{sub 2}O{sub 4} nanotubes, nanorods and nanowires were synthesized by the template method. The materials are highly crystalline and formed by compactly packed ceramic particles whose equivalent size diameter depends on the nanostructure type. Nanotubes and nanorods present the remarkable characteristic of having very large coercive fields (1000–1100 Oe) in comparison with nanoparticles of the same crystallite size (400 Oe) while keeping similar saturation magnetization (53–55 emu/g). Nanorods were used as filler material in polydimethylsiloxane elastomer composites, which were structured by curing in the presence of uniform magnetic field, H{sub curing}. In that way the nanorods agglomerate in the cured elastomer, forming needles-like structures (pseudo-chains) oriented in the direction of H{sub curing}. SEM analysis show that pseudo-chains are formed by bunches of nanorods oriented in that direction. At the considered filler concentration (1 % w/w), the structured elastomers conserve the magnetic properties of the fillers, that is, high coercive fields without observing magnetic anisotropy. The elastomer composites present strong elastic anisotropy, with compression constants about ten times larger in the direction parallel to the pseudo-chains than in the perpendicular direction, as determined by compression stress–strain curves. That anisotropic factor is about three-four times higher than that observed when using spherical CoFe{sub 2}O{sub 4} nanoparticles or elongated Ni nanochains. Hence, the use of morphological anisotropic structures (nanorods) results in composites with enhanced elastic anisotropy. It is also remarkable that the large elastic anisotropy was obtained at lower filler concentration compared with the above-mentioned systems (1 % w/w vs. 5–10 % w/w)

  10. Tl{sub 10}Hg{sub 3}Cl{sub 16}: Single crystal growth, electronic structure and piezoelectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Khyzhun, O.Y., E-mail: khyzhun@ipms.kiev.ua [Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky Street, 03142 Kyiv (Ukraine); Piasecki, M. [Institute of Physics, J.Dlugosz University Częstochowa, Armii Krajowej 13/15, Częstochowa PL-42-217 (Poland); Kityk, I.V. [Electrical Engineering Department, Częstochowa University Technology, Armii Krajowej 17, PL-42-200 Częstochowa (Poland); Luzhnyi, I. [Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky Street, 03142 Kyiv (Ukraine); Fedorchuk, A.O. [Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies, 50 Pekarska Street, 79010 Lviv (Ukraine); Fochuk, P.M. [Yuriy Fed’kovych Chernivtsi National University, 2 Kotziubynskoho Street, 58012 Chernivtsi (Ukraine); Levkovets, S.I. [Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, 13 Voli Avenue, 43025 Lutsk (Ukraine); Karpets, M.V. [Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky Street, 03142 Kyiv (Ukraine); Parasyuk, O.V. [Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, 13 Voli Avenue, 43025 Lutsk (Ukraine)

    2016-10-15

    Single crystal of the ternary halide Tl{sub 10}Hg{sub 3}Cl{sub 16} was grown using Bridgman-Stockbarger method. For the Tl{sub 10}Hg{sub 3}Cl{sub 16} crystal, we have measured X-ray photoelectron spectra for both pristine and Ar{sup +} ion-bombarded surfaces and additionally investigated photoinduced piezoelectricity. Our data indicate that the Tl{sub 10}Hg{sub 3}Cl{sub 16} single crystal surface is very sensitive with respect to Ar{sup +} ion-bombardment. In particular, Ar{sup +} ion-bombardment with energy of 3.0 keV over 5 min at an ion current density of 14 μA/cm{sup 2} causes significant changes of the elemental stoichiometry of the Tl{sub 10}Hg{sub 3}Cl{sub 16} surface resulting in an abrupt decrease of the mercury content in the top surface layers of the studied single crystal. As a result of the treatment, the mercury content becomes nil in the top surface layers. In addition, the present XPS measurements allow for concluding about very low hygroscopicity of the Tl{sub 10}Hg{sub 3}Cl{sub 16} single crystal surface. The property is extremely important for the crystal handling in optoelectronic or nano-electronic devices working at ambient conditions. The photoinduced piezoelectricity has been explored for Tl{sub 10}Hg{sub 3}Cl{sub 16} depending on nitrogen (λ=371 nm) laser power density and temperature. - Graphical abstract: As-grown single crystal boule of Tl{sub 10}Hg{sub 3}Cl{sub 16}; dependence of the effective piezoelecric coefficient d{sub 33} versus the photoinducing nitrogen laser power density, I, at different temperatures, T; and packing of the polyhedra of halide atoms around Hg atoms in the Tl{sub 10}Hg{sub 3}Cl{sub 16} structure. - Highlights: • High-quality Tl{sub 10}Hg{sub 3}Cl{sub 16} single crystal has been grown by Bridgman-Stockbarger method. • Electronic structure of Tl{sub 10}Hg{sub 3}Cl{sub 16} is studied by the XPS method. • Tl{sub 10}Hg{sub 3}Cl{sub 16} single crystal surface is sensitive with respect to Ar{sup +} ion

  11. Electronic structure and static dipole polarizability of C{sub 60}-C{sub 240}

    Energy Technology Data Exchange (ETDEWEB)

    Zope, Rajendra R [Department of Physics, University of Texas at El Paso, El Paso, TX 79958 (United States)

    2008-04-28

    The electronic structure of C{sub 60}-C{sub 240} and its first-order response to a static electric field is studied by an all-electron density functional theory calculation using large polarized Gaussian basis sets. Our results show that the outer C{sub 240} shell almost completely shields the inner C{sub 60} as inferred from the practically identical values of dipole polarizability of the C{sub 60}-C{sub 240} onion (449 A{sup 3}) and that of the isolated C{sub 240} fullerene (441 A{sup 3}). The C{sub 60}-C{sub 240} is thus a near-perfect Faraday cage.

  12. Synthesis and structural and electrical characterization of new materials Bi{sub 3}R{sub 2}FeTi{sub 3}O{sub 15}

    Energy Technology Data Exchange (ETDEWEB)

    Gil Novoa, O.D.; Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 5997, Bogota DC (Colombia); Roa-Rojas, J., E-mail: jroar@unal.edu.co [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, AA 5997, Bogota DC (Colombia)

    2012-08-15

    In this work we report the synthesis of polycrystalline samples of Bi{sub 5}FeTi{sub 3}O{sub 15} and Bi{sub 3}R{sub 2}FeTi{sub 3}O{sub 15} new compounds with R=Nd, Sm, Gd, Dy, Ho and Yb. The materials were synthesized by the standard solid state reaction recipe from high purity (99.99%) powders. The structural characteristics of materials were analyzed by X-ray diffraction experiments. Rietveld refinement by the GSAS code was performed, taking the input data from the ICSD 74037 database. Results reveal that materials crystallized in orthorhombic single-phase structures and space group Fmm2. Measurements of polarization as a function of applied electric field were carried out using a Radiant Technology polarimeter. We determine the occurrence of hysteretic behaviors, which are characteristic of ferroelectric materials. The main values of remnant and coercive applied fields were observed for substitutions with Yb and Nd, which have the main atomic radii.

  13. Syntheses, crystal structure, and electronic properties of the five ABaMQ{sub 4} compounds RbBaPS{sub 4}, CsBaPS{sub 4}, CsBaVS{sub 4}, RbBaVSe{sub 4}, and CsBaVSe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Mesbah, Adel [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States); ICSM, UMR 5257 CEA / CNRS / UM / ENSCM, Site de Marcoule-Bâtiment 426, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); Prakash, Jai [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States); Rocca, Dario; Lebègue, Sébastien [Laboratoire de Cristallographie, Résonance Magnétique, et Modélisations CRM2 (UMR UHP-CNRS 7036), Faculté des Sciences et Techniques, Université de Lorraine, BP 70239, Boulevard des Aiguillettes, 54506 Vandoeuvre-lès-Nancy Cedex (France); Beard, Jessica C.; Lewis, Benjamin A. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States); Ibers, James A., E-mail: ibers@chem.northwestern.edu [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States)

    2016-01-15

    Five new compounds belonging to the ABaMQ{sub 4} family were synthesized by solid-state chemistry at 1123 K. The compounds RbBaPS{sub 4}, CsBaPS{sub 4}, CsBaVS{sub 4}, RbBaVSe{sub 4}, and CsBaVSe{sub 4} are isostructural and have the TlEuPS{sub 4} structure type. They crystallize in space group D{sup 16}{sub 2h} – Pnma of the orthorhombic system. Their structure consists isolated MQ{sub 4} tetrahedra separated by A and Ba atoms to form a salt-like structure. Density Functional Theory (DFT) calculations of the electronic structures with the use of the HSE functional suggest that the compounds are semiconductors with calculated band gaps of 3.3 eV (RbBaPS{sub 4}), 3.4 eV (CsBaPS{sub 4}), 2.3 eV (CsBaVS{sub 4}), and 1.6 eV (RbBaVSe{sub 4}). - Graphical abstract: General view of the ABaMQ{sub 4} structure down the a axis. - Highlights: • Five new ABaMQ{sub 4} compounds were synthesized by solid-state chemistry at 1123 K. • RbBaPS{sub 4}, CsBaPS{sub 4}, CsBaVS{sub 4}, RbBaVSe{sub 4}, and CsBaVSe{sub 4} have the TlEuPS{sub 4} structure type. • The compounds are semiconductors with calculated band gaps ranging from 1.6 to 3.4 eV.

  14. Enhanced photoelectrochemical cathodic protection performance of the C{sub 3}N{sub 4}@In{sub 2}O{sub 3} nanocomposite with quasi-shell–core structure under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mengmeng; Chen, Zhuoyuan, E-mail: zychen@qdio.ac.cn; Bu, Yuyu

    2015-01-05

    Highlights: • The C{sub 3}N{sub 4}@In{sub 2}O{sub 3} composite with quasi-shell–core structure is prepared. • Photoelectrochemical cathodic protection performance of this composite was studied. • C{sub 3}N{sub 4} coating on In{sub 2}O{sub 3} dramatically enhances its light absorption capability. • C{sub 3}N{sub 4} coating on In{sub 2}O{sub 3} dramatically enhances its photoelectrochemical properties. • C{sub 3}N{sub 4} coating on In{sub 2}O{sub 3} dramatically enhances its electron transfer capability. - Abstract: Carbon nitride@Indium oxide (C{sub 3}N{sub 4}@In{sub 2}O{sub 3}) composite with quasi-shell–core structure was successfully prepared in this work. The photoinduced open circuit potential and current density results show that the C{sub 3}N{sub 4}@In{sub 2}O{sub 3} composite with quasi-shell–core structure could provide the optimal photoelectrochemical cathodic protection capability for 304 stainless steel under visible light when the adding amount of C{sub 3}N{sub 4} in the C{sub 3}N{sub 4}@In{sub 2}O{sub 3} composite is 3 wt%. The light absorption capability of the C{sub 3}N{sub 4}@In{sub 2}O{sub 3} composite was enhanced due to the synergistic effect of heterojunction structure. According to the HRTEM images, photoinduced Volt–Ampere characteristic curves and electrochemical impedance spectra, the ultrathin coating layer of C{sub 3}N{sub 4} on the surface of In{sub 2}O{sub 3} helps to form a heterojunction electric field at the interface between C{sub 3}N{sub 4} and In{sub 2}O{sub 3}, which enhances the separation efficiency of the photogenerated electron–hole pairs. Excessive C{sub 3}N{sub 4} will decline the photoelectrochemical cathodic protection of this composite due to the lower intrinsic electronic mobility and the lower photoelectric conversion property of C{sub 3}N{sub 4}.

  15. Interplay between crystal and magnetic structures in YFe{sub 2}(H{sub α}D{sub 1−α}){sub 4.2} compounds studied by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Paul-Boncour, V., E-mail: paulbon@icmpe.cnrs.fr [Université de Paris Est, ICMPE, CNRS-UPEC, UMR7182, 2-8 rue Henri Dunant, 94320 Thiais (France); Guillot, M. [LNCMI, CNRS, BP166, 38042 Grenoble Cedex 9 (France); Isnard, O. [CNRS, Institut Néel, 38042 Grenoble (France); Univ. Grenoble Alpes, Inst. Néel, 38042 Grenoble (France); Ouladdiaf, B. [Institut Laue Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Hoser, A. [Helmholtz-Zentrum Berlin für Materialien und Energie, Glienicker Str. 100, D-141 09 Berlin (Germany); Hansen, T. [Institut Laue Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Stuesser, N. [Helmholtz-Zentrum Berlin für Materialien und Energie, Glienicker Str. 100, D-141 09 Berlin (Germany)

    2017-01-15

    We report a detailed magnetic structure investigation of YFe{sub 2}(H{sub α}D{sub 1−α}){sub 4.2} (α=0, 0.64, 1) compounds presenting a strong (H,D) isotope effect by neutron diffraction and Mössbauer spectroscopy analysis. They crystallize in the same monoclinic structure (Pc space group) with 8 inequivalent Fe sites having different H(D) environment. At low temperature, the compounds are ferromagnetic (FM) and show an easy magnetization axis perpendicular to the b axis and only slightly tilted away from the c axis. Upon heating, they display a first order transition from a ferromagnetic towards an antiferromagnetic (AFM) structure at T{sub M0} which is sensitive to the H/D isotope nature. The AFM cell is described by doubling the crystal cell along the monoclinic b axis. It presents an unusual coexistence of non magnetic Fe layer sandwiched by two thicker ferromagnetic Fe layers which are antiparallel to each other. This FM-AFM transition is driven by the loss of ordered moment on one Fe site (Fe7) through an itinerant electron metamagnetic (IEM) behaviour. The key role of the Fe7 position is assigned to both its hydrogen rich atomic environment and its geometric position. Above T{sub M0} a field induced metamagnetic transition is observed from the AFM towards the FM structure accompanied by a cell volume increase. Both thermal and magnetic field dependence of the magnetic structure are found strongly related to the anisotropic cell distortion induced by (H,D) order in interstitial sites. - Graphical abstract: Representation of the FM-AFM magnetic structures of YFe{sub 2}D{sub 4.2} deuteride. - Highlights: • YFe{sub 2}(H,D){sub 4.2} compounds undergoes a isotope sensitive FM-AFM transition at T{sub M0}. • The FM structure is formed of Fe moments perpendicular to the monoclinic b axis. • AFM structure is formed by antiparallel Fe layers separated by non-magnetic Fe layer. • One Fe site among eight loses its moment at T{sub M0} due to larger Fe

  16. Magnetic and structural properties of Fe{sub 65}Co{sub 35} alloys obtained by melting, high-energy milling and heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Trifu, A.V.; Dorolti, E. [Faculty of Physics, Babes-Bolyai University, 400084 Cluj-Napoca (Romania); Takacs, A.F., E-mail: albert.takacs@phys.ubbcluj.ro [Faculty of Physics, Babes-Bolyai University, 400084 Cluj-Napoca (Romania); Chicinaş, I. [Materials Sciences and Engineering Department, Technical University of Cluj-Napoca, 103-105 Muncii Avenue, 400641 Cluj-Napoca (Romania); Isnard, O. [Institut Néel, CNRS, Université Joseph Fourier, BP 166X, 38042 Grenoble Cédex 9 (France); Pop, V. [Faculty of Physics, Babes-Bolyai University, 400084 Cluj-Napoca (Romania)

    2013-11-20

    The influence of milling and annealing conditions on the structural and magnetic behaviour of mechanically milled Fe{sub 65}Co{sub 35} alloys has been studied. By differential scanning calorimetry measurements we determined the internal stress relaxation temperature, recrystallisation temperature and structural order/disorder transition temperature of bulk and mechanical milled Fe{sub 65}Co{sub 35}. The width of the X-ray diffraction peaks was found to increase with the milling time. Two types of annealing were performed: a conventional heat treatment at 500, 550 and 600 °C for 2 h and a rapid annealing for a maximum of 2 min at 700, 750 or 800 °C followed by quenching. Crystallite size increases with increasing heat treatment temperature and time, as both are parameters that influence the magnetic properties of the sample. Magnetic permeability variations result from internal stress evolution, changes in crystallite size, supposing that the crystallite size of the annealed samples is at the border between viability of the Herzer model and the classical behaviour of the permeability vs. crystallite size.

  17. Structural and electrochemical properties of La{sub 0.8}Sr{sub 0.2}Ga{sub 1-x}Fe{sub x}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kazuhiro [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)], E-mail: kmori@rri.kyoto-u.ac.jp; Onodera, Yohei [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Kiyanagi, Ryoji; Richardson, James W. [Intense Pulsed Neutron Source Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Itoh, Keiji; Sugiyama, Masaaki [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Kamiyama, Takashi [Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Fukunaga, Toshiharu [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2009-02-21

    Mixed ionic-electronic conductor of Fe doped lanthanum gallate, La{sub 0.8}Sr{sub 0.2}Ga{sub 1-x}Fe{sub x}O{sub 3}, has been studied by the dc four-probe method and the neutron powder diffraction. In the electrical conductivity measurement at RT, insulator-metal transition-like phenomenon was observed at around x{approx}0.35; this suggests an existence of the percolation limit for the electronic conductivity. Simultaneously, a bond length between O atoms, l{sub O-O}, in a MO{sub 6} octahedron (M=Ga{sub 1-x}Fe{sub x}) drastically expands over x{approx}0.4, according to the result of crystal structure refinement based on the hexagonal phase. Such a drastic expansion in the l{sub O-O} would induce the decrease in the oxygen ionic conductivity.

  18. Synthesis and structure of Sr{sub 2}Pd{sub 2}In and Sr{sub 2}Pt{sub 2}In

    Energy Technology Data Exchange (ETDEWEB)

    Muts, I. [Inst. fuer Anorganische und Analytische Chemie, Univ. Muenster (Germany); Inorganic Chemistry Dept., Ivan Franko National Univ. of Lviv (Ukraine); Nilges, T.; Rodewald, U.C.; Poettgen, R. [Inst. fuer Anorganische und Analytische Chemie, Univ. Muenster (Germany); Zaremba, V.I. [Inorganic Chemistry Dept., Ivan Franko National Univ. of Lviv (Ukraine)

    2007-12-15

    The new intermetallic compounds Sr{sub 2}Pd{sub 2}In and Sr{sub 2}Pt{sub 2}In were synthesized from the elements in sealed tantalum tubes in a water-cooled sample chamber of an induction furnace. Both indides crystallize with the HT-Pr{sub 2}Co{sub 2}Al-type structure: C2/c, a = 1048.7(2), b = 603.5(2), c = 830.6(1) pm. {beta} = 103.68(2) , wR2 = 0.0492, 743 F{sup 2} values for Sr{sub 2}Pd{sub 2}In; a = 1026.8(2), b = 599.0(1), c = 830.3(2) pm, {beta} = 103.17(1) , wR2 = 0.0666, 885 F{sup 2} values for Sr{sub 2}Pt{sub 2}In with 25 variables per refinement. The shortest interatomic distances occur for the Pd-In (Pt-In) and Pd-Pd (Pt-Pt) contacts. The strontium atoms are embedded in complex three-dimensional polyanionic networks of compositions [Pd{sub 2}In] and [Pt{sub 2}In]. (orig.)

  19. Structural and electronic properties of V{sub 2}B{sub n} (n = 1–10) clusters

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li-Nan; Jia, Jianfeng, E-mail: jiajf@dns.sxnu.edu.cn; Wu, Hai-Shun, E-mail: wuhs@mail.sxnu.edu.cn

    2015-09-28

    Highlights: • Ground state isomers of V{sub 2}B{sub n} clusters are presented. • The growth pattern of V{sub 2}B{sub n} clusters is discussed. • V{sub 2}B{sub 6} is found to be the magically stable cluster. • The different ground state structure of V{sub 2}B{sub n} from that of Ta{sub 2}B{sub n} is caused by the small atomic radius of V atom. - Abstract: Inspired by the discovery of a series of Ta{sub 2}B{sub n} clusters, the geometric structures, stabilities, and electronic properties of V{sub 2}B{sub n} clusters up to n = 10 have been systematically investigated based on the density-functional B3LYP method and the CCSD(T) method. Among the small size clusters, the V{sub 2}B{sub 5} cluster was observed to have different geometric motif than Sc{sub 2}B{sub 5}, Ti{sub 2}B{sub 5} and Ta{sub 2}B{sub 5}. For V{sub 2}B{sub n} clusters with an n ⩾ 6, the bipyramidal structure is energetically favored, as for Sc{sub 2}B{sub n} and Ti{sub 2}B{sub n}. The second-order difference of energies, binding energies, dissociation energies, vertical ionization potentials, vertical electron affinities and chemical hardness of the V{sub 2}B{sub n} clusters were calculated and analyzed. The V{sub 2}B{sub 6} cluster was determined to be stable thermodynamically and might be observed in a future experiment. To understand the stability of the V{sub 2}B{sub 6} cluster, a detailed inspection of its occupied valence orbitals was performed.

  20. Synthesis, crystal structure, electrical properties, and sodium transport pathways of the new arsenate Na{sub 4}Co{sub 7}(AsO{sub 4}){sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Ben Smida, Youssef; Marzouki, Riadh [Université de Tunis El Manar, Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Manar II, Tunis (Tunisia); Georges, Samuel [Université Grenoble Alpes, Laboratoire d’Electrochimie et de Physicochimie des Matériaux et des Interfaces LEPMI, F-38000 Grenoble (France); Kutteh, Ramzi [Bragg Institute, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, New South Wales 2234 (Australia); Avdeev, Maxim [Bragg Institute, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, New South Wales 2234 (Australia); School of Chemistry, University of Sydney, Sydney, New South Wales 2006 (Australia); Guesmi, Abderrahmen; Zid, Mohamed Faouzi [Université de Tunis El Manar, Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Manar II, Tunis (Tunisia)

    2016-07-15

    A new sodium cobalt (II) arsenate Na{sub 4}Co{sub 7}(AsO{sub 4}){sub 6} has been synthesized by a solid-state reaction and its crystal structure determined from single crystal X-ray diffraction data. It crystallizes in the monoclinic system, space group C2/m, with a=10.7098(9) Å, b=14.7837(9) Å, c=6.6845(7) Å, and β=105.545(9)°. The structure is described as a three-dimensional framework built up of corner-edge sharing CoO{sub 6}, CoO{sub 4} and AsO{sub 4} polyhedra, with interconnecting channels along [100] in which the Na{sup +} cations are located. The densest ceramics with relative density of 94% was obtained by ball milling and optimization of sintering temperature, and its microstructure characterized by scanning electron microscopy. The electrical properties of the ceramics were studied over a temperature interval from 280 °C to 560 °C using the complex impedance spectroscopy over the range of 13 MHz–5 Hz. The ionic bulk conductivity value of the sample at 360 °C is 2.51 10{sup −5} S cm{sup −1} and the measured activation energy is Ea=1 eV. The sodium migration pathways in the crystal structure were investigated computationally using the bond valence site energy (BVSE) model and classical molecular dynamics (MD) simulations. - Graphical abstract: Correlation between crystal structure, microstructure and ionic conductivity . Display Omitted - Highlights: • A new arsenate Na{sub 4}Co{sub 7}(AsO{sub 4}){sub 6} was prepared by solid state reaction. • Its crystal structure was determined by powder X-ray diffraction. • Na{sup +} ionic conductivity was probed by complex impedance spectroscopy. • Na{sup +} conduction pathways were modeled by bond-valence method and molecular dynamics.

  1. Synthesis, crystal structure investigation and magnetism of the complex metal-rich boride series Cr{sub x}(Rh{sub 1-y}Ru{sub y}){sub 7-x}B{sub 3} (x=0.88-1; y=0-1) with Th{sub 7}Fe{sub 3}-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Misse, Patrick R.N.; Mbarki, Mohammed [Institute of Inorganic Chemistry, RWTH Aachen University, 52066 Aachen (Germany); Fokwa, Boniface P.T., E-mail: boniface.fokwa@ac.rwth-aachen.de [Institute of Inorganic Chemistry, RWTH Aachen University, 52066 Aachen (Germany)

    2012-08-15

    Powder samples and single crystals of the new complex boride series Cr{sub x}(Rh{sub 1-y}Ru{sub y}){sub 7-x}B{sub 3} (x=0.88-1; y=0-1) have been synthesized by arc-melting the elements under purified argon atmosphere on a water-cooled copper crucible. The products, which have metallic luster, were structurally characterized by single-crystal and powder X-ray diffraction as well as EDX measurements. Within the whole solid solution range the hexagonal Th{sub 7}Fe{sub 3} structure type (space group P6{sub 3}mc, no. 186, Z=2) was identified. Single-crystal structure refinement results indicate the presence of chromium at two sites (6c and 2b) of the available three metal Wyckoff sites, with a pronounced preference for the 6c site. An unexpected Rh/Ru site preference was found in the Ru-rich region only, leading to two different magnetic behaviors in the solid solution: The Rh-rich region shows a temperature-independent (Pauli) paramagnetism whereas an additional temperature-dependent paramagnetic component is found in the Ru-rich region. - Graphical abstract: The new complex boride series Cr{sub x}(Rh{sub 1-y}Ru{sub y}){sub 7-x}B{sub 3} (x=0.88-1; y=0-1) has been synthesized by arc melting the elements under purified argon atmosphere. Beside the 3d/4d site preference within the whole solid solution, an unexpected Rh/Ru site preference was found in the Ru-rich region only, leading to two different magnetic behaviors: The Rh-rich region shows a temperature-independent (Pauli) paramagnetism whereas an additional temperature-dependent paramagnetic component is found in the Ru-rich region. Highlights: Black-Right-Pointing-Pointer Synthesis of a new boride series fulfilling Vegard Acute-Accent s rule. Black-Right-Pointing-Pointer 3d/4d site preference. Black-Right-Pointing-Pointer Unexpected Ru/Rh site preference. Black-Right-Pointing-Pointer Rh-rich region is Pauli paramagnetic. Black-Right-Pointing-Pointer Ru-rich region is Pauli and temperature-dependent paramagnetic.

  2. In vivo multiphoton-microscopy of picosecond-laser-induced optical breakdown in human skin.

    Science.gov (United States)

    Balu, Mihaela; Lentsch, Griffin; Korta, Dorota Z; König, Karsten; Kelly, Kristen M; Tromberg, Bruce J; Zachary, Christopher B

    2017-08-01

    Improvements in skin appearance resulting from treatment with fractionated picosecond-lasers have been noted, but optimizing the treatment efficacy depends on a thorough understanding of the specific skin response. The development of non-invasive laser imaging techniques in conjunction with laser therapy can potentially provide feedback for guidance and optimizing clinical outcome. The purpose of this study was to demonstrate the capability of multiphoton microscopy (MPM), a high-resolution, label-free imaging technique, to characterize in vivo the skin response to a fractionated non-ablative picosecond-laser treatment. Two areas on the arm of a volunteer were treated with a fractionated picosecond laser at the Dermatology Clinic, UC Irvine. The skin response to treatment was imaged in vivo with a clinical MPM-based tomograph at 3 hours and 24 hours after treatment and seven additional time points over a 4-week period. MPM revealed micro-injuries present in the epidermis. Pigmented cells were particularly damaged in the process, suggesting that melanin is likely the main absorber for laser induced optical breakdown. Damaged individual cells were distinguished as early as 3 hours post pico-laser treatment with the 532 nm wavelength, and 24 hours post-treatment with both 532 and 1064 nm wavelengths. At later time points, clusters of cellular necrotic debris were imaged across the treated epidermis. After 24 hours of treatment, inflammatory cells were imaged in the proximity of epidermal micro-injuries. The epidermal injuries were exfoliated over a 4-week period. This observational and descriptive pilot study demonstrates that in vivo MPM imaging can be used non-invasively to provide label-free contrast for describing changes in human skin following a fractionated non-ablative laser treatment. The results presented in this study represent the groundwork for future longitudinal investigations on an expanded number of subjects to understand the response to treatment

  3. Structural and magnetic properties of polycrystalline La{sub 0.77}Sr{sub 0.23}Mn{sub 1-x}Cu{sub x}O{sub 3} (0 {<=} x {<=} 0.5) manganites

    Energy Technology Data Exchange (ETDEWEB)

    El-Hagary, M. [Physics Department, College of Science, Qassim University, P.O. 6644, 51452 Buryadh (Saudi Arabia); Institut fuer Festkoerperphysik, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria)], E-mail: magelhagary@yahoo.com; Shoker, Y.A. [Physics Department, Faculty of Science, Helwan University, Helwan, Cairo (Egypt); Mohammad, S. [Institut fuer Festkoerperphysik, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Moustafa, A.M. [National Research Center, Dokki, Giza (Egypt); El-Aal, A. Abd [Physics Department, Faculty of Science, Helwan University, Helwan, Cairo (Egypt); Michor, H.; Reissner, M.; Hilscher, G. [Institut fuer Festkoerperphysik, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Ramadan, A.A. [Physics Department, Faculty of Science, Helwan University, Helwan, Cairo (Egypt)

    2009-01-22

    The effect of the substitution for Mn with Cu in the polycrystalline La{sub 0.77}Sr{sub 0.23}Mn{sub 1-x}Cu{sub x}O{sub 3} (0 {<=} x {<=} 0.5) manganites upon the structural and magnetic properties has been investigated by means of X-ray diffraction (XRD) and magnetization measurements. The results indicate that replacing Mn by Cu in La{sub 0.77}Sr{sub 0.23}Mn{sub 1-x}Cu{sub x}O{sub 3} system led to a change in crystal structure at room temperature from rhombohedral phase (R-3c space group) to orthorhombic phase (Pmna space group) at x {>=} 0.3. Paramagnetic to ferromagnetic phase transition at Curie temperature, T{sub C}, is observed. It was found that substitution of Cu on the Mn site causes a reduction in T{sub C}. The analysis of the crystallographic data suggested a strong correlation between structural and magnetism, for instance a relationship between a distortion of the MnO{sub 6} octahedron and the reduction in the Curie temperature. At x {>=} 0.3 the spin glass-like behaviour is evidence by a cup in the temperature-dependent magnetization, M(T), curves due to the appearance of antiferromagnetic (AFM) superexchange interaction imposed with ferromagnetic (FM) double exchange (DE) interaction. The variation of the effective magnetic moment, {mu}{sub eff}, upon Cu-doping level at B-site is analyzed in terms of structure phase transition. Magnetization at lower temperatures is less in the doped samples and decreases with increasing the Cu contents. A reduction in the saturated magnetic moments with increasing of the Cu substitution is observed in the concentration range x = 0-0.2.

  4. Surface and Bulk Nanostructuring of Insulators by Ultrashort Laser Pulses

    Science.gov (United States)

    2017-04-05

    non perturbative effects leading to HHG. 15. SUBJECT TERMS Nanostructuring of bulk insulators, sub-picosecond electronic and structural events , photo...time, the charge density oscillations follow the time periodicity of the incident radiation. These transient charge oscillations are exclusively due...As in section II photoexcitation and the dielectric response of laser-irradiated diamond are treated in independent particle approximation based on the

  5. Structure and hydrogen storage properties of the hexagonal Laves phase Sc(Al{sub 1-x}Ni{sub x}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sahlberg, Martin, E-mail: Martin.sahlberg@kemi.uu.se [Department of Chemistry, The Angstroem Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala (Sweden); Angstroem, Jonas, E-mail: jonas.angstrom@kemi.uu.se [Department of Chemistry, The Angstroem Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala (Sweden); Zlotea, Claudia, E-mail: claudia.zlotea@icmpe.cnrs.fr [Chimie Metallurgique des Terres Rares, Institut de Chimie et des Materiaux de Paris Est, UMR 7182, CNRS, 2-8 rue Henri Dunant, 94320 Thiais Cedex (France); Beran, Premysl, E-mail: pberan@ujf.cas.cz [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 25068 Rez (Czech Republic); Latroche, Michel, E-mail: michel.latroche@glvt-cnrs.fr [Chimie Metallurgique des Terres Rares, Institut de Chimie et des Materiaux de Paris Est, UMR 7182, CNRS, 2-8 rue Henri Dunant, 94320 Thiais Cedex (France); Pay Gomez, Cesar, E-mail: Cesar.paygomez@kemi.uu.se [Department of Chemistry, The Angstroem Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala (Sweden)

    2012-12-15

    The crystal structures of hydrogenated and unhydrogenated Sc(Al{sub 1-x}Ni{sub x}){sub 2} Laves phases have been studied by combining several diffraction techniques and it is shown that hydrogen is situated interstitially in the A{sub 2}B{sub 2}-sites, which have the maximum number of scandium neighbours. The hydrogen absorption/desorption behaviour has also been investigated. It is shown that a solid solution of hydrogen forms in the mother compound. The hydrogen storage capacity exceeds 1.7 H/f.u. at 374 K, and the activation energy of hydrogen desorption was determined to 4.6 kJ/mol H{sub 2}. It is shown that these compounds share the same local coordination as Frank-Kasper-type approximants and quasicrystals, which opens up the possibility of finding many new hydride phases with these types of crystal structures. - Graphical abstract: The structure of ScNiAlDx, Sc atoms are shown in purple and Ni/Al atoms in blue and the iso-surfaces of deuterium in yellow. Revealed from refinements of neutron powder diffraction data. Highlights: Black-Right-Pointing-Pointer The crystal structure of ScNiAl and ScNiAlDx is reported. Black-Right-Pointing-Pointer We show the hydrogen storage properties of Sc(Al{sub 1-x}Ni{sub x}){sub 2}. Black-Right-Pointing-Pointer We discuss the possibility to store hydrogen in quasicrystals.

  6. A picosecond widely tunable deep-ultraviolet laser for angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Zhang Feng-Feng; Yang Feng; Zhang Shen-Jin; Xu Zhi; Wang Zhi-Min; Xu Feng-Liang; Peng Qin-Jun; Zhang Jing-Yuan; Xu Zu-Yan; Wang Xiao-Yang; Chen Chuang-Tian

    2013-01-01

    We develop a picosecond widely tunable laser in a deep-ultraviolet region from 175 nm to 210 nm, generated by two stages of frequency doubling of a 80-MHz mode-locked picosecond Ti:sapphire laser. A β-BaB 2 O 4 walk-off compensation configuration and a KBe 2 BO 3 F 2 prism-coupled device are adopted for the generation of second harmonic and fourth harmonics, respectively. The highest power is 3.72 mW at 193 nm, and the fluctuation at 2.85 mW in 130 min is less than ±2%

  7. β-Y(BO{sub 2}){sub 3}. A new member of the β-Ln(BO{sub 2}){sub 3} (Ln = Nd, Sm, Gd-Lu) structure family

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Martin K.; Huppertz, Hubert [Innsbruck Univ. (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie

    2017-07-01

    β-Y(BO{sub 2}){sub 3} was synthesized in a Walker-type multianvil module at 5.9 GPa/1000 C. The crystal structure has been elucidated through single-crystal X-ray diffraction. β-Y(BO{sub 2}){sub 3} crystallizes in the orthorhombic space group Pnma (no. 62) with the lattice parameters a = 15.886(2), b = 7.3860(6), and c = 12.2119(9) Aa. Its crystal structure will be discussed in the context of the isotypic lanthanide borates β-Ln(BO{sub 2}){sub 3} (Ln = Nd, Sm, Gd-Lu).

  8. Synthesis, structure and chemical bonding of CaFe{sub 2−x}Rh{sub x}Si{sub 2} (x=0, 1.32, and 2) and SrCo{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Hlukhyy, Viktor, E-mail: viktor.hlukhyy@lrz.tu-muenchen.de; Hoffmann, Andrea V.; Fässler, Thomas F.

    2013-07-15

    The finding of superconductivity in Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2} put the attention on the investigation of compounds that crystallize with ThCr{sub 2}Si{sub 2} structure type such as AT{sub 2}X{sub 2} (A=alkali/alkaline earth/rare earth element; T=transition metal and X=element of the 13–15th group). In this context the silicides CaFe{sub 2}Si{sub 2}, CaFe{sub 0.68(6)}Rh{sub 1.32(6)}Si{sub 2}, CaRh{sub 2}Si{sub 2} and SrCo{sub 2}Si{sub 2} have been synthesized by reaction of the elements under an argon atmosphere. Single crystals were obtained by special heat treatment in welded niobium/tantalum ampoules. The compounds were investigated by means of powder and single crystal X-ray diffraction. All compounds crystallize in the ThCr{sub 2}Si{sub 2}-type structure with space group I4/mmm (No. 139): a=3.939(1) Å, c=10.185(1) Å, R{sub 1}=0.045, 85 F{sup 2} values, 8 variable parameters for CaFe{sub 2}Si{sub 2}; a=4.0590(2) Å, c=9.9390(8) Å, R{sub 1}=0.030, 90 F{sup 2} values, 10 variable parameters for CaFe{sub 0.68(6)}Rh{sub 1.32(6)}Si{sub 2}; a=4.0695(1) Å, c=9.9841(3) Å, R{sub 1}=0.031, 114 F{sup 2} values, 9 variable parameters for CaRh{sub 2}Si{sub 2}; and a=3.974(1) Å, c=10.395(1) Å, R{sub 1}=0.036, 95 F{sup 2} values, 8 variable parameters for SrCo{sub 2}Si{sub 2}. The structure of SrCo{sub 2}Si{sub 2} contains isolated [Co{sub 2}Si{sub 2}]{sup 2−} 2D-layers in the ab-plane whereas in CaFe{sub 2−x}Rh{sub x}Si{sub 2} the [T{sub 2}Si{sub 2}] layers (T=Fe and Rh) are interconnected along the c-axis via Si3Si bonds resulting in a three-dimentional (3D) [T{sub 2}Si{sub 2}]{sup 2−} polyanions and therefore belong to the so-called collapsed form of the ThCr{sub 2}Si{sub 2}-type structure. The SrCo{sub 2}Si{sub 2} and CaRh{sub 2}Si{sub 2} are isoelectronic to the parent 122 iron–pnictide superconductors AeFe{sub 2}As{sub 2} (Ae=alkaline earth elements), whereas CaFe{sub 2}Si{sub 2} is a full substituted variant (As/Si) of CaFe{sub 2}As{sub 2

  9. The single crystal structure determination of Ln{sub 6}MnSb{sub 15} (Ln=La, Ce), Ln{sub 6}Mn{sub 1-x}Zn{sub x}Sb{sub 15} (x∝0.5), and Ln{sub 6}ZnSb{sub 15} (Ln=La-Pr)

    Energy Technology Data Exchange (ETDEWEB)

    Benavides, Katherine A.; McCandless, Gregory T.; Chan, Julia Y. [Texas Univ., Dallas, Richardson, TX (United States). Dept. of Chemistry and Biochemistry

    2017-09-01

    Single crystals of Ln{sub 6}MnSb{sub 15} (Ln=La, Ce), Ln{sub 6}Mn{sub 1-x}Zn{sub x}Sb{sub 15} (x∝0.5), and Ln{sub 6}ZnSb{sub 15} (Ln=La-Pr) have been successfully grown and the compounds adopt the orthorhombic Ln{sub 6}MnSb{sub 15} structure type (space group Immm), with a∝4.3 Aa, b∝15 Aa, and c∝19 Aa. This structure is comprised of antimony nets and antimony ribbons which exhibit positional disorder at connecting points between antimony substructures, in addition to two partially occupied transition metal sites. The unit cell volumes of the La analogs displayed a systematic decrease upon Zn substitution. However, for the Ce{sub 6}Mn{sub 1-x}Zn{sub x}Sb{sub 15} and Pr{sub 6}Mn{sub 1-x}Zn{sub x}Sb{sub 15} (x∝0.5), the volumes deviate from linearity as observed in the parent compounds.

  10. A new magnet material with ThMn{sub 12} structure: (Nd{sub 1−x}Zr{sub x})(Fe{sub 1−y}Co{sub y}){sub 11+z}Ti{sub 1−z}N{sub α} (α=0.6–1.3)

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S.; Kuno, T.; Urushibata, K. [Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555 (Japan); Kobayashi, K., E-mail: koba@ms.sist.ac.jp [Shizuoka Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555 (Japan); Sakuma, N.; Washio, K.; Yano, M.; Kato, A.; Manabe, A. [Toyota Mortor Corporation, 1 Toyota-cho, Toyota 471-8572, Aichi (Japan)

    2016-03-01

    We previously reported a new compound for permanent magnets, (Nd{sub 0.7}Zr{sub 0.3})(Fe{sub 0.75}Co{sub 0.25}){sub 11.5}Ti{sub 0.5}N{sub 0.56}, which has a high saturation polarization (J{sub s}) of 1.68 T and a high magnetocrystalline anisotropy field (H{sub a}) of 2.88–4.0 MA/m. Here, we examined the effects of substituting Co and Ti at the Fe sites and Zr at the Nd sites. J{sub s} increased with Co substitution at the Fe sites, and higher Fe and Co content could be achieved by decreasing the Ti content to −Ti{sub 0.5}. The ThMn{sub 12} structure with high Fe and Co content (i.e. low Ti content) was stabilized mainly by −Zr{sub 0.3} substitution at the Nd sites. The Zr substitution resolves the local mismatch in atomic size in the structure. Specifically, the atomic radius of Zr is about 88% that of Nd, so the local structure surrounding Nd (2a site) shrinks as a result of the substitution and resolves the size mismatch in the three types of local Fe six-fold symmetric hexagons in the structure. The effect of the α-(Fe, Co) phase on J{sub s} was evaluated from the phase's volume fraction measurement of 7.7% (8.1 wt%) by electron backscatter diffraction. Nitrogenation of the starting alloy also resulted in augmentation of the c-axis magnetocrystalline anisotropy. Finally, we confirmed a high J{sub s}(−N{sub 1.3}) of 1.71T (=1.67 T, −0.04 T for the α-(Fe, Co) phase) and H{sub a} of 2.9–5.25 MA/m (H{sub a}(−N{sub 1.3})=5.25 MA/m) in the (Nd{sub 0.7}Zr{sub 0.3})(Fe{sub 0.75}Co{sub 0.25}){sub 11.5}Ti{sub 0.5}N{sub α} (α=0.60–1.30) compounds. - Highlights: • We found a new compound of composition of (Nd,Zr)(Fe,Co){sub 11.5}Ti{sub 0.5}N{sub x} (x=0.6–1.3). • The compound shows high saturation polarization of 1.67T. • The Curie temperature of compound is above 840K, and anisotropy field is nearly 6.6 T. • The basic physical properties such as inner fields of each Fe site were measured. • The reasons of stabilization of 1–12

  11. Structural study of intermediate phase in layered perovskite SrBi sub 2 Ta sub 2 O sub 9 single crystal

    CERN Document Server

    Onodera, A; Yamashita, H

    2003-01-01

    The crystal structure of an intermediate phase of Bi-layered ferroelectric SrBi sub 2 Ta sub 2 O sub 9 single crystals was studied by means of X-ray diffraction. An analysis of the extinction rules and X-ray intensities demonstrated that the crystal structure is orthorhombic with space group A2 sub 1 am in the ferroelectric phase and Amam in the intermediate phase; this conclusion is in good agreement with the findings of previous powder neutron diffraction studies.

  12. Effect of temperature on structural, morphological and magnetic properties of Cd{sub 0.7}Co{sub 0.3}Fe{sub 2}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar Vattikuti, S.V., E-mail: vsvprabu@gmail.com [School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 712-749, Republic of Korea, (Korea, Republic of); Byon, Chan [School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 712-749, Republic of Korea, (Korea, Republic of); Shim, Jaesool, E-mail: jshim@ynu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 712-749, Republic of Korea, (Korea, Republic of); Reddy, Ch. Venkata, E-mail: cvrphy@gmail.com [School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do 712-749, Republic of Korea, (Korea, Republic of)

    2015-11-01

    Cadmium-substituted cobalt ferrite (Cd{sub 0.7}Co{sub 0.3}Fe{sub 2}O{sub 4}) nanoparticles were synthesized using a chemical synthesis method and synthesized particles were calcinated at 300 °C and 600 °C respectively. The samples were characterized in order to understand the temperature effect on structural, morphological, thermal, and magnetic properties. X-ray diffraction data confirm the formation of single-phase cubic structure and the average grain sizes were evaluated. The microstructural features were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and compositional analysis carried out by energy dispersive spectroscopy (EDS). A vibrating sample magnetometer (VSM) was used to investigate the magnetic properties. The hysteresis curves of Cd{sub 0.7}Co{sub 0.3}Fe{sub 2}O{sub 4} nanoparticles show enhancement of the coercivity with the increasing calcinated temperature. This enhancement is attributed to the transition from a multi-domain to a single-domain nature. The high and low frequency absorption bands of Cd{sub 0.7}Co{sub 0.3}Fe{sub 2}O{sub 4} were investigated using FT-IR analysis. - Highlights: • Cd{sub 0.7}Co{sub 0.3}Fe{sub 2}O{sub 4} nano particles are prepared by the chemical synthesis method. • X-ray diffraction data confirms the single phase cubic spinel structure. • The estimated particle sizes from the XRD are approximately 25 and 35 nm. • The coercivity and magnetization values increase with increasing the particle size. • FT-IR spectra indicate the fundamental vibrations of host lattices.

  13. Structural imitation and lattice vibration of R{sub 2}Co{sub 17-x}Mn{sub x} (R=Dy, Ho)

    Energy Technology Data Exchange (ETDEWEB)

    Qian Ping [Institute of Applied Physics, University of Science and Technology Beijing, Beijing 100083 (China)]. E-mail: qianpinghu@sohu.com; Chen Nanxian [Institute of Applied Physics, University of Science and Technology Beijing, Beijing 100083 (China); Department of Physics, Tsinghua University, Beijing 100084 (China); Shen Jiang [Institute of Applied Physics, University of Science and Technology Beijing, Beijing 100083 (China)

    2005-02-21

    The intermetallics R{sub 2}Co{sub 17-x}Mn{sub x} (R=Dy, Ho) have been studied to ascertain the effect of partial replacement of Co by Mn on their phase stability and site preference. Calculation is based on a series of interatomic pair potentials related to the rare earth and transition metals, which are obtained by a strict lattice inversion method. Our results indicate that the Mn atom can stabilize R{sub 2}Co{sub 17-x}Mn{sub x} with Th{sub 2}Zn{sub 17}-type structure. And Mn atom preferentially substitutes for Co in the 6c site and randomly substitutes in the 18f and 18h site. The differences of lattice constants between the calculated and the experimental values are about or even smaller than 2%. The properties related to lattice vibration, such as phonon density of states and Debye temperature, are also evaluated for these materials. The method utilized in the present investigation offers a rather easy and direct way to study the structural and vibrational properties of R{sub 2}Co{sub 17-x}Mn{sub x}.

  14. Electrical properties of MBE grown Si{sub 3}N{sub 4}-cubic GaN MIS structures

    Energy Technology Data Exchange (ETDEWEB)

    Zado, A.; Lischka, K.; As, D.J. [University of Paderborn, Faculty of Science, Department of Physics, Warburger Str. 100, 33098 Paderborn (Germany)

    2012-03-15

    In this work we report on the electrical characterization of non-polar cubic GaN metal-insulator-semiconductor (MIS) structures. Si{sub 3}N{sub 4} layers were deposited in-situ on top of cubic GaN grown on 3C-SiC (001) substrates. The electric characteristics of the MIS structures are measured by capacitance and admittance spectroscopy techniques. From the hysteresis in the capacitance-voltage curves and the peak height of the conductance G{sub p} -{omega} frequency curves the interface state densities are calculated. We find interface traps about 0.3 eV below the conduction band. The density of these traps is D{sub it} = 2.5x10{sup 11} cm{sup -2}eV{sup -1}. This is one order of magnitude lower than in MIS structures with a Si{sub 3}N{sub 4} insulator produced by plasma enhanced vapour deposition and two orders of magnitude lower than in MIS structures on c-GaN with SiO{sub 2} as insulator (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Length scale-dependent structural relaxation in Zr{sub 57.5}Ti{sub 7.5}Nb{sub 5}Cu{sub 12.5}Ni{sub 10}Al{sub 7.5} metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Scudino, S., E-mail: s.scudino@ifw-dresden.de [IFW Dresden, Institut für Komplexe Materialien, Helmholtzstraße 20, D-01069 Dresden (Germany); Stoica, M. [IFW Dresden, Institut für Komplexe Materialien, Helmholtzstraße 20, D-01069 Dresden (Germany); Kaban, I. [IFW Dresden, Institut für Komplexe Materialien, Helmholtzstraße 20, D-01069 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany); Prashanth, K.G. [IFW Dresden, Institut für Komplexe Materialien, Helmholtzstraße 20, D-01069 Dresden (Germany); Vaughan, G.B.M. [European Synchrotron Radiation Facilities ESRF, BP 220, 38043 Grenoble (France); Eckert, J. [IFW Dresden, Institut für Komplexe Materialien, Helmholtzstraße 20, D-01069 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany)

    2015-08-05

    Highlights: • Structural relaxation of metallic glasses studied by high-energy X-ray diffraction. • Free volume is not uniformly distributed across the atoms. • Annihilation of free volume (i.e. shrinking) during heating is observed in the MRO. • Increase of free volume (i.e. expansion) during heating occurs in the SRO. • First diffraction maximum in reciprocal space describes structural changes in MRO. - Abstract: Structural relaxation in ball-milled Zr{sub 57.5}Ti{sub 7.5}Nb{sub 5}Cu{sub 12.5}Ni{sub 10}Al{sub 7.5} glassy powders has been investigated by in-situ high-energy X-ray diffraction. The studies in reciprocal and real space reveal a contrasting behavior between medium- (MRO) and short-range order (SRO). The free volume is not uniformly distributed across the atoms: annihilation of free volume (i.e. shrinking) during heating is observed in the MRO, whereas an increase of free volume (i.e. expansion) occurs in the SRO, implying a denser SRO in the as-milled powder compared to the structurally relaxed material. This behavior is in agreement with the concepts of free volume and anti-free volume and can be attributed to the change of the coordination number in the first nearest-neighbor shell. Finally, the results demonstrate that the first diffuse diffraction maximum in reciprocal space is a reliable indicator to evaluate the structural changes occurring in the MRO.

  16. Structural transformation and multiferroic properties of single-phase Bi{sub 0.89}Tb{sub 0.11}Fe{sub 1−x}Mn{sub x}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Guohua; Tan, Guoqiang, E-mail: tan3114@163.com; Luo, Yangyang; Liu, Wenlong; Ren, Huijun; Xia, Ao

    2014-01-30

    Pure BiFeO{sub 3} (BFO) and Tb, Mn co-doped BiFeO{sub 3} (BTFMO) thin films were deposited on SnO{sub 2}: F (FTO)/glass substrates using a chemical solution deposition method. Detailed investigations were made on the influence of (Tb, Mn) co-doping on the structure change and the electric properties of the BFO films. With the co-doping of Tb and Mn, the structural transformation from rhombohedral R3c to triclinic P1 is confirmed through XRD, Rietveld refinement and Raman analysis. XPS analysis clarifies that (Tb, Mn) co-doping avails to decrease oxygen vacancy concentration, showing less Fe{sup 2+} ions in the co-doped BTFMO thin films than that of the pure BFO thin film. Among the co-doped thin films, the BTFM{sub 1}O film shows the highly enhanced ferroelectric properties with a giant remnant polarization value (2P{sub r} = 180.3 μC/cm{sup 2}). The structural transformation, the well-distributed fine grains and the reduction of leakage current favor enhanced ferroelectric property of (Tb, Mn) co-doped BFO films. It is also found that the BTFM{sub 1}O film shows the enhanced ferromagnetism with the saturated magnetization (M{sub s} = 2.5 emu/cm{sup 3}) as a result of the collapse of space modulated spin structure by the structure transformation.

  17. The gold-rich indide Eu{sub 5}Au{sub 17.7}In{sub 4.3} and its relation with the structures of SrAu{sub 4.76}In{sub 1.24} and BaLi{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Muts, Ihor [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Ivan Franko National Univ. of Lviv (Ukraine). Inorganic Chemistry Dept.; Rodewald, Ute C.; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Zaremba, Vasyl' I.; Pavlosyuk, Orest [Ivan Franko National Univ. of Lviv (Ukraine). Inorganic Chemistry Dept.

    2012-02-15

    The gold-rich indide Eu{sub 5}Au{sub 17.7}In{sub 4.3} was synthesized from the elements in a sealed tantalum ampoule that was heated in a high-frequency furnace. Eu{sub 5}Au{sub 17.7}In{sub 4.3} crystallizes with a new monoclinic structure type: C2/m, a = 902.7(2), b = 722.8(3), c = 1734.1(4) pm, {beta} = 94.31(3) , wR2 = 0.0907, 2640 F{sup 2} values and 74 variables. Eu{sub 5}Au{sub 17.7}In{sub 4.3} has a pronounced gold substructure with Au.Au distances ranging from 278 to 300 pm. The striking structural motifs in the gold substructure are networks of Au6 hexagons and discrete units of corner- and edge-sharing Au{sub 4} tetrahedra. Eu{sub 5}Au{sub 17.70}In{sub 4.30} exhibits a small homogeneity range with In/Au mixing on two Wyckoff sites. Geometrically, the Eu{sub 5}Au{sub 17.7}In{sub 4.3} structure can be explained as an intergrowth variant of slightly distorted SrAu{sub 4.76}In{sub 1.24}- and BaLi{sub 4}-related slabs. The europium coordination in the BaLi{sub 4} slabs is similar to binary EuAu{sub 2}. (orig.)

  18. Rare earth-transition metal indides with Lu{sub 5}Ni{sub 2}In{sub 4}-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Zaremba, Roman; Hermes, Wilfried; Eul, Matthias; Poettgen, Rainer [Inst. fuer Anorganische und Analytische Chemie, Univ. Muenster (Germany)

    2008-12-15

    New intermetallic compounds RE{sub 5}T{sub 2}In{sub 4} (RE = Sc, Y, La-Nd, Sm, Gd-Tm, Lu; T = Rh, Ir) were synthesized by arc-melting of the elements or by induction melting of the elements in tantalum crucibles under flowing argon. The samples were characterized by X-ray powder diffraction. They crystallize with the orthorhombic Lu{sub 5}Ni{sub 2}In{sub 4}-type structure, space group Pbam, Z = 2, a 2: 1 intergrowth variant of CsCl and AlB{sub 2} related slabs of compositions InRE{sub 8} (distorted cubes) and RhRE{sub 6} (distorted trigonal prisms). Susceptibility measurements of Ce{sub 5}Ir{sub 2}In{sub 4} have revealed modified Curie-Weiss behavior above 70 K with an experimental magnetic moment of 2.45(1) {mu}{sub B} / Ce atom. The cerium magnetic moments order ferri- or ferromagnetically at T{sub C} = 7.1(2) K. (orig.)

  19. Energetic band structure of Zn{sub 3}P{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stamov, I.G. [Tiraspol State Corporative University, Lablocicin Street 5, 2069 Tiraspol (Moldova, Republic of); Syrbu, N.N., E-mail: sirbunn@yahoo.com [Technical University of Moldova, 168 Stefan cel Mare Avenue, 2004 Chisinau (Moldova, Republic of); Dorogan, A.V. [Technical University of Moldova, 168 Stefan cel Mare Avenue, 2004 Chisinau (Moldova, Republic of)

    2013-01-01

    Optical functions n, k, {epsilon}{sub 1}, {epsilon}{sub 2} and d{sup 2}{epsilon}{sub 2}/dE{sup 2} have been determined from experimental reflection spectra in the region of 1-10 eV. The revealed electronic transitions are localized in the Brillouin zone. The magnitude of valence band splitting caused by the spin-orbital interaction {Delta}{sub SO} is lower than the splitting caused by the crystal field {Delta}{sub CR} in the center of Brillouin zone and L and X points. The switching effects are investigated in Zn{sub 3}P{sub 2} crystals. The characteristics of experimental samples with electric switching, adjustable resistors, and time relays based on Zn{sub 3}P{sub 2} are presented.

  20. Electronic structure calculations and optical properties of a new organic-inorganic luminescent perovskite: (C{sub 9}H{sub 19}NH{sub 3}){sub 2}PbI{sub 2}Br{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Abid, H., E-mail: haithamlpa@yahoo.fr [Laboratoire de Physique Appliquee, Faculte des sciences, Universite de Sfax (Tunisia); Institut Neel, CNRS-Universite J. Fourier, BP 166, 38042 Grenoble (France); Samet, A.; Dammak, T. [Laboratoire de Physique Appliquee, Faculte des sciences, Universite de Sfax (Tunisia); Mlayah, A. [Centre d' Elaboration de Materiaux et d' Etudes Structurales (CEMES), CNRS-Universite de Toulouse, 29 rue Jeanne Marvig, 31055 Toulouse (France); Hlil, E.K. [Institut Neel, CNRS-Universite J. Fourier, BP 166, 38042 Grenoble (France); Abid, Y. [Laboratoire de Physique Appliquee, Faculte des sciences, Universite de Sfax (Tunisia)

    2011-08-15

    (C{sub 9}H{sub 19}NH{sub 3}){sub 2}PbI{sub 2}Br{sub 2} compound is a new crystal belonging to the large hybrid organic-inorganic perovskites compounds family. Optical properties are investigated by optical absorption UV-visible and photoluminescence (PL) techniques. Bands to band absorption peak at 2.44 eV as well as an extremely strong yellow-green photoluminescence emission at 2.17 eV is observed at room temperature. First principle calculations based on the DFT and FLAPW methods combined with LDA approximation are performed as well. Density of state close to the gap is presented and discussed in terms of optical absorption and photoluminescence experimental results. The perfect agreement between experimental data and electronic structure calculations is highlighted. - Highlights: > (C{sub 9}H{sub 19}NH{sub 3}){sub 2}PbI{sub 2}Br{sub 2} compound is a new crystal with strong yellow-green PL emission at 2.17 eV. > Calculations based on DFT and FLAPW method combined with LDA approximation are performed. > Gap, optical transitions and exciton presence were predicted from density of states. > Agreement between experimental data and electronic structure calculations.

  1. Effect of annealing on the structural and magnetic properties of (Fe{sub 1−x}Co{sub x}){sub 83}B{sub 17} metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Bhagat, Neeru, E-mail: neerubhagat@hotmail.com [Department of Applied Science, Symbiosis Institute of Technology, SIU, Lavale, Mulshi, Pune 412115 (India); Gupta, Ajay [Center for Spintronic Materials, Amity University, Sector 125, Noida (India); Reddy, V.R. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore (India); Pandey, Brajesh, E-mail: bpandey@gmail.com [Department of Applied Science, Symbiosis Institute of Technology, SIU, Lavale, Mulshi, Pune 412115 (India)

    2015-05-01

    Amorphous alloys of (Fe{sub 1−x}Co{sub x}){sub 83}B{sub 17} (x=22, 25.3, 28.4) in the vicinity of 25 at% of Co were prepared by melt spun technique. The samples were annealed at different temperatures and the changes in structural and magnetic properties have been studied. Phase stabilization and magnetic properties of amorphous alloys were studies using X-ray diffraction and Mössbauer spectroscopy. The result shows anomalies in structure and in magnetic properties in the studied samples. Annealing at 475 °C brings about the formation of complete and stable crystalline structure. At this stage multiple crystalline phases have been observed. Mössbauer spectroscopy also revealed that two phases of Fe{sub 3}B were formed along with stable Fe{sub 3}Co phase. - Highlights: • Using melt spun technique alloys of (Fe{sub 1−x}Co{sub x}){sub 83}B{sub 17} (x=22, 25.3, 28.4) in amorphous phase were prepared. • Crystalline phase increases with increasing the Co concentration. • Appearance of one crystalline phase is observed when samples annealing at 345 °C. • Annealing at higher temperature leads to emergence of multiple crystalline phases. • Different phases of Fe–Co, and Fe–Co–B were identified.

  2. Bath atomic composition and deposition time influence on the properties of nanostructured CdS{sub 0.5}Se{sub 0.5} thin films synthesized by CBD

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Ramirez, E.A. [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, CP 07738 México D.F. (Mexico); Hernandez-Perez, M.A., E-mail: angeleshp@yahoo.com [Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, CP 07738 México D.F. (Mexico); Aguilar-Hernandez, J.R.; Contreras-Puente, G. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, CP 07738 México D.F. (Mexico)

    2015-09-01

    Chemical Bath Deposition (CBD) was used to grow CdS{sub 1−xf}Se{sub xf} (x{sub f} = 0.5) thin films on Corning glass substrates at 75 °C. The atomic composition of the bath was varied until an x{sub f} of 0.5 was obtained, maintaining the deposition time at 120 min. Then the deposition time was modified from 5 to 360 min. The structural and optical properties of the films were analyzed by Scanning Electron Microscopy, Energy Dispersive Spectroscopy, X-Ray Diffraction, UV–Vis Spectroscopy, Profilometry and Inductive Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). A bath atomic composition of Cd:S:Se equal to 0.76:0.55:0.45 was employed to obtain a film of x{sub f} = 0.5. The films are constituted by clusters of semispherical nanoparticles (ϕ{sub av} = 15 nm), which are well-arranged in a “nanoworm” structure. The nucleation time of the particles is lower than 5 min. All the films are polycrystalline with hexagonal phase and preferentially orientated on the (002) plane. The crystal size (11–6 nm) and the band gap (2.17–1.99 eV) decrease with the content of Se and remain constant with the deposition time. The composition x{sub f} = 0.5 is achieved at different times to the heterogeneous (60 min) and homogeneous reactions (15 min). The kinetics of deposition and the consumption rate of Se change in a similar way, reaching the stability after 60 min. - Highlights: • CdS{sub 1−x}Se{sub x} ternary alloy thin films with x = 0.5 ± 0.05 can be grown by CBD at 75 °C. • CdS{sub 1−x}Se{sub x} nanocrystals are well arranged in a “worm” structure from 30 min and x ≥ 0.25. • The E{sub g} of (002) oriented hexagonal film is strongly affected by x and crystal size. • Films with x = 0.5 are obtained from 30 min using a Cd:S:Se = 0.76:0.5:0.6 bath ratio. • Consumption rate has the same behavior that growth rate, changing around 60 min.

  3. Plasma satellites of X-ray lines of ions in a picosecond laser plasma

    International Nuclear Information System (INIS)

    Belyaev, V.S.; Vinogradov, V.I.; Kurilov, A.S.; Matafonov, A.P.; Lisitsa, V.S.; Gavrilenko, V. P.; Faenov, A.Ya.; Pikuz, T.A.; Skobelev, I.Yu.; Magunov, A.I.; Pikuz, S.A. Jr.

    2004-01-01

    We present the results of our measurements of the spectra for multicharged ions in a plasma produced by moderately intense (about 10 17 W cm -2 ) picosecond laser pulses. They suggest the existence of intense plasma oscillations with a frequency appreciably lower than the frequency of the laser radiation. The observed spectrum for the plasma satellites of the Lyman Ly α doublet of the hydrogenic F IX ion in a dense plasma was modeled theoretically. The resulting doublet profile was shown to have a complex structure that depends nontrivially both on the plasma density and on the frequency and amplitude of the plasma oscillations. The positions of the satellites and their separations allowed them to be associated with intense electrostatic oscillations with an amplitude of (4-6) x 10 8 V cm -1 and a frequency near (0.7-1) x 10 15 s -1 . Assuming the oscillation frequency to be determined by the strength of the magnetic field B generated in the plasma, we obtained an estimate of B that is in reasonable agreement with other measurements and estimates of this quantity. Our theoretical analysis allowed explanation of the emission spectra observed when flat fluoroplastic targets were heated by intense picosecond laser pulses

  4. Sub-structure formation in starless cores

    Science.gov (United States)

    Toci, C.; Galli, D.; Verdini, A.; Del Zanna, L.; Landi, S.

    2018-02-01

    Motivated by recent observational searches of sub-structure in starless molecular cloud cores, we investigate the evolution of density perturbations on scales smaller than the Jeans length embedded in contracting isothermal clouds, adopting the same formalism developed for the expanding Universe and the solar wind. We find that initially small amplitude, Jeans-stable perturbations (propagating as sound waves in the absence of a magnetic field) are amplified adiabatically during the contraction, approximately conserving the wave action density, until they either become non-linear and steepen into shocks at a time tnl, or become gravitationally unstable when the Jeans length decreases below the scale of the perturbations at a time tgr. We evaluate analytically the time tnl at which the perturbations enter the non-linear stage using a Burgers' equation approach, and we verify numerically that this time marks the beginning of the phase of rapid dissipation of the kinetic energy of the perturbations. We then show that for typical values of the rms Mach number in molecular cloud cores, tnl is smaller than tgr, and therefore density perturbations likely dissipate before becoming gravitational unstable. Solenoidal modes grow at a faster rate than compressible modes, and may eventually promote fragmentation through the formation of vortical structures.

  5. Centrosymmetry vs noncentrosymmetry in La{sub 2}Ga{sub 0.33}SbS{sub 5} and Ce{sub 4}GaSbS{sub 9} based on the interesting size effects of lanthanides: Syntheses, crystal structures, and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hua-Jun, E-mail: cszzl772002@yeah.net [Laboratory of Applied Research on the Characteristic Resources in the North of Guizhou Province, School of Chemistry and Chemical Engineering, Zunyi Normal College, Zunyi, Guizhou 563002 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2016-05-15

    Two new quaternary sulfides La{sub 2}Ga{sub 0.33}SbS{sub 5} and Ce{sub 4}GaSbS{sub 9} have been prepared from stoichiometric elements at 1223 K in an evacuated silica tube. Interestingly, La{sub 2}Ga{sub 0.33}SbS{sub 5} crystallizes in the centrosymmetric structure, while Ce{sub 4}GaSbS{sub 9} crystallizes in the noncentrosymmetric structure, which show obvious size effects of lanthanides on the crystal structures of these two compounds. Ce{sub 4}GaSbS{sub 9} belongs to RE{sub 4}GaSbS{sub 9} (RE=Pr, Nd, Sm, Gd–Ho) structure type with a=13.8834(9) Å, b=14.3004(11) Å, c=14.4102(13) Å, V=2861.0(4) Å{sup 3}. The structure features infinite chains of [Ga{sub 2}Sb{sub 2}S{sub 11}{sup 10–}]{sub ∞} propagating along a direction separated by Ce{sup 3+} cations and S{sup 2−} anions. La{sub 2}Ga{sub 0.33}SbS{sub 5} adopts the family of La{sub 4}FeSb{sub 2}S{sub 10}-related structure with a=7.5193(6) Å, c=13.4126(17) Å, V=758.35(13) Å{sup 3}. Its structure is built up from the alternate stacking of La/Sb/S and La/Ga/S 2D building blocks. The La/Sb/S slabs consist of teeter-totter chains of Sb1S{sub 4} seesaws, which are connected via sharing the apexes of μ{sub 4}-S1. Moreover, La1 is positionally disordered with Sb1 and stabilized in a bicapped trigonal prismatic coordination sphere. Between these La/Sb/S slabs, La2S{sub 8} square antiprisms are connected via edge-sharing into 2D building blocks, creating tetrahedral sites partially occupied by the Ga1 atoms. UV/Vis diffuse reflectance spectroscopy study shows that the optical gap of La{sub 2}Ga{sub 0.33}SbS{sub 5} is about 1.76 eV. - Graphical abstract: Two new quaternary sulfides La{sub 2}Ga{sub 0.33}SbS{sub 5} and Ce{sub 4}GaSbS{sub 9} have been prepared by solid-state reactions. Ce{sub 4}GaSbS{sub 9} crystallizes in RE{sub 4}GaSbS{sub 9} (RE=Pr, Nd, Sm, Gd–Ho) structure type, while La{sub 2}Ga{sub 0.33}SbS{sub 5} belongs to the family of La{sub 4}FeSb{sub 2}S{sub 10}-related structure and exhibits an

  6. Synthesis, structural approach and electronic properties of V{sub 18}O{sub 45}, (N{sub 2}C{sub 6}H{sub 14}){sub 6}: a new organically templated vanadium oxide exhibiting V{sub 2}O{sub 5} layer topology

    Energy Technology Data Exchange (ETDEWEB)

    Sicard, M.; Maignan, A. [Laboratoire Crismat-ISMRa UMR 6508, 14 - Caen (France); Riou, D. [Universite de Versailles St Quentin, Institut Lavoisier UMR CNRS 8637, 78 - Versailles (France)

    2002-02-01

    V{sub 18}O{sub 45}, (N{sub 2}C{sub 6}H{sub 14}){sub 6} was hydrothermally synthesized in the form of thin platelets. Its structural approach was investigated by single crystal X-ray diffraction (non-centrosymmetric P2{sub 1} (No 4) monoclinic space group with a 10.7713(3) Angstrom, b = 11.2697(3) Angstrom, c = 29.7630(9) Angstrom, {beta} = 93.924(1) deg., V = 3604.4(2) Angstrom{sup 3}, Z = 2). V{sub 18}O{sub 45}, (N{sub 2}C{sub 6}H{sub 14}){sub 6} exhibits a lamellar structure built up from the stacking of vanadium oxide slabs between which the di-protonated 1,4-di-aza-bi-cyclo[2.2.2]octane organic cations are intercalated. The oxide layers are topologically similar to those encountered in the parent vanadium penta-oxide V{sub 2}O{sub 5} but exhibiting here a mixed valence V{sup IV}/V{sup V} with a ratio equal to 2. The electronic conductivity measurements performed on the crystals show that the resistivity curves are described by an Arrhenius law with an activation energy of 0.16 eV. (authors)

  7. Site selective, time and temperature dependent spectroscopy of Eu{sup 3+} doped apatites (Mg,Ca,Sr){sub 2}Y{sub 8}Si{sub 6}O{sub 26}

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, T., E-mail: t.jansen@fh-muenster.de [Münster University of Applied Sciences, Stegerwaldstrasse 39, 48565 Steinfurt (Germany); Jüstel, T. [Münster University of Applied Sciences, Stegerwaldstrasse 39, 48565 Steinfurt (Germany); Kirm, M.; Mägi, H.; Nagirnyi, V.; Tõldsepp, E.; Vielhauer, S. [Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu (Estonia); Khaidukov, N.M. [N. S. Kurnakov Institute of General and Inorganic Chemistry, 31 Leninskiy Prospekt, 119991 Moscow (Russian Federation); Makhov, V.N. [P.N. Lebedev Physical Institute, 53 Leninskiy Prospekt, 119991 Moscow (Russian Federation)

    2017-06-15

    This work concerns the optical properties of alkaline earth yttrium apatites according to the composition AE{sub 2}Y{sub 8}Si{sub 6}O{sub 26} (AE=Mg, Ca, Sr) doped with Eu{sup 3+}, which are materials of interest for LED applications. Using a multistep preparation route, which includes hydrothermal synthesis of precursors for solid state reaction, ceramic samples were prepared and their structural and optical properties characterised. More particularly, this work relates to site-selective spectroscopy, since the compounds comprise two distinguishable crystallographic sites within the host structure, where Eu{sup 3+} can be substituted. It also describes the temperature dependent photoluminescence, which thermal quenching temperature (T{sub 1/2}) for Sr{sub 2}Y{sub 8}Si{sub 6}O{sub 26}:Eu{sup 3+} and Ca{sub 2}Y{sub 8}Si{sub 6}O{sub 26}:Eu{sup 3+} is in the range of 561 K and 591 K respectively, whereas Mg{sub 2}Y{sub 8}Si{sub 6}O{sub 26}:Eu{sup 3+} shows bi-sigmoidal quenching behaviour in the range between 210 and 452 K.

  8. Raman study of the effect of water vapor during low-temperature annealing on the structure and electrophysical properties of YBa{sub 2}Cu{sub 3}O{sub y}

    Energy Technology Data Exchange (ETDEWEB)

    Bobylev, I.B., E-mail: bobylev@imp.uran.ru; Ponosov, Yu.S.; Zyuzeva, N.A.

    2015-11-01

    The effects of an interaction of YBa{sub 2}Cu{sub 3}O{sub y} (123) with water vapors at a temperature 200 °C on the structure and electrophysical properties of the compound have been examined by Raman spectroscopy. It has been found that the penetration of water into the 123-type causes the transition of the compound from an oxide to a hydride-oxide-hydroxide, which is accompanied with transformation to the 124 pseudotype phase. Direct evidence has been obtained for the incorporation of OH{sup −}-groups in the 123-structure. After the interaction with water, the materials with high oxygen content (y ≥ 6.5) retain their superconductivity and exhibit two-magnon scattering in Raman spectra, which is not typical for them. Short-term recovery annealing followed by oxidation removes the water from the compound structure, which leads to the disappearance of the spin fluctuation spectra. At the same time, the structural defects are partially preserved. These manifest themselves through some peculiarities in the Raman spectra and are apparently pinning centers of magnetic vortices. A model of a splitting of the Cu–O chains and a formation of the 124-like phase in water-intercalated 123-structure has been proposed. This mechanism supposes the dissociation of the OH{sup −}-groups and the filling in the copper vacancies by protons. - Highlights: • Absorbing water at 200 °C, the Y-123 ceramics transforms to H{sub x}YBa{sub 2}Cu{sub 3}O{sub y}(OH){sub z}. • The incorporation of water in the Y-123 (y ≥ 6.5) leads to the well magnetic peak. • For the Y-123 with y < 6.5 the OH{sup −}-groups occupy the vacancies of several types. • The OH{sup −}-groups are oriented along the c-axis.

  9. Synthesis and crystal structure analysis of titanium bismuthide oxide, Ti{sub 8}BiO{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Shinsaku; Yamane, Hisanori, E-mail: yamane@tagen.tohoku.ac.jp

    2016-08-05

    Silver metallic luster columnar single crystals of a novel compound, Ti{sub 8}BiO{sub 7}, were synthesized using a bismuth flux. Ti{sub 8}BiO{sub 7} having a new structure type crystallizes in an orthorhombic cell, a = 7.8473(4) Å, b = 16.8295(10) Å, c = 3.0256(2) Å, space group: Cmmm. The Ti atoms enter the sites of isosceles-triangle 3-fold and rectangular 4-fold coordination of O atoms and the site of octahedral 6-fold coordination of O and Bi atoms. O atoms are in the rectangles, tetrahedra, and orthogonal pyramids of Ti atoms. The electrical resistivity measured for a Ti{sub 8}BiO{sub 7} single crystal in the c-axis direction was 6.2 × 10{sup −7} Ωm at 300 K and 1.3 × 10{sup −7} Ωm at 10 K. - Highlights: • A novel bismuthide oxide containing titanium, Ti{sub 8}BiO{sub 7}, was synthesized. • Single crystals of Ti{sub 8}BiO{sub 7} were grown by heating a mixture of Ti and Bi{sub 2}O{sub 3}. • Single crystal X-ray diffraction revealed that Ti{sub 8}BiO{sub 7} has a new structure type. • O atoms and Bi atoms are surrounded by Ti atoms in the structure. • Metallic conduction of Ti{sub 8}BiO{sub 7} was exhibited.

  10. A novel ternary uranium-based intermetallic U{sub 34}Fe{sub 4−x}Ge{sub 33}: Structure and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, M.S., E-mail: mish@itn.pt [Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, CFMC-UL, Estrada Nacional 10, 2695-066 Bobadela (Portugal); Berthebaud, D. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Matériaux, Université Rennes 1, UMR CNRS 6226, 263 Avenue du Général Leclerc, 35042 Rennes (France); CRISMAT, UMR CNRS 6508, 6 bd. Maréchal Juin, 14050 Caen (France); Waerenborgh, J.C.; Lopes, E.B. [Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, CFMC-UL, Estrada Nacional 10, 2695-066 Bobadela (Portugal); Pasturel, M.; Tougait, O. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Matériaux, Université Rennes 1, UMR CNRS 6226, 263 Avenue du Général Leclerc, 35042 Rennes (France); Gonçalves, A.P. [Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, CFMC-UL, Estrada Nacional 10, 2695-066 Bobadela (Portugal)

    2014-09-01

    Highlights: • A new uranium intermetallic compound U{sub 34}Fe{sub 4−x}ge{sub 33} was prepared and characterized. • It crystallizes in the tetragonal system with an original structure-type. • U lattice stacking is made of cupolae, orthobicupola and irregular cubes. • U{sub 34}Fe{sub 4−x}Ge{sub 33} orders magnetically at T{sub C} = 28 K, with pure U magnetism. • T{sub C} and electrical resistivity increase with applied magnetic field. - Abstract: The new ternary phase U{sub 34}Fe{sub 4−x}Ge{sub 33} has been synthesized and characterized by means of single crystal X-ray diffraction, magnetization, Mössbauer spectroscopy, specific heat, electrical resistivity, magnetoresistivity and thermopower measurements. It crystallizes in its own tetragonal structure type which can be described as derived from the one of the binary USi (U{sub 34}Si{sub 34.5} structure-type, space group I4/mmm), with lattice parameters at room temperature, a = 10.873(5) Å and c = 25.274(3) Å. Structure refinement confirmed six inequivalent U atoms, occupying sites with dissimilar coordination, the Ge atoms staying on seven positions and Fe on two positions, one of the Fe sites with a partial occupancy. The U sub-lattice is composed by the stacking of a square cupola, two distorted cubes and a square orthobicupola. U{sub 34}Fe{sub 4−x}Ge{sub 33} with x = 0.68 undergoes a ferromagnetic-type transition below 28 K. Mössbauer spectroscopy shows that the magnetism is ruled by the U sub-lattice, as Fe atoms have no ordered moments. The Sommerfeld coefficient of the electronic specific heat is γ = 131 mJ/(mol{sub U} K{sup 2}), whereas the estimated magnetic entropy at T{sub C} is 0.22Rln2. A residual resistivity of 314 μΩ cm and a resistivity ratio of 1.1 were found in the electrical resistivity curve, which also exhibits an upturn below T{sub C} that shifts towards higher temperatures with the applied magnetic field. This behavior may be related to some disorder in the non

  11. Structure and magnetic properties of Sm{sub 2}Rh{sub 3}Sn{sub 5}. An intergrowth of TiNiSi- and NdRh{sub 2}Sn{sub 4}-related slabs

    Energy Technology Data Exchange (ETDEWEB)

    Heying, Birgit; Koesters, Jutta; Hoffmann, Rolf-Dieter; Heletta, Lukas; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-07-01

    The stannide Sm{sub 2}Rh{sub 3}Sn{sub 5} was obtained by arc-melting of the elements and subsequent annealing at 1070 K in a silica tube. Sm{sub 2}Rh{sub 3}Sn{sub 5} crystallizes with the orthorhombic Y{sub 2}Rh{sub 3}Sn{sub 5} type structure, space group Cmc2{sub 1}, Z=4: a=444.46(8), b=2636.2(4), c=718.3(1) pm, wR=0.0711, 1761 F{sup 2} values and 61 variables. The three crystallographically independent rhodium atoms show tricapped trigonal prismatic coordination by samarium and tin atoms. Sm{sub 2}Rh{sub 3}Sn{sub 5} can be considered as a simple 1:1 intergrowth structure of TiNiSi- and NdRh{sub 2}Sn{sub 4}-related slabs of compositions SmRhSn and SmRh{sub 2}Sn{sub 4}. Temperature dependent magnetic susceptibility data revealed van Vleck type behavior caused by the proximity of the exited {sup 6}H{sub 7/2} state to the {sup 6}H{sub 5/2} ground state of Sm{sup 3+}, and an antiferromagnetic ordering occurs at T{sub N}=3.5(5) K.

  12. Structural and transport properties of nanocrystalline MnFe/sub 2/O/sub 4/ synthesized by co-precipitation method

    International Nuclear Information System (INIS)

    Akhtar, M.J.; Younas, M.

    2012-01-01

    The nanocrystalline ferrites with spinel structures have been the focus of scientific investigation and received continuous interest in recent decades. The structural and electrical properties of these materials have become an important area of research and are attracting considerable interest due to broad range of applications. Spinel ferrites have been shown to exhibit interesting dielectric properties in the nanocrystalline form in comparison to the corresponding bulk materials. Structural and electrical properties of nanocrystalline MnFe/sub 2/O/sub 4/ were investigated. X-ray diffraction and X-ray absorption fine structure spectroscopy results showed that nanocrystalline MnFe/sub 2/O/sub 4/ had cubic symmetry with 80% inversion. shows the X-ray absorption near edge structure (XANES) spectra of MnFe/sub 2/O/sub 4/ and Zn/sub 1-x/Ni/sub x/Fe/sub 2/O/sub 4/, used as model compounds. The electrical transport properties were investigated by employing impedance spectroscopy. It was observed that the dielectric constant decreased with the increase in frequency. The effects of frequency on dielectric properties were more prominent in the low frequency region, where dielectric constant increased as temperature was increased. (Orig./A.B.)

  13. Tellurium sulfates from reactions in oleum and sulfur trioxide: syntheses and crystal structures of TeO(SO{sub 4}), Te{sub 4}O{sub 3}(SO{sub 4}){sub 5}, and Te(S{sub 2}O{sub 7}){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Logemann, Christian; Bruns, Joern; Schindler, Lisa Verena; Zimmermann, Vanessa; Wickleder, Mathias S. [Carl von Ossietzky University of Oldenburg, Institute of Chemistry (Germany)

    2015-04-15

    The reaction of K{sub 2}TeO{sub 4} with fuming sulfuric acid (65 % SO{sub 3}) in sealed glass ampoules at 250 C led to colorless single crystals of TeO(SO{sub 4}) [triclinic, P anti 1, Z = 8, a = 819.89(3) pm, b = 836.95(4) pm, c = 1179.12(5) pm, α = 82.820(2) , β = 70.645(2) , γ = 81.897(2) , V = 753.11(6) x 10{sup 6} pm{sup 3}]. A horseshoe type [Te{sub 4}O{sub 3}] fragment is the basic motif in the layer structure of the compound. The [Te{sub 4}O{sub 3}] moieties are linked to infinite chains by further oxide ions. Monomeric [Te{sub 4}O{sub 3}] horseshoes are found in the crystal structure of Te{sub 4}O{sub 3}(SO{sub 4}){sub 5} [trigonal, P3{sub 2}21, Z = 3, a = 859.05(2) pm, c = 2230.66(7) pm, V = 1425.61(6) x 10{sup 6} pm{sup 3}], which was obtained from TeO{sub 2} and fuming sulfuric acid (65 % SO{sub 3}) at 200 C as colorless single crystals. By switching to neat SO{sub 3} as reaction medium colorless crystals of Te(S{sub 2}O{sub 7}){sub 2} [P2{sub 1}/n, Z = 4, a = 1065.25(3) pm, b = 818.50(2) pm, c = 1206.27(3) pm, β = 102.097(1) , V = 1028.40(5) x 10{sup 6} pm{sup 3}] form when ortho-telluric acid, H{sub 6}TeO{sub 6}, is used as the tellurium source. The compound was reported previously, however, obviously with a wrong crystallographic description. In the crystal structure the tellurium atoms are coordinated by two chelating disulfate ions. Further Te-O contacts link the [Te(S{sub 2}O{sub 7}){sub 2}] units to an extended network. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Investigation Of Failure Mechanisms In A Wind Turbine Blade Root Sub-Structure

    DEFF Research Database (Denmark)

    Bender, Jens Jakob; Hallett, S.R.; Lindgaard, Esben

    2017-01-01

    and realistic results at the fraction of the cost of a full-scale test. Therefore, this work focuses on testing of sub-structures from the root end of wind turbine blades at the transition from the thick root laminate to the thinner main laminate. Some wind turbine blade manufacturers include pre-cured tapered...... beams in the root to reduce the time required to place the large quantity of material in the mould and to decrease manufacturing defects in these elements. However, this entails the risk of introducing other manufacturing defects during the Vacuum Assisted Resin Transfer Moulding process such as resin...... pockets and fibre wrinkles. Through this work it is sought to determine the effect that these manufacturing defects can have on the strength properties of the sub-structure. The sub-structures used in this work are cut out from actual wind turbine blades, meaning that the manufacturing defects...

  15. Structural and compositional evolution of carbon-doped Ge{sub 2}Sb{sub 2}Te{sub 5} film under different annealing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Hong; Kyoung, Yong-Koo; Yun, Dong-Jin [AS group, CAS center, SAIT, Samsung Electronics Co. Ltd., Yongin 446-712 (Korea, Republic of); Choi, Sang-Jun, E-mail: sangjun5545.choi@samsung.com [Device Architecture Lab, Semiconductor R and D center, Samsung Electronics Co. Ltd., Yongin 446-712 (Korea, Republic of)

    2013-12-02

    Changes in the microstructural and electrical properties of carbon-doped Ge{sub 2}Sb{sub 2}Te{sub 5} during thermal annealing under N{sub 2} and air atmospheres are investigated. The occurrence of compositional and structural changes was found to depend on the annealing conditions, and in particular, on the out-diffusion of germanium atoms. The thick oxidation layer generated during air annealing prevented germanium out-diffusion, leading to structural changes but no compositional changes. In contrast, germanium out-diffusion occurred during annealing under N{sub 2}, leading to compositional changes but preventing structural changes. - Highlights: • We investigate the stability of 10% carbon-doped Ge2Sb2Te5 alloys. • The compositional and structural changes depend on the annealing conditions. • Germanium out-diffusion occurs during N2 annealing, leading to compositional changes. • The oxidation layer generated during air annealing prevents germanium out-diffusion.

  16. Ge L{sub 3}-edge x-ray absorption near-edge structure study of structural changes accompanying conductivity drift in the amorphous phase of Ge{sub 2}Sb{sub 2}Te{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Mitrofanov, K. V. [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562 (Japan); Kolobov, A. V., E-mail: a.kolobov@aist.go.jp; Fons, P. [Nanoelectronics Research Institute and Green Nanoelectronics Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562, Japan and Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1, Kouto, Sayo, Hyogo 679-5198 (Japan); Wang, X.; Tominaga, J. [Nanoelectronics Research Institute and Green Nanoelectronics Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562 (Japan); Tamenori, Y.; Uruga, T. [Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1, Kouto, Sayo, Hyogo 679-5198 (Japan); Ciocchini, N.; Ielmini, D. [DEIB - Politecnico di Milano, Piazza L. Da Vinci 32, 20133 Milano (Italy)

    2014-05-07

    A gradual uncontrollable increase in the resistivity of the amorphous phase of phase-change alloys, such as Ge{sub 2}Sb{sub 2}Te{sub 5}, known as drift, is a serious technological issue for application of phase-change memory. While it has been proposed that drift is related to structural relaxation, no direct structural results have been reported so far. Here, we report the results of Ge L{sub 3}-edge x-ray absorption measurements that suggest that the drift in electrical conductivity is associated with the gradual conversion of tetrahedrally coordinated Ge sites into pyramidal sites, while the system still remains in the amorphous phase. Based on electronic configuration arguments, we propose that during this process, which is governed by the existence of lone-pair electrons, the concentration of free carriers in the system decreases resulting in an increase in resistance despite the structural relaxation towards the crystalline phase.

  17. Neutron structural studies of La{sub 3.5-x-y}(Y){sub y}Ba{sub 3.5-x}Ca{sub 2x}Cu{sub 7}O{sub z} (x = y = 0.0 and 0.5) system

    Energy Technology Data Exchange (ETDEWEB)

    Subbarao, M V; Kulkarni, R G [Department of Physics, Saurashtra University, Rajkot (India); Rajagopal, H; Sequeira, A S [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai (India)

    1997-07-01

    By mixing equal amounts of La{sub 4-x}Ca{sub x}Ba{sub 3}Cu{sub 7}O{sub z} and La{sub 3}Ba{sub 4-x} Ca{sub x}Cu{sub 7}O{sub z} in the proportion of 1 : 1, a series of superconductors part of La replaced by Y with the nominal composition of La{sub 3.5-x-y}(Y){sub y} Ba{sub 3.-5-x}Ca{sub 2x}Cu{sub 7}O{sub z} (LYCP) have been prepared. Two samples with x = y = 0.0 (A) and x = y = 0.5 (B) characterized by x-ray diffraction display tetragonal triple perovskite structure. In order to investigate the effect of substituents (Ca/Y) on structure of this system, neutron diffraction measurements have been carried out at 300 K and {lambda}{sub n}=1.216A at Dhruva reactor.

  18. Syntheses and crystal structures of BaAgTbS{sub 3}, BaCuGdTe{sub 3}, BaCuTbTe{sub 3}, BaAgTbTe{sub 3}, and CsAgUTe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Jai; Beard, Jessica C.; Ibers, James A. [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States); Mesbah, Adel [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States); ICSM-UMR 5257 CNRS/CEA/UM2/ENSCM, Bat 426, BP 17171, 30207 Bagnols/Ceze (France)

    2015-06-15

    Five new quaternary chalcogenides of the 1113 family, namely BaAgTbS{sub 3}, BaCuGdTe{sub 3}, BaCuTbTe{sub 3}, BaAgTbTe{sub 3}, and CsAgUTe{sub 3}, were synthesized by the reactions of the elements at 1173-1273 K. For CsAgUTe{sub 3} CsCl flux was used. Their crystal structures were determined by single-crystal X-ray diffraction studies. The sulfide BaAgTbS{sub 3} crystallizes in the BaAgErS{sub 3} structure type in the monoclinic space group C{sup 3},{sub 2h}-C2/m, whereas the tellurides BaCuGdTe{sub 3}, BaCuTbTe{sub 3}, BaAgTbTe{sub 3}, and CsAgUTe{sub 3} crystallize in the KCuZrS{sub 3} structure type in the orthorhombic space group D{sup 1},{sub 2}{sup 7},{sub h}-Cmcm. The BaAgTbS{sub 3} structure consists of edge-sharing [TbS{sub 6}{sup 9-}] octahedra and [AgS{sub 5}{sup 9-}] trigonal pyramids. The connectivity of these polyhedra creates channels that are occupied by Ba atoms. The telluride structure features {sup 2}{sub ∞}[MLnTe{sub 3}{sup 2-}] layers for BaCuGdTe{sub 3}, BaCuTbTe{sub 3}, BaAgTbTe{sub 3}, and {sup 2}{sub ∞}[AgUTe{sub 3}{sup 1-}] layers for CsAgUTe{sub 3}. These layers comprise [MTe{sub 4}] tetrahedra and [LnTe{sub 6}] or [UTe{sub 6}] octahedra. Ba or Cs atoms separate these layers. As there are no short Q..Q (Q = S or Te) interactions these compounds achieve charge balance as Ba{sup 2+}M{sup +}Ln{sup 3+}(Q{sup 2-}){sub 3} (Q = S and Te) and Cs{sup +}Ag{sup +}U{sup 4+}(Te{sup 2-}){sub 3}. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Crystal structures of KM(AsF{sub 6}){sub 3} (M{sup 2+} = Mg, Co, Mn, Zn), KCu(SbF{sub 6}){sub 3} and [Co(HF){sub 2}]Sr[Sr(HF)]{sub 2}-[Sr(HF){sub 2}]{sub 2}[AsF{sub 6}]{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Mazej, Zoran; Goreshnik, Evgeny [Jozef Stefan Institute, Ljubljana (Slovakia). Dept. of Inorganic Chemisrty and Technology

    2015-05-01

    The KM(AsF{sub 6}){sub 3} (M{sup 2+} = Mg, Co, Mn, Zn) and KCu(SbF{sub 6}){sub 3} compounds crystallize isotypically to previously known KNi(AsF{sub 6}){sub 3}. The main features of the structure of these compounds are rings of MF{sub 6} octahedra sharing apexes with AsF{sub 6} octahedra connected into infinite tri-dimensional frameworks. In this arrangement cavities are formed where K{sup +} cations are placed. Single crystals of CoSr{sub 5}(AsF{sub 6}){sub 12}.8HF were obtained as one of the products after the crystallization of 3KF/CoF{sub 2}/SrF{sub 2} mixture in the presence of AsF{sub 5} in anhydrous HF. The CoSr{sub 5}(AsF{sub 6}){sub 12}.8HF is monoclinic, C/2c (No.15), with a = 26.773(5) Aa, b = 10.087(2) Aa, c = 21.141(5) Aa, β = 93.296(13) {sup circle}, V = 5699.9(19) Aa{sup 3} at 200 K, and Z = 4. There are three crystallographically non-equivalent Sr{sup 2+} cations in the crystal structure of CoSr{sub 5}(AsF{sub 6}){sub 12}.8HF. The Sr1 is coordinated by ten fluorine atoms from eight different [AsF{sub 6}]- anions, meanwhile Sr2 and Sr3 are bound to nine fluorine atoms provided by one HF and eight AsF{sub 6} units or by two HF and six AsF{sub 6} units, respectively. The Co{sup 2+} is coordinated distorted-octahedrally by six fluorine atoms from two HF molecules and four different AsF{sub 6} units. All those moieties in the crystal structure of [Co(HF){sub 2}]Sr[Sr(HF)]{sub 2}[Sr(HF){sub 2}]{sub 2}[AsF{sub 6}]{sub 12} are connected into tridimensional framework. The CoSr{sub 5}(AsF{sub 6}){sub 12}.8HF is a unique example of compound where HF molecules are directly bound via fluorine atoms to two different metal centres.

  20. Second-harmonic generation in atomic vapor with picosecond laser pulses

    International Nuclear Information System (INIS)

    Kim, D.; Mullin, C.S.; Shen, Y.R.

    1997-01-01

    Picosecond laser pulses were used to study the highly forbidden resonant second-harmonic generation (SHG) in potassium vapor. The input intensity dependence, vapor density dependence, buffer-gas pressure dependence, and spatial profile of the SHG were measured. A pump - probe experiment was conducted to probe the time dependence of the SHG signal. The experimental results can be understood from an ionization-initiated dc-field-induced SHG model. A theory of a dc-field-induced SHG model is developed that takes into account the time development of the dc electric field in detail. This temporal buildup of the dc field along with transient coherent excitation between two-photon-allowed transitions can explain the experimental results quantitatively, including the previous vapor SHG results with nanosecond laser pulses. copyright 1997 Optical Society of America