WorldWideScience

Sample records for sub-mjy flux densities

  1. Planck intermediate results - LII. Planet flux densities

    DEFF Research Database (Denmark)

    Akrami, Y.; Ashdown, M.; Aumont, J.

    2017-01-01

    Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100–857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates...... of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness time-variability of these planets. The majority of the planet flux density estimates are limited by systematic...... errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturn’s rings to the planet’s total flux density suggests a best...

  2. Planck intermediate results. LII. Planet flux densities

    Science.gov (United States)

    Planck Collaboration; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carron, J.; Chiang, H. C.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hivon, E.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Lellouch, E.; Levrier, F.; Liguori, M.; Lilje, P. B.; Lindholm, V.; López-Caniego, M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Moreno, R.; Morgante, G.; Natoli, P.; Oxborrow, C. A.; Paoletti, D.; Partridge, B.; Patanchon, G.; Patrizii, L.; Perdereau, O.; Piacentini, F.; Plaszczynski, S.; Polenta, G.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Romelli, E.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirri, G.; Spencer, L. D.; Suur-Uski, A.-S.; Tauber, J. A.; Tavagnacco, D.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wehus, I. K.; Zacchei, A.

    2017-11-01

    Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100-857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness time-variability of these planets. The majority of the planet flux density estimates are limited by systematic errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturn's rings to the planet's total flux density suggests a best fit value for the spectral index of Saturn's ring system of βring = 2.30 ± 0.03 over the 30-1000 GHz frequency range. Estimates of the polarization amplitude of the planets have also been made in the four bands that have polarization-sensitive detectors (100-353 GHz); this analysis provides a 95% confidence level upper limit on Mars's polarization of 1.8, 1.7, 1.2, and 1.7% at 100, 143, 217, and 353 GHz, respectively. The average ratio between the Planck-HFI measurements and the adopted model predictions for all five planets (excluding Jupiter observations for 353 GHz) is 1.004, 1.002, 1.021, and 1.033 for 100, 143, 217, and 353 GHz, respectively. Model predictions for planet thermodynamic temperatures are therefore consistent with the absolute calibration of Planck-HFI detectors at about the three-percent level. We compare our measurements with published results from recent cosmic microwave background experiments. In particular, we observe that the flux densities measured by Planck HFI and WMAP agree to within 2%. These results allow experiments operating in the mm

  3. Metastable states of hydrogen: their geometric phases and flux densities

    CERN Document Server

    Gasenzer, T; Trappe, M -I

    2011-01-01

    We discuss the geometric phases and flux densities for the metastable states of hydrogen with principal quantum number n=2 being subjected to adiabatically varying external electric and magnetic fields. Convenient representations of the flux densities as complex integrals are derived. Both, parity conserving (PC) and parity violating (PV) flux densities and phases are identified. General expressions for the flux densities following from rotational invariance are derived. Specific cases of external fields are discussed. In a pure magnetic field the phases are given by the geometry of the path in magnetic field space. But for electric fields in presence of a constant magnetic field and for electric plus magnetic fields the geometric phases carry information on the atomic parameters, in particular, on the PV atomic interaction. We show that for our metastable states also the decay rates can be influenced by the geometric phases and we give a concrete example for this effect. Finally we emphasise that the general...

  4. AN ACCURATE FLUX DENSITY SCALE FROM 1 TO 50 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Perley, R. A.; Butler, B. J., E-mail: RPerley@nrao.edu, E-mail: BButler@nrao.edu [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States)

    2013-02-15

    We develop an absolute flux density scale for centimeter-wavelength astronomy by combining accurate flux density ratios determined by the Very Large Array between the planet Mars and a set of potential calibrators with the Rudy thermophysical emission model of Mars, adjusted to the absolute scale established by the Wilkinson Microwave Anisotropy Probe. The radio sources 3C123, 3C196, 3C286, and 3C295 are found to be varying at a level of less than {approx}5% per century at all frequencies between 1 and 50 GHz, and hence are suitable as flux density standards. We present polynomial expressions for their spectral flux densities, valid from 1 to 50 GHz, with absolute accuracy estimated at 1%-3% depending on frequency. Of the four sources, 3C286 is the most compact and has the flattest spectral index, making it the most suitable object on which to establish the spectral flux density scale. The sources 3C48, 3C138, 3C147, NGC 7027, NGC 6542, and MWC 349 show significant variability on various timescales. Polynomial coefficients for the spectral flux density are developed for 3C48, 3C138, and 3C147 for each of the 17 observation dates, spanning 1983-2012. The planets Venus, Uranus, and Neptune are included in our observations, and we derive their brightness temperatures over the same frequency range.

  5. Flux Density through Guides with Microstructured Twisted Clad DB Medium

    Directory of Open Access Journals (Sweden)

    M. A. Baqir

    2014-01-01

    Full Text Available The paper deals with the study of flux density through a newly proposed twisted clad guide containing DB medium. The inner core and the outer clad sections are usual dielectrics, and the introduced twisted windings at the core-clad interface are treated under DB boundary conditions. The pitch angle of twist is supposed to greatly contribute towards the control over the dispersion characteristics of the guide. The eigenvalue equation for the guiding structure is deduced, and the analytical investigations are made to explore the propagation patterns of flux densities corresponding to the sustained low-order hybrid modes under the situation of varying pitch angles. The emphasis has been put on the effects due to the DB twisted pitch on the propagation of energy flux density through the guide.

  6. The Infrared and Radio Fluxes Densities of Galactic HII Regions

    OpenAIRE

    Makai, Z.; Anderson, L. D.; Mascoop, J. L.; Johnstone, B.

    2017-01-01

    We derive infrared and radio flux densities of all ~1000 known Galactic HII regions in the Galactic longitude range 17.5 < l < 65 degree. Our sample comes from the Wide-Field Infrared Survey Explorer (WISE) catalog of Galactic \\hii regions \\citep{anderson2014}. We compute flux densities at six wavelengths in the infrared (GLIMPSE 8 microns, WISE 12 microns and 22 microns, MIPSGAL 24 microns, and Hi-GAL 70 microns and 160 microns) and two in the radio (MAGPIS 20 cm and VGPS 21 cm). All HII reg...

  7. Correlation between the Flux Density and Polarization for Flat ...

    Indian Academy of Sciences (India)

    In this paper, using the preliminary database of the University of Michigan Radio Astronomy Observatory (UMRAO) at the radio frequencies, we calculated the weighted polarization at 8 GHz and investigated the correlation between the polarization and the flux density for 92 flat spectrum radio quasars (FSRQs). We found ...

  8. Meteoroid stream flux densities and the zenith exponent

    Science.gov (United States)

    Molau, Sirko; Barentsen, Geert

    2013-01-01

    The MetRec software was recently extended to measure the limiting magnitude in real-time, and to determine meteoroid stream flux densities. This paper gives a short overview of the applied algorithms. We introduce the MetRec Flux Viewer, a web tool to visualize activity profiles on- line. Starting from the Lyrids 2011, high-quality flux density profiles were derived from IMO Video Network observations for every major meteor shower. They are often in good agreement with visual data. Analyzing the 2011 Perseids, we found systematic daily variations in the flux density profile, which can be attributed to a zenith exponent gamma > 1.0. We analyzed a number of meteor showers in detail and found zenith exponent variations from shower to shower in the range between 1.55 and 2.0. The average value over all analyzed showers is gamma = 1.75. In order to determine the zenith exponent precisely, the observations must cover a large altitude range (at least 45 degrees).

  9. Leaf conductance response of phaseolus vulgaris to ozone flux density

    Science.gov (United States)

    Amiro, B. D.; Gillespie, T. J.

    The effect of ozone flux density on leaf conductance to ozone in Phaseolus vulgaris was examined. The change in conductance was measured within the first two hours of fumigation for mature, fruiting 6-week-old plants of an ozone sensitive cultivar (Seafarer); for young, 14-day-old plants of the same cultivar; and for an ozone resistant cultivar (Gold Crop). Young Seafarer plants showed no change in conductance to ozone over a wide range of ozone flux densities. Gold Crop showed a decrease in conductance of -3.1 % /(mgO 3 m -2 h -1) whereas mature Seafarer plants exhibited a stronger decrease of -7.7% /(mgO 3 m -2 h -1). Diffusion porometer measurements taken on fruiting Seafarer plants in the field illustrated that a decrease in leaf diffusive conductance to water is related to visual ozone injury.

  10. The Infrared and Radio Flux Densities of Galactic HII Regions

    Science.gov (United States)

    Sandor Makai, Zoltan; Anderson, Loren Dean; Mascoop, Josh L.; Johnstone, Brittany

    2018-01-01

    We derive infrared and radio flux densities of all ~1000 known Galactic HII regions in the Galactic longitude range 17.5 = 0 and log10(F70/F12) >= 1.2, and log10(F24/F12) >= 0 and log10(F160/F70) =population is uncertain. Comparing with a sample of IR color indices from star-forming galaxies, HII regions show higher log10(F70/F12) ratios. We find a weak trend of decreasing infrared to ~20 cm flux density ratios with increasing Rgal, in agreement with previous extragalactic results, possibly indicating a decreased dust abundance in the outer Galaxy.We are using these flux densities to compute the total luminosity of the Milky Way. To achieve this, we sum the luminosity contributions from HII regions, point sources, diffuse thermal, and diffuse non-thermal emission at infrared and radio wavelengths. We compare our results with those from external galaxies to place the luminosity of the Milky Way into a galactic context.

  11. Spillage and flux density on a receiver aperture lip. [of solar thermal collector

    Science.gov (United States)

    Jaffe, L. D.

    1985-01-01

    In a dish-type point-focusing solar thermal collector, the spillage and the flux density on the receiver aperture lip are related in a very simple way, if the aperture is circular and centered on the optical axis. Specifically, the flux density on the lip is equal to the spillage times the peak flux density in the plane of the lip.

  12. Flux Loop Measurements of the Magnetic Flux Density in the CMS Magnet Yoke

    CERN Document Server

    Klyukhin, V I; Ball, A.; Curé, B.; Gaddi, A.; Gerwig, H.; Mulders, M.; Hervé, A.; Loveless, R.

    2016-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10,000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. To measure the field in and around the steel, a system of 22 flux loops and 82 3-D Hall sensors is installed on the return yoke blocks. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. The first attempt is made to measure the magnetic flux density in the steel blocks of the CMS magnet yoke using the standard magnet discharge with the current ramp down speed of 1.5 A/...

  13. Magnetic Flux Density of Different Types of New Generation Magnetic Attachment Systems.

    Science.gov (United States)

    Akin, Hakan

    2015-07-01

    The purpose of this study was to analyze the static magnetic flux density of different types of new generation laser-welded magnetic attachments in the single position and the attractive position and to determine the effect of different corrosive environments on magnetic flux density. Magnetic flux densities of four magnetic attachment systems (Hyper slim, Hicorex slim, Dyna, and Steco) were measured with a gaussmeter. Then magnetic attachment systems were immersed in two different media, namely 1% lactic acid solution (pH 2.3), and 0.9% NaCl solution (pH 7.3). Magnetic flux densities of the attachment systems were measured with a gaussmeter after immersion to compare with measurements before immersion (α = 0.05). The data were statistically evaluated with one-way ANOVA, paired-samples t-test, and post hoc Tukey-Kramer multiple comparisons tests (α = 0.05). The highest magnetic flux density was found in Dyna magnets for both single and attractive positions. In addition, after the magnets were in the corrosive environments for 2 weeks, they had a significant decrease in magnetic flux density (p 0.05). The leakage flux of all the magnetic attachments did not exceed the WHO's guideline of 40 mT. The magnets exhibited a significant decrease in magnetic flux density after aging in corrosive environments including lactic acid and NaCl. © 2014 by the American College of Prosthodontists.

  14. Influence of particle flux density and temperature on surface modifications of tungsten and deuterium retention

    NARCIS (Netherlands)

    Buzi, L.; De Temmerman, G.; Unterberg, B.; M. Reinhart,; Litnovsky, A.; Philipps, V.; Van Oost, G.; Möller, S.

    2014-01-01

    Systematic study of deuterium irradiation effects on tungsten was done under ITER - relevant high particle flux density, scanning a broad surface temperature range. Polycrystalline ITER - like grade tungsten samples were exposed in linear plasma devices to two different ranges of deuterium ion flux

  15. Preliminary Flux Density Measurements of a Few Strong Southern Radiosources at 45-MHz

    Science.gov (United States)

    Alvarez, H.; May, J.; Aparici, J.; Reyes, F.; Olmos, F.

    1985-03-01

    We report the preliminary results on the flux density measurement of a few strong southern radio sources using Hydra A and Fornax A as calibrators. We discuss the causes of errors and the future prospects.

  16. Gas Flux and Density Surrounding a Cylindrical Aperture in the Free Molecular Flow Regime

    Science.gov (United States)

    Soulas, George C.

    2011-01-01

    The equations for rigorously calculating the particle flux and density surrounding a cylindrical aperture in the free molecular flow regime are developed and presented. The fundamental equations for particle flux and density from a reservoir and a diffusely reflecting surface will initially be developed. Assumptions will include a Maxwell-Boltzmann speed distribution, equal particle and wall temperatures, and a linear flux distribution along the cylindrical aperture walls. With this information, the equations for axial flux and density surrounding a cylindrical aperture will be developed. The cylindrical aperture will be divided into multiple volumes and regions to rigorously determine the surrounding axial flux and density, and appropriate limits of integration will be determined. The results of these equations will then be evaluated. The linear wall flux distribution assumption will be assessed. The axial flux and density surrounding a cylindrical aperture with a thickness-to-radius ratio of 1.25 will be presented. Finally, the equations determined in this study will be verified using multiple methods.

  17. The causal relation between turbulent particle flux and density gradient

    Energy Technology Data Exchange (ETDEWEB)

    Milligen, B. Ph. van; Martín de Aguilera, A.; Hidalgo, C. [CIEMAT - Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); Carreras, B. A. [BACV Solutions, 110 Mohawk Road, Oak Ridge, Tennessee 37830 (United States); García, L.; Nicolau, J. H. [Universidad Carlos III, 28911 Leganés, Madrid (Spain)

    2016-07-15

    A technique for detecting the causal relationship between fluctuating signals is used to investigate the relation between flux and gradient in fusion plasmas. Both a resistive pressure gradient driven turbulence model and experimental Langmuir probe data from the TJ-II stellarator are studied. It is found that the maximum influence occurs at a finite time lag (non-instantaneous response) and that quasi-periodicities exist. Furthermore, the model results show very long range radial influences, extending over most of the investigated regions, possibly related to coupling effects associated with plasma self-organization. These results clearly show that transport in fusion plasmas is not local and instantaneous, as is sometimes assumed.

  18. The causal relation between turbulent particle flux and density gradient

    Science.gov (United States)

    van Milligen, B. Ph.; Carreras, B. A.; García, L.; Martín de Aguilera, A.; Hidalgo, C.; Nicolau, J. H.

    2016-07-01

    A technique for detecting the causal relationship between fluctuating signals is used to investigate the relation between flux and gradient in fusion plasmas. Both a resistive pressure gradient driven turbulence model and experimental Langmuir probe data from the TJ-II stellarator are studied. It is found that the maximum influence occurs at a finite time lag (non-instantaneous response) and that quasi-periodicities exist. Furthermore, the model results show very long range radial influences, extending over most of the investigated regions, possibly related to coupling effects associated with plasma self-organization. These results clearly show that transport in fusion plasmas is not local and instantaneous, as is sometimes assumed.

  19. Measuring the Magnetic Flux Density with Flux Loops and Hall Probes in the CMS Magnet Flux Return Yoke

    CERN Document Server

    Curé, B; Ball, A; Gaddi, A; Gerwig, H; Hervé, A; Klyukhin, V I; Loveless, R; Mulders, M

    2016-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10,000-ton return yoke made of construction steel. The flux return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. To measure the field in and around the steel, a system of 22 flux loops and 82 3-D Hall sensors is installed on the return yoke blocks. A TOSCA 3-D model of the CMS magnet is developed to describe the magnetic field everywhere outside the tracking volume that was measured with the field-mapping machine. The voltages induced in the flux loops by the magnetic flux changing during the CMS magnet standard ramps down are measured with six 16-bit DAQ modules. The off-line inte...

  20. Flux densities of ultracompact H II regions at 7 millimeters

    Energy Technology Data Exchange (ETDEWEB)

    Wood, D.O.W.; Churchwell, E.; Handa, T.; Fukui, Y.; Sofue, Y.

    1988-03-01

    Observations of the 7-mm continuum are reported for 29 suspected ultracompact (UC) H II regions. Twenty-seven sources were detected, most of which had not previously been observed at 7 mm. These sources were found to be small (only eight were fully resolved by the 43-arcsec beam) and bright at mm wavelengths (greater than 0.5 Jy), making them easy to distinguish from associated diffuse free-free emission which can confuse single-dish observations made at cm wavelengths. The ionizing stars are mostly O5-O6, consistent with the detection limit of 0.5 Jy. It is found that dust in UC H II regions typically absorbs more than 50 percent of the stellar ionizing photons. Some of the sources reported here might also serve as flux and pointing calibrators at mm wavelengths. 19 references.

  1. Flux densities of ultracompact H II regions at 3 millimeters

    Energy Technology Data Exchange (ETDEWEB)

    Wood, D.O.S.; Churchwell, E.; Salter, C.J.

    1988-02-01

    Three-millimeter continuum observations of 33 suspected ultracompact (UC) H II regions are reported. Twenty-eight sources were detected, about half of which had not previously been observed at 3 mm. These observations demonstrate that UC H II regions are bright at millimeter wavelengths and have very high emission measures. Because of this, and because UC H II regions are often associated with diffuse free-free emission, they are more easily detected at millimeter than at centimeter wavelengths. All the sources in the sample with distance estimates correspond to ionization by O6 stars or hotter. To obtain an unbiased sample of UC H II regions ionized by a single B0 star or hotter a detection limit of about 1 mJy is required. The fraction of stellar ionizing photons absorbed by dust is typically a 0.5 or more. Some of the sources reported here are small and bright enough to serve as flux and pointing calibrators at millimeter wavelengths. 16 references.

  2. Measurements of Radio Source Flux Density with the Interferometer Network Uran

    Science.gov (United States)

    Rashkovskiy, S. L.; Shepelev, V. A.; Inutin, G. A.; Vashchishin, R. V.

    2013-12-01

    A method of measurements of radio source flux density used, with the decameter wavelength interferometer network URAN. The procedure of antenna gain calibration of radio telescopes by, using the emission of powerful radio sources and radio astronomy, technique is suggested. An experimental dependence of the, measured flux on scintillation index is used to account for spatial, averaging by large arrays of phase fluctuations of the field which, are caused by the influence of the ionosphere.

  3. Magnetic flux density reconstruction using interleaved partial Fourier acquisitions in MREIT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hee Myung [Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University (Korea, Republic of); Nam, Hyun Soo; Kwon, Oh In, E-mail: oikwon@konkuk.ac.kr [Department of Mathematics, Konkuk University (Korea, Republic of)

    2011-04-07

    Magnetic resonance electrical impedance tomography (MREIT) has been introduced as a non-invasive modality to visualize the internal conductivity and/or current density of an electrically conductive object by the injection of current. In order to measure a magnetic flux density signal in MREIT, the phase difference approach in an interleaved encoding scheme cancels the systematic artifacts accumulated in phase signals and also reduces the random noise effect. However, it is important to reduce scan duration maintaining spatial resolution and sufficient contrast, in order to allow for practical in vivo implementation of MREIT. The purpose of this paper is to develop a coupled partial Fourier strategy in the interleaved sampling in order to reduce the total imaging time for an MREIT acquisition, whilst maintaining an SNR of the measured magnetic flux density comparable to what is achieved with complete k-space data. The proposed method uses two key steps: one is to update the magnetic flux density by updating the complex densities using the partially interleaved k-space data and the other is to fill in the missing k-space data iteratively using the updated background field inhomogeneity and magnetic flux density data. Results from numerical simulations and animal experiments demonstrate that the proposed method reduces considerably the scanning time and provides resolution of the recovered B{sub z} comparable to what is obtained from complete k-space data.

  4. Research and Evaluation of the Energy Flux Density of the Mobile Phone Electromagnetic Field

    Directory of Open Access Journals (Sweden)

    Pranas Baltrėnas

    2012-12-01

    Full Text Available The article analyses variations in the energy flux density of the electromagnetic field of 10 mobile phones depending on distance. The studies have been conducted using three modes: sending a text message, receiving a text message and connecting a mobile phone to the Internet. When text messages are received or sent from a mobile phone, the values of the energy flux density of the mobile phone electromagnetic field exceed the safe allowable limit and make 10 μW / cm². A distance of 10, 20 and 30 cm from a mobile phone is effective protection against the energy flux density of the electromagnetic field when writing texts, receiving messages or connecting to the mobile Internet.Article in Lithuanian

  5. Evaluation of Density Corrections to Methane Fluxes Measured by Open-Path Eddy Covariance over Contrasting Landscapes

    Science.gov (United States)

    Chamberlain, Samuel D.; Verfaillie, Joseph; Eichelmann, Elke; Hemes, Kyle S.; Baldocchi, Dennis D.

    2017-06-01

    Corrections accounting for air density fluctuations due to heat and water vapour fluxes must be applied to the measurement of eddy-covariance fluxes when using open-path sensors. Experimental tests and ecosystem observations have demonstrated the important role density corrections play in accurately quantifying carbon dioxide (CO2) fluxes, but less attention has been paid to evaluating these corrections for methane (CH4) fluxes. We measured CH4 fluxes with open-path sensors over a suite of sites with contrasting CH4 emissions and energy partitioning, including a pavement airfield, two negligible-flux ecosystems (drained alfalfa and pasture), and two high-flux ecosystems (flooded wetland and rice). We found that density corrections successfully re-zeroed fluxes in negligible-flux sites; however, slight overcorrection was observed above pavement. The primary impact of density corrections varied over negligible- and high-flux ecosystems. For negligible-flux sites, corrections led to greater than 100% adjustment in daily budgets, while these adjustments were only 3-10% in high-flux ecosystems. The primary impact to high-flux ecosystems was a change in flux diel patterns, which may affect the evaluation of relationships between biophysical drivers and fluxes if correction bias exists. Additionally, accounting for density effects to high-frequency CH4 fluctuations led to large differences in observed CH4 flux cospectra above negligible-flux sites, demonstrating that similar adjustments should be made before interpreting CH4 cospectra for comparable ecosystems. These results give us confidence in CH4 fluxes measured by open-path sensors, and demonstrate that density corrections play an important role in adjusting flux budgets and diel patterns across a range of ecosystems.

  6. Evaluation of Density Corrections to Methane Fluxes Measured by Open-Path Eddy Covariance over Contrasting Landscapes

    Science.gov (United States)

    Chamberlain, Samuel D.; Verfaillie, Joseph; Eichelmann, Elke; Hemes, Kyle S.; Baldocchi, Dennis D.

    2017-11-01

    Corrections accounting for air density fluctuations due to heat and water vapour fluxes must be applied to the measurement of eddy-covariance fluxes when using open-path sensors. Experimental tests and ecosystem observations have demonstrated the important role density corrections play in accurately quantifying carbon dioxide (CO2) fluxes, but less attention has been paid to evaluating these corrections for methane (CH4) fluxes. We measured CH4 fluxes with open-path sensors over a suite of sites with contrasting CH4 emissions and energy partitioning, including a pavement airfield, two negligible-flux ecosystems (drained alfalfa and pasture), and two high-flux ecosystems (flooded wetland and rice). We found that density corrections successfully re-zeroed fluxes in negligible-flux sites; however, slight overcorrection was observed above pavement. The primary impact of density corrections varied over negligible- and high-flux ecosystems. For negligible-flux sites, corrections led to greater than 100% adjustment in daily budgets, while these adjustments were only 3-10% in high-flux ecosystems. The primary impact to high-flux ecosystems was a change in flux diel patterns, which may affect the evaluation of relationships between biophysical drivers and fluxes if correction bias exists. Additionally, accounting for density effects to high-frequency CH4 fluctuations led to large differences in observed CH4 flux cospectra above negligible-flux sites, demonstrating that similar adjustments should be made before interpreting CH4 cospectra for comparable ecosystems. These results give us confidence in CH4 fluxes measured by open-path sensors, and demonstrate that density corrections play an important role in adjusting flux budgets and diel patterns across a range of ecosystems.

  7. Magnetic Flux Density Feedback Control for Permanent Magnetic-Electromagnetic Hybrid Suspension System

    Directory of Open Access Journals (Sweden)

    Chen Qiang

    2017-01-01

    Full Text Available Permanent magnetic-electromagnetic hybrid suspension system can effectively reduce energy consumption and heat release of the system, but also increase the difficulty of suspension control because of the existence of permanent magnets. The traditional current feedback control method is not conducive to the stability of the system and is difficult to debug. In this paper, the models of permanent magnetic-electromagnetic hybrid suspension system based on current feedback and magnetic flux density feedback are established. The effects of current feedback and magnetic flux density feedback on the stability of the system are analyzed in theory and the advantages of flux density feedback are pointed out. The model of magnet flux feedback is simple and it can overcome the disadvantages of current feedback, which is beneficial to the stability of the system. The magnetic flux density feedback control of permanent magnetic-electromagnetic hybrid suspension system is realized by simulation and experiment. Control system performs well and is easy to debug.

  8. Behaviour of carbon dioxide and water vapour flux densities from a disturbed raised peat bog

    NARCIS (Netherlands)

    Nieveen, J.P.; Jacobs, A.F.G.

    2002-01-01

    Measurements of carbon dioxide and water vapour flux densities were carried out for a disturbed raised peat bog in the north of the Netherlands during an 18 month continuous experiment. Tussock grass (sp. Molinea caerulae) mainly dominated the vegetation of the bog area. The maximum leaf area index

  9. Three-dimensional observations of magnetic flux density around fatigue crack tips of bearing steels

    Science.gov (United States)

    Kida, Katsuyuki; Santos, Edson C.; Honda, Takashi; Tanabe, Hirotaka

    2010-03-01

    Fatigue failure of steel occurs when small cracks form in a component and then continue to grow to a size large enough to cause failure. In order to understand the strength of steel components it is important to find these cracks. However, at present, it is not easy to distinguish the cracks that will grow fast and cause failure. We developed a three-dimensional scanning Hall probe microscope (3D-SHPM) and observed fatigue cracks at room temperature while they were growing. Four-point-bending fatigue tests were carried out using pre-cracked specimens (JIS-SUJ2, bearing steel). We observed the two-dimensional magnetic flux density distributions around the crack tips and found that there is a strong correlation between the changes in the magnetic flux densities and the crack growth. In order to understand this, we looked into all the three components of the magnetic flux densities, and found that they shape an arched bridge around a crack. We also found that the magnetic flux density moves in front of the crack tip along the crack growth direction.

  10. Dynamics of photosynthetic photon flux density (PPFD) and estimates in coastal northern California

    Science.gov (United States)

    The seasonal trends and diurnal patterns of Photosynthetically Active Radiation (PAR) were investigated in the San Francisco Bay Area of Northern California from March through August in 2007 and 2008. During these periods, the daily values of PAR flux density (PFD), energy loading with PAR (PARE), a...

  11. Black hole kinematics: The "in"-vacuum energy density and flux for different observers

    Science.gov (United States)

    Singh, Suprit; Chakraborty, Sumanta

    2014-07-01

    We have investigated the local invariant scalar observables—energy density and flux—which explicitly depend on the kinematics of the concerned observers in the thin null shell gravitational collapse geometry. The use of globally defined null coordinates allows for the definition of a unique in-vacuum for the scalar field propagating in this background. Computing the stress-energy tensor for this scalar field, we work out the energy density and flux for the static observers outside the horizon and then consider the radially in-falling observers who fall in from some specified initial radius all the way through the horizon and inside to the eventual singularity. Our results confirm the thermal Tolman-shifted energy density and fluxes for the static observers which diverge at the horizon. For the in-falling observer starting from far off, both the quantities—energy density and flux—at the horizon crossing are regular and finite. For example, the flux at the horizon for the in-falling observer from infinity is approximately 24 times the flux for the observer at infinity. Compared with the static observers in the near-horizon region, this is quite small. Both the quantities grow as the in-fall progresses inside the horizon and diverge at the singularity.

  12. Development of an Axial Flux MEMS BLDC Micromotor with Increased Efficiency and Power Density

    Directory of Open Access Journals (Sweden)

    Xiaofeng Ding

    2015-06-01

    Full Text Available This paper presents a rigorous design and optimization of an axial flux microelectromechanical systems (MEMS brushless dc (BLDC micromotor with dual rotor improving both efficiency and power density with an external diameter of only around 10 mm. The stator is made of two layers of windings by MEMS technology. The rotor is developed by film permanent magnets assembled over the rotor yoke. The characteristics of the MEMS micromotor are analyzed and modeled through a 3-D magnetic equivalent circuit (MEC taking the leakage flux and fringing effect into account. Such a model yields a relatively accurate prediction of the flux in the air gap, back electromotive force (EMF and electromagnetic torque, whilst being computationally efficient. Based on 3-D MEC model the multi-objective firefly algorithm (MOFA is developed for the optimal design of this special machine. Both 3-D finite element (FE simulation and experiments are employed to validate the MEC model and MOFA optimization design.

  13. A LOFAR census of non-recycled pulsars: average profiles, dispersion measures, flux densities, and spectra

    Science.gov (United States)

    Bilous, A. V.; Kondratiev, V. I.; Kramer, M.; Keane, E. F.; Hessels, J. W. T.; Stappers, B. W.; Malofeev, V. M.; Sobey, C.; Breton, R. P.; Cooper, S.; Falcke, H.; Karastergiou, A.; Michilli, D.; Osłowski, S.; Sanidas, S.; ter Veen, S.; van Leeuwen, J.; Verbiest, J. P. W.; Weltevrede, P.; Zarka, P.; Grießmeier, J.-M.; Serylak, M.; Bell, M. E.; Broderick, J. W.; Eislöffel, J.; Markoff, S.; Rowlinson, A.

    2016-06-01

    We present first results from a LOFAR census of non-recycled pulsars. The census includes almost all such pulsars known (194 sources) at declinations Dec > 8° and Galactic latitudes |Gb| > 3°, regardless of their expected flux densities and scattering times. Each pulsar was observed for ≥20 min in the contiguous frequency range of 110-188 MHz. Full-Stokes data were recorded. We present the dispersion measures, flux densities, and calibrated total intensity profiles for the 158 pulsars detected in the sample. The median uncertainty in census dispersion measures (1.5 × 10-3 pc cm-3) is ten times smaller, on average, than in the ATNF pulsar catalogue. We combined census flux densities with those in the literature and fitted the resulting broadband spectra with single or broken power-law functions. For 48 census pulsars such fits are being published for the first time. Typically, thechoice between single and broken power-laws, as well as the location of the spectral break, were highly influenced by the spectral coverage of the available flux density measurements. In particular, the inclusion of measurements below 100 MHz appears essential for investigating the low-frequency turnover in the spectra for most of the census pulsars. For several pulsars, we compared the spectral indices from different works and found the typical spread of values to be within 0.5-1.5, suggesting a prevailing underestimation of spectral index errors in the literature. The census observations yielded some unexpected individual source results, as we describe in the paper. Lastly, we will provide this unique sample of wide-band, low-frequency pulse profiles via the European Pulsar Network Database. Tables B.1-B.4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A134

  14. Impact of a hollow density profile on turbulent particle fluxes: Gyrokinetic and fluid simulations

    Science.gov (United States)

    Tegnered, D.; Oberparleiter, M.; Strand, P.; Nordman, H.

    2017-07-01

    Hollow density profiles may occur in connection with pellet fuelling and L to H transitions. A positive density gradient could potentially stabilize the turbulence or change the relation between convective and diffusive fluxes, thereby reducing the turbulent transport of particles towards the center, making the pellet fuelling scheme inefficient. In the present work, the particle transport driven by Ion Temperature Gradient/Trapped Electron (ITG/TE) mode turbulence in hollow density profiles is studied by fluid as well as gyrokinetic simulations. The fluid model used, an extended version of the Weiland transport model, Extended Drift Wave Model (EDWM), incorporates an arbitrary number of ion species in a multi-fluid description and an extended wavelength spectrum. The fluid model, which is fast and hence suitable for use in predictive simulations, is compared to gyrokinetic simulations using the code GENE. Typical tokamak parameters are used based on the Cyclone Base Case. Parameter scans in key plasma parameters like plasma β, R/LT, and magnetic shear are investigated. In addition, the effects of a fast species are studied and global ITG simulations in a simplified physics description are performed in order to investigate nonlocal effects. It is found that β in particular, has a stabilizing effect in the negative R/Ln region. Both nonlinear GENE and EDWM simulations show a decrease in inward flux for negative R/Ln and a change in the direction from inward to outward for positive R/Ln. Moreover, the addition of fast particles was shown to decrease the inward main ion particle flux in the positive gradient region further. This might have serious consequences for pellet fuelling of high β plasmas. Additionally, the heat flux in global ITG turbulence simulations indicates that nonlocal effects can play a different role from usual in connection with pellet fuelling.

  15. One-point fitting of the flux density produced by a heliostat

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Francisco J. [Univ. Zaragoza, CPS-B, Dpto de Ingenieria Mecanica, Maria de Luna 3, 50018 Zaragoza (Spain)

    2010-04-15

    Accurate and simple models for the flux density reflected by an isolated heliostat should be one of the basic tools for the design and optimization of solar power tower systems. In this work, the ability and the accuracy of the Universidad de Zaragoza (UNIZAR) and the DLR (HFCAL) flux density models to fit actual energetic spots are checked against heliostat energetic images measured at Plataforma Solar de Almeria (PSA). Both the fully analytic models are able to acceptably fit the spot with only one-point fitting, i.e., the measured maximum flux. As a practical validation of this one-point fitting, the intercept percentage of the measured images, i.e., the percentage of the energetic spot sent by the heliostat that gets the receiver surface, is compared with the intercept calculated through the UNIZAR and HFCAL models. As main conclusions, the UNIZAR and the HFCAL models could be quite appropriate tools for the design and optimization, provided the energetic images from the heliostats to be used in the collector field were previously analyzed. Also note that the HFCAL model is much simpler and slightly more accurate than the UNIZAR model. (author)

  16. A high-resolution optical measurement system for rapid acquisition of radiation flux density maps

    Science.gov (United States)

    Thelen, Martin; Raeder, Christian; Willsch, Christian; Dibowski, Gerd

    2017-06-01

    To identify the power and flux density of concentrated solar radiation the Institute of Solar Research at the German Aerospace Center (DLR - Deutsches Zentrum für Luft-und Raumfahrt e. V.) has used the camera-based measurement system FATMES (Flux and Temperature Measurement System) since 1995. The disadvantages of low resolution, difficult handling and poor computing power required a revision of the existing measurement system. The measurement system FMAS (Flux Mapping Acquisition system) is equipped with state-of-the-art-hardware, is compatible with computers off-the-shelf and is programmed in LabView. The expenditure of time for an image evaluation is reduced by the factor 60 compared to FATMES. The new measurement system is no longer associated with the facilities Solar Furnace and High Flux Solar Simulator at the DLR in Cologne but is also applicable as a mobile system. The data and the algorithms are transparent throughout the complete process. The measurement accuracy of FMAS is determined to at most ±3 % until now. The error of measurement of FATMES is at least 2 % higher according to the conducted comparison tests.

  17. A figure of merit to evaluate transparent conductor oxides for solar cells using photonic flux density

    Energy Technology Data Exchange (ETDEWEB)

    Mendez-Gamboa, J.A., E-mail: jmendez@uady.mx [Engineering School, University of Yucatan, AP 150 Cordemex, 97310 Mérida, Yucatán (Mexico); Castro-Rodriguez, R. [Applied Physics Department, CINVESTAV-IPN Mérida, C.P. 97310, Mérida, Yucatán (Mexico); Perez-Quintana, I.V.; Medina-Esquivel, R.A.; Martel-Arbelo, A. [Engineering School, University of Yucatan, AP 150 Cordemex, 97310 Mérida, Yucatán (Mexico)

    2016-01-29

    We report an alternative method to evaluate transparent conductor oxides (TCO) from their photonic flux density (PFD(hυ)) to be used in solar cells. From the transmittance spectrum (T(hυ)) in the visible region, we calculate the PFD(hυ) and the solar photon flux-weighted transmittance (T{sub SW}) of one specific TCO with potential application in solar cells. The photo-current density (J{sub PH}) in mA/cm{sup 2} of one specific TCO when exposed to white light is evaluated when PFD(hυ) is integrated over the whole solar electromagnetic spectrum. Finally, we define a figure of merit as J{sub PH} over the TCO film sheet resistance to find the best equilibrium between the transmission and its electrical resistance. To carry out this work, a bibliographical search of investigations about development of TCOs was extensively made to evaluate its T(hυ), T{sub SW,} PFD(hυ), J{sub PH} and the figure of merit that we propose. From our results, we consider that the proposed method is a good tool for a fine comparison of transparent conductive films in solar cell development. - Highlights: • A figure of merit is presented for the evaluation of TCO used in solar cells. • It is defined as the ratio of photo-current density over TCO sheet resistance. • It is a tool for a fine comparison of TCO films in solar cell development.

  18. Sapflow+: a four‐needle heat‐pulse sap flow sensor enabling nonempirical sap flux density and water content measurements

    National Research Council Canada - National Science Library

    Vandegehuchte, Maurits W; Steppe, Kathy

    2012-01-01

    .... Moreover, existing sap flow methods require destructive wood core measurements to determine sapwood water content, necessary to convert heat velocity to sap flux density, not only damaging the tree...

  19. Sapflow+: a four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements.

    Science.gov (United States)

    Vandegehuchte, Maurits W; Steppe, Kathy

    2012-10-01

    • To our knowledge, to date, no nonempirical method exists to measure reverse, low or high sap flux density. Moreover, existing sap flow methods require destructive wood core measurements to determine sapwood water content, necessary to convert heat velocity to sap flux density, not only damaging the tree, but also neglecting seasonal variability in sapwood water content. • Here, we present a nonempirical heat-pulse-based method and coupled sensor which measure temperature changes around a linear heater in both axial and tangential directions after application of a heat pulse. By fitting the correct heat conduction-convection equation to the measured temperature profiles, the heat velocity and water content of the sapwood can be determined. • An identifiability analysis and validation tests on artificial and real stem segments of European beech (Fagus sylvatica L.) confirm the applicability of the method, leading to accurate determinations of heat velocity, water content and hence sap flux density. • The proposed method enables sap flux density measurements to be made across the entire natural occurring sap flux density range of woody plants. Moreover, the water content during low flows can be determined accurately, enabling a correct conversion from heat velocity to sap flux density without destructive core measurements. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  20. Far scrape-off layer particle and heat fluxes in high density

    DEFF Research Database (Denmark)

    Müller, H. W.; Bernert, M.; Carralero, D.

    2014-01-01

    The far scrape-off layer transport is studied in ASDEX Upgrade H-mode discharges with high divertor neutral density N0,div, high power across the separatrix Psep and nitrogen seeding to control the divertor temperature. Such conditions are expected for ITER but usually not investigated in terms...... of turbulent SOL transport. At high N0,div and Psep the H-mode discharges enter a regime of high cross-field particle and power transport in the SOL which is accompanied by a significant change of the turbulence characteristic analogous to the transition from conductive to convective transport in L......-mode. Parallel particle and power flux densities of several 1023 m−2 s−1 and 10 MW m−2 have been detected about ∼40 to 45 mm outside the separatrix mapped to the outer mid-plane. The particle flux fall-off length reached up to 45 mm. This paper presents for the first time an empirical condition to enter the high...

  1. The 30 cm radio flux as a solar proxy for thermosphere density modelling

    Directory of Open Access Journals (Sweden)

    Dudok de Wit Thierry

    2017-01-01

    Full Text Available The 10.7 cm radio flux (F10.7 is widely used as a proxy for solar UV forcing of the upper atmosphere. However, radio emissions at other centimetric wavelengths have been routinely monitored since the 1950 s, thereby offering prospects for building proxies that may be better tailored to space weather needs. Here we advocate the 30 cm flux (F30 as a proxy that is more sensitive than F10.7 to longer wavelengths in the UV and show that it improves the response of the thermospheric density to solar forcing, as modelled with DTM (Drag Temperature Model. In particular, the model bias drops on average by 0–20% when replacing F10.7 by F30; it is also more stable (the standard deviation of the bias is 15–40% smaller and the density variation at the the solar rotation period is reproduced with a 35–50% smaller error. We compare F30 to other solar proxies and discuss its assets and limitations.

  2. Optimization of magnetic flux density in electrical steels: Slater-Pauling pattern repetition in multicomponent alloys

    Science.gov (United States)

    Baik, Seung Su; Kwon, S. K.; Min, B. I.

    2012-02-01

    By investigating the magnetization variation of Fe-rich multicomponent alloys with solute concentration, the magnetic flux density of Si electrical steel is optimized with average valency. For binary alloys of Fe-X [X=d-5d transition-metal (TM) and 3sp-6sp elements], the usual mountain-shape behavior of the Slater-Pauling curve is produced even for late 4d-5d TM, and the monotonically decreasing behavior for 3sp-5sp elements. Anomalously, a rise-and-fall pattern is found for the 6sp element of X=Bi. For ternary alloys of Fe-Si-X (X=3d-5d TM and 3sp-6sp elements), the role of Si is shown to shift the starting point of moment variation and the magnetic flux density of Fe-Si-X alloys is found to repeat the Si-absent binary pattern at the shifted reference moment. On the basis of the calculated magnetic moments, Fe-Si-X-Y (X=Co, Pd, Pt and Y=Al, Sb, Bi) is proposed as a viable candidate for the optimum products of electrical steels.

  3. Spatial heterogeneity of satellite derived land surface parameters and energy flux densities for LITFASS-area

    Directory of Open Access Journals (Sweden)

    A. Tittebrand

    2009-03-01

    Full Text Available Based on satellite data in different temporal and spatial resolution, the current use of frequency distribution functions (PDF for surface parameters and energy fluxes is one of the most promising ways to describe subgrid heterogeneity of a landscape. Objective of this study is to find typical distribution patterns of parameters (albedo, NDVI for the determination of the actual latent heat flux (L.E determined from highly resolved satellite data within pixel on coarser scale.

    Landsat ETM+, Terra MODIS and NOAA-AVHRR surface temperature and spectral reflectance were used to infer further surface parameters and radiant- and energy flux densities for LITFASS-area, a 20×20 km2 heterogeneous area in Eastern Germany, mainly characterised by the land use types forest, crop, grass and water. Based on the Penman-Monteith-approach L.E, as key quantity of the hydrological cycle, is determined for each sensor in the accordant spatial resolution with an improved parametrisation. However, using three sensors, significant discrepancies between the inferred parameters can cause flux distinctions resultant from differences of the sensor filter response functions or atmospheric correction methods. The approximation of MODIS- and AVHRR- derived surface parameters to the reference parameters of ETM (via regression lines and histogram stretching, respectively, further the use of accurate land use classifications (CORINE and a new Landsat-classification, and a consistent parametrisation for the three sensors were realized to obtain a uniform base for investigations of the spatial variability.

    The analyses for 4 scenes in 2002 and 2003 showed that for forest clear distribution-patterns for NDVI and albedo are found. Grass and crop distributions show higher variability and differ significantly to each other in NDVI but only marginal in albedo. Regarding NDVI-distribution functions NDVI was found to be the key variable for L.E-determination.

  4. Quantitative evaluation of magnetic flux density in a magnetic recording head and pseudo soft underlayer by electron holography.

    Science.gov (United States)

    Xia, Weixing; Hirata, Kei; Yanagisawa, Keiichi; Ishida, Yoichi; Kasai, Hiroto; Yanagiuchi, Katsuaki; Shindo, Daisuke; Tonomura, Akira

    2010-01-01

    The magnetic interaction between the pole tip of a single-pole head and a pseudo soft underlayer in perpendicular magnetic recording was observed by electron holography. The magnetic flux density inside the soft underlayer was quantitatively evaluated. The distribution of magnetic flux density was calculated using the finite element method, and the influences of the modulation of the reference wave and stray fields were investigated by comparison with experimental results. The flux density observed was found to be underestimated due to the modulation of the phase shift in reference wave. The magnetic flux measured experimentally was larger than that inside the specimen because of the relatively large stray fields above and below the specimen in the direction of the electron beam.

  5. Estimating sap flux densities in date palm trees using the heat dissipation method and weighing lysimeters.

    Science.gov (United States)

    Sperling, Or; Shapira, Or; Cohen, Shabtai; Tripler, Effi; Schwartz, Amnon; Lazarovitch, Naftali

    2012-09-01

    In a world of diminishing water reservoirs and a rising demand for food, the practice and development of water stress indicators and sensors are in rapid progress. The heat dissipation method, originally established by Granier, is herein applied and modified to enable sap flow measurements in date palm trees in the southern Arava desert of Israel. A long and tough sensor was constructed to withstand insertion into the date palm's hard exterior stem. This stem is wide and fibrous, surrounded by an even tougher external non-conducting layer of dead leaf bases. Furthermore, being a monocot species, water flow does not necessarily occur through the outer part of the palm's stem, as in most trees. Therefore, it is highly important to investigate the variations of the sap flux densities and determine the preferable location for sap flow sensing within the stem. Once installed into fully grown date palm trees stationed on weighing lysimeters, sap flow as measured by the modified sensors was compared with the actual transpiration. Sap flow was found to be well correlated with transpiration, especially when using a recent calibration equation rather than the original Granier equation. Furthermore, inducing the axial variability of the sap flux densities was found to be highly important for accurate assessments of transpiration by sap flow measurements. The sensors indicated no transpiration at night, a high increase of transpiration from 06:00 to 09:00, maximum transpiration at 12:00, followed by a moderate reduction until 08:00; when transpiration ceased. These results were reinforced by the lysimeters' output. Reduced sap flux densities were detected at the stem's mantle when compared with its center. These results were reinforced by mechanistic measurements of the stem's specific hydraulic conductivity. Variance on the vertical axis was also observed, indicating an accelerated flow towards the upper parts of the tree and raising a hypothesis concerning dehydrating

  6. A study of influence of material properties on magnetic flux density induced in magneto rheological damper through finite element analysis

    Directory of Open Access Journals (Sweden)

    Gurubasavaraju T. M.

    2018-01-01

    Full Text Available Magnetorheological fluids are smart materials, which are responsive to the external stimulus and changes their rheological properties. The damper performance (damping force is dependent on the magnetic flux density induced at the annular gap. Magnetic flux density developed at fluid flow gap of MR damper due to external applied current is also dependent on materials properties of components of MR damper (such as piston head, outer cylinder and piston rod. The present paper discus about the influence of different materials selected for components of the MR damper on magnetic effect using magnetostatic analysis. Different materials such as magnetic and low carbon steels are considered for piston head of the MR damper and magnetic flux density induced at fluid flow gap (filled with MR fluid is computed for different DC current applied to the electromagnetic coil. Developed magnetic flux is used for calculating the damper force using analytical method for each case. The low carbon steel has higher magnetic permeability hence maximum magnetic flux could pass through the piston head, which leads to higher value of magnetic effect induction at the annular gap. From the analysis results it is observed that the magnetic steel and low carbon steel piston head provided maximum magnetic flux density. Eventually the higher damping force can be observed for same case.

  7. Flux

    DEFF Research Database (Denmark)

    Ravn, Ib

    Med udgangspunkt i kompleksistetsforskning og studiet af selvorganiserende systemer beskriver lb Ravn den fysiske og biologiske evolution og menneskets udvikling. Han fortolker begreber som kultur, sprog, frihed, værdier, mening, smerte og det ondes problem i lyset af en procesbaseret ontologi...... kanalisering af den flux eller energi, der strømmer igennem os og giver sig til kende i vore daglige aktiviteter. Skal vores tanker, handlinger, arbejde, samvær og politiske liv organiseres efter stramme og faste regelsæt, uden slinger i valsen? Eller skal de tværtimod forløbe ganske uhindret af regler og bånd...

  8. Flux pinning and Critical current density in La2-xSrxCuO4+d

    Science.gov (United States)

    Mohottala, Hashini; Wells, B. O.; Budnick, J. I.; Hines, W. A.; Moodenbaugh, A. R.; Chou, F. C.

    2006-03-01

    We have studied the magnetic characteristics of the critical states in a series of samples of the type La2-xSrxCuO4+d that is doped with both Sr and excess O incorporated using electrochemistry. These samples spontaneously phase separate and show both a superconducting phase with TC near 40 K and a magnetic phase with TM near 40 K. Our previous studies established that the superconducting phase is similar to an optimally doped sample while the magnetic phase is consistent with the static spin density wave reported for x=1/8 Sr or Ba doped samples. Magnetization data at various temperatures showed large reversibility in all the samples. The critical current densities JC(0) values were at least an order of magnitude smaller than that of the reported values for YBa2Cu3O7-d and La2-xSrxCuO4. At higher fields JC(H) was smaller indicating the existence of weak flux pinning in the system. Based on our magnetization data we conclude that the vortex lattice pinning is different from non-phase separated cuprates. This work was partially supported by the US-DOE through contract DE-FG02-00ER45801 and the Cottrell Scholar Program of the Research Corporation.

  9. An investigation into the torque density capabilities of flux-focusing magnetic gearboxes

    Science.gov (United States)

    Uppalapati, Krishna Kiran

    Wind and many rotary based ocean energy conversion devices rely on a mechanical gearbox to increase their speed so as to match the requirements of the electromagnetic generator. However, mechanical gearboxes have a number of disadvantages such as the need for gear lubrication, no overload protection and the creation of acoustic noise. Frequently direct-drive generators are employed to overcome these issues, wherein the gearbox is removed and the shaft of the turbine is directly connected to the synchronous generator, either with an electrically excited or permanent magnet rotor. If the input speed to the generator is very low the torque must be very high in order to generate the necessary power. However, as the electrical loading of a synchronous generator is thermally limited, the size of the generator will become excessively large at high power levels. An alternative to these technologies is to consider replacing the mechanical gearbox with a magnetic gear. A magnetic gear can create speed change without any physical contact. It has inherent overload protection, and its non-contact operation offers the potential for high reliability. Despite significant progress, existing magnetic gear designs do not achieve torque densities that are competitive with mechanical gearboxes. This research has focused on designing a coaxial magnetic gear that can operate at a volumetric torque density that is comparable to a mechanical gearbox. A flux-focusing rotor topology also called spoke-type rotor magnet arrangement was adopted to improve the air-gap magnetic flux density which in turn improves the torque transferred between the rotors. Finite element analysis was utilized to conduct a parameter sweep analysis of the different geometric parameters of the magnetic gear. A sub-scale magnetic gear with a diameter of 110 mm and a scaled-up magnetic gear with a diameter of 228 mm was designed, constructed and experimentally evaluated. The torque and torque density of sub

  10. An empirical study of the wound effect on sap flux density measured with thermal dissipation probes.

    Science.gov (United States)

    Wiedemann, Andreas; Marañón-Jiménez, Sara; Rebmann, Corinna; Herbst, Mathias; Cuntz, Matthias

    2016-12-01

    The insertion of thermal dissipation (TD) sensors on tree stems for sap flux density (SFD) measurements can lead to SFD underestimations due to a wound formation close to the drill hole. However, the wound effect has not been assessed experimentally for this method yet. Here, we propose an empirical approach to investigate the effect of the wound healing on measured sap flux with TD probes. The approach was performed for both, diffuse-porous (Fagus sylvatica (Linnaeus)) and ring-porous (Quercus petraea (Lieblein)) species. Thermal dissipation probes were installed on different dates along the growing season to document the effects of the dynamic wound formation. The trees were cut in autumn and additional sensors were installed in the cut stems, therefore, without potential effects of wound development. A range of water pressures was applied to the stem segments and SFDs were simultaneously measured by TD sensors as well as gravimetrically in the laboratory. The formation of wounds around sensors installed in living tree stems led to underestimation of SFD by 21.4 ± 3 and 47.5 ± 3.8% in beech and oak, respectively. The differences between SFD underestimations of diffuse-porous beech and ring-porous oak were, however, not statistically significant. Sensors with 5-, 11- and 22-week-old wounds also showed no significant differences, which implies that the influence of wound formation on SFD estimates was completed within the first few weeks after perforation. These results were confirmed by time courses of SFD measurements in the field. Field SFD values decreased immediately after sensor installation and reached stable values after ~2 weeks with similar underestimations to the ones observed in the laboratory. We therefore propose a feasible approach to correct directly field observations of SFD for potential underestimations due to the wound effect. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e

  11. Effect of Magnetic Flux Density and Applied Current on Temperature, Velocity and Entropy Generation Distributions in MHD Pumps

    Directory of Open Access Journals (Sweden)

    M. Kiyasatfar

    2011-01-01

    Full Text Available In the present study, simulation of steady state, incompressible and fully developed laminar flow has been conducted in a magneto hydrodynamic (MHD pump. The governing equations are solved numerically by finite-difference method. The effect of the magnetic flux density and current on the flow and temperature distributions in a MHD pump is investigated. The obtained results showed that controlling the flow and the temperature is possible through the controlling of the applied current and the magnetic flux. Furthermore, the effects of the magnetic flux density and current on entropy generation in MHD pump are considered. Our presented numerical results are in good agreement with the experimental data showed in literature.

  12. A state-space modeling approach to estimating canopy conductance and associated uncertainties from sap flux density data

    Science.gov (United States)

    David M. Bell; Eric J. Ward; A. Christopher Oishi; Ram Oren; Paul G. Flikkema; James S. Clark; David Whitehead

    2015-01-01

    Uncertainties in ecophysiological responses to environment, such as the impact of atmospheric and soil moisture conditions on plant water regulation, limit our ability to estimate key inputs for ecosystem models. Advanced statistical frameworks provide coherent methodologies for relating observed data, such as stem sap flux density, to unobserved processes, such as...

  13. Upper limit to the 45-MHz flux density of SN 1987A

    Science.gov (United States)

    Alvarez, H.; Aparici, J.; May, J.; Olmos, F.

    1992-04-01

    Results are presented of an observational study of SN 1987A at 45 MHz using two techniques based on the assumption that the object will exhibit scintillation when its radiation gets through. On the basis of the theory developed for four well studied radio supernova and under the assumption that SN 1987A would behave like some of them, a detection at a level of several tens of Jy within the first two years of age was expected. The present results indicate that the flux density of SN 1987A was less than 5 Jy. From the nondetection it is inferred that SN 1987A did not behave like the radio supernova used for comparison, that the theory used is not applicable at very low frequencies, or that both statements may be valid. Under the assumption that the supernova is a compact source, it is estimated that a magnetic field of about 0.0001 would be sufficient to reduce the 45-MHZ radiation below 5 Jy.

  14. Modification of SOL profiles and fluctuations with line-average density and divertor flux expansion in TCV

    DEFF Research Database (Denmark)

    Vianello, N.; Tsui, C.; Theiler, C.

    2017-01-01

    A set of Ohmic density ramp experiments addressing the role of parallel connection length in modifying scrape off layer (SOL) properties has been performed on the TCV tokamak. The parallel connection length has been modified by varying the poloidal flux expansion fx. It will be shown that this mo......A set of Ohmic density ramp experiments addressing the role of parallel connection length in modifying scrape off layer (SOL) properties has been performed on the TCV tokamak. The parallel connection length has been modified by varying the poloidal flux expansion fx. It will be shown...... that this modification does not influence neither the detachment density threshold, nor the development of a flat SOL density profile which instead depends strongly on the increase of the core line average density. The modification of the SOL upstream profile, with the appearance of what is generally called a density...... shoulder, has been related to the properties of filamentary blobs. Blob size increases with density, without any dependence on the parallel connection length both in the near and far SOL. The increase of the density decay length, corresponding to a profile flattening, has been related to the variation...

  15. The relation between radio flux density and ionizing ultra-violet flux for HII regions and supernova remnants in the Large Magellanic cloud

    Directory of Open Access Journals (Sweden)

    Filipović M.D.

    2003-01-01

    Full Text Available We present a comparison between the Parkes radio surveys (Filipović et al 1995 and Vacuum Ultra-Violet (VUV surveys (Smith et al. 1987 of the Large Magellanic Clouds (LMC. We have found 72 sources in common in the LMC which are known HII regions (52 and supernova remnants (SNRs (19. Some of these radio sources are associated with two or more UV stellar associations. A comparison of the radio flux densities and ionizing UV flux for HII regions shows a very good correlation, as expected from theory. Many of the Magellanic Clouds (MCs SNRs are embedded in HII regions, so there is also a relation between radio and UV which we attribute to the surrounding HII regions.

  16. A dynamo theory prediction for solar cycle 22 - Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    Science.gov (United States)

    Schatten, K. H.; Hedin, A. E.

    1984-01-01

    Using the 'dynamo theory' method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  17. A dynamo theory prediction for solar cycle 22: Sunspot number, radio flux, exospheric temperature, and total density at 400 km

    Science.gov (United States)

    Schatten, K. H.; Hedin, A. E.

    1986-01-01

    Using the dynamo theory method to predict solar activity, a value for the smoothed sunspot number of 109 + or - 20 is obtained for solar cycle 22. The predicted cycle is expected to peak near December, 1990 + or - 1 year. Concommitantly, F(10.7) radio flux is expected to reach a smoothed value of 158 + or - 18 flux units. Global mean exospheric temperature is expected to reach 1060 + or - 50 K and global total average total thermospheric density at 400 km is expected to reach 4.3 x 10 to the -15th gm/cu cm + or - 25 percent.

  18. Industrialization of nanocrystalline Fe–Si–B–P–Cu alloys for high magnetic flux density cores

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Kana, E-mail: k-takenaka@imr.tohoku.ac.jp [Research and Development Center for Ultra High Efficiency Nano-crystalline Soft Magnetic Materials, Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Setyawan, Albertus D.; Sharma, Parmanand; Nishiyama, Nobuyuki [Research and Development Center for Ultra High Efficiency Nano-crystalline Soft Magnetic Materials, Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Makino, Akihiro [Tohoku University, Sendai, Miyagi 980-8577 (Japan)

    2016-03-01

    Nanocrystalline Fe–Si–B–P–Cu alloys exhibit high saturation magnetic flux density (B{sub s}) and extremely low magnetic core loss (W), simultaneously. Low amorphous-forming ability of these alloys hinders their application potential in power transformers and motors. Here we report a solution to this problem. Minor addition of C is found to be effective in increasing the amorphous-forming ability of Fe–Si–B–P–Cu alloys. It allows fabrication of 120 mm wide ribbons (which was limited to less than 40 mm) without noticeable degradation in magnetic properties. The nanocrystalline (Fe{sub 85.7}Si{sub 0.5}B{sub 9.5}P{sub 3.5}Cu{sub 0.8}){sub 99}C{sub 1} ribbons exhibit low coercivity (H{sub c})~4.5 A/m, high B{sub s}~1.83 T and low W~0.27 W/kg (@ 1.5 T and 50 Hz). Success in fabrication of long (60–100 m) and wide (~120 mm) ribbons, which are made up of low cost elements is promising for mass production of energy efficient high power transformers and motors - Highlights: • Minor addition of C in FeSiBPCu alloy increases amorphous-forming ability. • The FeSiBPCuC alloy exhibits B{sub s} close to Si-steel and Core loss lower than it. • Excellent soft magnetic properties were obtained for 120 mm wide ribbons. • Nanocrystalline FeSiBPCuC alloy can be produced at industrial scale with low cost. • The alloy is suitable for making low energy loss power transformers and motors.

  19. The effects of nonuniform magnetic field strength on density flux and test particle transport in drift wave turbulence

    Science.gov (United States)

    Dewhurst, J. M.; Hnat, B.; Dendy, R. O.

    2009-07-01

    The extended Hasegawa-Wakatani equations generate fully nonlinear self-consistent solutions for coupled density n and vorticity ∇2ϕ, where ϕ is electrostatic potential, in a plasma with background density inhomogeneity κ =-∂ ln n0/∂x and magnetic field strength inhomogeneity C =-∂ ln B/∂x. Finite C introduces interchange effects and ∇B drifts into the framework of drift turbulence through compressibility of the E ×B and diamagnetic drifts. This paper addresses the direct computation of the radial E ×B density flux Γn=-n∂ϕ/∂y, tracer particle transport, the statistical properties of the turbulent fluctuations that drive Γn and tracer motion, and analytical underpinnings. Systematic trends emerge in the dependence on C of the skewness of the distribution of pointwise Γn and in the relative phase of density-velocity and density-potential pairings. It is shown how these effects, together with conservation of potential vorticity Π =∇2ϕ-n+(κ -C)x, account for much of the transport phenomenology. Simple analytical arguments yield a Fickian relation Γn=(κ -C)Dx between the radial density flux Γn and the radial tracer diffusivity Dx, which is shown to explain key trends in the simulations.

  20. Measurement of the light flux density patterns from luminaires proposed as photon sources for photosynthesis during space travel

    Science.gov (United States)

    Walker, Paul N.

    1989-01-01

    Two luminaires were evaluated to determine the light flux density pattern on a horizontal plane surface. NASA supplied both luminaires; one was made by NASA and the other is commercially available. Tests were made for three combinations of luminaire height and luminaire lens material using the NASA luminaire; only one configuration of the commercial luminaire was tested. Measurements were made using four sensors with different wavelength range capabilities. The data are presented in graphical and tabular formats.

  1. Optimizing Power Density and Efficiency of a Double-Halbach Array Permanent-Magnet Ironless Axial-Flux Motor

    Science.gov (United States)

    Duffy, Kirsten P.

    2016-01-01

    NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. This effort aims to identify design parameters that affect power density and efficiency for a double-Halbach array permanent-magnet ironless axial flux motor configuration. These parameters include both geometrical and higher-order parameters, including pole count, rotor speed, current density, and geometries of the magnets, windings, and air gap.

  2. Modification of SOL profiles and fluctuations with line-average density and divertor flux expansion in TCV

    Science.gov (United States)

    Vianello, N.; Tsui, C.; Theiler, C.; Allan, S.; Boedo, J.; Labit, B.; Reimerdes, H.; Verhaegh, K.; Vijvers, W. A. J.; Walkden, N.; Costea, S.; Kovacic, J.; Ionita, C.; Naulin, V.; Nielsen, A. H.; Rasmussen, J. Juul; Schneider, B.; Schrittwieser, R.; Spolaore, M.; Carralero, D.; Madsen, J.; Lipschultz, B.; Militello, F.; The TCV Team; The EUROfusion MST1 Team

    2017-11-01

    A set of Ohmic density ramp experiments addressing the role of parallel connection length in modifying scrape off layer (SOL) properties has been performed on the TCV tokamak. The parallel connection length has been modified by varying the poloidal flux expansion f x . It will be shown that this modification does not influence neither the detachment density threshold, nor the development of a flat SOL density profile which instead depends strongly on the increase of the core line average density. The modification of the SOL upstream profile, with the appearance of what is generally called a density shoulder, has been related to the properties of filamentary blobs. Blob size increases with density, without any dependence on the parallel connection length both in the near and far SOL. The increase of the density decay length, corresponding to a profile flattening, has been related to the variation of the divertor normalized collisionality Λ_div (Myra et al 2006 Phys. Plasmas 13 112502, Carralero et al, ASDEX Upgrade Team, JET Contributors and EUROfusion MST1 Team 2015 Phys. Rev. Let. 115 215002), showing that in TCV the increase of Λ_div is not sufficient to guarantee the SOL upstream profile flattening.

  3. Solar Modulation of Inner Trapped Belt Radiation Flux as a Function of Atmospheric Density

    Science.gov (United States)

    Lodhi, M. A. K.

    2005-01-01

    No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose.

  4. Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer

    Science.gov (United States)

    Settar, Abdelhakim; Abboudi, Saïd; Madani, Brahim; Nebbali, Rachid

    2017-08-01

    Due to the endothermic nature of the steam methane reforming reaction, the process is often limited by the heat transfer behavior in the reactors. Poor thermal behavior sometimes leads to slow reaction kinetics, which is characterized by the presence of cold spots in the catalytic zones. Within this framework, the present work consists on a numerical investigation, in conjunction with an experimental one, on the one-dimensional heat transfer phenomenon during the heat supply of a catalytic-wall reactor, which is designed for hydrogen production. The studied reactor is inserted in an electric furnace where the heat requirement of the endothermic reaction is supplied by electric heating system. During the heat supply, an unknown heat flux density, received by the reactive flow, is estimated using inverse methods. In the basis of the catalytic-wall reactor model, an experimental setup is engineered in situ to measure the temperature distribution. Then after, the measurements are injected in the numerical heat flux estimation procedure, which is based on the Function Specification Method (FSM). The measured and estimated temperatures are confronted and the heat flux density which crosses the reactor wall is determined.

  5. Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer

    Science.gov (United States)

    Settar, Abdelhakim; Abboudi, Saïd; Madani, Brahim; Nebbali, Rachid

    2018-02-01

    Due to the endothermic nature of the steam methane reforming reaction, the process is often limited by the heat transfer behavior in the reactors. Poor thermal behavior sometimes leads to slow reaction kinetics, which is characterized by the presence of cold spots in the catalytic zones. Within this framework, the present work consists on a numerical investigation, in conjunction with an experimental one, on the one-dimensional heat transfer phenomenon during the heat supply of a catalytic-wall reactor, which is designed for hydrogen production. The studied reactor is inserted in an electric furnace where the heat requirement of the endothermic reaction is supplied by electric heating system. During the heat supply, an unknown heat flux density, received by the reactive flow, is estimated using inverse methods. In the basis of the catalytic-wall reactor model, an experimental setup is engineered in situ to measure the temperature distribution. Then after, the measurements are injected in the numerical heat flux estimation procedure, which is based on the Function Specification Method (FSM). The measured and estimated temperatures are confronted and the heat flux density which crosses the reactor wall is determined.

  6. Spontaneous synthesis of carbon nanowalls, nanotubes and nanotips using high flux density plasmas

    NARCIS (Netherlands)

    Bystrov, K.; M. C. M. van de Sanden,; Arnas, C.; Marot, L.; Mathys, D.; Liu, F.; L.K. Xu,; X.B. Li,; A.V. Shalpegin,; De Temmerman, G.

    2014-01-01

    We have investigated the formation of various carbon nanostructures using extreme plasma fluxes up to four orders of magnitude larger than in conventional plasma-enhanced chemical vapor deposition processing. Carbon nanowalls, multi-wall nanotubes, spherical nanoparticles and nanotips are among the

  7. VLA Observations of Flux Density Variations at 3.6 cm in the Massive Star Forming Region W49A

    Science.gov (United States)

    De Pree, Christopher G.; Bates, Jennifer; Galvan-Madrid, Roberto; Goss, Miller; Klessen, Ralf; Mac Low, Mordecai; Melo, Theresa; Peters, Thomas; Presler-Marshall, Brynn; Webb-Forgus, Rowen; Wilner, David

    2018-01-01

    In recent years, a number of ultracompact Galactic star forming regions have been detected to vary in flux density on short timescales ($\\sim$10-20 years). This variation can result when ionizing stars, orbiting within the filamentary structures formed in a gravitationally collapsing cloud, enter or leave a dense filament. The increase or decrease in the recombination rate from the change of density causes the H II region surrounding the star to shrink or grow. Here we focus on the massive star-forming region W49A, which was observed with the Karl G. Jansky Very Large Array (VLA) at 3.6 cm with the B-configuration in February 2015. These high resolution ($\\sim$0.8$\\arcsec$) observations were compared with B-configuration observations of the same region made with the VLA in August 1994, almost 21 years earlier. As expected, most of the sources in the crowded field of ultracompact (UC) and hypercompact (HC) HII regions exhibit no significant changes over this time period. One source, however, W49A/G2 has decreased by $\\sim$40\\% in peak intensity, from 202$\\pm$10 mJy/beam to 124$\\pm$10 mJy/beam. We present the 1994 and 2015 images of the W49A region, the difference images that indicate the position of the flux density decrease, and discuss possible explanations of the detected decrease near the position of W49A/G2.

  8. Calibration and evaluation of CCD spectroradiometers for ground-based and airborne measurements of spectral actinic flux densities

    Science.gov (United States)

    Bohn, Birger; Lohse, Insa

    2017-09-01

    The properties and performance of charge-coupled device (CCD) array spectroradiometers for the measurement of atmospheric spectral actinic flux densities (280-650 nm) and photolysis frequencies were investigated. These instruments are widely used in atmospheric research and are suitable for aircraft applications because of high time resolutions and high sensitivities in the UV range. The laboratory characterization included instrument-specific properties like the wavelength accuracy, dark signal, dark noise and signal-to-noise ratio (SNR). Spectral sensitivities were derived from measurements with spectral irradiance standards. The calibration procedure is described in detail, and a straightforward method to minimize the influence of stray light on spectral sensitivities is introduced. From instrument dark noise, minimum detection limits ≈ 1 × 1010 cm-2 s-1 nm-1 were derived for spectral actinic flux densities at wavelengths around 300 nm (1 s integration time). As a prerequisite for the determination of stray light under field conditions, atmospheric cutoff wavelengths were defined using radiative transfer calculations as a function of the solar zenith angle (SZA) and total ozone column (TOC). The recommended analysis of field data relies on these cutoff wavelengths and is also described in detail taking data from a research flight on HALO (High Altitude and Long Range Research Aircraft) as an example. An evaluation of field data was performed by ground-based comparisons with a double-monochromator-based, highly sensitive reference spectroradiometer. Spectral actinic flux densities were compared as well as photolysis frequencies j(NO2) and j(O1D), representing UV-A and UV-B ranges, respectively. The spectra expectedly revealed increased daytime levels of stray-light-induced signals and noise below atmospheric cutoff wavelengths. The influence of instrument noise and stray-light-induced noise was found to be insignificant for j(NO2) and rather limited for j(O1D

  9. A DETERMINATION OF THE FLUX DENSITY IN CORE OF DISTRIBUTION TRANSFORMERS, WHAT BUILT WITH THE COMMON USING OF GRAIN AND NON GRAIN ORIENTED MAGNETIC STEELS

    Directory of Open Access Journals (Sweden)

    I.V. Pentegov

    2015-12-01

    Full Text Available Purpose. The development of calculation method to determinate the flux densities in different parts of the magnetic cores of distribution transformers, what built from different types magnetic steel (mixed core. Methodology. The method is based on the scientific positions of Theoretical Electrical Engineering – the theory of the electromagnetic field in nonlinear mediums to determine the distribution of magnetic flux in mixed core of transformer, what are using different types of steel what have the different magnetic properties. Results. The developed method gives possible to make calculation of the flux density and influence of skin effect in different parts of the magnetic cores of distribution transformer, where are used mix of grain oriented (GO and non grain oriented (NGO steels. Was determinate the general basic conditions for the calculation of flux density in the laminations from grain and non grain oriented steels of the magnetic core: the strength of magnetic field for the laminations of particular part of mixed core is the same; the sum of the magnetic fluxes in GO and NGO steels in particular part of mixed core is equal with the designed magnetic flux in this part of mixed core. Discover, the magnetic flux in mixed core of the transformer has specific distribution between magnetic steels. The flux density is higher in laminations from GO steel and smaller in laminations from the NGO steel. That is happened because for magnetic flux is easier pass through laminations from GO steel, what has better magnetic conductance than laminations from NGO steel. Originality. The common using of different types of magnetic steels in cores for distribution transformers gives possibility to make design of transformer with low level of no load losses, high efficiency and with optimal cost. Practical value. The determination of the flux density in different parts of magnetic core with GO and NGO steels gives possibility make accurate calculation of

  10. Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz

    Science.gov (United States)

    Citrin, J.; Bourdelle, C.; Casson, F. J.; Angioni, C.; Bonanomi, N.; Camenen, Y.; Garbet, X.; Garzotti, L.; Görler, T.; Gürcan, O.; Koechl, F.; Imbeaux, F.; Linder, O.; van de Plassche, K.; Strand, P.; Szepesi, G.; Contributors, JET

    2017-12-01

    Quasilinear turbulent transport models are a successful tool for prediction of core tokamak plasma profiles in many regimes. Their success hinges on the reproduction of local nonlinear gyrokinetic fluxes. We focus on significant progress in the quasilinear gyrokinetic transport model QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036), which employs an approximated solution of the mode structures to significantly speed up computation time compared to full linear gyrokinetic solvers. Optimisation of the dispersion relation solution algorithm within integrated modelling applications leads to flux calculations × {10}6-7 faster than local nonlinear simulations. This allows tractable simulation of flux-driven dynamic profile evolution including all transport channels: ion and electron heat, main particles, impurities, and momentum. Furthermore, QuaLiKiz now includes the impact of rotation and temperature anisotropy induced poloidal asymmetry on heavy impurity transport, important for W-transport applications. Application within the JETTO integrated modelling code results in 1 s of JET plasma simulation within 10 h using 10 CPUs. Simultaneous predictions of core density, temperature, and toroidal rotation profiles for both JET hybrid and baseline experiments are presented, covering both ion and electron turbulence scales. The simulations are successfully compared to measured profiles, with agreement mostly in the 5%–25% range according to standard figures of merit. QuaLiKiz is now open source and available at www.qualikiz.com.

  11. BOREAS RSS-17 Xylem Flux Density Measurements at the SSA-OBS Site

    Science.gov (United States)

    Zimmerman, Reiner; Way, JoBea; McDonald, Kyle; Nickeson, Jaime (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    As part of its efforts to determine environmental and phenological states from radar imagery, the Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-17 team collected in situ tree xylem flow measurements for one growing season on five Picea mariana (black spruce) trees. The data were collected to obtain information on the temporal and spatial variability in water uptake by trees in the Southern Study Area-Old Black Spruce (SSA-OBS) stand in the BOREAS SSA. Temporally, the data were collected in 30-minute intervals for 120 days from 31 May 1994 until 27 September 1994. The data are stored in tabular ASCII files. The xylem flux data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  12. Ionisation in turbulent magnetic molecular clouds. I. Effect on density and mass-to-flux ratio structures

    Science.gov (United States)

    Bailey, Nicole D.; Basu, Shantanu; Caselli, Paola

    2017-05-01

    Context. Previous studies show that the physical structures and kinematics of a region depend significantly on the ionisation fraction. These studies have only considered these effects in non-ideal magnetohydrodynamic simulations with microturbulence. The next logical step is to explore the effects of turbulence on ionised magnetic molecular clouds and then compare model predictions with observations to assess the importance of turbulence in the dynamical evolution of molecular clouds. Aims: In this paper, we extend our previous studies of the effect of ionisation fractions on star formation to clouds that include both non-ideal magnetohydrodynamics and turbulence. We aim to quantify the importance of a treatment of the ionisation fraction in turbulent magnetised media and investigate the effect of the turbulence on shaping the clouds and filaments before star formation sets in. In particular, here we investigate how the structure, mass and width of filamentary structures depend on the amount of turbulence in ionised media and the initial mass-to-flux ratio. Methods: To determine the effects of turbulence and mass-to-flux ratio on the evolution of non-ideal magnetised clouds with varying ionisation profiles, we have run two sets of simulations. The first set assumes different initial turbulent Mach values for a fixed initial mass-to-flux ratio. The second set assumes different initial mass-to-flux ratio values for a fixed initial turbulent Mach number. Both sets explore the effect of using one of two ionisation profiles: step-like (SL) or cosmic ray only (CR-only). We compare the resulting density and mass-to-flux ratio structures both qualitatively and quantitatively via filament and core masses and filament fitting techniques (Gaussian and Plummer profiles). Results: We find that even with almost no turbulence, filamentary structure still exists although at lower density contours. Comparison of simulations shows that for turbulent Mach numbers above 2, there is

  13. Emergence flux declines disproportionately to larval density along a stream metals gradient

    Science.gov (United States)

    Schmidt, Travis S.; Kraus, Johanna M.; Walters, David M.; Wanty, Richard B.

    2013-01-01

    Effects of contaminants on adult aquatic insect emergence are less well understood than effects on insect larvae. We compared responses of larval density and adult emergence along a metal contamination gradient. Nonlinear threshold responses were generally observed for larvae and emergers. Larval densities decreased significantly at low metal concentrations but precipitously at concentrations of metal mixtures above aquatic life criteria (Cumulative Criterion Accumulation Ratio (CCAR) ≥ 1). In contrast, adult emergence declined precipitously at low metal concentrations (CCAR ≤ 1), followed by a modest decline above this threshold. Adult emergence was a more sensitive indicator of the effect of low metals concentrations on aquatic insect communities compared to larvae, presumably because emergence is limited by a combination of larval survival and other factors limiting successful emergence. Thus effects of exposure to larvae are not manifest until later in life (during metamorphosis and emergence). This loss in emergence reduces prey subsidies to riparian communities at concentrations considered safe for aquatic life. Our results also challenge the widely held assumption that adult emergence is a constant proportion of larval densities in all streams.

  14. Influence of clouds on the spectral actinic flux density in the lower troposphere (INSPECTRO: overview of the field campaigns

    Directory of Open Access Journals (Sweden)

    C. Topaloglou

    2008-03-01

    Full Text Available Ultraviolet radiation is the key factor driving tropospheric photochemistry. It is strongly modulated by clouds and aerosols. A quantitative understanding of the radiation field and its effect on photochemistry is thus only possible with a detailed knowledge of the interaction between clouds and radiation. The overall objective of the project INSPECTRO was the characterization of the three-dimensional actinic radiation field under cloudy conditions. This was achieved during two measurement campaigns in Norfolk (East Anglia, UK and Lower Bavaria (Germany combining space-based, aircraft and ground-based measurements as well as simulations with the one-dimensional radiation transfer model UVSPEC and the three-dimensional radiation transfer model MYSTIC.

    During both campaigns the spectral actinic flux density was measured at several locations at ground level and in the air by up to four different aircraft. This allows the comparison of measured and simulated actinic radiation profiles. In addition satellite data were used to complete the information of the three dimensional input data set for the simulation. A three-dimensional simulation of actinic flux density data under cloudy sky conditions requires a realistic simulation of the cloud field to be used as an input for the 3-D radiation transfer model calculations. Two different approaches were applied, to derive high- and low-resolution data sets, with a grid resolution of about 100 m and 1 km, respectively.

    The results of the measured and simulated radiation profiles as well as the results of the ground based measurements are presented in terms of photolysis rate profiles for ozone and nitrogen dioxide. During both campaigns all spectroradiometer systems agreed within ±10% if mandatory corrections e.g. stray light correction were applied. Stability changes of the systems were below 5% over the 4 week campaign periods and negligible over a few days. The J(O1D data of

  15. A state-space modeling approach to estimating canopy conductance and associated uncertainties from sap flux density data.

    Science.gov (United States)

    Bell, David M; Ward, Eric J; Oishi, A Christopher; Oren, Ram; Flikkema, Paul G; Clark, James S

    2015-07-01

    Uncertainties in ecophysiological responses to environment, such as the impact of atmospheric and soil moisture conditions on plant water regulation, limit our ability to estimate key inputs for ecosystem models. Advanced statistical frameworks provide coherent methodologies for relating observed data, such as stem sap flux density, to unobserved processes, such as canopy conductance and transpiration. To address this need, we developed a hierarchical Bayesian State-Space Canopy Conductance (StaCC) model linking canopy conductance and transpiration to tree sap flux density from a 4-year experiment in the North Carolina Piedmont, USA. Our model builds on existing ecophysiological knowledge, but explicitly incorporates uncertainty in canopy conductance, internal tree hydraulics and observation error to improve estimation of canopy conductance responses to atmospheric drought (i.e., vapor pressure deficit), soil drought (i.e., soil moisture) and above canopy light. Our statistical framework not only predicted sap flux observations well, but it also allowed us to simultaneously gap-fill missing data as we made inference on canopy processes, marking a substantial advance over traditional methods. The predicted and observed sap flux data were highly correlated (mean sensor-level Pearson correlation coefficient = 0.88). Variations in canopy conductance and transpiration associated with environmental variation across days to years were many times greater than the variation associated with model uncertainties. Because some variables, such as vapor pressure deficit and soil moisture, were correlated at the scale of days to weeks, canopy conductance responses to individual environmental variables were difficult to interpret in isolation. Still, our results highlight the importance of accounting for uncertainty in models of ecophysiological and ecosystem function where the process of interest, canopy conductance in this case, is not observed directly. The StaCC modeling

  16. Enhancement of lateral growth of the GaN crystal with extremely low dislocation density during the Na-flux growth on a point seed

    Science.gov (United States)

    Hayashi, Masatoshi; Imanishi, Masayuki; Yamada, Takumi; Matsuo, Daisuke; Murakami, Kosuke; Maruyama, Mihoko; Imade, Mamoru; Yoshimura, Masashi; Mori, Yusuke

    2017-06-01

    Recently, we developed a Na-flux point seed technique for fabrication of large-diameter gallium nitride (GaN) crystals with low dislocation density. It may be possible to further reduce the dislocation density of crystals fabricated by this technique by reducing the point-seed (PS) density, because one dislocation remains on the c face of each grain grown on each point seed. Therefore, in order to realize coalescence growth by using a Multi-PS-GaN substrate with a low PS density, namely a long interval between neighboring point seeds, the lateral growth of each grain grown on a point seed must be enhanced. We attempted to promote the lateral growth of GaN crystals grown on a point seed by decreasing the flux thickness. As a result, we realized a high growth rate of 80 μm/h along the a direction and a low aspect ratio by the Na-flux point seed technique. Moreover, almost no dislocations could be found in the lateral growth sector. Consequently, growth in a thin flux is applicable for the coalescence growth technique with low PS density and may be an outstanding approach for reducing the dislocation density in GaN crystals grown by the Na-flux coalescence growth technique.

  17. Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa{sub 2}Cu{sub 3}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Xing, W.; Heinrich, B. [Simon Fraser Univ., British Columbia (Canada); Zhou, H. [CTF Systems, Inc., British Columbia (Canada)] [and others

    1994-12-31

    Mapping of the magnetic flux density B{sub z} (perpendicular to the film plane) for a YBa{sub 2}Cu{sub 3}O{sub 7} thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B{sub z} distributions. From the known sheet magnetization, the tangential (B{sub x,y}) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B{sub x,y}/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.

  18. Wavelet and Fractal Analysis of Remotely Sensed Surface Temperature with Applications to Estimation of Surface Sensible Heat Flux Density

    Science.gov (United States)

    Schieldge, John

    2000-01-01

    Wavelet and fractal analyses have been used successfully to analyze one-dimensional data sets such as time series of financial, physical, and biological parameters. These techniques have been applied to two-dimensional problems in some instances, including the analysis of remote sensing imagery. In this respect, these techniques have not been widely used by the remote sensing community, and their overall capabilities as analytical tools for use on satellite and aircraft data sets is not well known. Wavelet and fractal analyses have the potential to provide fresh insight into the characterization of surface properties such as temperature and emissivity distributions, and surface processes such as the heat and water vapor exchange between the surface and the lower atmosphere. In particular, the variation of sensible heat flux density as a function of the change In scale of surface properties Is difficult to estimate, but - in general - wavelets and fractals have proved useful in determining the way a parameter varies with changes in scale. We present the results of a limited study on the relationship between spatial variations in surface temperature distribution and sensible heat flux distribution as determined by separate wavelet and fractal analyses. We analyzed aircraft imagery obtained in the thermal infrared (IR) bands from the multispectral TIMS and hyperspectral MASTER airborne sensors. The thermal IR data allows us to estimate the surface kinetic temperature distribution for a number of sites in the Midwestern and Southwestern United States (viz., San Pedro River Basin, Arizona; El Reno, Oklahoma; Jornada, New Mexico). The ground spatial resolution of the aircraft data varied from 5 to 15 meters. All sites were instrumented with meteorological and hydrological equipment including surface layer flux measuring stations such as Bowen Ratio systems and sonic anemometers. The ground and aircraft data sets provided the inputs for the wavelet and fractal analyses

  19. Importance of 3-D radiant flux densities for outdoor human thermal comfort on clear-sky summer days in Freiburg, Southwest Germany

    Directory of Open Access Journals (Sweden)

    Hyunjung Lee

    2014-09-01

    Full Text Available This study concerns the role of short- and long-wave radiant flux densities from different directions in complex urban settings for human thermal comfort on clear-sky summer days. The aims of the investigation are to quantify the importance of the sky view factor as an urban design-dependent variable for the 3-D radiant flux densities absorbed by the standardized human-biometeorological reference person and to analyze the varying impact of the absorbed 3-D short- and long-wave radiant flux densities on the mean radiant temperature (Tmrt$T_{\\text{mrt}}$, near-surface air temperature (Ta$T_{\\text{a}}$ and physiologically equivalent temperature (PET.The results obtained by measuring campaigns and numerical simulations point to the different importance of the absorbed 3-D radiant flux densities for human thermal comfort characterized by Ta$T_{\\text{a}}$, Tmrt$T_{\\text{mrt}}$ and PET. The magnitude of Tmrt$T_{\\text{mrt}}$ is mainly determined by the total of the absorbed 3-D long-wave radiant flux densities. However, the fluctuations of Tmrt$T_{\\text{mrt}}$ are mainly governed by the total of the absorbed 3-D short-wave radiant flux densities. Their variance can be well explained by the variance of the sky view factor related to the southern part of the upper half space. Taking account of the different impact of the 3-D radiant flux densities, Tmrt$T_{\\text{mrt}}$ can be quite well estimated by a multiple regression using the total of the absorbed 3-D short-wave radiant flux densities and the absorbed long-wave radiant flux density from the lower half space as independent variables. PET can be well estimated by a multiple regression showing Tmrt$T_{\\text{mrt}}$ and Ta$T_{\\text{a}}$ as independent variables. On a hot summer day, the increase of the albedo of vertical building walls within a simple E-W oriented street canyon leads to a decrease of the surface temperature of the S-facing wall, but to an increase of Tmrt$T_{\\text{mrt}}$ and PET

  20. Calibration and evaluation of CCD spectroradiometers for ground-based and airborne measurements of spectral actinic flux densities

    Directory of Open Access Journals (Sweden)

    B. Bohn

    2017-09-01

    Full Text Available The properties and performance of charge-coupled device (CCD array spectroradiometers for the measurement of atmospheric spectral actinic flux densities (280–650 nm and photolysis frequencies were investigated. These instruments are widely used in atmospheric research and are suitable for aircraft applications because of high time resolutions and high sensitivities in the UV range. The laboratory characterization included instrument-specific properties like the wavelength accuracy, dark signal, dark noise and signal-to-noise ratio (SNR. Spectral sensitivities were derived from measurements with spectral irradiance standards. The calibration procedure is described in detail, and a straightforward method to minimize the influence of stray light on spectral sensitivities is introduced. From instrument dark noise, minimum detection limits  ≈  1  ×  1010 cm−2 s−1 nm−1 were derived for spectral actinic flux densities at wavelengths around 300 nm (1 s integration time. As a prerequisite for the determination of stray light under field conditions, atmospheric cutoff wavelengths were defined using radiative transfer calculations as a function of the solar zenith angle (SZA and total ozone column (TOC. The recommended analysis of field data relies on these cutoff wavelengths and is also described in detail taking data from a research flight on HALO (High Altitude and Long Range Research Aircraft as an example. An evaluation of field data was performed by ground-based comparisons with a double-monochromator-based, highly sensitive reference spectroradiometer. Spectral actinic flux densities were compared as well as photolysis frequencies j(NO2 and j(O1D, representing UV-A and UV-B ranges, respectively. The spectra expectedly revealed increased daytime levels of stray-light-induced signals and noise below atmospheric cutoff wavelengths. The influence of instrument noise and stray-light-induced noise was found to be

  1. Phototactic number-density flux in the localized bioconvection of Euglena gracilis

    Science.gov (United States)

    Shoji, Erika; Suematsu, Nobuhiko; Nishimori, Hiraku; Awazu, Akinori; Izumi, Shunsuke; Iima, Makoto

    2014-11-01

    Euglena gracilis is a unicellular phototactic flagellate; it escapes from light sources if the light intensity is higher than 200 W/m2 (negative phototaxis). When the suspension of E. gracilis is illuminated from the bottom by strong light, bioconvection patterns are generated. In the case of E. gracilis, the patterns can be spatially localized. The localization mechanism has not been clarified. We report experimental results related to the localization mechanism. In particular, we experimentally measured the strength of the phototaxis in the lateral direction as well as vertical direction. We prepared a thin container in which the suspension is included, and gave the linearly-changing light intensity. We found the number density gets a peak at a particular light intensity, which never happens if the suspension has the vertical phototaxis only. Further, we succeeded in getting the function representing lateral phototaxis. The relationship between the measured functions and the localized convection cells will be also reported.

  2. Joint-inversion of gravity data and cosmic ray muon flux to detect shallow subsurface density structure beneath volcanoes: Testing the method at a well-characterized site

    Science.gov (United States)

    Roy, M.; Lewis, M.; George, N. K.; Johnson, A.; Dichter, M.; Rowe, C. A.; Guardincerri, E.

    2016-12-01

    The joint-inversion of gravity data and cosmic ray muon flux measurements has been utilized by a number of groups to image subsurface density structure in a variety of settings, including volcanic edifices. Cosmic ray muons are variably-attenuated depending upon the density structure of the material they traverse, so measuring muon flux through a region of interest provides an independent constraint on the density structure. Previous theoretical studies have argued that the primary advantage of combining gravity and muon data is enhanced resolution in regions not sampled by crossing muon trajectories, e.g. in sensing deeper structure or structure adjacent to the region sampled by muons. We test these ideas by investigating the ability of gravity data alone and the joint-inversion of gravity and muon flux to image subsurface density structure, including voids, in a well-characterized field location. Our study area is a tunnel vault located at the Los Alamos National Laboratory within Quaternary ash-flow tuffs on the Pajarito Plateau, flanking the Jemez Volcano in New Mexico. The regional geology of the area is well-characterized (with density measurements in nearby wells) and the geometry of the tunnel and the surrounding terrain is known. Gravity measurements were made using a Lacoste and Romberg D meter and the muon detector has a conical acceptance region of 45 degrees from the vertical and track resolution of several milliradians. We obtain individual and joint resolution kernels for gravity and muon flux specific to our experimental design and plan to combine measurements of gravity and muon flux both within and above the tunnel to infer density structure. We plan to compare our inferred density structure against the expected densities from the known regional hydro-geologic framework.

  3. Constraining annual and seasonal radon-222 flux density from the Southern Ocean using radon-222 concentrations in the boundary layer at Cape Grim

    Directory of Open Access Journals (Sweden)

    W. Zahorowski

    2013-02-01

    Full Text Available Radon concentrations measured between 2001 and 2008 in marine air at Cape Grim, a baseline site in north-western Tasmania, are used to constrain the radon flux density from the Southern Ocean. A method is described for selecting hourly radon concentrations that are least perturbed by land emissions and dilution by the free troposphere. The distribution of subsequent radon flux density estimates is representative of a large area of the Southern Ocean, an important fetch region for Southern Hemisphere climate and air pollution studies. The annual mean flux density (0.27 mBq m−2 s−1 compares well with the mean of the limited number of spot measurements previously conducted in the Southern Ocean (0.24 mBq m−2 s−1, and to some spot measurements made in other oceanic regions. However, a number of spot measurements in other oceanic regions, as well as most oceanic radon flux density values assumed for modelling studies and intercomparisons, are considerably lower than the mean reported here. The reported radon flux varies with seasons and, in summer, with latitude. It also shows a quadratic dependence on wind speed and significant wave height, as postulated and measured by others, which seems to support our assumption that the selected least perturbed radon concentrations were in equilibrium with the oceanic radon source. By comparing the least perturbed radon observations in 2002–2003 with corresponding ‘TransCom’ model intercomparison results, the best agreement is found when assuming a normally distributed radon flux density with σ=0.075 mBq m−2 s−1.

  4. Wide Dynamic Range Multiband Infrared Radiometer for In-Fire Measurements of Wildland Fire Radiant Flux Density

    Science.gov (United States)

    Kremens, R.; Dickinson, M. B.; Hardy, C.; Skowronski, N.; Ellicott, E. A.; Schroeder, W.

    2016-12-01

    We have developed a wide dynamic range (24-bit) data acquisition system for collection of radiant flux density (FRFD) data from wildland fires. The data collection subsystem was designed as an Arduino `shield' and incorporates a 24-bit analog-to-digital converter, precision voltage reference, real time clock, microSD card interface, audible annuciator and interface for various digital communication interfaces (RS232, I2C, SPI, etc.). The complete radiometer system consists of our custom-designed `shield', a commercially available Arduino MEGA computer circuit board and a thermopile sensor -amplifier daughter board. Software design and development is greatly assisted by the availability of a library of public-domain, user-implemented software. The daughter board houses a 5-band radiometer using thermopiles designed for this experiment (Dexter Research Corp., Dexter, MI) to allow determination of the total FRFD from the fire (using a wide band thermopile with a KRS-5 window, 0.1 - 30 um), the FRFD as would be received by an orbital asset like MODIS (3.95 um center wavelength (CWL) and 10.95 CWL, corresponding to MODIS bands 21/22 and 31, respectively) and wider bandpass (0.1-5.5 um and 8-14 um) corresponding to the FRFD recorded by `MWIR' and `LWIR' imaging systems. We required a very wide dynamic range system in order to be able to record the flux density from `cold' ground before the fire, through the `hot' flaming combustion stage, to the `cool' phase after passage of the fire front. The recording dynamic range required (with reasonable resolution at the lowest temperatures) is on the order of 106, which is not currently available in commercial instrumentation at a price point, size or feature set that is suitable for wildland fire investigations. The entire unit, along with rechargeable battery power supply is housed in a fireproof aluminum chassis box, which is then mounted on a mast at a height of 5 - 7 m above the fireground floor. We will report initial

  5. Simulation of Field Dependence of Critical Current Densities of Bulk High Tc Superconducting Materials regarding Thermally Activated Flux Motion

    Science.gov (United States)

    Santosh, M.; Naik, S. Pavan Kumar; Koblischka, M. R.

    2017-07-01

    In the upcoming generation, bulk high temperature superconductors (HTS) will play a crucial and a promising role in numerous industrial applications ranging from Maglev trains to magnetic resonance imaging, etc. Especially, the bulk HTS as permanent magnets are suitable due to the fact that they can trap magnetic fields being several orders of magnitude higher than those of the best hard ferromagnets. The bulk HTS LREBa2Cu3O7-δ (LREBCO or LRE-123, LRE: Y, Gd, etc.,) materials could obtain very powerful compact superconducting super-magnets, which can be operated at the cheaper liquid nitrogen temperature or below due to higher critical temperatures (i.e., ∼90 K). As a result, the new advanced technology can be utilized in a more attractive manner for a variety of technological and medical applications which have the capacity to revolutionize the field. An understanding of the magnetic field dependence of the critical current density (J c(H)) is important to develop better adapted materials. To achieve this goal, a variety of Jc (H) behaviours of bulk LREBCO samples were modelled regarding thermally activated flux motion. In essence, the Jc (H) curves follows a certain criterion where an exponential model is applied. However, to fit the complete Jc (H) curve of the LRE-123 samples an unique model is necessary to explain the behavior at low and high fields. The modelling of the various superconducting materials could be understood in terms of the pinning mechanisms.

  6. Real-time visualization of magnetic flux densities for transcranial magnetic stimulation on commodity and fully immersive VR systems

    Science.gov (United States)

    Kalivarapu, Vijay K.; Serrate, Ciro; Hadimani, Ravi L.

    2017-05-01

    Transcranial Magnetic Stimulation (TMS) is a non-invasive procedure that uses time varying short pulses of magnetic fields to stimulate nerve cells in the brain. In this method, a magnetic field generator ("TMS coil") produces small electric fields in the region of the brain via electromagnetic induction. This technique can be used to excite or inhibit firing of neurons, which can then be used for treatment of various neurological disorders such as Parkinson's disease, stroke, migraine, and depression. It is however challenging to focus the induced electric field from TMS coils to smaller regions of the brain. Since electric and magnetic fields are governed by laws of electromagnetism, it is possible to numerically simulate and visualize these fields to accurately determine the site of maximum stimulation and also to develop TMS coils that can focus the fields on the targeted regions. However, current software to compute and visualize these fields are not real-time and can work for only one position/orientation of TMS coil, severely limiting their usage. This paper describes the development of an application that computes magnetic flux densities (h-fields) and visualizes their distribution for different TMS coil position/orientations in real-time using GPU shaders. The application is developed for desktop, commodity VR (HTC Vive), and fully immersive VR CAVETM systems, for use by researchers, scientists, and medical professionals to quickly and effectively view the distribution of h-fields from MRI brain scans.

  7. Flag Leaf Photosynthesis and Stomatal Function of Grain Sorghum as Influenced by Changing Photosynthetic Photon Flux Densities

    Directory of Open Access Journals (Sweden)

    H. Arnold Bruns

    2016-01-01

    Full Text Available Photosynthesis (A and stomatal function research in grain sorghum (Sorghum bicolor (L. Moench is limited compared to other crops. Flag leaves from three plants of two hybrids, grown with added N-fertilizer of 0.0, 112, and 224 kg ha−1 near Elizabeth, MS, were measured for A and stomatal functions at growth stages GS6 and GS7. A Li-Cor LI-6400XT set at 355 µmol [CO2], a flow rate of 500 µmol s−1, and a 6400-02 LED light source were used to collect data. Light levels were initially set at 2200 µmol m−2 s−1 indicated photosynthetic photon flux density (PPFD, A was allowed to stabilize, data was recorded, indicated PPFD level was reduced by 200 µmol m−2 s−1, and the process was repeated to a level of 200 µmol m−2 s−1. At GS6 all data were unaffected by N-fertility, hybrids, or years. Data on Ci at GS6 indicated A declines faster with decreasing PPFD than gs. Intrinsic water use efficiency (IWUE data supports prior research showing stomata function more to regulate water loss and only marginally limit A. Nitrogen fertility was null on A and stomatal functions and minimal on yield; thus no attempt was made to correlate yield with these data.

  8. Plant lighting system with five wavelength-band light-emitting diodes providing photon flux density and mixing ratio control

    Directory of Open Access Journals (Sweden)

    Yano Akira

    2012-11-01

    Full Text Available Abstract Background Plant growth and development depend on the availability of light. Lighting systems therefore play crucial roles in plant studies. Recent advancements of light-emitting diode (LED technologies provide abundant opportunities to study various plant light responses. The LED merits include solidity, longevity, small element volume, radiant flux controllability, and monochromaticity. To apply these merits in plant light response studies, a lighting system must provide precisely controlled light spectra that are useful for inducing various plant responses. Results We have developed a plant lighting system that irradiated a 0.18 m2 area with a highly uniform distribution of photon flux density (PFD. The average photosynthetic PFD (PPFD in the irradiated area was 438 micro-mol m–2 s–1 (coefficient of variation 9.6%, which is appropriate for growing leafy vegetables. The irradiated light includes violet, blue, orange-red, red, and far-red wavelength bands created by LEDs of five types. The PFD and mixing ratio of the five wavelength-band lights are controllable using a computer and drive circuits. The phototropic response of oat coleoptiles was investigated to evaluate plant sensitivity to the light control quality of the lighting system. Oat coleoptiles irradiated for 23 h with a uniformly distributed spectral PFD (SPFD of 1 micro-mol m–2 s–1 nm–1 at every peak wavelength (405, 460, 630, 660, and 735 nm grew almost straight upwards. When they were irradiated with an SPFD gradient of blue light (460 nm peak wavelength, the coleoptiles showed a phototropic curvature in the direction of the greater SPFD of blue light. The greater SPFD gradient induced the greater curvature of coleoptiles. The relation between the phototropic curvature (deg and the blue-light SPFD gradient (micro-mol m–2 s–1 nm–1 m–1 was 2 deg per 1 micro-mol m–2 s–1 nm–1 m–1. Conclusions The plant lighting system, with a computer with a

  9. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities

    DEFF Research Database (Denmark)

    Baldocchi, D.; Falge, E.; Gu, L.

    2001-01-01

    , the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas and data by supporting project scientists, workshops, and visiting scientists...... of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil-plant-atmosphere trace gas exchange models. Findings so far include 1) net CO2 exchange...

  10. Assessing the thermal dissipation sap flux density method for monitoring cold season water transport in seasonally snow-covered forests.

    Science.gov (United States)

    Chan, Allison M; Bowling, David R

    2017-07-01

    Productivity of conifers in seasonally snow-covered forests is high before and during snowmelt when environmental conditions are optimal for photosynthesis. Climate change is altering the timing of spring in many locations, and changes in the date of transition from winter dormancy can have large impacts on annual productivity. Sap flow methods provide a promising approach to monitor tree activity during the cold season and the winter-spring and fall-winter transitions. Although sap flow techniques have been widely used, cold season results are generally not reported. Here we examine the feasibility of using the Granier thermal dissipation (TD) sap flux density method to monitor transpiration and dormancy of evergreen conifers during the cold season. We conducted a laboratory experiment which demonstrated that the TD method reliably detects xylem water transport (when it occurs) both at near freezing temperature and at low flow rate, and that the sensors can withstand repeated freeze-thaw events. However, the dependence between sensor output and water transport rate in these experiments differed from the established TD relation. In field experiments, sensors installed in two Abies forests lasted through two winters and a summer with low failure. The baseline (no-flow) sensor output varied considerably with temperature during the cold season, and a new baseline algorithm was developed to accommodate this variation. The Abies forests differed in elevation (2070 and 2620 m), and there was a clear difference in timing of initiation and cessation of transpiration between them. We conclude that the TD method can be reliably used to examine water transport during cold periods with associated low flow conditions. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Study and Simulation of the Density of the Incident Solar Flux on the Walls of a Building in Adrar, Algeria

    Directory of Open Access Journals (Sweden)

    A. Oudrane

    2017-10-01

    Full Text Available In this work, we studied the effect of external climatic conditions on the evolution of the daily solar flux incident on the walls of a building located at Adrar region in the South of Algeria. This building is designed for heating or air conditioning applications. Numerical simulations allowed to compare the variation of the incident solar flux over a full day on the south, east, north and west walls of the building to the values of the solar flux on a horizontal wall (the outer ceiling. The horizontal global solar flux is calculated using a Gaussian sinusoidal function. The simulations were carried out in the case of a building located in a desert zone. The results of the numerical simulation showed the effect of the orientation of the building on the evolution of the incident daily solar flux.

  12. Effects of Quantum Flux Density on Photosynthesis and Chloroplast Ultrastructure in Tissue-Cultured Plantlets and Seedlings of Liquidambar styraciflua L. towards Improved Acclimatization and Field Survival 1

    Science.gov (United States)

    Lee, Ni; Wetzstein, Hazel Y.; Sommer, Harry E.

    1985-01-01

    Liquidambar styraciflua L. seedlings and tissue-cultured plantlets were grown under high, medium, or low (315, 155, or 50 microeinsteins per square meter per second photosynthetically active radiation) quantum flux densities. Net photosynthesis, chlorophyll content, and chloroplast ultrastructure of leaves differentiated from these conditions were investigated. Seedling photosynthetic rates at light saturation were positively related to light pretreatments, being 6.44, 4.73, and 2.75 milligrams CO2 per square decimeter per hour for high, medium, and low light, respectively. Cultured plantlets under all light conditions had appreciably higher photosynthetic rates than noncultured seedlings; corresponding rates were 12.14, 13.55, and 11.36 milligrams CO2 per square decimeter per hour. Chlorophyll in seedlings and plantlets was significantly higher in low light-treated plants. Seedling leaves had chloroplasts with abundant starch regardless of light pretreatment. In high light, starch granules were predominant and associated with disrupted granal structure. Low light seedling chloroplasts had smaller starch grains and well-formed grana. In contrast, tissue culture-differentiated leaves were devoid of starch; grana were well organized in higher quantum flux density treatments, but disorganized at low flux densities. Images Figs. 2 to 7 PMID:16664297

  13. Surface renewal: an advanced micrometeorological method for measuring and processing field-scale energy flux density data.

    Science.gov (United States)

    McElrone, Andrew J; Shapland, Thomas M; Calderon, Arturo; Fitzmaurice, Li; Paw U, Kyaw Tha; Snyder, Richard L

    2013-12-12

    Advanced micrometeorological methods have become increasingly important in soil, crop, and environmental sciences. For many scientists without formal training in atmospheric science, these techniques are relatively inaccessible. Surface renewal and other flux measurement methods require an understanding of boundary layer meteorology and extensive training in instrumentation and multiple data management programs. To improve accessibility of these techniques, we describe the underlying theory of surface renewal measurements, demonstrate how to set up a field station for surface renewal with eddy covariance calibration, and utilize our open-source turnkey data logger program to perform flux data acquisition and processing. The new turnkey program returns to the user a simple data table with the corrected fluxes and quality control parameters, and eliminates the need for researchers to shuttle between multiple processing programs to obtain the final flux data. An example of data generated from these measurements demonstrates how crop water use is measured with this technique. The output information is useful to growers for making irrigation decisions in a variety of agricultural ecosystems. These stations are currently deployed in numerous field experiments by researchers in our group and the California Department of Water Resources in the following crops: rice, wine and raisin grape vineyards, alfalfa, almond, walnut, peach, lemon, avocado, and corn.

  14. Dynamic Characteristics of the Main Indexes of Space Weather and Their Application to the Analysis Monitoring Observations Flux Densities of Power Radio Sources on RT URAN-4>

    Science.gov (United States)

    Guglya, L.; Ryabov, M.; Panishko, S.; Suharev, A.

    On radio telescope "URAN-4" of the Odessa observatory of Radio-astronomical Institute during twenty five years (since 1987 till present) monitoring of power galactic and extragalactic radio sources on frequencies 25 and 20MHz has been carried out. Data of the observation was spent in a current of the 22-23th cycles of solar activity and in the beginning of the 24th cycle. Long-term variations density fluxes of radio sources connection with change of a condition of ionosphere in a cycle of solar activity are considered. Means Fourier and Wavelet analysis determine dynamics of changes of the main indexes of space weather and the basic periods of activity are revealed. The obtained data will be used for interpretation of the observation changes flux of radio sources for during all investigated cycle of activity and periods of extreme developments of space weather.

  15. Criterion of mixed convection occurrence in laminar regime in a tubular exchanger with constant flux density; Critere d'apparition de la convection mixte en regime laminaire dans un echangeur tubulaire a densite de flux constante

    Energy Technology Data Exchange (ETDEWEB)

    Beuf, M.; Legrand, A.; Fillaudeau, L.; Leuliet, J.C. [Institut National de Recherches Agronomiques (INRA), Lab. Genie des Procedes et Technologie Alimentaire, LGPTA, 59 - Villeneuve d' Ascq (France); Berthou, M. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches

    2001-07-01

    In food industries, the thermal processing of highly viscous products in continuous processes has become more and more usual. These processes must ensure the microbiological security of the product and a better quality thanks to a thermal process as much homogenous as possible. In this context, the aim of this work is to study the occurrence of mixed convection for Newtonian fluids in laminar flow. An horizontal heat exchanger with constant flux density (impedance heating tube system) and with a circular section (L 6 m, internal diameter = 36 mm) has been used. In a first step, the parameters influencing the occurrence of mixed convection have been identified in order to group them in the form of a similitude invariant in the (Gr/Re){sub mp} ratio. An empirical correlation between this number (Gr/Re){sub mp} and the length of occurrence of mixed convection (L{sup *}) has been established and validated experimentally. The first particularity of this similitude invariant is based on the introduction of the parietal Nusselt number calculated in pure forced convection (Nu{sub xCF}). The second original aspect concerns the length of occurrence of mixed convection which was not considered as a constant but as a datum depending on the conditions of the experiment and on the geometry. (J.S.)

  16. Growth and Accumulation of Secondary Metabolites in Perilla as Affected by Photosynthetic Photon Flux Density and Electrical Conductivity of the Nutrient Solution

    Directory of Open Access Journals (Sweden)

    Na Lu

    2017-05-01

    Full Text Available The global demand for medicinal plants is increasing. The quality of plants grown outdoors, however, is difficult to control. Myriad environmental factors influence plant growth and directly impact biosynthetic pathways, thus affecting the secondary metabolism of bioactive compounds. Plant factories use artificial lighting to increase the quality of medicinal plants and stabilize production. Photosynthetic photon flux density (PPFD and electrical conductivity (EC of nutrient solutions are two important factors that substantially influence perilla (Perilla frutescens, Labiatae plant growth and quality. To identify suitable levels of PPFD and EC for perilla plants grown in a plant factory, the growth, photosynthesis, and accumulation of secondary metabolites in red and green perilla plants were measured at PPFD values of 100, 200, and 300 μmol m-2 s-1 in nutrient solutions with EC values of 1.0, 2.0, and 3.0 dS m-1. The results showed significant interactive effects between PPFD and EC for both the fresh and dry weights of green perilla, but not for red perilla. The fresh and dry weights of shoots and leafy areas were affected more by EC than by PPFD in green perilla, whereas they were affected more by PPFD than by EC in red perilla. Leaf net photosynthetic rates were increased as PPFD increased in both perilla varieties, regardless of EC. The perillaldehyde concentration (mg g-1 in red perilla was unaffected by the treatments, but accumulation in plants (mg per plant was significantly enhanced as the weight of dry leaves increased. Perillaldehyde concentrations in green perilla showed significant differences between combinations of the highest PPFD with the highest EC and the lowest PPFD with the lowest EC. Rosmarinic acid concentration (mg g-1 was increased in a combination of low EC and high PPFD conditions. Optimal cultivation conditions of red and green perilla in plant factory will be discussed in terms of plant growth and contents of

  17. Temperature and CO2 dependency of the photosynthetic photon flux density responses of leaves of Vitis vinifera cvs. Chardonnay and Merlot grown in a hot climate.

    Science.gov (United States)

    Greer, Dennis H

    2017-02-01

    Comparisons of the photosynthetic responses to light and temperature between related cultivars are important to understand how well matched they are to the climate where they are grown. Photosynthetic light responses at a range of leaf temperatures and two CO2 concentrations were measured on leaves of two grapevine cultivars (Vitis vinifera L.) Chardonnay and Merlot vines growing in field conditions. The objective was to assess the interaction between photon flux density (PFD), leaf temperature and CO2 on photosynthesis and to compare the two cultivars. Merlot leaves maintained higher light-saturated rates of photosynthesis at all leaf temperatures compared with the Chardonnay leaves. At low temperatures, a reduced photon yield offset with a high stomatal conductance accounted for the low rates of the Chardonnay leaves. At moderate to high temperatures, photon yields, PFDs at light saturation and stomatal conductances did not account for differences between Merlot and Chardonnay leaves. At elevated CO2 (800 μmol mol-1) concentrations, the differences in photosynthetic performance between the cultivars were enhanced, with 30% higher light saturated rates for Merlot compared with Chardonnay leaves. Merlot berries accumulated more sugar, consistent with published data. These results demonstrate Chardonnay, unlike Merlot, appeared to be poorly matched to the hot climate. However, considering the current market and political trends, low alcoholic wines (and, thus, low sugar grapes) should be preferred. Especially in hot climates, it is always hard to obtain such kind of wines and, thus, the most interesting agronomical challenge, especially for Chardonnay vines could be interpreted in an opposite way. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Distribution of the critical current density and flux trapping in YBa2Cu3O7-delta ramp-edge Josephson junctions

    NARCIS (Netherlands)

    Marx, A.; Husemann, K.D.; Mayer, B.; Nissel, T.; Gross, R.; Verhoeven, M.A.J.; Verhoeven, M.A.J.; Gerritsma, G.J.

    1994-01-01

    We have studied the spatial distribution of the critical current density in YBa2Cu3O7−δ ramp edge Josephson junctions using low‐temperature scanning electron microscopy. Applying this technique allows the imaging of the critical current density distribution with a spatial resolution of about 1 μm.

  19. ) Mold Fluxes

    Science.gov (United States)

    Seo, Myung-Duk; Shi, Cheng-Bin; Cho, Jung-Wook; Kim, Seon-Hyo

    2014-10-01

    The effects of basicity (CaO/SiO2), B2O3, and Li2O addition on the crystallization behaviors of lime-silica-based mold fluxes have been investigated by non-isothermal differential scanning calorimetry (DSC), field emission scanning electron microscopy, X-ray diffraction (XRD), and single hot thermocouple technique. It was found that the crystallization temperature of cuspidine increased with increasing the basicity of mold fluxes. The crystallization of wollastonite was suppressed with increasing the mold flux basicity due to the enhancement of cuspidine crystallization. The addition of B2O3 suppresses the crystallization of mold flux. The crystallization temperature of mold flux decreases with Li2O addition. The size of cuspidine increases, while the number of cuspidine decreases with increasing mold flux basicity. The morphology of cuspidine in mold fluxes with lower basicity is largely dendritic. The dendritic cuspidine in mold fluxes is composed of many fine cuspidine crystals. On the contrary, in mold fluxes with higher basicity, the cuspidine crystals are larger in size with mainly faceted morphology. The crystalline phase evolution was also calculated using a thermodynamic database, and compared with the experimental results determined by DSC and XRD. The results of thermodynamic calculation of crystalline phase formation are in accordance with the results determined by DSC and XRD.

  20. Conical electromagnetic radiation flux concentrator

    Science.gov (United States)

    Miller, E. R.

    1972-01-01

    Concentrator provides method of concentrating a beam of electromagnetic radiation into a smaller beam, presenting a higher flux density. Smaller beam may be made larger by sending radiation through the device in the reverse direction.

  1. Methane Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Methane (CH4) flux is the net rate of methane exchange between an ecosystem and the atmosphere. Data of this variable were generated by the USGS LandCarbon project...

  2. Flux pinning properties of YBa2Cu3O7-δ thin films containing a high density of nanoprecipitates: A comparative study to reveal size effects

    Science.gov (United States)

    Yamasaki, Hirofumi; Yamada, Hiroshi

    2017-11-01

    Temperature dependence of critical current density Jc(H, T) was measured in moderate magnetic fields (H ⊥ film) in two thermally co-evaporated YBa2Cu3O7-δ (YBCO) thin films (A, B) and two YBCO films (C, D) deposited using a pulsed-laser deposition method. All sample films were grown epitaxially with the c-axis perpendicular to the surface of a single-crystalline substrate. Transmission electron microscopy observation revealed that these four films contained a high density of nanoprecipitates with typical sizes of 3.6 - 5.0 nm (A), 5.0 - 7.1 nm (B), 7.0 - 10.1 nm (C) and 8.7 - 14.3 nm (D). Films A and B contained very fine nanoprecipitates, whose typical diameters Dtyp are smaller than double the estimated Ginzburg-Landau coherence length 2ξab at T = 77 K, and exhibited a steep increase of Jc with decreasing temperature. Whereas, film D, which contained relatively large nanoprecipitates (Dtyp > 2ξab at T ≤ 70 K), exhibited a gradual increase in Jc. This led to a remarkable crossing of the Jc(T) curves. The temperature dependence of Jc(H//c) under a fixed magnetic field is approximated by Jc ∼ (1 - T/Tc)m(1 + T/Tc)2 where the index m is larger for films containing finer precipitates; that is, m(A) > m(B) > m(C) > m(D). This means that finer nanoprecipitates generally cause steeper Jc increase at low temperatures, which is the origin of the observed crossing phenomenon. The experimental results are reasonably explained by several theoretical models based on the direct summation of elementary pinning forces fp calculated by core pinning interactions.

  3. Flux Pinning in Superconductors

    CERN Document Server

    Matsushita, Teruo

    2007-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  4. Flux pinning in superconductors

    CERN Document Server

    Matsushita, Teruo

    2014-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  5. Force sensor using changes in magnetic flux

    Science.gov (United States)

    Pickens, Herman L. (Inventor); Richard, James A. (Inventor)

    2012-01-01

    A force sensor includes a magnetostrictive material and a magnetic field generator positioned in proximity thereto. A magnetic field is induced in and surrounding the magnetostrictive material such that lines of magnetic flux pass through the magnetostrictive material. A sensor positioned in the vicinity of the magnetostrictive material measures changes in one of flux angle and flux density when the magnetostrictive material experiences an applied force that is aligned with the lines of magnetic flux.

  6. Adiabatic Betatron deceleration of ionospheric charged particles: a new explanation for (i) the rapid outflow of ionospheric O ions, and for (ii) the increase of plasma mass density observed in magnetospheric flux tubes during main phases of geomagnetic s

    Science.gov (United States)

    Lemaire, Joseph; Pierrard, Viviane; Darrouzet, Fabien

    2013-04-01

    Using European arrays of magnetometers and the cross-phase analysis to determine magnetic field line resonance frequencies, it has been found by Kale et al. (2009) that the plasma mass density within plasmaspheric flux tubes increased rapidly after the SSC of the Hallowe'en 2003 geomagnetic storms. These observations tend to confirm other independent experimental results, suggesting that heavy ion up-flow from the ionosphere is responsible for the observed plasma density increases during main phases of geomagnetic storms. The aim of our contribution is to point out that, during main phases, reversible Betatron effect induced by the increase of the southward Dst-magnetic field component (|Δ Bz|), diminishes slightly the perpendicular kinetic energy (W?) of charged particles spiraling along field lines. Furthermore, due to the conservation of the first adiabatic invariant (μ = Wm/ Bm) the mirror points of all ionospheric ions and electrons are lifted up to higher altitudes i.e. where the mirror point magnetic field (Bm) is slightly smaller. Note that the change of the mirror point altitude is given by: Δ hm = -1/3 (RE + hm) Δ Bm / Bm. It is independent of the ion species and it does not depend of their kinetic energy. The change of kinetic energy is determined by: Δ Wm = Wm Δ Bm / Bm. Both of these equations have been verified numerically by Lemaire et al. (2005; doi: 10.1016/S0273-1177(03)00099-1) using trajectory calculations in a simple time-dependant B-field model: i.e. the Earth's magnetic dipole, plus an increasing southward B-field component: i.e. the Dst magnetic field whose intensity becomes more and more negative during the main phase of magnetic storms. They showed that a variation of Bz (or Dst) by more than - 50 nT significantly increases the mirror point altitudes by more than 100 km which is about equal to scale height of the plasma density in the topside ionosphere where particles are almost collisionless (see Fig. 2 in Lemaire et al., 2005

  7. Theoretical models of flux pinning and flux motion in high-{Tc} superconducting oxides

    Energy Technology Data Exchange (ETDEWEB)

    Welch, D.O.

    1991-12-31

    Various issues involved in the development of phenomenological models of flux pinning and motion in high-{Tc} oxides are discussed. A simplified model is presented for the critical current density and is used to examine the question of whether flux flow results from an instability due to plasticity of the flux-line array or from pin breaking.

  8. On the role of precursor powder composition in controlling microstructure, flux pinning, and the critical current density of Ag/Bi2Sr2CaCu2Ox conductors

    Science.gov (United States)

    Li, Pei; Naderi, Golsa; Schwartz, Justin; Shen, Tengming

    2017-03-01

    Precursor powder composition is known to strongly affect the critical current density (J c) of Ag/Bi2Sr2CaCu2Ox (Bi-2212) wires. However, reasons for such J c dependence have not yet been fully understood, compromising our ability to achieve further optimization. We systematically examined superconducting properties, microstructural evolution and phase transformation, and grain boundaries of Bi-2212 conductors fabricated from precursor powders with a range of compositions using a combination of transport-current measurements, a quench technique to freeze microstructures at high temperatures during heat treatment, and scanning transmission electron microscopy (STEM). Samples include both dip-coated tapes and round wires, among which a commercial round wire carries a high J c of 7600 A mm-2 at 4.2 K, self-field and 2600 A mm-2 at 4.2 K, 20 T, respectively. In the melt, this high-J c conductor, made using a composition of Bi2.17Sr1.94Ca0.89Cu2Ox, contains a uniform dispersion of fine alkaline-earth cuprate (AEC) and copper-free solid phases, whereas several low-J c conductors contain large AEC particles. Such significant differences in the phase morphologies in the melt are accompanied by a drastic difference in the formation kinetics of Bi-2212 during recrystallization cooling. STEM studies show that Bi-2212 grain colonies in the high-J c conductors have a high density of Bi2Sr2CuO y (Bi-2201) intergrowths, whereas a low-J c conductor, made using Bi2.14Sr1.66Ca1.24Cu1.96O x , is nearly free of them. STEM investigation shows grain boundaries in low-J c conductors are often insulated with a Bi-rich amorphous phase. High-J c conductors also show higher flux-pinning strength, which we ascribe to their higher Bi-2201 intergrowth density.

  9. [Spatiotempaoral distribution patterns of photosynthetic photon flux density, air temperature, and relative air humidity in forest gap of Pinus koraiensis-dominated broadleaved mixed forest in Xi-ao Xing' an Mountains].

    Science.gov (United States)

    Li, Meng; Duan, Wen-biao; Chen, Li-xin

    2009-12-01

    A continuous measurement of photosynthetic photon flux density (PPFD), air temperature, and relative air humidity was made in the forest gap in primary Pinus koraiensis-dominated broadleaved mixed forest in Xiao Xing' an Mountains to compare the spatiotemporal distribution patterns of the parameters. The diurnal maximum PPFD in the forest gap appeared between 11:00 and 13:00 on sunny and overcast days. On sunny days, the maximum PPFD during various time periods did not locate in fixed locations, the diurnal maximum PPFD occurred in the canopy edge of northern part of the gap; while on overcast days, it always occurred in the center of the gap. The mean monthly PPFD in the gap was the highest in June and the lowest in September, with the largest range observed in July. The maximum air temperature happened between 9:00 and 15:00 on sunny days, between 15:00 and 19:00 on overcast days, the locations were 8 m in the southern part of gap center both on sunny and overcast days. From 5:00 to 9:00, the air temperature at measured positions in the gap was higher on overcast days than on sunny days; but from 9:00 to 19:00, it was opposite. The mean monthly air temperature was the highest in June, and the lowest in September. The maximum relative humidity appeared between 5:00 and 9:00 on sunny and overcast days, and occurred in the canopy border of western part of the gap, with the relative air humidity on overcast days being always higher than that on sunny days. The mean monthly relative humidity was the highest in July, and the lowest in June. The heterogeneity of PPFD was higher on sunny days than on overcast days, but the heterogeneities of air temperature and relative humidity were not obvious. The maximum PPFD, air temperature, and relative humidity were not located in the same positions among different months during growing season. For mean monthly PPFD and air temperature, their variation gradient was higher in and around the center of gap; while for mean monthly

  10. How the Saturnian Magnetosphere Conserves Magnetic Flux

    Science.gov (United States)

    Powell, R. L.; Wei, H.; Russell, C. T.; Arridge, C. S.; Dougherty, M. K.

    2012-12-01

    The magnetospheric dynamics at Saturn are driven by the centrifugal force of near co-rotating water group ions released at a rate of hundreds of kilograms per second by Saturn's moon Enceladus. The plasma is accelerated up to co-rotation speed by the magnetospheric magnetic field coupled to the Saturnian ionosphere. The plasma is lost ultimately through the process of magnetic reconnection in the tail. Conservation of magnetic flux requires that plasma-depleted, "empty" flux tubes return magnetic flux to the inner magnetosphere. After completion of the initial inrush of the reconnected and largely emptied flux tubes inward of the reconnection point, the flux tubes face the outflowing plasma and must move inward against the flow. Observations of such flux tubes have been identified in the eight years of Cassini magnetometer data. The occurrence of these tubes is observed at all local times indicating slow inward transport of the tubes relative to the co-rotation speed. Depleted flux tubes observed in the equatorial region appear as an enhancement in the magnitude of the magnetic field, whereas the same flux tubes observed at higher latitudes appear as decreased field strength. The difference in appearance of the low latitude and the high latitude tubes is due to the plasma environment just outside the tube. Warm low-density plasma fills the inside of the flux tube at all latitudes. This flux tube thus will expand in the less dense regions away from the magnetic equator and will be observed as a decrease in the magnitude of the magnetic field from the background. These flux tubes near the equator, where the plasma density outside of the flux tube is much greater, will be observed as an enhancement in the magnitude of the magnetic field. Cassini magnetometer and CAPS data are examined to understand the properties of these flux tubes and their radial and latitudinal evolution throughout the Saturnian magnetospheric environment.

  11. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step...... length, step height, and.flux start level. Filtrating 8 kg/m(3) yeast cell suspensions by a vibrating 0.45 x 10(-6) m pore size microfiltration hollow fiber module, critical fluxes from 5.6 x 10(-6) to 1.2 x 10(-5) m/s have been measured using various step lengths from 300 to 1200 seconds. Thus...

  12. Reconnecting flux-rope dynamo.

    Science.gov (United States)

    Baggaley, Andrew W; Barenghi, Carlo F; Shukurov, Anvar; Subramanian, Kandaswamy

    2009-11-01

    We develop a model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multiscale model of turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. This model can be viewed as an implementation of the asymptotic limit R_{m}-->infinity for a continuous magnetic field, where magnetic dissipation is strongly localized to small regions of strong-field gradients. We investigate the kinetic-energy release into heat mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux-rope dynamo is an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy release in reconnections has a power-law form with the slope -3 , consistent with the solar corona heating by nanoflares.

  13. The measurements of thermal neutron flux distribution in a paraffin ...

    Indian Academy of Sciences (India)

    The term `thermal flux' implies a Maxwellian distribution of velocity and energy corresponding to the most probable velocity of 2200 ms-1 at 293.4 K. In order to measure the thermal neutron flux density, the foil activation method was used. Thermal neutron flux determination in paraffin phantom by counting the emitted rays of ...

  14. Two fluxes multistage induction coilgun

    Science.gov (United States)

    Gherman, L.; Pearsica, M.; Circiu, I.; Rotaru, C.

    2017-05-01

    This paper presents a brand new induction electromagnetic launcher, which uses two magnetic fluxes in order to accelerate a projectile. One magnetic flux induce a current in the armature and the second magnetic flux is creating a radial magnetic field. This aproach offer multiple advantages over single flux designs. First we are able to control the induced current in armature because we use the coil just to induce current inside the ring with a great efficiency. Second advantage is the angle of 900 between magnetic field density B and the ring. We used the induction to avoid contact between armature and accelerator. In order to create the magnetic field radial we used four coils perpendicular on armature. This approach alove us to control the phase difference between induced current in armature and current in magnetic field coils for a maximum force. The phase difference is obtained by changing the frequency of magnetic field coils power source. We used simulation software to analyze, and simulate a multistage induction coilgun design with two fluxes. The simulation results demonstrated the theoretical results.

  15. Dependence of Core and Extended Flux on Core Dominance ...

    Indian Academy of Sciences (India)

    Abstract. Based on two extragalactic radio source samples, the core dominance parameter is calculated, and the correlations between the core/extended flux density and core dominance parameter are investi- gated. When the core dominance parameter is lower than unity, it is linearly correlated with the core flux density, ...

  16. Flux-P: Automating Metabolic Flux Analysis

    Directory of Open Access Journals (Sweden)

    Birgitta E. Ebert

    2012-11-01

    Full Text Available Quantitative knowledge of intracellular fluxes in metabolic networks is invaluable for inferring metabolic system behavior and the design principles of biological systems. However, intracellular reaction rates can not often be calculated directly but have to be estimated; for instance, via 13C-based metabolic flux analysis, a model-based interpretation of stable carbon isotope patterns in intermediates of metabolism. Existing software such as FiatFlux, OpenFLUX or 13CFLUX supports experts in this complex analysis, but requires several steps that have to be carried out manually, hence restricting the use of this software for data interpretation to a rather small number of experiments. In this paper, we present Flux-P as an approach to automate and standardize 13C-based metabolic flux analysis, using the Bio-jETI workflow framework. Exemplarily based on the FiatFlux software, it demonstrates how services can be created that carry out the different analysis steps autonomously and how these can subsequently be assembled into software workflows that perform automated, high-throughput intracellular flux analysis of high quality and reproducibility. Besides significant acceleration and standardization of the data analysis, the agile workflow-based realization supports flexible changes of the analysis workflows on the user level, making it easy to perform custom analyses.

  17. Communication: On the calculation of time-dependent electron flux within the Born-Oppenheimer approximation: A flux-flux reflection principle.

    Science.gov (United States)

    Albert, Julian; Hader, Kilian; Engel, Volker

    2017-12-28

    It is commonly assumed that the time-dependent electron flux calculated within the Born-Oppenheimer (BO) approximation vanishes. This is not necessarily true if the flux is directly determined from the continuity equation obeyed by the electron density. This finding is illustrated for a one-dimensional model of coupled electronic-nuclear dynamics. There, the BO flux is in perfect agreement with the one calculated from a solution of the time-dependent Schrödinger equation for the coupled motion. A reflection principle is derived where the nuclear BO flux is mapped onto the electronic flux.

  18. Eddy Correlation Flux Measurement System (ECOR) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  19. Clustering of Emerging Flux

    Science.gov (United States)

    Ruzmaikin, A.

    1997-01-01

    Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.

  20. Black branes in flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Torroba, Gonzalo; Wang, Huajia

    2013-10-01

    We construct charged black branes in type IIA flux compactifications that are dual to (2 + 1)-dimensional field theories at finite density. The internal space is a general Calabi-Yau manifold with fluxes, with internal dimensions much smaller than the AdS radius. Gauge fields descend from the 3-form RR potential evaluated on harmonic forms of the Calabi-Yau, and Kaluza-Klein modes decouple. Black branes are described by a four-dimensional effective field theory that includes only a few light fields and is valid over a parametrically large range of scales. This effective theory determines the low energy dynamics, stability and thermodynamic properties. Tools from flux compactifications are also used to construct holographic CFTs with no relevant scalar operators, that can lead to symmetric phases of condensed matter systems stable to very low temperatures. The general formalism is illustrated with simple examples such as toroidal compactifications and manifolds with a single size modulus. We initiate the classification of holographic phases of matter described by flux compactifications, which include generalized Reissner-Nordstrom branes, nonsupersymmetric AdS2×R2 and hyperscaling violating solutions.

  1. Heat flux viscosity in collisional magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C., E-mail: cliu@pppl.gov [Princeton University, Princeton, New Jersey 08544 (United States); Fox, W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Bhattacharjee, A. [Princeton University, Princeton, New Jersey 08544 (United States); Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2015-05-15

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through the generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.

  2. On the Taxonomy of Flux Vacua

    Energy Technology Data Exchange (ETDEWEB)

    Giryavets, Alexander

    2004-04-25

    We investigate several predictions about the properties of IIB flux vacua on Calabi-Yau orientifolds, by constructing and characterizing a very large set of vacua in a specific example, an orientifold of the Calabi-Yau hypersurface in WP{sub 1,1,1,1,4}{sup 4}. We find support for the prediction of Ashok and Douglas that the density of vacua on moduli space is governed by det(-R-{omega}) where R and {omega} are curvature and Kaehler forms on the moduli space. The conifold point {psi} = 1 on moduli space therefore serves as an attractor, with a significant fraction of the flux vacua contained in a small neighborhood surrounding {psi} = 1. We also study the functional dependence of the number of flux vacua on the D3 charge in the fluxes, finding simple power law growth.

  3. No evidence of persisting unrepaired nuclear DNA single strand breaks in distinct types of cells in the brain, kidney, and liver of adult mice after continuous eight-week 50 Hz magnetic field exposure with flux density of 0.1 mT or 1.0 mT.

    Science.gov (United States)

    Korr, Hubert; Angstman, Nicholas B; Born, Tatjana B; Bosse, Kerstin; Brauns, Birka; Demmler, Martin; Fueller, Katja; Kántor, Orsolya; Kever, Barbara M; Rahimyar, Navida; Salimi, Sepideh; Silny, Jiri; Schmitz, Christoph

    2014-01-01

    It has been hypothesized in the literature that exposure to extremely low frequency electromagnetic fields (50 or 60 Hz) may lead to human health effects such as childhood leukemia or brain tumors. In a previous study investigating multiple types of cells from brain and kidney of the mouse (Acta Neuropathologica 2004; 107: 257-264), we found increased unrepaired nuclear DNA single strand breaks (nDNA SSB) only in epithelial cells of the choroid plexus in the brain using autoradiographic methods after a continuous eight-week 50 Hz magnetic field (MF) exposure of adult mice with flux density of 1.5 mT. In the present study we tested the hypothesis that MF exposure with lower flux densities (0.1 mT, i.e., the actual exposure limit for the population in most European countries, and 1.0 mT) shows similar results to those in the previous study. Experiments and data analysis were carried out in a similar way as in our previous study. Continuous eight-week 50 Hz MF exposure with 0.1 mT or 1.0 mT did not result in increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice. MF exposure with 1.0 mT led to reduced unscheduled DNA synthesis (UDS) in epithelial cells in the choroid plexus of the fourth ventricle in the brain (EC-CP) and epithelial cells of the cortical collecting duct in the kidney, as well as to reduced mtDNA synthesis in neurons of the caudate nucleus in the brain and in EC-CP. No evidence was found for increased persisting unrepaired nDNA SSB in distinct types of cells in the brain, kidney, and liver of adult mice after continuous eight-week 50 Hz magnetic field exposure with flux density of 0.1 mT or 1.0 mT.

  4. Dendritic flux avalanches in superconducting Nb3Sn films

    NARCIS (Netherlands)

    Rudnev, IA; Antonenko, SV; Shantsev, DV; Johansen, TH; Primenko, AE

    2003-01-01

    The penetration of magnetic flux into a thin superconducting film of Nb3Sn with critical temperature 17.8 K and critical current density 6 MA/cm(2) was visualized using magneto-optical imaging. Below 8 K an avalanche-like flux penetration in form of big and branching dendritic structures was

  5. Dependence of Core and Extended Flux on Core Dominance ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Based on two extragalactic radio source samples, the core dominance parameter is calculated, and the correlations between the core/extended flux density and core dominance parameter are investigated. When the core dominance parameter is lower than unity, it is linearly correlated with the core flux ...

  6. Electron heat flux instability

    Science.gov (United States)

    Saeed, Sundas; Sarfraz, M.; Yoon, P. H.; Lazar, M.; Qureshi, M. N. S.

    2017-02-01

    The heat flux instability is an electromagnetic mode excited by a relative drift between the protons and two-component core-halo electrons. The most prominent application may be in association with the solar wind where drifting electron velocity distributions are observed. The heat flux instability is somewhat analogous to the electrostatic Buneman or ion-acoustic instability driven by the net drift between the protons and bulk electrons, except that the heat flux instability operates in magnetized plasmas and possesses transverse electromagnetic polarization. The heat flux instability is also distinct from the electrostatic counterpart in that it requires two electron species with relative drifts with each other. In the literature, the heat flux instability is often called the 'whistler' heat flux instability, but it is actually polarized in the opposite sense to the whistler wave. This paper elucidates all of these fundamental plasma physical properties associated with the heat flux instability starting from a simple model, and gradually building up more complexity towards a solar wind-like distribution functions. It is found that the essential properties of the instability are already present in the cold counter-streaming electron model, and that the instability is absent if the protons are ignored. These instability characteristics are highly reminiscent of the electron firehose instability driven by excessive parallel temperature anisotropy, propagating in parallel direction with respect to the ambient magnetic field, except that the free energy source for the heat flux instability resides in the effective parallel pressure provided by the counter-streaming electrons.

  7. Road density

    Data.gov (United States)

    U.S. Environmental Protection Agency — Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More...

  8. Eddy Correlation Flux Measurement System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  9. Design Considerations of Permanent Magnet Transverse Flux Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2011-01-01

    Permanent magnet transverse flux machine (PMTFM) is well known for its high torque density and is interested in various direct-drive applications. Due to its complicated 3-D flux components, design and design optimization of a PMTFM is more difficult and time consuming than for radial flux...... electrical machines. This paper addresses two important design considerations for PMTFM—the influence of permanent magnet leakage flux, which plays an important role in the determination of machine output torque, and the leakage inductance. A new simple method to provide a quick estimation of the armature...

  10. Aeronet Solar Flux

    Data.gov (United States)

    National Aeronautics and Space Administration — SolRad-Net (Solar Radiation Network) is an established network of ground-based sensors providing high-frequency solar flux measurements in quasi-realtime to the...

  11. Net Ecosystem Carbon Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  12. Nitrous Oxide Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Nitrous Oxide (N20) flux is the net rate of nitrous oxide exchange between an ecosystem and the atmosphere. Data of this variable were generated by the USGS...

  13. Flux in Tallinn

    Index Scriptorium Estoniae

    2004-01-01

    Rahvusvahelise elektroonilise kunsti sümpoosioni ISEA2004 klubiõhtu "Flux in Tallinn" klubis Bon Bon. Eestit esindasid Ropotator, Ars Intel Inc., Urmas Puhkan, Joel Tammik, Taavi Tulev (pseud. Wochtzchee). Klubiõhtu koordinaator Andres Lõo

  14. Flux Emergence (Theory

    Directory of Open Access Journals (Sweden)

    Mark C. M. Cheung

    2014-07-01

    Full Text Available Magnetic flux emergence from the solar convection zone into the overlying atmosphere is the driver of a diverse range of phenomena associated with solar activity. In this article, we introduce theoretical concepts central to the study of flux emergence and discuss how the inclusion of different physical effects (e.g., magnetic buoyancy, magnetoconvection, reconnection, magnetic twist, interaction with ambient field in models impact the evolution of the emerging field and plasma.

  15. Generic flux coupling analysis

    OpenAIRE

    Reimers, Arne; Goldstein, Y.; Bockmayr, A.

    2015-01-01

    htmlabstractFlux coupling analysis (FCA) has become a useful tool for aiding metabolic reconstructions and guiding genetic manipulations. Originally, it was introduced for constraint-based models of metabolic networks that are based on the steady-state assumption. Recently, we have shown that the steady-state assumption can be replaced by a weaker lattice-theoretic property related to the supports of metabolic fluxes. In this paper, we further extend our approach and develop an efficient algo...

  16. Lung density

    DEFF Research Database (Denmark)

    Garnett, E S; Webber, C E; Coates, G

    1977-01-01

    The density of a defined volume of the human lung can be measured in vivo by a new noninvasive technique. A beam of gamma-rays is directed at the lung and, by measuring the scattered gamma-rays, lung density is calculated. The density in the lower lobe of the right lung in normal man during quiet...... breathing in the sitting position ranged from 0.25 to 0.37 g.cm-3. Subnormal values were found in patients with emphsema. In patients with pulmonary congestion and edema, lung density values ranged from 0.33 to 0.93 g.cm-3. The lung density measurement correlated well with the findings in chest radiographs...... but the lung density values were more sensitive indices. This was particularly evident in serial observations of individual patients....

  17. The flux-flux correlation function for anharmonic barriers

    NARCIS (Netherlands)

    Goussev, Arseni; Schubert, Roman; Waalkens, Holger; Wiggins, Stephen

    2010-01-01

    The flux-flux correlation function formalism is a standard and widely used approach for the computation of reaction rates. In this paper we introduce a method to compute the classical and quantum flux-flux correlation functions for anharmonic barriers essentially analytically through the use of the

  18. INNOVATIVE HEAT FLUX SENSOR

    Directory of Open Access Journals (Sweden)

    G. N. Lukyanov

    2017-02-01

    Full Text Available Subject of Study.We present a method for heat flux measuring with the use of polarization properties of ferroelectric ceramics. Heat flux innovative sensor is developed on the basis of the proposed method. Its experimental verification is carried out. Method. The measurements are based on maintaining a balance between the processes caused by thermal energy and the energy of the electric field in the ferroelectric ceramics. Main Results. The testing of the proposed heat flux sensor has been organized in two stages. At the first stage the primary calibration has been performed by calibrated sensors ITP MG4.03/x(y “Potok”. At the second stage the testing of heat flux sensor has been carried out for calculating the quantity of heat. The comparison of the results to the readings of serial heat meters VKT-7 and STK-15 has been performed. Experiments have shown that the polarization properties of the ferroelectric ceramics can be used to measure the heat flow. Practical Relevance. The proposed sensor can be recommended as an apartment-level heat meter. The calibration of the proposed heat flux sensor with more accurate measurement tools gives the possibility to include it on the State Register of Measuring Instruments.

  19. Divertor Heat Flux Mitigation in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D

    2008-08-04

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  20. A finite element calculation of flux pumping

    Science.gov (United States)

    Campbell, A. M.

    2017-12-01

    A flux pump is not only a fascinating example of the power of Faraday’s concept of flux lines, but also an attractive way of powering superconducting magnets without large electronic power supplies. However it is not possible to do this in HTS by driving a part of the superconductor normal, it must be done by exceeding the local critical density. The picture of a magnet pulling flux lines through the material is attractive, but as there is no direct contact between flux lines in the magnet and vortices, unless the gap between them is comparable to the coherence length, the process must be explicable in terms of classical electromagnetism and a nonlinear V–I characteristic. In this paper a simple 2D model of a flux pump is used to determine the pumping behaviour from first principles and the geometry. It is analysed with finite element software using the A formulation and FlexPDE. A thin magnet is passed across one or more superconductors connected to a load, which is a large rectangular loop. This means that the self and mutual inductances can be calculated explicitly. A wide strip, a narrow strip and two conductors are considered. Also an analytic circuit model is analysed. In all cases the critical state model is used, so the flux flow resistivity and dynamic resistivity are not directly involved, although an effective resistivity appears when J c is exceeded. In most of the cases considered here is a large gap between the theory and the experiments. In particular the maximum flux transferred to the load area is always less than the flux of the magnet. Also once the threshold needed for pumping is exceeded the flux in the load saturates within a few cycles. However the analytic circuit model allows a simple modification to allow for the large reduction in I c when the magnet is over a conductor. This not only changes the direction of the pumped flux but leads to much more effective pumping.

  1. Low Bone Density

    Science.gov (United States)

    ... Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone density ... people with normal bone density. Detecting Low Bone Density A bone density test will determine whether you ...

  2. Efeito da densidade do fluxo e da presença de aditivos na soldagem ATIG de aço inoxidável austenítico Effect of flux density and addictive presence on ATIG welding of austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Paulo J. Modenesi

    2013-06-01

    explain the effect of flux. The most accepted ones consider the arc contraction by negative ions vaporized from the flux and liquid metal flow alterations in the weld pool caused by changes the surface tension values. This paper evaluates the effect of one component (Cr2O3 flux concentration and additions of KClO4 and Al2O3 on ATIG welding bead shape. Three sets of bead-on-plate weld tests were performed on 5 mm thick AISI 304 steel plates. Electric current and voltage were measured during each welding trial and the resulting bead geometry was evaluated in cross sections of the weld. Results indicated only minor variations in voltage during the transition from TIG to ATIG welding. Surface flux concentration affected weld bead penetration, and maximum penetration was obtained with flux densities between 15 and 60 g/m². On the other hand, the addition of KCLO4, despite this being a strong oxidizer, reduced weld penetration. A similar effect was linked to additions of Al2O3 to the flux.

  3. 47 CFR 25.208 - Power flux density limits.

    Science.gov (United States)

    2010-10-01

    ... reference antenna diameter, the limit consists of the complete curve on a plot which is linear in decibels... EPFDdown in decibels and a logarithmic scale for antenna diameter in meters. Note to paragraph (j): These... is linear in decibels for the EPFD levels and logarithmic for the time percentages, with straight...

  4. Correlation between the Flux Density and Polarization for Flat ...

    Indian Academy of Sciences (India)

    Education of Guangzhou Municipality (No. 11 Sui-Jiao-Ke 2009), and Guangdong. Province Universities and Colleges Pearl River Scholar Funded Scheme (GDUPS). (2009). This research has made use of data from the University of Michigan Radio. Astronomy Observatory which has been supported by the University of ...

  5. Generic flux coupling analysis

    NARCIS (Netherlands)

    A.C. Reimers (Arne); Y. Goldstein; A. Bockmayr

    2015-01-01

    htmlabstractFlux coupling analysis (FCA) has become a useful tool for aiding metabolic reconstructions and guiding genetic manipulations. Originally, it was introduced for constraint-based models of metabolic networks that are based on the steady-state assumption. Recently, we have shown that the

  6. Flux Vacua and Supermanifolds

    CERN Document Server

    Grassi, P A

    2007-01-01

    As been recently pointed out, physically relevant models derived from string theory require the presence of non-vanishing form fluxes besides the usual geometrical constraints. In the case of NS-NS fluxes, the Generalized Complex Geometry encodes these informations in a beautiful geometrical structure. On the other hand, the R-R fluxes call for supergeometry as the underlying mathematical framework. In this context, we analyze the possibility of constructing interesting supermanifolds recasting the geometrical data and RR fluxes. To characterize these supermanifolds we have been guided by the fact topological strings on supermanifolds require the super-Ricci flatness of the target space. This can be achieved by adding to a given bosonic manifold enough anticommuting coordinates and new constraints on the bosonic sub-manifold. We study these constraints at the linear and non-linear level for a pure geometrical setting and in the presence of p-form field strengths. We find that certain spaces admit several supe...

  7. Soluble organic nutrient fluxes

    Science.gov (United States)

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  8. Generic flux coupling analysis.

    Science.gov (United States)

    Reimers, Arne C; Goldstein, Yaron; Bockmayr, Alexander

    2015-04-01

    Flux coupling analysis (FCA) has become a useful tool for aiding metabolic reconstructions and guiding genetic manipulations. Originally, it was introduced for constraint-based models of metabolic networks that are based on the steady-state assumption. Recently, we have shown that the steady-state assumption can be replaced by a weaker lattice-theoretic property related to the supports of metabolic fluxes. In this paper, we further extend our approach and develop an efficient algorithm for generic flux coupling analysis that works with any kind of qualitative pathway model. We illustrate our method by thermodynamic flux coupling analysis (tFCA), which allows studying steady-state metabolic models with loop-law thermodynamic constraints. These models do not satisfy the lattice-theoretic properties required in our previous work. For a selection of genome-scale metabolic network reconstructions, we discuss both theoretically and practically, how thermodynamic constraints strengthen the coupling results that can be obtained with classical FCA. A prototype implementation of tFCA is available at http://hoverboard.io/L4FC. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Novel Transverse Flux Machine for Vehicle Traction Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Z.; Ahmed, A.; Husain, I.; Muljadi, E.

    2015-04-02

    A novel transverse flux machine topology for electric vehicle traction applications using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to the Halbach array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite-element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from finite element analysis (FEA) show that the motor achieved comparable torque density to conventional rare-earth permanent magnet (PM) machines. This machine is a viable candidate for direct-drive applications with low cost and high torque density.

  10. Correlations Between Magnetic Flux and Levitation Force of HTS Bulk Above a Permanent Magnet Guideway

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2017-10-01

    In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.

  11. Dynamic ignition regime of condensed system by radiate heat flux

    Science.gov (United States)

    Arkhipov, V. A.; Zolotorev, N. N.; Korotkikh, A. G.; Kuznetsov, V. T.

    2017-05-01

    The main ignition characteristics of high-energy materials are the ignition time and critical heat flux allowing evaluation of the critical conditions for ignition, fire and explosive safety for the test solid propellants. The ignition process is typically studied in stationary conditions of heat input at constant temperature of the heating surface, environment or the radiate heat flux on the sample surface. In real conditions, ignition is usually effected at variable time-dependent values of the heat flux. In this case, the heated layer is formed on the sample surface in dynamic conditions and significantly depends on the heat flux change, i.e. increasing or decreasing falling heat flux in the reaction period of the propellant sample. This paper presents a method for measuring the ignition characteristics of a high-energy material sample in initiation of the dynamic radiant heat flux, which includes the measurement of the ignition time when exposed to a sample time varying radiant heat flux given intensity. In case of pyroxyline containing 1 wt. % of soot, it is shown that the ignition times are reduced by 20-50 % depending on the initial value of the radiant flux density in initiation by increasing or decreasing radiant heat flux compared with the stationary conditions of heat supply in the same ambient conditions.

  12. Stop of magnetic flux movement in levitating superconductor

    Science.gov (United States)

    Smolyak, B. M.; Zakharov, M. S.

    2017-01-01

    A phenomenon of magnetic relaxation stopping in a levitating superconductor was studied. It was experimentally shown that magnetic flux creep (diffusion of flux lines to regions with lower vortex density) is absent in magnetic suspension of the superconductor. Magnetic relaxation arises, when a rigid constraint that fixes a position of the superconductor relative to a magnet is imposed on a levitating object. It is assumed that oscillations of magnetic structure, which is due to free oscillations of the levitating superconductor, stop magnetic relaxation.

  13. Stop of magnetic flux movement in levitating superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Smolyak, B.M., E-mail: b-smolyak@yandex.ru; Zakharov, M.S., E-mail: maksim.s.zakharov@gmail.com

    2017-01-15

    Highlights: • A direct experimental study of magnetic flux creep in the levitating superconductor. • When a levitating object is in a fixed position, magnetic flux movement is observed. • Levitation stops flux creep process. - Abstract: A phenomenon of magnetic relaxation stopping in a levitating superconductor was studied. It was experimentally shown that magnetic flux creep (diffusion of flux lines to regions with lower vortex density) is absent in magnetic suspension of the superconductor. Magnetic relaxation arises, when a rigid constraint that fixes a position of the superconductor relative to a magnet is imposed on a levitating object. It is assumed that oscillations of magnetic structure, which is due to free oscillations of the levitating superconductor, stop magnetic relaxation.

  14. Atmospheric lepton fluxes

    Directory of Open Access Journals (Sweden)

    Gaisser Thomas K.

    2015-01-01

    Full Text Available This review of atmospheric muons and neutrinos emphasizes the high energy range relevant for backgrounds to high-energy neutrinos of astrophysical origin. After a brief historical introduction, the main distinguishing features of atmospheric νμ and νe are discussed, along with the implications of the muon charge ratio for the νµ / ν̅µ ratio. Methods to account for effects of the knee in the primary cosmic-ray spectrum and the energy-dependence of hadronic interactions on the neutrino fluxes are discussed and illustrated in the context of recent results from IceCube. A simple numerical/analytic method is proposed for systematic investigation of uncertainties in neutrino fluxes arising from uncertainties in the primary cosmic-ray spectrum/composition and hadronic interactions.

  15. Experimental demonstration of a robust and scalable flux qubit

    Science.gov (United States)

    Harris, R.; Johansson, J.; Berkley, A. J.; Johnson, M. W.; Lanting, T.; Han, Siyuan; Bunyk, P.; Ladizinsky, E.; Oh, T.; Perminov, I.; Tolkacheva, E.; Uchaikin, S.; Chapple, E. M.; Enderud, C.; Rich, C.; Thom, M.; Wang, J.; Wilson, B.; Rose, G.

    2010-04-01

    A rf-superconducting quantum interference device (SQUID) flux qubit that is robust against fabrication variations in Josephson-junction critical currents and device inductance has been implemented. Measurements of the persistent current and of the tunneling energy between the two lowest-lying states, both in the coherent and incoherent regimes, are presented. These experimental results are shown to be in agreement with predictions of a quantum-mechanical Hamiltonian whose parameters were independently calibrated, thus justifying the identification of this device as a flux qubit. In addition, measurements of the flux and critical current noise spectral densities are presented that indicate that these devices with Nb wiring are comparable to the best Al wiring rf SQUIDs reported in the literature thus far, with a 1/f flux noise spectral density at 1 Hz of 1.3-0.5+0.7μΦ0/Hz . An explicit formula for converting the observed flux noise spectral density into a free-induction-decay time for a flux qubit biased to its optimal point and operated in the energy eigenbasis is presented.

  16. Estimating daytime ecosystem respiration from eddy-flux data

    DEFF Research Database (Denmark)

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Herbst, Mathias

    2011-01-01

    To understand what governs the patterns of net ecosystem exchange of CO2, an understanding of factors influencing the component fluxes, ecosystem respiration and gross primary production is needed. In the present paper, we introduce an alternative method for estimating daytime ecosystem respiration...... based on whole ecosystem fluxes from a linear regression of photosynthetic photon flux density data vs. daytime net ecosystem exchange data at forest ecosystem level. This method is based on the principles of the Kok-method applied at leaf level for estimating daytime respiration. We demonstrate...... the method with field data and provide a discussion of the limitations of the method....

  17. The altitude variation of the ionospheric photoelectron flux A comparison of theory and measurement

    Science.gov (United States)

    Richards, P. G.; Torr, D. G.

    1985-01-01

    The 145 to 300-km altitude variation of the measured photoelectron flux in the 13 to 18 eV, 28 to 34 eV, and 50 to 55 eV energy regions are compared with the variations expected from theory. There is a strong linear relationship between the measured photoelectron flux and the attenuation of the solar EUV flux at these energies. Therefore, the photoelectron flux is sensitive to changes in the solar zenith angle, neutral density scale height, and total neutral density. However, contrary to previous assertions, the photoelectron flux at most energies is not sensitive to the relative densities of the neutral constituents. In addition, good agreement between theory and measurement is obtained. By using the concept of photoelectron production frequencies, the usually complex evaluation of the local equilibrium photoelectron flux is reduced to a trivial calculation so that the steps in the calculation can be readily verified.

  18. Design of a Modular E-Core Flux Concentrating Axial Flux Machine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2015-08-24

    In this paper a novel E-Core axial flux machine is proposed. The machine has a double-stator, single-rotor configuration with flux-concentrating ferrite magnets and pole windings across each leg of an E-Core stator. E-Core stators with the proposed flux-concentrating rotor arrangement result in better magnet utilization and higher torque density. The machine also has a modular structure facilitating simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis. facilitating simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis.

  19. Forced bulk boiling at high heat fluxes; Erzwungenes Blasensieden bei hohen Waermestromdichten

    Energy Technology Data Exchange (ETDEWEB)

    Knipping, Tobias; Humpfer, Frank; Arnemann, Michael [Hochschule Karlsruhe - Technik und Wirtschaft (HsKA) (Germany). Fakultaet fuer Maschinenbau und Mechatronik fuer Kaelte-, Klima- und Umwelttechnik (IKKU)

    2013-05-15

    The influence of very high heat flux densities (10{sup 5} to 10{sup 7} W/m{sup 2}) on the boiling behavior of R404A is investigated. By using a new evaporator design it is possible to change the evaporating effects even at these high heat flux densities to bulk boiling. This paper focuses on the experimental analysis of the new evaporator by varying the parameters geometry, mass flux, subcooling and fluid velocity. The results show that fluid velocity, mass flux and geometry have a high influence on the transferred heat-flow, while the subcooling of the liquid phase only has a small effect. (orig.)

  20. Pinning Loss Power Density in Superconductors

    Science.gov (United States)

    Matsushita, Teruo

    2015-03-01

    The pinning loss power density is theoretically derived based on the resistive energy dissipation when the flux lines are driven by the Lorentz force in a superconductor. The obtained loss power density does not depend on the viscosity or flow resistivity, but is proportional to the pinning force density only, and it possesses the nature of hysteresis loss, as commonly measured in experiments. These features are predicted by the critical state model, which was recently proved theoretically. The obtained pinning force density is consistent with the prediction of the coherent potential approximation theory, a kind of statistical summation theory, for flux pinning. Thus, the irreversible properties associated with the flux pinning can be comprehensively described by these flux pinning theories. The irreversible flux pinning in the superconductor is compared with similar irreversible phenomena such as the motion of magnetic domain walls in ferromagnetic materials and the friction in mechanical systems. The possibility is also discussed for a general theoretical description of these irreversible phenomena in which the hysteresis loss occurs.

  1. Real Time Flux Control in PM Motors

    Energy Technology Data Exchange (ETDEWEB)

    Otaduy, P.J.

    2005-09-27

    magnets instead of trying to oppose it. It is robust and could be particularly useful for PM generators and electric vehicle drives. Recent efforts have introduced a brushless machine that transfers a magneto-motive force (MMF) generated by a stationary excitation coil to the rotor [4]. Although a conventional PM machine may be field weakened using vector control, the air-gap flux density cannot be effectively enhanced. In Hsu's new machine, the magnetic field generated by the rotor's PM may be augmented by the field from the stationery excitation coil and channeled with flux guides to its desired destination to enhance the air-gap flux that produces torque. The magnetic field can also be weakened by reversing the current in the stationary excitation winding. A patent for advanced technology in this area is pending. Several additional RTFC methods have been discussed in open literature. These include methods of changing the number of poles by magnetizing and demagnetizing the magnets poles with pulses of current corresponding to direct-axis (d-axis) current of vector control [5,6], changing the number of stator coils [7], and controlling the air gap [8]. Test experience has shown that the magnet strengths may vary and weaken naturally as rotor temperature increases suggesting that careful control of the rotor temperature, which is no easy task, could yield another method of RTFC. The purpose of this report is to (1) examine the interaction of rotor and stator flux with regard to RTFC, (2) review and summarize the status of RTFC technology, and (3) compare and evaluate methods for RTFC with respect to maturity, advantages and limitations, deployment difficulty and relative complexity.

  2. Magnetic flux reconstruction methods for shaped tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Chi-Wa [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1993-12-01

    The use of a variational method permits the Grad-Shafranov (GS) equation to be solved by reducing the problem of solving the 2D non-linear partial differential equation to the problem of minimizing a function of several variables. This high speed algorithm approximately solves the GS equation given a parameterization of the plasma boundary and the current profile (p` and FF` functions). The author treats the current profile parameters as unknowns. The goal is to reconstruct the internal magnetic flux surfaces of a tokamak plasma and the toroidal current density profile from the external magnetic measurements. This is a classic problem of inverse equilibrium determination. The current profile parameters can be evaluated by several different matching procedures. Matching of magnetic flux and field at the probe locations using the Biot-Savart law and magnetic Green`s function provides a robust method of magnetic reconstruction. The matching of poloidal magnetic field on the plasma surface provides a unique method of identifying the plasma current profile. However, the power of this method is greatly compromised by the experimental errors of the magnetic signals. The Casing Principle provides a very fast way to evaluate the plasma contribution to the magnetic signals. It has the potential of being a fast matching method. The performance of this method is hindered by the accuracy of the poloidal magnetic field computed from the equilibrium solver. A flux reconstruction package has been implemented which integrates a vacuum field solver using a filament model for the plasma, a multi-layer perception neural network as an interface, and the volume integration of plasma current density using Green`s functions as a matching method for the current profile parameters. The flux reconstruction package is applied to compare with the ASEQ and EFIT data. The results are promising.

  3. Reactor flux calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lhuillier, D. [Commissariat à l' Énergie Atomique et aux Énergies Alternatives, Centre de Saclay, IRFU/SPhN, 91191 Gif-sur-Yvette (France)

    2013-02-15

    The status of the prediction of reactor anti-neutrino spectra is presented. The most accurate method is still the conversion of total β spectra of fissionning isotopes as measured at research reactors. Recent re-evaluations of the conversion process led to an increased predicted flux by few percent and were at the origin of the so-called reactor anomaly. The up to date predictions are presented with their main sources of error. Perspectives are given on the complementary ab-initio predictions and upcoming experimental cross-checks of the predicted spectrum shape.

  4. Flux growth of BPO 4 crystals

    Science.gov (United States)

    Li, Zhihua; Wu, Yicheng; Fu, Peizhen; Pan, Shilie; Chen, Chuangtian

    2004-10-01

    Single crystals of BPO4 with sizes up to 15×10×12 mm3 were grown by top-seeded solution growth method using Li2O-Li4P2O7 as fluxes. The components volatilized from the melt were characterized by the method of X-ray powder diffraction. The defects of grown crystals have also been investigated. The measured ultraviolet cutoff edge of BPO4 was about 130 nm. Its density was 2.82 g/cm3 determined using drainage method.

  5. Optimal fluxes and Reynolds stresses

    CERN Document Server

    Jimenez, Javier

    2016-01-01

    It is remarked that fluxes in conservation laws, such as the Reynolds stresses in the momentum equation of turbulent shear flows, or the spectral energy flux in isotropic turbulence, are only defined up to an arbitrary solenoidal field. While this is not usually significant for long-time averages, it becomes important when fluxes are modelled locally in large-eddy simulations, or in the analysis of intermittency and cascades. As an example, a numerical procedure is introduced to compute fluxes in scalar conservation equations in such a way that their total integrated magnitude is minimised. The result is an irrotational vector field that derives from a potential, thus minimising sterile flux `circuits'. The algorithm is generalised to tensor fluxes and applied to the transfer of momentum in a turbulent channel. The resulting instantaneous Reynolds stresses are compared with their traditional expressions, and found to be substantially different.

  6. Graphene thermal flux transistor.

    Science.gov (United States)

    Shafranjuk, S E

    2016-11-24

    Insufficient flexibility of existing approaches to controlling the thermal transport in atomic monolayers limits their capability for use in many applications. Here, we examine the means of electrode doping to control the thermal flux Q due to phonons propagating along the atomic monolayer. We found that the frequency of the electron-restricted phonon scattering strongly depends on the concentration nC. of the electric charge carriers, established by the electric potentials applied to local gates. As a result of the electrode doping, nC is increased, causing a sharp rise in both the electrical conductivity and Seebeck coefficient, while the thermal conductivity tumbles. Therefore, the effect of the thermal transistor improves the figure of merit of nanoelectronic circuits.

  7. Controlling Radiative Heat Transfer Across the Mold Flux Layer by the Scattering Effect of the Borosilicate Mold Flux System with Metallic Iron

    Science.gov (United States)

    Yoon, Dae-Woo; Cho, Jung-Wook; Kim, Seon-Hyo

    2017-08-01

    The present study proposes a countermeasure for regulating total heat flux through the mold flux layer by designed mold flux with additive metallic iron particles. The heat flux through the B2O3-CaO-SiO2-Na2O-CaF2-Fe system was investigated using the infrared emitter technique to evaluate total flux density across the mold flux film. Both scanning electron microscope (SEM) and X-ray diffraction analysis were employed in order to identify the morphological and compositional changes of the crystalline phase, according to increasing iron contents in the mold flux. It was confirmed that the crystalline layer of studied mold fluxes does not have a meaningful effect on the total heat flux density due to the similar structure and fraction of the crystalline phase. The extinction coefficient was measured for glassy mold fluxes using an ultraviolet/visible and a Fourier transformation-infrared ray spectrometer in the range of 0.5 to 5 μm. For analyzing the scattering behavior of iron particles on the extinction coefficient, the number density and diameter of particles were observed by an automated SEM (auto-SEM). With these data, Mie scattering theory is adopted to define the scattering behavior of dispersed iron droplets in glassy matrix. It was found that the theoretical scattering coefficient demonstrated about 1623 to 3295 m-1, which is in accordance with the experimental results. In doing so, this study successfully achieves the strong scattering behavior that would contribute greatly to the optimization of overall heat flux through the mold flux film during the casting process.

  8. Neutron fluxes in test reactors

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  9. Plasmas fluxes to surfaces for an oblique magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Pitcher, C.S. [Canadian Fusion Fuels Technology Project, Toronto, ON (Canada); Stangeby, P.C.; Elder, J.D. [Toronto Univ., ON (Canada); Bell, M.G.; Kilpatrick, S.J.; Manos, D.M.; Medley, S.S.; Owens, D.K.; Ramsey, A.T.; Ulrickson, M. [Princeton Univ., NJ (United States). Plasma Physics Lab.

    1992-07-01

    The poloidal and toroidal spatial distributions of D{sub {alpha}}, He I and C II emission have been obtained in the vicinity of the TFTR bumper limiter and are compared with models of ion flow to the surface. The distributions are found not to agree with a model (the ``Cosine`` model) which determines the incident flux density using only the parallel fluxes in the scrape-off layer and the projected area of the surface perpendicular to the field lines. In particular, the Cosine model is not able to explain the significant fluxes observed at locations on the surface which are oblique to the magnetic field. It is further shown that these fluxes cannot be explained by the finite Larmor radius of impinging ions. Finally, it is demonstrated, with the use of Monte Carlo codes, that the distributions can be explained by including both parallel and cross-field transport onto the limiter surface.

  10. Plasmas fluxes to surfaces for an oblique magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Pitcher, C.S. (Canadian Fusion Fuels Technology Project, Toronto, ON (Canada)); Stangeby, P.C.; Elder, J.D. (Toronto Univ., ON (Canada)); Bell, M.G.; Kilpatrick, S.J.; Manos, D.M.; Medley, S.S.; Owens, D.K.; Ramsey, A.T.; Ulrickson, M. (Princeton Univ., NJ (United States). Plasma Physics Lab.)

    1992-07-01

    The poloidal and toroidal spatial distributions of D{sub {alpha}}, He I and C II emission have been obtained in the vicinity of the TFTR bumper limiter and are compared with models of ion flow to the surface. The distributions are found not to agree with a model (the Cosine'' model) which determines the incident flux density using only the parallel fluxes in the scrape-off layer and the projected area of the surface perpendicular to the field lines. In particular, the Cosine model is not able to explain the significant fluxes observed at locations on the surface which are oblique to the magnetic field. It is further shown that these fluxes cannot be explained by the finite Larmor radius of impinging ions. Finally, it is demonstrated, with the use of Monte Carlo codes, that the distributions can be explained by including both parallel and cross-field transport onto the limiter surface.

  11. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  12. Methane flux from wetlands areas

    OpenAIRE

    BAKER-BLOCKER, ANITA; DONAHUE, THOMAS M.; MANCY, KHALIL H.

    2011-01-01

    Ebullient gases from Michigan wetlands have been collected and analyzed to deduce in situ methane fluxes. Methane flux has been found to be a function of mean air temperature. This relationship has been utilized to extrapolate observed methane fluxes to estimates of fluxes from the Pripet marshes, Sudd, Everglades, and Ugandan swamps. These four wetlands together provide a yearly source of 6.8 × 1013 g of methane to the atmosphere.DOI: 10.1111/j.2153-3490.1977.tb00731.x

  13. High flux expansion divertor studies in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V A; Maingi, R; Bell, R E; Gates, D A; Kaita, R; Kugel, H W; LeBlanc, B P; Maqueda, R; Menard, J E; Mueller, D; Paul, S F; Raman, R; Roquemore, A L

    2009-06-29

    Projections for high-performance H-mode scenarios in spherical torus (ST)-based devices assume low electron collisionality for increased efficiency of the neutral beam current drive. At lower collisionality (lower density), the mitigation techniques based on induced divertor volumetric power and momentum losses may not be capable of reducing heat and material erosion to acceptable levels in a compact ST divertor. Divertor geometry can also be used to reduce high peak heat and particle fluxes by flaring a scrape-off layer (SOL) flux tube at the divertor plate, and by optimizing the angle at which the flux tube intersects the divertor plate, or reduce heat flow to the divertor by increasing the length of the flux tube. The recently proposed advanced divertor concepts [1, 2] take advantage of these geometry effects. In a high triangularity ST plasma configuration, the magnetic flux expansion at the divertor strike point (SP) is inherently high, leading to a reduction of heat and particle fluxes and a facilitated access to the outer SP detachment, as has been demonstrated recently in NSTX [3]. The natural synergy of the highly-shaped high-performance ST plasmas with beneficial divertor properties motivated a further systematic study of the high flux expansion divertor. The National Spherical Torus Experiment (NSTX) is a mid-sized device with the aspect ratio A = 1.3-1.5 [4]. In NSTX, the graphite tile divertor has an open horizontal plate geometry. The divertor magnetic configuration geometry was systematically changed in an experiment by either (1) changing the distance between the lower divertor X-point and the divertor plate (X-point height h{sub X}), or by (2) keeping the X-point height constant and increasing the outer SP radius. An initial analysis of the former experiment is presented below. Since in the divertor the poloidal field B{sub {theta}} strength is proportional to h{sub X}, the X-point height variation changed the divertor plasma wetted area due to

  14. Aspects of six-dimensional flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Dierigl, Markus

    2017-08-15

    In this thesis we investigate various aspects of flux compactifications in six-dimensional quantum field theories. After introducing the internal geometries, i.e. the two-dimensional torus T{sup 2} and one of its orbifolds T{sup 2}/Z{sub 2}, we classify possible gauge backgrounds including continuous and discrete Wilson lines with emphasis on a non-vanishing flux density. An operator analogy with the quantum harmonic oscillator allows for an explicit derivation of the mode functions of charged fields and demonstrates the advantage of our interpretation of discrete Wilson lines in terms of localized fractional gauge fluxes. We then derive a globally supersymmetric action which captures the D-term supersymmetry breaking induced by the internal magnetic field and reproduces the Landau level mass spectrum of the charged four-dimensional degrees of freedom. In this context we show that, even though supersymmetry is broken at the compactification scale, the inclusion of the whole tower of charged states leads to vanishing quantum corrections for the Wilson line effective potential on T{sup 2}. This result is supported by a symmetry breaking argument in which the Wilson line appears as a Goldstone boson. After that, we additionally include gravitational effects within a supergravity effective action of the lightest modes in four dimensions. The dynamics of the moduli fields arising after compactification can be encoded in the setup of N=1 supergravity augmented with anomaly cancellation by the Green-Schwarz mechanism. This leads to a non-trivial transformation behavior for two axion fields under gauge variations in the low-energy effective action. As an application, we discuss an SO(10) x U(1) grand unified theory which uses the multiplicity of fermionic zero modes in the flux background to induce the number of matter generations. Finally, we investigate a novel mechanism for generating de Sitter vacua in N=1 supergravity based on a flux-induced positive definite D

  15. PECULIARITIES OF PHYSICAL-CHEMICAL CHARACTERISTICS OF FLUXING AGENTS, USED IN TECHNOLOGIES OF ELECTROSLAG REMELTING

    Directory of Open Access Journals (Sweden)

    S. N. Zherebtsov

    2007-01-01

    Full Text Available The experimental and literature data on characteristics and functions of fluxing agents and slags, applied for running of stable melting processes in different electroslag technologies, are generalized. The energy connections of cations and anions in slag systems are examined. The formulas of calculation of the slag melts basic capacity depending on chemical composition of fluxing agents are offered. The densities are investigated and melting temperatures of different fluxing agents are given.

  16. From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints

    Science.gov (United States)

    Klamt, Steffen; Gerstl, Matthias P.; Jungreuthmayer, Christian; Mahadevan, Radhakrishnan; Müller, Stefan

    2017-01-01

    Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks. PMID:28406903

  17. Fluxon density waves in long Josephson junctions

    DEFF Research Database (Denmark)

    Olsen, O. H.; Ustinov, A. V.; Pedersen, Niels Falsig

    1993-01-01

    Numerical simulations of the multiple fluxon dynamics stimulated by an external oscillating force applied at a boundary of a long Josephson junction are presented. The calculated IV characteristics agree well with a recent experimental observation of rf-induced satellite flux-flow steps. The volt...... density waves....

  18. CO2 uptake by a stand of Douglas fir: flux measurements compared with model calculations

    NARCIS (Netherlands)

    Vermetten, A.W.M.; Ganzeveld, L.; Jeuken, A.; Hofschreuder, P.; Mohren, G.M.J.

    1994-01-01

    Fluxes of CO2 were calculated by the gradient method from concentration differences, measured in the surface roughness layer above a Douglas fir stand in the Netherlands during a full year (1989). The annual course of the CO2 flux density clearly showed the influence of temperature and incoming

  19. Turbulent flux and the diffusion of passive tracers in electrostatic turbulence

    DEFF Research Database (Denmark)

    Basu, R.; Jessen, T.; Naulin, V.

    2003-01-01

    The connection between the diffusion of passive tracer particles and the anomalous turbulent flux in electrostatic drift-wave turbulence is investigated by direct numerical solutions of the 2D Hasegawa-Wakatani equations. The probability density functions for the point-wise and flux surface...

  20. Increased particle fluxes at the INDEX site attributable to simulated benthic disturbance

    Digital Repository Service at National Institute of Oceanography (India)

    Parthiban, G.

    the traps far away, across the Deep Sea Sediment Resuspension System path. This variability in recorded particle fluxes by the traps around the disturbance area clearly indicates that physical characteristics such as grain size and density of the resuspended...

  1. Squeezing Flux Out of Fat

    DEFF Research Database (Denmark)

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2018-01-01

    Merging transcriptomics or metabolomics data remains insufficient for metabolic flux estimation. Ramirez et al. integrate a genome-scale metabolic model with extracellular flux data to predict and validate metabolic differences between white and brown adipose tissue. This method allows both metab...

  2. Earth's surface heat flux

    Directory of Open Access Journals (Sweden)

    J. H. Davies

    2010-02-01

    Full Text Available We present a revised estimate of Earth's surface heat flux that is based upon a heat flow data-set with 38 347 measurements, which is 55% more than used in previous estimates. Our methodology, like others, accounts for hydrothermal circulation in young oceanic crust by utilising a half-space cooling approximation. For the rest of Earth's surface, we estimate the average heat flow for different geologic domains as defined by global digital geology maps; and then produce the global estimate by multiplying it by the total global area of that geologic domain. The averaging is done on a polygon set which results from an intersection of a 1 degree equal area grid with the original geology polygons; this minimises the adverse influence of clustering. These operations and estimates are derived accurately using methodologies from Geographical Information Science. We consider the virtually un-sampled Antarctica separately and also make a small correction for hot-spots in young oceanic lithosphere. A range of analyses is presented. These, combined with statistical estimates of the error, provide a measure of robustness. Our final preferred estimate is 47±2 TW, which is greater than previous estimates.

  3. Principal Metabolic Flux Mode Analysis.

    Science.gov (United States)

    Bhadra, Sahely; Blomberg, Peter; Castillo, Sandra; Rousu, Juho; Wren, Jonathan

    2018-02-06

    In the analysis of metabolism, two distinct and complementary approaches are frequently used: Principal component analysis (PCA) and stoichiometric flux analysis. PCA is able to capture the main modes of variability in a set of experiments and does not make many prior assumptions about the data, but does not inherently take into account the flux mode structure of metabolism. Stoichiometric flux analysis methods, such as Flux Balance Analysis (FBA) and Elementary Mode Analysis, on the other hand, are able to capture the metabolic flux modes, however, they are primarily designed for the analysis of single samples at a time, and not best suited for exploratory analysis on a large sets of samples. We propose a new methodology for the analysis of metabolism, called Principal Metabolic Flux Mode Analysis (PMFA), which marries the PCA and stoichiometric flux analysis approaches in an elegant regularized optimization framework. In short, the method incorporates a variance maximization objective form PCA coupled with a stoichiometric regularizer, which penalizes projections that are far from any flux modes of the network. For interpretability, we also introduce a sparse variant of PMFA that favours flux modes that contain a small number of reactions. Our experiments demonstrate the versatility and capabilities of our methodology. The proposed method can be applied to genome-scale metabolic network in efficient way as PMFA does not enumerate elementary modes. In addition, the method is more robust on out-of-steady steady-state experimental data than competing flux mode analysis approaches. Matlab software for PMFA and SPMFA and data set used for experiments are available in https://github.com/aalto-ics-kepaco/PMFA. sahely@iitpkd.ac.in, juho.rousu@aalto.fi, Peter.Blomberg@vtt.fi, Sandra.Castillo@vtt.fi. Detailed results are in Supplementary files. Supplementary data are available at https://github.com/aalto-ics-kepaco/PMFA/blob/master/Results.zip.

  4. Analytical Modeling of a Double-Sided Flux Concentrating E-Core Transverse Flux Machine with Pole Windings

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hasan, Iftekhar [University of Akron; Husain, Tausif [University of Akron; Sozer, Yilmaz [University of Akron; Husain, Iqbal [North Carolina State University

    2017-08-08

    In this paper, a nonlinear analytical model based on the Magnetic Equivalent Circuit (MEC) method is developed for a double-sided E-Core Transverse Flux Machine (TFM). The proposed TFM has a cylindrical rotor, sandwiched between E-core stators on both sides. Ferrite magnets are used in the rotor with flux concentrating design to attain high airgap flux density, better magnet utilization, and higher torque density. The MEC model was developed using a series-parallel combination of flux tubes to estimate the reluctance network for different parts of the machine including air gaps, permanent magnets, and the stator and rotor ferromagnetic materials, in a two-dimensional (2-D) frame. An iterative Gauss-Siedel method is integrated with the MEC model to capture the effects of magnetic saturation. A single phase, 1 kW, 400 rpm E-Core TFM is analytically modeled and its results for flux linkage, no-load EMF, and generated torque, are verified with Finite Element Analysis (FEA). The analytical model significantly reduces the computation time while estimating results with less than 10 percent error.

  5. Magnetic flux concentration methods for magnetic energy harvesting module

    Directory of Open Access Journals (Sweden)

    Wakiwaka Hiroyuki

    2013-01-01

    Full Text Available This paper presents magnetic flux concentration methods for magnetic energy harvesting module. The purpose of this study is to harvest 1 mW energy with a Brooks coil 2 cm in diameter from environmental magnetic field at 60 Hz. Because the harvesting power is proportional to the square of the magnetic flux density, we consider the use of a magnetic flux concentration coil and a magnetic core. The magnetic flux concentration coil consists of an air­core Brooks coil and a resonant capacitor. When a uniform magnetic field crossed the coil, the magnetic flux distribution around the coil was changed. It is found that the magnetic field in an area is concentrated larger than 20 times compared with the uniform magnetic field. Compared with the air­core coil, our designed magnetic core makes the harvested energy ten­fold. According to ICNIRP2010 guideline, the acceptable level of magnetic field is 0.2 mT in the frequency range between 25 Hz and 400 Hz. Without the two magnetic flux concentration methods, the corresponding energy is limited to 1 µW. In contrast, our experimental results successfully demonstrate energy harvesting of 1 mW from a magnetic field of 0.03 mT at 60 Hz.

  6. Magnetic flux periodicities and finite momentum pairing in unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Loder, Florian

    2009-12-22

    This work contains a thorough study of the magnetic flux periodicity of loops of conventional and unconventional, especially d-wave, superconductors. Although already in 1961, several independent works showed that the flux period of a conventional superconducting loop is the superconducting flux quantum hc/2e, this question has never been investigated deeply for unconventional superconductors. And indeed, we show here that d-wave superconducting loops show a basic flux period of the normal flux quantum hc/e, a property originating from the nodal quasi-particle states. This doubling of the flux periodicity is best visible in the persistent current circulating in the loop, and it affects other properties of the superconductor such as the periodicity of d-wave Josephson junctions. In the second part of this work, the theory of electron pairing with finite center-of-mass momentum, necessary for the description of superconducting loops, is extended to systems in zero magnetic field. We show that even in the field free case, an unconventional pairing symmetry can lead to a superconducting ground state with finite-momentum electron pairs. Such a state has an inhomogeneous charge density and therefore is a basis for the description of coexistence of superconductivity and stripe order. (orig.)

  7. Partial restoration of chiral symmetry in the color flux tube

    Science.gov (United States)

    Iritani, Takumi; Cossu, Guido; Hashimoto, Shoji

    2015-05-01

    Using the quark eigenmodes computed on the lattice with the overlap-Dirac operator, we investigate the spatial distribution of the chiral condensate around static color sources corresponding to quark-antiquark and three-quark systems. A flux structure of chromo fields appears in the presence of such color charges. The magnitude of the chiral condensate is reduced inside the color flux, which implies partial restoration of chiral symmetry inside hadrons. Taking a static baryon source in a periodic box as a toy model of nuclear matter, we estimate the magnitude of the chiral symmetry restoration as a function of baryon matter density.

  8. Flux lenses in the crossing lattices regime of layered superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Cole, D.; Crisan, A.; Bending, S.J.; Tamegai, T.; Beek, K. van der; Konczykowski, M

    2004-05-01

    We report here measurements of flux lensing behaviour which have been performed on Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystals placed on top of linear Hall probe arrays. In the crossing lattices regime we observe significant flux focussing as the in-plane field is swept up with a small constant density of pancake vortices. We also observe a sharp discontinuous lock-in feature in local magnetic induction when the net field is close to the a-b plane.

  9. Effects of upward-going cosmic muons on density radiography of volcanoes

    OpenAIRE

    Jourde, K.; D. Gibert; Marteau, J.; de Bremond d?Ars, Jean; Gardien, S.; Girerd, C.; Ianigro, J.-C.; Carbone, D.

    2013-01-01

    submitted to Geophysical Journal International; Muon tomography aims at deriving the density structure of geological bodies from their screening attenuation produced on the natural cosmic muons flux. Because of their open-sky exposure, muons telescopes are subject to noise fluxes with large intensities relative to the tiny flux of interest. A recognized source of noise flux comes from fake tracks caused by particles that fortuitously trigger the telescope detectors at the same time. Such a fl...

  10. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  11. Specification of ROP flux shape

    Energy Technology Data Exchange (ETDEWEB)

    Min, Byung Joo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Gray, A. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1997-06-01

    The CANDU 9 480/SEU core uses 0.9% SEU (Slightly Enriched Uranium) fuel. The use f SEU fuel enables the reactor to increase the radial power form factor from 0.865, which is typical in current natural uranium CANDU reactors, to 0.97 in the nominal CANDU 9 480/SEU core. The difference is a 12% increase in reactor power. An additional 5% increase can be achieved due to a reduced refuelling ripple. The channel power limits were also increased by 3% for a total reactor power increase of 20%. This report describes the calculation of neutron flux distributions in the CANDU 9 480/SEU core under conditions specified by the C and I engineers. The RFSP code was used to calculate of neutron flux shapes for ROP analysis. Detailed flux values at numerous potential detector sites were calculated for each flux shape. (author). 6 tabs., 70 figs., 4 refs.

  12. Physics of Magnetic Flux Ropes

    CERN Document Server

    Priest, E R; Lee, L C

    1990-01-01

    The American Geophysical Union Chapman Conference on the Physics of Magnetic Flux Ropes was held at the Hamilton Princess Hotel, Hamilton, Bermuda on March 27–31, 1989. Topics discussed ranged from solar flux ropes, such as photospheric flux tubes, coronal loops and prominences, to flux ropes in the solar wind, in planetary ionospheres, at the Earth's magnetopause, in the geomagnetic tail and deep in the Earth's magnetosphere. Papers presented at that conference form the nucleus of this book, but the book is more than just a proceedings of the conference. We have solicited articles from all interested in this topic. Thus, there is some material in the book not discussed at the conference. Even in the case of papers presented at the conference, there is generally a much more detailed and rigorous presentation than was possible in the time allowed by the oral and poster presentations.

  13. PROTOSTELLAR ACCRETION FLOWS DESTABILIZED BY MAGNETIC FLUX REDISTRIBUTION

    Energy Technology Data Exchange (ETDEWEB)

    Krasnopolsky, Ruben; Shang, Hsien [Academia Sinica, Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Li Zhiyun; Zhao Bo [University of Virginia, Astronomy Department, Charlottesville (United States)

    2012-09-20

    Magnetic flux redistribution lies at the heart of the problem of star formation in dense cores of molecular clouds that are magnetized to a realistic level. If all of the magnetic flux of a typical core were to be dragged into the central star, the stellar field strength would be orders of magnitude higher than the observed values. This well-known magnetic flux problem can in principle be resolved through non-ideal MHD effects. Two-dimensional (axisymmetric) calculations have shown that ambipolar diffusion, in particular, can transport magnetic flux outward relative to matter, allowing material to enter the central object without dragging the field lines along. We show through simulations that such axisymmetric protostellar accretion flows are unstable in three dimensions to magnetic interchange instability in the azimuthal direction. The instability is driven by the magnetic flux redistributed from the matter that enters the central object. It typically starts to develop during the transition from the prestellar phase of star formation to the protostellar mass accretion phase. In the latter phase, the magnetic flux is transported outward mainly through advection by strongly magnetized low-density regions that expand against the collapsing inflow. The tussle between the gravity-driven infall and magnetically driven expansion leads to a highly filamentary inner accretion flow that is more disordered than previously envisioned. The efficient outward transport of magnetic flux by advection lowers the field strength at small radii, making the magnetic braking less efficient and the formation of rotationally supported disks easier in principle. However, we find no evidence for such disks in any of our rotating collapse simulations. We conclude that the inner protostellar accretion flow is shaped to a large extent by the flux redistribution-driven magnetic interchange instability. How disks form in such an environment is unclear.

  14. Non-equilibrium reactive flux: A unified framework for slow and fast reaction kinetics

    Science.gov (United States)

    Bose, Amartya; Makri, Nancy

    2017-10-01

    The flux formulation of reaction rate theory is recast in terms of the expectation value of the reactive flux with an initial condition that corresponds to a non-equilibrium, factorized reactant density. In the common case of slow reactive processes, the non-equilibrium expression reaches the plateau regime only slightly slower than the equilibrium flux form. When the reactants are described by a single quantum state, as in the case of electron transfer reactions, the factorized reactant density describes the true initial condition of the reactive process. In such cases, the time integral of the non-equilibrium flux expression yields the reactant population as a function of time, allowing characterization of the dynamics in cases where there is no clear separation of time scales and thus a plateau regime cannot be identified. The non-equilibrium flux offers a unified approach to the kinetics of slow and fast chemical reactions and is ideally suited to mixed quantum-classical methods.

  15. Non-equilibrium reactive flux: A unified framework for slow and fast reaction kinetics.

    Science.gov (United States)

    Bose, Amartya; Makri, Nancy

    2017-10-21

    The flux formulation of reaction rate theory is recast in terms of the expectation value of the reactive flux with an initial condition that corresponds to a non-equilibrium, factorized reactant density. In the common case of slow reactive processes, the non-equilibrium expression reaches the plateau regime only slightly slower than the equilibrium flux form. When the reactants are described by a single quantum state, as in the case of electron transfer reactions, the factorized reactant density describes the true initial condition of the reactive process. In such cases, the time integral of the non-equilibrium flux expression yields the reactant population as a function of time, allowing characterization of the dynamics in cases where there is no clear separation of time scales and thus a plateau regime cannot be identified. The non-equilibrium flux offers a unified approach to the kinetics of slow and fast chemical reactions and is ideally suited to mixed quantum-classical methods.

  16. P fluxes and exotic branes

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Davide M. [Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy); Riccioni, Fabio [INFN - Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy); Risoli, Stefano [Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN - Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy)

    2016-12-21

    We consider the N=1 superpotential generated in type-II orientifold models by non-geometric fluxes. In particular, we focus on the family of P fluxes, that are related by T-duality transformations to the S-dual of the Q flux. We determine the general rule that transforms a given flux in this family under a single T-duality transformation. This rule allows to derive a complete expression for the superpotential for both the IIA and the IIB theory for the particular case of a T{sup 6}/[ℤ{sub 2}×ℤ{sub 2}] orientifold. We then consider how these fluxes modify the generalised Bianchi identities. In particular, we derive a fully consistent set of quadratic constraints coming from the NS-NS Bianchi identities. On the other hand, the P flux Bianchi identities induce tadpoles, and we determine a set of exotic branes that can be consistently included in order to cancel them. This is achieved by determining a universal transformation rule under T-duality satisfied by all the branes in string theory.

  17. Flux tubes at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cea, Paolo [INFN, Sezione di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Dipartimento di Fisica dell’Università di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Cosmai, Leonardo [INFN, Sezione di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Cuteri, Francesca; Papa, Alessandro [Dipartimento di Fisica, Università della Calabria & INFN-Cosenza,Ponte Bucci, cubo 31C, I-87036 Rende (Cosenza) (Italy)

    2016-06-07

    The chromoelectric field generated by a static quark-antiquark pair, with its peculiar tube-like shape, can be nicely described, at zero temperature, within the dual superconductor scenario for the QCD confining vacuum. In this work we investigate, by lattice Monte Carlo simulations of the SU(3) pure gauge theory, the fate of chromoelectric flux tubes across the deconfinement transition. We find that, if the distance between the static sources is kept fixed at about 0.76 fm ≃1.6/√σ and the temperature is increased towards and above the deconfinement temperature T{sub c}, the amplitude of the field inside the flux tube gets smaller, while the shape of the flux tube does not vary appreciably across deconfinement. This scenario with flux-tube “evaporation” above T{sub c} has no correspondence in ordinary (type-II) superconductivity, where instead the transition to the phase with normal conductivity is characterized by a divergent fattening of flux tubes as the transition temperature is approached from below. We present also some evidence about the existence of flux-tube structures in the magnetic sector of the theory in the deconfined phase.

  18. The Fourier transform of tubular densities

    KAUST Repository

    Prior, C B

    2012-05-18

    We consider the Fourier transform of tubular volume densities, with arbitrary axial geometry and (possibly) twisted internal structure. This density can be used to represent, among others, magnetic flux or the electron density of biopolymer molecules. We consider tubes of both finite radii and unrestricted radius. When there is overlap of the tube structure the net density is calculated using the super-position principle. The Fourier transform of this density is composed of two expressions, one for which the radius of the tube is less than the curvature of the axis and one for which the radius is greater (which must have density overlap). This expression can accommodate an asymmetric density distribution and a tube structure which has non-uniform twisting. In addition we give several simpler expressions for isotropic densities, densities of finite radius, densities which decay at a rate sufficient to minimize local overlap and finally individual surfaces of the tube manifold. These simplified cases can often be expressed as arclength integrals and can be evaluated using a system of first-order ODEs. © 2012 IOP Publishing Ltd.

  19. Observational biases in flux magnification measurements

    Science.gov (United States)

    Hildebrandt, H.

    2016-02-01

    Flux magnification is an interesting complement to shear-based lensing measurements, especially at high redshift where sources are harder to resolve. One measures either changes in the source density (magnification bias) or in the shape of the flux distribution (e.g. magnitude shift). The interpretation of these measurements relies on theoretical estimates of how the observables change under magnification. Here, we present simulations to create multiband photometric mock catalogues of Lyman-break galaxies in a CFHTLenS (Canada France Hawaii Telescope Lensing Survey)-like survey that include several observational effects that can change these relations, making simple theoretical estimates unusable. In particular, we show how the magnification bias can be affected by photometric noise, colour selection, and dust extinction. We find that a simple measurement of the slope of the number-counts is not sufficient for the precise interpretation of virtually all observations of magnification bias. We also explore how sensitive the shift in the mean magnitude of a source sample in different photometric bands is to magnification including the same observational effects. Again we find significant deviations from simple analytical estimates. We also discover a wavelength-dependence of the magnitude-shift effect when applied to a colour-selected noisy source sample. Such an effect can mimic the reddening by dust in the lens. It has to be disentangled from the dust extinction before the magnitude shift/colour-excess can be used to measure the distribution of either dark matter or extragalactic dust. Using simulations like the ones presented here these observational effects can be studied and eventually removed from observations making precise measurements of flux magnification possible.

  20. Analysis of the low-altitude proton flux asymmetry: methodology

    CERN Document Server

    Kruglanski, M

    1999-01-01

    Existing East-West asymmetry models of the trapped proton fluxes at low altitudes depend on the local magnetic dip angle and a density scale height derived from atmospheric models. We propose an alternative approach which maps the directional flux over a drift shell (B sub m , L) in terms of the local pitch and azimuthal angles alpha and beta, where beta is defined in the local mirror plane as the angle between the proton arrival direction and the surface normal to the drift shell. This approach has the advantage that it only depends on drift shell parameters and does not involve an atmosphere model. A semi-empirical model based on the new methodology is able to reproduce the angular distribution of a set of SAMPEX/PET proton flux measurements. Guidelines are proposed for spacecraft missions and data analysis procedures that are intended to be used for the building of new trapped radiation environment models.

  1. Study on coal char ignition by radiant heat flux.

    Science.gov (United States)

    Korotkikh, A. G.; Slyusarskiy, K. V.

    2017-11-01

    The study on coal char ignition by CO2-continuous laser was carried out. The coal char samples of T-grade bituminous coal and 2B-grade lignite were studied via CO2-laser ignition setup. Ignition delay times were determined at ambient condition in heat flux density range 90–200 W/cm2. The average ignition delay time value for lignite samples were 2 times lower while this difference is larger in high heat flux region and lower in low heat flux region. The kinetic constants for overall oxidation reaction were determined using analytic solution of simplified one-dimensional heat transfer equation with radiant heat transfer boundary condition. The activation energy for lignite char was found to be less than it is for bituminous coal char by approximately 20 %.

  2. Analysis of edge stability for models of heat flux width

    Directory of Open Access Journals (Sweden)

    M.A. Makowski

    2017-08-01

    Full Text Available Detailed measurements of the ne, Te, and Ti profiles in the vicinity of the separatrix of ELMing H-mode discharges have been used to examine plasma stability at the extreme edge of the plasma and assess stability dependent models of the heat flux width. The results are strongly contrary to the critical gradient model, which posits that a ballooning instability determines a gradient scale length related to the heat flux width. The results of this analysis are not sensitive to the choice of location to evaluate stability. Significantly, it is also found that the results are completely consistent with the heuristic drift model for the heat flux width. Here the edge pressure gradient scales with plasma density and is proportional to the pressure gradient inferred from the equilibrium in accordance with the predictions of that theory.

  3. Emission Flux Measurement Error with a Mobile DOAS System and Application to NOx Flux Observations.

    Science.gov (United States)

    Wu, Fengcheng; Li, Ang; Xie, Pinhua; Chen, Hao; Hu, Zhaokun; Zhang, Qiong; Liu, Jianguo; Liu, Wenqing

    2017-01-25

    Mobile differential optical absorption spectroscopy (mobile DOAS) is an optical remote sensing method that can rapidly measure trace gas emission flux from air pollution sources (such as power plants, industrial areas, and cities) in real time. Generally, mobile DOAS is influenced by wind, drive velocity, and other factors, especially in the usage of wind field when the emission flux in a mobile DOAS system is observed. This paper presents a detailed error analysis and NOx emission with mobile DOAS system from a power plant in Shijiazhuang city, China. Comparison of the SO₂ emission flux from mobile DOAS observations with continuous emission monitoring system (CEMS) under different drive speeds and wind fields revealed that the optimal drive velocity is 30-40 km/h, and the wind field at plume height is selected when mobile DOAS observations are performed. In addition, the total errors of SO₂ and NO₂ emissions with mobile DOAS measurements are 32% and 30%, respectively, combined with the analysis of the uncertainties of column density, wind field, and drive velocity. Furthermore, the NOx emission of 0.15 ± 0.06 kg/s from the power plant is estimated, which is in good agreement with that from CEMS observations of 0.17 ± 0.07 kg/s. This study has significantly contributed to the measurement of the mobile DOAS system on emission from air pollution sources, thus improving estimation accuracy.

  4. Water Use Patterns of Four Tropical Bamboo Species Assessed with Sap Flux Measurements.

    Science.gov (United States)

    Mei, Tingting; Fang, Dongming; Röll, Alexander; Niu, Furong; Hendrayanto; Hölscher, Dirk

    2015-01-01

    Bamboos are grasses (Poaceae) that are widespread in tropical and subtropical regions. We aimed at exploring water use patterns of four tropical bamboo species (Bambusa vulgaris, Dendrocalamus asper, Gigantochloa atroviolacea, and G. apus) with sap flux measurement techniques. Our approach included three experimental steps: (1) a pot experiment with a comparison of thermal dissipation probes (TDPs), the stem heat balance (SHB) method and gravimetric readings using potted B. vulgaris culms, (2) an in situ calibration of TDPs with the SHB method for the four bamboo species, and (3) field monitoring of sap flux of the four bamboo species along with three tropical tree species (Gmelina arborea, Shorea leprosula, and Hevea brasiliensis) during a dry and a wet period. In the pot experiment, it was confirmed that the SHB method is well suited for bamboos but that TDPs need to be calibrated. In situ, species-specific parameters for such calibration formulas were derived. During field monitoring we found that some bamboo species reached high maximum sap flux densities. Across bamboo species, maximal sap flux density increased with decreasing culm diameter. In the diurnal course, sap flux densities in bamboos peaked much earlier than radiation and vapor pressure deficit (VPD), and also much earlier than sap flux densities in trees. There was a pronounced hysteresis between sap flux density and VPD in bamboos, which was less pronounced in trees. Three of the four bamboo species showed reduced sap flux densities at high VPD values during the dry period, which was associated with a decrease in soil moisture content. Possible roles of internal water storage, root pressure and stomatal sensitivity are discussed.

  5. Probabilistic Forecasting of the Wave Energy Flux

    DEFF Research Database (Denmark)

    Pinson, Pierre; Reikard, G.; Bidlot, J.-R.

    2012-01-01

    markets. A methodology for the probabilistic forecasting of the wave energy flux is introduced, based on a log-Normal assumption for the shape of predictive densities. It uses meteorological forecasts (from the European Centre for Medium-range Weather Forecasts – ECMWF) and local wave measurements......Wave energy will certainly have a significant role to play in the deployment of renewable energy generation capacities. As with wind and solar, probabilistic forecasts of wave power over horizons of a few hours to a few days are required for power system operation as well as trading in electricity......% and 70% in terms of Continuous Rank Probability Score (CRPS), depending upon the test case and the lead time. It is finally shown that the log-Normal assumption can be seen as acceptable, even though it may be refined in the future....

  6. CO2 fluxes at leaf and canopy scale in millet, fallow and tiger bush vegetation at the HAPEX-Sahel southern super-site.

    NARCIS (Netherlands)

    Levy, P.E.; Moncrieff, J.B.; Massheder, J.M.; Jarvis, P.G.; Scott, S.L.; Brouwer, J.

    1997-01-01

    Measurements of canopy and leaf scale CO2 flux from the three sub-sites at the HAPEX-Sahel Southern supersite are presented. These are analysed in relation to biological and environmental variables. At leaf scale, the flux is most strongly influenced by photosynthetic photon flux density (PPFD) and

  7. Magnetic flux noise in copper oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, M.J.

    1991-11-01

    Magnetic flux noise and flux creep in thin films and single crystals of YBa{sub 2}Cu{sub 3}O{sub 7-x}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x}, Tl{sub 2}Ca{sub 2}Ba{sub 2}Cu{sub 3}O{sub x}, and TlCa{sub 2}Ba{sub 2}Cu{sub 3}O{sub x} are measured with a superconducting quantum interference device (SQUID). The noise power spectrum generally scales as 1/f (f is frequency) from 1 Hz to 1 kHz, increases with temperature, and decreases in higher-quality films. It is proportional to the magnetic field B in which the sample is cooled, at least in the range 0.1 mT < B < 3 mT. A model of thermally activated vortex motion is developed which explains the dependence of the noise on frequency, temperature, current, and applied magnetic field. The pinning potential is idealized as an ensemble of double wells, each with a different activation energy separating the two states. From the noise measurements, this model yields the distribution of pinning energies in the samples, the vortex hopping distance, the number density of mobile vortices, and the restoring force on a vortex at a typical pinning site. The distribution of pinning energies in YBa{sub 2}Cu{sub 3}O{sub 7-x} shows a broad peak below 0.1 eV. The small ambient magnetic field, and the detection of noise even in the absence of a driving force, insure that the measured pinning energies are characteristic of isolated vortices near thermal equilibrium. The observed vortex density in fields much less than 0.1 mT is too large to be explained by the ambient field, suggesting a mechanism intrinsic to the sample which produces trapped vortices.

  8. Muon tomography of rock density using Micromegas-TPC telescope

    Science.gov (United States)

    Hivert, Fanny; Busto, José; Gaffet, Stéphane; Ernenwein, Jean-Pierre; Brunner, Jurgen; Salin, Pierre; Decitre, Jean-Baptiste; Lázaro Roche, Ignacio; Martin, Xavier

    2014-05-01

    The knowledge of the subsurface properties is essentially obtained by geophysical methods, e.g., seismic imaging, electric prospection or gravimetry. The current work is based on a recently developed method to investigate in situ the density of rocks using a measurement of the muon flux, whose attenuation depends on the quantity of matter the particles travel through and hence on the rock density and thickness. The present project (T2DM2) aims at performing underground muon flux measurements in order to characterize spatial and temporal rock massif density variations above the LSBB underground research facility in Rustrel (France). The muon flux will be measured with a new muon telescope device using Micromegas-Time Projection Chamber (TPC) detectors. The first step of the work presented covers the muon flux simulation based on the Gaisser model (Gaisser T., 1990), for the muon flux at the ground level, and on the MUSIC code (Kudryavtsev V. A., 2008) for the propagation of muons through the rock. The results show that the muon flux distortion caused by density variations is enough significant to be observed at 500 m depth for measurement times of about one month. This time-scale is compatible with the duration of the water transfer processes within the unsaturated Karst zone where LSBB is located. The work now focuses on the optimization of the detector layout along the LSBB galleries in order to achieve the best sensitivity.

  9. Evidence of Decay of Flux Ratio of Fe to Fe–Ni Line Features with ...

    Indian Academy of Sciences (India)

    We propose that the difference may be due to the consideration of higher densities of Fe and Fe–Ni lines in the theoretical model of Phillips (2004). We suggest revising the Fe and Fe–Ni line densities in the corona. The decay of flux ratio explains the variation of equivalent width and peak energy of these line features with ...

  10. Design comparison of single phase outer and inner-rotor hybrid excitation flux switching motor for hybrid electric vehicles

    Science.gov (United States)

    Mazlan, Mohamed Mubin Aizat; Sulaiman, Erwan; Husin, Zhafir Aizat; Othman, Syed Muhammad Naufal Syed; Khan, Faisal

    2015-05-01

    In hybrid excitation machines (HEMs), there are two main flux sources which are permanent magnet (PM) and field excitation coil (FEC). These HEMs have better features when compared with the interior permanent magnet synchronous machines (IPMSM) used in conventional hybrid electric vehicles (HEVs). Since all flux sources including PM, FEC and armature coils are located on the stator core, the rotor becomes a single piece structure similar with switch reluctance machine (SRM). The combined flux generated by PM and FEC established more excitation fluxes that are required to produce much higher torque of the motor. In addition, variable DC FEC can control the flux capabilities of the motor, thus the machine can be applied for high-speed motor drive system. In this paper, the comparisons of single-phase 8S-4P outer and inner rotor hybrid excitation flux switching machine (HEFSM) are presented. Initially, design procedures of the HEFSM including parts drawing, materials and conditions setting, and properties setting are explained. Flux comparisons analysis is performed to investigate the flux capabilities at various current densities. Then the flux linkages of PM with DC FEC of various DC FEC current densities are examined. Finally torque performances are analyzed at various armature and FEC current densities for both designs. As a result, the outer-rotor HEFSM has higher flux linkage of PM with DC FEC and higher average torque of approximately 10% when compared with inner-rotor HEFSM.

  11. Are far-IR fluxes good measures of cloud mass?

    Science.gov (United States)

    Wagle, Gururaj; Ferland, G. J.; Troland, T. H.; Abel, N.

    2014-01-01

    It is commonly assumed that the Herschel far-IR fluxes are a measure of column density, hence, mass of interstellar clouds. The Polaris Flare, a high galactic latitude cirrus cloud, with several starless molecular cores, has been previously observed with the Herschel Space Telescope. We used Cloudy version 13.02 to model a molecular cloud MCLD 123.5+24.9, one of the denser regions of the Polaris Flare. These models include a detailed calculation of far-IR grain opacities, subject to various assumptions about grain composition, and predict far-IR fluxes. The models suggest that the observed fluxes reflect the incident stellar UV radiation field rather than the column density, if N(H) > a few times 1021 cm2 (AV > 1). For higher column densities, the models show that dust temperatures decline rapidly into the cloud. Therefore, the cloud interiors contribute very little additional far-IR flux, and column densities based upon far-IR fluxes can be significantly underestimated. The Polaris Flare, 150 pc distant, is well within the Galactic disc. There are no nearby hot stars. Therefore, the stellar UV radiation field incident on the cloud should be close to the mean interstellar radiation field (ISRF). In addition, the calculated grain opacities required to reproduce the far-IR fluxes in the Cloudy models are a few factors larger than that calculated for standard ISM graphite and silicate grains. This result suggests that the grains in dense regions are coated with water and ammonia ices, increasing their sizes and opacities. The Cloudy models also predict mm-wavelength CO line strengths for comparison with published observations at the IRAM 30-m telescope. In order to reproduce the observed CO line strengths for cores in MCLD 123.5+24.9, the models require that CO molecules be partially frozen out onto the grains. This result places age constraints upon the cores. We have also modeled CO emission from inter-core regions in MCLD 123.5+24.9. For these regions, the models

  12. Physics of magnetic flux tubes

    CERN Document Server

    Ryutova, Margarita

    2015-01-01

    This book is the first account of the physics of magnetic flux tubes from their fundamental properties to collective phenomena in an ensembles of flux tubes. The physics of magnetic flux tubes is absolutely vital for understanding fundamental physical processes in the solar atmosphere shaped and governed by magnetic fields. High-resolution and high cadence observations from recent space and  ground-based instruments taken simultaneously at different heights and temperatures not only show the ubiquity of filamentary structure formation but also allow to study how various events are interconnected by system of magnetic flux tubes. The book covers both theory and observations. Theoretical models presented in analytical and phenomenological forms are tailored for practical applications. These are welded with state-of-the-art observations from early decisive ones to the most recent data that open a new phase-space for exploring the Sun and sun-like stars. Concept of magnetic flux tubes is central to various magn...

  13. Numerical study on AC loss reduction of stacked HTS tapes by optimal design of flux diverter

    Science.gov (United States)

    Liu, Guole; Zhang, Guomin; Jing, Liwei; Yu, Hui

    2017-12-01

    High temperature superconducting (HTS) coils are key parts of many AC applications, such as generators, superconducting magnetic energy storage and transformers. AC loss reduction in HTS coils is essential for the commercialization of these HTS devices. Magnetic material is generally used as the flux diverter in an effort to reduce the AC loss in HTS coils. To achieve the greatest reduction in the AC loss of the coils, the flux diverter should be made of a material with low loss and high saturated magnetic density, and the optimization of the geometric size and location of the flux diverter is required. In this paper, we chose Ni-alloy as the flux diverter, which can be processed into a specific shape and size. The influence of the shape and location of the flux diverter on the AC loss characteristics of stacked (RE)BCO tapes is investigated by use of a finite element method. Taking both the AC loss of the (RE)BCO coils and the ferromagnetic loss of the flux diverter into account, the optimal geometry of the flux diverter is obtained. It is found that when the applied current is at half the value of the critical current, the total loss of the HTS stack with the optimal flux diverter is only 18% of the original loss of the HTS stack without the flux diverter. Besides, the effect of the flux diverter on the critical current of the (RE)BCO stack is investigated.

  14. Seasonality of Overstory and Understory Fluxes in a Semi-Arid Oak Savanna: What can be Learned from Comparing Measured and Modeled Fluxes?

    Science.gov (United States)

    Raz-Yaseef, N.; Sonnentag, O.; Kobayashi, H.; Chen, J. M.; Verfaillie, J. G.; Ma, S.; Baldocchi, D. D.

    2011-12-01

    Semi-arid climates experience large seasonal and inter-annual variability in radiation and precipitation, creating natural conditions adequate to study how year-to-year changes affect atmosphere-biosphere fluxes. Especially, savanna ecosystems, that combine tree and below-canopy components, create a unique environment in which phenology dramatically changes between seasons. We used a 10-year flux database in order to define seasonal and interannual variability of climatic inputs and fluxes, and evaluate model capability to reproduce observed variability. This is based on the perception that model capability to construct the deviation, and not the average, is important in order to correctly predict ecosystem sensitivity to climate change. Our research site is a low density and low LAI (0.8) semi-arid savanna, located at Tonzi Ranch, Northern California. In this system, trees are active during the warm season (Mar - Oct), and grasses are active during the wet season (Dec - May). Measurements of carbon and water fluxes above and below the tree canopy using eddy covariance and supplementary measurements have been made since 2001. Fluxes were simulated using bio-meteorological process-oriented ecosystem models: BEPS and 3D-CAONAK. Models were partly capable of reproducing fluxes on daily scales (R2=0.66). We then compared model outputs for different ecosystem components and seasons, and found distinct seasons with high correlations while other seasons were purely represented. Comparison was much higher for ET than for GPP. The understory was better simulated than the overstory. CANOAK overestimated spring understory fluxes, probably due to the capability to directly calculated 3D radiative transfer. BEPS underestimated spring understory fluxes, following the pre-description of grass die-off. Both models underestimated peak spring overstory fluxes. During winter tree dormant, modeled fluxes were null, but occasional high fluxes of both ET and GPP were measured following

  15. Stringent neutrino flux constraints on antiquark nugget dark matter

    Science.gov (United States)

    Gorham, P. W.; Rotter, B. J.

    2017-05-01

    Strongly interacting matter in the form of nuggets of nuclear-density material is not currently excluded as a dark matter candidate in the ten gram to hundreds of kilogram mass range. A recent variation on quark nugget dark matter models postulates that a first-order imbalance between matter and antimatter at the quark-gluon phase transition in the early Universe could lead to most of the dark matter bound into heavy (baryon number B ˜1 025) antiquark nuggets in the current epoch, explaining both the dark matter preponderance and the matter-antimatter asymmetry. Interactions of these massive objects with normal matter in the Earth and Sun lead to annihilation and an associated neutrino flux in the ˜30 MeV range. We calculate these fluxes for antiquark nuggets of sufficient flux to account for the dark matter and find that current neutrino flux limits from Super-Kamiokande (SuperK) exclude these objects as major dark matter candidates at a high confidence level. Antiquark nuggets in the previously allowed mass range cannot account for more than ˜15 % of the dark matter flux.

  16. Where is the Open Flux?

    Science.gov (United States)

    Linker, Jon A.; Downs, Cooper; Caplan, Ronald M.; Lionello, Roberto; Mikic, Zoran; Riley, Pete; Henney, Carl John; Arge, Charles; Owens, Matthew

    2017-08-01

    The Sun’s magnetic field has been observed in the photosphere from ground- and space-based observatories for many years. Global maps of the solar magnetic field based on full disk magnetograms (either built up over a solar rotation, or evolved using flux transport models) are commonly used as boundary conditions for coronal and solar wind models. Maps from different observatories typically agree qualitatively but often disagree quantitatively. Estimation of the coronal/solar wind physics can range from potential field source surface (PFSS) models with empirical prescriptions to magnetohydrodynamic (MHD) models with realistic energy transport and sub-grid scale descriptions of heating and acceleration. Two primary observational constraints on the models are (1) The open field regions in the model should approximately correspond to coronal holes observed in emission, and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. We have investigated the July 2010 time period, using PFSS and MHD models computed using several available magnetic maps, coronal hole boundaries detected from STEREO and SDO EUV observations, and estimates of the interplanetary magnetic flux from in situ ACE measurements. We show that for all the model/map combinations, models that agree for (1) underestimate the interplanetary magnetic flux, or, conversely, for models to match (2), the modeled open field regions are larger than observed coronal holes. Alternatively, we estimate the open magnetic flux entirely from solar observations by combining detected coronal hole boundaries with observatory synoptic magnetic maps, and show that this method also underestimates the interplanetary magnetic flux. We discuss possible resolutions.Research supported by NASA, AFOSR, and NSF.

  17. Respiratory carbon fluxes in leaves.

    Science.gov (United States)

    Tcherkez, Guillaume; Boex-Fontvieille, Edouard; Mahé, Aline; Hodges, Michael

    2012-06-01

    Leaf respiration is a major metabolic process that drives energy production and growth. Earlier works in this field were focused on the measurement of respiration rates in relation to carbohydrate content, photosynthesis, enzymatic activities or nitrogen content. Recently, several studies have shed light on the mechanisms describing the regulation of respiration in the light and in the dark and on associated metabolic flux patterns. This review will highlight advances made into characterizing respiratory fluxes and provide a discussion of metabolic respiration dynamics in relation to important biological functions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Ozone Flux Measurement and Modelling on Leaf/Shoot and Canopy Scale

    Directory of Open Access Journals (Sweden)

    Giacomo Gerosa

    2011-02-01

    Full Text Available The quantitative study of the ozone effects on agricultural and forest vegetation requires the knowledge of the pollutant dose absorbed by plants via leaf stomata, i.e. the stomatal flux. Nevertheless, the toxicologically effective dose can differ from the stomatal flux because a pool of scavenging and detoxification processes reduce the amount of pollutant responsible of the expression of the harmful effects. The measurement of the stomatal flux is not immediate and the quantification of the effective dose is still troublesome. The paper examines the conceptual aspects of ozone flux measurement and modelling in agricultural and ecological research. The ozone flux paradigm is conceptualized into a toxicological frame and faced at two different scales: leaf/shoot and canopy scales. Leaf and shoot scale flux measurements require gas-exchange enclosure techniques, while canopy scale flux measurements need a micrometeorological approach including techniques such as eddy covariance and the aerodynamical gradient. At both scales, not all the measured ozone flux is stomatal flux. In fact, a not negligible amount of ozone is destroyed on external plant surfaces, like leaf cuticles, or by gas phase reaction with biogenic volatile compounds. The stomatal portion of flux can be calculated from concurrent measurements of water vapour fluxes at both scales. Canopy level flux measurements require very fast sensors and the fulfilment of many conditions to ensure that the measurements made above the canopy really reflect the canopy fluxes (constant flux hypothesis. Again, adjustments are necessary in order to correct for air density fluctuations and sensor-surface alignment break. As far as regards flux modelling, at leaf level the stomatal flux is simply obtained by multiplying the ozone concentration on the leaf with the stomatal conductance predicted by means of physiological models fed by meteorological parameter. At canopy level the stomatal flux is

  19. Ozone Flux Measurement and Modelling on Leaf/Shoot and Canopy Scale

    Directory of Open Access Journals (Sweden)

    Ludger Grünhage

    Full Text Available The quantitative study of the ozone effects on agricultural and forest vegetation requires the knowledge of the pollutant dose absorbed by plants via leaf stomata, i.e. the stomatal flux. Nevertheless, the toxicologically effective dose can differ from the stomatal flux because a pool of scavenging and detoxification processes reduce the amount of pollutant responsible of the expression of the harmful effects. The measurement of the stomatal flux is not immediate and the quantification of the effective dose is still troublesome. The paper examines the conceptual aspects of ozone flux measurement and modelling in agricultural and ecological research. The ozone flux paradigm is conceptualized into a toxicological frame and faced at two different scales: leaf/shoot and canopy scales. Leaf and shoot scale flux measurements require gas-exchange enclosure techniques, while canopy scale flux measurements need a micrometeorological approach including techniques such as eddy covariance and the aerodynamical gradient. At both scales, not all the measured ozone flux is stomatal flux. In fact, a not negligible amount of ozone is destroyed on external plant surfaces, like leaf cuticles, or by gas phase reaction with biogenic volatile compounds. The stomatal portion of flux can be calculated from concurrent measurements of water vapour fluxes at both scales. Canopy level flux measurements require very fast sensors and the fulfilment of many conditions to ensure that the measurements made above the canopy really reflect the canopy fluxes (constant flux hypothesis. Again, adjustments are necessary in order to correct for air density fluctuations and sensor-surface alignment break. As far as regards flux modelling, at leaf level the stomatal flux is simply obtained by multiplying the ozone concentration on the leaf with the stomatal conductance predicted by means of physiological models fed by meteorological parameter. At canopy level the stomatal flux is

  20. Linking evaporative fluxes from bare soils across surface viscous sublayer with the Monin-Obukhov atmospheric flux-profile estimates

    OpenAIRE

    Haghighi Erfan; Or Dani

    2015-01-01

    The Monin–Obukhov similarity theory (MOST) provides the theoretical basis for many “atmospheric based” methods (such as eddy covariance and flux profile methods) that are widely used for quantifying surface–atmosphere exchange processes. The turbulence driven and highly nonlinear profiles of momentum air temperature and vapor densities require complex resistance expressions applied to simple gradients deduced from a single or few height measurements. Notwithstanding the success of these atmos...

  1. Flux decline in ultrafiltration processes

    NARCIS (Netherlands)

    van den Berg, G.B.; Smolders, C.A.

    1990-01-01

    When a membrane filtration process such as ultrafiltration is used a flux- and yield-decline can be observed. The causes are i) concentration polarization (i.e. accumulation of retained solutes, reversibly and immediately occurring) and ii) fouling phenomena such as adsorption, pore-blocking and

  2. Simple models with ALICE fluxes

    CERN Document Server

    Striet, J

    2000-01-01

    We introduce two simple models which feature an Alice electrodynamics phase. In a well defined sense the Alice flux solutions we obtain in these models obey first order equations similar to those of the Nielsen-Olesen fluxtube in the abelian higgs model in the Bogomol'nyi limit. Some numerical solutions are presented as well.

  3. Using cloud ice flux to parametrise large-scale lightning

    Directory of Open Access Journals (Sweden)

    D. L. Finney

    2014-12-01

    Full Text Available Lightning is an important natural source of nitrogen oxide especially in the middle and upper troposphere. Hence, it is essential to represent lightning in chemistry transport and coupled chemistry–climate models. Using ERA-Interim meteorological reanalysis data we compare the lightning flash density distributions produced using several existing lightning parametrisations, as well as a new parametrisation developed on the basis of upward cloud ice flux at 440 hPa. The use of ice flux forms a link to the non-inductive charging mechanism of thunderstorms. Spatial and temporal distributions of lightning flash density are compared to tropical and subtropical observations for 2007–2011 from the Lightning Imaging Sensor (LIS on the Tropical Rainfall Measuring Mission (TRMM satellite. The well-used lightning flash parametrisation based on cloud-top height has large biases but the derived annual total flash density has a better spatial correlation with the LIS observations than other existing parametrisations. A comparison of flash density simulated by the different schemes shows that the cloud-top height parametrisation has many more instances of moderate flash densities and fewer low and high extremes compared to the other parametrisations. Other studies in the literature have shown that this feature of the cloud-top height parametrisation is in contrast to lightning observations over certain regions. Our new ice flux parametrisation shows a clear improvement over all the existing parametrisations with lower root mean square errors (RMSEs and better spatial correlations with the observations for distributions of annual total, and seasonal and interannual variations. The greatest improvement with the new parametrisation is a more realistic representation of the zonal distribution with a better balance between tropical and subtropical lightning flash estimates. The new parametrisation is appropriate for testing in chemistry transport and chemistry

  4. Thermal problems on high flux beam lines

    Science.gov (United States)

    Avery, Robert T.

    1984-05-01

    Wiggler and undulator magnets can provide very intense photon flux densities to beam line components. This paper addresses some thermal/materials consequences due to such impingement. The LBL/Exxon/SSRL hybrid-wiggler beam line VI [1] now nearing operation will be able to provide up to ˜ 7 kW of total photon power at planned SPEAR operating conditions. The first masks are located at 6.5 m from the source and may receive a peak power density (transverse to the beam) exceeding 20 kW/cm 2. Significantly, this heat transfer rate exceeds that radiated from the sun's surface (7 kW/cm 2) and is comparable to that if welding torches. Clearly, cooling and configuration are of critical importance. Configurations for the first mask, the movable mask and the pivot mask on this beam line are presented together with considerations of thermal stress fatigue and of heat transfer by conduction to water-cooling circuits. Some preliminary information on the heating of crystals and mirrors is also presented. For the future, many additional intense wiggler/undulator beam lines are contemplated at several storage rings. The design of these beamlines would be enhanced by faster and more accurate computational techniques. LBL is developing a computer code which will be capable of giving photon power densities onto impinged surfaces for a wide range of source and beam line parameters. These include electron beam energy, current, emittance and orbit deviations; wiggler/undulator length, period and magnetic field; photon energy and angular distribution; reflection/absorption at intermediate impinged surfaces; defining apertures and focusing by mirrors. Three-dimensional computer programs for temperature, stress and strain have been available for some years, but "user friendly" versions are being sought. Other items to pursue are also suggested.

  5. Comparisons between TiO2- and SiO2-flux assisted TIG welding processes.

    Science.gov (United States)

    Tseng, Kuang-Hung; Chen, Kuan-Lung

    2012-08-01

    This study investigates the effects of flux compounds on the weld shape, ferrite content, and hardness profile in the tungsten inert gas (TIG) welding of 6 mm-thick austenitic 316 L stainless steel plates, using TiO2 and SiO2 powders as the activated fluxes. The metallurgical characterizations of weld metal produced with the oxide powders were evaluated using ferritoscope, optical microscopy, and Vickers microhardness test. Under the same welding parameters, the penetration capability of TIG welding with TiO2 and SiO2 fluxes was approximately 240% and 292%, respectively. A plasma column made with SiO2 flux exhibited greater constriction than that made with TiO2 flux. In addition, an anode root made with SiO2 flux exhibited more condensation than that made with TiO2 flux. Results indicate that energy density of SiO2-flux assisted TIG welding is higher than that of TiO2-flux assisted TIG welding.

  6. Laboratory Density Functionals

    OpenAIRE

    Giraud, B. G.

    2007-01-01

    We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.

  7. Regularized Biot-Savart Laws for Modeling Magnetic Flux Ropes

    Science.gov (United States)

    Titov, Viacheslav; Downs, Cooper; Mikic, Zoran; Torok, Tibor; Linker, Jon A.

    2017-08-01

    Many existing models assume that magnetic flux ropes play a key role in solar flares and coronal mass ejections (CMEs). It is therefore important to develop efficient methods for constructing flux-rope configurations constrained by observed magnetic data and the initial morphology of CMEs. As our new step in this direction, we have derived and implemented a compact analytical form that represents the magnetic field of a thin flux rope with an axis of arbitrary shape and a circular cross-section. This form implies that the flux rope carries axial current I and axial flux F, so that the respective magnetic field is a curl of the sum of toroidal and poloidal vector potentials proportional to I and F, respectively. The vector potentials are expressed in terms of Biot-Savart laws whose kernels are regularized at the rope axis. We regularized them in such a way that for a straight-line axis the form provides a cylindrical force-free flux rope with a parabolic profile of the axial current density. So far, we set the shape of the rope axis by tracking the polarity inversion lines of observed magnetograms and estimating its height and other parameters of the rope from a calculated potential field above these lines. In spite of this heuristic approach, we were able to successfully construct pre-eruption configurations for the 2009 February13 and 2011 October 1 CME events. These applications demonstrate that our regularized Biot-Savart laws are indeed a very flexible and efficient method for energizing initial configurations in MHD simulations of CMEs. We discuss possible ways of optimizing the axis paths and other extensions of the method in order to make it more useful and robust.Research supported by NSF, NASA's HSR and LWS Programs, and AFOSR.

  8. On the limit of neutron fluxes in the fission-based pulsed neutron sources

    Science.gov (United States)

    Aksenov, V. L.; Ananiev, V. D.; Komyshev, G. G.; Rogov, A. D.; Shabalin, E. P.

    2017-09-01

    The upper limit of the density of the thermal neutron flux from pulsed sources based on the fission reaction is established. Three types of sources for research on ejected beams are considered: a multiplying target of the proton accelerator (a booster), a booster with the reactivity modulation (a superbooster), and a pulsing reactor. Comparison with other high-flux sources is carried out. The investigation has been performed at the Frank Laboratory of Neutron Physics of JINR.

  9. The equilibrium structure of thin magnetic flux tubes. II. [in sun and late stars

    Science.gov (United States)

    Kalkofen, W.; Rosner, R.; Ferrari, A.; Massaglia, S.

    1986-01-01

    The thermal structure of the medium inside thin, vertical magnetic flux tubes embedded in a given external atmosphere is investigated, assuming cylindrical symmetry and a depth-independent plasma beta. The variation with tube radius of the temperature on the tube axis is computed and the temperature on the tube wall is estimated. The temperature variation across the flux tube is found to be due to the depth variation of the intensity and to the density stratification of the atmosphere. Since the temperature difference between the axis and the wall is small in thin flux tubes (of the order of 10 percent), the horizontal temperature gradient may often be neglected and the temperature in a tube of given radius may be described by a single function of depth. Thus, a more detailed numerical treatment of the radiative transfer within thin flux tubes can be substantially simplified by neglecting horizontal temperature differences within the flux tube proper.

  10. Depression of the magnetic field in an active small-scale flux rope

    Science.gov (United States)

    Tang, Binbin; Li, Wenya; Wang, Chi; Dai, Lei; Burch, Jim; Ergun, Robert; Lindqvist, Per-Arne; Pollock, Craig; Russell, Christopher

    2017-04-01

    We report an active small-scale magnetic flux rope (˜9.8di) at the trailing edge of Kelvin-Helmholtz (KH) waves on September 27 2016 by the Magnetospheric Multiscale (MMS) mission, which is probably generated by multiple x-line reconnections. The magnetic field inside this flux rope is significantly depressed, resulting into a non-force-free structure. The currents of this flux rope are filamentary but structured, and the current filaments at the edges induce an opposing field that causes observed |B| depressions in the central flux rope. In addition, intense lower hybrid drift waves (LHDW) are found the magnetospheric edge of the flux rope, whose wave potential reaches to ˜20% of the electron temperature, thus these waves could effectively scatter electrons by the wave electric field corresponding to a local density dip. We suggest LHDW may be stabilized by the electron resonance broadening.

  11. The stretching of magnetic flux tubes in the convective overshoot region

    Science.gov (United States)

    Fisher, George H.; McClymont, Alexander N.; Chou, Dean-Yi

    1991-06-01

    The present study examines the fate of a magnetic flux tube initially lying at the bottom of the solar convective overshoot region. Stretching of the flux tube, e.g., by differential rotation, reduces its density, causing it to rise quasi-statically (a process referred to as vertical flux drift) until it reaches the top of the overshoot region and enters the buoyantly unstable convection region, from which a portion of it may ultimately protrude to form an active region on the surface. It is suggested that vertical flux drift and flux destabilization are inevitable consequences of field amplification, and it is surmised that these phenomena should be considered in self-consistent models of solar and stellar dynamos operating in the overshoot region.

  12. Flavour mixings in flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Buchmuller, Wilfried; Schweizer, Julian

    2017-01-15

    A multiplicity of quark-lepton families can naturally arise as zero-modes in flux compactifications. The flavour structure of quark and lepton mass matrices is then determined by the wave function profiles of the zero-modes. We consider a supersymmetric SO(10) x U(1) model in six dimensions compactified on the orbifold T{sup 2}=Z{sub 2} with Abelian magnetic flux. A bulk 16-plet charged under the U(1) provides the quark-lepton generations whereas two uncharged 10-plets yield two Higgs doublets. Bulk anomaly cancellation requires the presence of additional 16- and 10-plets. The corresponding zero-modes form vectorlike split multiplets that are needed to obtain a successful flavour phenomenology. We analyze the pattern of flavour mixings for the two heaviest families of the Standard Model and discuss possible generalizations to three and more generations.

  13. Constrained Allocation Flux Balance Analysis

    CERN Document Server

    Mori, Matteo; Martin, Olivier C; De Martino, Andrea; Marinari, Enzo

    2016-01-01

    New experimental results on bacterial growth inspire a novel top-down approach to study cell metabolism, combining mass balance and proteomic constraints to extend and complement Flux Balance Analysis. We introduce here Constrained Allocation Flux Balance Analysis, CAFBA, in which the biosynthetic costs associated to growth are accounted for in an effective way through a single additional genome-wide constraint. Its roots lie in the experimentally observed pattern of proteome allocation for metabolic functions, allowing to bridge regulation and metabolism in a transparent way under the principle of growth-rate maximization. We provide a simple method to solve CAFBA efficiently and propose an "ensemble averaging" procedure to account for unknown protein costs. Applying this approach to modeling E. coli metabolism, we find that, as the growth rate increases, CAFBA solutions cross over from respiratory, growth-yield maximizing states (preferred at slow growth) to fermentative states with carbon overflow (preferr...

  14. Design and analysis of a 3D-flux flux-switching permanent magnet machine with SMC cores and ferrite magnets

    Science.gov (United States)

    Liu, Chengcheng; Wang, Youhua; Lei, Gang; Guo, Youguang; Zhu, Jianguo

    2017-05-01

    Since permanent magnets (PM) are stacked between the adjacent stator teeth and there are no windings or PMs on the rotor, flux-switching permanent magnet machine (FSPMM) owns the merits of good flux concentrating and robust rotor structure. Compared with the traditional PM machines, FSPMM can provide higher torque density and better thermal dissipation ability. Combined with the soft magnetic composite (SMC) material and ferrite magnets, this paper proposes a new 3D-flux FSPMM (3DFFSPMM). The topology and operation principle are introduced. It can be found that the designed new 3DFFSPMM has many merits over than the traditional FSPMM for it can utilize the advantages of SMC material. Moreover, the PM flux of this new motor can be regulated by using the mechanical method. 3D finite element method (FEM) is used to calculate the magnetic field and parameters of the motor, such as flux density, inductance, PM flux linkage and efficiency map. The demagnetization analysis of the ferrite magnet is also addressed to ensure the safety operation of the proposed motor.

  15. Structural Control of Metabolic Flux

    Science.gov (United States)

    Sajitz-Hermstein, Max; Nikoloski, Zoran

    2013-01-01

    Organisms have to continuously adapt to changing environmental conditions or undergo developmental transitions. To meet the accompanying change in metabolic demands, the molecular mechanisms of adaptation involve concerted interactions which ultimately induce a modification of the metabolic state, which is characterized by reaction fluxes and metabolite concentrations. These state transitions are the effect of simultaneously manipulating fluxes through several reactions. While metabolic control analysis has provided a powerful framework for elucidating the principles governing this orchestrated action to understand metabolic control, its applications are restricted by the limited availability of kinetic information. Here, we introduce structural metabolic control as a framework to examine individual reactions' potential to control metabolic functions, such as biomass production, based on structural modeling. The capability to carry out a metabolic function is determined using flux balance analysis (FBA). We examine structural metabolic control on the example of the central carbon metabolism of Escherichia coli by the recently introduced framework of functional centrality (FC). This framework is based on the Shapley value from cooperative game theory and FBA, and we demonstrate its superior ability to assign “share of control” to individual reactions with respect to metabolic functions and environmental conditions. A comparative analysis of various scenarios illustrates the usefulness of FC and its relations to other structural approaches pertaining to metabolic control. We propose a Monte Carlo algorithm to estimate FCs for large networks, based on the enumeration of elementary flux modes. We further give detailed biological interpretation of FCs for production of lactate and ATP under various respiratory conditions. PMID:24367246

  16. Sediment flux and the Anthropocene.

    Science.gov (United States)

    Syvitski, James P M; Kettner, Albert

    2011-03-13

    Data and computer simulations are reviewed to help better define the timing and magnitude of human influence on sediment flux--the Anthropocene epoch. Impacts on the Earth surface processes are not spatially or temporally homogeneous. Human influences on this sediment flux have a secondary effect on floodplain and delta-plain functions and sediment dispersal into the coastal ocean. Human impact on sediment production began 3000 years ago but accelerated more widely 1000 years ago. By the sixteenth century, societies were already engineering their environment. Early twentieth century mechanization has led to global signals of increased sediment flux in most large rivers. By the 1950s, this sediment disturbance signal reversed for many rivers owing to the proliferation of dams, and sediment load reduction below pristine conditions is the dominant signal today. A delta subsidence signal began in the 1930s and is now a dominant signal in terms of sea level for many coastal environments, overwhelming even the global warming imprint on sea level. Humans have engineered how most water and sediment are discharged into the coastal ocean. Hyperpycnal flow events have become more common for some rivers, and less common for other rivers. Bottom trawling is now widespread, suggesting that even continental shelves have received a significant but as yet quantified Anthropocene impact. The Anthropocene attains the level of a geological climate event, such as that seen in the transition between the Pleistocene and the Holocene.

  17. Surface fluxes in heterogeneous landscape

    Energy Technology Data Exchange (ETDEWEB)

    Bay Hasager, C.

    1997-01-01

    The surface fluxes in homogeneous landscapes are calculated by similarity scaling principles. The methodology is well establish. In heterogeneous landscapes with spatial changes in the micro scale range, i e from 100 m to 10 km, advective effects are significant. The present work focus on these effects in an agricultural countryside typical for the midlatitudes. Meteorological and satellite data from a highly heterogeneous landscape in the Rhine Valley, Germany was collected in the large-scale field experiment TRACT (Transport of pollutants over complex terrain) in 1992. Classified satellite images, Landsat TM and ERS SAR, are used as basis for roughness maps. The roughnesses were measured at meteorological masts in the various cover classes and assigned pixel by pixel to the images. The roughness maps are aggregated, i e spatially averaged, into so-called effective roughness lengths. This calculation is performed by a micro scale aggregation model. The model solves the linearized atmospheric flow equations by a numerical (Fast Fourier Transform) method. This model also calculate maps of friction velocity and momentum flux pixel wise in heterogeneous landscapes. It is indicated how the aggregation methodology can be used to calculate the heat fluxes based on the relevant satellite data i e temperature and soil moisture information. (au) 10 tabs., 49 ills., 223 refs.

  18. Determination of Energy Fluxes Over Agricultural Surfaces

    Directory of Open Access Journals (Sweden)

    Josefina Argete

    1994-12-01

    Full Text Available An energy budget was conducted over two kinds if surfaces: grass and corn canopy. The net radiative flux and the soil heat flux were directly measured while the latent and sensible heat flux were calculated from the vertical profiles if wet and dry-bulb temperature and wind speed. The crop storage flux was also estimated. Using the gradient or aerodynamic equations, the calculated fluxes when compared to the measured fluxes in the context of an energy budget gave an SEE = 63 Wm-2 over grass and SEE = 81 Wm-2 over corn canopy. The calculated fluxes compared reasonably well with those obtained using the Penman equations.For an energy budget research with limited instrumentation, the aerodynamic method performed satisfactorily in estimating the daytime fluxes, when atmospheric conditions are fully convective, but failed when conditions were stably stratified as during nighttime.

  19. Universality of the ion flux to the JET outer wall

    CERN Document Server

    Walkden, N R; Militello, F; Lipschultz, B; Matthews, G; Guillemaut, C; Harrison, J; Moulton, D; Contributors, JET

    2016-01-01

    Universality in the ion flux to the JET outer-wall is observed in outerwall limiter mounted Langmuir probe (OLP) time-series across a large range of plasma current and line-averaged density during Ohmically heated horizontal target L-mode plasmas. The mean, M, and the standard deviation, sigma, of the ion-saturation current measured by the OLP show systematic variation with plasma current and density. Both increase as either plasma current decreases and/or density increases. Upon renormalization, achieved by subtraction of M and rescaling by sigma, the probability distribution functions (PDFs) of each signal collapse approximately onto a single curve. The shape of the curve deviates from a distribution in the tail of the PDF and is better described by a log-normal distribution. The collapse occurs over 4 decades of the ordinate which, given the wide parameter space over which the data spans, is a strong indication of universality.

  20. Performance comparison between rotor flux-switching and stator flux-switching machines considering local demagnetization

    Science.gov (United States)

    Su, Peng; Hua, Wei

    2017-05-01

    This paper investigates the local permanent magnet (PM) demagnetization characteristics of stator-PM flux-switching (SPM-FS) machine and rotor-PM flux-switching (RPM-FS) machine. The partial demagnetization mechanisms of two machines are analyzed based on a simple magnetic circuit method, and verified by finite-element analysis (FEA). In addition, the performance degradation due to demagnetization effect is evaluated, and a comprehensive comparison of a pair of three-phase prototyped machines is conducted, where the two machines have the same stator outer diameter, stack length and rated current density. The predicted results indicate the demagnetization is generated in the corner parts of PMs near to air-gap for SPM-FS machines, and then the torque performances are degraded, while PMs in RPM-FS machine are hardly influenced by demagnetization effect. Hence, the anti-demagnetization capability of the RPM-FS machine is significantly stronger than that of the SPM-FS machine.

  1. Magnetic flux noise in copper oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Mark Joseph [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    Magnetic flux noise and flux creep in thin films and single crystals of YBa2Cu3O7-x, Bi2Sr2CaCu2O8+x, Tl2Ca2Ba2Cu3Ox, and TlCa2Ba2Cu3Ox are measured with a superconducting quantum interference device (SQUID). The noise power spectrum generally scales as 1/f (f is frequency) from 1 Hz to 1 kHz, increases with temperature, and decreases in higher-quality films. It is proportional to the magnetic field B in which the sample is cooled, at least in the range 0.1 mT < B < 3 mT. A model of thermally activated vortex motion is developed which explains the dependence of the noise on frequency, temperature, current, and applied magnetic field. The pinning potential is idealized as an ensemble of double wells, each with a different activation energy separating the two states. From the noise measurements, this model yields the distribution of pinning energies in the samples, the vortex hopping distance, the number density of mobile vortices, and the restoring force on a vortex at a typical pinning site. The distribution of pinning energies in YBa2Cu3O7-x shows a broad peak below 0.1 eV. The small ambient magnetic field, and the detection of noise even in the absence of a driving force, insure that the measured pinning energies are characteristic of isolated vortices near thermal equilibrium. The observed vortex density in fields much less than 0.1 mT is too large to be explained by the ambient field, suggesting a mechanism intrinsic to the sample which produces trapped vortices.

  2. Observations of FRC Trapped Flux Lifetime Relative to Its Prolateness

    Science.gov (United States)

    Grabowski, Chris; Degnan, James; Domonkos, Matthew; Amdahl, David; Ruden, Edward; Wurden, Glen; Weber, Thomas

    2016-10-01

    The Field-Reversed Configuration Heating Experiment (FRCHX) explored scientific issues associated with HED laboratory plasmas (HEDLPs) and phenomena relevant to magneto-inertial fusion in a closed-field-line plasma. To create the HEDLP conditions, a field-reversed configuration (FRC) of moderate density was formed via reversed-field theta pinch, translated into a solid liner where it was trapped between two magnetic mirrors, and then adiabatically compressed by solid liner implosion. Shortly following formation, the FRCs typically had a separatrix radius of 3 3.5 cm, peak density of 1017 cm-3, and temperature of 200 eV. The lifetime of trapped flux within the plasma was initially 13-16 μs following formation, or 8-11 μs once the FRC settled within the capture region. This was too short to allow complete compression by the solid liner, even when starting implosion before FRC formation. By moving the mirror coils 10 cm further apart, the magnetic well width increased by 6 8 cm, which resulted in an increase in the trapped flux lifetime by 4 5 μs. This presentation describes characteristics of the FRC plasmas prior to and following the lengthening of the capture region. From the literature, conclusions are made linking FRC stability and prolateness to FRC trapped flux lifetime. This work was supported by DOE Office of Fusion Energy Sciences.

  3. High-flux solar photon processes

    Energy Technology Data Exchange (ETDEWEB)

    Lorents, D C; Narang, S; Huestis, D C; Mooney, J L; Mill, T; Song, H K; Ventura, S [SRI International, Menlo Park, CA (United States)

    1992-06-01

    This study was commissioned by the National Renewable Energy Laboratory (NREL) for the purpose of identifying high-flux photoprocesses that would lead to beneficial national and commercial applications. The specific focus on high-flux photoprocesses is based on the recent development by NREL of solar concentrator technology capable of delivering record flux levels. We examined photolytic and photocatalytic chemical processes as well as photothermal processes in the search for processes where concentrated solar flux would offer a unique advantage. 37 refs.

  4. Very high flux research reactors based on particle fuels

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Takahashi, H.

    1985-01-01

    A new approach to high flux research reactors is described, the VHFR (Very High Flux Reactor). The VHFR fuel region(s) are packed beds of HTGR-type fuel particles through which coolant (e.g., D/sub 2/O) flows directly. The small particle diameter (typically on the order of 500 microns) results in very large surface areas for heat transfer (approx. 100 cm/sup 2//cm/sup 3/ of bed), high power densities (approx. 10 megawatts per liter), and minimal ..delta..T between fuel and coolant (approx. 10 K) VHFR designs are presented which achieve steady-state fluxes of approx. 2x10/sup 16/ n/cm/sup 2/sec. Deuterium/beryllium combinations give the highest flux levels. Critical mass is low, approx. 2 kg /sup 235/U for 20% enriched fuel. Refueling can be carried out continuously on-line, or in a batch process with a short daily shutdown. Fission product inventory is very low, approx. 100 to 300 grams, depending on design.

  5. Calibration of soil heat flux sensors.

    NARCIS (Netherlands)

    Loon, van W.K.P.; Bastings, H.M.H.; Moors, E.J.

    1998-01-01

    Soil heat flux is difficult to measure accurately and soil heat flux plates are difficult to calibrate. In this research the reference heat flux was calculated from the temperature gradient and independent thermal conductivity measurements. Reference conductivities, as measured by the non-steady

  6. Surface fluxes over natural landscapes using scintillometry

    NARCIS (Netherlands)

    Meijninger, W.M.L.

    2003-01-01

    Motivated by the demand for reliable area-averaged fluxes associated with natural landscapes this thesis investigates a relative new measurement technique known as the scintillation method. For homogeneous areas the surface fluxes can be derived with reasonable accuracy. However, fluxes

  7. Metabolic Flux Analysis of Mammalian Cells

    NARCIS (Netherlands)

    Martens, D.E.

    2006-01-01

    Metabolic flux analysis has become a standard tool for analyzing metabolism and optimizing bioprocesses. Metabolic flux analysis makes use of a metabolic reaction network in combination with extra-cellular measurements and mass balancing to calculate flux distributions in metabolism. It is a useful

  8. Apparatus for measuring a flux of neutrons

    Science.gov (United States)

    Stringer, James L.

    1977-01-01

    A flux of neutrons is measured by disposing a detector in the flux and applying electronic correlation techniques to discriminate between the electrical signals generated by the neutron detector and the unwanted interfering electrical signals generated by the incidence of a neutron flux upon the cables connecting the detector to the electronic measuring equipment at a remote location.

  9. Design of a PM Vernier Machine with Consideration for Modulation Flux and Comparison with Conventional PM motors

    Directory of Open Access Journals (Sweden)

    Byungtaek Kim

    2017-11-01

    Full Text Available This study deals with the core design of a PM vernier machine considering modulation flux effects, and the comparative investigation on volume and performance characteristics of the vernier over conventional PM machines are addressed. To these ends, for a PM vernier machine in operation at the base-speed, the flux density equations for teeth and yokes considering the flux modulation effects are derived, where the air gap harmonic permeance function is used. Using the derived equations, a PM vernier motor with specified yoke flux densities is designed. To identify the predicted flux yoke densities, the flux distribution and iron losses in core parts are analyzed through time-step finite element (FE simulations. Through Fourier series expansion of the air gap flux waves obtained by FE analysis at several specified times, the harmonic components constituting the flux waves are investigated and their speeds are also evaluated in numerical ways. Finally, to estimate the competitiveness of vernier machines versus conventional machines, the designed PM vernier motor is compared against two different conventional PM motors designed through the same design procedures in various aspects such as volume, torque capacity, efficiency, and power factor, in which, in particular, the core losses are included in efficiency calculation.

  10. Enhanced Flux Pinning in Laser Ablated YBCO:BaTiO3 Nanocomposite Thin Film

    Science.gov (United States)

    Jha, Alok K.; Khare, Neeraj; Pinto, R.

    2011-07-01

    The effect of incorporation of BaTiO3 (BTO) nanoparticles on the flux pinning properties of laser deposited YBCO:BTO thin films has been studied. Substantial increase in critical current density (JC) and pinning force density of the nanocomposite thin films was observed. The study of temperature and field dependence of JC of YBCO and YBCO:BTO thin films indicates similar type of pinning. The lattice mismatch between YBCO and BTO seems to introduce more defects resulting in improved flux pinning properties.

  11. Study of decoherence in a system of superconducting flux-qubits interacting with an ensemble of electrons

    Energy Technology Data Exchange (ETDEWEB)

    Reboiro, M., E-mail: reboiro@fisica.unlp.edu.ar [IFLP, CONICET-Department of Physics, University of La Plata, c.c. 67 1900, La Plata (Argentina); Civitarese, O., E-mail: osvaldo.civitarese@fisica.unlp.edu.ar [IFLP, CONICET-Department of Physics, University of La Plata, c.c. 67 1900, La Plata (Argentina); Ramírez, R. [IFLP, CONICET-Department of Mathematics, University of La Plata (Argentina)

    2017-03-15

    The degree of coherence in a hybrid system composed of superconducting flux-qubits and an electron ensemble is analysed. Both, the interactions among the electrons and among the superconducting flux-qubits are taken into account. The time evolution of the hybrid system is solved exactly, and discussed in terms of the reduced density matrix of each subsystem. It is seen that the inclusion of a line width, for the electrons and for the superconducting flux-qubits, influences the pattern of spin-squeezing and the coherence of the superconducting flux qubits. - Highlights: • The degree of coherence in a hybrid system, composed of superconducting flux qubits and an electron ensemble, is analysed. • The time evolution of the hybrid system is solved exactly and discussed in terms of the reduced density matrix of each subsystem. • It is shown that the initial state of the system evolves to a stationary squeezed state.

  12. Origin of the Flux Noise in Superconducting Quantum Interference Devices

    Science.gov (United States)

    Wang, Hui; Yu, Clare C.; Wu, Ruqian

    2014-03-01

    Quantum computers hold out the promise of being massively parallel and thus performing calculations much faster than conventional computers. A major obstacle for reliable quantum computation is flux noise generated by fluctuating magnetic spins in qubits. It is thus crucial to find out the microscopic origin of spins. In this work, we find that these spins result from the surface-induced magnetism, through systematic density functional theory calculations. Both O2 adsorbates and Al vacancies can produce spontaneous magnetization on the Al2O3(0001) surface. Meanwhile, the magnetic anisotropy energies are extremely small. These results explain the origin of flux noise on Al qubits. Work at Fudan was supported by the 1000-Talent funds. Work at UCI was supported by DOE-BES (Grant No. DE- FG02-05ER46237) and by NERSC for computing time.

  13. Nonlinear Performance Characteristics of Flux-Switching PM Motors

    Directory of Open Access Journals (Sweden)

    E. Ilhan

    2013-01-01

    Full Text Available Nonlinear performance characteristics of 3-phase flux-switching permanent magnet motors (FSPM are overviewed. These machines show advantages of a robust rotor structure and a high energy density. Research on the FSPM is predominated by topics such as modeling and machine comparison, with little emphasis given on its performance and limits. Performance characteristics include phase flux linkage, phase torque, and phase inductance. In the paper, this analysis is done by a cross-correlation of rotor position and armature current. Due to the high amount of processed data, which cannot be handled analytically within an acceptable time period, a multistatic 2D finite element model (FEM is used. For generalization, the most commonly discussed FSPM topology, 12/10 FSPM, is chosen. Limitations on the motor performance due to the saturation are discussed on each characteristic. Additionally, a focused overview is given on energy conversion loops and dq-axes identification for the FSPM.

  14. Geometrical correction factors for heat flux meters

    Science.gov (United States)

    Baumeister, K. J.; Papell, S. S.

    1974-01-01

    General formulas are derived for determining gage averaging errors of strip-type heat flux meters used in the measurement of one-dimensional heat flux distributions. The local averaging error e(x) is defined as the difference between the measured value of the heat flux and the local value which occurs at the center of the gage. In terms of e(x), a correction procedure is presented which allows a better estimate for the true value of the local heat flux. For many practical problems, it is possible to use relatively large gages to obtain acceptable heat flux measurements.

  15. Analytical characterization of selective benthic flux components in estuarine and coastal waters

    Science.gov (United States)

    King, Jeffrey N.

    2011-01-01

    Benthic flux is the rate of flow across the bed of a water body, per unit area of bed. It is forced by component mechanisms, which interact. For example, pressure gradients across the bed, forced by tide, surface gravity waves, density gradients, bed–current interaction, turbulence, and terrestrial hydraulic gradients, drive an advective benthic flux of water and constituents between estuarine and coastal waters, and surficial aquifers. Other mechanisms also force benthic flux, such as chemical gradients, bioturbation, and dispersion. A suite of component mechanisms force a total benthic flux at any given location, where each member of the suite contributes a component benthic flux. Currently, the types and characteristics of component interactions are not fully understood. For example, components may interact linearly or nonlinearly, and the interaction may be constructive or destructive. Benthic flux is a surface water–groundwater interaction process. Its discharge component to a marine water body is referred to, in some literature, as submarine groundwater discharge. Benthic flux is important in characterizing water and constituent budgets of estuarine and coastal systems. Analytical models to characterize selective benthic flux components are reviewed. Specifically, these mechanisms are for the component associated with the groundwater tidal prism, and forced by surface gravity wave setup, surface gravity waves on a plane bed, and the terrestrial hydraulic gradient. Analytical models are applied to the Indian River Lagoon, Florida; Great South Bay, New York; and the South Atlantic Bight in South Carolina and portions of North Carolina.

  16. Future Road Density

    Data.gov (United States)

    U.S. Environmental Protection Agency — Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More...

  17. Atomic vapor density monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sewall, N.; Harris, W.; Beeler, R.; Wooldridge, J.; Chen, H.L.

    1986-09-01

    This report presents information on the Atomic Vapor Density Monitor (AVDM) system that measures the density of a vapor by measuring the absorption of light from a swept-wavelength laser that passes through an atomic vapor stream.

  18. Diurnal and seasonal variation of various carbon fluxes from an urban tower platform in Houston, TX

    Science.gov (United States)

    Schade, G. W.; Werner, N.; Hale, M. C.

    2013-12-01

    We measured carbon fluxes (CO2, CO, VOCs) from a tall lattice tower in Houston between 2007 and 2009, and 2011-2013. We present results from various analyses of (i) anthropogenic and biogenic CO2 fluxes using a quadrant segregation technique, (ii) seasonal and multi-year changes of CO fluxes as related to car traffic and industrial sources, and (iii) the accuracy of, and usefulness of a bulk flux footprint model to quantify pentane emissions form a distant source in comparison to permitted emission levels. Segregated and net anthropogenic CO2 fluxes were dominated by car traffic but industrial sources were identified as well. Emissions sank to minimal levels after hurricane Ike had passed over Houston, causing a traffic shutdown and lower population density. Segregated biogenic fluxes showed a clear seasonal variation with photosynthetic activity between April and November, and large effects of the 2011 Texas drought due to negligible irrigation in the study area. Carbon monoxide fluxes, measured via a flux gradient technique, are even stronger dominated by car traffic than CO2 fluxes and serve as a traffic tracer. Our data show a continued drop in emissions over time, seasonal changes with higher emissions during winter, and local influences due to industrial emissions. Lastly, we present the results of a tracer release study and a single point source quantification to test a bulk footprint model in this complex urban area. Known releases of volatile acetone and MEK were compered to measured fluxes using a REA-GC-FID system, and permit emissions of pentane from a foam plastics manufacturing facility were compared to measured pentane fluxes. Both comparisons reveal a surprisingly accurate performance of the footprint model within a factor of 2.

  19. Pollution-tolerant invertebrates enhance greenhouse gas flux in urban wetlands.

    Science.gov (United States)

    Mehring, Andrew S; Cook, Perran L M; Evrard, Victor; Grant, Stanley B; Levin, Lisa A

    2017-09-01

    One of the goals of urban ecology is to link community structure to ecosystem function in urban habitats. Pollution-tolerant wetland invertebrates have been shown to enhance greenhouse gas (GHG) flux in controlled laboratory experiments, suggesting that they may influence urban wetland roles as sources or sinks of GHG. However, it is unclear if their effects can be detected in highly variable conditions in a field setting. Here we use an extensive data set on carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O) flux in sediment cores (n = 103) collected from 10 urban wetlands in Melbourne, Australia during summer and winter in order to test for invertebrate enhancement of GHG flux. We detected significant multiplicative enhancement effects of temperature, sediment carbon content, and invertebrate density on CH4 and CO2 flux. Each doubling in density of oligochaete worms or large benthic invertebrates (oligochaete worms and midge larvae) corresponded to ~42% and ~15% increases in average CH4 and CO2 flux, respectively. However, despite exceptionally high densities, invertebrates did not appear to enhance N2 O flux. This was likely due to fairly high organic carbon content in sediments (range 2.1-12.6%), and relatively low nitrate availability (median 1.96 μmol/L NO3- -N), which highlights the context-dependent nature of community structural effects on ecosystem function. The invertebrates enhancing GHG flux in this study are ubiquitous, and frequently dominate faunal communities in impaired aquatic ecosystems. Therefore, invertebrate effects on CO2 and CH4 flux may be common in wetlands impacted by urbanization, and urban wetlands may make greater contributions to the total GHG budgets of cities if the negative impacts of urbanization on wetlands are left unchecked. © 2017 by the Ecological Society of America.

  20. Flux limiters and Eddington factors

    Energy Technology Data Exchange (ETDEWEB)

    Pomraning, G.C.

    1982-01-01

    In this paper a closure scheme for the first two angular moments of the time-dependent equation of transfer is presented, either via an Eddington factor which leads to a telegrapher's description, or via a Fick's law which leads to a diffusion description. Points discussed include boundary conditions (both an extension of the classic Marshak-Milne condition and those arising from a boundary layer analysis), the flux limiting feature of the diffusion approximation, and the reduction of the theory to asymptotic diffusion theory in the steady state limit.

  1. Methane Fluxes from Subtropical Wetlands

    Science.gov (United States)

    DeLucia, N.; Gomez-Casanovas, N.; Bernacchi, C.

    2013-12-01

    It is well documented that green house gas concentrations have risen at unequivocal rates since the industrial revolution but the disparity between anthropogenic sources and natural sources is uncertain. Wetlands are one example of a natural ecosystem that can be a substantial source or sink for methane (CH4) depending on climate conditions. Due to strict anaerobic conditions required for CH4-generating microorganisms, natural wetlands are one of the main sources for biogenic CH4. Although wetlands occupy less than 5% of total land surface area, they contribute approximately 20% of total CH4 emissions to the atmosphere. The processes regulating CH4 emissions are sensitive to land use and management practices of areas surrounding wetlands. Variation in adjacent vegetation or grazing intensity by livestock can, for example, alter CH4 fluxes from wetland soils by altering nutrient balance, carbon inputs and hydrology. Therefore, understanding how these changes will affect wetland source strength is essential to understand the impact of wetland management practices on the global climate system. In this study we quantify wetland methane fluxes from subtropical wetlands on a working cattle ranch in central Florida near Okeechobee Lake (27o10'52.04'N, 81o21'8.56'W). To determine differences in CH4 fluxes associated with land use and management, a replicated (n = 4) full factorial experiment was designed for wetlands where the surrounding vegetation was (1) grazed or un-grazed and (2) composed of native vegetation or improved pasture. Net exchange of CH4 and CO2 between the land surface and the atmosphere were sampled with a LICOR Li-7700 open path CH4 analyzer and Li-7500A open path CO2/H20 analyzer mounted in a 1-m3 static gas-exchange chamber. Our results showed and verified that CH4 emissions from subtropical wetlands were larger when high soil moisture was coupled with high temperatures. The presence of cattle only amplified these results. These results help quantify

  2. Optimizing the Ranchero Coaxial Flux Compression Generator

    Energy Technology Data Exchange (ETDEWEB)

    Tasker, D.G.; Goforth, J.H.; Fowler, C.M.; Lopez, E.A.; Oona, H.; King, J.C.; Herrera, D.H.; Torres, D.T.; Reinovsky, R.E.; Martinez, E.C.; Stokes, J.L.; Tabaka, L.J.; Garcia, O.F.; Atchison, W.L.; Faehl, R.J.; Lindemuth, I.R.; Keinigs, R.K.; Miller, P.J.

    1998-10-18

    Ranchero is an explosively driven magnetic flux-compression generator that has been developed, over the last four years, as a versatile power source for high energy density physics experiments. It is coaxial, and comprises a 15 cm-diameter armature and a 30-cm stator, each aluminum. The length may be varied to suit the demands of each experiment; thus far, lengths of 0.43 m and 1.4 m have been used. The stator is filled and driven by a high performance cast explosive, and the ultimate performance of the device is limited by the smoothness of the armature expansion. The armature explosive is initiated on axis by PETN hemispheres, spaced at intervals of about 18 mm and 24.5 mm; each is simultaneously detonated by a slapper detonator system. Calculations of armature expansion predicted ripples less than 0.2 mm, and this was confirmed in early experiments. Yet, ripples approaching tens of millimeters were observed in some more recent experiments. The authors discuss the possible origins of the se large ripples, and the methods the authors have used to correct them.

  3. Crowding and Density

    Science.gov (United States)

    Design and Environment, 1972

    1972-01-01

    Three-part report pinpointing problems and uncovering solutions for the dual concepts of density (ratio of people to space) and crowding (psychological response to density). Section one, A Primer on Crowding,'' reviews new psychological and social findings; section two, Density in the Suburbs,'' shows conflict between status quo and increased…

  4. Observing the Unobservable? Modeling Coronal Cavity Densities

    Science.gov (United States)

    Fuller, J.; Gibson, S. E.; de Toma, G.; Fan, Y.

    2008-05-01

    Prominence cavities in coronal helmet streamers are readily detectable in white-light coronagraph images, yet their interpretation may be complicated by projection effects. In order to determine a cavity's density structure, it is essential to quantify the contribution of noncavity features along the line of sight. We model the coronal cavity as an axisymmetric torus that encircles the Sun at constant latitude and fit it to observations of a white-light cavity observed by the Mauna Loa Solar Observatory (MLSO) MK4 coronagraph from 2006 January 25 to 30. We demonstrate that spurious noncavity contributions (including departures from axisymmetry) are minimal enough to be incorporated in a density analysis as conservatively estimated uncertainties in the data. We calculate a radial density profile for cavity material and for the surrounding helmet streamer (which we refer to as the "cavity rim") and find that the cavity density is depleted by a maximum of 40% compared to the surrounding helmet streamer at low altitudes (1.18 R⊙) but is consistently higher (double or more) than in coronal holes. We also find that the relative density depletion between cavity and surrounding helmet decreases as a function of height. We show that both increased temperature in the cavity relative to the surrounding helmet streamer and a magnetic flux rope configuration might lead to such a flattened density profile. Finally, our model provides general observational guidelines that can be used to determine when a cavity is sufficiently unobstructed to be a good candidate for plasma diagnostics.

  5. Flux of Millimetric Space Debris

    Science.gov (United States)

    Goldstein, R. M.; Goldstein, S. J., Jr.

    1995-01-01

    In 21.4 hr of zenith radar observations on 4 days at 8510 MHz, we found 831 particles with altitudes between 177 and 1662 km. From the duration of the echoes and the angular size (0.030 deg) of the antenna beam 157 particles were identified as passing through the side lobes and not through the main beam. Our analysis is based on the 674 particles that did not broaden the beam. On the assumptions that these particles went through the main beam, their radar cross sections vary between 0.02 and 260 sq mm , and their radial velocities vary between +/- 700 m/s. If they are conducting spheres, their diameters lie between 2 and 18 mm. If not, they must be larger. The flux of these particles, that is the number per sq km day, was determined in 100 km intervals. The maximum flux, 3.3 particles per sq km day, occurs at 950 km altitude. The small and large particles are not well mixed. The largest particles occur beyond 1000 km and middle-sized particles are missing below 300 km. If the earth's atmosphere caused the smallest particles to lose energy from initial orbits identical to those of the large particles, the orbits would have lower eccentricity at low altitudes. We find a larger eccentricity for the inner particles, and conclude that two or more populations are present.

  6. Triode for magnetic flux quanta.

    Science.gov (United States)

    Vlasko-Vlasov, Vitalii; Colauto, Fabiano; Benseman, Timothy; Rosenmann, Daniel; Kwok, Wai-Kwong

    We designed a magnetic vortex triode using an array of closely spaced soft magnetic Py strips on top of a Nb superconducting film. The strips act similar to the grid electrode in an electronic triode, where the electron flow is regulated by the grid potential. In our case, we tune the vortex motion by the magnetic charge potential of the strip edges, using a small magnetic field rotating in the film plane. The magnetic charges emerging at the stripe edges and proportional to the magnetization component perpendicular to the edge direction, form linear potential barriers or valleys for vortex motion in the superconducting layer. We directly imaged the normal flux penetration into the Py/Nb films and observed retarded or accelerated entry of the normal vortices depending on the in-plane magnetization direction in the stripes. The observed flux behavior is explained by interactions between magnetically charged lines and magnetic monopoles of vortices similar to those between electrically charged strings and point charges. We discuss the possibility of using our design for manipulation of individual vortices in high-speed, low-power superconducting electronic circuits. This work was supported by the U.S. DOE, Office of Science, Materials Sciences and Engineering Division, and Office of BES (contract DE-AC02-06CH11357). F. Colauto thanks the Sao Paulo Research Foundation FAPESP (Grant No. 2015/06.085-3).

  7. DWSB in heterotic flux compactifications

    CERN Document Server

    Held, Johannes; Marchesano, Fernando; Martucci, Luca

    2010-01-01

    We address the construction of non-supersymmetric vacua in heterotic compactifications with intrinsic torsion and background fluxes. In particular, we implement the approach of domain-wall supersymmetry breaking (DWSB) previously developed in the context of type II flux compactifications. This approach is based on considering backgrounds where probe NS5-branes wrapping internal three-cycles and showing up as four-dimensional domain-walls do not develop a BPS bound, while all the other BPS bounds characterizing the N=1 supersymmetric compactifications are preserved at tree-level. Via a scalar potential analysis we provide the conditions for these backgrounds to solve the ten-dimensional equations of motion including order \\alpha' corrections. We also consider backgrounds where some of the NS5-domain-walls develop a BPS bound, show their relation to no-scale SUSY-breaking vacua and construct explicit examples via elliptic fibrations. Finally, we consider backgrounds with a non-trivial gaugino condensate and dis...

  8. Isotope and density profile effects on pedestal neoclassical transport

    Science.gov (United States)

    Buller, S.; Pusztai, I.

    2017-10-01

    Cross-field neoclassical transport of heat, particles and momentum is studied in sharp density pedestals, with a focus on isotope and profile effects, using a radially global approach. Global effects—which tend to reduce the peak ion heat flux, and shift it outward—increase with isotope mass for fixed profiles. The heat flux reduction exhibits a saturation with a favorable isotopic trend. A significant part of the heat flux can be convective even in pure plasmas, unlike in the plasma core, and it is sensitive to how momentum sources are distributed between the various species. In particular, if only ion momentum sources are allowed, in global simulations of pure plasmas the ion particle flux remains close to its local value, while this may not be the case for simulations with isotope mixtures or electron momentum sources. The radial angular momentum transport that is a finite orbit width effect, is found to be strongly correlated with heat sources.

  9. Limitations, improvements and alternatives of the silt density index

    NARCIS (Netherlands)

    Al-Hadidi, A.M.M.; Kemperman, Antonius J.B.; Schurer, H.; Schurer, H.; Schippers, J.C.; Wessling, Matthias; van der Meer, Walterus Gijsbertus Joseph

    2013-01-01

    Reverse osmosis (RO) membrane systems are widely used in the desalination of water. However, flux decline due to fouling phenomena in RO remains a challenge. To minimize fouling, a reliable index is necessary to predict the fouling potential of the RO feed water. The ASTM introduced the silt density

  10. Airborne flux measurements of Biogenic Isoprene over California

    Energy Technology Data Exchange (ETDEWEB)

    Misztal, P.; Karl, Thomas G.; Weber, Robin; Jonsson, H. H.; Guenther, Alex B.; Goldstein, Allen H.

    2014-10-10

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK+MAC, methanol, monoterpenes, and MBO over ~10,000-km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z/zi). Fluxes were generally measured by flying consistently 1 at 400 m ±50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  11. Subsurface Microbial Ecosystems: A Photon Flux and a Metabolic Cascade

    Science.gov (United States)

    Petroff, Alexander P.; Tejera, Frank; Libchaber, Albert

    2017-05-01

    Mud is a porous medium containing a high density of diverse microorganisms. It is out of equilibrium as the energy from a photon flux is dissipated by a cascade of biochemical reactions, mediated by the metabolisms of the constituent organisms. Despite its complexity, microbes in nature self-organize into simple reproducible patterns. We present two experiments in which the dynamics of natural mud coming to steady state are observed and modeled. In the first, the oxygen gradient produced by cyanobacteria in an imposed light gradient is measured. In the second, a thin front of oxygen-consuming microbes forms at the penetration depth of oxygen and moves with the changing oxygen gradient.

  12. Probability densities and Lévy densities

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler

    For positive Lévy processes (i.e. subordinators) formulae are derived that express the probability density or the distribution function in terms of power series in time t. The applicability of the results to finance and to turbulence is briefly indicated.......For positive Lévy processes (i.e. subordinators) formulae are derived that express the probability density or the distribution function in terms of power series in time t. The applicability of the results to finance and to turbulence is briefly indicated....

  13. Complex Convective Thermal Fluxes and Vorticity Structure

    Science.gov (United States)

    Redondo, Jose M.; Tellez, Jackson; Sotillos, Laura; Lopez Gonzalez-Nieto, Pilar; Sanchez, Jesus M.; Furmanek, Petr; Diez, Margarita

    2015-04-01

    Local Diffusion and the topological structure of vorticity and velocity fields is measured in the transition from a homogeneous linearly stratified fluid to a cellular or layered structure by means of convective cooling and/or heating[1,2]. Patterns arise by setting up a convective flow generated by an array of Thermoelectric devices (Peltier/Seebeck cells) these are controlled by thermal PID generating a buoyant heat flux [2]. The experiments described here investigate high Prandtl number mixing using brine and fresh water in order to form density interfaces and low Prandtl number mixing with temperature gradients. The set of dimensionless parameters define conditions of numeric and small scale laboratory modeling of environmental flows. Fields of velocity, density and their gradients were computed and visualized [3,4]. When convective heating and cooling takes place the combination of internal waves and buoyant turbulence is much more complicated if the Rayleigh and Reynolds numbers are high in order to study entrainment and mixing. Using ESS and selfsimilarity structures in the velocity and vorticity fieds and intermittency [3,5] that forms in the non-homogeneous flow is related to mixing and stiring. The evolution of the mixing fronts are compared and the topological characteristics of the merging of plumes and jets in different configurations presenting detailed comparison of the evolution of RM and RT, Jets and Plumes in overall mixing. The relation between structure functions, fractal analysis and spectral analysis can be very useful to determine the evolution of scales. Experimental and numerical results on the advance of a mixing or nonmixing front occurring at a density interface due to body forces [6]and gravitational acceleration are analyzed considering the fractal and spectral structure of the fronts like in removable plate experiments for Rayleigh-Taylor flows. The evolution of the turbulent mixing layer and its complex configuration is studied

  14. Partitioning evapotranspiration fluxes using atmometer

    Science.gov (United States)

    Orsag, Matej; Fischer, Milan; Trnka, Miroslav; Kucera, Jiri; Zalud, Zdenek

    2013-04-01

    This effort is aimed to derive a simple tool for separating soil evaporation and transpiration from evapotranspiration, measured by Bowen ration energy balance method (BREB) in short rotation coppice (SRC). The main idea is to utilize daily data of actual evapotranspiration (ETa) measured above bare soil (spring 2010 - first year following harvest), reference evapotranspiration (ETo) measured by atmometer ETgage and precipitation data, in order to create an algorithm for estimation evaporation from bare soil. This approach is based on the following assumption: evaporation of wetted bare soil same as the ETo from atmometer is assumed to be identical in days with rain. In first and further days with no rain (and e.g. high evaporative demand) the easily evaporable soil water depletes and ETa so as crop coefficient of bare soil (Kcb) decreases in a way similar to decreasing power function. The algorithm represents a parameterized function of daily cumulated ETo (ETc) measured by atmometer in days elapsed from last rain event (Kcb = a*ETc^b). After each rain event the accumulation of ETo starts again till next rain event (e. g. only days with no rain are cumulated). The function provides decreasing Kcb for each day without rain. The bare soil evaporation can be estimated when the atmometer-recorded value is multiplied by Kcb for particular day without rain. In days with rain Kcb is assumed to be back at 1. This method was successfully tested for estimating evaporation from bare soil under closed canopy of poplar-based SRC. When subtracting the estimated soil evaporation from total ETa flux, measured above the canopy using BREB method, it is possible to obtain transpiration flux of the canopy. There is also possibility to test this approach on the contrary - subtracting transpiration derived from sap-flow measurement from total ETa flux is possible to get soil evaporation as well. Acknowledgements: The present experiment is made within the frame of project Inter

  15. Comparative CO2 flux measurements by eddy covariance technique using open- and closed-path gas analysers over the equatorial Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Fumiyoshi Kondo

    2012-04-01

    Full Text Available Direct comparison of air–sea CO2 fluxes by open-path eddy covariance (OPEC and closed-path eddy covariance (CPEC techniques was carried out over the equatorial Pacific Ocean. Previous studies over oceans have shown that the CO2 flux by OPEC was larger than the bulk CO2 flux using the gas transfer velocity estimated by the mass balance technique, while the CO2 flux by CPEC agreed with the bulk CO2 flux. We investigated a traditional conflict between the CO2 flux by the eddy covariance technique and the bulk CO2 flux, and whether the CO2 fluctuation attenuated using the closed-path analyser can be measured with sufficient time responses to resolve small CO2 flux over oceans. Our results showed that the closed-path analyser using a short sampling tube and a high volume air pump can be used to measure the small CO2 fluctuation over the ocean. Further, the underestimated CO2 flux by CPEC due to the attenuated fluctuation can be corrected by the bandpass covariance method; its contribution was almost identical to that of H2O flux. The CO2 flux by CPEC agreed with the total CO2 flux by OPEC with density correction; however, both of them are one order of magnitude larger than the bulk CO2 flux.

  16. Near-field of coaxial jets with large density differences

    Energy Technology Data Exchange (ETDEWEB)

    Favre-Marinet, M. [Institut de Mecanique de Grenoble, 38 (France); Camano, E.B. [Instituto de Pesquisas Hidraulicas Universidade Federal de Rio Grande do sul CP 15029, 91501-970 Porto Alegre (Brazil); Sarboch, J. [Department of Fluid Mechanics and Thermodynamics, Czech Technical University, Prague (Czech Republic)

    1999-01-01

    The paper describes an experimental investigation of coaxial jets with large density differences. Measurements by various techniques show that density effects on the flow dynamics are taken into account to first order by considering the specific outer to inner jet momentum flux ratio M and not separately the density and velocity ratios. A regime of recirculation occurs for M higher than a critical value (M{sub c}{approx}50). For a given value of M, however, the position of the recirculation bubble is slightly shifted in the upstream direction for density ratios much smaller than one. An unexpected result is obtained for an extremely low density ratio: the onset of recirculation occurs for a significantly higher value of M (100density ratio : 0.028). (orig.) With 16 figs., 2 tabs., 20 refs.

  17. Towards the spatial rectification of tower-based eddy-covariance flux observations

    Science.gov (United States)

    Xu, K.; Metzger, S.; Kljun, N.; Taylor, J. R.; Desai, A. R.

    2014-12-01

    Eddy-covariance (EC) observations of ecologically relevant trace gas and energy fluxes are too sparse spatially for direct assimilation into gridded earth system models (ESMs). The spatial coverage of a tower EC measurement may represent less than 1% of a grid cell resolved by ESMs. For advancing ecological inference it is hence desirable to improve the spatial representativeness of EC measurements. The objectives of this study are (i) to map the spatio-temporally variable flux field around tower EC measurements, and (ii) to quantify spatial representativeness when surrogating the flux over an ESM grid cell with EC observations that source a spatio-temporally variable patch of surface close to the tower. The present study employs environmental response functions (ERFs) for this purpose. The underlying principle is to extract the relationship between biophysical drivers and ecological responses from measurements in the time-domain under varying environmental conditions. The resulting ERF can then be used for projecting the fluxes into target areas. Based on the probability density functions of resulting flux grids, the representativeness of tower measurements is quantified. We apply ERF to EC measurements from July and August 2011 at the AmeriFlux Park Falls tall tower, Wisconsin, U.S.A. With the ERF procedure, the spatial coverage can be increased to >70% for target areas around the tower of 400 km2. From this we determine that 85% and 24% of the tower flux observations can capture the mean turbulent flux and its variability over a 900 km2 target area, respectively, at 5% significance and 80% representativeness level. Lastly, we determine an uncertainty budget for this methodology. Our companion presentation "Assessing and correcting spatial representativeness of tower eddy-covariance flux measurements" shows the applicability of the ERF procedure to provide consistent flux time series for target regions under different climatic and ecological environments.

  18. Chaos in Magnetic Flux Ropes

    Science.gov (United States)

    Gekelman, Walter; DeHaas, T.; Van Compernolle, B.; Vincena, S.

    2013-07-01

    Magnetic Flux Ropes Immersed in a uniform magnetoplasma are observed to twist about themselves, writhe about each other and rotate about a central axis. They are kink unstable and smash into one another as they move. Each collision results in magnetic field line generation and the generation of a quasi-seperatrix layer. Three dimensional magnetic field lines are computed by conditionally averaging the data using correlation techniques. When the currents associated with the ropes are large,this is possible for only a number of rotation cycles as the field line motion becomes chaotic. The permutation entropy1 can be calculated from the the time series of the magnetic field data (this is also done with flows) and used to calculate the positions of the data on a Jensen Shannon complexity map2. The power spectra of much of the magnetic and flow data is exponential and Lorentzian structures in the time domain are embedded in them. The location of data on this map indicates if the magnetic fields are stochastic, or fall into regions of minimal or maximal complexity. The complexity is a function of space and time. The complexity map, and analysis will be explained in the course of the talk. Other types of chaotic dynamical models such as the Lorentz or Gissinger process also fall on the map and can give a clue to the nature of the flux rope turbulence. The ropes fall in the region of the C-H plane where chaotic systems lie. 1 C. Bandt, B. Pompe, Phys. Rev. Lett., 88,174102 (2007) 2 O. Russo et al., Phys. Rev. Lett., 99, 154102 (2007), J. Maggs, G.Morales, “Permutation Entropy analysis of temperature fluctuations from a basic electron heat transport experiment”,submitted PPCF (2013)

  19. E × B shear pattern formation by radial propagation of heat flux wavesa)

    Science.gov (United States)

    Kosuga, Y.; Diamond, P. H.; Dif-Pradalier, G.; Gürcan, Ã.-. D.

    2014-05-01

    A novel theory to describe the formation of E ×B flow patterns by radially propagating heat flux waves is presented. A model for heat avalanche dynamics is extended to include a finite delay time between the instantaneous heat flux and the mean flux, based on an analogy between heat avalanche dynamics and traffic flow dynamics. The response time introduced here is an analogue of the drivers' response time in traffic dynamics. The microscopic foundation for the time delay is the time for mixing of the phase space density. The inclusion of the finite response time changes the model equation for avalanche dynamics from Burgers equation to a nonlinear telegraph equation. Based on the telegraph equation, the formation of heat flux jams is predicted. The growth rate and typical interval of jams are calculated. The connection of the jam interval to the typical step size of the E ×B staircase is discussed.

  20. Modeling thermospheric neutral density

    Science.gov (United States)

    Qian, Liying

    Satellite drag prediction requires determination of thermospheric neutral density. The NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) and the global-mean Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIMEGCM) were used to quantify thermospheric neutral density and its variations, focusing on annual/semiannual variation, the effect of using measured solar irradiance on model calculations of solar-cycle variation, and global change in the thermosphere. Satellite drag data and the MSIS00 empirical model were utilized to compare to the TIEGCM simulations. The TIEGCM simulations indicated that eddy diffusion and its annual/semiannual variation is a mechanism for annual/semiannual density variation in the thermosphere. It was found that eddy diffusion near the turbopause can effectively influence thermospheric neutral density. Eddy diffusion, together with annual insolation variation and large-scale circulation, generated global annual/semiannual density variation observed by satellite drag. Using measured solar irradiance as solar input for the TIEGCM improved the solar-cycle dependency of the density calculation shown in F10.7 -based thermospheric empirical models. It has been found that the empirical models overestimate density at low solar activity. The TIEGCM simulations did not show such solar-cycle dependency. Using historic measurements of CO2 and F 10.7, simulations of the global-mean TIMEGCM showed that thermospheric neutral density at 400 km had an average long-term decrease of 1.7% per decade from 1970 to 2000. A forecast of density decrease for solar cycle 24 suggested that thermospheric density will decrease at 400 km from present to the end of solar cycle 24 at a rate of 2.7% per decade. Reduction in thermospheric density causes less atmospheric drag on earth-orbiting space objects. The implication of this long-term decrease of thermospheric neutral density is that it will increase the

  1. Why Density Dependent Propulsion?

    Science.gov (United States)

    Robertson, Glen A.

    2011-01-01

    In 2004 Khoury and Weltman produced a density dependent cosmology theory they call the Chameleon, as at its nature, it is hidden within known physics. The Chameleon theory has implications to dark matter/energy with universe acceleration properties, which implies a new force mechanism with ties to the far and local density environment. In this paper, the Chameleon Density Model is discussed in terms of propulsion toward new propellant-less engineering methods.

  2. Energy Conversion Loops for Flux-Switching PM Machine Analysis

    Directory of Open Access Journals (Sweden)

    E. Ilhan

    2012-10-01

    Full Text Available Induction and synchronous machines have traditionally been the first choice of automotive manufacturers for electric/hybrid vehicles. However, these conventional machines are not able anymore to meet the increasing demands for a higher energy density due to space limitation in cars. Flux-switching PM (FSPM machines with their high energy density are very suitable to answer this demand. In this paper, the energy conversion loop technique is implemented on FSPM for the first time. The energy conversion technique is a powerful tool for the visualization of machine characteristics, both linear and nonlinear. Further, the technique provides insight into the torque production mechanism. A stepwise explanation is given on how to create these loops for FSPM along with the machine operation.

  3. TRACC: an open source software for processing sap flux data from thermal dissipation probes

    Science.gov (United States)

    Eric J. Ward; Jean-Christophe Domec; John King; Ge Sun; Steve McNulty; Asko Noormets

    2017-01-01

    Key message TRACC is an open-source software for standardizing the cleaning, conversion, and calibration of sap flux density data from thermal dissipation probes, which addresses issues of nighttime transpiration and water storage. Abstract Thermal dissipation probes (TDPs) have become a widely used method of monitoring plant water use in recent years. The use of TDPs...

  4. Plasma pressure and particle loss studies in the Pilot-PSI high flux linear plasma generator

    NARCIS (Netherlands)

    Jesko, K.; van der Meiden, H. J.; Gunn, J. P.; Vernimmen, J. W. M.; De Temmerman, G.

    2017-01-01

    Plasma detachment in tokamak divertors reduces the particle and power fluxes to the plasma facing components and is essential for successful operation of ITER. The linear plasma generator Pilot-PSI can produce a high density (∼1021 m−3), low temperature (∼1 eV) plasma which is similar to that

  5. Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna.

    Science.gov (United States)

    Zeppel, Melanie J B; Lewis, James D; Medlyn, Belinda; Barton, Craig V M; Duursma, Remko A; Eamus, Derek; Adams, Mark A; Phillips, Nathan; Ellsworth, David S; Forster, Michael A; Tissue, David T

    2011-09-01

    Nocturnal water flux has been observed in trees under a variety of environmental conditions and can be a significant contributor to diel canopy water flux. Elevated atmospheric CO(2) (elevated [CO(2)]) can have an important effect on day-time plant water fluxes, but it is not known whether it also affects nocturnal water fluxes. We examined the effects of elevated [CO(2)] on nocturnal water flux of field-grown Eucalyptus saligna trees using sap flux through the tree stem expressed on a sapwood area (J(s)) and leaf area (E(t)) basis. After 19 months growth under well-watered conditions, drought was imposed by withholding water for 5 months in the summer, ending with a rain event that restored soil moisture. Reductions in J(s) and E(t) were observed during the severe drought period in the dry treatment under elevated [CO(2)], but not during moderate- and post-drought periods. Elevated [CO(2)] affected night-time sap flux density which included the stem recharge period, called 'total night flux' (19:00 to 05:00, J(s,r)), but not during the post-recharge period, which primarily consisted of canopy transpiration (23:00 to 05:00, J(s,c)). Elevated [CO(2)] wet (EW) trees exhibited higher J(s,r) than ambient [CO(2)] wet trees (AW) indicating greater water flux in elevated [CO(2)] under well-watered conditions. However, under drought conditions, elevated [CO(2)] dry (ED) trees exhibited significantly lower J(s,r) than ambient [CO(2)] dry trees (AD), indicating less water flux during stem recharge under elevated [CO(2)]. J(s,c) did not differ between ambient and elevated [CO(2)]. Vapour pressure deficit (D) was clearly the major influence on night-time sap flux. D was positively correlated with J(s,r) and had its greatest impact on J(s,r) at high D in ambient [CO(2)]. Our results suggest that elevated [CO(2)] may reduce night-time water flux in E. saligna when soil water content is low and D is high. While elevated [CO(2)] affected J(s,r), it did not affect day-time water

  6. Commissioning and modification of the low temperature scanning polarization microscope (TTSPM) and imaging of the local magnetic flux density distribution in superconducting niobium samples; Inbetriebnahme und Modifikation eines Tieftemperatur-Raster-Polarisations-Mikroskops (TTRPM) und Abbildung der lokalen Flussdichteverteilung in supraleitenden Niob-Proben

    Energy Technology Data Exchange (ETDEWEB)

    Gruenzweig, Matthias Sebastian Peter

    2014-07-11

    }). Indeed, it has been possible to image the magnetization reversal process and thus the formation (or destruction) and the migration of an ''Interfacial Domain Wall'' (IDW) in such a Fe{sub 1-x}Tb{sub x}/ vertical stroke Co/Pt vertical stroke {sub n}-heterostructure. Part II of the dissertation is about the magneto-optical imaging of superconducting Niobium coplanar microwave resonators as well as of a Niobium single crystal. By means of the magneto-optical images of the resonators, important findings about magnetic hysteresis effects in such coplanar microwave resonators could be achieved. It was also possible to confirm the results of transmission spectroscopy experiments on those coplanar resonators, which were performed in a previous dissertation of Daniel Bothner. Additionally, it was possible to show that initially inserted Abrikosov vortices can be almost completely removed from the coplanar resonators again by properly cycling the magnetic field. On the basis of magneto-optical images of a 2 mm thick Niobium single crystal, it was possible to observe dendritic avalanches in a superconducting bulk material for the first time. Here, the dendritic avalanches only appear in a very narrow temperature interval of about a tenth of a Kelvin below the critical temperature T{sub c} of the Niobium single crystal. Below this threshold temperature the magnetic flux penetrates nearly homogeneously into the single crystal. The observed dendritic avalanches in the bulk single crystal near T{sub c} have features which are identical to those seen in thin films at low temperatures caused by thermomagnetic instability. Therefore, one can conclude that the dendritic avalanches in the single crystal are formed in a thin superconducting layer at the surface of the single crystal, which can be formed under certain conditions near T{sub c}.

  7. 3D simulations of rising magnetic flux tubes in a compressible rotating interior: The effect of magnetic tension

    Science.gov (United States)

    Fournier, Y.; Arlt, R.; Ziegler, U.; Strassmeier, K. G.

    2017-10-01

    Context. Long-term variability in solar cycles represents a challenging constraint for theoretical models. Mean-field Babcock-Leighton dynamos that consider non-instantaneous rising flux tubes have been shown to exhibit long-term variability in their magnetic cycle. However a relation that parameterizes the rise-time of non-axisymmetric magnetic flux tubes in terms of stellar parameters is still missing. Aims: We aim to find a general parameterization of the rise-time of magnetic flux tubes for solar-like stars. Methods: By considering the influence of magnetic tension on the rise of non-axisymmetric flux tubes, we predict the existence of a control parameter referred as Γα1α2. This parameter is a measure of the balance between rotational effects and magnetic effects (buoyancy and tension) acting on the magnetic flux tube. We carry out two series of numerical experiments (one for axisymmetric rise and one for non-axisymmetric rise) and demonstrate that Γα1α2 indeed controls the rise-time of magnetic flux tubes. Results: We find that the rise-time follows a power law of Γα1α2 with an exponent that depends on the azimuthal wavenumber of the magnetic flux loop. Conclusions: Compressibility does not impact the rise of magnetic flux tubes, while non-axisymmetry does. In the case of non-axisymmetric rise, the tension force modifies the force balance acting on the magnetic flux tube. We identified the three independent parameters required to predict the rise-time of magnetic flux tubes, that is, the stellar rotation rate, the magnetic flux density of the flux tube, and its azimuthal wavenumber. We combined these into one single relation that is valid for any solar-like star. We suggest using this generalized relation to constrain the rise-time of magnetic flux tubes in Babcock-Leighton dynamo models.

  8. Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Blanchat, Thomas K.; Hanks, Charles R.

    2013-04-01

    Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000ÀC showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

  9. Surface Flux Modeling for Air Quality Applications

    Directory of Open Access Journals (Sweden)

    Limei Ran

    2011-08-01

    Full Text Available For many gasses and aerosols, dry deposition is an important sink of atmospheric mass. Dry deposition fluxes are also important sources of pollutants to terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, mercury, and certain volatile organic compounds, can be upward into the air as well as downward to the surface and therefore should be modeled as bi-directional fluxes. Model parameterizations of dry deposition in air quality models have been represented by simple electrical resistance analogs for almost 30 years. Uncertainties in surface flux modeling in global to mesoscale models are being slowly reduced as more field measurements provide constraints on parameterizations. However, at the same time, more chemical species are being added to surface flux models as air quality models are expanded to include more complex chemistry and are being applied to a wider array of environmental issues. Since surface flux measurements of many of these chemicals are still lacking, resistances are usually parameterized using simple scaling by water or lipid solubility and reactivity. Advances in recent years have included bi-directional flux algorithms that require a shift from pre-computation of deposition velocities to fully integrated surface flux calculations within air quality models. Improved modeling of the stomatal component of chemical surface fluxes has resulted from improved evapotranspiration modeling in land surface models and closer integration between meteorology and air quality models. Satellite-derived land use characterization and vegetation products and indices are improving model representation of spatial and temporal variations in surface flux processes. This review describes the current state of chemical dry deposition modeling, recent progress in bi-directional flux modeling, synergistic model development research with field measurements, and coupling with meteorological land surface models.

  10. Density dependent neurodynamics.

    Science.gov (United States)

    Halnes, Geir; Liljenström, Hans; Arhem, Peter

    2007-01-01

    The dynamics of a neural network depends on density parameters at (at least) two different levels: the subcellular density of ion channels in single neurons, and the density of cells and synapses at a network level. For the Frankenhaeuser-Huxley (FH) neural model, the density of sodium (Na) and potassium (K) channels determines the behaviour of a single neuron when exposed to an external stimulus. The features of the onset of single neuron oscillations vary qualitatively among different regions in the channel density plane. At a network level, the density of neurons is reflected in the global connectivity. We study the relation between the two density levels in a network of oscillatory FH neurons, by qualitatively distinguishing between three regions, where the mean network activity is (1) spiking, (2) oscillating with enveloped frequencies, and (3) bursting, respectively. We demonstrate that the global activity can be shifted between regions by changing either the density of ion channels at the subcellular level, or the connectivity at the network level, suggesting that different underlying mechanisms can explain similar global phenomena. Finally, we model a possible effect of anaesthesia by blocking specific inhibitory ion channels.

  11. On density forecast evaluation

    NARCIS (Netherlands)

    Diks, C.

    2008-01-01

    Traditionally, probability integral transforms (PITs) have been popular means for evaluating density forecasts. For an ideal density forecast, the PITs should be uniformly distributed on the unit interval and independent. However, this is only a necessary condition, and not a sufficient one, as

  12. Future Road Density

    Science.gov (United States)

    Road density is generally highly correlated with amount of developed land cover. High road densities usually indicate high levels of ecological disturbance. More information about these resources, including the variables used in this study, may be found here: https://edg.epa.gov/data/Public/ORD/NERL/ReVA/ReVA_Data.zip.

  13. CycleFreeFlux: efficient removal of thermodynamically infeasible loops from flux distributions.

    Science.gov (United States)

    Desouki, Abdelmoneim Amer; Jarre, Florian; Gelius-Dietrich, Gabriel; Lercher, Martin J

    2015-07-01

    Constraint-based metabolic modeling methods such as Flux Balance Analysis (FBA) are routinely used to predict metabolic phenotypes, e.g. growth rates, ATP yield or the fitness of gene knockouts. One frequent difficulty of constraint-based solutions is the inclusion of thermodynamically infeasible loops (or internal cycles), which add nonbiological fluxes to the predictions. We propose a simple postprocessing of constraint-based solutions, which removes internal cycles from any given flux distribution [Formula: see text] without disturbing other fluxes not involved in the loops. This new algorithm, termed CycleFreeFlux, works by minimizing the sum of absolute fluxes [Formula: see text] while (i) conserving the exchange fluxes and (ii) using the fluxes of the original solution to bound the new flux distribution. This strategy reduces internal fluxes until at least one reaction of every possible internal cycle is inactive, a necessary and sufficient condition for the thermodynamic feasibility of a flux distribution. If alternative representations of the input flux distribution in terms of elementary flux modes exist that differ in their inclusion of internal cycles, then CycleFreeFlux is biased towards solutions that maintain the direction given by [Formula: see text] and towards solutions with lower total flux [Formula: see text]. Our method requires only one additional linear optimization, making it computationally very efficient compared to alternative strategies. We provide freely available R implementations for the enumeration of thermodynamically infeasible cycles as well as for cycle-free FBA solutions, flux variability calculations and random sampling of solution spaces. lercher@cs.uni-duesseldorf.de. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Sensorless Direct Flux Vector Control of Synchronous Reluctance Motors Including Standstill, MTPA and Flux Weakening

    OpenAIRE

    Yousefi-Talouki, Arzhang; Pescetto, Paolo; Pellegrino, Gian-Mario Luigi

    2017-01-01

    This paper proposes a sensorless direct flux vector control scheme for synchronous reluctance motor drives. Torque is controlled at constant switching frequency, via the closed loop regulation of the stator flux linkage vector and of the current component in quadrature with it, using the stator flux oriented reference frame. A hybrid flux and position observer combines back-electromotive force integration with pulsating voltage injection around zero speed. Around zero speed, the position obse...

  15. Learning Grasp Affordance Densities

    DEFF Research Database (Denmark)

    Detry, Renaud; Kraft, Dirk; Kroemer, Oliver

    2011-01-01

    these and records their outcomes. When a satisfactory number of grasp data is available, an importance-sampling algorithm turns these into a grasp density. We evaluate our method in a largely autonomous learning experiment run on three objects of distinct shapes. The experiment shows how learning increases success......We address the issue of learning and representing object grasp affordance models. We model grasp affordances with continuous probability density functions (grasp densities) which link object-relative grasp poses to their success probability. The underlying function representation is nonparametric...... and relies on kernel density estimation to provide a continuous model. Grasp densities are learned and refined from exploration, by letting a robot “play” with an object in a sequence of graspand-drop actions: The robot uses visual cues to generate a set of grasp hypotheses; it then executes...

  16. The total energy flux leaving the ocean's mixed layer

    Science.gov (United States)

    Rimac, Antonija; von Storch, Jin-Song; Eden, Carsten

    2017-04-01

    Interior density mixing contributes to drive the large-scale ocean circulation. The energy needed for this mixing is believed to be supplied predominantly by the tidal and wind forcing. In this study, we focus on the wind-power input to three different types of motions, that is, near-inertial waves, sub-inertial fluctuations, and time-mean flows. Surface winds can generate near-inertial waves which propagate freely into the ocean's interior and after escaping the mixed layer contribute to interior mixing. Winds also input power into the ocean to maintain the time-mean circulation and to generate sub-inertial fluctuations, either by the vertical or horizontal shear instability of the large-scale flows, or directly via wind induced fluctuations at the ocean surface. The energy of both the sub-inertial fluctuations and the time-mean flow will be eventually dissipated (or transferred to the internal gravity wave field or small scale turbulence). However, the exact portion of the power that escapes the turbulent mixed layer and that can potentially affect the interior mixing, is still unknown. The total energy flux leaving the ocean's spatially and seasonally varying mixed layer is estimated using a global 1/10° ocean general circulation model. From the total wind-power input of 3.33 TW into near-inertial waves (0.35 TW) sub-inertial fluctuations (0.87 TW), and the time-mean circulation (2.11 TW), 0.92 TW leave the mixed layer; with 0.04 TW (11.4%) due to near-inertial motions, 0.07 TW (8.3%) due to sub-inertial fluctuations, and 0.81 TW (38.4%) due to time-mean motions. Of the 0.81 TW from the time-mean motions, 0.5 TW result from the projection of the horizontal flux onto the sloped bottom of the mixed layer. This projection is negligible for the transient fluxes. The spatial structure of the vertical flux is determined principally by the wind stress curl. The mean and sub-inertial fluxes leaving the mixed layer are approximately 40-50% smaller than the respective

  17. Heat flux decay length during RF power operation in the Tore Supra tokamak

    Science.gov (United States)

    Corre, Y.; Gunn, J. P.; Firdaouss, M.; Carpentier, S.; Chantant, M.; Colas, L.; Ekedahl, A.; Gardarein, J.-L.; Lipa, M.; Loarer, T.; Courtois, X.; Guilhem, D.; Saint-Laurent, F.

    2014-01-01

    The upgrade of its ion cyclotron resonance (ICRH) and lower hybrid current drive (LHCD) heating systems makes the Tore Supra (TS) tokamak particularly well suited to address the physics and technology of high-power and steady-state plasma-surface interactions. High radio frequency (RF) heating powers have been successfully applied up to 12.2 MW coupled to the plasma, in which about 7.85 MW flows through the scrape-off layer. Thermal calculation based on thermography measurements gives the heat flux density distribution on the TS toroidal limiter located at the bottom of the machine. The target heat flux densities are divided by the incidence angle of the field lines with the surface and mapped to the magnetic flux surface to evaluate the power flowing in the scrape-off layer (SOL). The power profile shows a narrow component near the last closed flux surface and a wide component in the rest of the SOL. The narrow component is attributed to significant cross-field heat flux density around the plasma contact point, about 0.8% of the parallel heat flux density in the SOL, when incident angles are nearly tangential to the surface. The wide component is used to derive the experimental heat flux decay length (λq) and parallel heat flux in the SOL. The power widths are measured for a series of 1 MA/3.8 T discharges involving a scan of RF injected power 3.5 ⩽ Ptot ⩽ 12.2 MW. Independently of the heating power, we measured λq,OMP = 14.5 ± 1.5 mm at the outer mid-plane and parallel heat flux in the SOL in the range 130\\le Q_{\\parallel}^{LCFS}\\le 490\\,MW\\,m^{-2} . TS values obtained with L-mode limiter plasmas are broader than those derived from L-mode divertor plasmas, confirming earlier results obtained with an ohmically heated plasma leaning on the inboard wall of TS.

  18. Prediction of metabolic fluxes by incorporating genomic context and flux-converging pattern analyses.

    Science.gov (United States)

    Park, Jong Myoung; Kim, Tae Yong; Lee, Sang Yup

    2010-08-17

    Flux balance analysis (FBA) of a genome-scale metabolic model allows calculation of intracellular fluxes by optimizing an objective function, such as maximization of cell growth, under given constraints, and has found numerous applications in the field of systems biology and biotechnology. Due to the underdetermined nature of the system, however, it has limitations such as inaccurate prediction of fluxes and existence of multiple solutions for an optimal objective value. Here, we report a strategy for accurate prediction of metabolic fluxes by FBA combined with systematic and condition-independent constraints that restrict the achievable flux ranges of grouped reactions by genomic context and flux-converging pattern analyses. Analyses of three types of genomic contexts, conserved genomic neighborhood, gene fusion events, and co-occurrence of genes across multiple organisms, were performed to suggest a group of fluxes that are likely on or off simultaneously. The flux ranges of these grouped reactions were constrained by flux-converging pattern analysis. FBA of the Escherichia coli genome-scale metabolic model was carried out under several different genotypic (pykF, zwf, ppc, and sucA mutants) and environmental (altered carbon source) conditions by applying these constraints, which resulted in flux values that were in good agreement with the experimentally measured (13)C-based fluxes. Thus, this strategy will be useful for accurately predicting the intracellular fluxes of large metabolic networks when their experimental determination is difficult.

  19. Flux Modulation in the Electrodynamic Loudspeaker

    DEFF Research Database (Denmark)

    Halvorsen, Morten; Tinggaard, Carsten; Agerkvist, Finn T.

    2015-01-01

    This paper discusses the effect of flux modulation in the electrodynamic loudspeaker with main focus on the effect on the force factor. A measurement setup to measure the AC flux modulation with static voice coil is explained and the measurements shows good consistency with FEA simulations. Measu...

  20. On flux terms in volume averaging

    NARCIS (Netherlands)

    Chu, S.G.; Prosperetti, Andrea

    2016-01-01

    This note examines the modeling of non-convective fluxes (e.g., stress, heat flux and others) as they appear in the general, unclosed form of the volume-averaged equations of multiphase flows. By appealing to the difference between slowly and rapidly varying quantities, it is shown that the natural

  1. Surface Flux Modeling for Air Quality Applications

    Science.gov (United States)

    For many gasses and aerosols, dry deposition is an important sink of atmospheric mass. Dry deposition fluxes are also important sources of pollutants to terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, mercury, and certain volatile organic c...

  2. Initiation of CMEs by Magnetic Flux Emergence

    Indian Academy of Sciences (India)

    Keywords. Sun: corona, coronal mass ejections; magnetic fields; magnetohydrodynamics; flux emergence. Abstract. The initiation of solar Coronal Mass Ejections (CMEs) is studied in the framework of numerical magnetohydrodynamics (MHD). The initial CME model includes a magnetic flux rope in spherical, axisymmetric ...

  3. Metamaterial anisotropic flux concentrators and magnetic arrays

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Smith, Anders; Bahl, Christian R.H.

    2013-01-01

    A metamaterial magnetic flux concentrator is investigated in detail in combination with a Halbach cylinder of infinite length. A general analytical solution to the field is determined and the magnetic figure of merit is determined for a Halbach cylinder with a flux concentrator. It is shown...

  4. Flux Noise in a Superconducting Transmission Line

    Science.gov (United States)

    Vasko, F. T.

    2017-08-01

    We study a superconducting transmission line (TL) formed by distributed L C oscillators and excited by external magnetic fluxes which are aroused from random magnetization (A ) placed in substrate or (B ) distributed at interfaces of a two-wire TL. The low-frequency dynamics of a random magnetic field is described based on the diffusion Langevin equation with a short-range source caused by (a ) a random amplitude or (b ) the gradient of magnetization. For a TL modeled as a two-port network with open and shorted ends, the effective magnetic flux at the open end has nonlocal dependency on noise distribution along the TL. The flux-flux correlation function is evaluated and analyzed for the regimes (A a ), (A b ), (B a ), and (B b ). Essential frequency dispersion takes place around the inverse diffusion time of random flux along the TL. Typically, noise effect increases with size faster than the area of the TL. The flux-flux correlator can be verified both via the population relaxation rate of the qubit, which is formed by the Josephson junction shunted by the TL with flux noises, and via random voltage at the open end of the TL.

  5. Fast flux module detection using matroid theory.

    Science.gov (United States)

    Reimers, Arne C; Bruggeman, Frank J; Olivier, Brett G; Stougie, Leen

    2015-05-01

    Flux balance analysis (FBA) is one of the most often applied methods on genome-scale metabolic networks. Although FBA uniquely determines the optimal yield, the pathway that achieves this is usually not unique. The analysis of the optimal-yield flux space has been an open challenge. Flux variability analysis is only capturing some properties of the flux space, while elementary mode analysis is intractable due to the enormous number of elementary modes. However, it has been found by Kelk et al. (2012) that the space of optimal-yield fluxes decomposes into flux modules. These decompositions allow a much easier but still comprehensive analysis of the optimal-yield flux space. Using the mathematical definition of module introduced by Müller and Bockmayr (2013b), we discovered useful connections to matroid theory, through which efficient algorithms enable us to compute the decomposition into modules in a few seconds for genome-scale networks. Using that every module can be represented by one reaction that represents its function, in this article, we also present a method that uses this decomposition to visualize the interplay of modules. We expect the new method to replace flux variability analysis in the pipelines for metabolic networks.

  6. Heat Flux Distribution of Antarctica Unveiled

    Science.gov (United States)

    Martos, Yasmina M.; Catalán, Manuel; Jordan, Tom A.; Golynsky, Alexander; Golynsky, Dmitry; Eagles, Graeme; Vaughan, David G.

    2017-11-01

    Antarctica is the largest reservoir of ice on Earth. Understanding its ice sheet dynamics is crucial to unraveling past global climate change and making robust climatic and sea level predictions. Of the basic parameters that shape and control ice flow, the most poorly known is geothermal heat flux. Direct observations of heat flux are difficult to obtain in Antarctica, and until now continent-wide heat flux maps have only been derived from low-resolution satellite magnetic and seismological data. We present a high-resolution heat flux map and associated uncertainty derived from spectral analysis of the most advanced continental compilation of airborne magnetic data. Small-scale spatial variability and features consistent with known geology are better reproduced than in previous models, between 36% and 50%. Our high-resolution heat flux map and its uncertainty distribution provide an important new boundary condition to be used in studies on future subglacial hydrology, ice sheet dynamics, and sea level change.

  7. Measurements relating fire radiative energy density and surface fuel consumption - RxCADRE 2011 and 2012

    Science.gov (United States)

    Andrew T. Hudak; Matthew B. Dickinson; Benjamin C. Bright; Robert L. Kremens; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Roger D. Ottmar

    2016-01-01

    Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel combusted but such a relationship has not been shown at the landscape level of prescribed fires. This paper presents field and remotely sensed measures of pre-fire fuel loads, consumption, fire radiative energy density (FRED) and fire radiative power flux density (FRFD),...

  8. Simulations of the muon flux sensitivity to rock perturbation associated to hydrogeological processes

    Directory of Open Access Journals (Sweden)

    Hivert Fanny

    2014-01-01

    Full Text Available Muon tomography is a method to investigate the in-situ rock density. It is based on the absorption of cosmic-ray muons according to the quantity of matter (thickness and density. Numerical simulations are performed in order to estimate the expected muon flux in LSBB Underground Research Laboratory (URL (Rustrel, France. The aim of the muon measurements in the underground galleries of this laboratory is to characterize the spatial and temporal density variations caused by water transfer in the unsaturated zone of the Fontaine-de-Vaucluse karstic aquifer.

  9. OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis

    Directory of Open Access Journals (Sweden)

    Nielsen Lars K

    2009-05-01

    Full Text Available Abstract Background The quantitative analysis of metabolic fluxes, i.e., in vivo activities of intracellular enzymes and pathways, provides key information on biological systems in systems biology and metabolic engineering. It is based on a comprehensive approach combining (i tracer cultivation on 13C substrates, (ii 13C labelling analysis by mass spectrometry and (iii mathematical modelling for experimental design, data processing, flux calculation and statistics. Whereas the cultivation and the analytical part is fairly advanced, a lack of appropriate modelling software solutions for all modelling aspects in flux studies is limiting the application of metabolic flux analysis. Results We have developed OpenFLUX as a user friendly, yet flexible software application for small and large scale 13C metabolic flux analysis. The application is based on the new Elementary Metabolite Unit (EMU framework, significantly enhancing computation speed for flux calculation. From simple notation of metabolic reaction networks defined in a spreadsheet, the OpenFLUX parser automatically generates MATLAB-readable metabolite and isotopomer balances, thus strongly facilitating model creation. The model can be used to perform experimental design, parameter estimation and sensitivity analysis either using the built-in gradient-based search or Monte Carlo algorithms or in user-defined algorithms. Exemplified for a microbial flux study with 71 reactions, 8 free flux parameters and mass isotopomer distribution of 10 metabolites, OpenFLUX allowed to automatically compile the EMU-based model from an Excel file containing metabolic reactions and carbon transfer mechanisms, showing it's user-friendliness. It reliably reproduced the published data and optimum flux distributions for the network under study were found quickly ( Conclusion We have developed a fast, accurate application to perform steady-state 13C metabolic flux analysis. OpenFLUX will strongly facilitate and

  10. Numerical study of traffic flow considering the probability density distribution of the traffic density

    Science.gov (United States)

    Guo, L. M.; Zhu, H. B.; Zhang, N. X.

    The probability density distribution of the traffic density is analyzed based on the empirical data. It is found that the beta distribution can fit the result obtained from the measured traffic density perfectly. Then a modified traffic model is proposed to simulate the microscopic traffic flow, in which the probability density distribution of the traffic density is taken into account. The model also contains the behavior of drivers’ speed adaptation by taking into account the driving behavior difference and the dynamic headway. Accompanied by presenting the flux-density diagrams, the velocity evolution diagrams and the spatial-temporal profiles of vehicles are also given. The synchronized flow phase and the wide moving jam phase are indicated, which is the challenge for the cellular automata traffic model. Furthermore the phenomenon of the high speed car-following is exhibited, which has been observed in the measured data previously. The results set demonstrate the effectiveness of the proposed model in detecting the complicated dynamic phenomena of the traffic flow.

  11. A Self-Consistent Numerical Magnetohydrodynamic (MHD) Model of Helmet Streamer and Flux-Rope Interactions: Initiation and Propagation of Coronal Mass Ejections (CMEs)

    Science.gov (United States)

    Wu, S. T.; Guo, W. P.

    1997-01-01

    We present results for an investigation of the interaction of a helmet streamer arcade and a helical flux-rope emerging from the sub-photosphere. These results are obtained by using a three-dimensional axisymmetric, time-dependent ideal magnetohydrodynamic (MHD) model. Because of the physical nature of the flux-rope, we investigate two types of flux-ropes; (1) high density flux-rope (i.e. flux-rope without cavity), and (2) low density flux rope (i.e. flux-rope with cavity). When the streamer is disrupted by the flux-rope, it will evolve into a configuration resembling the typical observed loop-like Coronal Mass Ejection (CMES) for both cases. The streamer-flux rope system with cavity is easier to be disrupted and the propagation speed of the CME is faster than the streamer-flux rope system without cavity. Our results demonstrate that magnetic buoyancy force plays an important role in disrupting the streamer.

  12. Gyrokinetic projection of the divertor heat-flux width from present tokamaks to ITER

    Science.gov (United States)

    Chang, C. S.; Ku, S.; Loarte, A.; Parail, V.; Köchl, F.; Romanelli, M.; Maingi, R.; Ahn, J.-W.; Gray, T.; Hughes, J.; LaBombard, B.; Leonard, T.; Makowski, M.; Terry, J.

    2017-11-01

    The XGC1 edge gyrokinetic code is used to study the width of the heat-flux to divertor plates in attached plasma condition. The flux-driven simulation is performed until an approximate power balance is achieved between the heat-flux across the steep pedestal pressure gradient and the heat-flux on the divertor plates. The simulation results compare well against the empirical scaling λ q \\propto 1/BPγ obtained from present tokamak devices, where λ q is the divertor heat-flux width mapped to the outboard midplane, γ  =  1.19 as found by Eich et al (2013 Nucl. Fusion 53 093031), and B P is the magnitude of the poloidal magnetic field at the outboard midplane separatrix surface. This empirical scaling predicts λ q  ≲  1 mm when extrapolated to ITER, which would require operation with very high separatrix densities (n sep/n Greenwald  >  0.6) (Kukushkin et al 2013 J. Nucl. Mater. 438 S203) in the Q  =  10 scenario to achieve semi-detached plasma operation and high radiative fractions for acceptable divertor power fluxes. Using the same simulation code and technique, however, the projected λ q for ITER’s model plasma is 5.9 mm, which could be suggesting that operation in the ITER Q  =  10 scenario with acceptable divertor power loads may be obtained over a wider range of plasma separatrix densities and radiative fractions. The physics reason behind this difference is, according to the XGC1 results, that while the ion magnetic drift contribution to the divertor heat-flux width is wider in the present tokamaks, the turbulent electron contribution is wider in ITER. Study will continue to verify further this important projection. A high current C-Mod discharge is found to be in a mixed regime: While the heat-flux width by the ion neoclassical magnetic drift is still wider than the turbulent electron heat-flux width, the heat-flux magnitude is dominated by the narrower electron heat-flux.

  13. Flux tower in a mixed forest: spatial representativeness of seasonal footprints and the influence of land cover variability on the flux measurement

    Science.gov (United States)

    Kim, J.; Schaaf, C.; Hwang, T.

    2015-12-01

    Flux tower measurements using eddy-covariance techniques are used as the primary data for calibration and validation of remote sensing estimates and ecosystem models. Therefore, understanding the characteristics of the land surface contributing to the flux, the so-called footprint, is critical to upscale tower flux to the regional landscape. This is especially true for the towers locating in heterogeneous ecosystems such as mixed forests. Here we (1) estimated the seasonal footprints of a flux tower, the EMS-tower (US-Ha1) in the Long Term Ecological Research (LTER) Harvard Forest, from 1992 to 2008 with a footprint climatology. The Harvard Forest is a temperate mixed-species ecosystem that is composed of deciduous stands (red oak and red maple) and evergreen coniferous stands (eastern hemlock and white pine). The heterogeneity of the landscape is primarily driven by the phenology of the deciduous stands which are not uniformly distributed over the forest and around the tower. The overall prevailing footprints are known to lie toward the southwest and northwest, but there were profound interannual variability in the extents and the orientations of the seasonal footprints. Furthermore we (2) examined whether vegetation density variation within the tower footprint in each season could adequately represent the vegetation density characteristics of moderate spatial resolution remote sensing estimates and ecosystem models (i.e. 1.0 km and 1.5 km). The footprints were found to cover enough area to be representative of the 1.0 km scale but not 1.5 km scale. Finally we (3) investigated the influence of the interannual variations in the land cover variability in the footprints on the seasonal flux measurements from 1999 to 2008, and found almost half of the interannual anomalies in the summertime GPP flux can be explained by the coniferous stand fraction within the footprint.

  14. Computational and analytical comparison of flux discretizations for the semiconductor device equations beyond Boltzmann statistics

    Science.gov (United States)

    Farrell, Patricio; Koprucki, Thomas; Fuhrmann, Jürgen

    2017-10-01

    We compare three thermodynamically consistent numerical fluxes known in the literature, appearing in a Voronoï finite volume discretization of the van Roosbroeck system with general charge carrier statistics. Our discussion includes an extension of the Scharfetter-Gummel scheme to non-Boltzmann (e.g. Fermi-Dirac) statistics. It is based on the analytical solution of a two-point boundary value problem obtained by projecting the continuous differential equation onto the interval between neighboring collocation points. Hence, it serves as a reference flux. The exact solution of the boundary value problem can be approximated by computationally cheaper fluxes which modify certain physical quantities. One alternative scheme averages the nonlinear diffusion (caused by the non-Boltzmann nature of the problem), another one modifies the effective density of states. To study the differences between these three schemes, we analyze the Taylor expansions, derive an error estimate, visualize the flux error and show how the schemes perform for a carefully designed p-i-n benchmark simulation. We present strong evidence that the flux discretization based on averaging the nonlinear diffusion has an edge over the scheme based on modifying the effective density of states.

  15. 3D Laboratory Measurements of Forces, Flows, and Collimation in Arched Flux Tubes

    Science.gov (United States)

    Haw, Magnus; Bellan, Paul

    2016-10-01

    Fully 3D, vector MHD force measurements from an arched, current carrying flux tube (flux rope) are presented. The experiment consists of two arched plasma-filled flux ropes each powered by a capacitor bank. The two loops are partially overlapped, as in a Venn diagram, and collide and reconnect during their evolution. B-field data is taken on the lower plasma arch using a 54 channel B-dot probe. 3D volumetric data is acquired by placing the probe at 2700 locations and taking 5 plasma shots at each location. The resulting data set gives high resolution (2cm, 10ns) volumetric B-field data with high reproducibility (deviation of 3% between shots). Taking the curl of the measured 3D B-field gives current densities (J) in good agreement with measured capacitor bank current. The JxB forces calculated from the data have a strong axial component at the base of the current channel and are shown to scale linearly with axial gradients in current density. Assuming force balance in the flux tube minor radius direction, we infer near-Alfvenic axial flows from the footpoint regions which are consistent with the measured axial forces. Flux tube collimation is observed in conjunction with these axial flows. These dynamic processes are relevant to the stability and dynamics of coronal loops. Supported provided by NSF, AFOSR.

  16. Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas

    Science.gov (United States)

    Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.

    1993-01-01

    A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.

  17. Bone mineral density test

    Science.gov (United States)

    BMD test; Bone density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis - BMD ... need to undress. This scan is the best test to predict your risk of fractures, especially of ...

  18. Benthic fluxes in San Francisco Bay

    Science.gov (United States)

    Hammond, Douglas E.; Fuller, C.; Harmon, D.; Hartman, Blayne; Korosec, M.; Miller, L.G.; Rea, R.; Warren, S.; Berelson, W.; Hager, S.W.

    1985-01-01

    Measurements of benthic fluxes have been made on four occasions between February 1980 and February 1981 at a channel station and a shoal station in South San Francisco Bay, using in situ flux chambers. On each occasion replicate measurements of easily measured substances such as radon, oxygen, ammonia, and silica showed a variability (??1??) of 30% or more over distances of a few meters to tens of meters, presumably due to spatial heterogeneity in the benthic community. Fluxes of radon were greater at the shoal station than at the channel station because of greater macrofaunal irrigation at the former, but showed little seasonal variability at either station. At both stations fluxes of oxygen, carbon dioxide, ammonia, and silica were largest following the spring bloom. Fluxes measured during different seasons ranged over factors of 2-3, 3, 4-5, and 3-10 (respectively), due to variations in phytoplankton productivity and temperature. Fluxes of oxygen and carbon dioxide were greater at the shoal station than at the channel station because the net phytoplankton productivity is greater there and the organic matter produced must be rapidly incorporated in the sediment column. Fluxes of silica were greater at the shoal station, probably because of the greater irrigation rates there. N + N (nitrate + nitrite) fluxes were variable in magnitude and in sign. Phosphate fluxes were too small to measure accurately. Alkalinity fluxes were similar at the two stations and are attributed primarily to carbonate dissolution at the shoal station and to sulfate reduction at the channel station. The estimated average fluxes into South Bay, based on results from these two stations over the course of a year, are (in mmol m-2 d-1): O2 = -27 ?? 6; TCO2 = 23 ?? 6; Alkalinity = 9 ?? 2; N + N = -0.3 ?? 0.5; NH3 = 1.4 ?? 0.2; PO4 = 0.1 ?? 0.4; Si = 5.6 ?? 1.1. These fluxes are comparable in magnitude to those in other temperate estuaries with similar productivity, although the seasonal

  19. A Particle-In-Cell approach to particle flux shaping with a surface mask

    Directory of Open Access Journals (Sweden)

    G. Kawamura

    2017-08-01

    Full Text Available The Particle-In-Cell simulation code PICS has been developed to study plasma in front of a surface with two types of masks, step-type and roof-type. Parameter scans with regard to magnetic field angle, electron density, and mask height were carried out to understand their influence on ion particle flux distribution on a surface. A roof-type mask with a small mask height yields short decay length in the flux distribution which is consistent with that estimated experimentally. A roof-type mask with a large height yields very long decay length and the flux value does not depend on a mask height or an electron density, but rather on a mask length and a biasing voltage of the surface. Mask height also changes the flux distribution apart from the mask because of the shading effect of the mask. Electron density changes the distribution near the mask edge according to the Debye length. Dependence of distribution on parameters are complicated especially for a roof-type mask, and simulation study with various parameters are useful to understand the physical reasons of dependence and also is useful as a tool for experiment studies.

  20. Inferring CO2 Fluxes from OCO-2 for Assimilation into Land Surface Models to Calculate Net Ecosystem Exchange

    Science.gov (United States)

    Prouty, R.; Radov, A.; Halem, M.; Nearing, G. S.

    2016-12-01

    Investigations of mid to high latitude atmospheric CO2 show a growing seasonal amplitude. Land surface models poorly predict net ecosystem exchange (NEE) and are unable to substantiate these sporadic observations. An investigation of how the biosphere has reacted to changes in atmospheric CO2 is essential to our understanding of potential climate-vegetation feedbacks. A global, seasonal investigation of CO2-flux is then necessary in order to assimilate into land surface models for improving the prediction of annual NEE. The Atmospheric Radiation Measurement program (ARM) of DOE collects CO2-flux measurements (in addition to CO2 concentration and various other meteorological quantities) at several towers located around the globe at half hour temporal frequencies. CO2-fluxes are calculated via the eddy covariance technique, which utilizes CO2-densities and wind velocities to calculate CO2-fluxes. The global coverage of CO2 concentrations as provided by the Orbiting Carbon Observatory (OCO-2) provide satellite-derived CO2 concentrations all over the globe. A framework relating the satellite-inferred CO2 concentrations collocated with the ground-based ARM as well as Ameriflux stations would enable calculations of CO2-fluxes far from the station sites around the entire globe. Regression techniques utilizing deep-learning neural networks may provide such a framework. Additionally, meteorological reanalysis allows for the replacement of the ARM multivariable meteorological variables needed to infer the CO2-fluxes. We present the results of inferring CO2-fluxes from OCO-2 CO2 concentrations for a two year period, Sept. 2014- Sept. 2016 at the ARM station located near Oklahoma City. A feed-forward neural network (FFNN) is used to infer relationships between the following data sets: F([ARM CO2-density], [ARM Meteorological Data]) = [ARM CO2-Flux] F([OCO-2 CO2-density],[ARM Meteorological Data]) = [ARM CO2-Flux] F([ARM CO2-density],[Meteorological Reanalysis]) = [ARM CO2-Flux

  1. CO2 flux geothermometer for geothermal exploration

    Science.gov (United States)

    Harvey, M. C.; Rowland, J. V.; Chiodini, G.; Rissmann, C. F.; Bloomberg, S.; Fridriksson, T.; Oladottir, A. A.

    2017-09-01

    A new geothermometer (TCO2 Flux) is proposed based on soil diffuse CO2 flux and shallow temperature measurements made on areas of steam heated, thermally altered ground above active geothermal systems. This CO2 flux geothermometer is based on a previously reported CO2 geothermometer that was designed for use with fumarole analysis. The new geothermometer provides a valuable additional exploration tool for estimating subsurface temperatures in high-temperature geothermal systems. Mean TCO2 Flux estimates fall within the range of deep drill hole temperatures at Wairakei (New Zealand), Tauhara (New Zealand), Rotokawa (New Zealand), Ohaaki (New Zealand), Reykjanes (Iceland) and Copahue (Argentina). The spatial distribution of geothermometry estimates is consistent with the location of major upflow zones previously reported at the Wairakei and Rotokawa geothermal systems. TCO2 Flux was also evaluated at White Island (New Zealand) and Reporoa (New Zealand), where limited sub-surface data exists. Mode TCO2 Flux at White Island is high (320 °C), the highest of the systems considered in this study. However, the geothermometer relies on mineral-water equilibrium in neutral pH reservoir fluids, and would not be reliable in such an active and acidic environment. Mean TCO2 Flux at Reporoa (310 °C) is high, which indicates Reporoa has a separate upflow from the nearby Waiotapu geothermal system; an outflow from Waiotapu would not be expected to have such high temperature.

  2. Negative Ion Density Fronts

    Energy Technology Data Exchange (ETDEWEB)

    Igor Kaganovich

    2000-12-18

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas.

  3. A time-varying magnetic flux concentrator

    Science.gov (United States)

    Kibret, B.; Premaratne, M.; Lewis, P. M.; Thomson, R.; Fitzgerald, P. B.

    2016-08-01

    It is known that diverse technological applications require the use of focused magnetic fields. This has driven the quest for controlling the magnetic field. Recently, the principles in transformation optics and metamaterials have allowed the realization of practical static magnetic flux concentrators. Extending such progress, here, we propose a time-varying magnetic flux concentrator cylindrical shell that uses electric conductors and ferromagnetic materials to guide magnetic flux to its center. Its performance is discussed based on finite-element simulation results. Our proposed design has potential applications in magnetic sensors, medical devices, wireless power transfer, and near-field wireless communications.

  4. Ion flux and ion distribution function measurements in synchronously pulsed inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Brihoum, Melisa; Cunge, Gilles; Darnon, Maxime; Joubert, Olivier [Laboratoire des Technologies de la Microelectronique CNRS, Grenoble Cedex 9, Isere 38054 (France); Gahan, David [Impedans Ltd., Dublin 17 (Ireland); Braithwaite, Nicholas St. J. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2013-03-15

    Changes in the ion flux and the time-averaged ion distribution functions are reported for pulsed, inductively coupled RF plasmas (ICPs) operated over a range of duty cycles. For helium and argon plasmas, the ion flux increases rapidly after the start of the RF pulse and after about 50 {mu}s reaches the same steady state value as that in continuous ICPs. Therefore, when the plasma is pulsed at 1 kHz, the ion flux during the pulse has a value that is almost independent of the duty cycle. By contrast, in molecular electronegative chlorine/chlorosilane plasmas, the ion flux during the pulse reaches a steady state value that depends strongly on the duty cycle. This is because both the plasma chemistry and the electronegativity depend on the duty cycle. As a result, the ion flux is 15 times smaller in a pulsed 10% duty cycle plasma than in the continuous wave (CW) plasma. The consequence is that for a given synchronous RF biasing of a wafer-chuck, the ion energy is much higher in the pulsed plasma than it is in the CW plasma of chlorine/chlorosilane. Under these conditions, the wafer is bombarded by a low flux of very energetic ions, very much as it would in a low density, capacitively coupled plasma. Therefore, one can extend the operating range of ICPs through synchronous pulsing of the inductive excitation and capacitive chuck-bias, offering new means by which to control plasma etching.

  5. [Spectra and thermal analysis of the arc in activating flux plasma arc welding].

    Science.gov (United States)

    Chai, Guo-Ming; Zhu, Yi-Feng

    2010-04-01

    In activating flux plasma arc welding the welding arc was analyzed by spectra analysis technique, and the welding arc temperature field was measured by the infrared sensing and computer image technique. The distribution models of welding arc heat flow density of activating flux PAW welding were developed. The composition of welding arc affected by activated flux was studied, and the welding arc temperature field was studied. The results show that the spectral lines of argon atom and ionized argon atom of primary ionization are the main spectra lines of the conventional plasma welding arc. The spectra lines of weld metal are inappreciable in the spectra lines of the conventional plasma welding arc. The gas particle is the main in the conventional plasma welding arc. The conventional plasma welding arc is gas welding arc. The spectra lines of argon atom and ionized argon atom of primary ionization are intensified in the activating flux plasma welding arc, and the spectra lines of Ti, Cr and Fe elements are found in the activating flux plasma welding arc. The welding arc temperature distribution in activating flux plasma arc welding is compact, the outline of the welding arc temperature field is narrow, the range of the welding arc temperature distribution is concentrated, the welding arc radial temperature gradient is large, and the welding arc radial temperature gradient shows normal Gauss distribution.

  6. Heat-Flux Measurements in Laser-Produced Plasmas Using Thomson Scattering from Electron Plasma Waves

    Science.gov (United States)

    Henchen, R. J.; Goncharov, V. N.; Cao, D.; Katz, J.; Froula, D. H.; Rozmus, W.

    2017-10-01

    An experiment was designed to measure heat flux in coronal plasmas using collective Thomson scattering. Adjustments to the electron distribution function resulting from heat flux affect the shape of the collective Thomson scattering features through wave-particle resonance. The amplitude of the Spitzer-Härm electron distribution function correction term (f1) was varied to match the data and determines the value of the heat flux. Independent measurements of temperature and density obtained from Thomson scattering were used to infer the classical heat flux (q = - κ∇Te) . Time-resolved Thomson-scattering data were obtained at five locations in the corona along the target normal in a blowoff plasma formed from a planar Al target with 1.5 kJ of 351-nm laser light in a 2-ns square pulse. The flux measured through the Thomson-scattering spectra is a factor of 5 less than the κ∇Te measurements. The lack of collisions of heat-carrying electrons suggests a nonlocal model is needed to accurately describe the heat flux. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  7. Rapid measurement of charged particle beam profiles using a current flux grating

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Samit; Chowdhury, Abhishek; Bhattacharjee, Sudeep [Department of Physics, Indian Institute of Technology, Kanpur 208016, UP (India)

    2015-02-15

    The principle and physics issues of charged particle beam diagnostics using a current flux grating are presented. Unidirectional array of conducting channels with interstitial insulating layers of spacing d is placed in the beam path to capture flux of charge and electronically reproduce an exact beam current profile with density variation. The role of secondary electrons due to the impinging particle beam (both electron and ion) on the probe is addressed and a correction factor is introduced. A 2-dimensional profile of the electron beam is obtained by rotating the probe about the beam axis. Finally, a comparison of measured beam profile with a Gaussian is presented.

  8. Biosignatures in the Context of Low Energy Flux

    Science.gov (United States)

    Hoehler, T. M.

    2017-01-01

    . Life detection strategies that directly target extant organisms should therefore be prepared to encounter average biomass densities that may be many orders of magnitude smaller than those found in most of Earth's surface environments (2) Life expends energy to synthesize new biomass. An end-member case in which new biomass is created at the energy-limited rate and the corresponding cells are immediately destroyed (so that the energy partitioned to cell maintenance is minimized) establishes an upper bound on the rate at which biological material can enter a bulk global pool. For a specified bulk concentration [i] of any particular biological compound, i, or for biologically produced matter overall, this synthesis rate, R (sub i), defines a characteristic time scale tau (sub i) equals [i] divided by R (sub i). tau (sub i) can be thought of as (a) the minimum time required for biosynthesis to yield a specific bulk concentration (e.g., a detection threshold) of i, and (b) the average residence time of i within a bulk pool when [i] is held in steady state through a balance between biosynthesis and attrition by physical, chemical, or biological consumption. tau (sub i) becomes an important quantity in considering the potential utility of enantiomeric excess (as a product of homochiral biosynthesis) as a biosignature. Spontaneous racemization of amino acids acts to "erase" the signature of homochiral synthesis over time scales that may range from hundreds to hundreds of thousands of years, depending on temperature. For environments in which low energy flux translates to low rates of biosynthesis, including the synthesis of homochiral amino acids, amino acid residence times in pools having detectable concentrations may compare to or significantly exceed the time scale for racemization. This and similar consequences of long residence times should be considered in the formulation of life detection strategies based on detection of biologically-produced species. Fluxes of

  9. An improved flux-step method to determine the critical flux and the critical flux for irreversibility in a membrane bioreactor

    NARCIS (Netherlands)

    Marel, van der P.; Zwijnenburg, A.; Kemperman, A.; Wessling, M.; Temmink, B.G.; Meer, van der W.

    2009-01-01

    An improved flux-step method is presented incorporating cleaning steps by relaxation to determine the critical flux and the critical flux for irreversibility. Experiments are performed with activated sludge fed with real municipal wastewater. The improved flux-step method is compared with a common

  10. Reconciling heat-flux and salt-flux estimates at a melting ice-ocean interface

    CERN Document Server

    Keitzl, Thomas; Notz, Dirk

    2016-01-01

    The ratio of heat and salt flux is employed in ice-ocean models to represent ice-ocean interactions. In this study, this flux ratio is determined from direct numerical simulations of free convection beneath a melting, horizontal, smooth ice-ocean interface. We find that the flux ratio at the interface is three times as large as previously assessed based on turbulent-flux measurements in the field. As a consequence, interface salinities and melt rates are overestimated by up to 40\\% if they are based on the three-equation formulation. We also find that the interface flux ratio depends only very weakly on the far-field conditions of the flow. Lastly, our simulations indicate that estimates of the interface flux ratio based on direct measurements of the turbulent fluxes will be difficult because at the interface the diffusivities alone determine the mixing and the flux ratio varies with depth. As an alternative, we present a consistent evaluation of the flux ratio based on the total heat and salt fluxes across t...

  11. A practical CO2 flux remote sensing technique

    Science.gov (United States)

    Queisser, Manuel; Burton, Mike

    2017-04-01

    An accurate quantification of CO2 flux from both natural and anthropogenic sources is of great interest in various areas of the Earth, environmental and atmospheric sciences. As emitted excess CO2 quickly dilutes into the 400 ppm ambient CO2 concentration and degassing often occurs diffusively, measuring CO2 fluxes is challenging. Therefore, fluxes are usually derived from grids of in-situ measurements, which are labour intensive measurements. Other than a safe measurement distance, remote sensing offers quick, spatially integrated and thus a more thorough measurement of gas fluxes. Active remote sensing combines these merits with operation independent of sunlight or clear sky conditions. Due to their weight and size, active remote sensing platforms for CO2, such as LIDAR, cannot easily be applied in the field or transported overseas. Moreover, their complexity requires a rather lengthy setup procedure to be undertaken by skilled personal. To meet the need for a rugged, practical CO2 remote sensing technique to scan volcanic plumes, we have developed the CO2 LIDAR. It measures 1-D column densities of CO2 with sufficient sensitivity to reveal the contribution of magmatic CO2. The CO2 LIDAR has been mounted inside a small aircraft and used to measure atmospheric column CO2 concentrations between the aircraft and the ground. It was further employed on the ground, measuring CO2 emissions from mud volcanism. During the measurement campaign the CO2 LIDAR demonstrated reliability, portability, quick set-up time (10 to 15 min) and platform independence. This new technique opens the possibility of rapid, comprehensive surveys of point source, open-vent CO2 emissions, as well as emissions from more diffuse sources such as lakes and fumarole fields. Currently, within the proof-of-concept ERC project CarbSens, a further reduction in size, weight and operational complexity is underway with the goal to commercialize the platform. Areas of potential applications include fugitive

  12. Factors controlling vertical fluxes of prrticles in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, T.M.B.; Ramaswamy, V.; Parthiban, G.; Shankar, R.

    whereas organic carbon percentages decreased. Particle flux patterns show a strong seasonality with peak fluxes during the southwest (SW) monsoon (June to September). Relatively high fluxes were also observed during the northeast (NE) monsoon (December...

  13. Accuracy of surface heat fluxes from observations of operational satellites

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Sugimori, Y.

    Uncertainties in the flux estimates, resulting from the use of bulk method and remotely sensed data are worked out and are presented for individual and total fluxes. These uncertainties in satellite derived fluxes are further compared...

  14. Tetrakis-amido high flux membranes

    Science.gov (United States)

    McCray, S.B.

    1989-10-24

    Composite RO membranes of a microporous polymeric support and a polyamide reaction product of a tetrakis-aminomethyl compound and a polyacylhalide are disclosed, said membranes exhibiting high flux and good chlorine resistance.

  15. 400 Area/Fast Flux Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 400 Area at Hanford is home primarily to the Fast Flux Test Facility (FFTF), a DOE-owned, formerly operating, 400-megawatt (thermal) liquid-metal (sodium)-cooled...

  16. Neutron flux measurements at the TRIGA reactor in Vienna for the prediction of the activation of the biological shield.

    Science.gov (United States)

    Merz, Stefan; Djuricic, Mile; Villa, Mario; Böck, Helmuth; Steinhauser, Georg

    2011-11-01

    The activation of the biological shield is an important process for waste management considerations of nuclear facilities. The final activity can be estimated by modeling using the neutron flux density rather than the radiometric approach of activity measurements. Measurement series at the TRIGA reactor Vienna reveal that the flux density next to the biological shield is in the order of 10(9)cm(-2)s(-1) at maximum power; but it is strongly influenced by reactor installations. The data allow the estimation of the final waste categorization of the concrete according to the Austrian legislation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models

    Science.gov (United States)

    Geller, Marvin A.; Alexadner, M. Joan; Love, Peter T.; Bacmeister, Julio; Ern, Manfred; Hertzog, Albert; Manzini, Elisa; Preusse, Peter; Sato, Kaoru; Scaife, Adam A.; hide

    2013-01-01

    For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations,MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.

  18. Reconnection Fluxes in Eruptive and Confined Flares and Implications for Superflares on the Sun

    Science.gov (United States)

    Tschernitz, Johannes; Veronig, Astrid M.; Thalmann, Julia K.; Hinterreiter, Jürgen; Pötzi, Werner

    2018-01-01

    We study the energy release process of a set of 51 flares (32 confined, 19 eruptive) ranging from GOES class B3 to X17. We use Hα filtergrams from Kanzelhöhe Observatory together with Solar Dynamics Observatory HMI and Solar and Heliospheric Observatory MDI magnetograms to derive magnetic reconnection fluxes and rates. The flare reconnection flux is strongly correlated with the peak of the GOES 1–8 Å soft X-ray flux (c = 0.92, in log–log space) for both confined and eruptive flares. Confined flares of a certain GOES class exhibit smaller ribbon areas but larger magnetic flux densities in the flare ribbons (by a factor of 2). In the largest events, up to ≈50% of the magnetic flux of the active region (AR) causing the flare is involved in the flare magnetic reconnection. These findings allow us to extrapolate toward the largest solar flares possible. A complex solar AR hosting a magnetic flux of 2 × 1023 Mx, which is in line with the largest AR fluxes directly measured, is capable of producing an X80 flare, which corresponds to a bolometric energy of about 7 × 1032 erg. Using a magnetic flux estimate of 6 × 1023 Mx for the largest solar AR observed, we find that flares of GOES class ≈X500 could be produced (E bol ≈ 3 × 1033 erg). These estimates suggest that the present day’s Sun is capable of producing flares and related space weather events that may be more than an order of magnitude stronger than have been observed to date.

  19. Flux dependency of particulate/colloidal fouling in seawater reverse osmosis systems

    KAUST Repository

    Salinas Rodríguez, S. G.

    2012-01-01

    Fouling is the main operational problem in seawater reverse osmosis systems (SWRO). Particulate fouling is traditionally measured through the silt density index (SDI) and through the modified fouling index (MFI). In recent years, ultrafiltration membranes were used successfully at constant flux-MFI-UF-to measure particulate/colloidal fouling potential and tested in sea water applications. Furthermore, constant flux operation allows predicting the rate of fouling in RO systems. The objectives of this study are: (1) to measure the flux effect in MFI-UF with different membranes (100, 30 and 10 kDa) for raw seawater and pre-treated water before reverse osmosis in three different locations; (2) to study the particulate and colloidal fouling potential of seawater in reverse osmosis systems; (3) to project the increase in pressure due to cake resistance in reverse osmosis systems. In this research, flat ultrafiltration membranes (100, 50, 30 and 10 kDa) are used in a con- stant flux filtration mode to test and compare real seawaters from various locations (North and Mediterranean Sea) and from various full scale facilities including different pre-treatments (i.e., ultrafiltration and coagulation + dual media filtration). The operated fluxes range from 350 down to values close to real RO operation, 15l(m2h)-1. After each filtration test, the MFI-UF is calculated to assess the particulate fouling potential. The obtained results showed that: (1) the particulate and colloidal fouling potential is directly proportional to the applied flux during filtration. This proportionality is related to the compression of the cake deposit occurring at high flux values; (2) the higher the flux, the higher the required pressure, the less porous the cake and therefore the higher the specific cake resistance; (3) particulate and colloidal fouling potential of seawater is site specific and is influenced by pre-treatment. © 2012 Desalination Publications. All rights reserved.

  20. Mold Flux Crystallization and Mold Thermal Behavior

    Science.gov (United States)

    Peterson, Elizabeth Irene

    Mold flux plays a small but critical role in the continuous casting of steel. The carbon-coated powder is added at the top of the water-cooled copper mold, over time it melts and infiltrates the gap between the copper mold and the solidifying steel strand. Mold powders serve five primary functions: (1) chemical insulation, (2) thermal insulation, (3) lubrication between the steel strand and mold, (4) absorption of inclusions, and (5) promotion of even heat flux. All five functions are critical to slab casting, but surface defect prevention is primarily controlled through even heat flux. Glassy fluxes have high heat transfer and result in a thicker steel shell. Steels with large volumetric shrinkage on cooling must have a crystalline flux to reduce the radiative heat transfer and avoid the formation of cracks in the shell. Crystallinity plays a critical role in steel shell formation, therefore it is important to study the thermal conditions that promote each phase and its morphology. Laboratory tests were performed to generate continuous cooling transformation (CCT) and time-temperature-transformation (TTT) diagrams. Continuous cooling transformation tests were performed in an instrumented eight cell step chill mold. Results showed that cuspidine was the only phase formed in conventional fluxes and all observed structures were dendritic. An isothermal tin bath quench method was also developed to isothermally age glassy samples. Isothermal tests yielded different microstructures and different phases than those observed by continuous cooling. Comparison of aged tests with industrial flux films indicates similar faceted structures along the mold wall, suggesting that mold flux first solidifies as a glass along the mold wall, but the elevated temperature devitrifies the glassy structure forming crystals that cannot form by continuous cooling.

  1. Recurrence Analysis of Eddy Covariance Fluxes

    Science.gov (United States)

    Lange, Holger; Flach, Milan; Foken, Thomas; Hauhs, Michael

    2015-04-01

    The eddy covariance (EC) method is one key method to quantify fluxes in biogeochemical cycles in general, and carbon and energy transport across the vegetation-atmosphere boundary layer in particular. EC data from the worldwide net of flux towers (Fluxnet) have also been used to validate biogeochemical models. The high resolution data are usually obtained at 20 Hz sampling rate but are affected by missing values and other restrictions. In this contribution, we investigate the nonlinear dynamics of EC fluxes using Recurrence Analysis (RA). High resolution data from the site DE-Bay (Waldstein-Weidenbrunnen) and fluxes calculated at half-hourly resolution from eight locations (part of the La Thuile dataset) provide a set of very long time series to analyze. After careful quality assessment and Fluxnet standard gapfilling pretreatment, we calculate properties and indicators of the recurrent structure based both on Recurrence Plots as well as Recurrence Networks. Time series of RA measures obtained from windows moving along the time axis are presented. Their interpretation is guided by three different questions: (1) Is RA able to discern periods where the (atmospheric) conditions are particularly suitable to obtain reliable EC fluxes? (2) Is RA capable to detect dynamical transitions (different behavior) beyond those obvious from visual inspection? (3) Does RA contribute to an understanding of the nonlinear synchronization between EC fluxes and atmospheric parameters, which is crucial for both improving carbon flux models as well for reliable interpolation of gaps? (4) Is RA able to recommend an optimal time resolution for measuring EC data and for analyzing EC fluxes? (5) Is it possible to detect non-trivial periodicities with a global RA? We will demonstrate that the answers to all five questions is affirmative, and that RA provides insights into EC dynamics not easily obtained otherwise.

  2. A Coupled Plasma-Sheath Model for High Density Sources

    Science.gov (United States)

    Bose, Deepak; Govindan, T. R.; Meyyappan, M.

    2000-01-01

    High density, low pressure plasmas are used for etching and deposition in microelectronics fabrication processes. The process characteristics are strongly determined by the ion energy distribution (IED) and the ion flux arriving at the substrate that are responsible for desorption of etch products and neutral dissociation at the surface. The ion flux and energy are determined by a self- consistent modeling of the bulk plasma, where the ions and the neutral radicals are produced, and the sheath, where the ions are accelerated. Due to their widely different time scales, it is a formidable task to self-consistently resolve non-collisional sheath in a high density bulk plasma model. In this work, we first describe a coupled plasma-sheath model that attempts to resolve the non-collisional sheath in a reactor scale model. Second, we propose a semianalytical radio frequency (RF) sheath model to improve ion dynamics.

  3. Gap and density theorems

    CERN Document Server

    Levinson, N

    1940-01-01

    A typical gap theorem of the type discussed in the book deals with a set of exponential functions { \\{e^{{{i\\lambda}_n} x}\\} } on an interval of the real line and explores the conditions under which this set generates the entire L_2 space on this interval. A typical gap theorem deals with functions f on the real line such that many Fourier coefficients of f vanish. The main goal of this book is to investigate relations between density and gap theorems and to study various cases where these theorems hold. The author also shows that density- and gap-type theorems are related to various propertie

  4. Polarizable Density Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Steinmann, Casper; Ruud, Kenneth

    2015-01-01

    We present a new QM/QM/MM-based model for calculating molecular properties and excited states of solute-solvent systems. We denote this new approach the polarizable density embedding (PDE) model and it represents an extension of our previously developed polarizable embedding (PE) strategy. The PDE...... model is a focused computational approach in which a core region of the system studied is represented by a quantum-chemical method, whereas the environment is divided into two other regions: an inner and an outer region. Molecules belonging to the inner region are described by their exact densities...

  5. Holographic magnetisation density waves

    Energy Technology Data Exchange (ETDEWEB)

    Donos, Aristomenis [Centre for Particle Theory and Department of Mathematical Sciences, Durham University,Stockton Road, Durham, DH1 3LE (United Kingdom); Pantelidou, Christiana [Departament de Fisica Quantica i Astrofisica & Institut de Ciencies del Cosmos (ICC),Universitat de Barcelona,Marti i Franques 1, 08028 Barcelona (Spain)

    2016-10-10

    We numerically construct asymptotically AdS black brane solutions of D=4 Einstein theory coupled to a scalar and two U(1) gauge fields. The solutions are holographically dual to d=3 CFTs in a constant external magnetic field along one of the U(1)’s. Below a critical temperature the system’s magnetisation density becomes inhomogeneous, leading to spontaneous formation of current density waves. We find that the transition can be of second order and that the solutions which minimise the free energy locally in the parameter space of solutions have averaged stressed tensor of a perfect fluid.

  6. OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis.

    Science.gov (United States)

    Quek, Lake-Ee; Wittmann, Christoph; Nielsen, Lars K; Krömer, Jens O

    2009-05-01

    The quantitative analysis of metabolic fluxes, i.e., in vivo activities of intracellular enzymes and pathways, provides key information on biological systems in systems biology and metabolic engineering. It is based on a comprehensive approach combining (i) tracer cultivation on 13C substrates, (ii) 13C labelling analysis by mass spectrometry and (iii) mathematical modelling for experimental design, data processing, flux calculation and statistics. Whereas the cultivation and the analytical part is fairly advanced, a lack of appropriate modelling software solutions for all modelling aspects in flux studies is limiting the application of metabolic flux analysis. We have developed OpenFLUX as a user friendly, yet flexible software application for small and large scale 13C metabolic flux analysis. The application is based on the new Elementary Metabolite Unit (EMU) framework, significantly enhancing computation speed for flux calculation. From simple notation of metabolic reaction networks defined in a spreadsheet, the OpenFLUX parser automatically generates MATLAB-readable metabolite and isotopomer balances, thus strongly facilitating model creation. The model can be used to perform experimental design, parameter estimation and sensitivity analysis either using the built-in gradient-based search or Monte Carlo algorithms or in user-defined algorithms. Exemplified for a microbial flux study with 71 reactions, 8 free flux parameters and mass isotopomer distribution of 10 metabolites, OpenFLUX allowed to automatically compile the EMU-based model from an Excel file containing metabolic reactions and carbon transfer mechanisms, showing it's user-friendliness. It reliably reproduced the published data and optimum flux distributions for the network under study were found quickly (studies. By providing the software open source, we hope it will evolve with the rapidly growing field of fluxomics.

  7. The SeaFlux Turbulent Flux Dataset Version 1.0 Documentation

    Science.gov (United States)

    Clayson, Carol Anne; Roberts, J. Brent; Bogdanoff, Alec S.

    2012-01-01

    Under the auspices of the World Climate Research Programme (WCRP) Global Energy and Water cycle EXperiment (GEWEX) Data and Assessment Panel (GDAP), the SeaFlux Project was created to investigate producing a high-resolution satellite-based dataset of surface turbulent fluxes over the global oceans. The most current release of the SeaFlux product is Version 1.0; this represents the initial release of turbulent surface heat fluxes, associated near-surface variables including a diurnally varying sea surface temperature.

  8. Adsorbed Oxygen Molecules as a Possible Source of Flux Noise in SQUIDs

    Science.gov (United States)

    Shi, Chuntai; Wang, Hui; Hu, Jun; Yu, Clare; Wu, Ruqian

    2015-03-01

    One of the dominant source of flux noise in SQUIDs is flux noise which has been attributed to mysterious fluctuating magnetic spins on the surface. We propose that the spins producing flux noise could be adsorbed O2 molecules that have a magnetic moment of about 2 μB. Using density functional calculations, we studied O2 molecules adsorbed on a sapphire surface. We find that the barrier for spin rotation is small enough to allow almost free spin reorientation due to thermal excitations at low temperatures. Monte Carlo simulations of a 2D XY spin model yields 1 / f noise where f is frequency. This work was supported by 1000 Talent Program of China through Fudan University. Work at UCI was supported by DOE-BES (Grant No. DE-FG02-05ER46237) and the Army Research Office (Grant No. W911NF-10-1-0494).

  9. A Tryst With Density

    Indian Academy of Sciences (India)

    Walter Kohn transformed theoretical chemistry and solid statephysics with his development of density functional theory, forwhich he was awarded the Nobel Prize. This article tries toexplain, in simple terms, why this was an important advancein the field, and to describe precisely what it was that he (togetherwith his ...

  10. Density in Liquids.

    Science.gov (United States)

    Nesin, Gert; Barrow, Lloyd H.

    1984-01-01

    Describes a fourth-grade unit on density which introduces a concept useful in the study of chemistry and procedures appropriate to the chemistry laboratory. The hands-on activities, which use simple equipment and household substances, are at the level of thinking Piaget describes as concrete operational. (BC)

  11. Multiple density layered insulator

    Science.gov (United States)

    Alger, Terry W.

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  12. Polarizable Density Embedding

    DEFF Research Database (Denmark)

    Reinholdt, Peter; Kongsted, Jacob; Olsen, Jógvan Magnus Haugaard

    2017-01-01

    We analyze the performance of the polarizable density embedding (PDE) model-a new multiscale computational approach designed for prediction and rationalization of general molecular properties of large and complex systems. We showcase how the PDE model very effectively handles the use of large...

  13. A Tryst With Density

    Indian Academy of Sciences (India)

    related to gender and science. Walter Kohn transformed theoretical chemistry and solid state physics with his development of density functional theory, for which he was awarded the Nobel Prize. This article tries to explain, in simple terms, why this was an important advance in the field, and to describe precisely what it was ...

  14. Role of turbulence regime on determining the local density gradient

    Science.gov (United States)

    Wang, X.; Mordijck, S.; Doyle, E. J.; Zeng, L.; Staebler, G. M.; Meneghini, O.; Smith, S. P.

    2018-01-01

    In this paper we show that the local density gradient in the plasma core depends on the calculated mode-frequency of the most unstable linear mode and reaches a maximum when this frequency is close to zero. Previous theoretical and experimental work on AUG has shown that the ratio of electron to ion temperature, and as such the frequency of the dominant linear gyrokinetic mode, affects the local density gradient close to ρ = 0.3 (Fable et al 2010 Plasma Phys. Control. Fusion 52 015007, Angioni et al 2011 Nucl. Fusion 51 023006). On DIII-D we find that by adding electron cyclotron heating, we modify the dominant unstable linear gyrokinetic mode from an ion temperature gradient (ITG) mode to a trapped electron mode (TEM), which means that the frequency of the dominant mode changes sign (from the ion to the electron direction). Local density peaking around mid-radius increases by 50% right around the cross-over between the ITG and TEM regimes. By comparing how the particle flux changes, through the derivative of the electron density, n e , with respect to time, \\partial n_e/\\partial t , we find that the particle flux also exhibits the same trend versus mode frequency. As a result, we find that the changes in local particle transport are inversely proportional to the changes in electron density, indicating that the changes are driven by a change in thermo-diffusive pinch.

  15. Direct detection of momentum flux in atomic and molecular beams

    Science.gov (United States)

    Choi, J. G.; Hayden, J. S.; O'Connor, M. T.; Diebold, G. J.

    1981-10-01

    We describe the use of a microphone for detection of atomic and molecular beams in a high-vacuum environment. Two experiments were carried out to demonstrate this detection method. Pulsed beams of argon were detected using a conventional electret microphone where the output of the microphone was displayed directly on an oscilloscope or processed with a boxcar averager to remove the transient oscillations of the microphone diaphragm. Amplitude modulated, continuous beams of atomic argon were also detected using a lock-in amplifier. The microphone possesses a response to the pressure or momentum flux in the beam that appears to be unique among beam detectors. We use the classical equipartition theorem to calculate the magnitude of the random fluctuations in the output voltage of the microphone that is used to give an expression for the minimum detectable momentum flux in the beam. For a typical microphone we find this to be 3×10-8 Pa, (in a 1-Hz bandwidth), which corresponds to a minimum number density of 1×106 cm-3 for an effusive argon beam at 300 K.

  16. Diamond thin film temperature and heat-flux sensors

    Science.gov (United States)

    Aslam, M.; Yang, G. S.; Masood, A.; Fredricks, R.

    1995-01-01

    Diamond film temperature and heat-flux sensors are developed using a technology compatible with silicon integrated circuit processing. The technology involves diamond nucleation, patterning, doping, and metallization. Multi-sensor test chips were designed and fabricated to study the thermistor behavior. The minimum feature size (device width) for 1st and 2nd generation chips are 160 and 5 micron, respectively. The p-type diamond thermistors on the 1st generation test chip show temperature and response time ranges of 80-1270 K and 0.29-25 microseconds, respectively. An array of diamond thermistors, acting as heat flux sensors, was successfully fabricated on an oxidized Si rod with a diameter of 1 cm. Some problems were encountered in the patterning of the Pt/Ti ohmic contacts on the rod, due mainly to the surface roughness of the diamond film. The use of thermistors with a minimum width of 5 micron (to improve the spatial resolution of measurement) resulted in lithographic problems related to surface roughness of diamond films. We improved the mean surface roughness from 124 nm to 30 nm by using an ultra high nucleation density of 10(exp 11)/sq cm. To deposit thermistors with such small dimensions on a curved surface, a new 3-D diamond patterning technique is currently under development. This involves writing a diamond seed pattern directly on the curved surface by a computer-controlled nozzle.

  17. Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces

    Science.gov (United States)

    Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David

    2014-10-01

    An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.

  18. Energy flux determines magnetic field strength of planets and stars

    Science.gov (United States)

    Christensen, Ulrich R.; Holzwarth, Volkmar; Reiners, Ansgar

    2009-01-01

    The magnetic fields of Earth and Jupiter, along with those of rapidly rotating, low-mass stars, are generated by convection-driven dynamos that may operate similarly (the slowly rotating Sun generates its field through a different dynamo mechanism). The field strengths of planets and stars vary over three orders of magnitude, but the critical factor causing that variation has hitherto been unclear. Here we report an extension of a scaling law derived from geodynamo models to rapidly rotating stars that have strong density stratification. The unifying principle in the scaling law is that the energy flux available for generating the magnetic field sets the field strength. Our scaling law fits the observed field strengths of Earth, Jupiter, young contracting stars and rapidly rotating low-mass stars, despite vast differences in the physical conditions of the objects. We predict that the field strengths of rapidly rotating brown dwarfs and massive extrasolar planets are high enough to make them observable.

  19. Matching of the Flux Lattice to Geometrically Frustrated Pinning Arrays

    Science.gov (United States)

    Trastoy, J.; Bernard, R.; Briatico, J.; Villegas, J. E.; Lesueur, J.; Ulysse, C.; Faini, G.

    2013-03-01

    We use vortex dynamics on artificial nanoscale energy landscapes as a model to experimentally investigate a problem inspired by ``spin ice'' systems. In particular, we study the matching of the flux lattice to pinning arrays in which the geometrical frustration is expected to impede a unique stable vortex configuration and to promote metastability. This is done with YBCO films in which the nanoscale vortex energy landscape is fabricated via masked ion irradiation. Surprisingly, we found that minimal changes in the distance between pinning sites lead to the suppression of some of the magneto-resistance matching effects, that is, for certain well-defined vortex densities. This effect strongly depends on the temperature. We argue that this behavior can be explained considering the arrays' geometrical frustration and the thermally activated reconfiguration of the vortex lattice between isoenergetic states. Work supported by the French ANR via SUPERHYRBIDS-II and ``MASTHER,'' and the Galician Fundacion Barrie

  20. Soil greenhouse gas fluxes from different tree species on Taihang Mountain, North China

    Science.gov (United States)

    Liu, X. P.; Zhang, W. J.; Hu, C. S.; Tang, X. G.

    2014-03-01

    The objectives of this study were to investigate seasonal variation of greenhouse gas fluxes from soils on sites dominated by plantation (Robinia pseudoacacia, Punica granatum, and Ziziphus jujube) and natural regenerated forests (Vitex negundo var. heterophylla, Leptodermis oblonga, and Bothriochloa ischcemum), and to identify how tree species, litter exclusion, and soil properties (soil temperature, soil moisture, soil organic carbon, total N, soil bulk density, and soil pH) explained the temporal and spatial variation in soil greenhouse gas fluxes. Fluxes of greenhouse gases were measured using static chamber and gas chromatography techniques. Six static chambers were randomly installed in each tree species. Three chambers were randomly designated to measure the impacts of surface litter exclusion, and the remaining three were used as a control. Field measurements were conducted biweekly from May 2010 to April 2012. Soil CO2 emissions from all tree species were significantly affected by soil temperature, soil moisture, and their interaction. Driven by the seasonality of temperature and precipitation, soil CO2 emissions demonstrated a clear seasonal pattern, with fluxes significantly higher during the rainy season than during the dry season. Soil CH4 and N2O fluxes were not significantly correlated with soil temperature, soil moisture, or their interaction, and no significant seasonal differences were detected. Soil organic carbon and total N were significantly positively correlated with CO2 and N2O fluxes. Soil bulk density was significantly negatively correlated with CO2 and N2O fluxes. Soil pH was not correlated with CO2 and N2O emissions. Soil CH4 fluxes did not display pronounced dependency on soil organic carbon, total N, soil bulk density, and soil pH. Removal of surface litter significantly decreased in CO2 emissions and CH4 uptakes. Soils in six tree species acted as sinks for atmospheric CH4. With the exception of Ziziphus jujube, soils in all tree

  1. Net radiation, sensible and latent heat flux densities on slopes computed by the energy balance method

    Science.gov (United States)

    Fritschen, Leo; Qian, Ping

    1990-01-01

    Energy balance components obtained over five grass-covered sloping surfaces near Manhattan, KS, using the Bowen ratio energy balance technique with the instruments mounted horizontally were compared with calculated values when the instruments were mounted parallel to the surfaces. Hourly values of the components changed when the instruments were parallel to the surfaces. The changes were larger at low solar angles (spring and fall) and on steeper slopes. An area average of daylight totals, assuming that all aspects were equally represented, changed only 0.1 percent on June 6 and 2.3 percent on October 11. The calculations, extended to steeper slopes, indicated small changes in the daylight totals for slopes of less than 10 deg.

  2. An electric field induced in the retina and brain at threshold magnetic flux density causing magnetophosphenes

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Akimasa; Takano, Yukinori; Fujiwara, Osamu [Nagoya Institute of Technology, Department of Computer Science and Engineering (Japan); Dovan, Thanh [SP AusNet, Division of Network Strategy and Development (Australia); Kavet, Robert, E-mail: ahirata@nitech.ac.jp [Electric Power Research Institute, Palo Alto, CA (United States)

    2011-07-07

    For magnetic field exposures at extremely low frequencies, the electrostimulatory response with the lowest threshold is the magnetophosphene, a response that corresponds to an adult exposed to a 20 Hz magnetic field of nominally 8.14 mT. In the IEEE standard C95.6 (2002), the corresponding in situ field in the retinal locus of an adult-sized ellipsoidal was calculated to be 53 mV m{sup -1}. However, the associated dose in the retina and brain at a high level of resolution in anatomically correct human models is incompletely characterized. Furthermore, the dose maxima in tissue computed with voxel human models are prone to staircasing errors, particularly for the low-frequency dosimetry. In the analyses presented in this paper, analytical and quasi-static finite-difference time-domain (FDTD) solutions were first compared for a three-layer sphere exposed to a uniform 50 Hz magnetic field. Staircasing errors in the FDTD results were observed at the tissue interface, and were greatest at the skin-air boundary. The 99th percentile value was within 3% of the analytic maximum, depending on model resolution, and thus may be considered a close approximation of the analytic maximum. For the adult anatomical model, TARO, exposed to a uniform magnetic field, the differences in the 99th percentile value of in situ electric fields for 2 mm and 1 mm voxel models were at most several per cent. For various human models exposed at the magnetophosphene threshold at three orthogonal field orientations, the in situ electric field in the brain was between 10% and 70% greater than the analytical IEEE threshold of 53 mV m{sup -1}, and in the retina was lower by roughly 50% for two horizontal orientations (anterior-posterior and lateral), and greater by about 15% for a vertically oriented field. Considering a reduction factor or safety factors of several folds applied to electrostimulatory thresholds, the 99th percentile dose to a tissue calculated with voxel human models may be used as an estimate of the tissue's maximum dose.

  3. Some specific features of subcooled boiling heat transfer and crisis at extremely high heat flux densities

    Energy Technology Data Exchange (ETDEWEB)

    Gotovsky, M.A. [Polzunov Institute, Saint Petersburg (Russian Federation)

    2001-07-01

    Forced convection boiling is the process used widely in a lot of industry branches including NPP. Heat transfer intensity under forced convection boiling is considered in different way in dependence on conditions. One of main problems for the process considered is an influence of interaction between forced flow and boiling on heat transfer character. For saturated water case a transition from ''pure'' forced convection to nucleate boiling can be realized in smooth form. (author)

  4. Photosynthetic photon flux density, carbon dioxide concentration and temperature influence photosynthesis in crotalaria species

    Science.gov (United States)

    Crotalarias are tropical legumes grown as cover crops or as green manure to improve soil fertility. As an understory plant in plantation systems, these cover crops receive low levels of irradiance and are subjected to elevated levels of CO2 and temperatures. A greenhouse experiment was conducted to ...

  5. A Model of Median Auroral Electron Flux Deduced from Hardy 2008 Model Probability Density Maps

    Science.gov (United States)

    2013-11-01

    Dr. Cassandra G. Fesen Edward J. Masterson, Colonel, USAF Program Manager, AFRL...since 1985. The upgraded Hardy model, referred here as H-08, turns out to be a large database and lacks functional representation. The purpose of...CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Dr. Cassandra G. Fesen a. REPORT Unclassified b. ABSTRACT

  6. A nonlinear equivalent circuit model for flux density calculation of a permanent magnet linear synchronous motor

    Directory of Open Access Journals (Sweden)

    Ghanaee Reza

    2015-01-01

    Full Text Available In this paper, a nonlinear magnetic equivalent circuit is presented as an analytical solution method for modeling of a permanent magnet linear synchronous motor (PMLSM. The accuracy of the proposed model is verified via comparing its simulation results with those obtained by two other methods. These two are the Maxwell’s Equations based analytical method and the wellknown finite elements method (FEM. Saturation and any saliency e.g. slotting effects can be considered properly by both nonlinear magnetic equivalent circuit and FEM, where it cannot be taken into account easily by the Maxwell’s Equations based analytical approach. Accordingly, as the simulation results presented in this paper confirm, the proposed nonlinear magnetic equivalent circuit is compatible with FEM regarding the accuracy while it requires very shorter execution time. Therefore, the magnetic equivalent circuit model of the present paper can be considered as a preferable substitute for the time consuming FEM and approximated analytical method built on Maxwell’s Equations in particular when required to be applied for a design optimization problem.

  7. Derivative processes for modelling metabolic fluxes

    Science.gov (United States)

    Žurauskienė, Justina; Kirk, Paul; Thorne, Thomas; Pinney, John; Stumpf, Michael

    2014-01-01

    Motivation: One of the challenging questions in modelling biological systems is to characterize the functional forms of the processes that control and orchestrate molecular and cellular phenotypes. Recently proposed methods for the analysis of metabolic pathways, for example, dynamic flux estimation, can only provide estimates of the underlying fluxes at discrete time points but fail to capture the complete temporal behaviour. To describe the dynamic variation of the fluxes, we additionally require the assumption of specific functional forms that can capture the temporal behaviour. However, it also remains unclear how to address the noise which might be present in experimentally measured metabolite concentrations. Results: Here we propose a novel approach to modelling metabolic fluxes: derivative processes that are based on multiple-output Gaussian processes (MGPs), which are a flexible non-parametric Bayesian modelling technique. The main advantages that follow from MGPs approach include the natural non-parametric representation of the fluxes and ability to impute the missing data in between the measurements. Our derivative process approach allows us to model changes in metabolite derivative concentrations and to characterize the temporal behaviour of metabolic fluxes from time course data. Because the derivative of a Gaussian process is itself a Gaussian process, we can readily link metabolite concentrations to metabolic fluxes and vice versa. Here we discuss how this can be implemented in an MGP framework and illustrate its application to simple models, including nitrogen metabolism in Escherichia coli. Availability and implementation: R code is available from the authors upon request. Contact: j.norkunaite@imperial.ac.uk; m.stumpf@imperial.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24578401

  8. Dayside ionosphere of Titan: Impact on calculated plasma densities due to variations in the model parameters

    Science.gov (United States)

    Mukundan, Vrinda; Bhardwaj, Anil

    2018-01-01

    A one dimensional photochemical model for the dayside ionosphere of Titan has been developed for calculating the density profiles of ions and electrons under steady state photochemical equilibrium condition. We concentrated on the T40 flyby of Cassini orbiter and used the in-situ measurements from instruments onboard Cassini as input to the model. An energy deposition model is employed for calculating the attenuated photon flux and photoelectron flux at different altitudes in Titan's ionosphere. We used the Analytical Yield Spectrum approach for calculating the photoelectron fluxes. Volume production rates of major primary ions, like, N2+, N+ , CH4+, CH3+, etc due to photon and photoelectron impact are calculated and used as input to the model. The modeled profiles are compared with the Cassini Ion Neutral Mass Spectrometer (INMS) and Langmuir Probe (LP) measurements. The calculated electron density is higher than the observation by a factor of 2 to 3 around the peak. We studied the impact of different model parameters, viz. photoelectron flux, ion production rates, electron temperature, dissociative recombination rate coefficients, neutral densities of minor species, and solar flux on the calculated electron density to understand the possible reasons for this discrepancy. Recent studies have shown that there is an overestimation in the modeled photoelectron flux and N2+ ion production rates which may contribute towards this disagreement. But decreasing the photoelectron flux (by a factor of 3) and N2+ ion production rate (by a factor of 2) decreases the electron density only by 10 to 20%. Reduction in the measured electron temperature by a factor of 5 provides a good agreement between the modeled and observed electron density. The change in HCN and NH3 densities affects the calculated densities of the major ions (HCNH+ , C2H5+, and CH5+); however the overall impact on electron density is not appreciable ( < 20%). Even though increasing the dissociative

  9. Estimation of peak heat flux onto the targets for CFETR with extended divertor leg

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chuanjia; Chen, Bin [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Xing, Zhe [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Wu, Haosheng [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Mao, Shifeng, E-mail: sfmao@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Luo, Zhengping; Peng, Xuebing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2016-11-01

    Highlights: • A hypothetical geometry is assumed to extend the outer divertor leg in CFETR. • Density scan SOLPS simulation is done to study the peak heat flux onto target. • Attached–detached regime transition in out divertor occurs at lower puffing rate. • Unexpected delay of attached–detached regime transition occurs in inner divertor. - Abstract: China Fusion Engineering Test Reactor (CFETR) is now in conceptual design phase. CFETR is proposed as a good complement to ITER for demonstrating of fusion energy. Divertor is a crucial component which faces the plasmas and handles huge heat power for CFETR and future fusion reactor. To explore an effective way for heat exhaust, various methods to reduce the heat flux to divertor target should be considered for CFETR. In this work, the effect of extended out divertor leg on the peak heat flux is studied. The magnetic configuration of the long leg divertor is obtained by EFIT and Tokamak Simulation Code (TSC), while a hypothetical geometry is assumed to extend the out divertor leg as long as possible inside vacuum vessel. A SOLPS simulation is performed to study peak heat flux of the long leg divertor for CFETR. D{sub 2} gas puffing is used and increasing of the puffing rate means increase of plasma density. Both peak heat flux onto inner and outer targets are below 10 MW/m{sup 2} is achieved. A comparison between the peak heat flux between long leg and conventional divertor shows that an attached–detached regime transition of out divertor occurs at lower gas puffing gas puffing rate for long leg divertor. While for the inner divertor, even the configuration is almost the same, the situation is opposite.

  10. CO2 flux from Javanese mud volcanism

    Science.gov (United States)

    Queißer, M.; Burton, M. R.; Arzilli, F.; Chiarugi, A.; Marliyani, G. I.; Anggara, F.; Harijoko, A.

    2017-06-01

    Studying the quantity and origin of CO2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO2 with a volume fraction of at least 16 vol %. A lower limit CO2 flux of 1.4 kg s-1 (117 t d-1) was determined, in line with the CO2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO2 flux of 3 kt d-1, comparable with the expected back-arc efflux of magmatic CO2. After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO2, with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO2 fluxes.

  11. CO2 flux from Javanese mud volcanism.

    Science.gov (United States)

    Queißer, M; Burton, M R; Arzilli, F; Chiarugi, A; Marliyani, G I; Anggara, F; Harijoko, A

    2017-06-01

    Studying the quantity and origin of CO2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO2 with a volume fraction of at least 16 vol %. A lower limit CO2 flux of 1.4 kg s-1 (117 t d-1) was determined, in line with the CO2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO2 flux of 3 kt d-1, comparable with the expected back-arc efflux of magmatic CO2. After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO2, with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO2 fluxes.

  12. T2K neutrino flux prediction

    Science.gov (United States)

    Abe, K.; Abgrall, N.; Aihara, H.; Akiri, T.; Albert, J. B.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bass, M.; Batkiewicz, M.; Bay, F.; Bentham, S. W.; Berardi, V.; Berger, B. E.; Berkman, S.; Bertram, I.; Beznosko, D.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Boyd, S.; Bravar, A.; Bronner, C.; Brook-Roberge, D. G.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M.-G.; Cervera, A.; Cherdack, D.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Curioni, A.; Dabrowska, A.; Danko, I.; Das, R.; Davis, S.; Day, M.; de André, J. P. A. M.; de Perio, P.; De Rosa, G.; Dealtry, T.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Dobson, J.; Duboyski, T.; Dufour, F.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Dziomba, M.; Emery, S.; Ereditato, A.; Escudero, L.; Esposito, L. S.; Finch, A. J.; Frank, E.; Friend, M.; Fujii, Y.; Fukuda, Y.; Galymov, V.; Gaudin, A.; Giffin, S.; Giganti, C.; Gilje, K.; Golan, T.; Gomez-Cadenas, J. J.; Gonin, M.; Grant, N.; Gudin, D.; Guzowski, P.; Hadley, D. R.; Haesler, A.; Haigh, M. D.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Holeczek, J.; Horikawa, S.; Huang, K.; Hyndman, A.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Ishida, T.; Ishii, T.; Ives, S. J.; Iyogi, K.; Izmaylov, A.; Jamieson, B.; Johnson, R. A.; Jo, J. H.; Jonsson, P.; Joo, K. K.; Jover-Manas, G. V.; Jung, C. K.; Kaji, H.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Kearns, E.; Khabibullin, M.; Khanam, F.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J. Y.; Kim, J.; Kim, S. B.; Kirby, B.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Kogan, G.; Konaka, A.; Kormos, L. L.; Korzenev, A.; Koseki, K.; Koshio, Y.; Kowalik, K.; Kreslo, I.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kumaratunga, S.; Kurjata, R.; Kutter, T.; Lagoda, J.; Laihem, K.; Laing, A.; Laveder, M.; Lawe, M.; Lee, K. P.; Licciardi, C.; Lim, I. T.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, G. D.; Ludovici, L.; Macaire, M.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marchionni, A.; Marino, A. D.; Marteau, J.; Martin, J. F.; Maruyama, T.; Marzec, J.; Masliah, P.; Mathie, E. L.; Matsumura, C.; Matsuoka, K.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; McFarland, K. S.; McGrew, C.; McLachlan, T.; Messina, M.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Monfregola, L.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nagasaki, T.; Nakadaira, T.; Nakahata, M.; Nakai, T.; Nakajima, K.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Naples, D.; Nicholls, T. C.; Nielsen, C.; Nishikawa, K.; Nishimura, Y.; O'Keeffe, H. M.; Obayashi, Y.; Ohta, R.; Okumura, K.; Oryszczak, W.; Oser, S. M.; Otani, M.; Owen, R. A.; Oyama, Y.; Pac, M. Y.; Palladino, V.; Paolone, V.; Payne, D.; Pearce, G. F.; Perevozchikov, O.; Perkin, J. D.; Pinzon Guerra, E. S.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A.; Reeves, M.; Reinherz-Aronis, E.; Retiere, F.; Rodrigues, P. A.; Rondio, E.; Rossi, B.; Roth, S.; Rubbia, A.; Ruterbories, D.; Sacco, R.; Sakashita, K.; Sánchez, F.; Scantamburlo, E.; Scholberg, K.; Schwehr, J.; Scott, M.; Scully, D. I.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Shibata, M.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smith, R. J.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Sulej, R.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Szeglowski, T.; Szeptycka, M.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. A.; Tanaka, M.; Tanaka, M. M.; Taylor, I. J.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Totsuka, Y.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Ueno, K.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Waldron, A. V.; Walter, C. W.; Wang, J.; Wark, D.; Wascko, M. O.; Weber, A.; Wendell, R.; Wikström, G.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yuan, T.; Zalewska, A.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.

    2013-01-01

    The Tokai-to-Kamioka (T2K) experiment studies neutrino oscillations using an off-axis muon neutrino beam with a peak energy of about 0.6 GeV that originates at the Japan Proton Accelerator Research Complex accelerator facility. Interactions of the neutrinos are observed at near detectors placed at 280 m from the production target and at the far detector—Super-Kamiokande—located 295 km away. The flux prediction is an essential part of the successful prediction of neutrino interaction rates at the T2K detectors and is an important input to T2K neutrino oscillation and cross section measurements. A FLUKA and GEANT3-based simulation models the physical processes involved in the neutrino production, from the interaction of primary beam protons in the T2K target, to the decay of hadrons and muons that produce neutrinos. The simulation uses proton beam monitor measurements as inputs. The modeling of hadronic interactions is reweighted using thin target hadron production data, including recent charged pion and kaon measurements from the NA61/SHINE experiment. For the first T2K analyses the uncertainties on the flux prediction are evaluated to be below 15% near the flux peak. The uncertainty on the ratio of the flux predictions at the far and near detectors is less than 2% near the flux peak.

  13. Untwisting Jets Related to Magnetic Flux Cancellation

    Science.gov (United States)

    Liu, Jiajia; Erdélyi, Robert; Wang, Yuming; Liu, Rui

    2018-01-01

    The rotational motion of solar jets is believed to be a signature of the untwisting process resulting from magnetic reconnection, which takes place between twisted closed magnetic loops (i.e., magnetic flux ropes) and open magnetic field lines. The identification of the pre-existing flux rope, and the relationship between the twist contained in the rope and the number of turns the jet experiences, are then vital in understanding the jet-triggering mechanism. In this paper, we will perform a detailed analysis of imaging, spectral, and magnetic field observations of four homologous jets, among which the fourth one releases a twist angle of 2.6π. Nonlinear force-free field extrapolation of the photospheric vector magnetic field before the jet eruption presents a magnetic configuration with a null point between twisted and open fields—a configuration highly in favor of the eruption of solar jets. The fact that the jet rotates in the opposite sense of handness to the twist contained in the pre-eruption photospheric magnetic field confirms the unwinding of the twist by the jet’s rotational motion. The temporal relationship between jets’ occurrence and the total negative flux at their source region, together with the enhanced magnetic submergence term of the photospheric Poynting flux, shows that these jets are highly associated with local magnetic flux cancellation.

  14. Hydrodynamical model of anisotropic, polarized turbulent superfluids. I: constraints for the fluxes

    Science.gov (United States)

    Mongiovì, Maria Stella; Restuccia, Liliana

    2018-02-01

    This work is the first of a series of papers devoted to the study of the influence of the anisotropy and polarization of the tangle of quantized vortex lines in superfluid turbulence. A thermodynamical model of inhomogeneous superfluid turbulence previously formulated is here extended, to take into consideration also these effects. The model chooses as thermodynamic state vector the density, the velocity, the energy density, the heat flux, and a complete vorticity tensor field, including its symmetric traceless part and its antisymmetric part. The relations which constrain the constitutive quantities are deduced from the second principle of thermodynamics using the Liu procedure. The results show that the presence of anisotropy and polarization in the vortex tangle affects in a substantial way the dynamics of the heat flux, and allow us to give a physical interpretation of the vorticity tensor here introduced, and to better describe the internal structure of a turbulent superfluid.

  15. Performance of InGaAs short wave infrared avalanche photodetector for low flux imaging

    Science.gov (United States)

    Singh, Anand; Pal, Ravinder

    2017-11-01

    Opto-electronic performance of the InGaAs/i-InGaAs/InP short wavelength infrared focal plane array suitable for high resolution imaging under low flux conditions and ranging is presented. More than 85% quantum efficiency is achieved in the optimized detector structure. Isotropic nature of the wet etching process poses a challenge in maintaining the required control in the small pitch high density detector array. Etching process is developed to achieve low dark current density of 1 nA/cm2 in the detector array with 25 µm pitch at 298 K. Noise equivalent photon performance less than one is achievable showing single photon detection capability. The reported photodiode with low photon flux is suitable for active cum passive imaging, optical information processing and quantum computing applications.

  16. High-flux first-wall design for a small reversed-field pinch reactor

    Science.gov (United States)

    Cort, G. E.; Graham, A. L.; Christensen, K. E.

    To achieve the goal of a commercially economical fusion power reactor, small physical size and high power density should be combined with simplicity (minimized use of high technology systems). The Reversed-Field Pinch (RFP) is a magnetic confinement device that promises to meet these requirements with power densities comparable to those in existing fission power plants. To establish feasibility of such an RFP reactor, a practical design for a first wall capable of withstanding high levels of cyclic neutron wall loadings is needed. Associated with the neutron flux in the proposed RFP reactor is a time averaged heat flux of 4.5 MW/sq m with a conservatively estimated transient peak approximately twice the average value. The design for a modular first wall made from a high-strength copper alloy that will meet these requirements of cyclic thermal loading is presented. The heat removal from the wall is by subcooled water flowing in straight tubes at high linear velocities.

  17. Magnetic flux penetration into finite length thin-walled niobium cylinders

    Science.gov (United States)

    Tsindlekht, M. I.; Genkin, V. M.; Felner, I.; Zeides, F.; Katz, N.; Gazi, Š.; Chromik, Š.; Kolăcek, J.; Maryško, M.

    2018-02-01

    The distribution of magnetic field in a finite thin-walled Nb superconducting cylinder in an axial magnetic field is analyzed. Both current density and magnetic field exhibit strong maximum in the cylinder edges. This triggers a giant flux jump in the hollow cylinder when a slowly increasing external magnetic field reaches a threshold value. Experimentally measured flux jumps were observed in a wide range of external fields, even below Hc1 of the Nb film. The field at which the jumps appear is temperature dependent. It was found that with increasing the wall thickness the singularity of the current density and magnetic field on the edges decreases, which explains the absence of giant jumps in a sample with thick walls in fields below Hc1.

  18. Mass invariance of population nitrogen flux by terrestrial mammalian herbivores: an extension of the energetic equivalence rule.

    Science.gov (United States)

    Habeck, Christopher W; Meehan, Timothy D

    2008-09-01

    According to the energetic equivalence rule, energy use by a population is independent of average adult body mass. Energy use can be equated with carbon flux, and it has been suggested that population fluxes of other materials, such as nitrogen and phosphorus, might also be independent of body mass. We compiled data on individual nitrogen deposition rates (via faeces and urine) and average population densities of 26 species of mammalian herbivores to test the hypothesis of elemental equivalence for nitrogen. We found that the mass scaling of individual nitrogen flux was opposite to that of population density for the species in our dataset. By computing the product of individual nitrogen flux and average population density for each species in our dataset, we found that population-level nitrogen flux was independent of species mass, averaging c. 3.22 g N ha(-1) day(-1). Results from this analysis can be used to understand the influence of mammalian herbivore communities on nitrogen cycling in terrestrial ecosystems.

  19. TropFlux: air-sea fluxes for the global tropical oceans-description and evaluation

    Digital Repository Service at National Institute of Oceanography (India)

    PraveenKumar, B.; Vialard, J.; Lengaigne, M.; Murty, V.S.N.; McPhaden, M.J.

    This paper evaluates several timely, daily air-sea heat flux products (NCEP, NCEP2, ERA-Interim and OAFlux/ISCCP) against observations and present the newly developed TropFlux product. This new product uses bias-corrected ERA-interim and ISCCP data...

  20. About Merging Threshold and Critical Flux Concepts into a Single One: The Boundary Flux

    Directory of Open Access Journals (Sweden)

    Marco Stoller

    2014-01-01

    Full Text Available In the last decades much effort was put in understanding fouling phenomena on membranes. One successful approach to describe fouling issues on membranes is the critical flux theory. The possibility to measure a maximum value of the permeate flux for a given system without incurring in fouling issues was a breakthrough in membrane process design. However, in many cases critical fluxes were found to be very low, lower than the economic feasibility of the process. The knowledge of the critical flux value must be therefore considered as a good starting point for process design. In the last years, a new concept was introduced, the threshold flux, which defines the maximum permeate flow rate characterized by a low constant fouling rate regime. This concept, more than the critical flux, is a new practical tool for membrane process designers. In this paper a brief review on critical and threshold flux will be reported and analyzed. And since the concepts share many common aspects, merged into a new concept, called the boundary flux, the validation will occur by the analysis of previously collected data by the authors, during the treatment of olive vegetation wastewater by ultrafiltration and nanofiltration membranes.

  1. Estimating biological elementary flux modes that decompose a flux distribution by the minimal branching property

    DEFF Research Database (Denmark)

    Chan, Siu Hung Joshua; Solem, Christian; Jensen, Peter Ruhdal

    2014-01-01

    MOTIVATION: Elementary flux mode (EFM) is a useful tool in constraint-based modeling of metabolic networks. The property that every flux distribution can be decomposed as a weighted sum of EFMs allows certain applications of EFMs to studying flux distributions. The existence of biologically infea...... knowledge, which facilitates interpretation. Comparison of the methods applied to a complex flux distribution in Lactococcus lactis similarly showed the advantages of MBD. The minimal branching EFM concept underlying MBD should be useful in other applications.......MOTIVATION: Elementary flux mode (EFM) is a useful tool in constraint-based modeling of metabolic networks. The property that every flux distribution can be decomposed as a weighted sum of EFMs allows certain applications of EFMs to studying flux distributions. The existence of biologically......, i.e. minimal branching. RESULTS: We developed the concept of minimal branching EFM and derived the minimal branching decomposition (MBD) to decompose flux distributions. Testing in the core Escherichia coli metabolic network indicated that MBD can distinguish branches at branch points and greatly...

  2. About merging threshold and critical flux concepts into a single one: the boundary flux.

    Science.gov (United States)

    Stoller, Marco; Ochando-Pulido, Javier M

    2014-01-01

    In the last decades much effort was put in understanding fouling phenomena on membranes. One successful approach to describe fouling issues on membranes is the critical flux theory. The possibility to measure a maximum value of the permeate flux for a given system without incurring in fouling issues was a breakthrough in membrane process design. However, in many cases critical fluxes were found to be very low, lower than the economic feasibility of the process. The knowledge of the critical flux value must be therefore considered as a good starting point for process design. In the last years, a new concept was introduced, the threshold flux, which defines the maximum permeate flow rate characterized by a low constant fouling rate regime. This concept, more than the critical flux, is a new practical tool for membrane process designers. In this paper a brief review on critical and threshold flux will be reported and analyzed. And since the concepts share many common aspects, merged into a new concept, called the boundary flux, the validation will occur by the analysis of previously collected data by the authors, during the treatment of olive vegetation wastewater by ultrafiltration and nanofiltration membranes.

  3. Soil greenhouse gases fluxes in forest - fallow succession at the Central Forest Reserve in European Russia

    Science.gov (United States)

    Komarova, Tatiana; Vasenev, Ivan

    2017-04-01

    One of the principal factors influencing the current level of the greenhouse fluxes are land-use changes, including the forest restoration in fallow lands, which is widespread at the Central Region of Russia. The comprehensive environmental studies of soil greenhouse fluxes have been done in comparable sites with different stages of the forest-fallow successions in the southern part of the Central Forest Reserve with spruce domination in the mature forest - representative southern-taiga ecosystems. Seasonal and diurnal dynamics CO2 fluxes measurements were carried out in situ using a mobile gas analyzer Li-820 with soil exposure chambers and parallel observation of air temperature, soil temperature and moisture. Also, every ten days the soil air has been sampled in the vials for further CO2, CH4 and N2O flux measurements by the stationary gas chromatograph. Within forest-fallow successions there are shown the litter gradual development, humus-accumulative horizon differentiation, soil acidity and bulk density increasing. At the same time there is enough obvious in the down part of past-arable horizon gradual restoration of the podzolic horizon. The monitoring results have shown the essential decreasing of soil CO2 fluxes (in 2 times) in frame of successions. The maximum CO2 fluxes have been fixed in July with optimal soil temperature/moisture ratio. In the middle of July the maximum CO2 emission is observed in fallow grassland (34,1 g CO2 / m2day), that is almost in 2-times more than in spruce-forest after fallow stage of 120-150 years. It is important that soil CO2 fluxes essentially increase with soil temperature rise (with up to R = 0,75) and drop soil moisture (with up to R = - 0,66). During the day, the most intense soil CO2 fluxes have been observed from case of 12:00 to 18:00. The maximum CO2 flux has been recorded at 15:00 in the fallow grassland (23 g CO2 / m2 day). In the forest-fallow stage of 10-15 years the maximum soil CO2 flux observed at 12 hours

  4. Determination of surface fluxes using a Bowen ratio system | Kakane ...

    African Journals Online (AJOL)

    Components of the surface fluxes of the energy balance equation were determined using a Campbell Bowen ratio system. ... Soil heat flux (Qg) was measured with ground heat flux plates and the change in energy storage of the layer of soil above the heat flux plates was computed using direct measurements of soil ...

  5. Neutron-diffraction investigations of flux-lines in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Forgan, E.M. [Birmingham Univ. (United Kingdom); Lee, S.L. [Saint Andrews Univ. (United Kingdom); McKPaul, D. [Warwick Univ., Coventry (United Kingdom); Mook, H.A. [Oak Ridge National Lab., TN (United States); Cubitt, R. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    SANS has proved an extremely useful tool for investigating flux-line structures within the bulk of superconductors. With high-T{sub c} materials, the scattered intensities are weak, but careful measurements are giving important new information about flux lattices, flux pinning and flux-lattice melting. (author). 10 refs.

  6. Eddy covariance based methane flux in Sundarbans mangroves, India

    Indian Academy of Sciences (India)

    Eddy covariance based methane flux in Sundarbans mangroves, India ... Eddy covariance; mangrove forests; methane flux; Sundarbans. ... In order to quantify the methane flux in mangroves, an eddy covariance flux tower was recently erected in the largest unpolluted and undisturbed mangrove ecosystem in Sundarbans ...

  7. Generating energy dependent neutron flux maps for effective ...

    African Journals Online (AJOL)

    For activation analysis and irradiation scheme of miniature neutron source reactor, designers or engineers usually require information on thermal neutron flux levels and other energy group flux levels (such as fast, resonance and epithermal). A methodology for readily generating such flux maps and flux profiles for any ...

  8. Quantal density functional theory

    CERN Document Server

    Sahni, Viraht

    2016-01-01

    This book deals with quantal density functional theory (QDFT) which is a time-dependent local effective potential theory of the electronic structure of matter. The treated time-independent QDFT constitutes a special case. In the 2nd edition, the theory is extended to include the presence of external magnetostatic fields. The theory is a description of matter based on the ‘quantal Newtonian’ first and second laws which is in terms of “classical” fields that pervade all space, and their quantal sources. The fields, which are explicitly defined, are separately representative of electron correlations due to the Pauli exclusion principle, Coulomb repulsion, correlation-kinetic, correlation-current-density, and correlation-magnetic effects. The book further describes Schrödinger theory from the new physical perspective of fields and quantal sources. It also describes traditional Hohenberg-Kohn-Sham DFT, and explains via QDFT the physics underlying the various energy functionals and functional derivatives o...

  9. Standardized Automated CO2/H2O Flux Systems for Individual Research Groups and Flux Networks

    Science.gov (United States)

    Burba, George; Begashaw, Israel; Fratini, Gerardo; Griessbaum, Frank; Kathilankal, James; Xu, Liukang; Franz, Daniela; Joseph, Everette; Larmanou, Eric; Miller, Scott; Papale, Dario; Sabbatini, Simone; Sachs, Torsten; Sakai, Ricardo; McDermitt, Dayle

    2017-04-01

    In recent years, spatial and temporal flux data coverage improved significantly, and on multiple scales, from a single station to continental networks, due to standardization, automation, and management of data collection, and better handling of the extensive amounts of generated data. With more stations and networks, larger data flows from each station, and smaller operating budgets, modern tools are required to effectively and efficiently handle the entire process. Such tools are needed to maximize time dedicated to authoring publications and answering research questions, and to minimize time and expenses spent on data acquisition, processing, and quality control. Thus, these tools should produce standardized verifiable datasets and provide a way to cross-share the standardized data with external collaborators to leverage available funding, promote data analyses and publications. LI-COR gas analyzers are widely used in past and present flux networks such as AmeriFlux, ICOS, AsiaFlux, OzFlux, NEON, CarboEurope, and FluxNet-Canada, etc. These analyzers have gone through several major improvements over the past 30 years. However, in 2016, a three-prong development was completed to create an automated flux system which can accept multiple sonic anemometer and datalogger models, compute final and complete fluxes on-site, merge final fluxes with supporting weather soil and radiation data, monitor station outputs and send automated alerts to researchers, and allow secure sharing and cross-sharing of the station and data access. Two types of these research systems were developed: open-path (LI-7500RS) and enclosed-path (LI-7200RS). Key developments included: • Improvement of gas analyzer performance • Standardization and automation of final flux calculations onsite, and in real-time • Seamless integration with latest site management and data sharing tools In terms of the gas analyzer performance, the RS analyzers are based on established LI-7500/A and LI-7200

  10. Finite temperature fermion condensate, charge and current densities in a (2+1)-dimensional conical space

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Bezerra de Mello, E.R. [Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Braganca, E. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Saharian, A.A. [Yerevan State University, Department of Physics, Yerevan (Armenia)

    2016-06-15

    We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even function of the chemical potential. The behavior of the expectation values in various asymptotic regions of the parameters are discussed in detail. In particular, we show that for points near the cone apex the vacuum parts dominate. For a massless field with zero chemical potential the fermion condensate and charge density vanish. Simple expressions are derived for the part in the total charge induced by the planar angle deficit and magnetic flux. Combining the results for separate irreducible representations, we also consider the fermion condensate, charge and current densities in parity and time-reversal symmetric models. Possible applications to graphitic nanocones are discussed. (orig.)

  11. Airborne Crowd Density Estimation

    Science.gov (United States)

    Meynberg, O.; Kuschk, G.

    2013-10-01

    This paper proposes a new method for estimating human crowd densities from aerial imagery. Applications benefiting from an accurate crowd monitoring system are mainly found in the security sector. Normally crowd density estimation is done through in-situ camera systems mounted on high locations although this is not appropriate in case of very large crowds with thousands of people. Using airborne camera systems in these scenarios is a new research topic. Our method uses a preliminary filtering of the whole image space by suitable and fast interest point detection resulting in a number of image regions, possibly containing human crowds. Validation of these candidates is done by transforming the corresponding image patches into a low-dimensional and discriminative feature space and classifying the results using a support vector machine (SVM). The feature space is spanned by texture features computed by applying a Gabor filter bank with varying scale and orientation to the image patches. For evaluation, we use 5 different image datasets acquired by the 3K+ aerial camera system of the German Aerospace Center during real mass events like concerts or football games. To evaluate the robustness and generality of our method, these datasets are taken from different flight heights between 800 m and 1500 m above ground (keeping a fixed focal length) and varying daylight and shadow conditions. The results of our crowd density estimation are evaluated against a reference data set obtained by manually labeling tens of thousands individual persons in the corresponding datasets and show that our method is able to estimate human crowd densities in challenging realistic scenarios.

  12. Determination of depositional beryllium-10 fluxes in the area of the Laptev sea

    Energy Technology Data Exchange (ETDEWEB)

    Strobl, C.; Schulz, V.; Schaeper, S.; Molnar, M.; Baumann, S.; Mangini [Heidelberger Akademie der Wissenschaften, Heidelberg (Germany); Kubik, P.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A huge amount of continental {sup 10}Be is delivered to the Arctic Ocean through the rivers. Our investigations show that the most extensive part of it is deposited directly in the shelf areas. The determined sedimentation flux densities in the continental slope and in the Central Arctic Ocean are in the range of the assumed atmospheric input of {sup 10}Be and therefore clearly lower than in the shelf areas. (author) 1 fig., 2 refs.

  13. Photon flux requirements for EUV reticle imaging microscopy in the 22 and 16 nm nodes

    Energy Technology Data Exchange (ETDEWEB)

    Wintz, D.; Goldberg, K. A.; Mochi, I.; Huh, S.

    2010-03-12

    EUV-wavelength actinic microscopy yields detailed information about EUV mask patterns, architectures, defects, and the performance of defect repair strategies, without the complications of photoresist imaging. The measured aerial image intensity profiles provide valuable feedback to improve mask and lithography system modeling methods. In order to understand the photon-flux-dependent pattern measurement limits of EUV mask-imaging microscopy, we have investigated the effects of shot noise on aerial image linewidth measurements for lines in the 22 and 16-nm generations. Using a simple model of image formation near the resolution limit, we probe the influence of photon shot noise on the measured, apparent line roughness. With this methodology, we arrive at general flux density requirements independent of the specific EUV microscope configurations. Analytical and statistical analysis of aerial image simulations in the 22 and 16-nm generations reveal the trade-offs between photon energy density (controllable with exposure time), effective pixel dimension on the CCO (controlled by the microscope's magnification ratio), and image log slope (ILS). We find that shot-noise-induced linewidth roughness (LWR) varies imersely with the square root of the photon energy density, and is proportional to the imaging magnification ratio. While high magnification is necessary for adequate spatial resolution, for a given flux density, higher magnification ratios have diminishing benefits. With practical imaging parameters, we find that in order to achieve an LWR (3{sigma}) value of 5% of linewidth for dense, 88-nm mask features with 80% aerial image contrast and 13.5-nm effective pixel width (1000x magnification ratio), a peak photon flux of approximately 1400 photons per pixel per exposure is required.

  14. Freezing E3-brane instantons with fluxes

    CERN Document Server

    Bianchi, Massimo; Martucci, Luca

    2012-01-01

    E3-instantons that generate non-perturbative superpotentials in IIB N=1 compactifications are more frequent than currently believed. Worldvolume fluxes will typically lift the E3-brane geometric moduli and their fermionic superpartners, leaving only the two required universal fermionic zero-modes. We consistently incorporate SL(2, Z) monodromies and world-volume fluxes in the effective theory of the E3-brane fermions and study the resulting zero-mode spectrum, highlighting the relation between F-theory and perturbative IIB results. This leads us to a IIB derivation of the index for generation of superpotential terms, which reproduces and generalizes available results. Furthermore, we show how worldvolume fluxes can be explicitly constructed in a one-modulus compactification, such that an E3-instanton has exactly two fermonic zero-modes. This construction is readily applicable to numerous scenarios.

  15. CO2 fluxes near a forest edge

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Leclerc, Monique Y.; Zhang, Gensheng

    2008-01-01

    In contrast with recent advances on the dynamics of the flow at a forest edge, few studies have considered its role on scalar transport and, in particular, on CO2 transfer. The present study addresses the influence of the abrupt roughness change on forest atmosphere CO2 exchange and contrasts...... the concentration and flux fields against those of a uniform forested surface. We use an atmospheric boundary layer two-equation closure model that accounts for the flow dynamics and vertical divergence of CO2 sources/sinks within a plant canopy. This paper characterizes the spatial variation of CO2 fluxes...... as a function of both sources/sinks distribution and the vertical structure of the canopy. Results suggest that the ground source plays a major role in the formation of wave-like vertical CO2 flux behavior downwind of a forest edge, despite the fact that the contribution of foliage sources/sinks changes...

  16. Comic ray flux anisotropies caused by astrospheres

    Science.gov (United States)

    Scherer, K.; Strauss, R. D.; Ferreira, S. E. S.; Fichtner, H.

    2016-09-01

    Huge astrospheres or stellar wind bubbles influence the propagation of cosmic rays at energies up to the TeV range and can act as small-scale sinks decreasing the cosmic ray flux. We model such a sink (in 2D) by a sphere of radius 10 pc embedded within a sphere of a radius of 1 kpc. The cosmic ray flux is calculated by means of backward stochastic differential equations from an observer, which is located at r0, to the outer boundary. It turns out that such small-scale sinks can influence the cosmic ray flux at the observer's location by a few permille (i.e. a few 0.1%), which is in the range of the observations by IceCube, Milagro and other large area telescopes.

  17. Warped Kähler potentials and fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' ,Università di Padova & I.N.F.N. Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy)

    2017-01-13

    The four-dimensional effective theory for type IIB warped flux compactifications proposed in https://www.doi.org/10.1007/JHEP03(2015)067 is completed by taking into account the backreaction of the Kähler moduli on the three-form fluxes. The only required modification consists in a flux-dependent contribution to the chiral fields parametrising the Kähler moduli. The resulting supersymmetric effective theory satisfies the no-scale condition and consistently combines previous partial results present in the literature. Similar results hold for M-theory warped compactifications on Calabi-Yau fourfolds, whose effective field theory and Kähler potential are also discussed.

  18. Internal analysis of a transverse flux sensor

    Science.gov (United States)

    Voyant, J.-Yves; Yonnet, J.-Paul; Jay, Guillaume; Foucher, Christian

    2005-04-01

    Rotary variable differential transformer (RVDT) sensors are used for industrial applications and are appreciated for their frictionless operation, reliability, linearity and sensitivity. The sensor shown here derives from a classic RVDT and is based on a differential rotating transformer. The functioning principle is explained and experimental measurements are shown. The originality of the studied sensor lies in the transverse flux design which gives a linearity error less than 0.1% of the stroke. However, this transverse flux circulation has uncommon features for an electrotechnical system due to flux paths which are not enclosed in radial planes. Finite element and experimental analysis are used for the magnetic study. This study aims to enhance sensor performances and manufacturing easiness.

  19. Heat-Flux Gage thermophosphor system

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, K.W.

    1991-08-01

    This document describes the installation, hardware requirements, and application of the Heat-Flux Gage (Version 1.0) software package developed by the Oak Ridge National Laboratory, Applied Technology Division. The developed software is a single component of a thermographic phosphor-based temperature and heat-flux measurement system. The heat-flux transducer was developed by EG G Energy Measurements Systems and consists of a 1- by 1-in. polymethylpentene sheet coated on the front and back with a repeating thermographic phosphor pattern. The phosphor chosen for this application is gadolinium oxysulphide doped with terbium. This compound has a sensitive temperature response from 10 to 65.6{degree}C (50--150{degree}F) for the 415- and 490-nm spectral emission lines. 3 refs., 17 figs.

  20. Regulation of Na+ fluxes in plants

    Directory of Open Access Journals (Sweden)

    Frans eMaathuis

    2014-09-01

    Full Text Available When exposed to salt, every plant takes up Na+ from the environment. Once in the symplast, Na+ is distributed within cells and between different tissues and organs. There it can help to lower the cellular water potential but also exert potentially toxic effects. Control of Na+ fluxes is therefore crucial and indeed, research shows that the divergence between salt tolerant and salt sensitive plants is not due to a variation in transporter types but rather originates in the control of uptake and internal Na+ fluxes. A number of regulatory mechanisms has been identified based on signalling of Ca2+, cyclic nucleotides, reactive oxygen species, hormones, or on transcriptional and post translational changes of gene and protein expression. This review will give an overview of intra- and intercellular movement of Na+ in plants and will summarise our current ideas of how these fluxes are controlled and regulated in the early stages of salt stress.

  1. Evaluating Energy Flux in Vibrofluidized Granular Bed

    Directory of Open Access Journals (Sweden)

    N. A. Sheikh

    2013-01-01

    Full Text Available Granular flows require sustained input of energy for fluidization. A level of fluidization depends on the amount of heat flux provided to the flow. In general, the dissipation of the grains upon interaction balances the heat inputs and the resultant flow patterns can be described using hydrodynamic models. However, with the increase in packing fraction, the heat fluxes prediction of the cell increases. Here, a comparison is made for the proposed theoretical models against the MD simulations data. It is observed that the variation of packing fraction in the granular cell influences the heat flux at the base. For the elastic grain-base interaction, the predictions vary appreciably compared to MD simulations, suggesting the need to accurately model the velocity distribution of grains for averaging.

  2. Flux Analysis in Process Models via Causality

    Directory of Open Access Journals (Sweden)

    Ozan Kahramanoğulları

    2010-02-01

    Full Text Available We present an approach for flux analysis in process algebra models of biological systems. We perceive flux as the flow of resources in stochastic simulations. We resort to an established correspondence between event structures, a broadly recognised model of concurrency, and state transitions of process models, seen as Petri nets. We show that we can this way extract the causal resource dependencies in simulations between individual state transitions as partial orders of events. We propose transformations on the partial orders that provide means for further analysis, and introduce a software tool, which implements these ideas. By means of an example of a published model of the Rho GTP-binding proteins, we argue that this approach can provide the substitute for flux analysis techniques on ordinary differential equation models within the stochastic setting of process algebras.

  3. From Hubble's NGSL to Absolute Fluxes

    Science.gov (United States)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  4. Contingent kernel density estimation.

    Directory of Open Access Journals (Sweden)

    Scott Fortmann-Roe

    Full Text Available Kernel density estimation is a widely used method for estimating a distribution based on a sample of points drawn from that distribution. Generally, in practice some form of error contaminates the sample of observed points. Such error can be the result of imprecise measurements or observation bias. Often this error is negligible and may be disregarded in analysis. In cases where the error is non-negligible, estimation methods should be adjusted to reduce resulting bias. Several modifications of kernel density estimation have been developed to address specific forms of errors. One form of error that has not yet been addressed is the case where observations are nominally placed at the centers of areas from which the points are assumed to have been drawn, where these areas are of varying sizes. In this scenario, the bias arises because the size of the error can vary among points and some subset of points can be known to have smaller error than another subset or the form of the error may change among points. This paper proposes a "contingent kernel density estimation" technique to address this form of error. This new technique adjusts the standard kernel on a point-by-point basis in an adaptive response to changing structure and magnitude of error. In this paper, equations for our contingent kernel technique are derived, the technique is validated using numerical simulations, and an example using the geographic locations of social networking users is worked to demonstrate the utility of the method.

  5. Wave function properties of a single and a system of magnetic flux tube(s) oscillations

    Science.gov (United States)

    Esmaeili, Shahriar; Nasiri, Mojtaba; Dadashi, Neda; Safari, Hossein

    2016-10-01

    In this study, the properties of wave functions of the MHD oscillations for a single and a system of straight flux tubes are investigated. Magnetic flux tubes with a straight magnetic field and longitudinal density stratification were considered in zero-β approximation. A single three-dimensional wave equation (eigenvalue problem) is solved for longitudinal component of the perturbed magnetic field using the finite element method. Wave functions (eigenfunction of wave equation) of the MHD oscillations are categorized into sausage, kink, helical kink, and fluting modes. Exact recognition of the wave functions and the frequencies of oscillations can be used in coronal seismology and also helps to the future high-resolution instruments that would be designed for studying the properties of the solar loop oscillations in details. The properties of collective oscillations of nonidentical and identical system of flux tubes and their interactions are studied. The ratios of frequencies, the oscillation frequencies of a system of flux tubes to their equivalent monolithic tube (ω sys/ω mono), are obtained between 0.748 and 0.841 for a system of nonidentical tubes, whereas the related ratios of frequencies for a system of identical flux tubes are fluctuated around 0.761.

  6. Soil CO{sub 2} flux from three ecosystems in tropical peatland of Sarawak, Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Melling, Lulie; Hatano, Ryusuke [Graduate School of Agriculture, Hokkaido Univ., Sapporo (Japan). Soil Science Laboratory; Goh, Kah Joo [Applied Agricultural Research Sdn Bhd, Selangor (Malaysia)

    2005-02-01

    Soil CO{sub 2} flux was measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The soil CO{sub 2} flux ranged from 100 to 533 mg C/m{sup 2}/h for the forest ecosystem, 63 to 245 mg C/m{sup 2}/h for the sago and 46 to 335 mg C/m{sup 2}/h for the oil palm. Based on principal component analysis (PCA), the environmental variables over all sites could be classified into three components, namely, climate, soil moisture and soil bulk density, which accounted for 86% of the seasonal variability. A regression tree approach showed that CO{sub 2} flux in each ecosystem was related to different underlying environmental factors. They were relative humidity for forest, soil temperature at 5 cm for sago and water-filled pore space for oil palm. On an annual basis, the soil CO{sub 2} flux was highest in the forest ecosystem with an estimated production of 2.1 kg C/m{sup 2}/yr followed by oil palm at 1.5 kg C/m{sup 2}/yr and sago at 1.1 kg C/m{sup 2}/yr. The different dominant controlling factors in CO{sub 2} flux among the studied ecosystems suggested that land use affected the exchange of CO{sub 2} between tropical peatland and the atmosphere.

  7. Diffusive summer methane flux from lakes to the atmosphere in the Alaskan arctic zone

    Science.gov (United States)

    Sasaki, Masafumi; Kim, Yong-Won; Uchida, Masao; Utsumi, Motoo

    2016-09-01

    Dissolved methane concentrations (DM) in thirty lakes along Dalton Highway were measured in the open water season in 2008 and in 2012 to estimate diffusive flux from lake surfaces and to verify the enhancive effect of thawing permafrost on flux in the Alaskan arctic zone. An inverse relationship between lake size and DM was obtained in lakes in the regions as was found for European boreal lakes. There was no evidence indicating an effect of thawing permafrost on DM in these lakes. DM in lakes in the taiga region, however, were higher than those in the tundra region. All lake images on a map larger than 0.001 km2 were analyzed, and the area and number distributions were obtained in order to calculate regional mass fluxes of diffusive methane. The total area of all lakes (339,733) in the Alaskan Arctic zone (northern region from 64.00°N) is 25.5 × 103 km2. Regional summer diffusive flux of methane from lakes in the Alaskan arctic zone was estimated to be 22 Gg CH4 yr-1. Average diffusive flux density (per lake area) was 0.86 g CH4 m-2 yr-1, which is similar to that in European boreal lakes.

  8. Plant traits as predictor of ecosystem carbon fluxes - a case study across European grasslands

    Science.gov (United States)

    Klumpp, Katja; Bahn, Michael; Acosta, Manuel; Altimir, Nuria; Gimeno, Cristina; Jongen, Marjan; Merbold, Lutz; Moors, Eddy; Pinter, Kistina; Darsonville, Olivier

    2015-04-01

    Predicting ecosystem responses to global change has become a major challenge, particularly as terrestrial ecosystems contribute to the mitigation of global climate change through carbon sequestration. Plant traits are major surrogates of ecosystem physiology may thus help to predict carbon (C) fluxes and their consequences for the delivery of ecosystem services (e.g. C sequestration) across climatic gradients and in changing environments. However, linkages between community abundance-weighted means (CWM) of plant functional traits and ecosystem C fluxes have rarely been tested. It is also not known to what degree traits, which are typically measured at a defined point in time, are suitable for predicting annual C fluxes. We analysed the relationships between ecosystem fluxes and community level plant traits for 13 European grasslands under contrasting climate and management regimes, using multiyear eddy covariance data. Plant traits (specific leaf area SLA, leaf dry matter content LDMC, specific root length SLR) were determined at peak biomass. Analyses showed that GPPmax (at maximum radiation) was related to SLA, SRL and LDMC across sites and management, where GPPmax was an excellent indicator for annual GPP. Similar relations were found between for root density (and -diameter) and ecosystem respiration. Ecosystems respiration at GPPmax was also in line with annual respiration, indicating the strong predictive potential of plant community traits. Our study therefore suggests that above- and belowground community level plant traits are well suited surrogates for predicting ecosystem C fluxes at peak biomass and at annual scale.

  9. Density measures and additive property

    OpenAIRE

    Kunisada, Ryoichi

    2015-01-01

    We deal with finitely additive measures defined on all subsets of natural numbers which extend the asymptotic density (density measures). We consider a class of density measures which are constructed from free ultrafilters on natural numbers and study a certain additivity property of such density measures.

  10. Toward a Redefinition of Density

    Science.gov (United States)

    Rapoport, Amos

    1975-01-01

    This paper suggests that in addition to the recent work indicating that crowding is a subjective phenomenon, an adequate definition of density must also include a subjective component since density is a complex phenomenon in itself. Included is a discussion of both physical density and perceived density. (Author/MA)

  11. Sustained Magnetorotational Turbulence in Local Simulations of Stratified Disks with Zero Net Magnetic Flux

    DEFF Research Database (Denmark)

    W. Davis, S.; M. Stone, J.; Pessah, Martin Elias

    2010-01-01

    We examine the effects of density stratification on magnetohydrodynamic turbulence driven by the magnetorotational instability in local simulations that adopt the shearing box approximation. Our primary result is that, even in the absence of explicit dissipation, the addition of vertical gravity...... leads to convergence in the turbulent energy densities and stresses as the resolution increases, contrary to results for zero net flux, unstratified boxes. The ratio of total stress to midplane pressure has a mean of ~0.01, although there can be significant fluctuations on long (>~50 orbit) timescales...

  12. Homoepitaxial growth of GaN crystals by Na-flux dipping method

    Science.gov (United States)

    Sato, Taro; Nakamura, Koshi; Imanishi, Masayuki; Murakami, Kosuke; Imabayashi, Hiroki; Takazawa, Hideo; Todoroki, Yuma; Matsuo, Daisuke; Imade, Mamoru; Maruyama, Mihoko; Yoshimura, Masashi; Mori, Yusuke

    2015-10-01

    The realization of low-dislocation-density bulk GaN crystals is necessary for use in the fabrication of future high-power devices with low power consumption. In this study, we attempted the regrowth of low-dislocation-density (104-105 cm-2) GaN substrates to fabricate thick and low-dislocation-density GaN crystals using the dipping technique with the Na-flux method. In the growth using this dipping technique, the generation of dislocations at the interface between the GaN substrate and the regrowth layer was prevented, and we succeeded in fabricating thick and low-dislocation-density GaN crystals. In the growth without the dipping technique, the surface of the GaN substrate demonstrated meltback immediately before the growth, and dislocations were newly generated. These results indicate that the Na-flux dipping technique has potential use for the fabrication of low-dislocation-density bulk GaN crystals.

  13. Cotunneling in pairs of coupled flux qubits

    Science.gov (United States)

    Lanting, T.; Harris, R.; Johansson, J.; Amin, M. H. S.; Berkley, A. J.; Gildert, S.; Johnson, M. W.; Bunyk, P.; Tolkacheva, E.; Ladizinsky, E.; Ladizinsky, N.; Oh, T.; Perminov, I.; Chapple, E. M.; Enderud, C.; Rich, C.; Wilson, B.; Thom, M. C.; Uchaikin, S.; Rose, G.

    2010-08-01

    We report measurements of macroscopic resonant tunneling between the two lowest energy states of a pair of magnetically coupled rf-superconducting quantum interference device flux qubits. This technique provides both a direct means of measuring the energy gap of the two-qubit system and a method for probing of the environment coupled to the pair of qubits. Measurements of the tunneling rate as a function of qubit flux bias show a Gaussian line shape that is well matched to theoretical predictions. Moreover, the peak widths indicate that each qubit is coupled to a local environment whose fluctuations are uncorrelated with that of the other qubit.

  14. High-flux cellulose acetate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Boeddeker, K.W.; Finken, H.; Wenzlaff, A.

    1981-01-01

    Three routes to increase the permeate flux of asymmetric cellulose diacetate membranes of the Loeb-Sourirajan type are investigated: increasing the hydrophilicity of the membranes; increasing their compaction stability; employing a swelling agent which allows for higher solvent-to-polymer ratio in the casting solution. The effect of casting solution composition on flux and rejection of formamide-modified cellulose acetate membranes is shown in Figure 1, illustrating the general capability of this membrane type as function of solvent concentration. Membranes of casting solution composition cellulose diacetate/acetone/formamide 23/52/25 (solvent-to-polymer ratio 2.26) were used as reference membranes in this work.

  15. High-flux cellulose acetate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Boeddeker, K.W.; Finken, H.; Wenzlaff, A.

    1981-01-01

    Three routes to increase the permeate flux of asymmetric cellulose diacetate membranes of the Loeb-Sourirajan type were investigated: increasing the hydrophilicity of the membranes; increasing their compaction stability, and employing a swelling agent which allows for higher solvent-to-polymer ratio in the casting solution. The effect of casting solution composition on flux and rejection of formamide-modified cellulose acetate membrane is included, illustrating the general capability of this membrane type as function of solvent concentration. Membranes of casting solution composition cellulose diacetate/acetone/formamide 23/52/25 were used as reference membranes in the work. 6 figures. (DP)

  16. Martian ionosphere observed by Mars Express. 2. Influence of solar irradiance on upper ionosphere and escape fluxes

    Science.gov (United States)

    Dubinin, E.; Fraenz, M.; Pätzold, M.; Andrews, D.; Vaisberg, O.; Zelenyi, L.; Barabash, S.

    2017-10-01

    We present multi-instrument observations of the effects of solar irradiance on the upper Martian ionosphere and escape fluxes based on Mars Express measurements obtained over almost 12 years. It is shown that the variations in the upper ionosphere caused by solar irradiance lead to significant changes in the trans-terminator fluxes of low-energy ions and total ion losses through the tail. The observed dependence of the electron number density in the upper ionosphere at altitudes above 300 km on solar irradiance implies that the ionosphere at such altitudes was denser by a factor of ten during the periods of solar maxima in solar cycles 22-23. Correspondingly, the trans-terminator fluxes of cold ions and escape fluxes through the tail were also significantly higher. We estimate an increase of total ion losses through the tail during these solar maxima by a factor of 5-6.

  17. Testing an inversion method for estimating electron energy fluxes from all-sky camera images

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2004-06-01

    Full Text Available An inversion method for reconstructing the precipitating electron energy flux from a set of multi-wavelength digital all-sky camera (ASC images has recently been developed by tomografia. Preliminary tests suggested that the inversion is able to reconstruct the position and energy characteristics of the aurora with reasonable accuracy. This study carries out a thorough testing of the method and a few improvements for its emission physics equations.

    We compared the precipitating electron energy fluxes as estimated by the inversion method to the energy flux data recorded by the Defense Meteorological Satellite Program (DMSP satellites during four passes over auroral structures. When the aurorae appear very close to the local zenith, the fluxes inverted from the blue (427.8nm filtered ASC images or blue and green line (557.7nm images together give the best agreement with the measured flux values. The fluxes inverted from green line images alone are clearly larger than the measured ones. Closer to the horizon the quality of the inversion results from blue images deteriorate to the level of the ones from green images. In addition to the satellite data, the precipitating electron energy fluxes were estimated from the electron density measurements by the EISCAT Svalbard Radar (ESR. These energy flux values were compared to the ones of the inversion method applied to over 100 ASC images recorded at the nearby ASC station in Longyearbyen. The energy fluxes deduced from these two types of data are in general of the same order of magnitude. In 35% of all of the blue and green image inversions the relative errors were less than 50% and in 90% of the blue and green image inversions less than 100%.

    This kind of systematic testing of the inversion method is the first step toward using all-sky camera images in the way in which global UV images have recently been used to estimate the energy fluxes. The

  18. Testing an inversion method for estimating electron energy fluxes from all-sky camera images

    Directory of Open Access Journals (Sweden)

    N. Partamies

    2004-06-01

    Full Text Available An inversion method for reconstructing the precipitating electron energy flux from a set of multi-wavelength digital all-sky camera (ASC images has recently been developed by tomografia. Preliminary tests suggested that the inversion is able to reconstruct the position and energy characteristics of the aurora with reasonable accuracy. This study carries out a thorough testing of the method and a few improvements for its emission physics equations. We compared the precipitating electron energy fluxes as estimated by the inversion method to the energy flux data recorded by the Defense Meteorological Satellite Program (DMSP satellites during four passes over auroral structures. When the aurorae appear very close to the local zenith, the fluxes inverted from the blue (427.8nm filtered ASC images or blue and green line (557.7nm images together give the best agreement with the measured flux values. The fluxes inverted from green line images alone are clearly larger than the measured ones. Closer to the horizon the quality of the inversion results from blue images deteriorate to the level of the ones from green images. In addition to the satellite data, the precipitating electron energy fluxes were estimated from the electron density measurements by the EISCAT Svalbard Radar (ESR. These energy flux values were compared to the ones of the inversion method applied to over 100 ASC images recorded at the nearby ASC station in Longyearbyen. The energy fluxes deduced from these two types of data are in general of the same order of magnitude. In 35% of all of the blue and green image inversions the relative errors were less than 50% and in 90% of the blue and green image inversions less than 100%. This kind of systematic testing of the inversion method is the first step toward using all-sky camera images in the way in which global UV images have recently been used to estimate the energy fluxes. The advantages of ASCs, compared to the space-born imagers, are

  19. Chemical erosion of carbon at ITER relevant plasma fluxes: Results from the linear plasma generator Pilot-PSI

    NARCIS (Netherlands)

    van Rooij, G. J.; Westerhout, J.; Brezinsek, S.; Rapp, J.

    2011-01-01

    The chemical erosion of carbon was investigated in the linear plasma device Pilot-PSI for ITER divertor relevant hydrogen plasma flux densities 10(23) < Gamma < 10(25) m(-2) s(-1). The erosion was analyzed in situ by optical emission spectroscopy and post mortem by surface

  20. Assessment of Spatial Representativeness of Eddy Covariance Flux Data from Flux Tower to Regional Grid

    Directory of Open Access Journals (Sweden)

    Hesong Wang

    2016-09-01

    Full Text Available Combining flux tower measurements with remote sensing or land surface models is generally regarded as an efficient method to scale up flux data from site to region. However, due to the heterogeneous nature of the vegetated land surface, the changing flux source areas and the mismatching between ground source areas and remote sensing grids, direct use of in-situ flux measurements can lead to major scaling bias if their spatial representativeness is unknown. Here, we calculate and assess the spatial representativeness of 15 flux sites across northern China in two aspects: first, examine how well a tower represents fluxes from the specific targeted vegetation type, which is called vegetation-type level; and, second, examine how representative is the flux tower footprint of the broader landscape or regional extents, which is called spatial-scale level. We select fraction of target vegetation type (FTVT and Normalized Difference Vegetation Index (NDVI as key indicators to calculate the spatial representativeness of 15 EC sites. Then, these sites were ranked into four grades based on FTVT or cluster analysis from high to low in order: (1 homogeneous; (2 representative; (3 acceptable; and (4 disturbed measurements. The results indicate that: (1 Footprint climatology for each site was mainly distributed in an irregular shape, had similar spatial pattern as spatial distribution of prevailing wind direction; (2 At vegetation-type level, the number of homogeneous, representative, acceptable and disturbed measurements is 8, 4, 1 and 2, respectively. The average FTVT was 0.83, grass and crop sites had greater representativeness than forest sites; (3 At spatial-scale level, flux sites with zonal vegetation had greater representativeness than non-zonal vegetation sites, and the scales were further divided into three sub-scales: (a in flux site scale, the average of absolute NDVI bias was 4.34%, the number of the above four grades is 9, 4, 1 and 1, respectively

  1. Integrated passive flux measurement in groundwater: design and performance of iFLUX samplers

    Science.gov (United States)

    Verreydt, Goedele; Razaei, Meisam; Meire, Patrick; Van Keer, Ilse; Bronders, Jan; Seuntjens, Piet

    2017-04-01

    The monitoring and management of soil and groundwater is a challenge. Current methods for the determination of movement or flux of pollution in groundwater use no direct measurements but only simulations based on concentration measurements and Darcy velocity estimations. This entails large uncertainties which cause remediation failures and higher costs for contaminated site owners. On top of that, the lack of useful data makes it difficult to get approval for a risk-based management approach which completely avoids costly remedial actions. The iFLUX technology is a key development of Dr. Goedele Verreydt at the University of Antwerp and VITO. It is supported by the passive flux measurement technology as invented by Prof. Mike Annable and his team at the University of Florida. The iFLUX technology includes an in situ measurement device for capturing dynamic groundwater quality and quantity, the iFLUX sampler, and an associated interpretation and visualization method. The iFLUX sampler is a modular passive sampler that provides simultaneous in situ point determinations of a time-averaged target compound mass flux and water flux. The sampler is typically installed in a monitoring well where it intercepts the groundwater flow and captures the compounds of interest. The sampler consists of permeable cartridges which are each packed with a specific sorbent matrix. The sorbent matrix of the water flux cartridge is impregnated with known amounts of water soluble resident tracers. These tracers are leached from the matrix at rates proportional to the groundwater flux. The measurements of the contaminants and the remaining resident tracer are used to determine groundwater and target compound fluxes. Exposure times range from 1 week to 6 months, depending on the expected concentration and groundwater flow velocity. The iFLUX sampler technology has been validated and tested at several field projects. Currently, 4 cartridges are tested and available: 1 waterflux cartridge to

  2. Effect of chemical degradation on fluxes of reactive compounds – a study with a stochastic Lagrangian transport model

    Directory of Open Access Journals (Sweden)

    J. Rinne

    2012-06-01

    Full Text Available In the analyses of VOC fluxes measured above plant canopies, one usually assumes the flux above canopy to equal the exchange at the surface. Thus one assumes the chemical degradation to be much slower than the turbulent transport. We used a stochastic Lagrangian transport model in which the chemical degradation was described as first order decay in order to study the effect of the chemical degradation on above canopy fluxes of chemically reactive species. With the model we explored the sensitivity of the ratio of the above canopy flux to the surface emission on several parameters such as chemical lifetime of the compound, friction velocity, stability, and canopy density. Our results show that friction velocity and chemical lifetime affected the loss during transport the most. The canopy density had a significant effect if the chemically reactive compound was emitted from the forest floor. We used the results of the simulations together with oxidant data measured during HUMPPA-COPEC-2010 campaign at a Scots pine site to estimate the effect of the chemistry on fluxes of three typical biogenic VOCs, isoprene, α-pinene, and β-caryophyllene. Of these, the chemical degradation had a major effect on the fluxes of the most reactive species β-caryophyllene, while the fluxes of α-pinene were affected during nighttime. For these two compounds representing the mono- and sesquiterpenes groups, the effect of chemical degradation had also a significant diurnal cycle with the highest chemical loss at night. The different day and night time loss terms need to be accounted for, when measured fluxes of reactive compounds are used to reveal relations between primary emission and environmental parameters.

  3. Density Distribution Sunflower Plots

    Directory of Open Access Journals (Sweden)

    William D. Dupont

    2003-01-01

    Full Text Available Density distribution sunflower plots are used to display high-density bivariate data. They are useful for data where a conventional scatter plot is difficult to read due to overstriking of the plot symbol. The x-y plane is subdivided into a lattice of regular hexagonal bins of width w specified by the user. The user also specifies the values of l, d, and k that affect the plot as follows. Individual observations are plotted when there are less than l observations per bin as in a conventional scatter plot. Each bin with from l to d observations contains a light sunflower. Other bins contain a dark sunflower. In a light sunflower each petal represents one observation. In a dark sunflower, each petal represents k observations. (A dark sunflower with p petals represents between /2-pk k and /2+pk k observations. The user can control the sizes and colors of the sunflowers. By selecting appropriate colors and sizes for the light and dark sunflowers, plots can be obtained that give both the overall sense of the data density distribution as well as the number of data points in any given region. The use of this graphic is illustrated with data from the Framingham Heart Study. A documented Stata program, called sunflower, is available to draw these graphs. It can be downloaded from the Statistical Software Components archive at http://ideas.repec.org/c/boc/bocode/s430201.html . (Journal of Statistical Software 2003; 8 (3: 1-5. Posted at http://www.jstatsoft.org/index.php?vol=8 .

  4. Large density amplification measured on jets ejected from a magnetized plasma gun

    OpenAIRE

    Yun, Gunsu S.; You, Setthivoine; Bellan, Paul M.

    2007-01-01

    Observation of a large density amplification in the collimating plasma jet ejected from a coplanar coaxial plasma gun is reported. The jet velocity is ~30 km s^-1 and the electron density increases from ~10^20 to 10^(22–23) m^-3. In previous spheromak experiments, electron density of the order 10^(19–21) m^-3 had been measured in the flux conserver region, but no density measurement had been reported for the source gun region. The coplanar geometry of our electrodes permits direct observation...

  5. High heat flux single phase heat exchanger

    Science.gov (United States)

    Valenzuela, Javier A.; Izenson, Michael G.

    1990-01-01

    This paper presents the results obtained to date in a program to develop a high heat flux, single-phase heat exchanger for spacecraft thermal management. The intended application is a net generation interface heat exchanger to couple the crew module water thermal bus to the two-phase ammonia main thermal bus in the Space Station Freedom. The large size of the interface heat exchanger is dictated by the relatively poor water-side heat transfer characteristics. The objective of this program is to develop a single-phase heat transfer approach which can achieve heat fluxes and heat transfer coefficients comparable to those of the evaporation ammonia side. A new heat exchanger concept has been developed to meet these objecties. The main feature of this heat exchanger is that it can achieve very high heat fluxes with a pressure drop one to two orders of magnitude lower than those of previous microchannel or jet impingement high heat flux heat exchangers. This paper describes proof-of-concept experiments performed in air and water and presents analytical model of the heat exchanger.

  6. Demystifying Electric Flux and Gauss's Law

    Science.gov (United States)

    McManus, Jeff

    2017-01-01

    Many physics students have experienced the difficulty of internalizing concepts in electrostatics. After studying concrete, measurable details in mechanics, they are challenged by abstract ideas such as electric fields, flux, Gauss's law, and electric potential. There are a few well-known hands-on activities that help students get experience with…

  7. Exponentially tapered Josephson flux-flow oscillator

    DEFF Research Database (Denmark)

    Benabdallah, A.; Caputo, J. G.; Scott, Alwyn C.

    1996-01-01

    We introduce an exponentially tapered Josephson flux-flow oscillator that is tuned by applying a bias current to the larger end of the junction. Numerical and analytical studies show that above a threshold level of bias current the static solution becomes unstable and gives rise to a train of flu...

  8. Fast flux test facility hazards assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, L.N.

    1994-10-24

    This document establishes the technical basis in support of Emergency Planning Activities for the Fast Flux Test Facility on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE Order 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  9. Optimal flux patterns in cellular metabolic networks

    Energy Technology Data Exchange (ETDEWEB)

    Almaas, E

    2007-01-20

    The availability of whole-cell level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30,000 random cellular environments. The distribution of reaction fluxes is heavy-tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations have relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reaction are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central-carbon metabolic pathways for the sample of random environments.

  10. On The Vibrational Flux in Bounded Atoms

    CERN Document Server

    Caturello, Naidel A M dos S

    2011-01-01

    In this paper we derived a model based on general assumptions and allowed us to derive some important thermodynamic functions that are time-dependent, also we could see the behavior of these functions by surfaces. The model is based on independent movements that couple and construct a flux, which makes the system as a whole not to be independent at all.

  11. Predicting flux decline of reverse osmosis membranes

    NARCIS (Netherlands)

    Schippers, J.C.; Hanemaayer, J.H.; Smolders, C.A.; Kostense, A.

    1981-01-01

    A mathematical model predicting flux decline of reverse osmosis membranes due to colloidal fouling has been verified. This mathema- tical model is based on the theory of cake or gel filtration and the Modified Fouling Index (MFI). Research was conducted using artificial colloidal solutions and a

  12. Diameter effect on critical heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Tanase, A. [University of Ottawa, Department of Mechanical Engineering, Ottawa, ON (Canada)], E-mail: atana052@uottawa.ca; Cheng, S.C. [University of Ottawa, Department of Mechanical Engineering, Ottawa, ON (Canada); Groeneveld, D.C. [University of Ottawa, Department of Mechanical Engineering, Ottawa, ON (Canada); Chalk River Laboratories, Atomic Energy of Canada Ltd., Chalk River, ON (Canada); Shan, J.Q. [Department of Nuclear Engineering, Xi' an Jiaotong University (China)

    2009-02-15

    The critical heat flux look-up table (CHF LUT) is widely used to predict CHF for various applications, including design and safety analysis of nuclear reactors. Using the CHF LUT for round tubes having inside diameters different from the reference 8 mm involves conversion of CHF to 8 mm. Different authors [Becker, K.M., 1965. An Analytical and Experimental Study of Burnout Conditions in Vertical Round Ducts, Aktiebolaget Atomenergie Report AE 177, Sweden; Boltenko, E.A., et al., 1989. Effect of tube diameter on CHF at various two phase flow regimes, Report IPE-1989; Biasi, L., Clerici, G.C., Garriba, S., Sala, R., Tozzi, A., 1967. Studies on Burnout, Part 3, Energia Nucleare, vol. 14, pp. 530-536; Groeneveld, D.C., Cheng, S.C., Doan, T., 1986. AECL-UO critical heat flux look-up table. Heat Transfer Eng., 7, 46-62; Groeneveld et al., 1996; Hall, D.D., Mudawar, I., 2000. Critical heat flux for water flow in tubes - II subcooled CHF correlations. Int. J. Heat Mass Transfer, 43, 2605-2640; Wong, W.C., 1996. Effect of tube diameter on critical heat flux, MaSC dissertation, Ottawa Carleton Institute for Mechanical and Aeronautical Engineering, University of Ottawa] have proposed several types of correlations or factors to describe the diameter effect on CHF. The present work describes the derivation of new diameter correction factor and compares it with several existing prediction methods.

  13. Amazon peatlands: quantifying ecosytem's stocks, GHG fluxes and their microbial connections

    Science.gov (United States)

    Cadillo-Quiroz, Hinsby; Lähteenoja, Outi; Buessecker, Steffen; van Haren, Joost

    2017-04-01

    Reports of hundreds of peatlands across basins in the West and Central Amazon suggest they play an important, previously not considered regional role in organic carbon (OC) and GHG dynamics. Amazon peatlands store ˜3-6 Gt of OC in their waterlogged soils with strong potential for conversion and release of GHG, in fact our recent, and others', efforts have confirmed variable levels of GHG emissions (CO2, N2O, CH4), as well as variable microbial communities across rich to poor soil peatlands. Here, we report early results of quantification of different components making up the aboveground C stocks, the rates and paths for GHG release, and microbial organisms occurring in three ecologically distinct peatland types in the Pastaza-Marañon region of the Peruvian Amazon. Evaluations were done in duplicated continuous monitoring plots established since 2015 at a "palm swamp" (PS), poor "pole forest" (pPF) and a rich "forested" (rF) peatlands. Although overall vegetation "structure" with a few dominant plus several low frequency species was common across the three sites, their botanical composition and tree density was highly contrasting. Aboveground C stocks content showed the following order among sites: rF>PS>pPF, and hence we tested whether this differences can have a direct effect on CH4 emissions rates. CH4 emissions rates from soils were observed in average at 11, 6, and 0.8 mg-C m-2 h-1for rF, PS, and pPF respectively. However, these estimated fluxes needed to be revised when we develop quantifications of CH4 emissions from tree stems. Tree stem fluxes were detected showing a broad variation with nearly nill emissions in some species all the way to maximum fluxes near to ˜90 mg-C m-2 h-1 in other species. Mauritia flexuosa, a highly dominant palm species in PS and ubiquitous to the region, showed the highest ranges of CH4 flux. In the PS site, overall CH4 flux estimate increased by ˜50% when including stem emission weighted by trees' species, density and heights

  14. Gluon density in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ayala, A.L. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica][Pelotas Univ., RS (Brazil). Inst. de Fisica e Matematica; Ducati, M.B.G. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Levin, E.M. [Fermi National Accelerator Lab., Batavia, IL (United States)][Nuclear Physics Inst., St. Petersburg (Russian Federation)

    1996-10-01

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.

  15. On holographic entanglement density

    Science.gov (United States)

    Gushterov, Nikola I.; O'Bannon, Andy; Rodgers, Ronnie

    2017-10-01

    We use holographic duality to study the entanglement entropy (EE) of Conformal Field Theories (CFTs) in various spacetime dimensions d, in the presence of various deformations: a relevant Lorentz scalar operator with constant source, a temperature T , a chemical potential μ, a marginal Lorentz scalar operator with source linear in a spatial coordinate, and a circle-compactified spatial direction. We consider EE between a strip or sphere sub-region and the rest of the system, and define the "entanglement density" (ED) as the change in EE due to the deformation, divided by the sub-region's volume. Using the deformed CFTs above, we show how the ED's dependence on the strip width or sphere radius, L, is useful for characterizing states of matter. For example, the ED's small- L behavior is determined either by the dimension of the perturbing operator or by the first law of EE. For Lorentz-invariant renormalization group (RG) flows between CFTs, the "area theorem" states that the coefficient of the EE's area law term must be larger in the UV than in the IR. In these cases the ED must therefore approach zero from below as L→∞. However, when Lorentz symmetry is broken and the IR fixed point has different scaling from the UV, we find that the ED often approaches the thermal entropy density from above, indicating area theorem violation.

  16. Mesoscopic fluctuations in biharmonically driven flux qubits

    Science.gov (United States)

    Ferrón, Alejandro; Domínguez, Daniel; Sánchez, María José

    2017-01-01

    We investigate flux qubits driven by a biharmonic magnetic signal, with a phase lag that acts as an effective time reversal broken parameter. The driving induced transition rate between the ground and the excited state of the flux qubit can be thought of as an effective transmittance, profiting from a direct analogy between interference effects at avoided level crossings and scattering events in disordered electronic systems. For time scales prior to full relaxation, but large compared to the decoherence time, this characteristic rate has been accessed experimentally by Gustavsson et al. [Phys. Rev. Lett. 110, 016603 (2013)], 10.1103/PhysRevLett.110.016603 and its sensitivity with both the phase lag and the dc flux detuning explored. In this way, signatures of universal conductance fluctuationslike effects have been analyzed and compared with predictions from a phenomenological model that only accounts for decoherence, as a classical noise. Here we go beyond the classical noise model and solve the full dynamics of the driven flux qubit in contact with a quantum bath employing the Floquet-Born-Markov master equation. Within this formalism, the computed relaxation and decoherence rates turn out to be strongly dependent on both the phase lag and the dc flux detuning. Consequently, the associated pattern of fluctuations in the characteristic rates display important differences with those obtained within the mentioned phenomenological model. In particular, we demonstrate the weak localizationlike effect in the average values of the relaxation rate. Our predictions can be tested for accessible but longer time scales than the current experimental times.

  17. MeV proton flux predictions near Saturn's D ring.

    Science.gov (United States)

    Kollmann, P; Roussos, E; Kotova, A; Cooper, J F; Mitchell, D G; Krupp, N; Paranicas, C

    2015-10-01

    Radiation belts of MeV protons have been observed just outward of Saturn's main rings. During the final stages of the mission, the Cassini spacecraft will pass through the gap between the main rings and the planet. Based on how the known radiation belts of Saturn are formed, it is expected that MeV protons will be present in this gap and also bounce through the tenuous D ring right outside the gap. At least one model has suggested that the intensity of MeV protons near the planet could be much larger than in the known belts. We model this inner radiation belt using a technique developed earlier to understand Saturn's known radiation belts. We find that the inner belt is very different from the outer belts in the sense that its intensity is limited by the densities of the D ring and Saturn's upper atmosphere, not by radial diffusion and satellite absorption. The atmospheric density is relatively well constrained by EUV occultations. Based on that we predict an intensity in the gap region that is well below that of the known belts. It is more difficult to do the same for the region magnetically connected to the D ring since its density is poorly constrained. We find that the intensity in this region can be comparable to the known belts. Such intensities pose no hazard to the mission since Cassini would only experience these fluxes on timescales of minutes but might affect scientific measurements by decreasing the signal-to-contamination ratio of instruments.

  18. Field-scale evaluation of water fluxes and manure solution leaching in feedlot pen soils.

    Science.gov (United States)

    García, Ana R; Maisonnave, Roberto; Massobrio, Marcelo J; Fabrizio de Iorio, Alicia R

    2012-01-01

    Accumulation of beef cattle manure on feedlot pen surfaces generates large amounts of dissolved solutes that can be mobilized by water fluxes, affecting surface and groundwater quality. Our objective was to examine the long-term impacts of a beef cattle feeding operation on water fluxes and manure leaching in feedlot pens located on sandy loam soils of the subhumid Sandy Pampa region in Argentina. Bulk density, gravimetric moisture content, and chloride concentration were quantified. Rain simulation trials were performed to estimate infiltration and runoff rates. Using chloride ion as a tracer, profile analysis techniques were applied to estimate the soil moisture flux and manure conservative chemical components leaching rates. An organic stratum was found over the surface of the pen soil, separated from the underlying soil by a highly compacted thin layer (the manure-soil interface). The soil beneath the organic layer showed greater bulk density in the A horizon than in the control soil and had greater moisture content. Greater concentrations of chloride were found as a consequence of the partial sealing of the manure-soil interface. Surface runoff was the dominant process in the feedlot pen soil, whereas infiltration was the main process in control soil. Soil moisture flux beneath pens decreased substantially after 15 yr of activity. The estimated minimum leaching rate of chloride was 13 times faster than the estimated soil moisture flux. This difference suggests that chloride ions are not exclusively transported by advective flow under our conditions but also by solute diffusion and preferential flow. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Formula Expression of Airgap Leakage flux Coefficient of Axial-Flux Permanent Magnet Motor

    Directory of Open Access Journals (Sweden)

    Yanliang Xu

    2013-07-01

    Full Text Available Airgap leakage flux coefficient is one of the main parameters which must be given ahead of time when performing initial designs or getting performance results by magnetic circuit analysis for any kinds of electrical machines. Three -dimensional finite element method (3D-FEM is the most reliable one to obtain the accurate leakage flux coefficient for axial flux permanent magnet (AFPM motor which definitely takes a much long time and is not advantageous to the motor’s initial and optimal design. By constituting the accurate lumped-parameter magnetic circuit (LPMC model and computing the resultant magnetic reluctances, the analytical formula of the leakage flux coefficient of AFPM is given which is verified by 3D-FEM and the prototyped AFPM experiment.

  20. MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis.

    Science.gov (United States)

    Lee, Dong-Yup; Yun, Hongsoek; Park, Sunwon; Lee, Sang Yup

    2003-11-01

    MetaFluxNet is a program package for managing information on the metabolic reaction network and for quantitatively analyzing metabolic fluxes in an interactive and customized way. It allows users to interpret and examine metabolic behavior in response to genetic and/or environmental modifications. As a result, quantitative in silico simulations of metabolic pathways can be carried out to understand the metabolic status and to design the metabolic engineering strategies. The main features of the program include a well-developed model construction environment, user-friendly interface for metabolic flux analysis (MFA), comparative MFA of strains having different genotypes under various environmental conditions, and automated pathway layout creation. http://mbel.kaist.ac.kr/ A manual for MetaFluxNet is available as PDF file.

  1. Assessing and correcting spatial representativeness of tower eddy-covariance flux measurements

    Science.gov (United States)

    Metzger, S.; Xu, K.; Desai, A. R.; Taylor, J. R.; Kljun, N.; Blanken, P.; Burns, S. P.; Scott, R. L.

    2014-12-01

    Estimating the landscape-scale exchange of ecologically relevant trace gas and energy fluxes from tower eddy-covariance (EC) measurements is often complicated by surface heterogeneity. For example, a tower EC measurement may represent less than 1% of a grid cell resolved by mechanistic models (order 100-1000 km2). In particular for data assimilation or comparison with large-scale observations, it is hence critical to assess and correct the spatial representativeness of tower EC measurements. We present a procedure that determines from a single EC tower the spatio-temporally explicit flux field of its surrounding. The underlying principle is to extract the relationship between biophysical drivers and ecological responses from measurements under varying environmental conditions. For this purpose, high-frequency EC flux processing and source area calculations (≈60 h-1) are combined with remote sensing retrievals of land surface properties and subsequent machine learning. Methodological details are provided in our companion presentation "Towards the spatial rectification of tower-based eddy-covariance flux observations". We apply the procedure to one year of data from each of four AmeriFlux sites under different climate and ecological environments: Lost Creek shrub fen wetland, Niwot Ridge subalpine conifer, Park Falls mixed forest, and Santa Rita mesquite savanna. We find that heat fluxes from the Park Falls 122-m-high EC measurement and from a surrounding 100 km2 target area differ up to 100 W m-2, or 65%. Moreover, 85% and 24% of the EC flux observations are adequate surrogates of the mean surface-atmosphere exchange and its spatial variability across a 900 km2 target area, respectively, at 5% significance and 80% representativeness levels. Alternatively, the resulting flux grids can be summarized as probability density functions, and used to inform mechanistic models directly with the mean flux value and its spatial variability across a model grid cell. Lastly

  2. Can host density attenuate parasitism?

    National Research Council Canada - National Science Library

    Magalhães, L; Freitas, R; Dairain, A; De Montaudouin, X

    .... Considering that these parasites infect cockles through filtration activity, our first hypothesis was that high host density will have a dilution effect so that infection intensity decreases with host density...

  3. Inverse modeling of the terrestrial carbon flux in China with flux covariance among inverted regions

    Science.gov (United States)

    Wang, H.; Jiang, F.; Chen, J. M.; Ju, W.; Wang, H.

    2011-12-01

    Quantitative understanding of the role of ocean and terrestrial biosphere in the global carbon cycle, their response and feedback to climate change is required for the future projection of the global climate. China has the largest amount of anthropogenic CO2 emission, diverse terrestrial ecosystems and an unprecedented rate of urbanization. Thus information on spatial and temporal distributions of the terrestrial carbon flux in China is of great importance in understanding the global carbon cycle. We developed a nested inversion with focus in China. Based on Transcom 22 regions for the globe, we divide China and its neighboring countries into 17 regions, making 39 regions in total for the globe. A Bayesian synthesis inversion is made to estimate the terrestrial carbon flux based on GlobalView CO2 data. In the inversion, GEOS-Chem is used as the transport model to develop the transport matrix. A terrestrial ecosystem model named BEPS is used to produce the prior surface flux to constrain the inversion. However, the sparseness of available observation stations in Asia poses a challenge to the inversion for the 17 small regions. To obtain additional constraint on the inversion, a prior flux covariance matrix is constructed using the BEPS model through analyzing the correlation in the net carbon flux among regions under variable climate conditions. The use of the covariance among different regions in the inversion effectively extends the information content of CO2 observations to more regions. The carbon flux over the 39 land and ocean regions are inverted for the period from 2004 to 2009. In order to investigate the impact of introducing the covariance matrix with non-zero off-diagonal values to the inversion, the inverted terrestrial carbon flux over China is evaluated against ChinaFlux eddy-covariance observations after applying an upscaling methodology.

  4. Flux variability scanning based on enforced objective flux for identifying gene amplification targets

    Science.gov (United States)

    2012-01-01

    Background In order to reduce time and efforts to develop microbial strains with better capability of producing desired bioproducts, genome-scale metabolic simulations have proven useful in identifying gene knockout and amplification targets. Constraints-based flux analysis has successfully been employed for such simulation, but is limited in its ability to properly describe the complex nature of biological systems. Gene knockout simulations are relatively straightforward to implement, simply by constraining the flux values of the target reaction to zero, but the identification of reliable gene amplification targets is rather difficult. Here, we report a new algorithm which incorporates physiological data into a model to improve the model’s prediction capabilities and to capitalize on the relationships between genes and metabolic fluxes. Results We developed an algorithm, flux variability scanning based on enforced objective flux (FVSEOF) with grouping reaction (GR) constraints, in an effort to identify gene amplification targets by considering reactions that co-carry flux values based on physiological omics data via “GR constraints”. This method scans changes in the variabilities of metabolic fluxes in response to an artificially enforced objective flux of product formation. The gene amplification targets predicted using this method were validated by comparing the predicted effects with the previous experimental results obtained for the production of shikimic acid and putrescine in Escherichia coli. Moreover, new gene amplification targets for further enhancing putrescine production were validated through experiments involving the overexpression of each identified targeted gene under condition-controlled batch cultivation. Conclusions FVSEOF with GR constraints allows identification of gene amplification targets for metabolic engineering of microbial strains in order to enhance the production of desired bioproducts. The algorithm was validated through the

  5. Propagation and dispersion of transverse wave trains in magnetic flux tubes

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Ruderman, M. S., E-mail: ramon.oliver@uib.es [School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2014-07-01

    The dispersion of small-amplitude, impulsively excited wave trains propagating along a magnetic flux tube is investigated. The initial disturbance is a localized transverse displacement of the tube that excites a fast kink wave packet. The spatial and temporal evolution of the perturbed variables (density, plasma displacement, velocity, ...) is given by an analytical expression containing an integral that is computed numerically. We find that the dispersion of fast kink wave trains is more important for shorter initial disturbances (i.e., more concentrated in the longitudinal direction) and for larger density ratios (i.e., for larger contrasts of the tube density with respect to the environment density). This type of excitation generates a wave train whose signature at a fixed position along a coronal loop is a short event (duration ≅ 20 s) in which the velocity and density oscillate very rapidly with typical periods of the order of a few seconds. The oscillatory period is not constant but gradually declines during the course of this event. Peak values of the velocity are of the order of 10 km s{sup –1} and are accompanied by maximum density variations of the order of 10%-15% the unperturbed loop density.

  6. Gauge fluxes in F-theory compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ling

    2016-07-13

    In this thesis, we study the geometry and physics of gauge fluxes in F-theory compactifications to four dimensions. Motivated by the phenomenological requirement of chiral matter in realistic model building scenarios, we develop methods for a systematic analysis of primary vertical G{sub 4}-fluxes on torus-fibred Calabi-Yau fourfolds. In particular, we extend the well-known description of fluxes on elliptic fibrations with sections to the more general set-up of genus-one fibrations with multi-sections. The latter are known to give rise to discrete abelian symmetries in F-theory. We test our proposal for constructing fluxes in such geometries on an explicit model with SU(5) x Z{sub 2} symmetry, which is connected to an ordinary elliptic fibration with SU(5) x U(1) symmetry by a conifold transition. With our methods we systematically verify anomaly cancellation and tadpole matching in both models. Along the way, we find a novel way of understanding anomaly cancellation in 4D F-theory in purely geometric terms. This observation is further strengthened by a similar analysis of an SU(3) x SU(2) x U(1){sup 2} model. The obvious connection of this particular model with the Standard Model is then investigated in a more phenomenologically motivated survey. There, we will first provide possible matchings of the geometric spectrum with the Standard Model states, which highlights the role of the additional U(1) factor as a selection rule. In a second step, we then utilise our novel methods on flux computations to set up a search algorithm for semi-realistic chiral spectra in our Standard- Model-like fibrations over specific base manifolds B. As a demonstration, we scan over three choices P{sup 3}, Bl{sub 1}P{sup 3} and Bl{sub 2}P{sup 3} for the base. As a result we find a consistent flux that gives the chiral Standard Model spectrum with a vector-like triplet exotic, which may be lifted by a Higgs mechanism.

  7. FluxPro: Real time monitoring and simulation system for eddy covariance flux measurement

    Science.gov (United States)

    Kim, W.; Seo, H.; Mano, M.; Ono, K.; Miyata, A.; Yokozawa, M.

    2010-12-01

    To cope with unusual weather changes on crop cultivation in a field level, prompt and precise monitoring of photosynthesis and evapotranspiration, and those fast and reliable forecasting are indispensable. So we have developed FluxPro which is simultaneous operating system of the monitoring and the forecasting. The monitoring subsystem provides vapor and CO2 fluxes with uncertainty to understand the live condition of photosynthesis and evapotranspiration by open-path eddy covariance flux measurement (EC) system and self-developed EC tolerance analysis scheme. The forecasting subsystem serves the predicted fluxes with anomaly based on model parameter assimilation to estimate the hourly or daily water consumption and carbon assimilation during a week by multi-simulation package consisting of various models from simple to complicate. FluxPro is helpful not only to detect a critical condition of growing crop in terms of photosynthesis and evapotranspiration but also to decide time and amount of launching control for keeping those optimization condition when an unusual weather event is arisen. In our presentation, we will demonstrate the FluxPro operated at tangerine orchard in Jeju, Korea.

  8. High torque density permanent magnet brushless machines with similar slot and pole numbers

    Science.gov (United States)

    Ishak, D.; Zhu, Z. Q.; Howe, D.

    2004-05-01

    The paper describes a theoretical and experimental investigation into the electromagnetic performance of permanent magnet brushless machines having similar slot and pole numbers. Finite element analysis is employed to predict the airgap flux density distribution, the cogging torque and emf waveforms, and the winding inductances. It is shown that such machines exhibit a high torque density and is conducive to fault tolerance. The results are validated on two experimental motors.

  9. High luminous flux from single crystal phosphor-converted laser-based white lighting system

    KAUST Repository

    Cantore, Michael

    2015-12-14

    The efficiency droop of light emitting diodes (LEDs) with increasing current density limits the amount of light emitted per wafer area. Since low current densities are required for high efficiency operation, many LED die are needed for high power white light illumination systems. In contrast, the carrier density of laser diodes (LDs) clamps at threshold, so the efficiency of LDs does not droop above threshold and high efficiencies can be achieved at very high current densities. The use of a high power blue GaN-based LD coupled with a single crystal Ce-doped yttrium aluminum garnet (YAG:Ce) sample was investigated for white light illumination applications. Under CW operation, a single phosphor-converted LD (pc-LD) die produced a peak luminous efficacy of 86.7 lm/W at 1.4 A and 4.24 V and a peak luminous flux of 1100 lm at 3.0 A and 4.85 V with a luminous efficacy of 75.6 lm/W. Simulations of a pc-LD confirm that the single crystal YAG:Ce sample did not experience thermal quenching at peak LD operating efficiency. These results show that a single pc-LD die is capable of emitting enough luminous flux for use in a high power white light illumination system.

  10. Analysis of flux reduction behaviors of PRO hollow fiber membranes: Experiments, mechanisms, and implications

    KAUST Repository

    Xiong, Jun Ying

    2016-01-15

    Pressure retarded osmosis (PRO) is a promising technology to harvest renewable osmotic energy using a semipermeable membrane. However, a significant flux reduction has been always observed that severely shrinks the harvestable power to a level only marginally higher or even lower than the economically feasible value. This work focuses on the elucidation of various underlying mechanisms responsible for the flux reduction. First, both inner-selective and outer-selective thin film composite (TFC) hollow fiber membranes are employed to examine how the fundamental internal factors (such as the surface salinity of the selective layer at the feed side (CF,m) and its components) interact with one another under the fixed bulk salinity gradient, resulting in various behaviours of external performance indexes such as water flux, reverse salt flux, and power density. Then, the research is extended to investigate the effects of the growing bulk feed salinity due to the accumulated reverse salt flux along PRO modules. Finally, the insights obtained from the prior two stationary conditions are combined with the advanced nucleation theory to elucidate the dynamic scaling process by visualizing how the multiple fundamental factors (such as local supersaturation, nucleation rate and nuclei size) evolve and interplay with one another in various membrane regimes during the whole scaling process. To our best knowledge, it is the first time that the advanced nucleation theory is applied to study the PRO scaling kinetics in order to provide subtle and clear pictures of the events occurring inside the membrane. This study may provide useful insights to design more suitable TFC hollow fiber membranes and to operate them with enhanced water flux so that the PRO process may become more promising in the near future.

  11. Comparison between elementary flux modes analysis and 13C-metabolic fluxes measured in bacterial and plant cells

    Directory of Open Access Journals (Sweden)

    Dieuaide-Noubhani Martine

    2011-06-01

    Full Text Available Abstract Background 13C metabolic flux analysis is one of the pertinent ways to compare two or more physiological states. From a more theoretical standpoint, the structural properties of metabolic networks can be analysed to explore feasible metabolic behaviours and to define the boundaries of steady state flux distributions. Elementary flux mode analysis is one of the most efficient methods for performing this analysis. In this context, recent approaches have tended to compare experimental flux measurements with topological network analysis. Results Metabolic networks describing the main pathways of central carbon metabolism were set up for a bacteria species (Corynebacterium glutamicum and a plant species (Brassica napus for which experimental flux maps were available. The structural properties of each network were then studied using the concept of elementary flux modes. To do this, coefficients of flux efficiency were calculated for each reaction within the networks by using selected sets of elementary flux modes. Then the relative differences - reflecting the change of substrate i.e. a sugar source for C. glutamicum and a nitrogen source for B. napus - of both flux efficiency and flux measured experimentally were compared. For both organisms, there is a clear relationship between these parameters, thus indicating that the network structure described by the elementary flux modes had captured a significant part of the metabolic activity in both biological systems. In B. napus, the extension of the elementary flux mode analysis to an enlarged metabolic network still resulted in a clear relationship between the change in the coefficients and that of the measured fluxes. Nevertheless, the limitations of the method to fit some particular fluxes are discussed. Conclusion This consistency between EFM analysis and experimental flux measurements, validated on two metabolic systems allows us to conclude that elementary flux mode analysis could be a

  12. Density-orbital embedding theory

    NARCIS (Netherlands)

    Visscher, L.; Gritsenko, O.

    2010-01-01

    In the article density-orbital embedding (DOE) theory is proposed. DOE is based on the concept of density orbital (DO), which is a generalization of the square root of the density for real functions and fractional electron numbers. The basic feature of DOE is the representation of the total

  13. Nutrient fluxes at the landscape level and the R* rule

    Science.gov (United States)

    Ju, Shu; DeAngelis, Donald L.

    2010-01-01

    Nutrient cycling in terrestrial ecosystems involves not only the vertical recycling of nutrients at specific locations in space, but also biologically driven horizontal fluxes between different areas of the landscape. This latter process can result in net accumulation of nutrients in some places and net losses in others. We examined the effects of such nutrient-concentrating fluxes on the R* rule, which predicts that the species that can survive in steady state at the lowest level of limiting resource, R*, can exclude all competing species. To study the R* rule in this context, we used a literature model of plant growth and nutrient cycling in which both nutrients and light may limit growth, with plants allocating carbon and nutrients between foliage and roots according to different strategies. We incorporated the assumption that biological processes may concentrate nutrients in some parts of the landscape. We assumed further that these processes draw nutrients from outside the zone of local recycling at a rate proportional to the local biomass density. Analysis showed that at sites where there is a sufficient biomass-dependent accumulation of nutrients, the plant species with the highest biomass production rates (roughly corresponding to the best competitors) do not reduce locally available nutrients to a minimum concentration level (that is, minimum R*), as expected from the R* rule, but instead maximize local nutrient concentration. These new results require broadening of our understanding of the relationships between nutrients and vegetation competition on the landscape level. The R* rule is replaced by a more complex criterion that varies across a landscape and reduces to the R* rule only under certain limiting conditions.

  14. Simulation of Underground Muon Flux with Application to Muon Tomography

    Science.gov (United States)

    Yamaoka, J. A. K.; Bonneville, A.; Flygare, J.; Lintereur, A.; Kouzes, R.

    2015-12-01

    Muon tomography uses highly energetic muons, produced by cosmic rays interacting within the upper atmosphere, to image dense materials. Like x-rays, an image can be constructed from the negative of the absorbed (or scattered) muons. Unlike x-rays, these muons can penetrate thousands of meters of earth. Muon tomography has been shown to be useful across a wide range of applications (such as imaging of the interior of volcanoes and cargo containers). This work estimates the sensitivity of muon tomography for various underground applications. We use simulations to estimate the change in flux as well as the spatial resolution when imaging static objects, such as mine shafts, and dynamic objects, such as a CO2 reservoir filling over time. We present a framework where we import ground density data from other sources, such as wells, gravity and seismic data, to generate an expected muon flux distribution at specified underground locations. This information can further be fed into a detector simulation to estimate a final experimental sensitivity. There are many applications of this method. We explore its use to image underground nuclear test sites, both the deformation from the explosion as well as the supporting infrastructure (access tunnels and shafts). We also made estimates for imaging a CO2 sequestration site similar to Futuregen 2.0 in Illinois and for imaging magma chambers beneath the Cascade Range volcanoes. This work may also be useful to basic science, such as underground dark matter experiments, where increasing experimental sensitivity requires, amongst other factors, a precise knowledge of the muon background.

  15. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences

    Science.gov (United States)

    Howarth, R.W.; Billen, G.; Swaney, D.; Townsend, A.; Jaworski, N.; Lajtha, K.; Downing, J.A.; Elmgren, Ragnar; Caraco, N.; Jordan, T.; Berendse, F.; Freney, J.; Kudeyarov, V.; Murdoch, P.; Zhu, Z.-L.

    1996-01-01

    We present estimates of total nitrogen and total phosphorus fluxes in rivers to the North Atlantic Ocean from 14 regions in North America, South America, Europe, and Africa which collectively comprise the drainage basins to the North Atlantic. The Amazon basin dominates the overall phosphorus flux and has the highest phosphorus flux per area. The total nitrogen flux from the Amazon is also large, contributing 3.3 Tg yr-1 out of a total for the entire North Atlantic region of 13.1 Tg yr-1. On a per area basis, however, the largest nitrogen fluxes are found in the highly disturbed watersheds around the North Sea, in northwestern Europe, and in the northeastern U.S., all of which have riverine nitrogen fluxes greater than 1,000 kg N km-2 yr-1. Non-point sources of nitrogen dominate riverine fluxes to the coast in all regions. River fluxes of total nitrogen from the temperate regions of the North Atlantic basin are correlated with population density, as has been observed previously for fluxes of nitrate in the world's major rivers. However, more striking is a strong linear correlation between river fluxes of total nitrogen and the sum of anthropogenically-derived nitrogen inputs to the temperate regions (fertilizer application, human-induced increases in atmospheric deposition of oxidized forms of nitrogen, fixation by leguminous crops, and the import/export of nitrogen in agricultural products). On average, regional nitrogen fluxes in rivers are only 25% of these anthropogenically derived nitrogen inputs. Denitrification in wetlands and aquatic ecosystems is probably the dominant sink, with storage in forests perhaps also of importance. Storage of nitrogen in groundwater, although of importance in some localities, is a very small sink for nitrogen inputs in all regions. Agricultural sources of nitrogen dominate inputs in many regions, particularly the Mississippi basin and the North Sea drainages. Deposition of oxidized nitrogen, primarily of industrial origin, is the

  16. Magnetic Flux Compression Concept for Nuclear Pulse Propulsion and Power

    Science.gov (United States)

    Litchford, Ronald J.

    2000-01-01

    fusion micro-bursts with reasonable levels of input energy is an equally challenging scientific problem. It remains to be seen, however, whether an effective ignition driver can be developed which meets the requirements for practical spaceflight application (namely high power density, compactness, low weight, and low cost). In this paper, system level performance and design issues are examined including generator performance, magnetic flux compression processes, magnetic diffusion processes, high temperature superconductor (HTSC) material properties, plasmadynamic processes, detonation plasma expansion processes, magnetohydrodynamic instabilities, magnetic nozzle performance, and thrust production performance. Representative generator performance calculations based on a simplified skin layer formulation are presented as well as the results of exploratory small-scale laboratory experiments on magnetic flux diffusion in HTSC materials. In addition, planned follow-on scientific feasibility experiments are described which utilize high explosive detonations and high energy gas discharges to simulate the plasma conditions associated with thermonuclear micro-detonations.

  17. Flux Accretion and Coronal Mass Ejection Dynamics

    Science.gov (United States)

    Welsch, Brian

    2017-08-01

    Coronal mass ejections (CMEs) are the primary drivers of severe space weather disturbances in the heliosphere. The equations of ideal magnetohydrodynamics (MHD) have been used to model the onset and, in some cases, the subsequent acceleration of ejections. Both observations and numerical modeling, however, suggest that magnetic reconnection likely plays a major role in most, if not all, fast CMEs. Here, we theoretically investigate the dynamical effects of accretion of magnetic flux onto a rising ejection by reconnection involving the ejection's background field. This reconnection alters the magnetic structure of the ejection and its environment, thereby modifying forces acting during the eruption, generically leading to faster acceleration of the CME. Our ultimate aim is to characterize changes in CME acceleration in terms of observable properties of magnetic reconnection, such as the amount of reconnected flux, deduced from observations of flare ribbons and photospheric magnetic fields.

  18. Flux qubit to a transmission line

    Energy Technology Data Exchange (ETDEWEB)

    Haeberlein, Max; Baust, Alexander; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany); Anderson, Gustav; Wang, Lujun; Eder, Peter; Fischer, Michael; Goetz, Jan; Xie, Edwar; Schwarz, Manuel; Wulschner, Karl Friedrich; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany)

    2015-07-01

    Within the last decade, superconducting qubits coupled to microwave resonators have been extensively studied within the framework of quantum electrodynamics. Ultimately, quantum computing seems within reach in such architectures. However, error correction schemes are necessary to achieve the required fidelity in multi-qubit operations, drastically increasing the number of qubits involved. In this work, we couple a flux qubit to a transmission line where it interacts with itinerant microwave photons granting access to all-optical quantum computing. In this approach, travelling photons generate entanglement between two waveguides, containing the qubit information. In this presentation, we show experimental data on flux qubits coupled to transmission lines. Furthermore, we will discuss entanglement generation between two separate paths.

  19. Anthropogenic methane ebullition and continuous flux measurement

    Science.gov (United States)

    Alshboul, Zeyad

    2017-04-01

    Keywords: Methane, Wastewater, Effluent, Anaerobic treatment. Municipal wastewater treatment plants (WWTPs) have shown to emit significant amount of methane during treatment processes. While most of studies cover only in-plant diffusive methane flux, magnitude and sources of methane ebullition have not well assessed. Moreover, the reported results of methane emissions from WWTPs are based on low spatial and temporal resolution. Using a continuous measurement approach of methane flux rate for effluent system and secondary clarifier treatment process at one WWTP in Southwest Germany, our results show that high percentage of methane is emitted by ebullition during the anaerobic treatment (clarification pond) with high spatial and temporal variability. Our measurements revealed that no ebullition is occur at the effluent system. The observed high contribution of methane ebullition to the total in-plant methane emission, emphasizes the need for considering in-plant methane emission by ebullition as well as the spatial and temporal variability of these emissions.

  20. High flux diffractometers on reactor neutron sources

    Science.gov (United States)

    Hewat, Alan W.

    2006-11-01

    Continuous neutron sources such as reactors can deliver a very high time-averaged flux to the sample using a relatively wide band of wavelengths, while still retaining good resolution. For example, the D20 diffractometer at ILL Grenoble, the world's highest flux neutron powder machine, can collect complete patterns at 100 ms intervals, and this has been important for the real time study of explosive SHS reactions. New very large 2D detectors, such as those recently installed on D2B and D19 at ILL, are up to an order of magnitude larger than previous designs, and will provide unmatched speed of data collection from very small samples, opening up new scientific perspectives for powder and single crystal diffraction. We will discuss future reactor based diffractometers designed for rapid data collection from small samples in special environments.

  1. Soft Supersymmetry Breaking in KKLT Flux Compactification

    CERN Document Server

    Choi, Kiwoon; Nilles, Hans Peter; Olechowski, Marek; Choi, Kiwoon; Falkowski, Adam; Nilles, Hans Peter; Olechowski, Marek

    2005-01-01

    We examine the structure of soft supersymmetry breaking terms in KKLT models of flux compactification with low energy supersymmetry. Moduli are stabilized by fluxes and nonperturbative dynamics while a de Sitter vacuum is obtained by adding supersymmetry breaking anti-branes. We discuss the characteristic pattern of mass scales in such a set-up as well as some features of 4D N=1 supergravity breakdown by anti-branes. Anomaly mediation is found to always give an important contribution and one can easily arrange for flavor-independent soft terms. In its most attractive realization, the modulus mediation is comparable to the anomaly mediation, yielding a quite distinctive sparticle spectrum. In addition, the axion component of the modulus/dilaton superfield dynamically cancels the relative CP phase between the contributions of anomaly and modulus mediation, thereby avoiding dangerous SUSY CP violation.

  2. Determining Accuracy of Thermal Dissipation Methods-based Sap Flux in Japanese Cedar Trees

    Science.gov (United States)

    Su, Man-Ping; Shinohara, Yoshinori; Laplace, Sophie; Lin, Song-Jin; Kume, Tomonori

    2017-04-01

    Thermal dissipation method, one kind of sap flux measurement method that can estimate individual tree transpiration, have been widely used because of its low cost and uncomplicated operation. Although thermal dissipation method is widespread, the accuracy of this method is doubted recently because some tree species materials in previous studies were not suitable for its empirical formula from Granier due to difference of wood characteristics. In Taiwan, Cryptomeria japonica (Japanese cedar) is one of the dominant species in mountainous area, quantifying the transpiration of Japanese cedar trees is indispensable to understand water cycling there. However, no one have tested the accuracy of thermal dissipation methods-based sap flux for Japanese cedar trees in Taiwan. Thus, in this study we conducted calibration experiment using twelve Japanese cedar stem segments from six trees to investigate the accuracy of thermal dissipation methods-based sap flux in Japanese cedar trees in Taiwan. By pumping water from segment bottom to top and inserting probes into segments to collect data simultaneously, we compared sap flux densities calculated from real water uptakes (Fd_actual) and empirical formula (Fd_Granier). Exact sapwood area and sapwood depth of each sample were obtained from dying segment with safranin stain solution. Our results showed that Fd_Granier underestimated 39 % of Fd_actual across sap flux densities ranging from 10 to 150 (cm3m-2s-1); while applying sapwood depth corrected formula from Clearwater, Fd_Granier became accurately that only underestimated 0.01 % of Fd_actual. However, when sap flux densities ranging from 10 to 50 (cm3m-2s-1)which is similar with the field data of Japanese cedar trees in a mountainous area of Taiwan, Fd_Granier underestimated 51 % of Fd_actual, and underestimated 26 % with applying Clearwater sapwood depth corrected formula. These results suggested sapwood depth significantly impacted on the accuracy of thermal dissipation

  3. FAST FLUX TEST FACILITY DRIVER FUEL MEETING

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1966-06-01

    The Pacific Northwest Laboratory has convened this meeting to enlist the best talents of our laboratories and industry in soliciting factual, technical information pertinent to the Pacific Northwest's Laboratory's evaluation of the potential fuel systems for the Fast Flux Test Facility. The particular factors emphasized for these fuel systems are those associated with safety, ability to meet testing objectives, and economics. The proceedings includes twenty-three presentations, along with a transcript of the discussion following each, as well as a summary discussion.

  4. Axial flux permanent magnet brushless machines

    CERN Document Server

    Gieras, Jacek F; Kamper, Maarten J

    2008-01-01

    Axial Flux Permanent Magnet (AFPM) brushless machines are modern electrical machines with a lot of advantages over their conventional counterparts. They are being increasingly used in consumer electronics, public life, instrumentation and automation system, clinical engineering, industrial electromechanical drives, automobile manufacturing industry, electric and hybrid electric vehicles, marine vessels and toys. They are also used in more electric aircrafts and many other applications on larger scale. New applications have also emerged in distributed generation systems (wind turbine generators

  5. Parametric amplification by coupled flux qubits

    OpenAIRE

    Rehak, M.; Neilinger, P.; Grajcar, M.; Oelsner, G.; Huebner, U.; Il'ichev, E.; Meyer, H. -G.

    2014-01-01

    We report the parametric amplification of a microwave signal in a Kerr medium formed from superconducting qubits. Two mutually coupled flux qubits, embedded in the current antinode of a superconducting coplanar waveguide resonator, are used as a nonlinear element. Shared Josephson junctions provide the qubit-resonator coupling, resulting in a device with a measured gain of about 20 dB. We argue, that this arrangement represents a unit cell which can be straightforwardly extended to a quasi on...

  6. HTS flux flow devices and applications

    Energy Technology Data Exchange (ETDEWEB)

    Martens, J.; Pance, A.; Johansson, M.; Char, K.; Whiteley, S. [Conductus, Sunnyvale, CA (United States); Hou, S.; Phillips, J. [AT and T Bell Labs., Murray Hill, NJ (United States)

    1994-12-31

    Flux flow devices are three terminal active superconducting elements. Among the circuits demonstrated are mm-wave amplifiers, a fairly complete logic family and multiplexers/demultiplexers. Before it can be decided if this technology is viable for circuits of sufficient complexity to be commercially interesting, many manufacturability and materials questions must be answered. Work pertaining to these questions as well as demonstrations to date will be discussed.

  7. Periods of High Intensity Solar Proton Flux

    Science.gov (United States)

    Xapsos, Michael A.; Stauffer, Craig A.; Jordan, Thomas M.; Adams, James H.; Dietrich, William F.

    2012-01-01

    Analysis is presented for times during a space mission that specified solar proton flux levels are exceeded. This includes both total time and continuous time periods during missions. Results for the solar maximum and solar minimum phases of the solar cycle are presented and compared for a broad range of proton energies and shielding levels. This type of approach is more amenable to reliability analysis for spacecraft systems and instrumentation than standard statistical models.

  8. PFISR observation of intense ion upflow fluxes associated with an SED during the 1 June 2013 geomagnetic storm

    Science.gov (United States)

    Zou, Shasha; Ridley, Aaron; Jia, Xianzhe; Boyd, Emma; Nicolls, Michael; Coster, Anthea; Thomas, Evan; Ruohoniemi, J. M.

    2017-02-01

    The Earth's ionosphere plays an important role in supplying plasma into the magnetosphere through ion upflow/outflow, particularly during periods of strong solar wind driving. An intense ion upflow flux event during the 1 June 2013 storm has been studied using observations from multiple instruments. When the open-closed field line boundary (OCB) moved into the Poker Flat incoherent scatter radar (PFISR) field of view, divergent ion fluxes were observed by PFISR with intense upflow fluxes reaching 1.9 × 1014 m-2 s-1 at 600 km altitude. Both ion and electron temperatures increased significantly within the ion upflow, and thus, this event has been classified as a type 2 upflow. We discuss factors contributing to the high electron density and intense ion upflow fluxes, including plasma temperature effect and preconditioning by storm-enhanced density (SED). Our analysis shows that the significantly enhanced electron temperature due to soft electron precipitation in the cusp can reduce the dissociative recombination rate of molecular ions above 400 km and contributed to the density increase. In addition, this intense ion upflow flux event is preconditioned by the lifted F region ionosphere due to northwestward convection flows in the SED plume. During this event, the OCB and cusp were detected by DMSP between 15 and 16 magnetic local times, unusually duskward. Results from a global magnetohydrodynamics simulation using the Space Weather Modeling Framework have been used to provide a global context for this event. This case study provides a more comprehensive mechanism for the generation of intense ion upflow fluxes observed in association with SEDs.

  9. The Pulsed High Density Experiment (PHDX) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Slough, John P. [Univ. of Washington, Seattle, WA (United States); Andreason, Samuel [Univ. of Washington, Seattle, WA (United States)

    2017-04-27

    The purpose of this paper is to present the conclusions that can be drawn from the Field Reversed Configuration (FRC) formation experiments conducted on the Pulsed High Density experiment (PHD) at the University of Washington. The experiment is ongoing. The experimental goal for this first stage of PHD was to generate a stable, high flux (>10 mWb), high energy (>10 KJ) target FRC. Such results would be adequate as a starting point for several later experiments. This work focuses on experimental implementation and the results of the first four month run. Difficulties were encountered due to the initial on-axis plasma ionization source. Flux trapping with this ionization source acting alone was insufficient to accomplish experimental objectives. Additional ionization methods were utilized to overcome this difficulty. A more ideal plasma source layout is suggested and will be explored during a forthcoming work.

  10. Stochastic flux freezing and magnetic dynamo.

    Science.gov (United States)

    Eyink, Gregory L

    2011-05-01

    Magnetic flux conservation in turbulent plasmas at high magnetic Reynolds numbers is argued neither to hold in the conventional sense nor to be entirely broken, but instead to be valid in a statistical sense associated to the "spontaneous stochasticity" of Lagrangian particle trajectories. The latter phenomenon is due to the explosive separation of particles undergoing turbulent Richardson diffusion, which leads to a breakdown of Laplacian determinism for classical dynamics. Empirical evidence is presented for spontaneous stochasticity, including numerical results. A Lagrangian path-integral approach is then exploited to establish stochastic flux freezing for resistive hydromagnetic equations and to argue, based on the properties of Richardson diffusion, that flux conservation must remain stochastic at infinite magnetic Reynolds number. An important application of these results is the kinematic, fluctuation dynamo in nonhelical, incompressible turbulence at magnetic Prandtl number (Pr(m)) equal to unity. Numerical results on the Lagrangian dynamo mechanisms by a stochastic particle method demonstrate a strong similarity between the Pr(m)=1 and 0 dynamos. Stochasticity of field-line motion is an essential ingredient of both. Finally, some consequences for nonlinear magnetohydrodynamic turbulence, dynamo, and reconnection are briefly considered. © 2011 American Physical Society

  11. Production of fullerenes with concentrated solar flux

    Energy Technology Data Exchange (ETDEWEB)

    Hale, M. J.; Fields, C.; Lewandowski, A.; Bingham, C.; Pitts, R.

    1994-01-01

    Research at the National Renewable Energy Laboratory (NREL) has demonstrated that fullerenes can be produced using highly concentrated sunlight from a solar furnace. Since they were first synthesized in 1989, fullerenes have been the subject of intense research. They show considerable commercial potential in advanced materials and have potential applications that include semiconductors, superconductors, high-performance metals, and medical technologies. The most common fullerene is C{sub 60}, which is a molecule with a geometry resembling a soccer ball. Graphite vaporization methods such as pulsed-laser vaporization, resistive heating, and carbon arc have been used to produce fullerenes. None of these, however, seems capable of producing fullerenes economically on a large scale. The use of concentrated sunlight may help avoid the scale-up limitations inherent in more established production processes. Recently, researchers at NREL made fullerenes in NREL`s 10 kW High Flux Solar Furnace (HFSF) with a vacuum reaction chamber designed to deliver a solar flux of 1200 W/cm{sup 2} to a graphite pellet. Analysis of the resulting carbon soot by mass spectrometry and high-pressure liquid chromatography confirmed the existence of fullerenes. These results are very encouraging and we are optimistic that concentrated solar flux can provide a means for large-scale, economical production of fullerenes. This paper presents our method, experimental apparatus, and results of fullerene production research performed with the HFSF.

  12. Greenhouse gas flux dynamics in wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Silvola, J.; Alm, J.; Saarnio, S. [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P.J. [National Public Health Inst., Kuopio (Finland). Dept. of Environmental Microbiology

    1996-12-31

    Two important greenhouse gases, CO{sub 2} and CH{sub 4}, are closely connected to the carbon cycling of wetlands. Although virgin wetlands are mostly carbon accumulating ecosystems, major proportion of the CO{sub 2} bound annually in photosynthesis is released back to the atmosphere. Main portion of the carbon cycling in wetlands is quite fast while a small proportion of carbon diffusing from soil is released from organic matter, which may be ten thousand years old. Methane is formed in the anaerobic layers of wetlands, from where it is released gradually to the atmosphere. The decomposition in anaerobic conditions is very slow, which means that usually only a few percent of the annual carbon cycling takes place as methane. Research on CO{sub 2} fluxes of different virgin and managed peatlands was the main topic of this project during the first phase of SILMU. The measurements were made during two seasons in varying conditions in c. 30 study sites. In the second phase of SILMU the research topics were the spatial and temporal variation of CO{sub 2} and CH{sub 4} fluxes, the relationships between vegetation and gas fluxes as well as carbon balance studies in wetlands at some intensive sites

  13. Robustness of metabolic networks: Flux balance analysis

    Science.gov (United States)

    Jeong, Hawoong

    2005-03-01

    Biological systems are unimaginably complex, yet also highly robust to genetic perturbations on all levels of organization. For example, the cellular metabolism of the bacterium E. coli maintains its homeostasis, often with little or no effect on the biomass yield under a considerable portion of single gene knockouts. To address the interplay between the robustness of the final biomass yield and the underlying mechanisms in the intracellular metabolism, we identify the set of intracellular metabolites of which presences are essential for the cellular- level viability via flux balance analysis. These essential metabolites exhibit the quite different characteristics both in the topological and physiological aspects of the participating reactions, compared with the case for the non-essential ones. Most importantly, it is revealed that in viable case, production and consumption rates of each essential metabolite acquire their robustness responding to the genetic perturbations, by actively reorganizing the reaction fluxes for the ultimate robustness of the biomass yield. We also find that there is strong correlation between essentiality and flux fluctuation of metabolite under the gene deletion purturbations.

  14. Metal fluxes in the Mersey Narrows

    Directory of Open Access Journals (Sweden)

    J. A. Cole

    2001-01-01

    Full Text Available Surveys of the Mersey estuary in north-west England were undertaken near the mouth of the estuary in the region known as the Mersey Narrows. Tidal fluxes of suspended and dissolved matter, particularly heavy metals, through the Mersey Narrows were investigated. This paper gives results of conducting four intensive cross-sectional surveys of the Narrows, during which currents, salinities, turbidity and water samples were obtained systematically at numerous positions, throughout selected tidal cycles. Over 300 water samples per survey were analysed to yield suspended and dissolved concentrations of the elements As, Cd, Cr, Cu, Hg, Ni, Pb and Zn, at all states of the tide. Suspended solids, concentrations and salinities were also measured. Suspended particulates account for the majority of each element present, except for cadmium, which was present in roughly equal dissolved and suspended fractions. From the tidal current and water quality data, calculations were made of hour-by-hour fluxes of each component, to show the detailed ebb and flow of heavy metals and the net tidal transport of each component. Although some differences between landward transport on the flood tide and seaward transport on the ebb were not significant, the more definite results consistently showed a seawards net transport. For spring tides of high tidal range, there was an indication of an opposite tendency, reducing the seawards transport or even reversing it, for certain suspended components. Keywords: Mersey estuary, surveys, tidal flux, dissolved metals, particulate metals, salinity, suspended particulate matter, suspended solids

  15. Are Quasar Jets Dominated by Poynting Flux?

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, M

    2005-02-02

    The formation of relativistic astrophysical jets is presumably mediated by magnetic fields threading accretion disks and central, rapidly rotating objects. As it is accelerated by magnetic stresses, the jet's kinetic energy flux grows at the expense of its Poynting flux. However, it is unclear how efficient is the conversion from magnetic to kinetic energy and whether there are any observational signatures of this process. We address this issue in the context of jets in quasars. Using data from all spatial scales, we demonstrate that in these objects the conversion from Poynting-flux-dominated to matter-dominated jets is very likely to take place closer to the black hole than the region where most of the Doppler boosted radiation observed in blazars is produced. We briefly discuss the possibility that blazar activity can be induced by global MHD instabilities, e.g., via the production of localized velocity gradients that lead to dissipative events such as shocks or magnetic reconnection, where acceleration of relativistic particles and production of non-thermal flares is taking place.

  16. GALILEO PROBE NET FLUX RADIOMETER DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Galileo Probe Net Flux Radiometer (NFR) measured net and upward radiation fluxes in Jupiter's atmosphere between about 0.44 bars and 14 bars, using five spectral...

  17. NAMMA SENEGAL RADIOSONDE AND TOWER FLUX DATA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA Senegal Radiosonde and Tower Flux data includes measurements of humidity, wind speed/direction and velocity. Additionally the Flux data includes...

  18. Advanced Tethersonde for High-Speed Flux Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flux measurements of trace gases and other quantities, such as latent heat, are of great importance in scientific field research. One typical flux measurement setup...

  19. Direct Torque Control Induction Motor Drive with Improved Flux Response

    Directory of Open Access Journals (Sweden)

    Bhoopendra Singh

    2012-01-01

    Full Text Available Accurate flux estimation and control of stator flux by the flux control loop is the determining factor in effective implementation of DTC algorithm. In this paper a comparison of voltage-model-based flux estimation techniques for flux response improvement is carried out. The effectiveness of these methods is judged on the basis of Root Mean Square Flux Error (RMSFE, Total Harmonic Distortion (THD of stator current, and dynamic flux response. The theoretical aspects of these methods are discussed and a comparative analysis is provided with emphasis on digital signal processor (DSP based controller implementation. The effectiveness of the proposed flux estimation algorithm is investigated through simulation and experimentally validated on a test drive.

  20. NAMMA SENEGAL RADIOSONDE AND TOWER FLUX DATA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA Senegal Radiosonde and Tower Flux data includes measurements of humidity, wind speed/direction and velocity. Additionally, the flux data includes...

  1. Tidal frequencies in the spectral analysis of time series muon flux measurements

    Science.gov (United States)

    Feldman, Catherine; Takai, Helio

    2016-03-01

    Tidal frequencies are observed in the spectral analysis of time series muon flux measurements performed by the MARIACHI experiment over a period of seven years. The prominent peaks from the frequency spectrum correspond to tidal frequencies S1,S2,S3,K1,P1 and Ψ1 . We will present these results and compare them to the regular density oscillations from balloon sounding data. We interpret the observed data as being the effect of regular atmospheric density oscillations induced by the thermal heating of layers in Earth's atmosphere. As the density of the atmosphere varies, the altitude where particles are produced varies accordingly. As a consequence, the muon decay path elongates or contracts, modulating the number of muons detected at ground level. The role of other tidal effects, including geomagnetic tides, will also be discussed.

  2. Flux pinning characteristics in cylindrical ingot niobium used in superconducting radio frequency cavity fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Dhavale Ashavai, Pashupati Dhakal, Anatolii A Polyanskii, Gianluigi Ciovati

    2012-04-01

    We present the results of from DC magnetization and penetration depth measurements of cylindrical bulk large-grain (LG) and fine-grain (FG) niobium samples used for the fabrication of superconducting radio frequency (SRF) cavities. The surface treatment consisted of electropolishing and low temperature baking as they are typically applied to SRF cavities. The magnetization data were fitted using a modified critical state model. The critical current density Jc and pinning force Fp are calculated from the magnetization data and their temperature dependence and field dependence are presented. The LG samples have lower critical current density and pinning force density compared to FG samples which implies a lower flux trapping efficiency. This effect may explain the lower values of residual resistance often observed in LG cavities than FG cavities.

  3. A perspective on thirty years of the Webb, Pearman and Leuning density corrections

    Science.gov (United States)

    Xuhui Lee; William J. Massman

    2011-01-01

    The density correction theory of Webb et al. (1980, Q J Roy Meteorol Soc 106: 85-100, hereafter WPL) is a principle underpinning the experimental investigation of surface fluxes of energy and masses in the atmospheric boundary layer. It has a long-lasting influence in boundary-layer meteorology and micrometeorology, and the year 2010 marks the 30th anniversary of the...

  4. Plasma detachment study of high density helium plasmas in the Pilot-PSI device

    NARCIS (Netherlands)

    Hayashi, Y.; Jesko, K.; van der Meiden, H. J.; Vernimmen, J. W. M.; Morgan, T. W.; Ohno, N.; Kajita, S.; Yoshikawa, M.; Masuzaki, S.

    2016-01-01

    We have investigated plasma detachment phenomena of high-density helium plasmas in the linear plasma device Pilot-PSI, which can realize a relevant ITER SOL/Divertor plasma condition. The experiment clearly indicated plasma detachment features such as drops in the plasma pressure and particle flux

  5. SIRHEX—A new experimental facility for high heat flux testing of plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Kunze, André, E-mail: andre.kunze@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (Germany); Ghidersa, Bradut-Eugen [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (Germany); Bonelli, Flavia [Politecnico di Torino, Dipartimento Energia (Italy)

    2015-10-15

    Highlights: • Commercial infrared heaters have been qualified for future First Wall experiments. • In first tests surface heat flux densities up to 470 kW/m were achieved. • The homogeneity of the heat distribution stayed within ±5% of the nominal value. • With the heaters a typical ITER pulse can be reproduced. • An adequate testing strategy will be required to improve heater lifetime. - Abstract: SIRHEX (“Surface Infrared Radiation Heating Experiment”) is a small-scale experimental facility at KIT, which has been built for testing and qualifying high heat flux radiation heaters for blanket specific conditions using an instrumented water cooled target. This paper describes the SIRHEX facility and the experimental set-up for the heater tests. The results of a series of tests focused on reproducing homogeneous surface heat flux densities up to 500 kW/m{sup 2} will be presented and the impact of the heater performance on the design of the First Wall test rig will be discussed.

  6. Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2017-01-01

    This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.

  7. Design Considerations of a Transverse Flux Machine for Direct-Drive Wind Turbine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Tausif; Hasan, Iftekhar; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2017-02-16

    This paper presents the design considerations of a double-sided transverse flux machine (TFM) for direct-drive wind turbine applications. The TFM has a modular structure with quasi-U stator cores and ring windings. The rotor is constructed with ferrite magnets in a flux-concentrating arrangement to achieve high air gap flux density. The design considerations for this TFM with respect to initial sizing, pole number selection, key design ratios, and pole shaping are presented in this paper. Pole number selection is critical in the design process of a TFM because it affects both the torque density and power factor under fixed magnetic and changing electrical loading. Several key design ratios are introduced to facilitate the design procedure. The effect of pole shaping on back-emf and inductance is also analyzed. These investigations provide guidance toward the required design of a TFM for direct-drive applications. The analyses are carried out using analytical and three-dimensional finite element analysis. A prototype is under construction for experimental verification.

  8. Influence of spray characteristics on heat flux in dual phase spray impingement cooling of

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Nayak

    2016-09-01

    Full Text Available The effects of variation of spray characteristics (mass flux, inlet pressure, flow rate, nozzle tip to target distance and plate thickness on heat flux were systematically investigated. The round spray released from a full cone internally mix atomizing nozzle was impinged with a wide range of air and water pressures on stationary hot steel surface of definite dimension. The effect of each parameter was examined while keeping others nearly fixed. Four different plate thicknesses i.e., 4 mm, 6 mm, 8 mm and 10 mm were tested and effect of plate thickness on heat transfer was determined. Surface heat flux at each experimental condition was computed from the transient temperature history measured by K-type thermocouples embedded at bottom surface of the plate. The mass impingement density was measured by the help of a simple mechanical patternator. The maximum surface heat flux of 4895.525 kW/m2 was achieved at an inlet water pressure of 4 bar, air pressure of 3 bar and nozzle height of 120 mm for an initial temperature of 850 °C of the 4 mm steel plate.

  9. Growth of bulk GaN crystal by Na flux method

    Science.gov (United States)

    Imade, M.; Miyoshi, N.; Yoshimura, M.; Kitaoka, Y.; Sasaki, T.; Mori, Y.

    2011-02-01

    In this paper, we reported the recent advances in the growth of GaN crystals on GaN templates and spontaneously nucleated GaN seeds by Na flux method. In the growth on GaN templates, it was clarified that the growth mode could be controlled by changing the flux composition. Based on the changes in the growth mode under different flux compositions, a growth sequence that is effective for the growth of thick GaN substrates with a low dislocation density was proposed. In the growth on pyramidal GaN seeds, we investigated the dependence of the growth rate, crystallinity and the growth habit on the flux composition. Results showed that a low Ga composition was preferred to grow high-crystallinity prismatic GaN crystals with a high growth rate. When a spontaneously nucleated GaN seed was used, a bulk GaN crystal with a hexagonal pillar consisting of six m-facets, and its length and diameter were 10 mm and 8 mm, respectively, was obtained. Furthermore, we found that the addition of Ca and Li to Ga-Na melt improved transparency of GaN crystals grown on pyramidal GaN seeds.

  10. Density sensitive hashing.

    Science.gov (United States)

    Jin, Zhongming; Li, Cheng; Lin, Yue; Cai, Deng

    2014-08-01

    Nearest neighbor search is a fundamental problem in various research fields like machine learning, data mining and pattern recognition. Recently, hashing-based approaches, for example, locality sensitive hashing (LSH), are proved to be effective for scalable high dimensional nearest neighbor search. Many hashing algorithms found their theoretic root in random projection. Since these algorithms generate the hash tables (projections) randomly, a large number of hash tables (i.e., long codewords) are required in order to achieve both high precision and recall. To address this limitation, we propose a novel hashing algorithm called density sensitive hashing (DSH) in this paper. DSH can be regarded as an extension of LSH. By exploring the geometric structure of the data, DSH avoids the purely random projections selection and uses those projective functions which best agree with the distribution of the data. Extensive experimental results on real-world data sets have shown that the proposed method achieves better performance compared to the state-of-the-art hashing approaches.

  11. Magnetic properties of high-T(sub c) superconductors: Rigid levitation, flux pinning, thermal depinning, and fluctuation

    Science.gov (United States)

    Brandt, E. H.

    1990-01-01

    The levitation of high-T(sub c) superconductors is quite conspicuous: Above magnets of low symmetry a disk of these ceramics floats motionless, without vibration or rotation; it has a continuous range of stable positions and orientations as if it were stuck in sand. Some specimens may even be suspended above or below the same magnet. This fascinating stability, inherent to no other type of levitation, is caused by the pinning of magnetic flux lines by inhomogeneities inside these extreme type-2 superconductors. The talk deals with pinning of magnetic flux in these materials, with flux flow, flux creep, thermally activated depinning, and the thermal fluctuation of the vortex positions in the flux line lattice (often called flux lattice melting). Also discussed are the fluctuations of the (nearly periodic) magnetic field inside these superconductors which are caused by random pinning sites and by the finite temperature. These fluctuations broaden the van-Hove singularities observed in the density of the magnetic field by nuclear magnetic resonance and by muon spin rotation.

  12. Micrometeorological flux measurements at a coastal site

    Science.gov (United States)

    Song, Guozheng; Meixner, Franz X.; Bruse, Michael; Mamtimin, Buhalqem

    2014-05-01

    The eddy covariance (EC) technique is the only direct measurement of the momentum, heat, and trace gas (e.g. water vapor, CO2 and ozone) fluxes. The measurements are expected to be most accurate over flat terrain where there is an extended homogenous surface upwind from the tower, and when the environmental conditions are steady. Additionally, the one dimensional approach assumes that vertical turbulent exchange is the dominant flux, whereas advective influences should be negligible. The application of EC method under non-ideal conditions, for example in complex terrain, has yet to be fully explored. To explore the possibilities and limitations of EC technique under non-ideal conditions, an EC system was set up at Selles beach, Crete, Greece (35.33°N, 25.71°E) in the beginning of July 2012. The dominant wind direction was west, parallel to the coast. The EC system consisted of a sonic anemometer (CSAT3 Campbell Scientific), an infrared open-path CO2/H2O gas analyzer (LI-7500, Li-COR Biosciences) and a fast chemiluminescence ozone analyzer (enviscope GmbH). All the signals of these fast response instruments were sampled at 10 Hz and the measurement height was 3 m. Besides, another gradient system was setup. Air temperature, relative humidity (HYGROMER MP 103 A), and wind speed (WMT700 Vaisala) were measured every 10 seconds at 3 heights (0.7, 1.45, 3 m). Air intakes were set up at 0.7m and 3m. A pump drew the air through a flow system and a telflon valve alternately switched between the two heights every 30 seconds. H2O, CO2 (LI-840A, Li-COR Biosciences) and ozone mixing ratio s (model 205, 2BTechnologies) were measured every 10 seconds. Momentum, heat, CO2 and ozone fluxes were evaluated by both EC and gradient technique. For the calculation of turbulent fluxes, TK3 algorithm (Department of Micrometeorology, University Bayreuth, Germany) was applied. We will present the measured fluxes of the two systems and assess the data quality under such non-ideal condition.

  13. Linking Precipitation Patterns to Stream Nitrogen Fluxes

    Science.gov (United States)

    Reid, J. P.; Finlay, J. C.

    2011-12-01

    Precipitation is becoming less-frequent but more-intense across most of the world. These changes to the timing and intensity of precipitation should affect ecological processes - such as primary productivity, soil decomposition, nitrification, and watershed nitrogen (N) retention - that are functions of soil moisture. Drying and rewetting cycles are known to reduce plant uptake and microbial immobilization of N, while temporarily increasing nitrification rates, thus reducing the effectiveness of N retention mechanisms. Because the timing of intense rainfall events is more likely to align with reduced nitrogen retention capacity, watershed N losses should increase. We hypothesized that the lag between precipitation and nitrate flux is shortest for low-frequency, high-intensity rainfall, and shortest in watersheds with high hydraulic conductivity. We used long-term records of precipitation, stream discharge and nitrate concentrations to analyze the relationship between precipitation and stream nitrate flux using wavelet decomposition, cross-wavelet transforms and wavelet coherence. The analyzed streams are located across an urban to rural gradient in the Baltimore area. We found little or no synchronization between precipitation and stream nitrate flux in the forested reference watershed at annual time scales. However, annual precipitation and nitrate flux in urban and suburban watersheds were significantly synchronized. Furthermore, nitrate flux consistently lagged behind precipitation in these urbanized watersheds. The differences between forested and suburban/urban watersheds could be a consequence of differences in impervious surface area and drainage mechanisms including storm drains. These results suggest that urbanization changes the scales of precipitation patterns that nitrate export is sensitive to. For example, annual nitrate export consistently lags behind precipitation at Baisman's Run, with just 20% suburban land cover in an otherwise forested watershed

  14. Carbon dioxide fluxes over a raised open bog at the Kinosheo Lake tower site during the Northern Wetlands Study (NOWES)

    Science.gov (United States)

    Neumann, H. H.; Den Hartog, G.; King, K. M.; Chipanshi, A. C.

    1994-01-01

    Measurements of carbon dioxide concentration and flux were made above a raised open bog at Lake Kinosheo in the southern Hudson Bay lowlands during the Northern Wetlands Study (NOWES) experiment in 1990. The flux measurements were made using micrometeorological techniques. They provide the first nondisturbing, larger-scale CO2 flux measurements for this ecosystem and are the first to integrate the exchange over the whole 24 hours of the day. Continuous concentration measurements by infrared gas analyzers (IRGA) and spot flask samples were taken over the period July 1 to July 29. Afternoon CO2 values were only 5 to 7 parts per million by volume (ppmv) lower than measurements over the same period at Canadian background monitoring stations. This suggested that there was little draw-down by local photosynthetic sinks. CO2 fluxes were measured at 8 and 18 m by Bowen ratio and eddy correlation methods, respectively. The methods produced comparable results on averaged data but often diverged considerably on individual half-hour results. Fluxes were small. Daytime values averaged to -0.068 mg/sq m/s by eddy correlation and -0.077 mg/sq m/s by Bowen ratio over the period June 25 to July 28 (negative denotes downward flux), while at night, flux densities were +0.062 mg/sq m/s and +0.085 mg/sq m/s. Integration of the mean diurnal curve gave a net flux of -1.7 g/sq m/d. Comparable data for this type of ecosystem were not found. However, Coyne and Kelley (1975), measuring near Barrow, Alaska, over wet meadow tundra dominated by sedges and grasses, found net fluxes of -7.2 g/sq m/d. Typical net CO2 fluxes from other active temperature ecosystems have been found to be -10 to -20 g/sq m/d (Monteith, 1976). Mean half hourly fluxes were almost constant at +0.06 mg/sq m/s through the nighttime hours. About one half-hour after sunrise the flux reversed direction. Uptake peaked about 0900 eastern daylight time (EDT) and then gradually declined but remained downward until near sunset

  15. The microscopic investigation of structures of moving flux lines by ...

    Indian Academy of Sciences (India)

    Abstract. We have used a variety of microscopic techniques to reveal the structure and motion of flux line arrangements, when the flux lines in low Tc type II superconductors are caused to move by a transport current. Using small-angle neutron scattering by the flux line lattice (FLL), we are able to demonstrate directly the ...

  16. Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model)

    Science.gov (United States)

    2017-09-01

    ARL-TR-8155 ● SEP 2017 US Army Research Laboratory Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model... Energy Research, Volume 5 (Solar Radiation Flux Model) by Clayton Walker and Gail Vaucher Computational and Information Sciences Directorate, ARL...2017 June 28 4. TITLE AND SUBTITLE Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model) 5a. CONTRACT NUMBER ROTC Internship

  17. Properties of Flux Tubes and the Relation with Solar Irradiance ...

    Indian Academy of Sciences (India)

    At the solar surface the magnetic field is bundled into discrete elements of concentrated flux, often referred to as magnetic flux tubes, which cover only a small fraction of the solar surface. Flux tubes span a whole spectrum of sizes, ranging from sunspots to features well below the best currently obtainable spatial resolution.

  18. Latent heat sink in soil heat flux measurements

    Science.gov (United States)

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  19. Tuning the Gap of a Superconducting Flux Qubit

    NARCIS (Netherlands)

    Paauw, F.G.; Fedorov, A.; Harmans, C.J.P.M.; Mooij, J.E.

    2009-01-01

    We experimentally demonstrate the in situ tunability of the minimum energy splitting (gap) of a superconducting flux qubit by means of an additional flux loop. Pulses applied via a local control line allow us to tune the gap over a range of several GHz on a nanosecond time scale. The strong flux

  20. Surface renewal method for estimating sensible heat flux | Mengistu ...

    African Journals Online (AJOL)

    For short canopies, latent energy flux may be estimated using a shortened surface energy balance from measurements of sensible and soil heat flux and the net irradiance at the surface. The surface renewal (SR) method for estimating sensible heat, latent energy, and other scalar fluxes has the advantage over other ...