WorldWideScience

Sample records for sub-micron transistor reliability

  1. A Novel Step-Doping Fully-Depleted Silicon-on-Insulator Metal-Oxide-Semiconductor Field-Effect Transistor for Reliable Deep Sub-micron Devices

    Science.gov (United States)

    Elahipanah, Hossein; Orouji, Ali A.

    2009-11-01

    For first time, we report a novel deep sub-micron fully-depleted silicon-on-insulator metal-oxide-semiconductor field-effect-transistor (FD SOI MOSFET) where the channel layer consists of two sections with a step doping (SD) region in order to increase performance and reliability of the device. This new structure that called SD FD SOI structure (SDFD-SOI MOSFET), were used for reaching suitable threshold voltage upon device scaling and reliability improvement. We demonstrate that the electric field was modified in the channel and common peak near the source junction have been reduced in the SDFD-SOI structure. The device demonstrates large enhancements in performance areas such as current drive capability, output resistance, hot-carrier reliability and threshold voltage roll-off. It was found that the device performance is very much dependent upon the SD region parameters. Simulation results show that the proposed structure improved on/off current ratio, and saturated output characteristics compared with conventional SOI structure (C-SOI MOSFET). Also, it was shown that substrate current of SDFD-SOI MOSFET is much lower than the C-SOI MOSFET which presented the lower hot-carrier degradation in proposed MOSFET. Results show that the most short-channel problems in very large scale integrated circuits (VLSI) could be solved and the proposed SDFD-SOI MOSFETs can work very well in deep sub-micron and nanoscale regime.

  2. Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100 MHz operation

    Science.gov (United States)

    Münzenrieder, Niko; Salvatore, Giovanni A.; Petti, Luisa; Zysset, Christoph; Büthe, Lars; Vogt, Christian; Cantarella, Giuseppe; Tröster, Gerhard

    2014-12-01

    In recent years new forms of electronic devices such as electronic papers, flexible displays, epidermal sensors, and smart textiles have become reality. Thin-film transistors (TFTs) are the basic blocks of the circuits used in such devices and need to operate above 100 MHz to efficiently treat signals in RF systems and address pixels in high resolution displays. Beyond the choice of the semiconductor, i.e., silicon, graphene, organics, or amorphous oxides, the junctionless nature of TFTs and its geometry imply some limitations which become evident and important in devices with scaled channel length. Furthermore, the mechanical instability of flexible substrates limits the feature size of flexible TFTs. Contact resistance and overlapping capacitance are two parasitic effects which limit the transit frequency of transistors. They are often considered independent, while a deeper analysis of TFTs geometry imposes to handle them together; in fact, they both depend on the overlapping length (LOV) between source/drain and the gate contacts. Here, we conduct a quantitative analysis based on a large number of flexible ultra-scaled IGZO TFTs. Devices with three different values of overlap length and channel length down to 0.5 μm are fabricated to experimentally investigate the scaling behavior of the transit frequency. Contact resistance and overlapping capacitance depend in opposite ways on LOV. These findings establish routes for the optimization of the dimension of source/drain contact pads and suggest design guidelines to achieve megahertz operation in flexible IGZO TFTs and circuits.

  3. Scanning SQUID susceptometers with sub-micron spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A. [Department of Applied Physics, Stanford University, Stanford, California 94305-4045 (United States); Paulius, Lisa [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Spanton, Eric M. [Department of Physics, Stanford University, Stanford, California 94305-4045 (United States); Schiessl, Daniel [Attocube Systems AG, Königinstraße 11A, 80539 Munich (Germany); Jermain, Colin L.; Gibbons, Jonathan [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Fung, Y.-K.K.; Gibson, Gerald W. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Huber, Martin E. [Department of Physics, University of Colorado Denver, Denver, Colorado 80217-3364 (United States); Ralph, Daniel C. [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Kavli Institute at Cornell, Ithaca, New York 14853 (United States); Ketchen, Mark B. [OcteVue, Hadley, Massachusetts 01035 (United States)

    2016-09-15

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  4. Discovering sub-micron ice particles across Dione' surface

    Science.gov (United States)

    Scipioni, Francesca; Schenk, Pual; Tosi, Federico; Clark, Roger; Dalle Ore, Cristina; Combe, Jean-Philippe

    2015-11-01

    Water ice is the most abundant component of Saturn’s mid-sized moons. However, these moons show an albedo asymmetry - their leading sides are bright while their trailing side exhibits dark terrains. Such differences arise from two surface alteration processes: (i) the bombardment of charged particles from the interplanetary medium and driven by Saturn’s magnetosphere on the trailing side, and (ii) the impact of E-ring water ice particles on the satellites’ leading side. As a result, the trailing hemisphere appears to be darker than the leading side. This effect is particularly evident on Dione's surface. A consequence of these surface alteration processes is the formation or the implantation of sub-micron sized ice particles.The presence of such particles influences and modifies the surfaces' spectrum because of Rayleigh scattering by the particles. In the near infrared range of the spectrum, the main sub-micron ice grains spectral indicators are: (i) asymmetry and (ii) long ward minimum shift of the absorption band at 2.02 μm (iii) a decrease in the ratio between the band depths at 1.50 and 2.02 μm (iv) a decrease in the height of the spectral peak at 2.6 μm (v) the suppression of the Fresnel reflection peak at 3.1 μm and (vi) the decrease of the reflection peak at 5 μm relative to those at 3.6 μm.We present results from our ongoing work mapping the variation of sub-micron ice grains spectral indicators across Dione' surface using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). To characterize the global variations of spectral indicators across Dione' surface, we divided it into a 1°x1° grid and then averaged the band depths and peak values inside each square cell.We will investigate if there exist a correspondence with water ice abundance variations by producing water ice' absorption band depths at 1.25, 1.52 and 2.02 μm, and with surface morphology by comparing the results with ISS color maps in the ultraviolet, visible and infrared

  5. Short range investigation of sub-micron zirconia particles

    Energy Technology Data Exchange (ETDEWEB)

    Caracoche, M C; Martinez, J A [Departamento de Fisica, IFLP, Facultad de Ciencias Exactas, CICPBA, Universidad Nacional de La Plata (Argentina); Rivas, P C [IFLP-CONICET, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata (Argentina); Bondioli, F; Cannillo, V [Dipartimento di Ingegniria dei Materiali e dell' Ambiente, Facolta di Ingegneria, Universita di Modena e Reggio Emilia (Italy); Ferrari, A M, E-mail: cristina@fisica.unlp.edu.a [Dipartimento di Scienza a Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia (Italy)

    2009-05-01

    The Perturbed Angular Correlations technique was used to determine the configurations around Zirconium ions and their thermal behavior in non-aggregated sub-micron zirconia spherical particles. Three residues containing- Zr surroundings were determined for the non-crystalline starting particles, which were identified under the assumption of a certain chemical reactions sequence during synthesis. While the one made up mainly by hydroxyl groups was common to both samples, the two involving mainly organic residues were particle size dependent. Upon crystallization, both samples stabilized in the t'- and t- tetragonal forms and the Xc-cubic form but their amounts and temperatures of appearance were different. On heating, the structure of the smaller particles became gradually monoclinic achieving total degradation upon the subsequent cooling to RT.

  6. Separating the signal from the noise: Expanding flow cytometry into the sub-micron range.

    Science.gov (United States)

    Cytometry Part A Special Section: Separating the signal from the noise: Expanding flow cytometry into the sub-micron range. The current Cytometry Part A Special Section presents three studies that utilize cytometers to study sub-micron particles. The three studies involve the 1...

  7. Reliable strain measurement in transistor arrays by robust scanning transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    Suhyun Kim

    2013-09-01

    Full Text Available Accurate measurement of the strain field in the channels of transistor arrays is critical for strain engineering in modern electronic devices. We applied atomic-resolution high-angle annular dark-field scanning transmission electron microscopy to quantitative measurement of the strain field in transistor arrays. The quantitative strain profile over 20 transistors was obtained with high reliability and a precision of 0.1%. The strain field was found to form homogeneously in the channels of the transistor arrays. Furthermore, strain relaxation due to the thin foil effect was quantitatively investigated for thicknesses of 35 to 275 nm.

  8. Deciphering sub-micron ice particles on Enceladus surface

    Science.gov (United States)

    Scipioni, F.; Schenk, P.; Tosi, F.; D'Aversa, E.; Clark, R.; Combe, J.-Ph.; Ore, C. M. Dalle

    2017-07-01

    The surface of Saturn's moon Enceladus is composed primarily by pure water ice. The Cassini spacecraft has observed present-day geologic activity at the moon's South Polar Region, related with the formation and feeding of Saturn's E-ring. Plumes of micron-sized particles, composed of water ice and other non-ice contaminants (e.g., CO2, NH3, CH4), erupt from four terrain's fractures named Tiger Stripes. Some of this material falls back on Enceladus' surface to form deposits that extend to the North at ∼40°W and ∼220°W, with the highest concentration found at the South Pole. In this work we analyzed VIMS-IR data to identify plumes deposits across Enceladus' surface through the variation in band depth of the main water ice spectral features. To characterize the global variation of water ice band depths across Enceladus, the entire surface was sampled with an angular resolution of 1° in both latitude and longitude, and for each angular bin we averaged the value of all spectral indices as retrieved by VIMS. The position of the plumes' deposits predicted by theoretical models display a good match with water ice band depths' maps on the trailing hemisphere, whereas they diverge significantly on the leading side. Space weathering processes acting on Enceladus' surface ionize and break up water ice molecules, resulting in the formation of particles smaller than one micron. We also mapped the spectral indices for sub-micron particles and we compared the results with the plumes deposits models. Again, a satisfactory match is observed on the trailing hemisphere only. Finally, we investigated the variation of the depth of the water ice absorption bands as a function of the phase angle. In the visible range, some terrains surrounding the Tiger Stripes show a decrease in albedo when the phase angle is smaller than 10°. This unusual effect cannot be confirmed by near infrared data, since observations with a phase angle lower than 10° are not available. For phase angle

  9. Penetration of sub-micron particles into dentinal tubules using ultrasonic cavitation.

    Science.gov (United States)

    Vyas, N; Sammons, R L; Pikramenou, Z; Palin, W M; Dehghani, H; Walmsley, A D

    2017-01-01

    Functionalised silica sub-micron particles are being investigated as a method of delivering antimicrobials and remineralisation agents into dentinal tubules. However, their methods of application are not optimised, resulting in shallow penetration and aggregation. The aim of this study is to investigate the impact of cavitation occurring around ultrasonic scalers for enhancing particle penetration into dentinal tubules. Dentine slices were prepared from premolar teeth. Silica sub-micron particles were prepared in water or acetone. Cavitation from an ultrasonic scaler (Satelec P5 Newtron, Acteon, France) was applied to dentine slices immersed inside the sub-micron particle solutions. Samples were imaged with scanning electron microscopy (SEM) to assess tubule occlusion and particle penetration. Qualitative observations of SEM images showed some tubule occlusion. The particles could penetrate inside the tubules up to 60μm when there was no cavitation and up to ∼180μm when there was cavitation. The cavitation bubbles produced from an ultrasonic scaler may be used to deliver sub-micron particles into dentine. This method has the potential to deliver such particles deeper into the dentinal tubules. Cavitation from a clinical ultrasonic scaler may enhance penetration of sub-micron particles into dentinal tubules. This can aid in the development of novel methods for delivering therapeutic clinical materials for hypersensitivity relief and treatment of dentinal caries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. GaAs Device Reliability: High Electron Mobility Transistors and Heterojunction Bipolar Transistors

    Science.gov (United States)

    Ren, F.; Douglas, E. A.; Pearton, Stephen J.

    The two main GaAs-based electronic device technologies are high electron mobility transistors (HEMTs) and heterojunction bipolar transistors (HBTs). Both technologies are commercialized for use in low-noise amplifiers, radar, and fiber optic data transmission systems. In this chapter, we will summarize the degradation mechanisms that limit the lifetime of these devices. A variety of contact and surface degradation mechanisms have been reported but differ in the two device technologies - for HEMTs, the layers are thin and relatively lightly doped compared to HBT structures, and there is a metal Schottky gate that is directly on the semiconductor. By contrast, the HBT relies on pn junctions for current modulation and has only ohmic contacts. This leads to different degradation mechanisms for the two types of devices.

  11. Transistors

    CERN Document Server

    Kendall, E J M

    2013-01-01

    Transistors covers the main thread of transistor development. This book is organized into 2 parts encompassing 19, and starts with an overview of the semi-conductor physics pertinent to the understanding of transistors, as well as features and applications of the point contact devices and junction devices. The subsequent part deals with the modulation of conductance of thin films of conductors by surface charges, the metal-semi conductor, and the semi-conductor triode. These topics are followed by discussions on the nature of the forward current, physical principles in transistor, the hole inj

  12. Analysis and Design of Monolithic Inductors in Sub-micron CMOS

    DEFF Research Database (Denmark)

    Fallesen, Carsten; Jørgensen, Allan

    1997-01-01

    In the last few years the CMOS processes have gone into deep sub-micron channel lengths. This means that it is now possible to make GHz applications in CMOS. In analog GHz applications it is often necessary to have access to inductors. This report describes the development of a physical model of ...

  13. Sub-micron-sized delafossite CuCrO2 with different morphologies ...

    Indian Academy of Sciences (India)

    40, No. 1, February 2017, pp. 195–199. c Indian Academy of Sciences. DOI 10.1007/s12034-016-1340-6. Sub-micron-sized delafossite CuCrO2 with different morphologies synthesized by nitrate–citric acid sol–gel route. SATISH BOLLOJU1 and RADHAKRISHNAN SRINIVASAN1,2,∗. 1Department of Chemistry, BITS Pilani ...

  14. Directed assembly of conducting polymers on sub-micron templates by electrical fields

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jia; Wei, Ming [National Science Foundation (NSF) Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Busnaina, Ahmed [National Science Foundation (NSF) Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing, Northeastern University, Boston, MA 02115 (United States); Barry, Carol [National Science Foundation (NSF) Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing, University of Massachusetts Lowell, Lowell, MA 01854 (United States); Mead, Joey, E-mail: Joey_Mead@uml.edu [National Science Foundation (NSF) Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing, University of Massachusetts Lowell, Lowell, MA 01854 (United States)

    2013-02-20

    Highlights: Black-Right-Pointing-Pointer Nanoscale patterns with dimensions of assembled PANi down to 100 nm were fabricated. Black-Right-Pointing-Pointer We use electrophoretic and dielectrophoretic assembly to deposit PANi. Black-Right-Pointing-Pointer Electrophoretic and dielectrophoretic assembly of PANi finished in less than 1 min. Black-Right-Pointing-Pointer Effect of process parameters on assembly of PANi onto nanoscale pattern was studied. Black-Right-Pointing-Pointer The assembled PANi can be transferred to other flexible substrates. - Abstract: Patterning of conducting polymer into sub-micron patterns over large areas at high rate and low cost is significant for commercial manufacturing of novel devices. Electrophoretic and dielectrophoretic assembly provide an easily scaled approach with high fabrication rates. In this work, electrophoretic and dielectrophoretic assembly were used to assemble polyaniline (PANi) into multiscale sub-micron size patterns in less than 1 min. The process was controlled by assembly time, amplitude, and frequency of the electric field. Dielectrophoretic assembly is preferable for manufacturing as it reduces damage to the templates used to control the assembly. Using this method, sub-micron patterns with dimensions of the assembled PANi down to 100 nm were fabricated over large areas in short times. The assembled PANi was further transferred to other flexible polymer substrates by a thermoforming process, providing a fast, easily controlled and promising approach for fabrication of nanoscale devices.

  15. Sub-micron Cu/SSZ-13: Synthesis and application as selective catalytic reduction (SCR) catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Prodinger, Sebastian; Derewinski, Miroslaw A.; Wang, Yilin; Washton, Nancy M.; Walter, Eric D.; Szanyi, János; Gao, Feng; Wang, Yong; Peden, Charles H. F.

    2017-02-01

    For the first time, sub-micron Cu/SSZ-13, obtained by modifying an existing synthesis procedure, was shown to be an effective and stable catalyst for selective catalytic reduction reactions, such as NO reduction. Characterization of the materials with X-ray diffraction, N2-physisorption and 27Al MAS NMR shows that hydrothermal aging, simulating SCR reaction conditions, is more destructive in respect to dealumination for smaller particles prior to Cu-exchange. However, the catalytic performance and hydrothermal stability for Cu/SSZ-13 is independent of the particle size. In particular, the stability of tetrahedral framework Al is improved in the sub-micron Cu/SSZ-13 catalysts of comparable Cu loading. This indicates that variations in the Al distribution for different SSZ-13 synthesis procedures have a more critical influence on stabilizing isolated Cu-ions during harsh hydrothermal aging than the particle size. This study is of high interest for applications in vehicular DeNOx technologies where high loadings of active species on wash coats can be achieved by using sub-micron Cu/SSZ-13. The authors would like to thank B. W. Arey and J. J. Ditto for performing electron microscope imaging. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. S. P and M. A. D also acknowledge support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under the Laboratory Directed Research & Development Program at PNNL. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  16. Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica

    Energy Technology Data Exchange (ETDEWEB)

    Shen Nan [Lawrence Livermore National Laboratory, 7000 East Avenue, L-491, Livermore, CA 94550-9234 (United States); Matthews, Manyalibo J., E-mail: ibo@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, L-491, Livermore, CA 94550-9234 (United States); Fair, James E.; Britten, Jerald A.; Nguyen, Hoang T.; Cooke, Diane; Elhadj, Selim; Yang, Steven T. [Lawrence Livermore National Laboratory, 7000 East Avenue, L-491, Livermore, CA 94550-9234 (United States)

    2010-04-01

    Nano- to micrometer-sized surface defects on UV-grade fused silica surfaces are known to be effectively smoothed through the use of high-temperature localized CO{sub 2} laser heating, thereby enhancing optical properties. However, the details of the mass transport and the effect of hydroxyl content on the laser smoothing of defective silica at sub-micron length scales are still not completely understood. In this study, we examine the morphological evolution of sub-micron, dry-etched periodic surface structures on type II and type III SiO{sub 2} substrates under 10.6 {mu}m CO{sub 2} laser irradiation using atomic force microscopy (AFM). In situ thermal imaging was used to map the transient temperature field across the heated region, allowing assessment of the T-dependent mass transport mechanisms under different laser-heating conditions. Computational fluid dynamics simulations correlated well with experimental results, and showed that for large effective capillary numbers (N{sub c} > 2), surface diffusion is negligible and smoothing is dictated by capillary action, despite the relatively small spatial scales studied here. Extracted viscosity values over 1700-2000 K were higher than the predicted bulk values, but were consistent with the surface depletion of OH groups, which was confirmed using confocal Raman microscopy.

  17. Long-Term Reliability of High Speed SiGe/Si Heterojunction Bipolar Transistors

    Science.gov (United States)

    Ponchak, George E. (Technical Monitor); Bhattacharya, Pallab

    2003-01-01

    Accelerated lifetime tests were performed on double-mesa structure Si/Si0.7Ge0.3/Si npn heterojunction bipolar transistors, grown by molecular beam epitaxy, in the temperature range of 175C-275C. Both single- and multiple finger transistors were tested. The single-finger transistors (with 5x20 micron sq m emitter area) have DC current gains approximately 40-50 and f(sub T) and f(sub MAX) of up to 22 GHz and 25 GHz, respectively. The multiple finger transistors (1.4 micron finger width, 9 emitter fingers with total emitter area of 403 micron sq m) have similar DC current gain but f(sub T) of 50 GHz. It is found that a gradual degradation in these devices is caused by the recombination enhanced impurity diffusion (REID) of boron atoms from the p-type base region and the associated formation of parasitic energy barriers to electron transport from the emitter to collector layers. This REID has been quantitatively modeled and explained, to the first order of approximation, and the agreement with the measured data is good. The mean time to failure (MTTF) of the devices at room temperature is estimated from the extrapolation of the Arrhenius plots of device lifetime versus reciprocal temperature. The results of the reliability tests offer valuable feedback for SiGe heterostructure design in order to improve the long-term reliability of the devices and circuits made with them. Hot electron induced degradation of the base-emitter junction was also observed during the accelerated lifetime testing. In order to improve the HBT reliability endangered by the hot electrons, deuterium sintered techniques have been proposed. The preliminary results from this study show that a deuterium-sintered HBT is, indeed, more resistant to hot-electron induced base-emitter junction degradation. SiGe/Si based amplifier circuits were also subjected to lifetime testing and we extrapolate MTTF is approximately 1.1_10(exp 6) hours at 125iC junction temperature from the circuit lifetime data.

  18. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul Gabriel; McKenzie, Bonnie Beth; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and

  19. The surface characterisation and comparison of two potential sub-micron, sugar bulking excipients for use in low-dose, suspension formulations in metered dose inhalers.

    Science.gov (United States)

    James, Jeff; Crean, Barry; Davies, Martyn; Toon, Richard; Jinks, Phil; Roberts, Clive J

    2008-09-01

    This study compares the surface characteristics and surface energetics of two potential bulking excipients, anhydrous sub-micron alpha-lactose and sub-micron sucrose, for use with low-dose, suspension formulations in pressurised metered dose inhalers (pMDIs). Both sub-micron bulking excipients are processed from parent materials (alpha-lactose monohydrate/alpha-lactose monohydrate and silk grade sucrose, respectively) so the surface characteristics of each material were determined and compared. Additionally, the surface energetics and adhesive interactions between each sub-micron bulking excipient and some chosen active pharmaceutical ingredients (APIs) used in pMDI formulations were also determined. From this data, it was possible to predict the potential degree of interaction between the APIs and each sub-micron bulking excipient, thus determining suitable API-excipient combinations for pMDI formulation optimisation. Salmon calcitonin was also investigated as a potential API due to the current interest in, and the potential low-dose requirements for, the pulmonary delivery of proteins. The size and morphology of each sub-micron excipient (and parent materials) were determined using scanning electron microscopy (SEM) and the crystalline nature of each sub-micron excipient and parent material was assessed using X-ray diffraction (XRD). The surface chemistry of each sub-micron excipient was analysed using X-ray photoelectron spectroscopy (XPS). The surface energies of each sub-micron excipient, along with their respective parent materials and any intermediates, were determined using two techniques. The surface energies of these materials were determined via (a) single particle adhesive interactions using atomic force microscopy (AFM) and (b) 'bulk' material surface interactions using contact angle measurements (CA). From the CA data, it was possible to calculate the theoretical work of adhesion values for each API-excipient interaction using the surface component

  20. The fabrication of integrated carbon pipes with sub-micron diameters

    Science.gov (United States)

    Kim, B. M.; Murray, T.; Bau, H. H.

    2005-08-01

    A method for fabricating integrated carbon pipes (nanopipettes) of sub-micron diameters and tens of microns in length is demonstrated. The carbon pipes are formed from a template consisting of the tip of a pulled alumino-silicate glass capillary coated with carbon deposited from a vapour phase. This method renders carbon nanopipettes without the need for ex situ assembly and facilitates parallel production of multiple carbon-pipe devices. An electric-field-driven transfer of ions in a KCl solution through the integrated carbon pipes exhibits nonlinear current-voltage (I-V) curves, markedly different from the Ohmic I-V curves observed in glass pipettes under similar conditions. The filling of the nanopipette with fluorescent suspension is also demonstrated.

  1. A Nordic project on high speed low power design in sub-micron CMOS technology for mobile phones

    DEFF Research Database (Denmark)

    Olesen, Ole

    This paper is a survey paper presenting the Nordic CONFRONT project and reporting some results from the group at CIE/DTU, Denmark. The objective of the project is to demonstrate the feasibility of sub-micron CMOS for the realisation of RF front-end circuits operating at frequencies in the 1...

  2. Variability and Reliability of Single-Walled Carbon Nanotube Field Effect Transistors

    Directory of Open Access Journals (Sweden)

    Ahmad Ehteshamul Islam

    2013-09-01

    Full Text Available Excellent electrical performance and extreme sensitivity to chemical species in semiconducting Single-Walled Carbon NanoTubes (s-SWCNTs motivated the study of using them to replace silicon as a next generation field effect transistor (FET for electronic, optoelectronic, and biological applications. In addition, use of SWCNTs in the recently studied flexible electronics appears more promising because of SWCNTs’ inherent flexibility and superior electrical performance over silicon-based materials. All these applications require SWCNT-FETs to have a wafer-scale uniform and reliable performance over time to a level that is at least comparable with the currently used silicon-based nanoscale FETs. Due to similarity in device configuration and its operation, SWCNT-FET inherits most of the variability and reliability concerns of silicon-based FETs, namely the ones originating from line edge roughness, metal work-function variation, oxide defects, etc. Additional challenges arise from the lack of chirality control in as-grown and post-processed SWCNTs and also from the presence of unstable hydroxyl (–OH groups near the interface of SWCNT and dielectric. In this review article, we discuss these variability and reliability origins in SWCNT-FETs. Proposed solutions for mitigating each of these sources are presented and a future perspective is provided in general, which are required for commercial use of SWCNT-FETs in future nanoelectronic applications.

  3. Water ice and sub-micron ice particles on Tethys and Mimas

    Science.gov (United States)

    Scipioni, Francesca; Nordheim, Tom; Clark, Roger Nelson; D'Aversa, Emiliano; Cruikshank, Dale P.; Tosi, Federico; Schenk, Paul M.; Combe, Jean-Philippe; Dalle Ore, Cristina M.

    2017-10-01

    IntroductionWe present our ongoing work, mapping the variation of the main water ice absorption bands, and the distribution of the sub-micron particles, across Mimas and Tethys’ surfaces using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). We present our results in the form of maps of variation of selected spectral indicators (depth of absorption bands, reflectance peak height, spectral slopes).Data analysisVIMS acquires hyperspectral data in the 0.3-5.1 μm spectral range. We selected VIMS cubes of Tethys and Mimas in the IR range (0.8-5.1 μm). For all pixels in the selected cubes, we measured the band depths for water-ice absorptions at 1.25, 1.5 and 2.02 μm and the height of the 3.6 μm reflection peak. Moreover, we considered the spectral indictors for particles smaller than 1 µm [1]: (i) the 2 µm absorption band is asymmetric and (ii) it has the minimum shifted to longer λ (iii) the band depth ratio 1.5/2.0 µm decreases; (iv) the reflection peak at 2.6 µm decreases; (v) the Fresnel reflection peak is suppressed; (vi) the 5 µm reflectance is decreased relative to the 3.6 µm peak. To characterize the global variation of water-ice band depths, and of sub-micron particles spectral indicators, across Mimas and Tethys, we sampled the two satellites’ surfacees with a 1°x1° fixed-resolution grid and then averaged the band depths and peak values inside each square cell.3. ResultsFor both moons we find that large geologic features, such as the Odysseus and Herschel impact basins, do not correlate with water ice’s abundance variation. For Tethys, we found a quite uniform surface on both hemispheres. The only deviation from this pattern shows up on the trailing hemisphere, where we notice two north-oriented, dark areas around 225° and 315°. For Mimas, the leading and trailing hemispheres appear to be quite similar in water ice abundance, the trailing portion having water ice absorption bands lightly more suppressed than the leading side

  4. Acoustic Emission Patterns and the Transition to Ductility in Sub-Micron Scale Laboratory Earthquakes

    Science.gov (United States)

    Ghaffari, H.; Xia, K.; Young, R.

    2013-12-01

    We report observation of a transition from the brittle to ductile regime in precursor events from different rock materials (Granite, Sandstone, Basalt, and Gypsum) and Polymers (PMMA, PTFE and CR-39). Acoustic emission patterns associated with sub-micron scale laboratory earthquakes are mapped into network parameter spaces (functional damage networks). The sub-classes hold nearly constant timescales, indicating dependency of the sub-phases on the mechanism governing the previous evolutionary phase, i.e., deformation and failure of asperities. Based on our findings, we propose that the signature of the non-linear elastic zone around a crack tip is mapped into the details of the evolutionary phases, supporting the formation of a strongly weak zone in the vicinity of crack tips. Moreover, we recognize sub-micron to micron ruptures with signatures of 'stiffening' in the deformation phase of acoustic-waveforms. We propose that the latter rupture fronts carry critical rupture extensions, including possible dislocations faster than the shear wave speed. Using 'template super-shear waveforms' and their network characteristics, we show that the acoustic emission signals are possible super-shear or intersonic events. Ref. [1] Ghaffari, H. O., and R. P. Young. "Acoustic-Friction Networks and the Evolution of Precursor Rupture Fronts in Laboratory Earthquakes." Nature Scientific reports 3 (2013). [2] Xia, Kaiwen, Ares J. Rosakis, and Hiroo Kanamori. "Laboratory earthquakes: The sub-Rayleigh-to-supershear rupture transition." Science 303.5665 (2004): 1859-1861. [3] Mello, M., et al. "Identifying the unique ground motion signatures of supershear earthquakes: Theory and experiments." Tectonophysics 493.3 (2010): 297-326. [4] Gumbsch, Peter, and Huajian Gao. "Dislocations faster than the speed of sound." Science 283.5404 (1999): 965-968. [5] Livne, Ariel, et al. "The near-tip fields of fast cracks." Science 327.5971 (2010): 1359-1363. [6] Rycroft, Chris H., and Eran Bouchbinder

  5. The mixed-mode reliability stress of silicon-germanium heterojunction bipolar transistors

    Science.gov (United States)

    Zhu, Chendong

    The objective of the dissertation is to combine the recent Mixed-Mode reliability stress studies in silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The thesis starts with a review of SiGe HBT fundamentals, development trends, and the conventional reliability stress paths used in industry, following which the new stress path, Mixed-Mode stress, is introduced. Chapter 2 is devoted to an in-depth discussion of damage mechanisms that includes the impact ionization effect and the self-heating effect. Chapter 3 goes onto the impact ionization effect using two-dimensional calibrated MEDICI simulations. Chapter 4 assesses the reliability of SiGe HBTs in extreme temperature environments by way of comprehensive experiments and MEDICI simulations. A comparison of the device lifetimes for reverse-EB stress and mixed-mode stress indicates different damage mechanisms govern these phenomena. The thesis concludes with a summary of the project and suggestions for future research in chapter 5. This dissertation covers the following topics: (1) Introduces a new mixed-mode stress technique: time cumulative stress (Chapter II, also published in [23] and [24]). (2) Identifies impact ionization effects in the stress damage (Chapter II, also published in [23] and [24]). (3) Investigates for the first time mixed-mode damage using TCAD simulations at both room temperature and cryogenic temperatures (Chapter III and IV, also published in [23][24][62]). (4) Analyzes for the first time impact of self-heating on mixed-mode stress response, and identifies a temperature triggered damage threshold (Chapter II, will be published in [25]). (5) Explains the geometrical scaling issues in mixed-mode stress and explores mixed-mode stress reliability scaling trends (Chapter II, will be published in [25]). (6) Assesses for the first time SiGe HBT reliability at cryogenic temperatures (Chapter VI, also published in [62]).

  6. Characterization and reliability of aluminum gallium nitride/gallium nitride high electron mobility transistors

    Science.gov (United States)

    Douglas, Erica Ann

    Compound semiconductor devices, particularly those based on GaN, have found significant use in military and civilian systems for both microwave and optoelectronic applications. Future uses in ultra-high power radar systems will require the use of GaN transistors operated at very high voltages, currents and temperatures. GaN-based high electron mobility transistors (HEMTs) have proven power handling capability that overshadows all other wide band gap semiconductor devices for high frequency and high-power applications. Little conclusive research has been reported in order to determine the dominating degradation mechanisms of the devices that result in failure under standard operating conditions in the field. Therefore, it is imperative that further reliability testing be carried out to determine the failure mechanisms present in GaN HEMTs in order to improve device performance, and thus further the ability for future technologies to be developed. In order to obtain a better understanding of the true reliability of AlGaN/GaN HEMTs and determine the MTTF under standard operating conditions, it is crucial to investigate the interaction effects between thermal and electrical degradation. This research spans device characterization, device reliability, and device simulation in order to obtain an all-encompassing picture of the device physics. Initially, finite element thermal simulations were performed to investigate the effect of device design on self-heating under high power operation. This was then followed by a study of reliability of HEMTs and other tests structures during high power dc operation. Test structures without Schottky contacts showed high stability as compared to HEMTs, indicating that degradation of the gate is the reason for permanent device degradation. High reverse bias of the gate has been shown to induce the inverse piezoelectric effect, resulting in a sharp increase in gate leakage current due to crack formation. The introduction of elevated

  7. Large area sub-micron chemical imaging of magnesium in sea urchin teeth.

    Science.gov (United States)

    Masic, Admir; Weaver, James C

    2015-03-01

    The heterogeneous and site-specific incorporation of inorganic ions can profoundly influence the local mechanical properties of damage tolerant biological composites. Using the sea urchin tooth as a research model, we describe a multi-technique approach to spatially map the distribution of magnesium in this complex multiphase system. Through the combined use of 16-bit backscattered scanning electron microscopy, multi-channel energy dispersive spectroscopy elemental mapping, and diffraction-limited confocal Raman spectroscopy, we demonstrate a new set of high throughput, multi-spectral, high resolution methods for the large scale characterization of mineralized biological materials. In addition, instrument hardware and data collection protocols can be modified such that several of these measurements can be performed on irregularly shaped samples with complex surface geometries and without the need for extensive sample preparation. Using these approaches, in conjunction with whole animal micro-computed tomography studies, we have been able to spatially resolve micron and sub-micron structural features across macroscopic length scales on entire urchin tooth cross-sections and correlate these complex morphological features with local variability in elemental composition. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Chemical Mapping of Proterozoic Organic Matter at Sub-Micron Spatial Resolution

    Science.gov (United States)

    Oehler, Dorothy Z.; Robert, Francois; Mostefaoui, Smail; Meibom, Anders; Selo, Madeleine; McKay, David S.

    2006-01-01

    We have used a NanoSIMS ion microprobe to map sub-micron-scale distributions of carbon, nitrogen, sulfur, silicon, and oxygen in organic microfossils and laminae from the approximately 0.85 Ga Bitter Springs Formation of Australia. The data provide clues about the original chemistry of the microfossils, the silicification process, and biosignatures of specific microorganisms and microbial communities. Chemical maps of fossil unicells and filaments reveal distinct wall-and sheath-like structures enriched in C, N and S, consistent with their accepted biological origin. Surprisingly, organic laminae, previously considered to be amorphous, also exhibit filamentous and apparently compressed spheroidal structures defined by strong enrichments in C, N and S. By analogy to data from the well-preserved microfossils, these structures are interpreted as being of biological origin, most likely representing densely packed remnants of microbial mats. Because the preponderance of organic matter in Precambrian sediments is similarly "amorphous," our findings open a large body of generally neglected material to in situ structural, chemical, and isotopic study. Our results also offer new criteria for assessing biogenicity of problematic kerogenous materials and thus can be applied to assessments of poorly preserved or fragmentary organic residues in early Archean sediments and any that might occur in meteorites or other extraterrestrial samples.

  9. Sub-micron Hard X-ray Fluorescence Imaging of Synthetic Elements

    Science.gov (United States)

    Jensen, Mark P.; Aryal, Baikuntha P.; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E.

    2013-01-01

    Synchrotron-based X-ray fluorescence microscopy (SXFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurement such as μ-XANES (X-ray absorption near edge structure). We have used SXFM to image and simultaneously quantify the transuranic element plutonium at the L3 or L2 edge as well as lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope 242Pu. Elemental maps reveal that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions for an average 202 μm2 cell is 1.4 fg Pu/cell or 2.9 × 10−20 moles Pu/μm2, which is similar to the detection limit of K-edge SXFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its Lα X-ray emission. PMID:22444530

  10. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics.

    Science.gov (United States)

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Jaung, Jae Yun; Kim, Yong-Hoon; Park, Sung Kyu

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  11. Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica

    Energy Technology Data Exchange (ETDEWEB)

    Shen, N; Matthews, M J; Fair, J E; Britten, J A; Nguyen, H T; Cooke, D; Elhadj, S; Yang, S T

    2009-10-30

    Nano- to micrometer-sized surface defects on UV-grade fused silica surfaces are known to be effectively smoothed through the use of high-temperature localized CO{sub 2} laser heating, thereby enhancing optical properties. However, the details of the mass transport and the effect of hydroxyl content on the laser smoothing of defective silica at submicron length scales is still not completely understood. In this study, we examine the morphological evolution of sub-micron, dry-etched periodic surface structures on type II and type III SiO{sub 2} substrates under 10.6 {micro}m CO{sub 2} laser irradiation using atomic force microscopy (AFM). In-situ thermal imaging was used to map the transient temperature field across the heated region, allowing assessment of the T-dependent mass transport mechanisms under different laser-heating conditions. Computational fluid dynamics simulations correlated well with experimental results, and showed that for large effective capillary numbers (N{sub c} > 2), surface diffusion is negligible and smoothing is dictated by capillary action, despite the relatively small spatial scales studied here. Extracted viscosity values over 1700-2000K were higher than the predicted bulk values, but were consistent with the surface depletion of OH groups, which was confirmed using confocal Raman microscopy.

  12. Ultrathin oxides for the SCM analysis of sub-micron doping profiles

    Energy Technology Data Exchange (ETDEWEB)

    Ciampolini, Lorenzo; Bertin, F.; Hartmann, J.M.; Rochat, N.; Holliger, Ph.; Laugier, F.; Chabli, A

    2003-09-15

    Attenuated total reflection (ATR) spectroscopy and spectroscopic ellipsometry (SE) have been used to characterize oxides used for the scanning capacitance microscopy (SCM) technique. SCM has been used to study boron and phosphorous doped Si test structures epitaxially grown on (100) Si substrates. SCM samples have one-dimensional (1D) doping profiles with sub-micron features, with staircase-like steps in the unipolar sample and a smoother profile in the bipolar sample, as obtained by secondary ion mass spectrometry (SIMS) profiling. Cross-sectional SCM results obtained on samples oxidized by the standard low-temperature UV-ozone method are presented, discussed and compared to results obtained on cleaved samples oxidized by a simple exposure to air. The results show that the native oxide covering a (110) cleaved section may yield SCM images of sufficient quality, with no contrast reversal on a wide range of doping levels, as well as observed on sections prepared with the UV-ozone technique. However, the long-term stability of the SCM signal on native oxides is poor, and UV-ozone oxidation can be used to recover a valid SCM signal. Realistic ultrathin oxide thickness data obtained by SE on (110) substrates are presented together with ATR results, which confirm the superior quality of UV-ozone oxides with respect to other kinds of oxides.

  13. Sub-micron opto-chemical probes for studying living neurons

    Science.gov (United States)

    Hossein-Zadeh, M.; Delgado, J.; Schweizer, F.; Lieberman, R.

    2017-02-01

    We have fabricated sub-micron opto-chemical probes for pH, oxygen and calcium monitoring and demonstrated their application in intracellular and extracellular monitoring of neurons (cortical neuronal cultures and acute hippocampal slices). Using these probes, we have measured extracellular pH in the stratum radiatum of the CA1 region of mouse hippocampus upon stimulation of presynaptic Schaffer collateral axons. Synaptic transmission was monitored using standard electrophysiological techniques. We find that the local pH transiently changes in response to synaptic stimulation. In addition, the geometry of the functionalized region on the probe combined with high sensitivity imaging enables simultaneous monitoring of spatially adjacent but distinct compartments. As proof of concept we impaled cultured neurons with the probe measured calcium and pH inside as well as directly outside of neurons as we changed the pH and calcium concentration in the physiological solution in the perfusion chamber. As such these probes can be used to study the impact of the environment on both cellular and extra-cellular space. Additionally as the chemical properties of the surrounding medium can be controlled and monitored with high precision, these probes enable differential measurement of the target parameter referenced to a stable bath. This approach eliminates the uncertainties associated with non-chemical fluctuations in the fluorescent emission and result in a self-calibrated opto-chemical probe. We have also demonstrated multifunctional probes that are capable of measuring up to three parameters in the extracellular space in brain slices.

  14. Sub-micron resolution high-speed spectral domain optical coherence tomography in quality inspection for printed electronics

    Science.gov (United States)

    Czajkowski, J.; Lauri, J.; Sliz, R.; Fält, P.; Fabritius, T.; Myllylä, R.; Cense, B.

    2012-04-01

    We present the use of sub-micron resolution optical coherence tomography (OCT) in quality inspection for printed electronics. The device used in the study is based on a supercontinuum light source, Michelson interferometer and high-speed spectrometer. The spectrometer in the presented spectral-domain optical coherence tomography setup (SD-OCT) is centered at 600 nm and covers a 400 nm wide spectral region ranging from 400 nm to 800 nm. Spectra were acquired at a continuous rate of 140,000 per second. The full width at half maximum of the point spread function obtained from a Parylene C sample was 0:98 m. In addition to Parylene C layers, the applicability of sub-micron SD-OCT in printed electronics was studied using PET and epoxy covered solar cell, a printed RFID antenna and a screen-printed battery electrode. A commercial SD-OCT system was used for reference measurements.

  15. Effective Use of Focused Ion Beam (FIB) in Investigating Fundamental Mechanical Properties of Metals at the Sub-Micron Scale

    OpenAIRE

    Greer, Julia R.

    2006-01-01

    Recent advances in the 2-beam focused ion beams technology (FIB) have enabled researchers to not only perform high-precision nanolithography and micro-machining, but also to apply these novel fabrication techniques to investigating a broad range of materials' properties at the submicron and nano-scales. In our work, the FIB is utilized in manufacturing of sub-micron cylinders, or nano-pillars, as well as of TEM cross-sections to directly investigate plasticity of metals at thes...

  16. Prescribed 3-D Direct Writing of Suspended Micron/Sub-micron Scale Fiber Structures via a Robotic Dispensing System.

    Science.gov (United States)

    Yuan, Hanwen; Cambron, Scott D; Keynton, Robert S

    2015-06-12

    A 3-axis dispensing system is utilized to control the initiating and terminating fiber positions and trajectory via the dispensing software. The polymer fiber length and orientation is defined by the spatial positioning of the dispensing system 3-axis stages. The fiber diameter is defined by the prescribed dispense time of the dispensing system valve, the feed rate (the speed at which the stage traverses from an initiating to a terminating position), the gauge diameter of the dispensing tip, the viscosity and surface tension of the polymer solution, and the programmed drawing length. The stage feed rate affects the polymer solution's evaporation rate and capillary breakup of the filaments. The dispensing system consists of a pneumatic valve controller, a droplet-dispensing valve and a dispensing tip. Characterization of the direct write process to determine the optimum combination of factors leads to repeatedly acquiring the desired range of fiber diameters. The advantage of this robotic dispensing system is the ease of obtaining a precise range of micron/sub-micron fibers onto a desired, programmed location via automated process control. Here, the discussed self-assembled micron/sub-micron scale 3D structures have been employed to fabricate suspended structures to create micron/sub-micron fluidic devices and bioengineered scaffolds.

  17. Sub-micron particle number size distribution characteristics at two urban locations in Leicester

    Science.gov (United States)

    Hama, Sarkawt M. L.; Cordell, Rebecca L.; Kos, Gerard P. A.; Weijers, E. P.; Monks, Paul S.

    2017-09-01

    The particle number size distribution (PNSD) of atmospheric particles not only provides information about sources and atmospheric processing of particles, but also plays an important role in determining regional lung dose. Owing to the importance of PNSD in understanding particulate pollution two short-term campaigns (March-June 2014) measurements of sub-micron PNSD were conducted at two urban background locations in Leicester, UK. At the first site, Leicester Automatic Urban Rural Network (AURN), the mean number concentrations of nucleation, Aitken, accumulation modes, the total particles, equivalent black carbon (eBC) mass concentrations were 2002, 3258, 1576, 6837 # cm-3, 1.7 μg m-3, respectively, and at the second site, Brookfield (BF), were 1455, 2407, 874, 4737 # cm-3, 0.77 μg m-3, respectively. The total particle number was dominated by the nucleation and Aitken modes, with both consisting of 77%, and 81% of total number concentrations at AURN and BF sites, respectively. This behaviour could be attributed to primary emissions (traffic) of ultrafine particles and the temporal evolution of mixing layer. The size distribution at the AURN site shows bimodal distribution at 22 nm with a minor peak at 70 nm. The size distribution at BF site, however, exhibits unimodal distribution at 35 nm. This study has for the first time investigated the effect of Easter holiday on PNSD in UK. The temporal variation of PNSD demonstrated a good degree of correlation with traffic-related pollutants (NOX, and eBC at both sites). The meteorological conditions, also had an impact on the PNSD and eBC at both sites. During the measurement period, the frequency of NPF events was calculated to be 13.3%, and 22.2% at AURN and BF sites, respectively. The average value of formation and growth rates of nucleation mode particles were 1.3, and 1.17 cm-3 s-1 and 7.42, and 5.3 nm h-1 at AURN, and BF sites, respectively. It can suggested that aerosol particles in Leicester originate mainly

  18. Systematic Sub-Micron Na/Ca Banding in Orbulina universa and bilobata

    Science.gov (United States)

    Bonnin, E. A.; Zhu, Z.; Spero, H. J.; Hoenisch, B.; Russell, A. D.; Fehrenbacher, J. S.; Gagnon, A. C.

    2016-02-01

    Mg/Ca ratios in planktic foraminifera are used widely as a proxy for past sea-surface temperatures. However, over the last decade, it has become clear that these ratios are not constant throughout the shell. Instead these ratios vary systematically by several fold between day and night independent of temperature, a phenomenon that has yet to be explained mechanistically. Determining whether elements other than Mg also exhibit sub-micron banding is essential to properly interpret Me/Ca-based paleoproxies and could help constrain the mechanisms causing Me/Ca variability. Using time-of-flight secondary ion mass spectrometry (ToF-SIMS), an isotope mapping technique with a spatial resolution of roughly 200 nm, we discovered systematic Na/Ca banding in individuals of the symbiont-bearing planktic foraminifer Orbulina universa that had been cultured at constant temperature. Using stable-isotope time stamps, we show that this Na/Ca banding varies inversely with Mg/Ca, with high Na/Ca during the day and low Na/Ca at night for most individuals. Using a combination of analytical models and complementary instrumental techniques, we test whether these patterns can be explained by various ion transport processes. In addition to this Na/Ca banding pattern, there is a distinct region of both high Mg/Ca and high Na/Ca at the location of the primary organic membrane. This POM signature may be a useful way to map organic layers in foraminifera, a method we tested in bilobata, a rare morphotype of O. universa that develops a secondary sphere. Mapping Na/Ca and Mg/Ca in bilobata, we show that an additional organic layer is required during secondary sphere growth and that mineralization occurs over both spheres when this additional quasi-chamber forms. Applying ToF-SIMS and our new understanding of Na/Ca heterogeneity to bilobata is a first step towards connecting the extensive geochemical knowledge developed in O. universa to the multi-chambered species used in paleoceanography.

  19. Radio-frequency reflectometry on an undoped AlGaAs/GaAs single electron transistor

    DEFF Research Database (Denmark)

    MacLeod, S. J.; See, A. M.; Keane, Z. K.

    2014-01-01

    Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena, due to their charge stability and robust electronic properties after thermal cycling. However, these d......Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena, due to their charge stability and robust electronic properties after thermal cycling. However...

  20. Impact-disrupted gunshot residue: A sub-micron analysis using a novel collection protocol

    Directory of Open Access Journals (Sweden)

    V. Spathis

    2017-06-01

    Full Text Available The analysis of gunshot residue (GSR has played an integral role within the legal system in relation to shooting cases. With a characteristic elemental composition of lead, antimony, barium, and a typically discriminative spheroidal morphology, the presence and distribution of GSR can aid in firearm investigations. In this experiment, three shots of low velocity rim-fire ammunition were fired over polished silicon collection substrates placed at six intervals over a 100 cm range. The samples were analysed using a Field Emission Gun Scanning Electron Microscope (FEG-SEM in conjunction with an X-flash Energy Dispersive X-ray (EDX detector, allowing for GSR particle analyses of composition and structure at the sub-micron level. The results of this experiment indicate that although classic spheroidal particles are present consistently throughout the entire range of samples their sizes vary significantly, and at certain distances from the firearm particles with an irregular morphology were discerned, forming “impact-disrupted” GSR particles, henceforth colloquially referred to as “splats”. Upon further analysis, trends with regards to the formation of these splat particles were distinguished. An increase in splat frequency was observed starting at 10 cm from the firearm, with 147 mm−2 splat density, reaching a maximal flux at 40 cm (451 mm−2, followed by a gradual decrease to the maximum range sampled. Moreover, the structural morphology of the splats changes throughout the sampling range. At the distances closest to the firearm, molten-looking particles were formed, demonstrating the metallic residues were in a liquid state when their flight path was disrupted. However, at increased distances-primarily where the discharge plume was at maximum dispersion and moving away from the firearm, the residues have had time to cool in-fight resulting in semi-congealed and solid particles that subsequently disrupted upon impact, forming more

  1. Cathepsin K-targeted sub-micron particles for regenerative repair of vascular elastic matrix.

    Science.gov (United States)

    Jennewine, Brenton; Fox, Jonathan; Ramamurthi, Anand

    2017-04-01

    regenerative elastic matrix repair in the AAA wall. Proactive screening of high risk elderly patients now enables early detection of Abdominal Aortic Aneurysms (AAAs). Current management of small, growing AAAs is limited to passive, imaging based growth monitoring. There are also no established drug-based therapeutic alternatives to surgery for AAAs, which is unsuitable for many elderly patients, and none which can achieve restore disrupted and lost elastic matrix in the AAA wall, which is essential to achieve growth arrest or regression. We seek to test the feasibility of a regenerative therapy based on localized, one time delivery of drug-releasing Sub-Micron-sized drug delivery polymer Particles (SMPs) that are also uniquely chemically functionalized on their surface to also provide them pro-elastin-regenerative & anti-matrix degradative properties, and also conjugated with antibodies targeting cathepsin K, an elastolytic enzyme that is highly overexpressed in AAA tissues; the latter serves as a modality to enable targeted binding of the SMPs to the AAA wall following intravenous infusion, or intraoartal, catheter-based delivery. Such SMPs can potentially stimulate structural repair in the AAA wall following one time infusion to delay or prevent AAA growth to rupture. The therapy can provide a non-surgical treatment option for high risk AAA patients. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. A Nordic project on high speed low power design in sub-micron CMOS technology for mobile phones

    DEFF Research Database (Denmark)

    Olesen, Ole

    This paper is a survey paper presenting the Nordic CONFRONT project and reporting some results from the group at CIE/DTU, Denmark. The objective of the project is to demonstrate the feasibility of sub-micron CMOS for the realisation of RF front-end circuits operating at frequencies in the 1.......8-2.0 GHz range. The ultimate goal is a single-chip transceiver, requiring only an external band-pass filter between the chip and the antenna. DECT has been chosen as a comparative standard to compare the new approaches developed in the work as well as to facilitate good knowledge transfer to industry. All...

  3. A simple and wide-range refractive index measuring approach by using a sub-micron grating

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chun-Wei; Wu, Chun-Che; Lin, Shih-Chieh [Department of Power Mechanical Engineering, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2015-04-13

    This paper presents the design and simulation results of a high-precision low-cost refractometer that demonstrates the main advantage of a wide measurement range (1 ≤ n ≤ 2). The proposed design is based on the diffractive properties of sub-micron gratings and Snell's Law. The precision and uncertainty factors of the proposed system were tested and analyzed, revealing that the proposed refractometer demonstrates a wide measurement range with sensitivity of 10{sup −4}.

  4. Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging

    Directory of Open Access Journals (Sweden)

    Shengtao Lin

    2017-06-01

    Full Text Available We demonstrate a versatile phase-change sub-micron contrast agent providing three modes of contrast enhancement: 1 photoacoustic imaging contrast, 2 ultrasound contrast with optical activation, and 3 ultrasound contrast with acoustic activation. This agent, which we name ‘Cy-droplet’, has the following novel features. It comprises a highly volatile perfluorocarbon for easy versatile activation, and a near-infrared optically absorbing dye chosen to absorb light at a wavelength with good tissue penetration. It is manufactured via a ‘microbubble condensation’ method. The phase-transition of Cy-droplets can be optically triggered by pulsed-laser illumination, inducing photoacoustic signal and forming stable gas bubbles that are visible with echo-ultrasound in situ. Alternatively, Cy-droplets can be converted to microbubble contrast agents upon acoustic activation with clinical ultrasound. Potentially all modes offer extravascular contrast enhancement because of the sub-micron initial size. Such versatility of acoustic and optical ‘triggerability’ can potentially improve multi-modality imaging, molecularly targeted imaging and controlled drug release.

  5. Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging.

    Science.gov (United States)

    Lin, Shengtao; Shah, Anant; Hernández-Gil, Javier; Stanziola, Antonio; Harriss, Bethany I; Matsunaga, Terry O; Long, Nicholas; Bamber, Jeffrey; Tang, Meng-Xing

    2017-06-01

    We demonstrate a versatile phase-change sub-micron contrast agent providing three modes of contrast enhancement: 1) photoacoustic imaging contrast, 2) ultrasound contrast with optical activation, and 3) ultrasound contrast with acoustic activation. This agent, which we name 'Cy-droplet', has the following novel features. It comprises a highly volatile perfluorocarbon for easy versatile activation, and a near-infrared optically absorbing dye chosen to absorb light at a wavelength with good tissue penetration. It is manufactured via a 'microbubble condensation' method. The phase-transition of Cy-droplets can be optically triggered by pulsed-laser illumination, inducing photoacoustic signal and forming stable gas bubbles that are visible with echo-ultrasound in situ . Alternatively, Cy-droplets can be converted to microbubble contrast agents upon acoustic activation with clinical ultrasound. Potentially all modes offer extravascular contrast enhancement because of the sub-micron initial size. Such versatility of acoustic and optical 'triggerability' can potentially improve multi-modality imaging, molecularly targeted imaging and controlled drug release.

  6. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix

    Science.gov (United States)

    Dudak, J.; Karch, J.; Holcova, K.; Zemlicka, J.

    2017-12-01

    As X-ray micro-CT became a popular tool for scientific purposes a number of commercially available CT systems have emerged on the market. Micro-CT systems have, therefore, become widely accessible and the number of research laboratories using them constantly increases. However, even when CT scans with spatial resolution of several micrometers can be performed routinely, data acquisition with sub-micron precision remains a complicated task. Issues come mostly from prolongation of the scan time inevitably connected with the use of nano-focus X-ray sources. Long exposure time increases the noise level in the CT projections. Furthermore, considering the sub-micron resolution even effects like source-spot drift, rotation stage wobble or thermal expansion become significant and can negatively affect the data. The use of dark-current free photon counting detectors as X-ray cameras for such applications can limit the issue of increased image noise in the data, however the mechanical stability of the whole system still remains a problem and has to be considered. In this work we evaluate the performance of a micro-CT system equipped with nano-focus X-ray tube and a large area photon counting detector Timepix for scans with effective pixel size bellow one micrometer.

  7. A Nordic Project Project on High Speed Low Power Design in Sub-micron CMOS Technology for Mobile

    DEFF Research Database (Denmark)

    Olesen, Ole

    1997-01-01

    This paper is a survey paper presenting the Nordic CONFRONT project and reporting some results from the group at CIE/DTU, Denmark. The objective of the project is to demonstrate the feasibility of sub-micron CMOS for the realisation of RF front-end circuits operating at frequencies in the 1.......8-2.0 GHz range. The ultimate goal is a single-chip transceiver, requiring only an external band-pass filter between the chip and the antenna. DECT has been chosen as a comparative standard to compare the new approaches developed in the work as well as to facilitate good knowledge transfer to industry. All...... of including good off-chip components in the design by use of innovative, inexpensive package technology.To achieve a higher level of integration, the project will use a novel codesign approach to the design strategy. Rather than making specifications based on a purely architectural approach, the work uses...

  8. The relationship between the reliability of transistors with 2D AlGaN/GaN channel and organization type of nanomaterial

    Science.gov (United States)

    Emtsev, V. V.; Zavarin, E. E.; Oganesyan, G. A.; Petrov, V. N.; Sakharov, A. V.; Shmidt, N. M.; V'yuginov, V. N.; Zybin, A. A.; Parnes, Ya. M.; Vidyakin, S. I.; Gudkov, A. G.; Chernyakov, A. E.

    2016-07-01

    The first experimental results demonstrating that the carrier mobility in the AlGaN/GaN 2D channel of transistor structures (AlGaN/GaN-HEMT) is correlated with the manner in which the nanomaterial is organized and also with the operation reliability of transistor parameters are presented. It is shown that improving the nature of organization of the nanomaterials in AlGaN/GaN-HEMT structures, evaluated by the multifractal parameter characterizing the extent to which a nanomaterial is disordered (local symmetry breaking) is accompanied by a significant, several-fold increase in the electron mobility in the 2D channel and in the reliability of parameters of transistors fabricated from these structures.

  9. Two Dimensional Modeling of III-V Heterojunction Gate All Around Tunnel Field Effect Transistor

    OpenAIRE

    Manjula Vijh; R.S. Gupta; Sujata Pandey

    2017-01-01

    Tunnel Field Effect Transistor is one of the extensively researched semiconductor devices, which has captured attention over the conventional Metal Oxide Semiconductor Field Effect Transistor. This device, due to its varied advantages, is considered in applications where devices are scaled down to deep sub-micron level. Like MOSFETs, many geometries of TFETs have been studied and analyzed in the past few years. This work, presents a two dimensional analytical model for a III-V Heterojunction ...

  10. Rational Hydrogenation for Enhanced Mobility and High Reliability on ZnO-based Thin Film Transistors: From Simulation to Experiment.

    Science.gov (United States)

    Xu, Lei; Chen, Qian; Liao, Lei; Liu, Xingqiang; Chang, Ting-Chang; Chang, Kuan-Chang; Tsai, Tsung-Ming; Jiang, Changzhong; Wang, Jinlan; Li, Jinchai

    2016-03-02

    Hydrogenation is one of the effective methods for improving the performance of ZnO thin film transistors (TFTs), which originate from the fact that hydrogen (H) acts as a defect passivator and a shallow n-type dopant in ZnO materials. However, passivation accompanied by an excessive H doping of the channel region of a ZnO TFT is undesirable because high carrier density leads to negative threshold voltages. Herein, we report that Mg/H codoping could overcome the trade-off between performance and reliability in the ZnO TFTs. The theoretical calculation suggests that the incorporation of Mg in hydrogenated ZnO decrease the formation energy of interstitial H and increase formation energy of O-vacancy (VO). The experimental results demonstrate that the existence of the diluted Mg in hydrogenated ZnO TFTs could be sufficient to boost up mobility from 10 to 32.2 cm(2)/(V s) at a low carrier density (∼2.0 × 10(18) cm(-3)), which can be attributed to the decreased electron effective mass by surface band bending. The all results verified that the Mg/H codoping can significantly passivate the VO to improve device reliability and enhance mobility. Thus, this finding clearly points the way to realize high-performance metal oxide TFTs for low-cost, large-volume, flexible electronics.

  11. Time-specific measurements of energy deposition from radiation fields in simulated sub-micron tissue volumes

    Energy Technology Data Exchange (ETDEWEB)

    Famiano, M.A.

    1997-07-07

    A tissue-equivalent spherical proportional counter is used with a modified amplifier system to measure specific energy deposited from a uniform radiation field for short periods of time ({approximately}1 {micro}s to seconds) in order to extrapolate to dose in sub-micron tissue volumes. The energy deposited during these time intervals is compared to biological repair processes occurring within the same intervals after the initial energy deposition. The signal is integrated over a variable collection time which is adjusted with a square-wave pulse. Charge from particle passages is collected on the anode during the period in which the integrator is triggered, and the signal decays quickly to zero after the integrator feedback switch resets; the process repeats for every triggering pulse. Measurements of energy deposited from x rays, {sup 137}Cs gamma rays, and electrons from a {sup 90}Sr/{sup 90}Y source for various time intervals are taken. Spectral characteristics as a function of charge collection time are observed and frequency plots of specific energy and collection time-interval are presented. In addition, a threshold energy flux is selected for each radiation type at which the formation of radicals (based on current measurements) in mammalian cells equals the rate at which radicals are repaired.

  12. Investigation of Gallium Nitride Transistor Reliability through Accelerated Life Testing and Modeling

    Science.gov (United States)

    2011-12-01

    Christiansen, 2011a). Dr. Charles E. McQueary, former Director, Operational Test and Evaluation, wrote, “Poor reliability not only greatly increases...1991. (Ambacher, 1999) Ambacher, O., et al. “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N...233509, 2010. (Marcon, 2010) Marcon, D., T. Kauerauf, F. Medjdoub, J. Das, M. Van Hove, P. Srivastava, K. Cheng, M. Leys , R. Mertens, S. Decoutere

  13. Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors

    Science.gov (United States)

    Kwon, Jang Yeon; Kyeong Jeong, Jae

    2015-02-01

    This review gives an overview of the recent progress in vacuum-based n-type transition metal oxide (TMO) thin film transistors (TFTs). Several excellent review papers regarding metal oxide TFTs in terms of fundamental electron structure, device process and reliability have been published. In particular, the required field-effect mobility of TMO TFTs has been increasing rapidly to meet the demands of the ultra-high-resolution, large panel size and three dimensional visual effects as a megatrend of flat panel displays, such as liquid crystal displays, organic light emitting diodes and flexible displays. In this regard, the effects of the TMO composition on the performance of the resulting oxide TFTs has been reviewed, and classified into binary, ternary and quaternary composition systems. In addition, the new strategic approaches including zinc oxynitride materials, double channel structures, and composite structures have been proposed recently, and were not covered in detail in previous review papers. Special attention is given to the advanced device architecture of TMO TFTs, such as back-channel-etch and self-aligned coplanar structure, which is a key technology because of their advantages including low cost fabrication, high driving speed and unwanted visual artifact-free high quality imaging. The integration process and related issues, such as etching, post treatment, low ohmic contact and Cu interconnection, required for realizing these advanced architectures are also discussed.

  14. Fabrication of a high-aspect-ratio sub-micron tool using a cathode coated with stretched-out insulating layers

    Science.gov (United States)

    Zeng, Yongbin; Wang, Yufeng; Qu, Ningsong; Zhu, Di

    2013-09-01

    This paper describes a method for preparing a high-aspect-ratio sub-micron tool using a cathode coated with stretched-out insulating layers and a straight reciprocating motion applied at the anode via the liquid membrane electrochemical machining (ECM). Simulation results indicate that the application of a cathode coated with stretched-out insulating layers is beneficial for the localization of ECM. Moreover, a mathematical model was derived to estimate the final average diameter of the fabricated tools. Experiments were conducted to verify the versatility and feasibility of the proposed method and its mathematical model. It was observed that the calculated and the experimental results are in good agreement with each other. A sub-micron tool with an average diameter 140.8 nm and an aspect ratio up to 50 was fabricated using the proposed method.

  15. SiO2/ZnO Composite Hollow Sub-Micron Fibers: Fabrication from Facile Single Capillary Electrospinning and Their Photoluminescence Properties.

    Science.gov (United States)

    Song, Guanying; Li, Zhenjiang; Li, Kaihua; Zhang, Lina; Meng, Alan

    2017-02-24

    In this work, SiO2/ZnO composite hollow sub-micron fibers were fabricated by a facile single capillary electrospinning technique followed by calcination, using tetraethyl orthosilicate (TEOS), polyvinylpyrrolidone (PVP) and ZnO nanoparticles as raw materials. The characterization results of the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) spectra indicated that the asprepared composite hollow fibers consisted of amorphous SiO2 and hexagonal wurtzite ZnO. The products revealed uniform tubular structure with outer diameters of 400-500 nm and wall thickness of 50-60 nm. The gases generated and the directional escaped mechanism was proposed to illustrate the formation of SiO2/ZnO composite hollow sub-micron fibers. Furthermore, a broad blue emission band was observed in the photoluminescence (PL) of SiO2/ZnO composite hollow sub-micron fibers, exhibiting great potential applications as blue light-emitting candidate materials.

  16. SiO2/ZnO Composite Hollow Sub-Micron Fibers: Fabrication from Facile Single Capillary Electrospinning and Their Photoluminescence Properties

    Directory of Open Access Journals (Sweden)

    Guanying Song

    2017-02-01

    Full Text Available In this work, SiO2/ZnO composite hollow sub-micron fibers were fabricated by a facile single capillary electrospinning technique followed by calcination, using tetraethyl orthosilicate (TEOS, polyvinylpyrrolidone (PVP and ZnO nanoparticles as raw materials. The characterization results of the scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FT-IR spectra indicated that the asprepared composite hollow fibers consisted of amorphous SiO2 and hexagonal wurtzite ZnO. The products revealed uniform tubular structure with outer diameters of 400–500 nm and wall thickness of 50–60 nm. The gases generated and the directional escaped mechanism was proposed to illustrate the formation of SiO2/ZnO composite hollow sub-micron fibers. Furthermore, a broad blue emission band was observed in the photoluminescence (PL of SiO2/ZnO composite hollow sub-micron fibers, exhibiting great potential applications as blue light-emitting candidate materials.

  17. Trends and sources of ozone and sub-micron aerosols at the Mt. Bachelor Observatory during 2004-2015

    Science.gov (United States)

    Zhang, L.; Jaffe, D. A.; Hee, J.

    2016-12-01

    Tropospheric ozone (O3) and airborne particles have significant impacts on human health and the environment. The Mt. Bachelor Observatory (MBO, 2.8 km a.s.l.) in Central Oregon, USA, now has one of the longest continuous free tropospheric records of O3, CO and aerosols in North America. In this study, we report on sources and trends of O3 and sub-micron aerosol scattering at MBO for 2004-2015. For O3, the seasonal cycle shows a bimodal pattern with peaks in April and July, while aerosol scattering (σsp) is lognormally distributed with a very high average in August and a smaller maximum in May. Mean O3 concentrations show a positive and significant trend in all seasons except winter, with an increase of approximately 0.6 ppb/year. This trend appears to be driven by Asian pollution in spring and regional wildfires in summer. For aerosol scattering, we see a significant increase only in summer, driven by recent increases in wildfire activity in the western US. Monthly criteria for isolating free troposphere (FT) and boundary layer (BL) air masses at MBO were obtained based on comparison of MBO water vapor (WV) distributions to those of Salem (SLE) and Medford (MFR), Oregon at equivalent pressure level. In all seasons, FT O3 is, on average, higher than BL O3, but the seasonal patterns are rather similar. For σsp the mean in summer is significantly higher than the FT, indicating the importance of regional wildfire smoke. We have identified four types of air masses that impact O3, CO and aerosols: Asian long range transport (ALRT), regional wildfires, regional industrial pollution, and upper troposphere and lower stratosphere (UTLS) intrusions. Over the 12 years of observations, we have identified 204 individual plume events based on the criteria of 8 consecutive polluted hours with elevated σsp, O3 or CO. Multi-pollutant correlations and backward trajectories were used to differentiate background source categories. A series of enhancement ratios (ERs) including

  18. Trends and sources of ozone and sub-micron aerosols at the Mt. Bachelor Observatory (MBO) during 2004-2015

    Science.gov (United States)

    Zhang, Lei; Jaffe, Daniel A.

    2017-09-01

    In this paper, we report the climatology of tropospheric ozone (O3) and sub-micron aerosol scattering at the Mt. Bachelor Observatory (MBO, 2.8 km asl) in central Oregon, USA, during 2004-2015. The seasonal cycle for O3 showed a bimodal pattern with peaks in April and July, while aerosol scattering (σsp) was lognormally distributed with a very high peak in August and a smaller peak in May. The mean O3 concentrations showed positive and significant trends in all seasons except winter, with a slope of 0.6-0.8 ppbv yr-1. Monthly criteria for isolating free tropospheric (FT) and boundary layer influenced (BLI) air masses at MBO were obtained based on comparison of MBO water vapor (WV) distributions to those of Salem (SLE) and Medford (MFR), Oregon, at equivalent pressure level. In all seasons, FT O3 was, on average, higher than BLI O3, but the seasonal patterns were rather similar. For σsp the FT mean in spring was higher, but the BLI mean in summer was significantly higher, indicating the importance of regional wildfire smoke. To better understand the causes for the seasonal and interannual trends at MBO, we identified four major categories of air masses that impact O3, carbon monoxide (CO) and aerosols: upper troposphere and lower stratosphere (UTLS) O3 intrusion, Asian long-range transport (ALRT), Arctic air pollution (AAP) and plumes from the Pacific Northwest region (PNW). ALRT and PNW plumes can be further divided into wildfires (WF), industrial pollution (IP) and mineral dust (MD). Over the 12 years of observations, 177 individual plume events have been identified. Enhancement ratios (ERs) and Ångström exponents (AEs) of aerosols were calculated for all events. The lowest slope of Δσsp/ΔO3 is a unique feature of UTLS events. PNW-WF events have the highest averages for Δσsp/ΔCO, Δσsp/ΔO3 and Δσsp/ΔNOy compared to other events. These ERs decrease during long-range transport due to the shorter residence time of aerosols compared to the other

  19. Spectroscopic and magnetic properties of neodymium doped in GdPO{sub 4} sub-micron-stars prepared by solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, G.A., E-mail: ajith@gakumar.net [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, 78249 (United States); Balli, Nicolas R. [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, 78249 (United States); Kailasnath, M. [International School of Photonics, Cochin University of Science and Technology, Kochi, 682022 (India); Mimun, L. Christopher [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, 78249 (United States); Dannangoda, Chamath; Martirosyan, Karen S. [University of Texas at Rio Grande Valley, Brownsville, TX, 78520 (United States); Santhosh, C. [Department of Atomic and Molecular Spectroscopy, Manipal University, Manipal, 576104 (India); Sardar, Dhiraj K. [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, 78249 (United States)

    2016-07-05

    Neodymium-doped gadolinium orthophosphate (GdPO{sub 4}:Nd{sup 3+}) luminomagnetic sub-micron-stars were prepared by solvothermal method using metal nitrates and phosphoric acid. Monoclinic star shaped in six lobed sub-micron-stars with 600 nm length is obtained with uniform particle size distribution. After heat-treatment at 800 °C for 1 h in air, the stars separate into isolated petal shaped particles and show characteristic emission bands of Nd{sup 3+} with the strongest emission at 1064 nm. The emission intensities and fluorescence decay times are dependent on the Nd{sup 3+} concentration with the highest emission intensity and longest fluorescence decay time of 311 μs at 1064 nm with 0.5 mol% Nd{sup 3+}. Under 808 nm excitation with 12 W/cm{sup 2} power density a quantum yield of 9% was obtained for the 1.0 mol% Nd{sup 3+}. The presence of paramagnetic Gd{sup 3+} gives magnetic properties to the phosphor with a calculated magnetic moment of 1510 and 107,965 Bohr magneton at 300 and 5 K, respectively. - Highlights: • Star shaped Nd doped GdPO{sub 4} sub-micron phosphor particles are prepared for the first time. • Particles show both optical and magnetic properties. • Under 808 nm excitation near infrared emission was observed at 1064 nm with 9% quantum yield. • Magnetic moment of the particle was 1510 and 107,965 Bohr magneton at 300 and 5 K, respectively.

  20. Highly stable amorphous silicon thin film transistors and integration approaches for reliable organic light emitting diode displays on clear plastic

    Science.gov (United States)

    Hekmatshoar, Bahman

    Hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) are currently in widespread production for integration with liquid crystals as driver devices. Liquid crystal displays are driven in AC with very low duty cycles and therefore fairly insensitive to the TFT threshold voltage rise which is well-known in a-Si:H devices. Organic light-emitting diodes (OLEDs) are a future technology choice for flexible displays with several advantages over liquid crystals. In contrast to liquid crystal displays, however, OLEDs are driven in DC and thus far more demanding in terms of the TFT stability requirements. Therefore the conventional thinking has been that a-Si:H TFTs are too unstable for driving OLEDs and the more expensive poly-Si or alternative TFT technologies are required. This thesis defies the conventional thinking by demonstrating that the knowledge of the degradation mechanisms in a-Si:H TFTs may be used to enhance the drive current half-life of a-Si:H TFTs from lower than a month to over 1000 years by modifying the growth conditions of the channel and the gate dielectric. Such high lifetimes suggest that the improved a-Si:H TFTs may qualify for driving OLEDs in commercial products. Taking advantage of industry-standard growth techniques, the improved a-Si:H TFTs offer a low barrier for industry insertion, in stark contrast with alternative technologies which require new infrastructure development. Further support for the practical advantages of a-Si:H TFTs for driving OLEDs is provided by a universal lifetime comparison framework proposed in this work, showing that the lifetime of the improved a-Si:H TFTs is well above those of other TFT technologies reported in the literature. Manufacturing of electronic devices on flexible plastic substrates is highly desirable for reducing the weight of the finished products as well as increasing their ruggedness. In addition, the flexibility of the substrate allows manufacturing bendable, foldable or rollable

  1. Hydrothermal Synthesis Au-Bi2Te3 Nanocomposite Thermoelectric Film with a Hierarchical Sub-Micron Antireflection Quasi-Periodic Structure

    Directory of Open Access Journals (Sweden)

    Junlong Tian

    2015-06-01

    Full Text Available In this work, Au-Bi2Te3 nanocomposite thermoelectric film with a hierarchical sub-micron antireflection quasi-periodic structure was synthesized via a low-temperature chemical route using Troides helena (Linnaeus forewing (T_FW as the biomimetic template. This method combines chemosynthesis with biomimetic techniques, without the requirement of expensive equipment and energy intensive processes. The microstructure and the morphology of the Au-Bi2Te3 nanocomposite thermoelectric film was analyzed by X-ray diffraction (XRD, field-emission scanning-electron microscopy (FESEM, and transmission electron microscopy (TEM. Coupled the plasmon resonances of the Au nanoparticles with the hierarchical sub-micron antireflection quasi-periodic structure, the Au-Bi2Te3 nanocomposite thermoelectric film possesses an effective infrared absorption and infrared photothermal conversion performance. Based on the finite difference time domain method and the Joule effect, the heat generation and the heat source density distribution of the Au-Bi2Te3 nanocomposite thermoelectric film were studied. The heterogeneity of heat source density distribution of the Au-Bi2Te3 nanocomposite thermoelectric film opens up a novel promising technique for generating thermoelectric power under illumination.

  2. Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation.

    Science.gov (United States)

    Lindquist, Nathan C; Lesuffleur, Antoine; Im, Hyungsoon; Oh, Sang-Hyun

    2009-02-07

    We present nanohole arrays in thin gold films as sub-micron resolution surface plasmon resonance (SPR) imaging pixels in a microarray format. With SPR imaging, the resolution is not limited by diffraction, but by the propagation of surface plasmon waves to adjacent sensing areas, or nanohole arrays, causing unwanted interference. For ultimate scalability, several issues need to be addressed, including: (1) as several nanohole arrays are brought close to each other, surface plasmon interference introduces large sources of error; and (2) as the size of the nanohole array is reduced, i.e. fewer holes, detection sensitivity suffers. To address these scalability issues, we surround each biosensing pixel (a 3-by-3 nanohole array) with plasmonic Bragg mirrors, blocking interference between adjacent SPR sensing pixels for high-density packing, while maintaining the sensitivity of a 50 x larger footprint pixel (a 16-by-16 nanohole array). We measure real-time, label-free streptavidin-biotin binding kinetics with a microarray of 600 sub-micron biosensing pixels at a packing density of more than 10(7) per cm(2).

  3. High reliable and stable organic field-effect transistor nonvolatile memory with a poly(4-vinyl phenol) charge trapping layer based on a pn-heterojunction active layer

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Lanyi; Ying, Jun; Han, Jinhua; Zhang, Letian, E-mail: zlt@jlu.edu.cn, E-mail: wwei99@jlu.edu.cn; Wang, Wei, E-mail: zlt@jlu.edu.cn, E-mail: wwei99@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2016-04-25

    In this letter, we demonstrate a high reliable and stable organic field-effect transistor (OFET) based nonvolatile memory (NVM) with a polymer poly(4-vinyl phenol) (PVP) as the charge trapping layer. In the unipolar OFETs, the inreversible shifts of the turn-on voltage (V{sub on}) and severe degradation of the memory window (ΔV{sub on}) at programming (P) and erasing (E) voltages, respectively, block their application in NVMs. The obstacle is overcome by using a pn-heterojunction as the active layer in the OFET memory, which supplied a holes and electrons accumulating channel at the supplied P and E voltages, respectively. Both holes and electrons transferring from the channels to PVP layer and overwriting the trapped charges with an opposite polarity result in the reliable bidirectional shifts of V{sub on} at P and E voltages, respectively. The heterojunction OFET exhibits excellent nonvolatile memory characteristics, with a large ΔV{sub on} of 8.5 V, desired reading (R) voltage at 0 V, reliable P/R/E/R dynamic endurance over 100 cycles and a long retention time over 10 years.

  4. Drift region doping effects on characteristics and reliability of high-voltage n-type metal-oxide-semiconductor transistors

    Science.gov (United States)

    Chen, Jone F.; Chang, Chun-Po; Liu, Yu Ming; Tsai, Yan-Lin; Hsu, Hao-Tang; Chen, Chih-Yuan; Hwang, Hann-Ping

    2016-01-01

    In this study, off-state breakdown voltage (VBD) and hot-carrier-induced degradation in high-voltage n-type metal-oxide-semiconductor transistors with various BF2 implantation doses in the n- drift region are investigated. Results show that a higher BF2 implantation dose results in a higher VBD but leads to a greater hot-carrier-induced device degradation. Experimental data and technology computer-aided design simulations suggest that the higher VBD is due to the suppression of gate-induced drain current. On the other hand, the greater hot-carrier-induced device degradation can be explained by a lower net donor concentration and a different current-flow path, which is closer to the Si-SiO2 interface.

  5. Source apportionment of fine PM and sub-micron particle number concentrations at a regional background site in the western Mediterranean: a 2.5 year study

    Directory of Open Access Journals (Sweden)

    M. Cusack

    2013-05-01

    Full Text Available The chemical composition and sources of ambient fine particulate matter (PM1 over a period of 2.5 years for a regional background site in the western Mediterranean are presented in this work. Furthermore, sub-micron particle number concentrations and the sources of these particles are also presented. The mean PM1 concentration for the measurement period was 8.9 μg m−3, with organic matter (OM and sulphate comprising most of the mass (3.2 and 1.5 μg m−3 respectively. Six sources were identified in PM1 by Positive Matrix Factorisation (PMF: secondary organic aerosol, secondary nitrate, industrial, traffic + biomass burning, fuel oil combustion and secondary sulphate. Typically anthropogenic sources displayed elevated concentrations during the week with reductions at weekends. Nitrate levels were elevated in winter and negligible in summer, whereas secondary sulphate levels underwent a contrasting seasonal evolution with highest concentrations in summer, similar to the fuel oil combustion source. The SOA source was influenced by episodes of sustained pollution as a result of anticyclonic conditions occurring during winter, giving rise to thermal inversions and the accumulation of pollutants in the mixing layer. Increased levels in summer were owing to higher biogenic emissions and regional recirculation of air masses. The industrial source decreased in August due to decreased emissions during the vacation period. Increases in the traffic + biomass burning source were recorded in January, April and October, which were attributed to the occurrence of the aforementioned pollution episodes and local biomass burning emission sources, which include agriculture and domestic heating systems. Average particle number concentrations (N9-825 nm from 5/11/2010 to 01/06/2011 and from 15/10/2011 to 18/12/2011 reached 3097 cm−3. Five emission sources of particle of sub-micron particles were determined by Principal Component Analysis (PCA; industrial

  6. Image-Guided Ultrasound Characterization of Volatile Sub-Micron Phase-Shift Droplets in the 20-40 MHz Frequency Range.

    Science.gov (United States)

    Sheeran, Paul S; Daghighi, Yasaman; Yoo, Kimoon; Williams, Ross; Cherin, Emmanuel; Foster, F Stuart; Burns, Peter N

    2016-03-01

    Phase-shift perfluorocarbon droplets are designed to convert from the liquid to the gas state by the external application of acoustic or optical energy. Although droplet vaporization has been investigated extensively at ultrasonic frequencies between 1 and 10 MHz, few studies have characterized performance at the higher frequencies commonly used in small animal imaging. In this study, we use standard B-mode imaging sequences on a pre-clinical ultrasound platform to both image and activate sub-micron decafluorobutane droplet populations in vitro and in vivo at center frequencies in the range of 20-40 MHz. Results show that droplets remain stable against vaporization at low imaging pressures but are vaporized at peak negative pressures near 3.5 MPa at the three frequencies tested. This study also found that a small number of size outliers present in the distribution can greatly influence droplet performance. Removal of these outliers results in a more accurate assessment of the vaporization threshold and produces free-flowing microbubbles upon vaporization in the mouse kidney. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. A Fast, Versatile Nanoprobe for Complex Materials: The Sub-micron Resolution X-ray Spectroscopy Beamline at NSLS-II (491st Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Thieme, Juergen [BNL Photon Sciences Directorate

    2014-02-06

    Time is money and for scientists who need to collect data at research facilities like Brookhaven Lab’s National Synchrotron Light Source (NSLS), “beamtime” can be a precious commodity. While scanning a complex material with a specific technique and standard equipment today would take days to complete, researchers preparing to use brighter x-rays and the new sub-micron-resolution x-ray spectroscopy (SRX) beamline at the National Synchrotron Light Source II (NSLS-II) could scan the same sample in greater detail with just a few hours of beamtime. Talk about savings and new opportunities for researchers! Users will rely on these tools for locating trace elements in contaminated soils, developing processes for nanoparticles to deliver medical treatments, and much more. Dr. Thieme explains benefits for next-generation research with spectroscopy and more intense x-rays at NSLS-II. He discusses the instrumentation, features, and uses for the new SRX beamline, highlighting its speed, adjustability, and versatility for probing samples ranging in size from millimeters down to the nanoscale. He will talk about complementary beamlines being developed for additional capabilities at NSLS-II as well.

  8. Synthesis and self-assembly of dumbbell shaped ZnO sub-micron structures using low temperature chemical bath deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Borade, P. [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India); Joshi, K.U. [Anton-Paar India Pvt. Ltd., Thane (W), 400607 (India); Gokarna, A.; Lerondel, G. [Laboratoire de Nanotechnologie et D' Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6281, Université de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes (France); Walke, P. [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India); Late, D. [National Chemical Laboratory (NCL), Pune 400027 (India); Jejurikar, S.M., E-mail: jejusuhas@gmail.com [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India)

    2016-02-01

    We report well dispersed horizontal growth of ZnO sub-micron structures using simplest technique ever known i.e. chemical bath deposition (CBD). A set of samples were prepared under two different cases A) dumbbell shaped ZnO grown in CBD bath and B) tubular ZnO structures evolved from dumbbell shaped structures by dissolution mechanism. Single phase wurtzite ZnO formation is confirmed using X-ray diffraction (XRD) technique in both cases. From the morphological investigations performed using scanning electron microscopy (SEM), sample prepared under case A indicate formation of hex bit tool (HBT) shaped ZnO crystals, which observed to self-organize to form dumbbell structures. Further these microstructures are then converted into tubular structures as a fragment of post CBD process. The possible mechanism responsible for the self-assembly of HBT units to form dumbbell structures is discussed. Observed free excitonic peak located at 370 nm in photoluminescence (PL) spectra recorded at 18 K indicate that the micro/nanostructures synthesized using CBD are of high optical quality. - Highlights: • Controlled growth of Dumbbell shaped ZnO using Chemical Bath Deposition (CBD). • Growth mechanism of dumbbell shaped ZnO by self-assembling was discussed. • Quick Transformation of ZnO dumbbell structures in to tubular structures by dissolution. • Sharp UV Emission at 370 nm from both dumbbell and tubular structures.

  9. Scaling down the two-dimensional electron gas spin resonance (ESR) phenomena in GaAs/AlGaAs heterostructures to sub-micron samples

    Science.gov (United States)

    Bandaru, Prabhakar; Yablonovitch, Eli; Jiang, Hong-Wen

    2002-03-01

    Electron Spin Resonance (ESR) has been proposed as a technique for achieving single electron and subsequently single spin control, important for the emerging fields of spintronics and quantum computing. In this paper, we report on ESR in the quantum Hall regime, of sub-micron structures containing a few hundred electrons. These phenomena are contrasted with ESR phenomena in structures containing 10^7 - 10^9 electrons, which have been performed so far (Reference 1). There are several novel features observed in the ESR of small structures, such as a very large decrease of resistance and shift in the quantum Hall minima to lower magnetic fields after the resonance. These imply a reduction in the number of electrons and could result from the greater influence of the surface and impurity potential fluctuations intrinsic to a small sample. The ESR peak intensity is hypothesized to result from the transfer of electrons from the localized states to the extended states. References: 1.H.W.Jiang and E. Yablonovitch, Phys. Rev.B., 64, R041307, (2001) 2.M.Dobers, K.v. Klitzing and G. Weimann,Phys. Rev. B, 38, 5453, (1988).

  10. Sub-micron and nanoscale feature depth modulates alignment of stromal fibroblasts and corneal epithelial cells in serum-rich and serum-free media.

    Science.gov (United States)

    Fraser, Sarah A; Ting, Yuk-Hong; Mallon, Kelly S; Wendt, Amy E; Murphy, Christopher J; Nealey, Paul F

    2008-09-01

    Topographic features are generally accepted as being capable of modulating cell alignment. Of particular interest is the potential that topographic feature geometry induces cell alignment indirectly through impacting adsorbed proteins from the cell culture medium on the surface of the substrate. However, it has also been reported that micron-scale feature depth significantly impacts the level of alignment of cellular populations on topography, despite being orders of magnitude larger than the average adsorbed protein layer (nm). In order to better determine the impact of biomimetic length scale topography and adsorbed protein interaction on cellular morphology we have systematically investigated the effect of combinations of sub-micron to nanoscale feature depth and lateral pitch on corneal epithelial cell alignment. In addition we have used the unique properties of a serum-free media alternative in direct comparison to serum-rich medium to investigate the role of culture medium protein composition on cellular alignment to topographically patterned surfaces. Our observation that increasing groove depth elicited larger populations of corneal epithelial cells to align regardless of culture medium composition and of cell orientation with respect to the topography, suggests that these cells can sense changes in topographic feature depths independent of adsorbed proteins localized along ridge edges and tops. However, our data also suggests a strong combinatory effect of topography with culture medium composition, and also a cell type dependency in determining the level of cell elongation and alignment to nanoscale topographic features.

  11. Sub-micron and nanoscale feature depth modulates alignment of stromal fibroblasts and corneal epithelial cells in serum-rich and serum-free media

    Science.gov (United States)

    Fraser, Sarah A.; Ting, Yuk-Hong; Mallon, Kelly S.; Wendt, Amy E.; Murphy, Christopher J.; Nealey, Paul F.

    2011-01-01

    Topographic features are generally accepted as being capable of modulating cell alignment. Of particular interest is the potential that topographic feature geometry induces cell alignment indirectly through impacting adsorbed proteins from the cell culture medium on the surface of the substrate. However, it has also been reported that micron-scale feature depth significantly impacts the level of alignment of cellular populations on topography, despite being orders of magnitude larger than the average adsorbed protein layer (nm). In order to better determine the impact of biomimetic length scale topography and adsorbed protein interaction on cellular morphology we have systematically investigated the effect of combinations of sub-micron to nanoscale feature depth and lateral pitch on corneal epithelial cell alignment. In addition we have used the unique properties of a serum-free media alternative in direct comparison to serum-rich medium to investigate the role of culture medium protein composition on cellular alignment to topographically patterned surfaces. Our observation that increasing groove depth elicited larger populations of corneal epithelial cells to align regardless of culture medium composition and of cell orientation with respect to the topography, suggests that these cells can sense changes in topographic feature depths independent of adsorbed proteins localized along ridge edges and tops. However, our data also suggests a strong combinatory effect of topography with culture medium composition, and also a cell type dependency in determining the level of cell elongation and alignment to nanoscale topographic features. PMID:18041718

  12. The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols

    Science.gov (United States)

    Smith, J. D.; Kroll, J. H.; Cappa, C. D.; Che, D. L.; Liu, C. L.; Ahmed, M.; Leone, S. R.; Worsnop, D. R.; Wilson, K. R.

    2009-05-01

    The heterogeneous reaction of OH radicals with sub-micron squalane particles, in the presence of O2, is used as a model system to explore the fundamental chemical mechanisms that control the oxidative aging of organic aerosols in the atmosphere. Detailed kinetic measurements combined with elemental mass spectrometric analysis reveal that the reaction proceeds sequentially by adding an average of one oxygenated functional group per reactive loss of squalane. The reactive uptake coefficient of OH with squalane particles is determined to be 0.3±0.07 at an average OH concentration of ~1×1010 molecules cm-3. Based on a comparison between the measured particle mass and model predictions it appears that significant volatilization of a reduced organic particle would be extremely slow in the real atmosphere. However, as the aerosols become more oxygenated, volatilization becomes a significant loss channel for organic material in the particle-phase. Together these results provide a chemical framework in which to understand how heterogeneous chemistry transforms the physiochemical properties of particle-phase organic matter in the troposphere.

  13. The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols

    Directory of Open Access Journals (Sweden)

    J. D. Smith

    2009-05-01

    Full Text Available The heterogeneous reaction of OH radicals with sub-micron squalane particles, in the presence of O2, is used as a model system to explore the fundamental chemical mechanisms that control the oxidative aging of organic aerosols in the atmosphere. Detailed kinetic measurements combined with elemental mass spectrometric analysis reveal that the reaction proceeds sequentially by adding an average of one oxygenated functional group per reactive loss of squalane. The reactive uptake coefficient of OH with squalane particles is determined to be 0.3±0.07 at an average OH concentration of ~1×1010 molecules cm−3. Based on a comparison between the measured particle mass and model predictions it appears that significant volatilization of a reduced organic particle would be extremely slow in the real atmosphere. However, as the aerosols become more oxygenated, volatilization becomes a significant loss channel for organic material in the particle-phase. Together these results provide a chemical framework in which to understand how heterogeneous chemistry transforms the physiochemical properties of particle-phase organic matter in the troposphere.

  14. Sub-micron Polymer–Zeolitic Imidazolate Framework Layered Hybrids via Controlled Chemical Transformation of Naked ZnO Nanocrystal Films

    Energy Technology Data Exchange (ETDEWEB)

    Meckler, Stephen M.; Li, Changyi; Queen, Wendy L.; Williams, Teresa E.; Long, Jeffrey R.; Buonsanti, Raffaella; Milliron, Delia J.; Helms, Brett A.

    2015-11-24

    Here we show that sub-micron coatings of zeolitic imidazolate frameworks (ZIFs) and even ZIF–ZIF bilayers can be grown directly on polymers of intrinsic microporosity from zinc oxide (ZnO) nanocrystal precursor films, yielding a new class of all-microporous layered hybrids. The ZnO-to-ZIF chemical transformation proceeded in less than 30 min under microwave conditions using a solution of the imidazole ligand in N,N-dimethylformamide (DMF), water, or mixtures thereof. By varying the ratio of DMF to water, it was possible to control the morphology of the ZIF-on-polymer from isolated crystallites to continuous films. Grazing incidence X-ray diffraction was used to confirm the presence of crystalline ZIF in the thin films, and X-ray absorption spectroscopy was used to quantify film purity, revealing films with little to no residual ZnO. The role solvent plays in the transformation mechanism is discussed in light of these findings, which suggest the ZnO nanocrystals may be necessary to localize heterogeneous nucleation of the ZIF to the polymer surface.

  15. Sub-micron Polymer–Zeolitic Imidazolate Framework Layered Hybrids via Controlled Chemical Transformation of Naked ZnO Nanocrystal Films

    Energy Technology Data Exchange (ETDEWEB)

    Meckler, Stephen M.; Li, Changyi; Queen, Wendy L. [Department; Williams, Teresa E.; Long, Jeffrey R.; Buonsanti, Raffaella; Milliron, Delia J. [McKetta; Helms, Brett A.

    2015-11-02

    Here we show that sub-micron coatings of zeolitic imidazolate frameworks (ZIFs) and even ZIF–ZIF bilayers can be grown directly on polymers of intrinsic microporosity from zinc oxide (ZnO) nanocrystal precursor films, yielding a new class of all-microporous layered hybrids. The ZnO-to-ZIF chemical transformation proceeded in less than 30 min under microwave conditions using a solution of the imidazole ligand in N,N-dimethylformamide (DMF), water, or mixtures thereof. By varying the ratio of DMF to water, it was possible to control the morphology of the ZIF-on-polymer from isolated crystallites to continuous films. Grazing incidence X-ray diffraction was used to confirm the presence of crystalline ZIF in the thin films, and X-ray absorption spectroscopy was used to quantify film purity, revealing films with little to no residual ZnO. The role solvent plays in the transformation mechanism is discussed in light of these findings, which suggest the ZnO nanocrystals may be necessary to localize heterogeneous nucleation of the ZIF to the polymer surface.

  16. SELF-ALIGNED SINGLE CRYSTAL CONTACTED HIGH-SPEED SILICON BIPOLAR TRANSISTOR UTILIZING SELECTIVE (SEG) AND CONFINED SELECTIVE EPITAXIAL GROWTH (CLSEG)

    OpenAIRE

    Siekkinen, James W.; Neudeck, Gerold W.

    1992-01-01

    A new high-speed bipolar transistor structure, the ELOBJT-3, is proposed as a novel application of selective epitaxy technology. The new structure is greatly suited to high-speed ECL circuits, where Ccb, C,, and Rbx are of prime importance. The reduction of these parasitics to their nearly theoretical minimums is accomplished through the use of dielectric isolation and concentric contacting. For extremely high speed operation, dimensions can be scaled to sub-micron size due to the completely ...

  17. Hygroscopicity of Chemically Aged, sub-micron Squalane Particles: On the Role of Size and Composition towards the Hygroscopicity Parameter κ

    Science.gov (United States)

    Harmon, C. W.; Smith, J. D.; Che, D. L.; Leone, S. R.; Wilson, K. R.

    2010-12-01

    Measurements presented herein explore cloud condensation nuclei (CCN) activity of sub-micron squalane particles chemically aged by hydroxyl radicals as a function of size and OH exposure. As squalane particles are exposed to OH radicals, size-selected 100, 150, and 200 nm particles monotically decrease in size with increasing OH exposure. Concurrently, their CCN derived hygroscopicity parameter values, κ, increase with OH exposure until saturating at 0.165 in the 100 nm data set, 0.140 in the 150 nm data set, and reach a maximum value of 0.075 in the 200 nm data set at the highest level of OH exposure. The critical super-saturation relative humidity (RH) at which CCN activity is achieved decreases initially with increasing OH exposure and then increases with OH exposure, most notably for the 100 nm data set and weakly with the 150 nm data set. Chemically aged squalane particles from the 200 nm data set show a monotonic decrease in critical super-saturation RH with all values of increasing OH exposure between 0.1-2.5 × 10^13 s molec./cc. The measured O:C ratios of 160 nm chemically aged squalane particles, which were reported previously, are compared to κ values by the CCN derived relationship reported in literature: κ = 0.30*O:C and reasonable agreement is attained in the size-selected 150 nm data set. These values are also compared with the hygroscopic growth factor derived relationship in literature: κ = 0.49*(O:C -0.25) and reasonable agreement is attained at O:C > 0.35.

  18. On the sub-micron aerosol size distribution in a coastal-rural site at El Arenosillo Station (SW – Spain

    Directory of Open Access Journals (Sweden)

    M. Sorribas

    2011-11-01

    Full Text Available This study focuses on the analysis of the sub-micron aerosol characteristics at El Arenosillo Station, a rural and coastal environment in South-western Spain between 1 August 2004 and 31 July 2006 (594 days. The mean total concentration (NT was 8660 cm−3 and the mean concentrations in the nucleation (NNUC, Aitken (NAIT and accumulation (NACC particle size ranges were 2830 cm−3, 4110 cm−3 and 1720 cm−3, respectively. Median size distribution was characterised by a single-modal fit, with a geometric diameter, median number concentration and geometric standard deviation of 60 nm, 5390 cm−3 and 2.31, respectively. Characterisation of primary emissions, secondary particle formation, changes to meteorology and long-term transport has been necessary to understand the seasonal and annual variability of the total and modal particle concentration. Number concentrations exhibited a diurnal pattern with maximum concentrations around noon. This was governed by the concentrations of the nucleation and Aitken modes during the warm seasons and only by the nucleation mode during the cold seasons. Similar monthly mean total concentrations were observed throughout the year due to a clear inverse variation between the monthly mean NNUC and NACC. It was related to the impact of desert dust and continental air masses on the monthly mean particle levels. These air masses were associated with high values of NACC which suppressed the new particle formation (decreasing NNUC. Each day was classified according to a land breeze flow or a synoptic pattern influence. The median size distribution for desert dust and continental aerosol was dominated by the Aitken and accumulation modes, and marine air masses were dominated by the nucleation and Aitken modes. Particles

  19. Transglutaminase-induced or citric acid-mediated cross-linking of whey proteins to tune the characteristics of subsequently desolvated sub-micron and nano-scaled particles.

    Science.gov (United States)

    Bagheri, Leila; Yarmand, Mohammadsaeed; Madadlou, Ashkan; Mousavi, Mohammad E

    2014-01-01

    Whey proteins were inter-connected either by the enzyme transglutaminase or citric acid and then desolvated with ethanol to generate particles. Both samples comprised of sub-micron (>300 nm) and nano-scaled (~100 nm) particles based on the hydrodynamic size measurements. Enzyme-induced cross-linking of proteins yielded more monodisperse particles and decreased the mean size of the major (nano-scaled) fraction of particles. Scanning electron microscopy images revealed a spherical morphology for all samples with mean sizes of particles from enzymatically cross-linked proteins. The mediating role of citric acid in bridging the proteins was confirmed by Fourier transform infrared spectroscopy. Differential scanning calorimetry indicated that pre-heating of protein solution before cross-linking and desolvation denatured the proteins entirely. In vitro degradation of whey protein particles in a simulated gastric fluid demonstrated that cross-linking of whey proteins before desolvation stage enhanced significantly the digestion stability of particles.

  20. Magnetic bipolar transistor

    OpenAIRE

    Fabian, Jaroslav; Zutic, Igor; Sarma, S. Das

    2003-01-01

    A magnetic bipolar transistor is a bipolar junction transistor with one or more magnetic regions, and/or with an externally injected nonequilibrium (source) spin. It is shown that electrical spin injection through the transistor is possible in the forward active regime. It is predicted that the current amplification of the transistor can be tuned by spin.

  1. Discrete transistor measuring and matching using a solid core oven.

    Science.gov (United States)

    Inkinen, M; Mäkelä, K; Vuorela, T; Palovuori, K

    2013-03-01

    This paper presents transistor measurements done at a constant temperature. The aim in this research was to develop a reliable and repeatable method for measuring and searching transistor pairs with similar parameters, as in certain applications it is advantageous to use transistors from the same production batch due to the significant variability in batches from different manufacturers. Transistor manufacturing methods are well established, but due to the large variability in tolerance, not even transistors from the same manufacturing batch have identical properties. Transistors' electrical properties are also strongly temperature-dependent. Therefore, when measuring transistor properties, the temperature must be kept constant. For the measurement process, a solid-core oven providing stable temperature was implemented. In the oven, the base-to-emitter voltage (VBE) and DC-current gain (β) of 32 transistors could be measured simultaneously. The oven's temperature was controlled with a programmable thermostat, which allowed accurate constant temperature operation. The oven is formed by a large metal block with an individual chamber for each transistor to be measured. Isolation of individual transistors and the highly thermally conductive metal core structure prevent thermal coupling between transistors. The oven enables repeatable measurements, and thus measurements between different batches are comparable. In this research study, the properties of over 5000 transistors were measured and the variance of the aforementioned properties was analyzed.

  2. Test Equipment Specifications Transistor

    OpenAIRE

    Didiek Andiana Ramadan; Drs. Linga Hermanto, MMSI Drs. Linga Hermanto, MMSI

    2005-01-01

    In this paper, we design a test apparatus Transistor Specification. Specification is atype of transistor is a transistor and common emitter current reinforcement value ( βDC ). The system will provide information in the form of an LED display emits greenlight when the tested types of NPN transistor and the second LED emits blue lightwhen the tested types of PNP transistors.To test the value of β, whose value is proportional to the display used by the collectorcurrent Ic.

  3. reliability reliability

    African Journals Online (AJOL)

    eobe

    In this work, a FORTRAN-based computer computer. Eurocode 2 (EC 2)[1] ... addresses addresses: 1 idrcivil1@yahoo.com, 2 adomaarf1@gmail.com computer computer program was developed to aid the design of reinforced co program was ..... Haldar, A. and Mahadevan, S. Reliability Assessment using Stochastic Finite ...

  4. Electrical Properties and Reliability Analysis of Solution-Processed Indium Tin Zinc Oxide Thin Film Transistors with O2-Plasma Treatment.

    Science.gov (United States)

    Ko, Sun Wook; Kim, Soon Kon; Kim, Jong Min; Cho, Jae Hee; Park, Hyoung Sun; Choi, Byoung Deog

    2015-10-01

    In this paper, we report the effects of O2-plasma treatment on the reliability and electrical properties of indium tin zinc oxide (ITZO) films. Excellent electrical properties, including a saturation mobility (μsat) of ~20.2 cm2/V · s, a threshold voltage (VTH) of ~-6.8 V, a sub-threshold swing (S.S) of ~0.956 V/decade, and an on/off current ratio (ION/OFF) of ~10(5) can be found with a molarity of 0.4 M and ratio of In:Zn:Sn = 2:1:2. Following O2-plasma treatment, it was confirmed that the electrical properties of the ITZO films are improved when compared to the untreated films. The devices showed a decreased S.S of ~0.51 V/decade, while the VTH and ION/OFF tended to increase. To determine the reliability of a-ITZO TFTs, we analyzed the electrical characteristics according to gate bias stress, VG,stress = 10 V for 4000 s. Improved reliability was confirmed when compared with the variation in threshold voltage prior to O2-plasma treatment, most likely stemming from a smooth surface on the active layer as a result of O2-plasma treatment. We were able to obtain a solution a-ITZO film transmittance of 92% in the visible light region (400~700 nm). These results show that a-ITZO TFTs fabricated via solution process with optimized molar ratio exhibit good electrical properties. a-ITZO films fabricated via spin-coating are a visible alternative to those fabricated via high-cost sputtering methods, and are applicable in flexible and transparent electronics.

  5. Charge-imaging field-effect transistors for scanned probe microscopy

    Science.gov (United States)

    Chen, Lester Hao-Lin

    This thesis presents experiments on integrating a charge-imaging field-effect transistor onto a scanned probe microscopy cantilever to make a moveable charge-imager. Such an imager would be used for imaging the spatial distribution of electric charge in semiconductor heterostructures and devices. Learning about the spatial distribution of charge yields knowledge about electrical transport at the microscopic level. The information gained from measuring the spatial distribution of charge increases with improvements in the spatial resolution and charge sensitivity of the charge-imaging probes. So, the goal is to devise a charge-imager with sub-micron spatial resolution and single-electron charge sensitivity. To achieve high spatial resolution and excellent charge sensitivity, the charge-imaging field-effect transistors are made with a quantum point contact geometry. The charge response is confined to a disc with full width half-maximum comparable to its channel width, and the charge noise spectrum reaches values "1 e/Hz½ at 30 kHz. Their low power dissipation (deflections of the cantilever to map the sample topography. The strain-sensing field-effect transistors have a white noise value for the deflection noise of 0.5 nm/Hz½ at 10 kHz. This thesis describes the fabrication and characterization of charge-imaging field-effect transistors and scanned microscopy cantilevers with integrated strain-sensing transistors. The transistors and cantilevers were fabricated in a GaAs/AlGaAs heterostructure using electron-beam lithography and were characterized at liquid Helium temperatures. Possible future experiments include demonstrating the charge-imaging FET's sensitivity to single electrons, creating a charge- and topography-imaging cantilever, and directly measuring the electron distributions in nanostructures.

  6. Impact of smoking on guided tissue regeneration using a biocomposite poly (lactic-co-glycolic) acid/sub-micron size hydroxyapatite with a rubber dam as an alternative barrier.

    Science.gov (United States)

    Stramazzotti, D; Coiana, C; Zizzi, A; Spazzafumo, L; Sauro, S; D'Angelo, A B; Rubini, C; Aspriello, S D

    2015-03-01

    The purpose of our study was to critically evaluate the results obtained from a guided tissue regeneration technique after 12 months using a bocomposite poly (lactic-co-glycolic) acid/sub-micron size hydroxyapatite (PLGA/HA) with a rubber dam as a barrier in smoking and non-smoking patients. We selected 36 patients (18 current smokers and 18 non-smokers) diagnosed with chronic advanced periodontitis with a periodontal site (probing depth [PD] >5) amenable to regenerative surgery. Twelve months after surgery, the periodontal parameters were found to have statistically improved, when non-smokers were compared with smokers, in: PD reduction (6.3 ± 2.1 mm vs. 3.6 ± 1.9 mm); CAL gain (4.4 ± 1.1 vs. 2.8 ± 2.2 mm); recession (1.8 ± 1.4 mm vs. 0.8 ± 0.9 mm); and hard tissue fill (4.7 ± 0.8 mm vs. 2.8 ± 2.1 mm). Furthermore, since we found PD baseline differences between groups, smoking seemed not to influence the outcomes achieved (CAL gain and ΔREC) 12 months post surgery with respect to PD baseline. The use of PLGA/HA with a rubber dam significantly improved the periodontal parameters in both smoking and non-smoking subjects. This improvement was nevertheless lower in smokers than the non-smokers, confirming the negative impact of smoking on periodontal regeneration. © The Author(s) 2015.

  7. Chemical-free n-type and p-type multilayer-graphene transistors

    Science.gov (United States)

    Dissanayake, D. M. N. M.; Eisaman, M. D.

    2016-08-01

    A single-step doping method to fabricate n- and p-type multilayer graphene (MG) top-gate field effect transistors (GFETs) is demonstrated. The transistors are fabricated on soda-lime glass substrates, with the n-type doping of MG caused by the sodium in the substrate without the addition of external chemicals. Placing a hydrogen silsesquioxane (HSQ) barrier layer between the MG and the substrate blocks the n-doping, resulting in p-type doping of the MG above regions patterned with HSQ. The HSQ is deposited in a single fabrication step using electron beam lithography, allowing the patterning of arbitrary sub-micron spatial patterns of n- and p-type doping. When a MG channel is deposited partially on the barrier and partially on the glass substrate, a p-type and n-type doping profile is created, which is used for fabricating complementary transistors pairs. Unlike chemically doped GFETs in which the external dopants are typically introduced from the top, these substrate doped GFETs allow for a top gate which gives a stronger electrostatic coupling to the channel, reducing the operating gate bias. Overall, this method enables scalable fabrication of n- and p-type complementary top-gated GFETs with high spatial resolution for graphene microelectronic applications.

  8. Sub-micron indent induced plastic deformation in copper and irradiated steel; Deformation plastique induite par l'essai d'indentation submicronique, dans le cuivre et l'acier 316L irradie

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Ch

    1999-07-01

    In this work we aim to study the indent induced plastic deformation. For this purpose, we have developed a new approach, whereby the indentation curves provides the mechanical behaviour, while the deformation mechanisms are observed thanks to Transmission Electron Microscopy (TEM). In order to better understand how an indent induced dislocation microstructure forms, numerical modeling of the indentation process at the scale of discrete dislocations has been worked out as well. Validation of this modeling has been performed through direct comparison of the computed microstructures with TEM micrographs of actual indents in pure Cu (001]. Irradiation induced modifications of mechanical behaviour of ion irradiated 316L have been investigated, thanks to the mentioned approach. An important hardening effect was reported from indentation data (about 50%), on helium irradiated 316L steel. TEM observations of the damage zone clearly show that this behaviour is associated with the presence of He bubbles. TEM observations of the indent induced plastic zone also showed that the extent of the plastic zone is strongly correlated with hardness, that is to say: harder materials gets a smaller plastic zone. These results thus clearly established that the selected procedure can reveal any irradiation induced hardening in sub-micron thick ion irradiated layers. The behaviour of krypton irradiated 316L steel is somewhat more puzzling. In one hand indeed, a strong correlation between the defect cluster size and densities on the irradiation temperature is observed in the 350 deg. C - 600 deg. C range, thanks to TEM observations of the damage zone. On the other hand, irradiation induced hardening reported from indentation data is relatively small (about 10%) and shows no dependence upon the irradiation temperature (within the mentioned range). In addition, it has been shown that the reported hardening vanishes following appropriate post-irradiation annealing, although most of the TEM

  9. Nanoscale Vacuum Channel Transistor.

    Science.gov (United States)

    Han, Jin-Woo; Moon, Dong-Il; Meyyappan, M

    2017-04-12

    Vacuum tubes that sparked the electronics era had given way to semiconductor transistors. Despite their faster operation and better immunity to noise and radiation compared to the transistors, the vacuum device technology became extinct due to the high power consumption, integration difficulties, and short lifetime of the vacuum tubes. We combine the best of vacuum tubes and modern silicon nanofabrication technology here. The surround gate nanoscale vacuum channel transistor consists of sharp source and drain electrodes separated by sub-50 nm vacuum channel with a source to gate distance of 10 nm. This transistor performs at a low voltage (3 microamperes). The nanoscale vacuum channel transistor can be a possible alternative to semiconductor transistors beyond Moore's law.

  10. A Novel Leakage-tolerant Domino Logic Circuit With Feedback From Footer Transistor In Ultra Deep Submicron CMOS

    DEFF Research Database (Denmark)

    Moradi, Farshad; Peiravi, Ali; Mahmoodi, Hamid

    As the CMOS manufacturing process scales down into the ultra deep sub-micron regime, the leakage current becomes an increasingly more important consideration in VLSI circuit design. In this paper, a high speed and noise immune domino logic circuit is presented which uses the property of the footer...... transistor to alleviate the sensitivity of the dynamic node to noise and results in improved performance. The new circuit has been added to conventional footed standard domino logic for highly improving leakage tolerance, especially at the beginning of the evaluation phase. According to simulation results...... obtained using the 70nm Berkeley predictive models, our proposed circuit increases the noise immunity by least 2times compared to previous circuits...

  11. EDITORIAL: Reigniting innovation in the transistor Reigniting innovation in the transistor

    Science.gov (United States)

    Demming, Anna

    2012-09-01

    behaviour in devices fabricated from chemically reduced graphene oxide. The work provided an important step forward for graphene electronics, which has been hampered by difficulties in scaling up the mechanical exfoliation techniques required to produce the high-quality graphene often needed for functioning devices [8]. In Sweden, researchers have developed a transistor design that they fabricate using standard III-V parallel processing, which also has great promise for scaling up production. Their transistor is based on a vertical array of InAs nanowires, which provide high electron mobility and the possibility of high-speed and low-power operation [9]. Different fabrication techniques and design parameters can influence the properties of transistors. Researchers in Belgium used a new method based on high-vacuum scanning spreading resistance microscopy to study the effect of diameter on carrier profile in nanowire transistors [10]. They then used experimental data and simulations to gain a better understanding of how this influenced the transistor performance. In Japan, Y Ohno and colleagues at Nagoya University have reported how atomic layer deposition of an insulating layer of HfO2 on carbon nanotube field effect transistors can change the carrier from p-type to n-type [11]. Carrier type switching—'ambipolar behaviour'—and hysteresis of carbon nanotube network transistors can make achieving reliable device performance challenging. However studies have also suggested that the hysteretic properties may be exploited in non-volatile memory applications. A collaboration of researchers in Italy and the US demonstrated transistor and memory cell behaviour in a system based on a carbon nanotube network [13]. Their device had relatively fast programming, good endurance and the charge retention was successfully enhanced by limiting exposure to air. Progress in understanding transistor behaviour has inspired other innovations in device applications. Nanowires are notoriously

  12. A Vertical Organic Transistor Architecture for Fast Nonvolatile Memory.

    Science.gov (United States)

    She, Xiao-Jian; Gustafsson, David; Sirringhaus, Henning

    2017-02-01

    A new device architecture for fast organic transistor memory is developed, based on a vertical organic transistor configuration incorporating high-performance ambipolar conjugated polymers and unipolar small molecules as the transport layers, to achieve reliable and fast programming and erasing of the threshold voltage shift in less than 200 ns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ballistic Phosphorene Transistor

    Science.gov (United States)

    2015-11-19

    satisfactory. W911NF-14-1-0572 -II 66414-EL-II.3 TO:(1) Electronics Division (Qiu, Joe) TITLE: Final Report: Ballistic Phosphorene Transistor (x) Material... Transistor ” as a STIP award for the period 09/1/2014 through 5/31/2015. The ARO program director responsible for the grant is Dr. Joe Qiu. The PI is Prof...UU 19-11-2015 1-Sep-2014 31-May-2015 Approved for Public Release; Distribution Unlimited Final Report: Ballistic Phosphorene Transistor The views

  14. Silicon nanowire transistors

    CERN Document Server

    Bindal, Ahmet

    2016-01-01

    This book describes the n and p-channel Silicon Nanowire Transistor (SNT) designs with single and dual-work functions, emphasizing low static and dynamic power consumption. The authors describe a process flow for fabrication and generate SPICE models for building various digital and analog circuits. These include an SRAM, a baseband spread spectrum transmitter, a neuron cell and a Field Programmable Gate Array (FPGA) platform in the digital domain, as well as high bandwidth single-stage and operational amplifiers, RF communication circuits in the analog domain, in order to show this technology’s true potential for the next generation VLSI. Describes Silicon Nanowire (SNW) Transistors, as vertically constructed MOS n and p-channel transistors, with low static and dynamic power consumption and small layout footprint; Targets System-on-Chip (SoC) design, supporting very high transistor count (ULSI), minimal power consumption requiring inexpensive substrates for packaging; Enables fabrication of different types...

  15. Organic thin film transistors

    OpenAIRE

    Reese, Colin; Roberts, Mark; Ling, Mang-mang; Bao, Zhenan

    2004-01-01

    Since John Bardeen, William Shockley, and Walter Brattain invented the world's first transistor in 1947, inorganic field-effect transistors (FETs) have dominated the mainstream microelectronics industry. They are the fundamental building blocks for basic analytical circuits, such as amplifiers, as well as the key elements for digital combinational logic circuits, such as adders, shifters, inverters, and arithmetic logic units, and are used to build sequential logic circuits, such as flip-flop...

  16. Transistor-based interface circuitry

    Science.gov (United States)

    Taubman, Matthew S [Richland, WA

    2004-02-24

    Among the embodiments of the present invention is an apparatus that includes a transistor, a servo device, and a current source. The servo device is operable to provide a common base mode of operation of the transistor by maintaining an approximately constant voltage level at the transistor base. The current source is operable to provide a bias current to the transistor. A first device provides an input signal to an electrical node positioned between the emitter of the transistor and the current source. A second device receives an output signal from the collector of the transistor.

  17. Transistor-based interface circuitry

    Science.gov (United States)

    Taubman, Matthew S.

    2007-02-13

    Among the embodiments of the present invention is an apparatus that includes a transistor, a servo device, and a current source. The servo device is operable to provide a common base mode of operation of the transistor by maintaining an approximately constant voltage level at the transistor base. The current source is operable to provide a bias current to the transistor. A first device provides an input signal to an electrical node positioned between the emitter of the transistor and the current source. A second device receives an output signal from the collector of the transistor.

  18. Diode, transistor & fet circuits manual

    CERN Document Server

    Marston, R M

    2013-01-01

    Diode, Transistor and FET Circuits Manual is a handbook of circuits based on discrete semiconductor components such as diodes, transistors, and FETS. The book also includes diagrams and practical circuits. The book describes basic and special diode characteristics, heat wave-rectifier circuits, transformers, filter capacitors, and rectifier ratings. The text also presents practical applications of associated devices, for example, zeners, varicaps, photodiodes, or LEDs, as well as it describes bipolar transistor characteristics. The transistor can be used in three basic amplifier configuration

  19. Transistor scaling with novel materials

    OpenAIRE

    Meikei Ieong; Vijay Narayanan; Dinkar Singh; Anna Topol; Victor Chan; Zhibin Ren

    2006-01-01

    Complementary metal-oxide-semiconductor (CMOS) transistor scaling will continue for at least another decade. However, innovation in transistor structures and integration of novel materials are needed to sustain this performance trend. Here we discuss the challenges and opportunities of transistor scaling for the next five to ten years.

  20. Quantum Thermal Transistor.

    Science.gov (United States)

    Joulain, Karl; Drevillon, Jérémie; Ezzahri, Younès; Ordonez-Miranda, Jose

    2016-05-20

    We demonstrate that a thermal transistor can be made up with a quantum system of three interacting subsystems, coupled to a thermal reservoir each. This thermal transistor is analogous to an electronic bipolar one with the ability to control the thermal currents at the collector and at the emitter with the imposed thermal current at the base. This is achieved by determining the heat fluxes by means of the strong-coupling formalism. For the case of three interacting spins, in which one of them is coupled to the other two, that are not directly coupled, it is shown that high amplification can be obtained in a wide range of energy parameters and temperatures. The proposed quantum transistor could, in principle, be used to develop devices such as a thermal modulator and a thermal amplifier in nanosystems.

  1. Mesoscopic photon heat transistor

    DEFF Research Database (Denmark)

    Ojanen, T.; Jauho, Antti-Pekka

    2008-01-01

    We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir-Wingreen-Landauer-typ......We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir...

  2. New drain current model for nano-meter MOS transistors on-chip threshold voltage test

    NARCIS (Netherlands)

    Wan, J.; Kerkhoff, Hans G.

    2015-01-01

    Traditional reliability tests use complicated equipment, like probe stations and semiconductor parameter analyzers, to measure changes in transistors' threshold voltages, which are both expensive and time consuming. This paper provides an idea to test the threshold voltage with existing

  3. A Matterwave Transistor Oscillator

    CERN Document Server

    Caliga, Seth C; Zozulya, Alex A; Anderson, Dana Z

    2012-01-01

    A triple-well atomtronic transistor combined with forced RF evaporation is used to realize a driven matterwave oscillator circuit. The transistor is implemented using a metalized compound glass and silicon substrate. On-chip and external currents produce a cigar-shaped magnetic trap, which is divided into transistor source, gate, and drain regions by a pair of blue-detuned optical barriers projected onto the magnetic trap through a chip window. A resonant laser beam illuminating the drain portion of the atomtronic transistor couples atoms emitted by the gate to the vacuum. The circuit operates by loading the source with cold atoms and utilizing forced evaporation as a power supply that produces a positive chemical potential in the source, which subsequently drives oscillation. High-resolution in-trap absorption imagery reveals gate atoms that have tunneled from the source and establishes that the circuit emits a nominally mono-energetic matterwave with a frequency of 23.5(1.0) kHz by tunneling from the gate, ...

  4. Photoresponsive nanoscale columnar transistors.

    Science.gov (United States)

    Guo, Xuefeng; Xiao, Shengxiong; Myers, Matthew; Miao, Qian; Steigerwald, Michael L; Nuckolls, Colin

    2009-01-20

    This study reports a general methodology for making stable high-performance photosensitive field effect transistors (FET) from self-assembled columns of polycyclic aromatic hydrocarbons by using single-walled carbon nanotubes (SWNTs) as point contacts. In particular, the molecules used in this work are liquid crystalline materials of tetra(dodecyloxy)hexabenzocoronenes (HBCs) that are able to self-organize into columnar nanostructures with a diameter similar to that of SWNTs and then form nanoscale columnar transistors. To rule out potential artifacts, 2 different structural approaches were used to construct devices. One approach is to coat thin films of HBCs onto the devices with the SWNT-metal junctions protected by hydrogensilsesquioxane resin (HSQ), and the other is to place a droplet of HBC exactly on the nanogaps of SWNT electrodes. Both types of devices showed typical FET behaviors, indicating that SWNT-molecule-SWNT nanojunctions are responsible for the electrical characteristics of the devices. After thermally annealing the devices, HBC molecules assembled into columnar structures and formed more efficacious transistors with increased current modulation and higher gate efficiency. More interestingly, when the devices were exposed to visible light, photocurrents with an on/off ratio of >3 orders of magnitude were observed. This study demonstrates that stimuli-responsive nanoscale transistors have the potential applications in ultrasensitive devices for environmental sensing and solar energy harvesting.

  5. Photosensitive graphene transistors.

    Science.gov (United States)

    Li, Jinhua; Niu, Liyong; Zheng, Zijian; Yan, Feng

    2014-08-20

    High performance photodetectors play important roles in the development of innovative technologies in many fields, including medicine, display and imaging, military, optical communication, environment monitoring, security check, scientific research and industrial processing control. Graphene, the most fascinating two-dimensional material, has demonstrated promising applications in various types of photodetectors from terahertz to ultraviolet, due to its ultrahigh carrier mobility and light absorption in broad wavelength range. Graphene field effect transistors are recognized as a type of excellent transducers for photodetection thanks to the inherent amplification function of the transistors, the feasibility of miniaturization and the unique properties of graphene. In this review, we will introduce the applications of graphene transistors as photodetectors in different wavelength ranges including terahertz, infrared, visible, and ultraviolet, focusing on the device design, physics and photosensitive performance. Since the device properties are closely related to the quality of graphene, the devices based on graphene prepared with different methods will be addressed separately with a view to demonstrating more clearly their advantages and shortcomings in practical applications. It is expected that highly sensitive photodetectors based on graphene transistors will find important applications in many emerging areas especially flexible, wearable, printable or transparent electronics and high frequency communications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Improving Power Converter Reliability

    DEFF Research Database (Denmark)

    Ghimire, Pramod; de Vega, Angel Ruiz; Beczkowski, Szymon

    2014-01-01

    The real-time junction temperature monitoring of a high-power insulated-gate bipolar transistor (IGBT) module is important to increase the overall reliability of power converters for industrial applications. This article proposes a new method to measure the on-state collector?emitter voltage...... of a high-power IGBT module during converter operation, which may play a vital role in improving the reliability of the power converters. The measured voltage is used to estimate the module average junction temperature of the high and low-voltage side of a half-bridge IGBT separately in every fundamental...

  7. Radiation-hardened transistor and integrated circuit

    Science.gov (United States)

    Ma, Kwok K.

    2007-11-20

    A composite transistor is disclosed for use in radiation hardening a CMOS IC formed on an SOI or bulk semiconductor substrate. The composite transistor has a circuit transistor and a blocking transistor connected in series with a common gate connection. A body terminal of the blocking transistor is connected only to a source terminal thereof, and to no other connection point. The blocking transistor acts to prevent a single-event transient (SET) occurring in the circuit transistor from being coupled outside the composite transistor. Similarly, when a SET occurs in the blocking transistor, the circuit transistor prevents the SET from being coupled outside the composite transistor. N-type and P-type composite transistors can be used for each and every transistor in the CMOS IC to radiation harden the IC, and can be used to form inverters and transmission gates which are the building blocks of CMOS ICs.

  8. Deterministic execution of multithreaded applications for reliability of multicore systems

    NARCIS (Netherlands)

    Mushtaq, H.

    2015-01-01

    Constant reduction in the size of transistors has made it possible to implement many cores on a single die. However, smaller transistors are more susceptible to both temporary and permanent faults. To make such systems more reliable, online fault tolerance techniques can be applied. A common

  9. TRANSISTOR HIGH VOLTAGE POWER SUPPLY

    Science.gov (United States)

    Driver, G.E.

    1958-07-15

    High voltage, direct current power supplies are described for use with battery powered nuclear detection equipment. The particular advantages of the power supply described, are increased efficiency and reduced size and welght brought about by the use of transistors in the circuit. An important feature resides tn the employment of a pair of transistors in an alternatefiring oscillator circuit having a coupling transformer and other circuit components which are used for interconnecting the various electrodes of the transistors.

  10. Field Effect Transistor in Nanoscale

    Science.gov (United States)

    2017-04-26

    AFRL-AFOSR-JP-TR-2017-0034 Field Effect Transistor in Nanoscale Swapan Pati JAWAHARLAL NEHRU CENTRE FOR ADVANCED SCIENTIFIC RESEARCH Final Report 04...Final 3. DATES COVERED (From - To) 28 Sep 2015 to 27 Sep 2016 4. TITLE AND SUBTITLE Field Effect Transistor in Nanoscale 5a.  CONTRACT NUMBER 5b...significant alteration in transport behaviour of these molecular junctions. 15. SUBJECT TERMS Theory, Nanoscale, Field Effect Transistor (FET), Devices

  11. Junctionless Cooper pair transistor

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, K. Yu., E-mail: konstantin.yu.arutyunov@jyu.fi [National Research University Higher School of Economics , Moscow Institute of Electronics and Mathematics, 101000 Moscow (Russian Federation); P.L. Kapitza Institute for Physical Problems RAS , Moscow 119334 (Russian Federation); Lehtinen, J.S. [VTT Technical Research Centre of Finland Ltd., Centre for Metrology MIKES, P.O. Box 1000, FI-02044 VTT (Finland)

    2017-02-15

    Highlights: • Junctionless Cooper pair box. • Quantum phase slips. • Coulomb blockade and gate modulation of the Coulomb gap. - Abstract: Quantum phase slip (QPS) is the topological singularity of the complex order parameter of a quasi-one-dimensional superconductor: momentary zeroing of the modulus and simultaneous 'slip' of the phase by ±2π. The QPS event(s) are the dynamic equivalent of tunneling through a conventional Josephson junction containing static in space and time weak link(s). Here we demonstrate the operation of a superconducting single electron transistor (Cooper pair transistor) without any tunnel junctions. Instead a pair of thin superconducting titanium wires in QPS regime was used. The current–voltage characteristics demonstrate the clear Coulomb blockade with magnitude of the Coulomb gap modulated by the gate potential. The Coulomb blockade disappears above the critical temperature, and at low temperatures can be suppressed by strong magnetic field.

  12. Ion bipolar junction transistors.

    Science.gov (United States)

    Tybrandt, Klas; Larsson, Karin C; Richter-Dahlfors, Agneta; Berggren, Magnus

    2010-06-01

    Dynamic control of chemical microenvironments is essential for continued development in numerous fields of life sciences. Such control could be achieved with active chemical circuits for delivery of ions and biomolecules. As the basis for such circuitry, we report a solid-state ion bipolar junction transistor (IBJT) based on conducting polymers and thin films of anion- and cation-selective membranes. The IBJT is the ionic analogue to the conventional semiconductor BJT and is manufactured using standard microfabrication techniques. Transistor characteristics along with a model describing the principle of operation, in which an anionic base current amplifies a cationic collector current, are presented. By employing the IBJT as a bioelectronic circuit element for delivery of the neurotransmitter acetylcholine, its efficacy in modulating neuronal cell signaling is demonstrated.

  13. Polarization induced doped transistor

    Science.gov (United States)

    Xing, Huili; Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang

    2016-06-07

    A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.

  14. Vertical Ge/Si Core/Shell Nanowire Junctionless Transistor.

    Science.gov (United States)

    Chen, Lin; Cai, Fuxi; Otuonye, Ugo; Lu, Wei D

    2016-01-13

    Vertical junctionless transistors with a gate-all-around (GAA) structure based on Ge/Si core/shell nanowires epitaxially grown and integrated on a ⟨111⟩ Si substrate were fabricated and analyzed. Because of efficient gate coupling in the nanowire-GAA transistor structure and the high density one-dimensional hole gas formed in the Ge nanowire core, excellent P-type transistor behaviors with Ion of 750 μA/μm were obtained at a moderate gate length of 544 nm with minimal short-channel effects. The experimental data can be quantitatively modeled by a GAA junctionless transistor model with few fitting parameters, suggesting the nanowire transistors can be fabricated reliably without introducing additional factors that can degrade device performance. Devices with different gate lengths were readily obtained by tuning the thickness of an etching mask film. Analysis of the histogram of different devices yielded a single dominate peak in device parameter distribution, indicating excellent uniformity and high confidence of single nanowire operation. Using two vertical nanowire junctionless transistors, a PMOS-logic inverter with near rail-to-rail output voltage was demonstrated, and device matching in the logic can be conveniently obtained by controlling the number of nanowires employed in different devices rather than modifying device geometry. These studies show that junctionless transistors based on vertical Ge/Si core/shell nanowires can be fabricated in a controlled fashion with excellent performance and may be used in future hybrid, high-performance circuits where bottom-up grown nanowire devices with different functionalities can be directly integrated with an existing Si platform.

  15. The spin-valve transistor

    NARCIS (Netherlands)

    Anil Kumar, P.S.; Lodder, J.C.

    2000-01-01

    The spin-valve transistor is a magnetoelectronic device that can be used as a magnetic field sensor. It has a ferromagnet-semiconductor hybrid structure. Using a vacuum metal bonding technique, the spin-valve transistor structure Si/Pt/NiFe/Au/Co/Au/Si is obtained. It employs hot electron transport

  16. Copper atomic-scale transistors

    Directory of Open Access Journals (Sweden)

    Fangqing Xie

    2017-03-01

    Full Text Available We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO4 + H2SO4 in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate. The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and −170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes (Ubias influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1G0 (G0 = 2e2/h; with e being the electron charge, and h being Planck’s constant or 2G0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  17. Timing Challenges for Very Deep Sub-Micron (VDSM IC

    Directory of Open Access Journals (Sweden)

    Ichiang Lin

    2002-01-01

    Full Text Available Many IC design houses failed to be market leaders because they miss the market window due to timing closure problems. Compared to half-micron designs, the amount of time spent on timing verification has greatly increased. Cell delays can be accurately estimated during logic synthesis. However, interconnect delays are unknown until the wire geometry is defined in physical design. Logic synthesis using the cell library models for interconnect delay estimates may be statistically accurate, but can not predict the delay of individual nets accurately. Delay estimates for individual nets (global nets, long wires, large fan-outs, buses, which matter most for the critical paths can be inaccurate and cause a design failure. Inaccurate timing verification causes silicon failure in shipped products that results in the loss of millions of dollars spent designing a high-performance product and potentially larger costs due to lost market share. Full-chip, sign-off verification with silicon-accuracy will allow these problems to be discovered and fixed before tape-out.

  18. Dynamics of vortex matter in YBCO sub-micron bridges

    Science.gov (United States)

    Papari, G.; Carillo, F.; Stornaiuolo, D.; Massarotti, D.; Longobardi, L.; Beltram, F.; Tafuri, F.

    2014-11-01

    We have developed a fabrication process that allows us to realize pure YBCO nanowires displaying robust superconductivity at widths w as low as 160 nm. We can modify the process in order to maintain a Au protective layer. This allows us to scale our nanowires even further to widths as low as 50 nm. We have studied how the presence of vortices and the occurrence of phase slips affect the transport properties of nanowires in the width range ξ entry barrier is found to scale with the width. Our findings confirm that for widths ξ < w < λ nanowires are better protected against phase slips and vortex flow.

  19. Sub-micron surface plasmon resonance sensor systems

    Science.gov (United States)

    Glazier, James A. (Inventor); Amarie, Dragos (Inventor)

    2013-01-01

    Wearable or implantable devices combining microfluidic control of sample and reagent flow and micro-cavity surface plasmon resonance sensors functionalized with surface treatments or coatings capable of specifically binding to target analytes, ligands, or molecules in a bodily fluid are provided. The devices can be used to determine the presence and concentration of target analytes in the bodily fluids and thereby help diagnose, monitor or detect changes in disease conditions.

  20. W-CMP for sub-micron inverse metallisation

    NARCIS (Netherlands)

    van Kranenburg, H.; van Corbach, H.D.; Woerlee, P.H.; Lohmeier, Martin

    1997-01-01

    Chemical Mechanical Polishing (CMP) of tungsten for an inverse metallisation scheme is investigated. The influence of CMP parameters on removal rate and uniformity is studied. The main effects on the removal rate are the applied pressure and the rotation rate of the polishing pad. To the first order

  1. Nano-ring arrays for sub-micron particle trapping

    Science.gov (United States)

    Han, Xue; Truong, Viet Giang; Nic Chormaic, Síle

    2017-04-01

    Plasmonic tweezers based on nano-ring arrays on gold thin film are demonstrated. A cylindrical surface plasmon resonance is generated in the aperture of a nano-ring and a transmission peak results. When nano-slits are included to connect the nano-rings, the transmission peak becomes narrower. When the size of the aperture of the nano-ring is reduced, this peak is red-shifted. Both 0.5 μm and 1 μm polystyrene particles are trapped successfully by nano-ring arrays. A self-induced back-action effect is observed when a red-shifted laser beam is used. With multiple trapping sites provided by the nano-ring array, this type of plasmonic tweezers has huge potential to be integrated in lab-on-a-chip systems for life sciences research.

  2. Sub-micron surface plasmon resonance sensor systems

    Science.gov (United States)

    Glazier, James A. (Inventor); Amarie, Dragos (Inventor)

    2012-01-01

    A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multi-channel sensor for detecting the presence of several targets with a single microchip sensor is described. A multi-channel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.

  3. Physics of sub-micron cosmic dust particles

    Science.gov (United States)

    Roy, N. L.

    1974-01-01

    Laboratory tests with simulated micrometeoroids to measure the heat transfer coefficient are discussed. Equations for ablation path length for electrically accelerated micrometeoroids entering a gas target are developed which yield guidelines for the laboratory measurement of the heat transfer coefficient. Test results are presented for lanthanum hexaboride (LaB sub 6) microparticles in air, argon, and oxygen targets. The tests indicate the heat transfer coefficient has a value of approximately 0.9 at 30 km/sec, and that it increases to approximately unity at 50 km/sec and above. Test results extend to over 100 km/sec. Results are also given for two types of small particle detectors. A solid state capacitor type detector was tested from 0.61 km/sec to 50 km/sec. An impact ionization type detector was tested from 1.0 to 150 km/sec using LaB sub 6 microparticles.

  4. Metrology of sub-micron structured polymer surfaces

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Tosello, Guido; Salaga, J.

    surface replication of the tool insert component when moulding the polymer melt [1]. This aspect is particularly critical when dealing with increasingly small dimensional scales in micro- and nano-structured surfaces [2, 3].In this context, a metrological investigation of polymer replicated surfaces using...

  5. Sub-Micron Grinding of a Food Product

    NARCIS (Netherlands)

    Hennart, S.L.A.

    2011-01-01

    This thesis describes how the activity of a preservative product used in food coatings can be optimized. This project is partly sponsored by the European Marie Curie Framework projects as part of the BioPowders research training network. DSM Food Specialties hosts and co finances this project. The

  6. Graphene thermal flux transistor.

    Science.gov (United States)

    Shafranjuk, S E

    2016-11-24

    Insufficient flexibility of existing approaches to controlling the thermal transport in atomic monolayers limits their capability for use in many applications. Here, we examine the means of electrode doping to control the thermal flux Q due to phonons propagating along the atomic monolayer. We found that the frequency of the electron-restricted phonon scattering strongly depends on the concentration nC. of the electric charge carriers, established by the electric potentials applied to local gates. As a result of the electrode doping, nC is increased, causing a sharp rise in both the electrical conductivity and Seebeck coefficient, while the thermal conductivity tumbles. Therefore, the effect of the thermal transistor improves the figure of merit of nanoelectronic circuits.

  7. Crystalline ZrTiO{sub 4} gated p-metal–oxide–semiconductor field effect transistors with sub-nm equivalent oxide thickness featuring good electrical characteristics and reliability

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chao-Yi; Hsieh, Ching-Heng; Lee, Ching-Wei; Wu, Yung-Hsien [Department of Engineering and System Science, National Tsing Hua University, 300 Hsinchu, Taiwan (China)

    2015-02-02

    ZrTiO{sub 4} crystallized in orthorhombic (o-) phase was stacked with an amorphous Yb{sub 2}O{sub 3} interfacial layer as the gate dielectric for Si-based p-MOSFETs. With thermal annealing after gate electrode, the gate stack with equivalent oxide thickness (EOT) of 0.82 nm achieves high dielectric quality by showing a low interface trap density (D{sub it}) of 2.75 × 10{sup 11 }cm{sup −2}eV{sup −1} near the midgap and low oxide traps. Crystallization of ZrTiO{sub 4} and post metal annealing are also proven to introduce very limited amount of metal induced gap states or interfacial dipole. The p-MOSFETs exhibit good sub-threshold swing of 75 mV/dec which is ascribed to the low D{sub it} value and small EOT. Owing to the Y{sub 2}O{sub 3} interfacial layer and smooth interface with Si substrate that, respectively, suppress phonon and surface roughness scattering, the p-MOSFETs also display high hole mobility of 49 cm{sup 2}/V-s at 1 MV/cm. In addition, I{sub on}/I{sub off} ratio larger than 10{sup 6} is also observed. From the reliability evaluation by negative bias temperature instability test, after stressing with an electric field of −10 MV/cm at 85 °C for 1000 s, satisfactory threshold voltage shift of 12 mV and sub-threshold swing degradation of 3% were obtained. With these promising characteristics, the Yb{sub 2}O{sub 3}/o-ZrTiO{sub 4} gate stack holds the great potential for next-generation electronics.

  8. Current-Induced Transistor Sensorics with Electrogenic Cells

    Directory of Open Access Journals (Sweden)

    Peter Fromherz

    2016-04-01

    Full Text Available The concepts of transistor recording of electroactive cells are considered, when the response is determined by a current-induced voltage in the electrolyte due to cellular activity. The relationship to traditional transistor recording, with an interface-induced response due to interactions with the open gate oxide, is addressed. For the geometry of a cell-substrate junction, the theory of a planar core-coat conductor is described with a one-compartment approximation. The fast electrical relaxation of the junction and the slow change of ion concentrations are pointed out. On that basis, various recording situations are considered and documented by experiments. For voltage-gated ion channels under voltage clamp, the effects of a changing extracellular ion concentration and the enhancement/depletion of ion conductances in the adherent membrane are addressed. Inhomogeneous ion conductances are crucial for transistor recording of neuronal action potentials. For a propagating action potential, the effects of an axon-substrate junction and the surrounding volume conductor are distinguished. Finally, a receptor-transistor-sensor is described, where the inhomogeneity of a ligand–activated ion conductance is achieved by diffusion of the agonist and inactivation of the conductance. Problems with regard to a development of reliable biosensors are mentioned.

  9. Reversible hysteresis inversion in MoS2 field effect transistors

    DEFF Research Database (Denmark)

    Kaushik, Naveen; Mackenzie, David M. A.; Thakar, Kartikey

    2017-01-01

    The origin of threshold voltage instability with gate voltage in MoS2 transistors is poorly understood but critical for device reliability and performance. Reversibility of the temperature dependence of hysteresis and its inversion with temperature in MoS2 transistors has not been demonstrated....... In this work, we delineate two independent mechanisms responsible for thermally assisted hysteresis inversion in gate transfer characteristics of contact resistance-independent multilayer MoS2 transistors. Variable temperature hysteresis measurements were performed on gated four-terminal van der Pauw and two......-terminal devices of MoS2 on SiO2. Additional hysteresis measurements on suspended (~100 nm air gap between MoS2 and SiO2) transistors and under different ambient conditions (vacuum/nitrogen) were used to further isolate the mechanisms. Clockwise hysteresis at room temperature (300 K) that decreases with increasing...

  10. Logarithmic current-measuring transistor circuits

    DEFF Research Database (Denmark)

    Højberg, Kristian Søe

    1967-01-01

    Describes two transistorized circuits for the logarithmic measurement of small currents suitable for nuclear reactor instrumentation. The logarithmic element is applied in the feedback path of an amplifier, and only one dual transistor is used as logarithmic diode and temperature compensating...... transistor. A simple one-amplifier circuit is compared with a two-amplifier system. The circuits presented have been developed in connexion with an amplifier using a dual m.o.s. transistor input stage with diode-protected gates....

  11. Magnetic Vortex Based Transistor Operations

    Science.gov (United States)

    Kumar, D.; Barman, S.; Barman, A.

    2014-02-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan-out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT).

  12. Magnetic Vortex Based Transistor Operations

    Science.gov (United States)

    Kumar, D.; Barman, S.; Barman, A.

    2014-01-01

    Transistors constitute the backbone of modern day electronics. Since their advent, researchers have been seeking ways to make smaller and more efficient transistors. Here, we demonstrate a sustained amplification of magnetic vortex core gyration in coupled two and three vortices by controlling their relative core polarities. This amplification is mediated by a cascade of antivortex solitons travelling through the dynamic stray field. We further demonstrated that the amplification can be controlled by switching the polarity of the middle vortex in a three vortex sequence and the gain can be controlled by the input signal amplitude. An attempt to show fan–out operation yielded gain for one of the symmetrically placed branches which can be reversed by switching the core polarity of all the vortices in the network. The above observations promote the magnetic vortices as suitable candidates to work as stable bipolar junction transistors (BJT). PMID:24531235

  13. Tunneling field effect transistor technology

    CERN Document Server

    Chan, Mansun

    2016-01-01

    This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency. · Provides comprehensive reference to tunneling field effect transistors (TFETs); · Covers all aspects of TFETs, from device process to modeling and applications; · Enables design of power-efficient integrated circuits, with low power consumption TFETs.

  14. Bipolar Transistor Based on Graphane

    Energy Technology Data Exchange (ETDEWEB)

    Gharekhanlou, B; Tousaki, S B; Khorasani, S, E-mail: khorasani@sharif.ed [School of Electrical Engineering, Sharif University of Technology, PO Box 11365-9363, Tehran (Iran, Islamic Republic of)

    2010-11-01

    Graphane is a semiconductor with an energy gap, obtained from hydrogenation of the two-dimensional grapheme sheet. Together with the two-dimensional geometry, unique transport features of graphene, and possibility of doping graphane, p and n regions can be defined so that p-n junctions become feasible with small reverse currents. Our recent analysis has shown that an ideal I-V characteristic for this type of junctions may be expected. Here, we predict the behavior of bipolar juncrion transistors based on graphane. Profiles of carriers and intrinsic parameters of the graphane transistor are calculated and discussed.

  15. Silicon on insulator self-aligned transistors

    Science.gov (United States)

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  16. Mapping brain activity with flexible graphene micro-transistors

    CERN Document Server

    Blaschke, Benno M; Guimerà-Brunet, Anton; Weinert, Julia; Rousseau, Lionel; Heimann, Axel; Drieschner, Simon; Kempski, Oliver; Villa, Rosa; Sanchez-Vives, Maria V; Garrido, Jose A

    2016-01-01

    Establishing a reliable communication interface between the brain and electronic devices is of paramount importance for exploiting the full potential of neural prostheses. Current microelectrode technologies for recording electrical activity, however, evidence important shortcomings, e.g. challenging high density integration. Solution-gated field-effect transistors (SGFETs), on the other hand, could overcome these shortcomings if a suitable transistor material were available. Graphene is particularly attractive due to its biocompatibility, chemical stability, flexibility, low intrinsic electronic noise and high charge carrier mobilities. Here, we report on the use of an array of flexible graphene SGFETs for recording spontaneous slow waves, as well as visually evoked and also pre-epileptic activity in vivo in rats. The flexible array of graphene SGFETs allows mapping brain electrical activity with excellent signal-to-noise ratio (SNR), suggesting that this technology could lay the foundation for a future gene...

  17. Carbon Nanotube Synaptic Transistor Network for Pattern Recognition.

    Science.gov (United States)

    Kim, Sungho; Yoon, Jinsu; Kim, Hee-Dong; Choi, Sung-Jin

    2015-11-18

    Inspired by the human brain, a neuromorphic system combining complementary metal-oxide semiconductor (CMOS) and adjustable synaptic devices may offer new computing paradigms by enabling massive neural-network parallelism. In particular, synaptic devices, which are capable of emulating the functions of biological synapses, are used as the essential building blocks for an information storage and processing system. However, previous synaptic devices based on two-terminal resistive devices remain challenging because of their variability and specific physical mechanisms of resistance change, which lead to a bottleneck in the implementation of a high-density synaptic device network. Here we report that a three-terminal synaptic transistor based on carbon nanotubes can provide reliable synaptic functions that encode relative timing and regulate weight change. In addition, using system-level simulations, the developed synaptic transistor network associated with CMOS circuits can perform unsupervised learning for pattern recognition using a simplified spike-timing-dependent plasticity scheme.

  18. Mapping brain activity with flexible graphene micro-transistors

    Science.gov (United States)

    Blaschke, Benno M.; Tort-Colet, Núria; Guimerà-Brunet, Anton; Weinert, Julia; Rousseau, Lionel; Heimann, Axel; Drieschner, Simon; Kempski, Oliver; Villa, Rosa; Sanchez-Vives, Maria V.; Garrido, Jose A.

    2017-06-01

    Establishing a reliable communication interface between the brain and electronic devices is of paramount importance for exploiting the full potential of neural prostheses. Current microelectrode technologies for recording electrical activity, however, evidence important shortcomings, e.g. challenging high density integration. Solution-gated field-effect transistors (SGFETs), on the other hand, could overcome these shortcomings if a suitable transistor material were available. Graphene is particularly attractive due to its biocompatibility, chemical stability, flexibility, low intrinsic electronic noise and high charge carrier mobilities. Here, we report on the use of an array of flexible graphene SGFETs for recording spontaneous slow waves, as well as visually evoked and also pre-epileptic activity in vivo in rats. The flexible array of graphene SGFETs allows mapping brain electrical activity with excellent signal-to-noise ratio (SNR), suggesting that this technology could lay the foundation for a future generation of in vivo recording implants.

  19. Photon-triggered nanowire transistors

    Science.gov (United States)

    Kim, Jungkil; Lee, Hoo-Cheol; Kim, Kyoung-Ho; Hwang, Min-Soo; Park, Jin-Sung; Lee, Jung Min; So, Jae-Pil; Choi, Jae-Hyuck; Kwon, Soon-Hong; Barrelet, Carl J.; Park, Hong-Gyu

    2017-10-01

    Photon-triggered electronic circuits have been a long-standing goal of photonics. Recent demonstrations include either all-optical transistors in which photons control other photons or phototransistors with the gate response tuned or enhanced by photons. However, only a few studies report on devices in which electronic currents are optically switched and amplified without an electrical gate. Here we show photon-triggered nanowire (NW) transistors, photon-triggered NW logic gates and a single NW photodetection system. NWs are synthesized with long crystalline silicon (CSi) segments connected by short porous silicon (PSi) segments. In a fabricated device, the electrical contacts on both ends of the NW are connected to a single PSi segment in the middle. Exposing the PSi segment to light triggers a current in the NW with a high on/off ratio of >8 × 106. A device that contains two PSi segments along the NW can be triggered using two independent optical input signals. Using localized pump lasers, we demonstrate photon-triggered logic gates including AND, OR and NAND gates. A photon-triggered NW transistor of diameter 25 nm with a single 100 nm PSi segment requires less than 300 pW of power. Furthermore, we take advantage of the high photosensitivity and fabricate a submicrometre-resolution photodetection system. Photon-triggered transistors offer a new venue towards multifunctional device applications such as programmable logic elements and ultrasensitive photodetectors.

  20. A High-Voltage Level Tolerant Transistor Circuit

    NARCIS (Netherlands)

    Annema, Anne J.; Geelen, Godefridus Johannes Gertrudis Maria

    2001-01-01

    A high-voltage level tolerant transistor circuit, comprising a plurality of cascoded transistors, including a first transistor (T1) operatively connected to a high-voltage level node (3) and a second transistor (T2) operatively connected to a low-voltage level node (2). The first transistor (T1)

  1. Increasing the noise margin in organic circuits using dual gate field-effect transistor

    NARCIS (Netherlands)

    Spijkman, M; Smits, E.C.P.; Blom, P.W.M.; Leeuw, D.M. de; Bon Saint Côme, Y.; Setayesh, S.; Cantatore, E.

    2008-01-01

    Complex digital circuits reliably work when the noise margin of the logic gates is sufficiently high. For p-type only inverters, the noise margin is typically about 1 V. To increase the noise margin, we fabricated inverters with dual gate transistors. The top gate is advantageously used to

  2. Increasing the noise margin in organic circuits using dual gate field-effect transistors

    NARCIS (Netherlands)

    Spijkman, M.; Smits, E. C. P.; Blom, P. W. M.; de Leeuw, D. M.; Saint Come, Y. Bon; Setayesh, S.; Cantatore, E.; Bon Saint Côme, Y.

    2008-01-01

    Complex digital circuits reliably work when the noise margin of the logic gates is sufficiently high. For p-type only inverters, the noise margin is typically about 1 V. To increase the noise margin, we fabricated inverters with dual gate transistors. The top gate is advantageously used to

  3. MEMS reliability

    CERN Document Server

    Hartzell, Allyson L; Shea, Herbert R

    2010-01-01

    This book focuses on the reliability and manufacturability of MEMS at a fundamental level. It demonstrates how to design MEMs for reliability and provides detailed information on the different types of failure modes and how to avoid them.

  4. Complementary spin transistor using a quantum well channel

    OpenAIRE

    Youn Ho Park; Jun Woo Choi; Hyung-jun Kim; Joonyeon Chang; Suk Hee Han; Heon-Jin Choi; Hyun Cheol Koo

    2017-01-01

    In order to utilize the spin field effect transistor in logic applications, the development of two types of complementary transistors, which play roles of the n- and p-type conventional charge transistors, is an essential prerequisite. In this research, we demonstrate complementary spin transistors consisting of two types of devices, namely parallel and antiparallel spin transistors using InAs based quantum well channels and exchange-biased ferromagnetic electrodes. In these spin transistors,...

  5. Software reliability

    CERN Document Server

    Bendell, A

    1986-01-01

    Software Reliability reviews some fundamental issues of software reliability as well as the techniques, models, and metrics used to predict the reliability of software. Topics covered include fault avoidance, fault removal, and fault tolerance, along with statistical methods for the objective assessment of predictive accuracy. Development cost models and life-cycle cost models are also discussed. This book is divided into eight sections and begins with a chapter on adaptive modeling used to predict software reliability, followed by a discussion on failure rate in software reliability growth mo

  6. Reliability Calculations

    DEFF Research Database (Denmark)

    Petersen, Kurt Erling

    1986-01-01

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety...... and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic...... approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very...

  7. Extreme Temperature Performance of Automotive-Grade Small Signal Bipolar Junction Transistors

    Science.gov (United States)

    Boomer, Kristen; Damron, Benny; Gray, Josh; Hammoud, Ahmad

    2018-01-01

    Electronics designed for space exploration missions must display efficient and reliable operation under extreme temperature conditions. For example, lunar outposts, Mars rovers and landers, James Webb Space Telescope, Europa orbiter, and deep space probes represent examples of missions where extreme temperatures and thermal cycling are encountered. Switching transistors, small signal as well as power level devices, are widely used in electronic controllers, data instrumentation, and power management and distribution systems. Little is known, however, about their performance in extreme temperature environments beyond their specified operating range; in particular under cryogenic conditions. This report summarizes preliminary results obtained on the evaluation of commercial-off-the-shelf (COTS) automotive-grade NPN small signal transistors over a wide temperature range and thermal cycling. The investigations were carried out to establish a baseline on functionality of these transistors and to determine suitability for use outside their recommended temperature limits.

  8. Transistors - From Point Contact to Single Electron

    Indian Academy of Sciences (India)

    Figure 1. Energy band diagram of metal-semi- conductor barrier on (a) n- type and (b) p-type semi- conductor. Abbreviations. FET - Field Effect Transistor. HEMT - High Electron Mobility. Transistor. MESFET - Metal Semiconductor. FET. MOSFET -. Metal Oxide. Semiconductor FET. MODFET - Modulation Doped. FET.

  9. Ultrasmall transistor-based light sources

    DEFF Research Database (Denmark)

    With Jensen, Per Baunegaard; Tavares, Luciana; Kjelstrup-Hansen, Jakob

    Dette projekt fokuserer på at udvikle transistor baserede nanofiber lyskilder med det overordnede mål at udvikle effektive og nano skalerede flerfarvede lyskilder integreret on-chip.......Dette projekt fokuserer på at udvikle transistor baserede nanofiber lyskilder med det overordnede mål at udvikle effektive og nano skalerede flerfarvede lyskilder integreret on-chip....

  10. The spinvalve transistor: technologies and progress

    NARCIS (Netherlands)

    Lodder, J.C.; Monsma, D.J.; Vlutters, R.; Shimatsu, T.; Shimatsu, T.

    1999-01-01

    The paper describes the necessary technologies needed for realising a RT operating spin-valve transistor (SVT) which is in fact a magnetic controlled metal base transistor. The preparation of a 350×350 μm2 SVT consisting of an Si emitter and collector and Co/Cu/Co GMR multilayer are described. The

  11. Nanowire Field-Effect Transistors : Sensing Simplicity?

    NARCIS (Netherlands)

    Mescher, M.

    2014-01-01

    Silicon nanowires are structures made from silicon with at least one spatial dimension in the nanometer regime (1-100 nm). From these nanowires, silicon nanowire field-effect transistors can be constructed. Since their introduction in 2001 silicon nanowire field-effect transistors have been studied

  12. Solvothermal synthesis of gallium-indium-zinc-oxide nanoparticles for electrolyte-gated transistors.

    Science.gov (United States)

    Santos, Lídia; Nunes, Daniela; Calmeiro, Tomás; Branquinho, Rita; Salgueiro, Daniela; Barquinha, Pedro; Pereira, Luís; Martins, Rodrigo; Fortunato, Elvira

    2015-01-14

    Solution-processed field-effect transistors are strategic building blocks when considering low-cost sustainable flexible electronics. Nevertheless, some challenges (e.g., processing temperature, reliability, reproducibility in large areas, and cost effectiveness) are requirements that must be surpassed in order to achieve high-performance transistors. The present work reports electrolyte-gated transistors using as channel layer gallium-indium-zinc-oxide nanoparticles produced by solvothermal synthesis combined with a solid-state electrolyte based on aqueous dispersions of vinyl acetate stabilized with cellulose derivatives, acrylic acid ester in styrene and lithium perchlorate. The devices fabricated using this approach display a ION/IOFF up to 1 × 10(6), threshold voltage (VTh) of 0.3-1.9 V, and mobility up to 1 cm(2)/(V s), as a function of gallium-indium-zinc-oxide ink formulation and two different annealing temperatures. These results validates the usage of electrolyte-gated transistors as a viable and promising alternative for nanoparticle based semiconductor devices as the electrolyte improves the interface and promotes a more efficient step coverage of the channel layer, reducing the operating voltage when compared with conventional dielectrics gating. Moreover, it is shown that by controlling the applied gate potential, the operation mechanism of the electrolyte-gated transistors can be modified from electric double layer to electrochemical doping.

  13. On-Chip Sorting of Long Semiconducting Carbon Nanotubes for Multiple Transistors along an Identical Array.

    Science.gov (United States)

    Otsuka, Keigo; Inoue, Taiki; Maeda, Etsuo; Kometani, Reo; Chiashi, Shohei; Maruyama, Shigeo

    2017-11-13

    Ballistic transport and sub-10 nm channel lengths have been achieved in transistors containing one single-walled carbon nanotube (SWNT). To fill the gap between single-tube transistors and high-performance logic circuits for the replacement of silicon, large-area, high-density, and purely semiconducting (s-) SWNT arrays are highly desired. Here we demonstrate the fabrication of multiple transistors along a purely semiconducting SWNT array via an on-chip purification method. Water- and polymer-assisted burning from site-controlled nanogaps is developed for the reliable full-length removal of metallic SWNTs with the damage to s-SWNTs minimized even in high-density arrays. All the transistors with various channel lengths show large on-state current and excellent switching behavior in the off-state. Since our method potentially provides pure s-SWNT arrays over a large area with negligible damage, numerous transistors with arbitrary dimensions could be fabricated using a conventional semiconductor process, leading to SWNT-based logic, high-speed communication, and other next-generation electronic devices.

  14. The quantum interference effect transistor.

    Science.gov (United States)

    Stafford, Charles A; Cardamone, David M; Mazumdar, Sumit

    2007-10-24

    We give a detailed discussion of the quantum interference effect transistor (QuIET), a proposed device which exploits the interference between electron paths through aromatic molecules to modulate the current flow. In the off state, perfect destructive interference stemming from the molecular symmetry blocks the current, while in the on state, the current is allowed to flow by locally introducing either decoherence or elastic scattering. Details of a model calculation demonstrating the efficacy of the QuIET are presented, and various fabrication scenarios are proposed, including the possibility of using conducting polymers to connect the QuIET with multiple leads.

  15. Photovoltage field-effect transistors

    Science.gov (United States)

    Adinolfi, Valerio; Sargent, Edward H.

    2017-02-01

    The detection of infrared radiation enables night vision, health monitoring, optical communications and three-dimensional object recognition. Silicon is widely used in modern electronics, but its electronic bandgap prevents the detection of light at wavelengths longer than about 1,100 nanometres. It is therefore of interest to extend the performance of silicon photodetectors into the infrared spectrum, beyond the bandgap of silicon. Here we demonstrate a photovoltage field-effect transistor that uses silicon for charge transport, but is also sensitive to infrared light owing to the use of a quantum dot light absorber. The photovoltage generated at the interface between the silicon and the quantum dot, combined with the high transconductance provided by the silicon device, leads to high gain (more than 104 electrons per photon at 1,500 nanometres), fast time response (less than 10 microseconds) and a widely tunable spectral response. Our photovoltage field-effect transistor has a responsivity that is five orders of magnitude higher at a wavelength of 1,500 nanometres than that of previous infrared-sensitized silicon detectors. The sensitization is achieved using a room-temperature solution process and does not rely on traditional high-temperature epitaxial growth of semiconductors (such as is used for germanium and III-V semiconductors). Our results show that colloidal quantum dots can be used as an efficient platform for silicon-based infrared detection, competitive with state-of-the-art epitaxial semiconductors.

  16. Reliability Engineering

    CERN Document Server

    Lazzaroni, Massimo

    2012-01-01

    This book gives a practical guide for designers and users in Information and Communication Technology context. In particular, in the first Section, the definition of the fundamental terms according to the international standards are given. Then, some theoretical concepts and reliability models are presented in Chapters 2 and 3: the aim is to evaluate performance for components and systems and reliability growth. Chapter 4, by introducing the laboratory tests, puts in evidence the reliability concept from the experimental point of view. In ICT context, the failure rate for a given system can be

  17. T-shaped emitter metal heterojunction bipolar transistors for submillimeter wave applications

    Science.gov (United States)

    Fung, Andy; Samoska, Lorene; Velebir, Jim; Siege, Peter; Rodwell, Mark; Paidi, Vamsi; Griffth, Zach; Urteaga, Miguel; Malik, Roger

    2004-01-01

    We report on the development of submillimeter wave transistors at JPL. The goal of the effort is to produce advance-reliable high frequency and high power amplifiers, voltage controlled oscillators, active multipliers, and high-speed mixed-signal circuits for space borne applications. The technology in development to achieve this is based on the Indium Phosphide (InP) Heterojunction Bipolar Transistor (HBT). The HBT is well suited for high speed, high power and uniform (across wafer) performance, due to the ability to tailor the material structure that electrons traverse through by well-controlled epitaxial growth methods. InP with its compatible lattice matched alloys such as indium gallium arsenide (InGaAs) and indium aluminium arsenide (InAlAs) provides for high electron velocities and high voltage breakdown capabilities. The epitaxial methods for this material system are fairly mature, however the implementation of high performance and reliable transistors are still under development by many laboratories. Our most recently fabricated, second generation mesa HBTs at JPL have extrapolated current gain cutoff frequency (FJ of 142GHz and power gain cutoff frequency (Fm,) of approximately 160GHz. This represents a 13% and 33% improvement of Ft and F, respectively, compared to the first generation mesa HBTs [l]. Analysis based on the University of California, Santa Barbara (UCSB) device model, RF device characteristics can be significantly improved by reducing base contact resistance and base metal contact width. We will describe our effort towards increasing transistor performance and yield.

  18. Voltage regulator for battery power source. [using a bipolar transistor

    Science.gov (United States)

    Black, J. M. (Inventor)

    1979-01-01

    A bipolar transistor in series with the battery as the control element also in series with a zener diode and a resistor is used to maintain a predetermined voltage until the battery voltage decays to very nearly the predetermined voltage. A field effect transistor between the base of the bipolar transistor and a junction between the zener diode and resistor regulates base current of the bipolar transistor, thereby regulating the conductivity of the bipolar transistor for control of the output voltage.

  19. Gated Conductance of Thin Indium Tin Oxide - The Simplest Transistor

    OpenAIRE

    Jiang, Jie; Wan, Qing; Sun, Jia; Dou, Wei; Zhang, Qing

    2012-01-01

    Transistors are the fundamental building block of modern electronic devices. So far, all transistors are based on various types of semiconductor junctions. The most common bipolar-junction transistors and metal-oxide-semiconductor field-effect transistors contain p-n junctions to control the current, depending on applied biases across the junctions. Thin-film transistors need metal-semiconductor junctions for injecting and extracting electrons from their channels. Here, by coating a heavily-d...

  20. Protonic transistors from thin reflectin films

    Directory of Open Access Journals (Sweden)

    David D. Ordinario

    2015-01-01

    Full Text Available Ionic transistors from organic and biological materials hold great promise for bioelectronics applications. Thus, much research effort has focused on optimizing the performance of these devices. Herein, we experimentally validate a straightforward strategy for enhancing the high to low current ratios of protein-based protonic transistors. Upon reducing the thickness of the transistors’ active layers, we increase their high to low current ratios 2-fold while leaving the other figures of merit unchanged. The measured ratio of 3.3 is comparable to the best values found for analogous devices. These findings underscore the importance of the active layer geometry for optimum protonic transistor functionality.

  1. Basic matrix algebra and transistor circuits

    CERN Document Server

    Zelinger, G

    1963-01-01

    Basic Matrix Algebra and Transistor Circuits deals with mastering the techniques of matrix algebra for application in transistors. This book attempts to unify fundamental subjects, such as matrix algebra, four-terminal network theory, transistor equivalent circuits, and pertinent design matters. Part I of this book focuses on basic matrix algebra of four-terminal networks, with descriptions of the different systems of matrices. This part also discusses both simple and complex network configurations and their associated transmission. This discussion is followed by the alternative methods of de

  2. Logic gates with ion transistors

    Science.gov (United States)

    Grebel, H.

    2017-09-01

    Electronic logic gates are the basic building blocks of every computing and micro controlling system. Logic gates are made of switches, such as diodes and transistors. Ion-selective, ionic switches may emulate electronic switches [1-8]. If we ever want to create artificial bio-chemical circuitry, then we need to move a step further towards ion-logic circuitry. Here we demonstrate ion XOR and OR gates with electrochemical cells, and specifically, with two wet-cell batteries. In parallel to vacuum tubes, the batteries were modified to include a third, permeable and conductive mid electrode (the gate), which was placed between the anode and cathode in order to affect the ion flow through it. The key is to control the cell output with a much smaller biasing power, as demonstrated here. A successful demonstration points to self-powered ion logic gates.

  3. Ionic thermoelectric gating organic transistors

    Science.gov (United States)

    Zhao, Dan; Fabiano, Simone; Berggren, Magnus; Crispin, Xavier

    2017-01-01

    Temperature is one of the most important environmental stimuli to record and amplify. While traditional thermoelectric materials are attractive for temperature/heat flow sensing applications, their sensitivity is limited by their low Seebeck coefficient (∼100 μV K−1). Here we take advantage of the large ionic thermoelectric Seebeck coefficient found in polymer electrolytes (∼10,000 μV K−1) to introduce the concept of ionic thermoelectric gating a low-voltage organic transistor. The temperature sensing amplification of such ionic thermoelectric-gated devices is thousands of times superior to that of a single thermoelectric leg in traditional thermopiles. This suggests that ionic thermoelectric sensors offer a way to go beyond the limitations of traditional thermopiles and pyroelectric detectors. These findings pave the way for new infrared-gated electronic circuits with potential applications in photonics, thermography and electronic-skins. PMID:28139738

  4. Logic Gates with Ion Transistors

    CERN Document Server

    Grebel, Haim

    2016-01-01

    Electronic logic gates are the basic building blocks of every computing and micro controlling system. Logic gates are made of switches, such as diodes and transistors. Ion-selective, ionic switches may emulate electronic switches [1-8]. If we ever want to create artificial bio-chemical circuitry, then we need to move a step further towards ion-logic circuitry. Here we demonstrate ion XOR and OR gates with electrochemical cells, and specifically, with two wet-cell batteries. In parallel to vacuum tubes, the batteries were modified to include a third, permeable and conductive mid electrode (the gate), which was placed between the anode and cathode in order to affect the ion flow through it. The key is to control the cell output with a much smaller biasing power, as demonstrated here. A successful demonstration points to self-powered ion logic gates.

  5. Lateral power transistors in integrated circuits

    CERN Document Server

    Erlbacher, Tobias

    2014-01-01

    This book details and compares recent advancements in the development of novel lateral power transistors (LDMOS devices) for integrated circuits in power electronic applications. It includes the state-of-the-art concept of double-acting RESURF topologies.

  6. Thermal transistor utilizing gas-liquid transition.

    Science.gov (United States)

    Komatsu, Teruhisa S; Ito, Nobuyasu

    2011-01-01

    We propose a simple thermal transistor, a device to control heat current. In order to effectively change the current, we utilize the gas-liquid transition of the heat-conducting medium (fluid) because the gas region can act as a good thermal insulator. The three terminals of the transistor are located at both ends and the center of the system, and are put into contact with distinct heat baths. The key idea is a special arrangement of the three terminals. The temperature at one end (the gate temperature) is used as an input signal to control the heat current between the center (source, hot) and another end (drain, cold). Simulating the nanoscale systems of this transistor, control of heat current is demonstrated. The heat current is effectively cut off when the gate temperature is cold and it flows normally when it is hot. By using an extended version of this transistor, we also simulate a primitive application for an inverter.

  7. Pseudomorphic Bipolar Quantum Resonant-Tunneling Transistor

    National Research Council Canada - National Science Library

    Seabaugh, Alan C; Frensley, William R; Randall, John N; Reed, Mark A; Farrington, Dewey L; Matyi, Richard J

    1989-01-01

    ...+ InGaAs quantum well of a double-barrier resonant-tunneling structure. The heterojunction transistor consists of an n-GaAs emitter and collector, undoped AlAs tunnel barriers, and a pseudomorphic p...

  8. Logic gates based on ion transistors.

    Science.gov (United States)

    Tybrandt, Klas; Forchheimer, Robert; Berggren, Magnus

    2012-05-29

    Precise control over processing, transport and delivery of ionic and molecular signals is of great importance in numerous fields of life sciences. Integrated circuits based on ion transistors would be one approach to route and dispense complex chemical signal patterns to achieve such control. To date several types of ion transistors have been reported; however, only individual devices have so far been presented and most of them are not functional at physiological salt concentrations. Here we report integrated chemical logic gates based on ion bipolar junction transistors. Inverters and NAND gates of both npn type and complementary type are demonstrated. We find that complementary ion gates have higher gain and lower power consumption, as compared with the single transistor-type gates, which imitates the advantages of complementary logics found in conventional electronics. Ion inverters and NAND gates lay the groundwork for further development of solid-state chemical delivery circuits.

  9. Red-green-blue light sensitivity of oxide nanowire transistors for transparent display applications

    Directory of Open Access Journals (Sweden)

    Sumi Lee

    2013-01-01

    Full Text Available In this study, the sensitivity of oxide nanowire transistors under red (R, 470 nm, green (G, 530 nm, and blue (B, 625 nm light illumination was investigated. As the wavelength of light illuminating the nanowire channel region became shorter, a negative shift of threshold voltage, degradation of subthreshold slope, and increase of on-current were observed. This phenomenon can be explained in terms of photo-induced holes, creating interfacial traps between the gate dielectric and nanowire channel or reacting with oxygen ions on the surface of the nanowires. Thus, the attempt to minimize characteristic changes due to all RGB light sources was performed by employing ultraviolet–ozone treatment and passivation process. As a result, we could successfully fabricate oxide nanowire transistors providing high optical reliability which has broadened the possibilities for applying it to transparent and/or flexible pixel operation circuitry for displays with high optical reliability.

  10. Experimental study of time-dependent dielectric breakdown in tri-gate nanowire transistor

    Science.gov (United States)

    Ota, Kensuke; Tanaka, Chika; Numata, Toshinori; Matsushita, Daisuke; Saitoh, Masumi

    2016-08-01

    We systematically investigate the size dependence of the time-dependent dielectric breakdown (TDDB) in a tri-gate nanowire transistor (NW Tr.). It is newly found that TDDB reliability is degraded in NW Tr. as compared with that in a planar transistor owing to the locally enhanced electric field at the NW corner. Moreover, in the region with a width (W) less than 40 nm, nanowire width reduction leads to a shorter time to gate dielectric breakdown indicating additional degradation of TDDB reliability in NW Tr. with smaller W. Although TDDB in three-dimensional (3D) MOS structures such as a trench MOS capacitor has already been reported, the size dependence of TDDB in scaled NW Tr. is firstly discussed in this paper since a trench capacitor is different from recent NW Tr. in structure, device size, gate dielectric thickness, and scaling effect on TDDB.

  11. Breakdown of transistors in Marx bank circuit

    Science.gov (United States)

    Chatterjee, Amitabh

    2000-09-01

    We reconsider the mode of operation of a Marx bank circuit and analyze the secondary breakdown of transistors with shorted emitter-base. The mechanism of breakdown of the transistor when a fast rising voltage pulse is applied across is investigated. The device exhibits chaotic behavior at the breakdown point where it can go into two possible modes of breakdown. A new explanation for the working of the circuit consistent with the experimental observations is proposed.

  12. Bipolar transistor in VESTIC technology: prototype

    Science.gov (United States)

    Mierzwiński, Piotr; Kuźmicz, Wiesław; Domański, Krzysztof; Tomaszewski, Daniel; Głuszko, Grzegorz

    2016-12-01

    VESTIC technology is an alternative for traditional CMOS technology. This paper presents first measurement data of prototypes of VES-BJT: bipolar transistors in VESTIC technology. The VES-BJT is a bipolar transistor on the SOI substrate with symmetric lateral structure and both emitter and collector made of polysilicon. The results indicate that VES-BJT can be a device with useful characteristics. Therefore, VESTIC technology has the potential to become a new BiCMOS-type technology with some unique properties.

  13. Temas de Física para Ingeniería: El transistor de unión

    OpenAIRE

    Beléndez Vázquez, Augusto; Pastor Antón, Carlos; Martín García, Agapito

    1990-01-01

    El transistor de unión bipolar. Tensiones y corrientes en el transistor. El transistor como amplificador. El transistor como conmutador. Transistores unipolares o de efecto de campo. El tiristor. Microelectrónica y circuitos integrados.

  14. Unjuk Kerja Catu Daya 12 Volt 2a Dengan Pass Element Transistor Npn Dan Pnp

    OpenAIRE

    Fathoni, Fathoni

    2010-01-01

    Transistor pelewat (pass element transistor) yang dipasang pada rangkain catu daya yang menggunakan IC regulator 3 terminal adalah untuk booster arus output. Ada dua cara pemasangan transistor pelewat yang umum digunakan, yaitu dengan transistor pnp dan npn. Transistor pnp dipasang dengan basis transistor yang terhubung pada input IC regulator sedangkan transistor npn dipasang dengan basis transistor yang terhubung pada output IC regulator.Untuk mengetahui unjuk kerja dari kedua ...

  15. Development of solution-gated graphene transistor model for biosensors

    Science.gov (United States)

    Karimi, Hediyeh; Yusof, Rubiyah; Rahmani, Rasoul; Hosseinpour, Hoda; Ahmadi, Mohammad T.

    2014-02-01

    The distinctive properties of graphene, characterized by its high carrier mobility and biocompatibility, have stimulated extreme scientific interest as a promising nanomaterial for future nanoelectronic applications. In particular, graphene-based transistors have been developed rapidly and are considered as an option for DNA sensing applications. Recent findings in the field of DNA biosensors have led to a renewed interest in the identification of genetic risk factors associated with complex human diseases for diagnosis of cancers or hereditary diseases. In this paper, an analytical model of graphene-based solution gated field effect transistors (SGFET) is proposed to constitute an important step towards development of DNA biosensors with high sensitivity and selectivity. Inspired by this fact, a novel strategy for a DNA sensor model with capability of single-nucleotide polymorphism detection is proposed and extensively explained. First of all, graphene-based DNA sensor model is optimized using particle swarm optimization algorithm. Based on the sensing mechanism of DNA sensors, detective parameters ( I ds and V gmin) are suggested to facilitate the decision making process. Finally, the behaviour of graphene-based SGFET is predicted in the presence of single-nucleotide polymorphism with an accuracy of more than 98% which guarantees the reliability of the optimized model for any application of the graphene-based DNA sensor. It is expected to achieve the rapid, quick and economical detection of DNA hybridization which could speed up the realization of the next generation of the homecare sensor system.

  16. Amorphous Hafnium-Indium-Zinc Oxide Semiconductor Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2012-01-01

    Full Text Available We reported on the performance and electrical properties of co-sputtering-processed amorphous hafnium-indium-zinc oxide (α-HfIZO thin film transistors (TFTs. Co-sputtering-processed α-HfIZO thin films have shown an amorphous phase in nature. We could modulate the In, Hf, and Zn components by changing the co-sputtering power. Additionally, the chemical composition of α-HfIZO had a significant effect on reliability, hysteresis, field-effect mobility (μFE, carrier concentration, and subthreshold swing (S of the device. Our results indicated that we could successfully and easily fabricate α-HfIZO TFTs with excellent performance by the co-sputtering process. Co-sputtering-processed α-HfIZO TFTs were fabricated with an on/off current ratio of ~106, higher mobility, and a subthreshold slope as steep as 0.55 V/dec.

  17. Complementary spin transistor using a quantum well channel

    Science.gov (United States)

    Park, Youn Ho; Choi, Jun Woo; Kim, Hyung-jun; Chang, Joonyeon; Han, Suk Hee; Choi, Heon-Jin; Koo, Hyun Cheol

    2017-01-01

    In order to utilize the spin field effect transistor in logic applications, the development of two types of complementary transistors, which play roles of the n- and p-type conventional charge transistors, is an essential prerequisite. In this research, we demonstrate complementary spin transistors consisting of two types of devices, namely parallel and antiparallel spin transistors using InAs based quantum well channels and exchange-biased ferromagnetic electrodes. In these spin transistors, the magnetization directions of the source and drain electrodes are parallel or antiparallel, respectively, depending on the exchange bias field direction. Using this scheme, we also realize a complementary logic operation purely with spin transistors controlled by the gate voltage, without any additional n- or p-channel transistor. PMID:28425459

  18. Complementary spin transistor using a quantum well channel.

    Science.gov (United States)

    Park, Youn Ho; Choi, Jun Woo; Kim, Hyung-Jun; Chang, Joonyeon; Han, Suk Hee; Choi, Heon-Jin; Koo, Hyun Cheol

    2017-04-20

    In order to utilize the spin field effect transistor in logic applications, the development of two types of complementary transistors, which play roles of the n- and p-type conventional charge transistors, is an essential prerequisite. In this research, we demonstrate complementary spin transistors consisting of two types of devices, namely parallel and antiparallel spin transistors using InAs based quantum well channels and exchange-biased ferromagnetic electrodes. In these spin transistors, the magnetization directions of the source and drain electrodes are parallel or antiparallel, respectively, depending on the exchange bias field direction. Using this scheme, we also realize a complementary logic operation purely with spin transistors controlled by the gate voltage, without any additional n- or p-channel transistor.

  19. Organic tunnel field effect transistors

    KAUST Repository

    Tietze, Max Lutz

    2017-06-29

    Various examples are provided for organic tunnel field effect transistors (OTFET), and methods thereof. In one example, an OTFET includes a first intrinsic layer (i-layer) of organic semiconductor material disposed over a gate insulating layer; source (or drain) contact stacks disposed on portions of the first i-layer; a second i-layer of organic semiconductor material disposed on the first i-layer surrounding the source (or drain) contact stacks; an n-doped organic semiconductor layer disposed on the second i-layer; and a drain (or source) contact layer disposed on the n-doped organic semiconductor layer. The source (or drain) contact stacks can include a p-doped injection layer, a source (or drain) contact layer, and a contact insulating layer. In another example, a method includes disposing a first i-layer over a gate insulating layer; forming source or drain contact stacks; and disposing a second i-layer, an n-doped organic semiconductor layer, and a drain or source contact.

  20. Thermal Cycling and High Temperature Reverse Bias Testing of Control and Irradiated Gallium Nitride Power Transistors

    Science.gov (United States)

    Patterson, Richard L.; Boomer, Kristen T.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2014-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling and testing under high temperature reverse bias conditions in order to address their reliability for use in space missions. Result of the experimental work are presented and discussed.

  1. Radiation-induced edge effects in deep submicron CMOS transistors

    CERN Document Server

    Faccio, F

    2005-01-01

    The study of the TID response of transistors and isolation test structures in a 130 nm commercial CMOS technology has demonstrated its increased radiation tolerance with respect to older technology nodes. While the thin gate oxide of the transistors is extremely tolerant to dose, charge trapping at the edge of the transistor still leads to leakage currents and, for the narrow channel transistors, to significant threshold voltage shift-an effect that we call Radiation Induced Narrow Channel Effect (RINCE).

  2. Hafnium transistor design for neural interfacing.

    Science.gov (United States)

    Parent, David W; Basham, Eric J

    2008-01-01

    A design methodology is presented that uses the EKV model and the g(m)/I(D) biasing technique to design hafnium oxide field effect transistors that are suitable for neural recording circuitry. The DC gain of a common source amplifier is correlated to the structural properties of a Field Effect Transistor (FET) and a Metal Insulator Semiconductor (MIS) capacitor. This approach allows a transistor designer to use a design flow that starts with simple and intuitive 1-D equations for gain that can be verified in 1-D MIS capacitor TCAD simulations, before final TCAD process verification of transistor properties. The DC gain of a common source amplifier is optimized by using fast 1-D simulations and using slower, complex 2-D simulations only for verification. The 1-D equations are used to show that the increased dielectric constant of hafnium oxide allows a higher DC gain for a given oxide thickness. An additional benefit is that the MIS capacitor can be employed to test additional performance parameters important to an open gate transistor such as dielectric stability and ionic penetration.

  3. High Accuracy Transistor Compact Model Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hembree, Charles E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Mar, Alan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Robertson, Perry J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Typically, transistors are modeled by the application of calibrated nominal and range models. These models consists of differing parameter values that describe the location and the upper and lower limits of a distribution of some transistor characteristic such as current capacity. Correspond- ingly, when using this approach, high degrees of accuracy of the transistor models are not expected since the set of models is a surrogate for a statistical description of the devices. The use of these types of models describes expected performances considering the extremes of process or transistor deviations. In contrast, circuits that have very stringent accuracy requirements require modeling techniques with higher accuracy. Since these accurate models have low error in transistor descriptions, these models can be used to describe part to part variations as well as an accurate description of a single circuit instance. Thus, models that meet these stipulations also enable the calculation of quantifi- cation of margins with respect to a functional threshold and uncertainties in these margins. Given this need, new model high accuracy calibration techniques for bipolar junction transis- tors have been developed and are described in this report.

  4. The boost transistor: a field plate controlled LDMOST

    NARCIS (Netherlands)

    Ferrara, A.; Schmitz, Jurriaan; Boksteen, B.K.; Hueting, Raymond Josephus Engelbart; Steeneken, P.G.; Heringa, A.; Claes, J.; van der Wel, A.P.

    2015-01-01

    In this work we present a new device: the boost transistor. The boost transistor is an LDMOS transistor that is controlled by a separate field plate boost electrode that reduces the specific on-resistance RonA. By applying a positive voltage Vboost, this electrode creates an accumulation layer in

  5. Naphthalene and perylene diimides for organic transistors.

    Science.gov (United States)

    Würthner, Frank; Stolte, Matthias

    2011-05-14

    The development of ambient stable organic n-channel semiconductor molecules for thin-film transistors has experienced a tremendous impetus in the last decade to close the gap in performance in comparison to that of their p-channel counterparts. Especially naphthalene and perylene tetracarboxylic diimides (NDI and PDI) have shown to be the most valuable building blocks to achieve this challenging goal and to gain insight into the molecular structure-transistor performance relationship. Remaining challenges and new emerging research fields for these n-type semiconductors are the optimization of their deposition on flexible substrates, the control of their long term ambient stability and their implementation in complementary transistor circuits, display and sensor devices. © The Royal Society of Chemistry 2011

  6. Fundamentals of nanoscaled field effect transistors

    CERN Document Server

    Chaudhry, Amit

    2013-01-01

    Fundamentals of Nanoscaled Field Effect Transistors gives comprehensive coverage of the fundamental physical principles and theory behind nanoscale transistors. The specific issues that arise for nanoscale MOSFETs, such as quantum mechanical tunneling and inversion layer quantization, are fully explored. The solutions to these issues, such as high-κ technology, strained-Si technology, alternate devices structures and graphene technology are also given. Some case studies regarding the above issues and solution are also given in the book. In summary, this book: Covers the fundamental principles behind nanoelectronics/microelectronics Includes chapters devoted to solutions tackling the quantum mechanical effects occurring at nanoscale Provides some case studies to understand the issue mathematically Fundamentals of Nanoscaled Field Effect Transistors is an ideal book for researchers and undergraduate and graduate students in the field of microelectronics, nanoelectronics, and electronics.

  7. Lateral and Vertical Organic Transistors

    Science.gov (United States)

    Al-Shadeedi, Akram

    An extensive study has been performed to provide a better understanding of the operation principles of doped organic field-effect transistors (OFETs), organic p-i-n diodes, Schottky diodes, and organic permeable base transistors (OPBTs). This has been accomplished by a combination of electrical and structural characterization of these devices. The discussion of doped OFETs focuses on the shift of the threshold voltage due to increased doping concentrations and the generation and transport of minority charge carriers. Doping of pentacene OFETs is achieved by co-evaporation of pentacene with the n-dopant W2(hpp)4. It is found that pentacene thin film are efficiently doped and that a conductivity in the range of 2.6 x 10-6 S cm-1 for 1 wt% to 2.5 x 10-4 S cm-1 for 16 wt% is reached. It is shown that n-doped OFET consisting of an n-doped channel and n-doped contacts are ambipolar. This behavior is surprising, as n-doping the contacts should suppress direct injection of minority charge carriers (holes). It was proposed that minority charge carrier injection and hence the ambipolar characteristic of n-doped OFETs can be explained by Zener tunneling inside the intrinsic pentacene layer underneath the drain electrode. It is shown that the electric field in this layer is indeed in the range of the breakdown field of pentacene based p-i-n Zener homodiodes. Doping the channel has a profound influence on the onset voltage of minority (hole) conduction. The onset voltage can be shifted by lightly n-doping the channel. The shift of onset voltage can be explained by two mechanisms: first, due to a larger voltage that has to be applied to the gate in order to fully deplete the n-doped layer. Second, it can be attributed to an increase in hole trapping by inactive dopants. Moreover, it has been shown that the threshold voltage of majority (electron) conduction is shifted by an increase in the doping concentration, and that the ambipolar OFETs can be turned into unipolar OFETs at

  8. Switching Characteristics of Ferroelectric Transistor Inverters

    Science.gov (United States)

    Laws, Crystal; Mitchell, Coey; MacLeod, Todd C.; Ho, Fat D.

    2010-01-01

    This paper presents the switching characteristics of an inverter circuit using a ferroelectric field effect transistor, FeFET. The propagation delay time characteristics, phl and plh are presented along with the output voltage rise and fall times, rise and fall. The propagation delay is the time-delay between the V50% transitions of the input and output voltages. The rise and fall times are the times required for the output voltages to transition between the voltage levels V10% and V90%. Comparisons are made between the MOSFET inverter and the ferroelectric transistor inverter.

  9. Static Characteristics of the Ferroelectric Transistor Inverter

    Science.gov (United States)

    Mitchell, Cody; Laws, crystal; MacLeond, Todd C.; Ho, Fat D.

    2010-01-01

    The inverter is one of the most fundamental building blocks of digital logic, and it can be used as the foundation for understanding more complex logic gates and circuits. This paper presents the characteristics of an inverter circuit using a ferroelectric field-effect transistor. The voltage transfer characteristics are analyzed with respect to varying parameters such as supply voltage, input voltage, and load resistance. The effects of the ferroelectric layer between the gate and semiconductor are examined, and comparisons are made between the inverters using ferroelectric transistors and those using traditional MOSFETs.

  10. Graphene Field Effect Transistor for Radiation Detection

    Science.gov (United States)

    Li, Mary J. (Inventor); Chen, Zhihong (Inventor)

    2016-01-01

    The present invention relates to a graphene field effect transistor-based radiation sensor for use in a variety of radiation detection applications, including manned spaceflight missions. The sensing mechanism of the radiation sensor is based on the high sensitivity of graphene in the local change of electric field that can result from the interaction of ionizing radiation with a gated undoped silicon absorber serving as the supporting substrate in the graphene field effect transistor. The radiation sensor has low power and high sensitivity, a flexible structure, and a wide temperature range, and can be used in a variety of applications, particularly in space missions for human exploration.

  11. Advancement in organic nanofiber based transistors

    DEFF Research Database (Denmark)

    Jensen, Per Baunegaard With; Kjelstrup-Hansen, Jakob; Tavares, Luciana

    The focus of this project is to study the light emission from nanofiber based organic light-emitting transistors (OLETs) with the overall aim of developing efficient, nanoscale light sources with different colors integrated on-chip. The research performed here regards the fabrication and characte......The focus of this project is to study the light emission from nanofiber based organic light-emitting transistors (OLETs) with the overall aim of developing efficient, nanoscale light sources with different colors integrated on-chip. The research performed here regards the fabrication...

  12. Constructing Diodes and Transistors for Ultracold Atoms

    Science.gov (United States)

    Pepino, Ronald; Cooper, John; Anderson, Dana; Holland, Murray

    2008-05-01

    The ultracold atom-optical analogy to electronic systems is presented, along with the master equation formalism that is applied to this novel physical context of system-reservoir interactions. The proposed formalism lends itself quite readily to not only the study of atomtronic systems, but also transport properties of ultracold atoms in optical lattices. We demonstrate how these systems can be configured so that they emulate the behavior of the electronic diode, field effect transistor (FET), and bipolar junction transistor (BJT). The behavior of simple logic gates: namely, the AND and OR gates are follow as direct consequences of the atomtronic BJTs.

  13. Fundamentals of RF and microwave transistor amplifiers

    CERN Document Server

    Bahl, Inder J

    2009-01-01

    A Comprehensive and Up-to-Date Treatment of RF and Microwave Transistor Amplifiers This book provides state-of-the-art coverage of RF and microwave transistor amplifiers, including low-noise, narrowband, broadband, linear, high-power, high-efficiency, and high-voltage. Topics covered include modeling, analysis, design, packaging, and thermal and fabrication considerations. Through a unique integration of theory and practice, readers will learn to solve amplifier-related design problems ranging from matching networks to biasing and stability. More than 240 problems are included to help read

  14. Electrical determination of the bandgap energies of the emitter and base regions of bipolar junction transistors

    Science.gov (United States)

    Mimila-Arroyo, J.

    2016-10-01

    A pure electrical method is presented to extract emitter and base bandgaps of a bipolar junction transistor (BJT) at the locations where the minority carrier injection takes place. It is based on the simultaneous measurement of the collector and base currents as a function of the emitter-base forward bias (Gummer plot) and the corresponding current gain. From the obtained saturation currents as a function of temperature, we extract the bandgap energies. The accuracy of the method is demonstrated for InGaP-GaAs, Si, and Ge commercial devices. For InGaP-GaAs transistors, the results can be understood if the emitter-base heterojunction is not an abrupt but a gradual one. The presented method is a reliable tool that can aid in the development of new compound semiconductor based BJTs whose bandgap energies are highly sensitive to their composition.

  15. Extended Gate Field-Effect Transistor Biosensors for Point-Of-Care Testing of Uric Acid.

    Science.gov (United States)

    Guan, Weihua; Reed, Mark A

    2017-01-01

    An enzyme-free redox potential sensor using off-chip extended-gate field effect transistor (EGFET) with a ferrocenyl-alkanethiol modified gold electrode has been used to quantify uric acid concentration in human serum and urine. Hexacyanoferrate (II) and (III) ions are used as redox reagent. The potentiometric sensor measures the interface potential on the ferrocene immobilized gold electrode, which is modulated by the redox reaction between uric acid and hexacyanoferrate ions. The device shows a near Nernstian response to uric acid and is highly specific to uric acid in human serum and urine. The interference that comes from glucose, bilirubin, ascorbic acid, and hemoglobin is negligible in the normal concentration range of these interferents. The sensor also exhibits excellent long term reliability and is regenerative. This extended gate field effect transistor based sensor is promising for point-of-care detection of uric acid due to the small size, low cost, and low sample volume consumption.

  16. Few-layer SnSe{sub 2} transistors with high on/off ratios

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Tengfei; Bao, Lihong, E-mail: lhbao@iphy.ac.cn; Wang, Guocai; Ma, Ruisong; Yang, Haifang; Li, Junjie; Gu, Changzhi; Du, Shixuan; Gao, Hong-jun [Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190 (China); Pantelides, Sokrates [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Material Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381 (United States)

    2016-02-01

    We report few-layer SnSe{sub 2} field effect transistors (FETs) with high current on/off ratios. By trying different gate configurations, 300 nm SiO{sub 2} and 70 nm HfO{sub 2} as back gate only and 70 nm HfO{sub 2} as back gate combined with a top capping layer of polymer electrolyte, few-layer SnSe{sub 2} FET with a current on/off ratio of 10{sup 4} can be obtained. This provides a reliable solution for electrically modulating quasi-two-dimensional materials with high electron density (over 10{sup 13} cm{sup −2}) for field-effect transistor applications.

  17. Radiation and Thermal Cycling Effects on EPC1001 Gallium Nitride Power Transistors

    Science.gov (United States)

    Patterson, Richard L.; Scheick, Leif Z.; Lauenstein, Jean M.; Casey, Megan C.; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Information pertaining to performance of electronic parts and systems under hostile environments is very scarce, especially for new devices. Such data is very critical so that proper design is implemented in order to ensure mission success and to mitigate risks associated with exposure of on-board systems to the operational environment. In this work, newly-developed enhancement-mode field effect transistors (FET) based on gallium nitride (GaN) technology were exposed to various particles of ionizing radiation and to long-term thermal cycling over a wide temperature range. Data obtained on control (un-irradiated) and irradiated samples of these power transistors are presented and the results are discussed.

  18. Transistor-based particle detection systems and methods

    Science.gov (United States)

    Jain, Ankit; Nair, Pradeep R.; Alam, Muhammad Ashraful

    2015-06-09

    Transistor-based particle detection systems and methods may be configured to detect charged and non-charged particles. Such systems may include a supporting structure contacting a gate of a transistor and separating the gate from a dielectric of the transistor, and the transistor may have a near pull-in bias and a sub-threshold region bias to facilitate particle detection. The transistor may be configured to change current flow through the transistor in response to a change in stiffness of the gate caused by securing of a particle to the gate, and the transistor-based particle detection system may configured to detect the non-charged particle at least from the change in current flow.

  19. Design method for a digitally trimmable MOS transistor structure

    DEFF Research Database (Denmark)

    Ning, Feng; Bruun, Erik

    1996-01-01

    A digitally trimmable MOS transistor is a MOS transistor consisting of a drain, a source, and a main gate as well as several subgates. The transconductance of the transistor is tunabledigitally by means of connecting subgates either to the main gate or to the source terminal. In this paper......, a systematic design method for a digitally trimmable MOS transistor structure is proposed. Using the proposed method, we have designed a digitally trimmable MOS transistor structure and prototype devices were fabricated in a 2.4 micron n-well CMOS technology. Through measurements on these devices, the design...... method has been experimentally confirmed. The trimmable MOS transistor structure has been applied to a high precision current mirror to reduce mismatch in the current mirror. With the trimmable transistor structure, the mismatch can be reduced by more than one order of magnitude....

  20. High mobility and quantum well transistors design and TCAD simulation

    CERN Document Server

    Hellings, Geert

    2013-01-01

    For many decades, the semiconductor industry has miniaturized transistors, delivering increased computing power to consumers at decreased cost. However, mere transistor downsizing does no longer provide the same improvements. One interesting option to further improve transistor characteristics is to use high mobility materials such as germanium and III-V materials. However, transistors have to be redesigned in order to fully benefit from these alternative materials. High Mobility and Quantum Well Transistors: Design and TCAD Simulation investigates planar bulk Germanium pFET technology in chapters 2-4, focusing on both the fabrication of such a technology and on the process and electrical TCAD simulation. Furthermore, this book shows that Quantum Well based transistors can leverage the benefits of these alternative materials, since they confine the charge carriers to the high-mobility material using a heterostructure. The design and fabrication of one particular transistor structure - the SiGe Implant-Free Qu...

  1. Amorphous silicon for thin-film transistors

    NARCIS (Netherlands)

    Schropp, Rudolf Emmanuel Isidore

    1987-01-01

    Hydrogenated amorphous silicon (a-Si:H) has considerable potential as a semiconducting material for large-area photoelectric and photovoltaic applications. Moreover, a-Si:H thin-film transistors (TFT’s) are very well suited as switching devices in addressable liquid crystal display panels and

  2. Thermal transistor utilizing gas-liquid transition

    KAUST Repository

    Komatsu, Teruhisa S.

    2011-01-25

    We propose a simple thermal transistor, a device to control heat current. In order to effectively change the current, we utilize the gas-liquid transition of the heat-conducting medium (fluid) because the gas region can act as a good thermal insulator. The three terminals of the transistor are located at both ends and the center of the system, and are put into contact with distinct heat baths. The key idea is a special arrangement of the three terminals. The temperature at one end (the gate temperature) is used as an input signal to control the heat current between the center (source, hot) and another end (drain, cold). Simulating the nanoscale systems of this transistor, control of heat current is demonstrated. The heat current is effectively cut off when the gate temperature is cold and it flows normally when it is hot. By using an extended version of this transistor, we also simulate a primitive application for an inverter. © 2011 American Physical Society.

  3. Modelling and characterisation of transistors | Akande | Global ...

    African Journals Online (AJOL)

    Models and characterisation of active devices that control the flow of energy operating within and outside the active region of the operating domain are presented. Specifically, the incremental charge carrier and Ebers Moll models of the bipolar junction transistor are presented and the parameters of electrical behaviour of ...

  4. Black phosphorus radio-frequency transistors.

    Science.gov (United States)

    Wang, Han; Wang, Xiaomu; Xia, Fengnian; Wang, Luhao; Jiang, Hao; Xia, Qiangfei; Chin, Matthew L; Dubey, Madan; Han, Shu-jen

    2014-11-12

    Few-layer and thin film forms of layered black phosphorus (BP) have recently emerged as a promising material for applications in high performance nanoelectronics and infrared optoelectronics. Layered BP thin films offer a moderate bandgap of around 0.3 eV and high carrier mobility, which lead to transistors with decent on-off ratios and high on-state current densities. Here, we demonstrate the gigahertz frequency operation of BP field-effect transistors for the first time. The BP transistors demonstrated here show respectable current saturation with an on-off ratio that exceeds 2 × 10(3). We achieved a current density in excess of 270 mA/mm and DC transconductance above 180 mS/mm for hole conduction. Using standard high frequency characterization techniques, we measured a short-circuit current-gain cutoff frequency fT of 12 GHz and a maximum oscillation frequency fmax of 20 GHz in 300 nm channel length devices. BP devices may offer advantages over graphene transistors for high frequency electronics in terms of voltage and power gain due to the good current saturation properties arising from their finite bandgap, thus can be considered as a promising candidate for the future high performance thin film electronics technology for operation in the multi-GHz frequency range and beyond.

  5. Gallium nitride junction field-effect transistor

    Science.gov (United States)

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  6. Self-oscillating inverter with bipolar transistors

    Science.gov (United States)

    Baciu, I.; Cunţan, C. D.; Floruţa, M.

    2016-02-01

    The paper presents a self-oscillating inverter manufactured with bipolar transistors that supplies a high-amplitude alternating voltage to a fluorescent tube with a burned filament. The inverter is supplied from a low voltage accumulator that can be charged from a photovoltaic panel through a voltage regulator.

  7. Grid reliability

    CERN Document Server

    Saiz, P; Rocha, R; Andreeva, J

    2007-01-01

    We are offering a system to track the efficiency of different components of the GRID. We can study the performance of both the WMS and the data transfers At the moment, we have set different parts of the system for ALICE, ATLAS, CMS and LHCb. None of the components that we have developed are VO specific, therefore it would be very easy to deploy them for any other VO. Our main goal is basically to improve the reliability of the GRID. The main idea is to discover as soon as possible the different problems that have happened, and inform the responsible. Since we study the jobs and transfers issued by real users, we see the same problems that users see. As a matter of fact, we see even more problems than the end user does, since we are also interested in following up the errors that GRID components can overcome by themselves (like for instance, in case of a job failure, resubmitting the job to a different site). This kind of information is very useful to site and VO administrators. They can find out the efficien...

  8. New concepts for light-emitting transistors

    Science.gov (United States)

    Hepp, Aline; Ahles, Marcus; Heil, Holger; Schmechel, Roland; von Seggern, Heinz; Weiler, Ulrich; Mayer, Thomas; Jaegermann, Wolfram

    2004-10-01

    In this study we report on new concepts to generate light emission in organic thin film transistors. The initial physical understanding of light emission from tetracene based field-effect transistors was proposed to be originated from a strong underetching of the drain and source electrodes. This underetched electrodes in combination with the evaporated tetracene is thereby believed to generate a virtual OLED at the drain electrode. Accumulated holes have to leave the gate oxide interface to reach the drain electrode by crossing the bulk of the organic semiconductor. Light then occurs by injection of electrons in a large electric field in the bulk. Today's transistors do not show the underetching anymore but are still emitting light only at the drain electrode, again supporting the initial interpretation of a defect state at the edge of the drain electrode. In this context the question how electrons can overcome a potential barrier of 2.7 eV is still open. Therefore an investigation of the gold tetracene interface by UPS and XPS techniques has been started and preliminary data indicate the unexpected result that the barrier for electrons is comparable to that for holes. In a further step the generation of an ambipolar transistor by interface doping with calcium was tried and an n-type pentacene transistor could be fabricated but the strategy failed for tetracene. Finally an electrochemical interface doping was performed by the application of Lithium triflate in PEO to a thin interface layer between gate oxide and tetracene. This leads to light emission but unfortunately also to the loss of the gate voltage influence. Based on these results a possible strategy will be presented.

  9. Transistor Laser Optical NOR Gate for High Speed Optical Logic Processors

    Science.gov (United States)

    2017-03-20

    Transistor Laser Optical NOR Gate for High Speed Optical Logic Processors Milton Feng, Han Wui...Champaign Urbana, Illinois, U.S.A., 61801 (mfeng@illinois.edu) Abstract: Three-terminal transistor laser is the key element to forming a...junction transistor lasers (TJ-TLs). Keywords: Optical Logic; Semiconductor Laser; Transistor Laser (TL); Vertical Cavity Transistor Laser (VCTL

  10. Analog IC reliability in nanometer CMOS

    CERN Document Server

    Maricau, Elie

    2013-01-01

    This book focuses on modeling, simulation and analysis of analog circuit aging. First, all important nanometer CMOS physical effects resulting in circuit unreliability are reviewed. Then, transistor aging compact models for circuit simulation are discussed and several methods for efficient circuit reliability simulation are explained and compared. Ultimately, the impact of transistor aging on analog circuits is studied. Aging-resilient and aging-immune circuits are identified and the impact of technology scaling is discussed.   The models and simulation techniques described in the book are intended as an aid for device engineers, circuit designers and the EDA community to understand and to mitigate the impact of aging effects on nanometer CMOS ICs.   ·         Enables readers to understand long-term reliability of an integrated circuit; ·         Reviews CMOS unreliability effects, with focus on those that will emerge in future CMOS nodes; ·         Provides overview of models for...

  11. Engineering Design Handbook: Reliable Military Electronics

    Science.gov (United States)

    1976-01-15

    Lohman, R. D.: "A Transistor Analog," IRE Trans. PGCT, Conv. Rec., 1954, p. 118. Lovering, W. F., and D. B. Britten : "A Simple Transistor Bridge...April 1958, p. 14. Purton, R. F.: "Transistor Amplifiers: Common-Base vs. Common-Emitter," ATE Jour., April 1958, p. 157. Roy , R. : "Transistorized

  12. A transistor based on 2D material and silicon junction

    Science.gov (United States)

    Kim, Sanghoek; Lee, Seunghyun

    2017-07-01

    A new type of graphene-silicon junction transistor based on bipolar charge-carrier injection was designed and investigated. In contrast to many recent studies on graphene field-effect transistor (FET), this device is a new type of bipolar junction transistor (BJT). The transistor fully utilizes the Fermi level tunability of graphene under bias to increase the minority-carrier injection efficiency of the base-emitter junction in the BJT. Single-layer graphene was used to form the emitter and the collector, and a p-type silicon was used as the base. The output of this transistor was compared with a metal-silicon junction transistor ( i.e. surface-barrier transistor) to understand the difference between a graphene-silicon junction and metal-silicon Schottky junction. A significantly higher current gain was observed in the graphene-silicon junction transistor as the base current was increased. The graphene-semiconductor heterojunction transistor offers several unique advantages, such as an extremely thin device profile, a low-temperature (transistor current gain ( β) of 33.7 and a common-emitter amplifier voltage gain of 24.9 were achieved.

  13. Improvement of Subthreshold MOSFET Characteristics Employing Field Effect Bipolar Transistor

    Science.gov (United States)

    Takakubo, Kawori; Takakubo, Hajime

    A field effect transistor has the characteristic of high input resistance. Because a constant bias current is not necessary, it is widely utilized as a highly convenient element in existing integrated circuits. The exponential functional properties possessed by the bipolar transistor have the advantage of being able to realize large gain easily in comparison to the square power properties of the field effect transistor, but at present, the field effect transistor is used instead of the bipolar transistor. Amplifiers utilizing field effect transistors are inferior to those utilizing bipolar transistors from the standpoint of gain, output resistance, operational speed, etc.; consequently, in the next generation high speed communication technology, there is demand for an element that replaces the field effect transistor. This paper analyzes a subthreshold MOSFET employing Field Effect Bipolar Transistor (FEBT), which has high intrinsic gain and high input resistance, does not require a bias voltage at the signal input terminal, and can be used as a high-function field effect bipolar transistor capable of low power source voltage operations that solves the problems that have become topics in the large-scale integrated circuits of today.

  14. Fabrication and characterization of heterojunction transistors

    Science.gov (United States)

    Lo, Chien-Fong

    2011-12-01

    Submircon emitter finger high-speed double heterojunction InAlAs/InGaAsSb/InGaAs bipolar transistors (DHBTs) and a variety of nitride high electron mobility transistors (HEMTs) including AlGaN/GaN, InAlN/GaN, and AlN/GaN were fabricated and characterized. DHBT structures were grown by solid source molecular beam epitaxy (SSMBE) on Fe-doped semiinsulating InP substrates and nitride HEMTs were grown with a metal organic chemical vapor deposition (MOCVD) system on sapphire or SiC substrates. AlN/GaN HEMTs were grown with a RF-VMBE on sapphire substrates. Ultra low base contact resistance of 3.7 x 10-7 ohm-cm2 after 1 min 250¢XC thermal treatment on noval InGaAsSb base of DHBTs was achieved and a long-term thermal stability of base metallization was studied. Regarding small scale DHBT fabrication, tri-layer system was introduced to improve the resolution for submicron emitter patterning and help to pile up a thicker emitter metal stack; guard-ring technique was applied around the emitter periphery in order to preserve the current gain at small emitter dimensions. Ultra low turn-on voltage and high current gain can be realized with InGaAsSb-base DHBTs as compared to the conventional InGaAs-base DHBTs. A peak current gain cutoff frequency (fT) of 268 GHz and power gain cutoff frequency (fmax) of 485 GHz were achieved. GaN-based HEMTs herein were fabricated with gate lengths from 400 nm to 1im, and were deposited Ti/Al/Ni/Au as their Ohmic contact metallization. Effects of the Ohmic contact annealing for lattice-matched InAlN/GaN HEMTs with and without a thin GaN cap layer were exhibited and their optimal annealing temperature were obtained. A maximum drain current of 1.3 A/mm and an extrinsic transconductance of 366 mS/mm were demonstrated for InAlN/GaN HEMTs with the shortest gate length. A unity-gain cutoff frequency (fT) of 69 GHz and a maximum frequency of oscillation (fmax) of 80 GHz for InAlN/GaN HEMTs were extracted from measured scattering parameters

  15. Frontiers of reliability

    CERN Document Server

    Basu, Asit P; Basu, Sujit K

    1998-01-01

    This volume presents recent results in reliability theory by leading experts in the world. It will prove valuable for researchers, and users of reliability theory. It consists of refereed invited papers on a broad spectrum of topics in reliability. The subjects covered include Bayesian reliability, Bayesian reliability modeling, confounding in a series system, DF tests, Edgeworth approximation to reliability, estimation under random censoring, fault tree reduction for reliability, inference about changes in hazard rates, information theory and reliability, mixture experiment, mixture of Weibul

  16. Development of 6H-SiC CMOS Transistors for Insertion into a 350 deg C Operational Amplifier

    Science.gov (United States)

    1992-05-15

    epitaxial thickness in order to reduce the off- resistance associated with the NMOS device while maintaining breakdown reliability of the PMOS device...in Fig. 4. A variety of parameters are being recorded, including threshold voltage, transconductance, output resistance , and effect of substrate bias...operational amplifier ( opamp ) using the models developed for the silicon carbide transistors. Two of the three process approaches proposed above will

  17. Semi-classical noise investigation for sub-40nm metal-oxide-semiconductor field-effect transistors

    OpenAIRE

    C. Spathis; A. Birbas; K. Georgakopoulou

    2015-01-01

    Device white noise levels in short channel Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) dictate the performance and reliability of high-frequency circuits ranging from high-speed microprocessors to Low-Noise Amplifiers (LNAs) and microwave circuits. Recent experimental noise measurements with very short devices demonstrate the existence of suppressed shot noise, contrary to the predictions of classical channel thermal noise models. In this work we show that, as the dimensions ...

  18. Solder void position and size effects on electro thermal behaviour of MOSFET transistors in forward bias conditions

    OpenAIRE

    TRAN, S.H.; Dupont, Laurent; Khatir, Zoubir

    2014-01-01

    ESREF-25th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis, BERLIN, ALLEMAGNE, 29-/09/2014 - 02/10/2014; This research aims to enhance the understanding on position and size effects on the electro thermal behaviour of low voltage power MOSFET transistors in forward bias condition. The numerical simulations are based on a fractional design of experiments (DoE). The performance of a finite elements model is discussed by comparing thermal and electrical measur...

  19. Using a floating-gate MOS transistor as a transducer in a MEMS gas sensing system.

    Science.gov (United States)

    Barranca, Mario Alfredo Reyes; Mendoza-Acevedo, Salvador; Flores-Nava, Luis M; Avila-García, Alejandro; Vazquez-Acosta, E N; Moreno-Cadenas, José Antonio; Casados-Cruz, Gaspar

    2010-01-01

    Floating-gate MOS transistors have been widely used in diverse analog and digital applications. One of these is as a charge sensitive device in sensors for pH measurement in solutions or using gates with metals like Pd or Pt for hydrogen sensing. Efforts are being made to monolithically integrate sensors together with controlling and signal processing electronics using standard technologies. This can be achieved with the demonstrated compatibility between available CMOS technology and MEMS technology. In this paper an in-depth analysis is done regarding the reliability of floating-gate MOS transistors when charge produced by a chemical reaction between metallic oxide thin films with either reducing or oxidizing gases is present. These chemical reactions need temperatures around 200 °C or higher to take place, so thermal insulation of the sensing area must be assured for appropriate operation of the electronics at room temperature. The operation principle of the proposal here presented is confirmed by connecting the gate of a conventional MOS transistor in series with a Fe(2)O(3) layer. It is shown that an electrochemical potential is present on the ferrite layer when reacting with propane.

  20. An organic transistor-based system for reference-less electrophysiological monitoring of excitable cells

    Science.gov (United States)

    Spanu, A.; Lai, S.; Cosseddu, P.; Tedesco, M.; Martinoia, S.; Bonfiglio, A.

    2015-01-01

    In the last four decades, substantial advances have been done in the understanding of the electrical behavior of excitable cells. From the introduction in the early 70's of the Ion Sensitive Field Effect Transistor (ISFET), a lot of effort has been put in the development of more and more performing transistor-based devices to reliably interface electrogenic cells such as, for example, cardiac myocytes and neurons. However, depending on the type of application, the electronic devices used to this aim face several problems like the intrinsic rigidity of the materials (associated with foreign body rejection reactions), lack of transparency and the presence of a reference electrode. Here, an innovative system based on a novel kind of organic thin film transistor (OTFT), called organic charge modulated FET (OCMFET), is proposed as a flexible, transparent, reference-less transducer of the electrical activity of electrogenic cells. The exploitation of organic electronics in interfacing the living matters will open up new perspectives in the electrophysiological field allowing us to head toward a modern era of flexible, reference-less, and low cost probes with high-spatial and high-temporal resolution for a new generation of in-vitro and in-vivo monitoring platforms. PMID:25744085

  1. Using a Floating-Gate MOS Transistor as a Transducer in a MEMS Gas Sensing System

    Directory of Open Access Journals (Sweden)

    Gaspar Casados-Cruz

    2010-11-01

    Full Text Available Floating-gate MOS transistors have been widely used in diverse analog and digital applications. One of these is as a charge sensitive device in sensors for pH measurement in solutions or using gates with metals like Pd or Pt for hydrogen sensing. Efforts are being made to monolithically integrate sensors together with controlling and signal processing electronics using standard technologies. This can be achieved with the demonstrated compatibility between available CMOS technology and MEMS technology. In this paper an in-depth analysis is done regarding the reliability of floating-gate MOS transistors when charge produced by a chemical reaction between metallic oxide thin films with either reducing or oxidizing gases is present. These chemical reactions need temperatures around 200 °C or higher to take place, so thermal insulation of the sensing area must be assured for appropriate operation of the electronics at room temperature. The operation principle of the proposal here presented is confirmed by connecting the gate of a conventional MOS transistor in series with a Fe2O3 layer. It is shown that an electrochemical potential is present on the ferrite layer when reacting with propane.

  2. Memristive device based on a depletion-type SONOS field effect transistor

    Science.gov (United States)

    Himmel, N.; Ziegler, M.; Mähne, H.; Thiem, S.; Winterfeld, H.; Kohlstedt, H.

    2017-06-01

    State-of-the-art SONOS (silicon-oxide-nitride-oxide-polysilicon) field effect transistors were operated in a memristive switching mode. The circuit design is a variation of the MemFlash concept and the particular properties of depletion type SONOS-transistors were taken into account. The transistor was externally wired with a resistively shunted pn-diode. Experimental current-voltage curves show analog bipolar switching characteristics within a bias voltage range of ±10 V, exhibiting a pronounced asymmetric hysteresis loop. The experimental data are confirmed by SPICE simulations. The underlying memristive mechanism is purely electronic, which eliminates an initial forming step of the as-fabricated cells. This fact, together with reasonable design flexibility, in particular to adjust the maximum R ON/R OFF ratio, makes these cells attractive for neuromorphic applications. The relative large set and reset voltage around ±10 V might be decreased by using thinner gate-oxides. The all-electric operation principle, in combination with an established silicon manufacturing process of SONOS devices at the Semiconductor Foundry X-FAB, promise reliable operation, low parameter spread and high integration density.

  3. Organic Thin-Film Transistor (OTFT-Based Sensors

    Directory of Open Access Journals (Sweden)

    Daniel Elkington

    2014-04-01

    Full Text Available Organic thin film transistors have been a popular research topic in recent decades and have found applications from flexible displays to disposable sensors. In this review, we present an overview of some notable articles reporting sensing applications for organic transistors with a focus on the most recent publications. In particular, we concentrate on three main types of organic transistor-based sensors: biosensors, pressure sensors and “e-nose”/vapour sensors.

  4. Cylindrical-shaped nanotube field effect transistor

    KAUST Repository

    Hussain, Muhammad Mustafa

    2015-12-29

    A cylindrical-shaped nanotube FET may be manufactured on silicon (Si) substrates as a ring etched into a gate stack and filled with semiconductor material. An inner gate electrode couples to a region of the gate stack inside the inner circumference of the ring. An outer gate electrode couples to a region of the gate stack outside the outer circumference of the ring. The multi-gate cylindrical-shaped nanotube FET operates in volume inversion for ring widths below 15 nanometers. The cylindrical-shaped nanotube FET demonstrates better short channel effect (SCE) mitigation and higher performance (I.sub.on/I.sub.off) than conventional transistor devices. The cylindrical-shaped nanotube FET may also be manufactured with higher yields and cheaper costs than conventional transistors.

  5. Vertically Integrated Multiple Nanowire Field Effect Transistor.

    Science.gov (United States)

    Lee, Byung-Hyun; Kang, Min-Ho; Ahn, Dae-Chul; Park, Jun-Young; Bang, Tewook; Jeon, Seung-Bae; Hur, Jae; Lee, Dongil; Choi, Yang-Kyu

    2015-12-09

    A vertically integrated multiple channel-based field-effect transistor (FET) with the highest number of nanowires reported ever is demonstrated on a bulk silicon substrate without use of wet etching. The driving current is increased by 5-fold due to the inherent vertically stacked five-level nanowires, thus showing good feasibility of three-dimensional integration-based high performance transistor. The developed fabrication process, which is simple and reproducible, is used to create multiple stiction-free and uniformly sized nanowires with the aid of the one-route all-dry etching process (ORADEP). Furthermore, the proposed FET is revamped to create nonvolatile memory with the adoption of a charge trapping layer for enhanced practicality. Thus, this research suggests an ultimate design for the end-of-the-roadmap devices to overcome the limits of scaling.

  6. Benchmarking organic mixed conductors for transistors

    KAUST Repository

    Inal, Sahika

    2017-11-20

    Organic mixed conductors have garnered significant attention in applications from bioelectronics to energy storage/generation. Their implementation in organic transistors has led to enhanced biosensing, neuromorphic function, and specialized circuits. While a narrow class of conducting polymers continues to excel in these new applications, materials design efforts have accelerated as researchers target new functionality, processability, and improved performance/stability. Materials for organic electrochemical transistors (OECTs) require both efficient electronic transport and facile ion injection in order to sustain high capacity. In this work, we show that the product of the electronic mobility and volumetric charge storage capacity (µC*) is the materials/system figure of merit; we use this framework to benchmark and compare the steady-state OECT performance of ten previously reported materials. This product can be independently verified and decoupled to guide materials design and processing. OECTs can therefore be used as a tool for understanding and designing new organic mixed conductors.

  7. Celebrating 65th Anniversary of the Transistor

    Directory of Open Access Journals (Sweden)

    Goce L. Arsov

    2013-12-01

    Full Text Available The paper is dedicated to the 65th anniversary of the invention of the revolutionary electronic component that actually changed our way of life—the transistor. It recounts the key historical moments leading up to the invention of the first semiconductor active component in 1947. The meaning of the blend “transistor” is explained using the memorandum issued by Bell Telephone Laboratories. Certain problems appeared in the engineering phase of the transistor development and the new components obtained as a result of this research are reviewed. The impact of this invention on the development of power electronics is being emphasized. Finally, the possibility that the most important invention of the 20th century has been conceived not once but twice is discussed.

  8. Nanowire field effect transistors principles and applications

    CERN Document Server

    Jeong, Yoon-Ha

    2014-01-01

    “Nanowire Field Effect Transistor: Basic Principles and Applications” places an emphasis on the application aspects of nanowire field effect transistors (NWFET). Device physics and electronics are discussed in a compact manner, together with the p-n junction diode and MOSFET, the former as an essential element in NWFET and the latter as a general background of the FET. During this discussion, the photo-diode, solar cell, LED, LD, DRAM, flash EEPROM and sensors are highlighted to pave the way for similar applications of NWFET. Modeling is discussed in close analogy and comparison with MOSFETs. Contributors focus on processing, electrostatic discharge (ESD) and application of NWFET. This includes coverage of solar and memory cells, biological and chemical sensors, displays and atomic scale light emitting diodes. Appropriate for scientists and engineers interested in acquiring a working knowledge of NWFET as well as graduate students specializing in this subject.

  9. Ion-selective organic electrochemical transistors.

    Science.gov (United States)

    Sessolo, Michele; Rivnay, Jonathan; Bandiello, Enrico; Malliaras, George G; Bolink, Henk J

    2014-07-23

    Ion-selective organic electrochemical transistors with sensitivity to potassium approaching 50 μA dec(-1) are demonstrated. The remarkable sensitivity arises from the use of high transconductance devices, where the conducting polymer is in direct contact with a reference gel electrolyte and integrated with an ion-selective membrane. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Optical driven electromechanical transistor based on tunneling effect.

    Science.gov (United States)

    Jin, Leisheng; Li, Lijie

    2015-04-15

    A new electromechanical transistor based on an optical driven vibrational ring structure has been postulated. In the device, optical power excites the ring structure to vibrate, which acts as the shuttle transporting electrons from one electrode to the other forming the transistor. The electrical current of the transistor is adjusted by the optical power. Coupled opto-electro-mechanical simulation has been performed. It is shown from the dynamic analysis that the stable working range of the transistor is much wider than that of the optical wave inside the cavity, i.e., the optical resonance enters nonperiodic states while the mechanical vibration of the ring is still periodic.

  11. Lithography-free fabrication of carbon nanotube network transistors

    Energy Technology Data Exchange (ETDEWEB)

    Timmermans, Marina Y; Nasibulin, Albert G; Kauppinen, Esko I [NanoMaterials Group, Department of Applied Physics and Center for New Materials, Aalto University School of Science and Technology, PO Box 15100, 00076 Aalto (Finland); Grigoras, Kestutis; Franssila, Sami [Microfabrication Group, Department of Materials Science and Engineering, Aalto University School of Science and Technology, PL 13000, 00076 Aalto (Finland); Hurskainen, Ville; Ermolov, Vladimir, E-mail: marina.timmermans@hut.fi, E-mail: kestas.grigoras@tkk.fi [Nokia Research Center, Itaemerenkatu 9, 00180 Helsinki (Finland)

    2011-02-11

    A novel non-lithographic technique for the fabrication of carbon nanotube thin film transistors is presented. The whole transistor fabrication process requires only one mask which is used both to pattern transistor channels based on aerosol synthesized carbon nanotubes and to deposit electrodes by metal evaporation at different angles. An important effect of electrodynamic focusing was utilized for the directed assembly of transistor channels with feature sizes smaller than the mask openings. This dry non-lithographic method opens up new avenues for device fabrication especially for low cost flexible and transparent electronics.

  12. Effects of Radiation and Long-Term Thermal Cycling on EPC 1001 Gallium Nitride Transistors

    Science.gov (United States)

    Patterson, Richard L.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Data obtained on long-term thermal cycling of new un-irradiated and irradiated samples of EPC1001 gallium nitride enhancement-mode transistors are presented. This work was done by a collaborative effort including GRC, GSFC, and support the NASA www.nasa.gov 1 JPL in of Electronic Parts and Packaging (NEPP) Program

  13. Highly transparent and flexible nanopaper transistors.

    Science.gov (United States)

    Huang, Jia; Zhu, Hongli; Chen, Yuchen; Preston, Colin; Rohrbach, Kathleen; Cumings, John; Hu, Liangbing

    2013-03-26

    Renewable and clean "green" electronics based on paper substrates is an emerging field with intensifying research and commercial interests, as the technology combines the unique properties of flexibility, cost efficiency, recyclability, and renewability with the lightweight nature of paper. Because of its excellent optical transmittance and low surface roughness, nanopaper can host many types of electronics that are not possible on regular paper. However, there can be tremendous challenges with integrating devices on nanopaper due to its shape stability during processing. Here we demonstrate for the first time that flexible organic field-effect transistors (OFETs) with high transparency can be fabricated on tailored nanopapers. Useful electrical characteristics and an excellent mechanical flexibility were observed. It is believed that the large binding energy between polymer dielectric and cellulose nanopaper, and the effective stress release from the fibrous substrate promote these beneficial properties. Only a 10% decrease in mobility was observed when the nanopaper transistors were bent and folded. The nanopaper transistor also showed excellent optical transmittance up to 83.5%. The device configuration can transform many semiconductor materials for use in flexible green electronics.

  14. UNJUK KERJA CATU DAYA 12 VOLT 2A DENGAN PASS ELEMENT TRANSISTOR NPN DAN PNP

    OpenAIRE

    Fathoni Fathoni

    2012-01-01

    Transistor pelewat (pass element transistor) yang dipasang pada rangkain catu daya yang menggunakan IC regulator 3  terminal adalah untuk booster arus output. Ada dua cara pemasangan transistor  pelewat  yang  umum  digunakan,  yaitu  dengan  transistor  pnp  dan  npn.  Transistor  pnp dipasang dengan basis transistor yang terhubung pada input IC regulator sedangkan transistor npn dipasang dengan basis transistor yang terhubung pada output IC regulator. Untuk mengetahui unjuk kerja dari ke...

  15. ESTIMATION OF THERMAL PARAMETERS OF POWER BIPOLAR TRANSISTORS BY THE METHOD OF THERMAL RELAXATION DIFFERENTIAL SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    V. S. Niss

    2015-01-01

    Full Text Available Thermal performance of electronic devices determines the stability and reliability of the equipment. This leads to the need for a detailed thermal analysis of semiconductor devices. The goal of the work is evaluation of thermal parameters of high-power bipolar transistors in plastic packages TO-252 and TO-126 by a method of thermal relaxation differential spectrometry. Thermal constants of device elements and distribution structure of thermal resistance defined as discrete and continuous spectra using previously developed relaxation impedance spectrometer. Continuous spectrum, based on higher-order derivatives of the dynamic thermal impedance, follows the model of Foster, and discrete to model of Cauer. The structure of sample thermal resistance is presented in the form of siх-chain electro-thermal RC model. Analysis of the heat flow spreading in the studied structures is carried out on the basis of the concept of thermal diffusivity. For transistor structures the area and distribution of the heat flow cross-section are determined. On the basis of the measurements the thermal parameters of high-power bipolar transistors is evaluated, in particular, the structure of their thermal resistance. For all of the measured samples is obtained that the thermal resistance of the layer planting crystal makes a defining contribution to the internal thermal resistance of transistors. In the transition layer at the border of semiconductor-solder the thermal resistance increases due to changes in the mechanism of heat transfer. Defects in this area in the form of delamination of solder, voids and cracks lead to additional growth of thermal resistance caused by the reduction of the active square of the transition layer. Method of thermal relaxation differential spectrometry allows effectively control the distribution of heat flow in high-power semiconductor devices, which is important for improving the design, improve the quality of landing crystals of power

  16. Development of a stereo-symmetrical nanosecond pulsed power generator composed of modularized avalanche transistor Marx circuits

    Science.gov (United States)

    Li, Jiang-Tao; Zhong, Xu; Cao, Hui; Zhao, Zheng; Xue, Jing; Li, Tao; Li, Zheng; Wang, Ya-Nan

    2015-09-01

    Avalanche transistors have been widely studied and used in nanosecond high voltage pulse generations. However, output power improvement is always limited by the low thermal capacities of avalanche transistors, especially under high repetitive working frequency. Parallel stacked transistors can effectively improve the output current but the controlling of trigger and output synchronism has always been a hard and complex work. In this paper, a novel stereo-symmetrical nanosecond pulsed power generator with high reliability was developed. By analyzing and testing the special performances of the combined Marx circuits, numbers of meaningful conclusions on the pulse amplitude, pulse back edge, and output impedance were drawn. The combining synchronism of the generator was confirmed excellent and lower conducting current through the transistors was realized. Experimental results showed that, on a 50 Ω resistive load, pulses with 1.5-5.2 kV amplitude and 5.3-14.0 ns width could be flexibly generated by adjusting the number of combined modules, the supply voltage, and the module type.

  17. Superior performance and Hot Carrier reliability of strained FDSOI nMOSFETs for advanced CMOS technology nodes

    Science.gov (United States)

    Besnard, G.; Garros, X.; Andrieu, F.; Nguyen, P.; Van Den Daele, W.; Reynaud, P.; Schwarzenbach, W.; Delprat, D.; Bourdelle, K. K.; Reimbold, G.; Cristoloveanu, S.

    2015-11-01

    The Hot Carrier (HC) reliability of NMOS transistors fabricated on biaxially tensile-strain SOI substrates (sSOI) is compared to that of devices fabricated on standard unstrained SOI substrates. It is shown that sSOI-based devices not only exhibit a 10% higher performance in term of ION/IOFF but also show superior HC reliability at same drive current. This reliability improvement may be explained by a better interface quality for sSOI films.

  18. Reliability Assessment of IGBT Modules Modeled as Systems with Correlated Components

    DEFF Research Database (Denmark)

    Kostandyan, Erik; Sørensen, John Dalsgaard

    2013-01-01

    System modeling of electrical components for Wind Turbine (WT) applications is an important part for the overall WT reliability assessment. The presented approach is an approximate method for Insulated Gate Bipolar Transistor (IGBT) reliability estimation, modeled based on the parallel system...... the components in the reliability estimation though limit state functions and mechanical (failure-effect) correlations. The model is based on a physics of failure approach and a linear accumulated damage rule. To account model parameter variabilities, the First Order Reliability Method (FORM) technique...

  19. Transparent, flexible, all-reduced graphene oxide thin film transistors.

    Science.gov (United States)

    He, Qiyuan; Wu, Shixin; Gao, Shuang; Cao, Xiehong; Yin, Zongyou; Li, Hai; Chen, Peng; Zhang, Hua

    2011-06-28

    Owing to their unique thickness-dependent electronic properties, together with perfect flexibility and transparency, graphene and its relatives make fantastic material for use in both active channel and electrodes in various electronic devices. On the other hand, the electronic sensors based on graphene show high potential in detection of both chemical and biological species with high sensitivity. In this contribution, we report the fabrication of all-reduced graphene oxide (rGO) thin film transistors by a combination of solution-processed rGO electrodes with a micropatterned rGO channel, and then study their applications in biosensing. Our all-rGO devices are cost-effective, highly reproducible, and reliable. The fabricated electronic sensor is perfectly flexible with high transparency, showing good sensitivity in detecting proteins in the physiological buffer. As a proof of concept, fibronectin as low as 0.5 nM was successfully detected, which is comparable with the previously reported protein sensors based on single-layer pristine graphene obtained from mechanical cleavage. The specific detection of avidin by using biotinylated all-rGO sensor is also successfully demonstrated.

  20. Ambipolar MoS2 Thin Flake Transistors

    NARCIS (Netherlands)

    Zhang, Yijin; Ye, Jianting; Matsuhashi, Yusuke; Iwasa, Yoshihiro

    Field effect transistors (FETs) made of thin flake single crystals isolated from layered materials have attracted growing interest since the success of graphene. Here, we report the fabrication of an electric double layer transistor (EDLT, a FET gated by ionic liquids) using a thin flake of MoS2, a

  1. Very High Frequency Two-Port Characterization of Transistors

    DEFF Research Database (Denmark)

    Hertel, Jens Christian; Nour, Yasser; Jørgensen, Ivan Harald Holger

    To properly use transistors in VHF converters, they need to be characterized under similar conditions. This research presents a two-port method, using a network analyzer (NWA) with a S-port setup. The method is a one-shot method, providing fast results of the off-state parasitics of the transistors....

  2. Advanced Organic Permeable-Base Transistor with Superior Performance.

    Science.gov (United States)

    Klinger, Markus P; Fischer, Axel; Kaschura, Felix; Scholz, Reinhard; Lüssem, Björn; Kheradmand-Boroujeni, Bahman; Ellinger, Frank; Kasemann, Daniel; Leo, Karl

    2015-12-16

    An optimized vertical organic permeable-base transistor (OPBT) competing with the best organic field-effect transistors in performance, while employing low-cost fabrication techniques, is presented. The OPBT stands out by its excellent power efficiency at the highest frequencies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Smallest Transistor-Based Nonautonomous Chaotic Circuit

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, Arunas

    2005-01-01

    A nonautonomous chaotic circuit based on one transistor, two capacitors, and two resistors is described. The mechanism behind the chaotic performance is based on “disturbance of integration.” The forward part and the reverse part of the bipolar transistor are “fighting” about the charging...

  4. On the 50th Anniversary of the Transistor

    DEFF Research Database (Denmark)

    Stassen, Flemming

    1997-01-01

    This paper celebrates the 50th anniversary of the invention of the bipolar transistor in 1947. Combined with the inventions of integration and planar technology, the invention of the transistor marks the beginning of a period of unprecedented growth, the industrialization of electronics....

  5. The Complete Semiconductor Transistor and Its Incomplete Forms

    Science.gov (United States)

    Binbin, Jie; Chih-Tang, Sah

    2009-06-01

    This paper describes the definition of the complete transistor. For semiconductor devices, the complete transistor is always bipolar, namely, its electrical characteristics contain both electron and hole currents controlled by their spatial charge distributions. Partially complete or incomplete transistors, via coined names or/and designed physical geometries, included the 1949 Shockley p/n junction transistor (later called Bipolar Junction Transistor, BJT), the 1952 Shockley unipolar 'field-effect' transistor (FET, later called the p/n Junction Gate FET or JGFET), as well as the field-effect transistors introduced by later investigators. Similarities between the surface-channel MOS-gate FET (MOSFET) and the volume-channel BJT are illustrated. The bipolar currents, identified by us in a recent nanometer FET with 2-MOS-gates on thin and nearly pure silicon base, led us to the recognition of the physical makeup and electrical current and charge compositions of a complete transistor and its extension to other three or more terminal signal processing devices, and also the importance of the terminal contacts.

  6. Outlook and Emerging Semiconducting Materials for Ambipolar Transistors

    NARCIS (Netherlands)

    Bisri, Satria Zulkarnaen; Piliego, Claudia; Gao, Jia; Loi, Maria Antonietta

    Ambipolar or bipolar transistors are transistors in which both holes and electrons are mobile inside the conducting channel. This device allows switching among several states: the hole-dominated on-state, the off-state, and the electron-dominated on-state. In the past year, it has attracted great

  7. Assessment of Sub-Micron Particles by Exploiting Charge Differences with Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Maria F. Romero-Creel

    2017-08-01

    Full Text Available The analysis, separation, and enrichment of submicron particles are critical steps in many applications, ranging from bio-sensing to disease diagnostics. Microfluidic electrokinetic techniques, such as dielectrophoresis (DEP have proved to be excellent platforms for assessment of submicron particles. DEP is the motion of polarizable particles under the presence of a non-uniform electric field. In this work, the polarization and dielectrophoretic behavior of polystyrene particles with diameters ranging for 100 nm to 1 μm were studied employing microchannels for insulator based DEP (iDEP and low frequency (<1000 Hz AC and DC electric potentials. In particular, the effects of particle surface charge, in terms of magnitude and type of functionalization, were examined. It was found that the magnitude of particle surface charge has a significant impact on the polarization and dielectrophoretic response of the particles, allowing for successful particle assessment. Traditionally, charge differences are exploited employing electrophoretic techniques and particle separation is achieved by differential migration. The present study demonstrates that differences in the particle’s surface charge can also be exploited by means of iDEP; and that distinct types of nanoparticles can be identified by their polarization and dielectrophoretic behavior. These findings open the possibility for iDEP to be employed as a technique for the analysis of submicron biological particles, where subtle differences in surface charge could allow for rapid particle identification and separation.

  8. A solvent-shrinkage method for producing polymeric microsieves with sub-micron size pores

    NARCIS (Netherlands)

    Vriezekolk, Erik; Kemperman, Antonius J.B.; Girones nogue, Miriam; de Vos, Wiebe Matthijs; Nijmeijer, Dorothea C.

    2013-01-01

    This paper presents a thorough investigation of a simple method to decrease the dimensions of polymeric microsieves. Pore sizes of microsieves are usually in the micrometer scale, but need to be reduced to below 1 µm to make the microsieves attractive for aqueous filtration applications. In this

  9. Simulation of monolithic active pixels in deep sub-micron technologies

    CERN Document Server

    Manolopoulos, S; Turchetta, R

    2002-01-01

    The use of monolithic active pixels (MAPS) has quickly spread in a number of scientific fields ranging from imaging to high-energy particle physics applications. The success of MAPS is due to a number of reasons, for example their low power consumption, fast readout, high spatial resolution and low cost. The latter reflects the use of standard CMOS processes for fabrication. In this paper, the performance of MAPS designed in 0.25 mu m technology will be modelled by means of TCAD device simulation software. The dependence of the device performance on parameters that affect the detection of minimum ionising particles (MIP) will be studied aiming at the optimisation of the detector performance. More specifically, the simulations will focus on the influence of the epitaxial layer thickness on the amount of collected charge, that defines the signal and the cluster size, that affects the spatial resolution.

  10. Preparation of chitosan-TPP sub-micron particles: Critical evaluation and derived recommendations.

    Science.gov (United States)

    Rázga, Filip; Vnuková, Dominika; Némethová, Veronika; Mazancová, Petra; Lacík, Igor

    2016-10-20

    The controlled preparation of chitosan particles is far from being trivial due to a considerable number of experimental parameters. For chitosan-tripolyphosphate (TPP) particles we evaluate the impact of chemical (type of chitosan, concentration, chitosan to TPP ratio, pH, ionic strength) and process factors (dialysis, stirring rate, rate of TPP addition, temperature, needle diameter) on the size and colloidal stability. The particles were prepared at pH=6.0 at which chitosan adopts the coiled conformation that is discussed as the dominant factor in controlling the stoichiometry of crosslinking reaction shifted towards TPP. These conditions result in identical particle size around 400nm and zeta potential around 22mV. The colloidal stability evaluated 24 hours after preparation depends on the amount of TPP during crosslinking. Under the same conditions, the colloidal stability up to 1 month is demonstrated. Several recommendations are provided to increase the control over formation of chitosan-TPP particles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Trapping ultracold atoms in a sub-micron-period triangular magnetic lattice

    Science.gov (United States)

    Wang, Y.; Tran, T.; Surendran, P.; Herrera, I.; Balcytis, A.; Nissen, D.; Albrecht, M.; Sidorov, A.; Hannaford, P.

    2017-07-01

    We report the trapping of ultracold 87Rb atoms in a 0.7-μ m-period two-dimensional triangular magnetic lattice on an atom chip. The magnetic lattice is created by a lithographically patterned magnetic Co/Pd multilayer film plus bias fields. Rubidium atoms in the |F =1 , mF=-1 > low-field seeking state are trapped at estimated distances down to about 100 nm from the chip surface and with calculated mean trapping frequencies up to about 800 kHz . The measured lifetimes of the atoms trapped in the magnetic lattice are in the range 0.4-1.7 ms , depending on distance from the chip surface. Model calculations suggest the trap lifetimes are currently limited mainly by losses due to one-dimensional thermal evaporation following loading of the atoms from the Z -wire trap into the very tight magnetic lattice traps, rather than by fundamental loss processes such as surface interactions, three-body recombination, or spin flips due to Johnson magnetic noise. The trapping of atoms in a 0.7 -μ m -period magnetic lattice represents a significant step toward using magnetic lattices for quantum tunneling experiments and to simulate condensed matter and many-body phenomena in nontrivial lattice geometries.

  12. Induced magnetoresistance in semiconductor devices due to single sub-micron magnetic barriers

    Science.gov (United States)

    Kubrak, V.; Rahman, F.; Overend, N.; Gallagher, B. L.; Main, P. C.; Boeck, J. de; Behest, M.; Marrows, C. H.; Howson, M. A.

    1998-12-01

    We investigate the magnetoresistance induced in a near-surface two-dimensional electron gas by the fringe field of a thin ferromagnetic line on the surface of the device. From the measured magnetoresistance, we deduce the hysteretic properties of the magnetic line, using the semiconductor device as a nanomagnetometer.

  13. Multidisciplinary Approach to the Science and Technology of Sub-Micron Electronics.

    Science.gov (United States)

    1987-03-10

    overlap with the continuum are unique to the quantum well structures. A paper describing our findings has been submitted for publication. Regarding...Grant ARO DAAG 29-83-K-0131 during the period 7/1/85-12/31/85 1. " Fibonacci GaAs-AlAs Superlattices", R. Clarke, R. Merlin, K. Bajema, F.-Y Juang and P.K...pursued: experiments on new quasiperiodic superlattices and studies of quantum-well structures. In the quasiperiodic ( Fibonacci ) superlattices we have

  14. High Proportions of Sub-micron Particulate Matter in Icelandic Dust Storms in 2015

    Science.gov (United States)

    Dagsson Waldhauserova, Pavla; Arnalds, Olafur; Olafsson, Haraldur; Magnusdottir, Agnes

    2017-04-01

    Iceland is extremely active dust region and desert areas of over 44,000 km2 acknowledge Iceland as the largest Arctic and European desert. Frequent dust events, up to 135 dust days annually, transport dust particles far distances towards the Arctic and Europe. Satellite MODIS pictures have revealed dust plumes exceeding 1,000 km. The annual dust deposition was calculated as 40.1 million tons yr-1. Two dust storms were measured in transverse horizontal profile about 90 km far from different dust sources in southwestern Iceland in the summer of 2015. Aerosol monitor DustTrak DRX 8533EP was used to measure PM mass concentrations corresponding to PM1, PM2.5, PM4, PM10 and the total PM15 at several places within the dust plume. Images from camera network operated by the Icelandic Road and Coastal Administration were used to estimate the visibility and spatial extent of measured dust events. A numerical simulation of surface winds was carried out with the numerical model HIRLAM with horizontal resolution of 5 km and used to calculate the total dust flux from the sources. The in situ measurements inside the dust plumes showed that aeolian dust can be very fine. The study highlights that suspended volcanic dust in Iceland causes air pollution with extremely high PM1 concentrations comparable to the polluted urban stations in Europe or Asia rather than reported dust event observations from around the world. The PM1/PM2.5 ratios are generally low during dust storms outside of Iceland, much lower than > 0.9 and PM1/PM10 ratios of 0.34-0.63 found in our study. It shows that Icelandic volcanic dust consists of higher proportion of submicron particles compared to crustal dust. The submicron particles are predicted to travel long distances. Moreover, such submicron particles pose considerable health risk because of high potential for entering the lungs. Icelandic volcanic glass has often fine pipe-vesicular structures known from asbestos and high content of heavy metals. Previous in situ measurements at the dust source in 2013 revealed extremely high number concentrations of submicron particles, specifically in the size range 0.3-0.337 μm. The PM2.5/PM10 ratios of mass concentrations seem to be lower at the dust sources that in some distance from the sources as measured in 2015. Common dust storms in Iceland are of several hundred thousand tons of magnitude from relatively well defined main dust sources. Numerical simulations were used calculate the total dust flux from the sources as 180,000 - 280,000 tons in this study. The mean PM1 (PM10) concentrations inside of the dust plumes varied from 97 to 241 µg m-3 (PM10 = 158 to 583 µg m-3). The extent of moderate dust events was calculated as 2.450 km2 to 4.220 km2 of the land area suggesting the regional scale of the events. Dust plumes reported here passed the most densely inhabited areas of Iceland, health risk warnings for the general public were, however, not issued. The data provided stresses the need for such warning system and is an important step towards its development.

  15. Simulation of hurricane response to suppression of warm rain by sub-micron aerosols

    Directory of Open Access Journals (Sweden)

    D. Rosenfeld

    2007-07-01

    Full Text Available The feasibility of hurricane modification was investigated for hurricane Katrina using the Weather Research and Forecasting Model (WRF. The possible impact of seeding of clouds with submicron cloud condensation nuclei (CCN on hurricane structure and intensity as measured by nearly halving of the area covered by hurricane force winds was simulated by "turning–off" warm rain formation in the clouds at Katrina's periphery (where wind speeds were less than 22 m s−1. This simplification of the simulation of aerosol effects is aimed at evaluating the largest possible response. This resulted in the weakening of the hurricane surface winds compared to the "non-seeded" simulated storm during the first 24 h within the entire tropical cyclone (TC area compared to a control simulation without warm rain suppression. Later, the seeding-induced evaporative cooling at the TC periphery led to a shrinking of the eye and hence to some increase in the wind within the small central area of the TC. Yet, the overall strength of the hurricane, as defined by the area covered by hurricane force winds, decreased in response to the suppressed warm rain at the periphery, as measured by a 25% reduction in the radius of hurricane force winds. In a simulation with warm rain suppression throughout the hurricane, the radius of the hurricane force winds was reduced by more than 42%, and although the diameter of the eye shrunk even further the maximum winds weakened. This shows that the main mechanism by which suppressing warm rain weakens the TC is the low level evaporative cooling of the un-precipitated cloud drops and the added cooling due to melting of precipitation that falls from above.

  16. Sub-micron-sized delafossite CuCrO2 with different morphologies ...

    Indian Academy of Sciences (India)

    Currently, copper chromium oxide crystallizing in delafossite structure attracts huge research interest due to its versatile applications arising from its layered structure. In this work, delafossite CuCrO 2 was synthesized by sol–gel method from their respective hydrated nitrate salts with citric acid as a chelating agent.

  17. Penetration of sub-micron aerosol droplets in composite cylindrical filtration elements

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Pratte, Pascal; Stolz, S.; Stabbert, Regina; Poux, Valerie; Nordlund, Markus; Winkelmann, Christoph

    Advection–diffusion transport of aerosol droplets in composite cylindrical filtration elements is analyzed and compared to experimental data. The penetration, characterizing the fraction of droplets that passes through the pores of a filtration element, is quantified for a range of flow rates. The

  18. Deviation from threshold model in ultrafast laser ablation of graphene at sub-micron scale

    Energy Technology Data Exchange (ETDEWEB)

    Gil-Villalba, A.; Xie, C.; Salut, R.; Furfaro, L.; Giust, R.; Jacquot, M.; Lacourt, P. A.; Dudley, J. M.; Courvoisier, F., E-mail: francois.courvoisier@femto-st.fr [Institut FEMTO-ST, UMR 6174 CNRS, Universite de Bourgogne Franche-Comte, 25030 Besançon Cedex (France)

    2015-08-10

    We investigate a method to measure ultrafast laser ablation threshold with respect to spot size. We use structured complex beams to generate a pattern of craters in CVD graphene with a single laser pulse. A direct comparison between beam profile and SEM characterization allows us to determine the dependence of ablation probability on spot-size, for crater diameters ranging between 700 nm and 2.5 μm. We report a drastic decrease of ablation probability when the crater diameter is below 1 μm which we interpret in terms of free-carrier diffusion.

  19. Preparation and characterization of sub-micron dispersions of sand in ethylene glycol-water mixture

    OpenAIRE

    Manikandan,S.; Karthikeyan, N.; M Silambarasan; K. S. Suganthi; Rajan, K. S.

    2012-01-01

    Experiments were carried out on the preparation and characterization of dispersions of sand in ethylene glycol-water (50-50%) mixture. The dispersions were prepared by stirred bead milling of 20-30 µm sand (in water) followed by dilution with water and ethylene glycol. The influence of temperature (31-45 ºC), particle concentration (< 2 vol %) and ultrasonication on the viscosity of sand-ethylene glycol-water dispersions was studied. The thermal conductivity of dispersions as a function of pa...

  20. White light generation using photonic crystal fiber with sub-micron circular lattice

    Science.gov (United States)

    Saghaei, Hamed; Ghanbari, Ashkan

    2017-08-01

    In this paper, we study a photonic crystal fiber (PCF) with circular lattice and engineer linear and nonlinear parameters by varying the diameter of air-holes. It helps us obtain low and high zero dispersion wavelengths in the visible and nearinfrared regions. We numerically demonstrate that by launching 100 fs input pulses of 1, 2, and 5 kW peak powers with center wavelength of 532 nm from an unamplified Ti:sapphire laser into a 100 mm length of the engineered PCF, supercontinua as wide as 290, 440 and 830 nm can be obtained, respectively. The spectral broadening is due to the combined action of self-phase modulation, stimulated Raman scattering and parametric four-wave-mixing generation of the pump pulses. The third and the widest spectrum covers the entire visible range and a part of near infrared region making it a suitable source for both white light applications and optical coherence tomography to measure retinal oxygen metabolic response to systemic oxygenation.

  1. Laser forming for sub-micron adjustment: with application to optical fiber assembly

    NARCIS (Netherlands)

    Folkersma, Ger

    2015-01-01

    Laser forming is a method to deform a material by controlled local laser heating. In combination with a dedicated actuator topology, those deformations can be used for high precision alignment of components. This thesis applies this method to the alignment of optical fibers with respect to the

  2. OpenStage: a low-cost motorized microscope stage with sub-micron positioning accuracy.

    Directory of Open Access Journals (Sweden)

    Robert A A Campbell

    Full Text Available Recent progress in intracellular calcium sensors and other fluorophores has promoted the widespread adoption of functional optical imaging in the life sciences. Home-built multiphoton microscopes are easy to build, highly customizable, and cost effective. For many imaging applications a 3-axis motorized stage is critical, but commercially available motorization hardware (motorized translators, controller boxes, etc are often very expensive. Furthermore, the firmware on commercial motor controllers cannot easily be altered and is not usually designed with a microscope stage in mind. Here we describe an open-source motorization solution that is simple to construct, yet far cheaper and more customizable than commercial offerings. The cost of the controller and motorization hardware are under $1000. Hardware costs are kept low by replacing linear actuators with high quality stepper motors. Electronics are assembled from commonly available hobby components, which are easy to work with. Here we describe assembly of the system and quantify the positioning accuracy of all three axes. We obtain positioning repeatability of the order of 1 μm in X/Y and 0.1 μm in Z. A hand-held control-pad allows the user to direct stage motion precisely over a wide range of speeds (10(-1 to 10(2 μm·s(-1, rapidly store and return to different locations, and execute "jumps" of a fixed size. In addition, the system can be controlled from a PC serial port. Our "OpenStage" controller is sufficiently flexible that it could be used to drive other devices, such as micro-manipulators, with minimal modifications.

  3. OpenStage: a low-cost motorized microscope stage with sub-micron positioning accuracy.

    Science.gov (United States)

    Campbell, Robert A A; Eifert, Robert W; Turner, Glenn C

    2014-01-01

    Recent progress in intracellular calcium sensors and other fluorophores has promoted the widespread adoption of functional optical imaging in the life sciences. Home-built multiphoton microscopes are easy to build, highly customizable, and cost effective. For many imaging applications a 3-axis motorized stage is critical, but commercially available motorization hardware (motorized translators, controller boxes, etc) are often very expensive. Furthermore, the firmware on commercial motor controllers cannot easily be altered and is not usually designed with a microscope stage in mind. Here we describe an open-source motorization solution that is simple to construct, yet far cheaper and more customizable than commercial offerings. The cost of the controller and motorization hardware are under $1000. Hardware costs are kept low by replacing linear actuators with high quality stepper motors. Electronics are assembled from commonly available hobby components, which are easy to work with. Here we describe assembly of the system and quantify the positioning accuracy of all three axes. We obtain positioning repeatability of the order of 1 μm in X/Y and 0.1 μm in Z. A hand-held control-pad allows the user to direct stage motion precisely over a wide range of speeds (10(-1) to 10(2) μm·s(-1)), rapidly store and return to different locations, and execute "jumps" of a fixed size. In addition, the system can be controlled from a PC serial port. Our "OpenStage" controller is sufficiently flexible that it could be used to drive other devices, such as micro-manipulators, with minimal modifications.

  4. Bragg diffraction from sub-micron particles isolated by optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yuan, E-mail: ygao0709@anl.gov; Harder, Ross; Southworth, Stephen; Guest, Jeffrey; Ocola, Leonidas; Young, Linda [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Scherer, Norbert; Yan, Zijie [Department of Chemistry, University of Chicago, Chicago, IL 60637 (United States); Pelton, Matthew [Department of Physics, University of Maryland, Baltimore County, MD 21250 (United States)

    2016-07-27

    We describe an apparatus using dynamic holographic optical tweezers which is capable of trapping and aligning a single micron scale anisotropic ZnO particle for x-ray Bragg diffraction experiments. The optical tweezers demonstrate enough stability to perform coherent x-ray diffraction imaging.

  5. Dynamics of Dissolved Organic Matter and Microbes in Seawater through Sub-Micron Particle Size Analyses

    Digital Repository Service at National Institute of Oceanography (India)

    Goes, J.I.; Balch, W.M.; Vaughn, J.M.; Gomes, H.R.

    processes responsible for the dynamics of DOM rely on monitoring the consumption and breakdown of specific compounds of phytoplankton origin, generally, through the use of labeled precursors and substrates (Kirchman et al., 1991; Fry et al., 1996; Rich et al... attempts to determine the molecular weight or size spectrum of DOM using size exclusion chromatography, but these have generally proven unsatisfactory (Beckett et al., 1987). One reason is that DOM is exposed to high shear stresses during separation...

  6. Analysis and Test Development for Parasitic Fails in Deep Sub-Micron Memory Devices

    NARCIS (Netherlands)

    Irobi, I.S.

    2011-01-01

    Emerging technology trends are gravitating towards extremely high levels of integration at the package and chip levels, and use of deeply scaled technology in nanometer, approaching 10nm CMOS. Challenges will arise due to the ability to design complex systems such as robots that encompass sensors,

  7. Sub-parts per million NO2 chemi-transistor sensors based on composite porous silicon/gold nanostructures prepared by metal-assisted etching.

    Science.gov (United States)

    Sainato, Michela; Strambini, Lucanos Marsilio; Rella, Simona; Mazzotta, Elisabetta; Barillaro, Giuseppe

    2015-04-08

    Surface doping of nano/mesostructured materials with metal nanoparticles to promote and optimize chemi-transistor sensing performance represents the most advanced research trend in the field of solid-state chemical sensing. In spite of the promising results emerging from metal-doping of a number of nanostructured semiconductors, its applicability to silicon-based chemi-transistor sensors has been hindered so far by the difficulties in integrating the composite metal-silicon nanostructures using the complementary metal-oxide-semiconductor (CMOS) technology. Here we propose a facile and effective top-down method for the high-yield fabrication of chemi-transistor sensors making use of composite porous silicon/gold nanostructures (cSiAuNs) acting as sensing gate. In particular, we investigate the integration of cSiAuNs synthesized by metal-assisted etching (MAE), using gold nanoparticles (NPs) as catalyst, in solid-state junction-field-effect transistors (JFETs), aimed at the detection of NO2 down to 100 parts per billion (ppb). The chemi-transistor sensors, namely cSiAuJFETs, are CMOS compatible, operate at room temperature, and are reliable, sensitive, and fully recoverable for the detection of NO2 at concentrations between 100 and 500 ppb, up to 48 h of continuous operation.

  8. Hafnium transistor process design for neural interfacing.

    Science.gov (United States)

    Parent, David W; Basham, Eric J

    2009-01-01

    A design methodology is presented that uses 1-D process simulations of Metal Insulator Semiconductor (MIS) structures to design the threshold voltage of hafnium oxide based transistors used for neural recording. The methodology is comprised of 1-D analytical equations for threshold voltage specification, and doping profiles, and 1-D MIS Technical Computer Aided Design (TCAD) to design a process to implement a specific threshold voltage, which minimized simulation time. The process was then verified with a 2-D process/electrical TCAD simulation. Hafnium oxide films (HfO) were grown and characterized for dielectric constant and fixed oxide charge for various annealing temperatures, two important design variables in threshold voltage design.

  9. Amplificadores con transistores. Estudio y dimensionado

    OpenAIRE

    Lubiano García, Adrián

    2017-01-01

    Este trabajo es un estudio de las distintas configuraciones de los amplificadores con transistores vistos en la asignatura de Electrónica Analógica del tercer curso del Grado en Ingeniería en Electrónica Industrial y Automática de la Escuela de Ingenierías Industriales de la Universidad de Valladolid. En este trabajo se mostrarán los pasos seguidos en la creación de una aplicación con Visual Basic para la realización de los ejercicios de las distintas configuraciones, así...

  10. Oxide Based Transistor for Flexible Displays

    Science.gov (United States)

    2014-09-15

    Transistors Achieved by 63-mV/dec Subthreshold Slope, IEDM 2008 IEEE International, P. 1-4. 23. Cho, E.N., Jung Han Kang, Chang Eun Kim, Pyung Moon...illumination, Applied Physics Letters, 2012. 100(24): p. 243505 17. Ji -Hoon Shin, D.-K.C., Effect of oxygen on the optical and the electrical properties...Advanced Functional Materials, 2012. 22(6): p. 1209-1214. 21. Ji -Hoon Shin and Duck-Kyun Choi, Effect of Oxygen on the Optical and the Electrical

  11. Ultrathin organic transistors on oxide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Daraktchiev, Maren [Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland); Muehlenen, Adrian von [Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland); Nueesch, Frank [Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland); Schaer, Michel [Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland); Brinkmann, Martin [Institut Charles Sadron, 67083 Strasbourg Cedex (France); Bussac, Marie-Noelle [Centre de Physique Theorique, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Zuppiroli, Libero [Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland)

    2005-05-01

    We have built a model organic field-effect transistor that is basically composed of a single layer of pentacene crystal in interaction with an oxide surface. Drain and source contacts are ohmic so that the pentacene layer can carry a current density as high as 3000 A cm{sup -2} at a gate voltage of -60 V. Four-probe and two-probe transport measurements as a function of temperature and fields are presented in relation with structural near-field observations. The experimental results suggest a simple two-dimensional model where the equilibrium between free and trapped carriers at the oxide interface determines the OFET characteristics and performance.

  12. Advanced Channel Engineering for Thin Body Transistors

    OpenAIRE

    Chien, Po-Yen

    2016-01-01

    As transistor dimension kept scaling down, many challenges arises such as worse electrostatic control and higher variability. In order to address these issues, thin down body thickness is widely accepted and device structures such as FinFET and SOI are employed. Although FinFET has been adopted as main device structure by major foundries like Intel and TSMC in 20nm node and beyond, its analog performances like gm and fT are still lagging behind the bulk and SOI and prevent it from applying to...

  13. Functional organic field-effect transistors.

    Science.gov (United States)

    Guo, Yunlong; Yu, Gui; Liu, Yunqi

    2010-10-25

    Functional organic field-effect transistors (OFETs) have attracted increasing attention in the past few years due to their wide variety of potential applications. Research on functional OFETs underpins future advances in organic electronics. In this review, different types of functional OFETs including organic phototransistors, organic memory FETs, organic light emitting FETs, sensors based on OFETs and other functional OFETs are introduced. In order to provide a comprehensive overview of this field, the history, current status of research, main challenges and prospects for functional OFETs are all discussed.

  14. Degradation Mechanisms for GaN and GaAs High Speed Transistors

    Directory of Open Access Journals (Sweden)

    Fan Ren

    2012-11-01

    Full Text Available We present a review of reliability issues in AlGaN/GaN and AlGaAs/GaAs high electron mobility transistors (HEMTs as well as Heterojunction Bipolar Transistors (HBTs in the AlGaAs/GaAs materials systems. Because of the complex nature and multi-faceted operation modes of these devices, reliability studies must go beyond the typical Arrhenius accelerated life tests. We review the electric field driven degradation in devices with different gate metallization, device dimensions, electric field mitigation techniques (such as source field plate, and the effect of device fabrication processes for both DC and RF stress conditions. We summarize the degradation mechanisms that limit the lifetime of these devices. A variety of contact and surface degradation mechanisms have been reported, but differ in the two device technologies: For HEMTs, the layers are thin and relatively lightly doped compared to HBT structures and there is a metal Schottky gate that is directly on the semiconductor. By contrast, the HBT relies on pn junctions for current modulation and has only Ohmic contacts. This leads to different degradation mechanisms for the two types of devices.

  15. Degradation Mechanisms for GaN and GaAs High Speed Transistors

    Science.gov (United States)

    Cheney, David J.; Douglas, Erica A.; Liu, Lu; Lo, Chien-Fong; Gila, Brent P.; Ren, Fan; Pearton, Stephen J.

    2012-01-01

    We present a review of reliability issues in AlGaN/GaN and AlGaAs/GaAs high electron mobility transistors (HEMTs) as well as Heterojunction Bipolar Transistors (HBTs) in the AlGaAs/GaAs materials systems. Because of the complex nature and multi-faceted operation modes of these devices, reliability studies must go beyond the typical Arrhenius accelerated life tests. We review the electric field driven degradation in devices with different gate metallization, device dimensions, electric field mitigation techniques (such as source field plate), and the effect of device fabrication processes for both DC and RF stress conditions. We summarize the degradation mechanisms that limit the lifetime of these devices. A variety of contact and surface degradation mechanisms have been reported, but differ in the two device technologies: For HEMTs, the layers are thin and relatively lightly doped compared to HBT structures and there is a metal Schottky gate that is directly on the semiconductor. By contrast, the HBT relies on pn junctions for current modulation and has only Ohmic contacts. This leads to different degradation mechanisms for the two types of devices.

  16. Current Analysis and Modeling of Fullerene Single-Electron Transistor at Room Temperature

    Science.gov (United States)

    Khadem Hosseini, Vahideh; Ahmadi, Mohammad Taghi; Afrang, Saeid; Ismail, Razali

    2017-07-01

    Single-electron transistors (SETs) are interesting electronic devices that have become key elements in modern nanoelectronic systems. SETs operate quickly because they use individual electrons, with the number transferred playing a key role in their switching behavior. However, rapid transmission of electrons can cause their accumulation at the island, affecting the I- V characteristic. Selection of fullerene as a nanoscale zero-dimensional material with high stability, and controllable size in the fabrication process, can overcome this charge accumulation issue and improve the reliability of SETs. Herein, the current in a fullerene SET is modeled and compared with experimental data for a silicon SET. Furthermore, a weaker Coulomb staircase and improved reliability are reported. Moreover, the applied gate voltage and fullerene diameter are found to be directly associated with the I- V curve, enabling the desired current to be achieved by controlling the fullerene diameter.

  17. Hybrid transistor manipulation controlled by light within a PANDA microring resonator.

    Science.gov (United States)

    Chantanetra, Soontorn; Teeka, Chat; Mitatha, Somsak; Jomtarak, Rangsan; Yupapin, Preecha P

    2012-06-01

    In this paper, the novel type of transistor known as a hybrid transistor is proposed, in which all types of transistors can be formed by using a microring resonator called a PANDA microring resonator. In principle, such a transistor can be used to form for various transistor types by using the atom/molecule trapping tools, which is named by an optical tweezer, where in application all type of transistors, especially, molecule and photon transistors can be performed by using the trapping tools, which will be described in details.

  18. High-density carrier-accumulated and electrically stable oxide thin-film transistors from ion-gel gate dielectric

    Science.gov (United States)

    Fujii, Mami N.; Ishikawa, Yasuaki; Miwa, Kazumoto; Okada, Hiromi; Uraoka, Yukiharu; Ono, Shimpei

    2015-12-01

    The use of indium-gallium-zinc oxide (IGZO) has paved the way for high-resolution uniform displays or integrated circuits with transparent and flexible devices. However, achieving highly reliable devices that use IGZO for low-temperature processes remains a technological challenge. We propose the use of IGZO thin-film transistors (TFTs) with an ionic-liquid gate dielectric in order to achieve high-density carrier-accumulated IGZO TFTs with high reliability, and we discuss a distinctive mechanism for the degradation of this organic-inorganic hybrid device under long-term electrical stress. Our results demonstrated that an ionic liquid or gel gate dielectric provides highly reliable and low-voltage operation with IGZO TFTs. Furthermore, high-density carrier accumulation helps improve the TFT characteristics and reliability, and it is highly relevant to the electronic phase control of oxide materials and the degradation mechanism for organic-inorganic hybrid devices.

  19. A Survey of Electronics Obsolescence and Reliability

    Science.gov (United States)

    2010-07-01

    bipolar junction ( BJT ) transistor , named as its operation involves flow of both electrons and holes, consists of a layer of semiconductor material, named...they are connected to. Usage requires connecting the emitter of a NPN-type transistor to negative, and the emitter of a PNP-type to positive. BJTs are...Diodes ...........................................................................................................17 3.2.2 Transistors

  20. Meyer-Neldel rule in fullerene field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Mujeeb; Sitter, H. [Johannes Kepler University Linz (Austria). Institute of Semiconductor and Solid State Physics; Singh, T.B.; Sariciftci, N.S. [Johannes Kepler University Linz (AT). Institute of Organic Solar Cells (LIOS), Institute of Physical Chemistry

    2009-11-15

    The temperature dependence of the field-effect mobility is investigated in vacuum evaporated C{sub 60}-based organic field-effect transistors. The results show a thermally activated behavior with an activation energy that depends on the field-induced charge carrier density in the transistor channel. Upon extrapolation of the data in an Arrhenius plot we find an empirical relation, termed the Meyer-Neldel rule, which states that the mobility prefactor increases exponentially with the activation energy. Based on this analysis a characteristic temperature is extracted. The possible implications of this observation in terms of charge transport in fullerene-based field-effect transistors are discussed. (orig.)

  1. A gallium phosphide high-temperature bipolar junction transistor

    Science.gov (United States)

    Zipperian, T. E.; Dawson, L. R.; Chaffin, R. J.

    1981-01-01

    Preliminary results are reported on the development of a high temperature (350 C) gallium phosphide bipolar junction transistor (BJT) for geothermal and other energy applications. This four-layer p(+)n(-)pp(+) structure was formed by liquid phase epitaxy using a supercooling technique to insure uniform nucleation of the thin layers. Magnesium was used as the p-type dopant to avoid excessive out-diffusion into the lightly doped base. By appropriate choice of electrodes, the device may also be driven as an n-channel junction field-effect transistor. The initial design suffers from a series resistance problem which limits the transistor's usefulness at high temperatures.

  2. Large magnetocurrents in double-barrier tunneling transistors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.H. [Nano Device Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Physics, Korea University, Chochiwon 339-700 (Korea, Republic of); Jun, K.-I. [Nano Device Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Shin, K.-H. [Nano Device Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Park, S.Y. [Department of Physics, Korea University, Chochiwon 339-700 (Korea, Republic of); Hong, J.K. [Department of Physics, Korea University, Chochiwon 339-700 (Korea, Republic of); Rhie, K. [Department of Physics, Korea University, Chochiwon 339-700 (Korea, Republic of)]. E-mail: krhie@korea.ac.kr; Lee, B.C. [Department of Physics, Inha University, Incheon (Korea, Republic of)

    2005-02-01

    Magnetic tunneling transistors (MTT) with double tunneling barriers are fabricated. The structure of the transistor is AFM/FM/I/FM/I/FM/AFM, and ferromagnetic layers serve as the emitter, base and collector. This double-barrier tunneling transistor (DBTT) has an advantage of controlling the potential between the base and collector, compared to the Schottky-barrier-based base and collector of MTT. We found that the collector current density of DBTT is at least 10{sup 3} times larger than that of conventional MTT, since tunneling through AlO{sub x} barrier provides much larger current density than that through Schottky barrier.

  3. GaN transistors for efficient power conversion

    CERN Document Server

    Lidow, Alex; de Rooij, Michael; Reusch, David

    2014-01-01

    The first edition of GaN Transistors for Efficient Power Conversion was self-published by EPC in 2012, and is currently the only other book to discuss GaN transistor technology and specific applications for the technology. More than 1,200 copies of the first edition have been sold through Amazon or distributed to selected university professors, students and potential customers, and a simplified Chinese translation is also available. The second edition has expanded emphasis on applications for GaN transistors and design considerations. This textbook provides technical and application-focused i

  4. Pressure Sensitive Insulated Gate Field Effect Transistor

    Science.gov (United States)

    Suminto, James Tjan-Meng

    A pressure sensitive insulated gate field effect transistor has been developed. The device is an elevated gate field-effect-transistor. It consists of a p-type silicon substrate in which two n^+ region, the source and drain, are formed. The gate electrode is a metal film sandwiched in an insulated micro-diaphragm resembling a pill-box which covers the gate oxide, drain, and source. The space between the gate electrode and the oxide is vacuum or an air-gap. When pressure is applied on the diaphragm it deflects and causes a change in the gate capacitance, and thus modulates the conductance of the channel between source and drain. A general theory dealing with the characteristic of this pressure sensitive insulated gate field effect transistor has been derived, and the device fabricated. The fabrication process utilizes the standard integrated circuit fabrication method. It features a batch fabrication of field effect devices followed by the batch fabrication of the deposited diaphragm on top of each field effect device. The keys steps of the diaphragm fabrication are the formation of spacer layer, formation of the diaphragm layer, and the subsequent removal of the spacer layer. The chip size of the device is 600 μm x 1050 mum. The diaphragm size is 200 μm x 200 mum. Characterization of the device has been performed. The current-voltage characteristics with pressure as parameters have been demonstrated and the current-pressure transfer curves obtained. They show non-linear characteristics as those of conventional capacitive pressure sensors. The linearity of threshold voltage versus pressure transfer curves has been demonstrated. The temperature effect on the device performances has been tested. The temperature coefficient of threshold voltage, rather than the electron mobility, has dominated the temperature coefficient of the device. Two temperature compensation schemes have been tested: one method is by connecting two identical PSIGFET in a differential amplifier

  5. The Accelerator Reliability Forum

    CERN Document Server

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  6. From the organic thin film transistor to the 3-D textile organic cylindrical transistors – perspectives, expectations and predictions

    Science.gov (United States)

    Louris, E.; Stefanakis, D.; Priniotakis, G.; Van Langenhove, L.; Tassis, D.

    2017-10-01

    In this paper we examine the possibility to simulate and study the behaviour of a fiber-based Textile Transistor in a commercial TCAD system. We also examine the capability of such transistors to operate in sufficiently low voltages, aiming to the potential realization of low-voltage wearable textiles in the future. We have seen that it is potentially feasible to build transistors which can operate in low voltages by using typical materials. Even if some of the selected typical materials have to be replaced by others more suitable for practical use in the textile industry, the simulation is a good starting point for estimating the device typical operation and parameters.

  7. Antiferromagnetic Spin Wave Field-Effect Transistor

    Science.gov (United States)

    Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; Xiao, Di

    2016-01-01

    In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field-effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. Our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale. PMID:27048928

  8. Modeling quantization effects in field effect transistors

    CERN Document Server

    Troger, C

    2001-01-01

    Numerical simulation in the field of semiconductor device development advanced to a valuable, cost-effective and flexible facility. The most widely used simulators are based on classical models, as they need to satisfy time and memory constraints. To improve the performance of field effect transistors such as MOSFETs and HEMTs these devices are continuously scaled down in their dimensions. Consequently the characteristics of such devices are getting more and more determined by quantum mechanical effects arising from strong transversal fields in the channel. In this work an approach based on a two-dimensional electron gas is used to describe the confinement of the carriers. Quantization is considered in one direction only. For the derivation of a one-dimensional Schroedinger equation in the effective mass framework a non-parabolic correction for the energy dispersion due to Kane is included. For each subband a non-parabolic dispersion relation characterized by subband masses and subband non-parabolicity coeffi...

  9. A two-dimensional semiconductor transistor with boosted gate control and sensing ability

    Science.gov (United States)

    Xu, Jing; Chen, Lin; Dai, Ya-Wei; Cao, Qian; Sun, Qing-Qing; Ding, Shi-Jin; Zhu, Hao; Zhang, David Wei

    2017-01-01

    Transistors with exfoliated two-dimensional (2D) materials on a SiO2/Si substrate have been applied and have been proven effective in a wide range of applications, such as circuits, memory, photodetectors, gas sensors, optical modulators, valleytronics, and spintronics. However, these devices usually suffer from limited gate control because of the thick SiO2 gate dielectric and the lack of reliable transfer method. We introduce a new back-gate transistor scheme fabricated on a novel Al2O3/ITO (indium tin oxide)/SiO2/Si “stack” substrate, which was engineered with distinguishable optical identification of exfoliated 2D materials. High-quality exfoliated 2D materials could be easily obtained and recognized on this stack. Two typical 2D materials, MoS2 and ReS2, were implemented to demonstrate the enhancement of gate controllability. Both transistors show excellent electrical characteristics, including steep subthreshold swing (62 mV dec−1 for MoS2 and 83 mV dec−1 for ReS2), high mobility (61.79 cm2 V−1 s−1 for MoS2 and 7.32 cm2 V−1 s−1 for ReS2), large on/off ratio (~107), and reasonable working gate bias (below 3 V). Moreover, MoS2 and ReS2 photodetectors fabricated on the basis of the scheme have impressively leading photoresponsivities of 4000 and 760 A W−1 in the depletion area, respectively, and both have exceeded 106 A W−1 in the accumulation area, which is the best ever obtained. This opens up a suite of applications of this novel platform in 2D materials research with increasing needs of enhanced gate control. PMID:28560330

  10. Schottky Barriers in Bilayer Phosphorene Transistors.

    Science.gov (United States)

    Pan, Yuanyuan; Dan, Yang; Wang, Yangyang; Ye, Meng; Zhang, Han; Quhe, Ruge; Zhang, Xiuying; Li, Jingzhen; Guo, Wanlin; Yang, Li; Lu, Jing

    2017-04-12

    It is unreliable to evaluate the Schottky barrier height (SBH) in monolayer (ML) 2D material field effect transistors (FETs) with strongly interacted electrode from the work function approximation (WFA) because of existence of the Fermi-level pinning. Here, we report the first systematical study of bilayer (BL) phosphorene FETs in contact with a series of metals with a wide work function range (Al, Ag, Cu, Au, Cr, Ti, Ni, and Pd) by using both ab initio electronic band calculations and quantum transport simulation (QTS). Different from only one type of Schottky barrier (SB) identified in the ML phosphorene FETs, two types of SBs are identified in BL phosphorene FETs: the vertical SB between the metallized and the intact phosphorene layer, whose height is determined from the energy band analysis (EBA); the lateral SB between the metallized and the channel BL phosphorene, whose height is determined from the QTS. The vertical SBHs show a better consistency with the lateral SBHs of the ML phosphorene FETs from the QTS compared than that of the popular WFA. Therefore, we develop a better and more general method than the WFA to estimate the lateral SBHs of ML semiconductor transistors with strongly interacted electrodes based on the EBA for its BL counterpart. In terms of the QTS, n-type lateral Schottky contacts are formed between BL phosphorene and Cr, Al, and Cu electrodes with electron SBH of 0.27, 0.31, and 0.32 eV, respectively, while p-type lateral Schottky contacts are formed between BL phosphorene and Pd, Ti, Ni, Ag, and Au electrodes with hole SBH of 0.11, 0.18, 0.19, 0.20, and 0.21 eV, respectively. The theoretical polarity and SBHs are in good agreement with available experiments. Our study provides an insight into the BL phosphorene-metal interfaces that are crucial for designing the BL phosphorene device.

  11. Bounding the total-dose response of modern bipolar transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kosier, S.L.; Wei, A.; Schrimpf, R.D. [Arizona Univ., Tucson, AZ (United States). Dept. of Electrical and Computer Engineering; Combs, W.E. [Naval Surface Warfare Center-Crane, Crane, IN (United States); Fleetwood, D.M. [Sandia National Labs., Albuquerque, NM (United States); DeLaus, M. [Analog Devices, Inc., Wilmington, MA (United States); Pease, R.L. [RLP Research, Albuquerque, NM (United States)

    1994-03-01

    The base current in modern bipolar transistors saturates at large total doses once a critical oxide charge is reached. The saturated value of base current is dose-rate independent. Testing implications are discussed.

  12. Precursor Parameter Identification for Insulated Gate Bipolar Transistor (IGBT) Prognostics

    Data.gov (United States)

    National Aeronautics and Space Administration — Precursor parameters have been identified to enable development of a prognostic approach for insulated gate bipolar transistors (IGBT). The IGBT were subjected to...

  13. Great Experiments in Physics-Discovery of Transistor Effect that ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 9. Great Experiments in Physics - Discovery of Transistor Effect that Changed the Communication World. Amit Roy. Series Article Volume 3 Issue 9 September 1998 pp 6-13 ...

  14. A nanoscale piezoelectric transformer for low-voltage transistors.

    Science.gov (United States)

    Agarwal, Sapan; Yablonovitch, Eli

    2014-11-12

    A novel piezoelectric voltage transformer for low-voltage transistors is proposed. Placing a piezoelectric transformer on the gate of a field-effect transistor results in the piezoelectric transformer field-effect transistor that can switch at significantly lower voltages than a conventional transistor. The piezoelectric transformer operates by using one piezoelectric to squeeze another piezoelectric to generate a higher output voltage than the input voltage. Multiple piezoelectrics can be used to squeeze a single piezoelectric layer to generate an even higher voltage amplification. Coupled electrical and mechanical modeling in COMSOL predicts a 12.5× voltage amplification for a six-layer piezoelectric transformer. This would lead to more than a 150× reduction in the power needed for communications.

  15. Microwave field-efffect transistors theory, design, and application

    CERN Document Server

    Pengelly, Raymond

    1994-01-01

    This book covers the use of devices in microwave circuits and includes such topics as semiconductor theory and transistor performance, CAD considerations, intermodulation, noise figure, signal handling, S-parameter mapping, narrow- and broadband techniques, packaging and thermal considerations.

  16. Mixed protonic and electronic conductors hybrid oxide synaptic transistors

    Science.gov (United States)

    Fu, Yang Ming; Zhu, Li Qiang; Wen, Juan; Xiao, Hui; Liu, Rui

    2017-05-01

    Mixed ionic and electronic conductor hybrid devices have attracted widespread attention in the field of brain-inspired neuromorphic systems. Here, mixed protonic and electronic conductor (MPEC) hybrid indium-tungsten-oxide (IWO) synaptic transistors gated by nanogranular phosphorosilicate glass (PSG) based electrolytes were obtained. Unique field-configurable proton self-modulation behaviors were observed on the MPEC hybrid transistor with extremely strong interfacial electric-double-layer effects. Temporally coupled synaptic plasticities were demonstrated on the MPEC hybrid IWO synaptic transistor, including depolarization/hyperpolarization, synaptic facilitation and depression, facilitation-stead/depression-stead behaviors, spiking rate dependent plasticity, and high-pass/low-pass synaptic filtering behaviors. MPEC hybrid synaptic transistors may find potential applications in neuron-inspired platforms.

  17. Reaching saturation in patterned source vertical organic field effect transistors

    Science.gov (United States)

    Greenman, Michael; Sheleg, Gil; Keum, Chang-min; Zucker, Jonathan; Lussem, Bjorn; Tessler, Nir

    2017-05-01

    Like most of the vertical transistors, the Patterned Source Vertical Organic Field Effect Transistor (PS-VOFET) does not exhibit saturation in the output characteristics. The importance of achieving a good saturation is demonstrated in a vertical organic light emitting transistor; however, this is critical for any application requiring the transistor to act as a current source. Thereafter, a 2D simulation tool was used to explain the physical mechanisms that prevent saturation as well as to suggest ways to overcome them. We found that by isolating the source facet from the drain-source electric field, the PS-VOFET architecture exhibits saturation. The process used for fabricating such saturation-enhancing structure is then described. The new device demonstrated close to an ideal saturation with only 1% change in the drain-source current over a 10 V change in the drain-source voltage.

  18. Self-Heating Effects In Polysilicon Source Gated Transistors

    National Research Council Canada - National Science Library

    Sporea, R A; Burridge, T; Silva, S R P

    2015-01-01

    Source-gated transistors (SGTs) are thin-film devices which rely on a potential barrier at the source to achieve high gain, tolerance to fabrication variability, and low series voltage drop, relevant to a multitude of energy...

  19. Controlling charge current through a DNA based molecular transistor

    Energy Technology Data Exchange (ETDEWEB)

    Behnia, S., E-mail: s.behnia@sci.uut.ac.ir; Fathizadeh, S.; Ziaei, J.

    2017-01-05

    Molecular electronics is complementary to silicon-based electronics and may induce electronic functions which are difficult to obtain with conventional technology. We have considered a DNA based molecular transistor and study its transport properties. The appropriate DNA sequence as a central chain in molecular transistor and the functional interval for applied voltages is obtained. I–V characteristic diagram shows the rectifier behavior as well as the negative differential resistance phenomenon of DNA transistor. We have observed the nearly periodic behavior in the current flowing through DNA. It is reported that there is a critical gate voltage for each applied bias which above it, the electrical current is always positive. - Highlights: • Modeling a DNA based molecular transistor and studying its transport properties. • Choosing the appropriate DNA sequence using the quantum chaos tools. • Choosing the functional interval for voltages via the inverse participation ratio tool. • Detecting the rectifier and negative differential resistance behavior of DNA.

  20. Chemically modified field effect transistors with nitrite or fluoride selectivity

    NARCIS (Netherlands)

    Antonisse, M.M.G.; Ruel, Bianca H.M.; Engbersen, Johannes F.J.; Reinhoudt, David

    1998-01-01

    Polysiloxanes with different types of polar substituents are excellent membrane materials for nitrite and fluoride selective chemically modified field effect transistors (CHEMFETs). Nitrite selectivity has been introduced by incorporation of a cobalt porphyrin into the membrane; fluoride selectivity

  1. High performance organic nonvolatile memory transistors based on HfO2 and poly(α-methylstyrene) electret hybrid charge-trapping layers

    Science.gov (United States)

    Xu, W. C.; He, H. X.; Jing, X. S.; Wu, S. J.; Zhang, Z.; Gao, J. W.; Gao, X. S.; Zhou, G. F.; Lu, X. B.; Liu, J.-M.

    2017-08-01

    In this work, we fabricated a high performance flash-type organic nonvolatile memory transistor, which adopted polymer-electret poly(α-methylstyrene) (PαMS) and HfO2 films as hybrid charge trapping layer (CTL). Compared with a single HfO2 or PαMS CTL structure, the hybrid HfO2/PαMS CTL structure can provide enhanced charge trapping efficiency to increase the device operation speed and reduce the leakage current to boost the device reliability. The fabricated nonvolatile organic memory transistors with the hybrid CTL shows excellent electrical properties, including low operation voltage (8 V), high speed (retention (on-off current ratio of 2.6 × 104 after 104 s), and good endurance (more than 2000 program/erase cycles). The present work provides useful idea for the design of future low-power consumption and highly reliable organic nonvolatile memories.

  2. Human Reliability Program Overview

    Energy Technology Data Exchange (ETDEWEB)

    Bodin, Michael

    2012-09-25

    This presentation covers the high points of the Human Reliability Program, including certification/decertification, critical positions, due process, organizational structure, program components, personnel security, an overview of the US DOE reliability program, retirees and academia, and security program integration.

  3. Improving Software Reliability Forecasting

    NARCIS (Netherlands)

    Burtsy, Bernard; Albeanu, Grigore; Boros, Dragos N.; Popentiu, Florin; Nicola, V.F.

    1996-01-01

    This work investigates some methods for software reliability forecasting. A supermodel is presented as a suited tool for prediction of reliability in software project development. Also, times series forecasting for cumulative interfailure time is proposed and illustrated.

  4. Reliable Design Versus Trust

    Science.gov (United States)

    Berg, Melanie; LaBel, Kenneth A.

    2016-01-01

    This presentation focuses on reliability and trust for the users portion of the FPGA design flow. It is assumed that the manufacturer prior to hand-off to the user tests FPGA internal components. The objective is to present the challenges of creating reliable and trusted designs. The following will be addressed: What makes a design vulnerable to functional flaws (reliability) or attackers (trust)? What are the challenges for verifying a reliable design versus a trusted design?

  5. Principles of Bridge Reliability

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Nowak, Andrzej S.

    The paper gives a brief introduction to the basic principles of structural reliability theory and its application to bridge engineering. Fundamental concepts like failure probability and reliability index are introduced. Ultimate as well as serviceability limit states for bridges are formulated......, and as an example the reliability profile and a sensitivity analyses for a corroded reinforced concrete bridge is shown....

  6. Integrated system reliability analysis

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard

    Specific targets: 1) The report shall describe the state of the art of reliability and risk-based assessment of wind turbine components. 2) Development of methodology for reliability and risk-based assessment of the wind turbine at system level. 3) Describe quantitative and qualitative measures...... (indicators) that can be used to assess the reliability of innovations and new technologies....

  7. Power system reliability

    Energy Technology Data Exchange (ETDEWEB)

    Allan, R.; Billinton, Roy (Manchester Univ. (United Kingdom). Inst. of Science and Technology Saskatchewan Univ., Saskatoon, SK (Canada))

    1994-01-01

    The function of an electric power system is to satisfy the system load as economically as possible and with a reasonable assurance of continuity or reliability. The application of quantitative reliability techniques in planning and operation has increased considerably in the past few years. Reliability evaluation is now becoming an integral part of the economic comparison of alternatives (6 figures, 17 references) (Author)

  8. Large scale electromechanical transistor with application in mass sensing

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Leisheng; Li, Lijie, E-mail: L.Li@swansea.ac.uk [Multidisciplinary Nanotechnology Centre, College of Engineering, Swansea University, Swansea SA2 8PP (United Kingdom)

    2014-12-07

    Nanomechanical transistor (NMT) has evolved from the single electron transistor, a device that operates by shuttling electrons with a self-excited central conductor. The unfavoured aspects of the NMT are the complexity of the fabrication process and its signal processing unit, which could potentially be overcome by designing much larger devices. This paper reports a new design of large scale electromechanical transistor (LSEMT), still taking advantage of the principle of shuttling electrons. However, because of the large size, nonlinear electrostatic forces induced by the transistor itself are not sufficient to drive the mechanical member into vibration—an external force has to be used. In this paper, a LSEMT device is modelled, and its new application in mass sensing is postulated using two coupled mechanical cantilevers, with one of them being embedded in the transistor. The sensor is capable of detecting added mass using the eigenstate shifts method by reading the change of electrical current from the transistor, which has much higher sensitivity than conventional eigenfrequency shift approach used in classical cantilever based mass sensors. Numerical simulations are conducted to investigate the performance of the mass sensor.

  9. Ultra-high gain diffusion-driven organic transistor

    Science.gov (United States)

    Torricelli, Fabrizio; Colalongo, Luigi; Raiteri, Daniele; Kovács-Vajna, Zsolt Miklós; Cantatore, Eugenio

    2016-01-01

    Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show a new organic field-effect transistor architecture with a gain larger than 700. This is the highest gain ever reported for organic field-effect transistors. In the proposed organic field-effect transistor, the charge injection and extraction at the metal–semiconductor contacts are driven by the charge diffusion. The ideal conditions of ohmic contacts with negligible contact resistance and flat current saturation are demonstrated. The approach is general and can be extended to any thin-film technology opening unprecedented opportunities for the development of high-performance flexible electronics. PMID:26829567

  10. Vertical Transistors Based on 2D Materials: Status and Prospects

    Directory of Open Access Journals (Sweden)

    Filippo Giannazzo

    2018-01-01

    Full Text Available Two-dimensional (2D materials, such as graphene (Gr, transition metal dichalcogenides (TMDs and hexagonal boron nitride (h-BN, offer interesting opportunities for the implementation of vertical transistors for digital and high-frequency electronics. This paper reviews recent developments in this field, presenting the main vertical device architectures based on 2D/2D or 2D/3D material heterostructures proposed so far. For each of them, the working principles and the targeted application field are discussed. In particular, tunneling field effect transistors (TFETs for beyond-CMOS low power digital applications are presented, including resonant tunneling transistors based on Gr/h-BN/Gr stacks and band-to-band tunneling transistors based on heterojunctions of different semiconductor layered materials. Furthermore, recent experimental work on the implementation of the hot electron transistor (HET with the Gr base is reviewed, due to the predicted potential of this device for ultra-high frequency operation in the THz range. Finally, the material sciences issues and the open challenges for the realization of 2D material-based vertical transistors at a large scale for future industrial applications are discussed.

  11. Highly Sensitive Flexible Pressure Sensors Based on Printed Organic Transistors with Centro-Apically Self-Organized Organic Semiconductor Microstructures.

    Science.gov (United States)

    Yeo, So Young; Park, Sangsik; Yi, Yeon Jin; Kim, Do Hwan; Lim, Jung Ah

    2017-12-13

    A highly sensitive pressure sensor based on printed organic transistors with three-dimensionally self-organized organic semiconductor microstructures (3D OSCs) was demonstrated. A unique organic transistor with semiconductor channels positioned at the highest summit of printed cylindrical microstructures was achieved simply by printing an organic semiconductor and polymer blend on the plastic substrate without the use of additional etching or replication processes. A combination of the printed organic semiconductor microstructure and an elastomeric top-gate dielectric resulted in a highly sensitive organic field-effect transistor (FET) pressure sensor with a high pressure sensitivity of 1.07 kPa-1 and a rapid response time of <20 ms with a high reliability over 1000 cycles. The flexibility and high performance of the 3D OSC FET pressure sensor were exploited in the successful application of our sensors to real-time monitoring of the radial artery pulse, which is useful for healthcare monitoring, and to touch sensing in the e-skin of a realistic prosthetic hand.

  12. Impact of forward emitter current gain and geometry of pnp power transistors on radiation tolerance of voltage regulators

    Directory of Open Access Journals (Sweden)

    Vukić Vladimir

    2010-01-01

    Full Text Available Low-dropout voltage regulators with various geometries and technological realisations of serial pnp power transistors were exposed to ionizing radiation. Although devices with vertical emitters were considered much less susceptible to the influence of radiation on forward emitter current gain than circuits with round emitters, the experiment showed a similar degradation of current gain in both cases. The main reason of high radiation susceptibility of the examined vertical serial pnp transistor is the implementation of an interdigitated emitter, with high perimeter-to-area ratio, causing the great increase of serial transistor’s base current, but a minor influence on the maximum output current. Transistors with round emitters with small perimeter-to-area ratio expressed a moderate current gain degradation, but a rapid fall of the emitter injection efficiency, causing a significant decrease of the maximum output current. Regardless of the similar forward emitter current gain degradation, reliability and operational characteristics of two types of low-dropout voltage regulators were completely different.

  13. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1998-12-14

    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  14. Ferroelectric transistors with monolayer molybdenum disulfide and ultra-thin aluminum-doped hafnium oxide

    Science.gov (United States)

    Yap, Wui Chung; Jiang, Hao; Liu, Jialun; Xia, Qiangfei; Zhu, Wenjuan

    2017-07-01

    In this letter, we demonstrate ferroelectric memory devices with monolayer molybdenum disulfide (MoS2) as the channel material and aluminum (Al)-doped hafnium oxide (HfO2) as the ferroelectric gate dielectric. Metal-ferroelectric-metal capacitors with 16 nm thick Al-doped HfO2 are fabricated, and a remnant polarization of 3 μC/cm2 under a program/erase voltage of 5 V is observed. The capability of potential 10 years data retention was estimated using extrapolation of the experimental data. Ferroelectric transistors based on embedded ferroelectric HfO2 and MoS2 grown by chemical vapor deposition are fabricated. Clockwise hysteresis is observed at low program/erase voltages due to slow bulk traps located near the 2D/dielectric interface, while counterclockwise hysteresis is observed at high program/erase voltages due to ferroelectric polarization. In addition, the endurances of the devices are tested, and the effects associated with ferroelectric materials, such as the wake-up effect and polarization fatigue, are observed. Reliable writing/reading in MoS2/Al-doped HfO2 ferroelectric transistors over 2 × 104 cycles is achieved. This research can potentially lead to advances of two-dimensional (2D) materials in low-power logic and memory applications.

  15. Robust mode space approach for atomistic modeling of realistically large nanowire transistors

    Science.gov (United States)

    Huang, Jun Z.; Ilatikhameneh, Hesameddin; Povolotskyi, Michael; Klimeck, Gerhard

    2018-01-01

    Nanoelectronic transistors have reached 3D length scales in which the number of atoms is countable. Truly atomistic device representations are needed to capture the essential functionalities of the devices. Atomistic quantum transport simulations of realistically extended devices are, however, computationally very demanding. The widely used mode space (MS) approach can significantly reduce the numerical cost, but a good MS basis is usually very hard to obtain for atomistic full-band models. In this work, a robust and parallel algorithm is developed to optimize the MS basis for atomistic nanowires. This enables engineering-level, reliable tight binding non-equilibrium Green's function simulation of nanowire metal-oxide-semiconductor field-effect transistor (MOSFET) with a realistic cross section of 10 nm × 10 nm using a small computer cluster. This approach is applied to compare the performance of InGaAs and Si nanowire n-type MOSFETs (nMOSFETs) with various channel lengths and cross sections. Simulation results with full-band accuracy indicate that InGaAs nanowire nMOSFETs have no drive current advantage over their Si counterparts for cross sections up to about 10 nm × 10 nm.

  16. Reliability-Limiting Defects in GaN/AlGaN High Electron Mobility Transistors

    Science.gov (United States)

    2011-12-01

    GaN grown by plasma-assisted molecular beam epitaxy”, Appl. Phys. Lett., vol. 77, no. 18, pp. 2885- 2887, 2000. [24] A. Hierro , A. R. Arehart, B...defects and impurities: Applications to III-nitrides”, J. Appl. Phys., vol. 95, pp.3851-3879, 2004. [43] A. Hierro , S. A. Ringel, M. Hansen, J. S

  17. Reliability investigations and improvements of the pLEDMOS for PDP data driver ICs

    Science.gov (United States)

    Qian, Qinsong; Sun, Weifeng; Li, Haisong; Wu, Hong; Shi, Longxing

    2011-05-01

    In this paper, the p-type lateral extended drain MOS (pLEDMOS) transistor with thick gate oxide for plasma display panel (PDP) data driver ICs is developed. The following reliability issues have been discussed in detail: (1) hot-carrier degradation, (2) the contradiction between the parasitic bipolar junction transistor (BJT) punch-through phenomenon and the impurity segregation effect, (3) surface damage caused by the long-time diffusion process under high-temperature conditions, (4) creep behavior of the breakdown voltage and (5) the Kirk effect due to the high working current density. The improved methods for solving these reliability problems by optimizing the process and device architecture are also presented. The methods have also been verified by the technology computer-aided design (TCAD) simulations and experimental results.

  18. Large scale integration of flexible non-volatile, re-addressable memories using P(VDF-TrFE) and amorphous oxide transistors

    Science.gov (United States)

    Gelinck, Gerwin H.; Cobb, Brian; van Breemen, Albert J. J. M.; Myny, Kris

    2015-07-01

    Ferroelectric polymers and amorphous metal oxide semiconductors have emerged as important materials for re-programmable non-volatile memories and high-performance, flexible thin-film transistors, respectively. However, realizing sophisticated transistor memory arrays has proven to be a challenge, and demonstrating reliable writing to and reading from such a large scale memory has thus far not been demonstrated. Here, we report an integration of ferroelectric, P(VDF-TrFE), transistor memory arrays with thin-film circuitry that can address each individual memory element in that array. n-type indium gallium zinc oxide is used as the active channel material in both the memory and logic thin-film transistors. The maximum process temperature is 200 °C, allowing plastic films to be used as substrate material. The technology was scaled up to 150 mm wafer size, and offers good reproducibility, high device yield and low device variation. This forms the basis for successful demonstration of memory arrays, read and write circuitry, and the integration of these.

  19. Reliability and safety engineering

    CERN Document Server

    Verma, Ajit Kumar; Karanki, Durga Rao

    2016-01-01

    Reliability and safety are core issues that must be addressed throughout the life cycle of engineering systems. Reliability and Safety Engineering presents an overview of the basic concepts, together with simple and practical illustrations. The authors present reliability terminology in various engineering fields, viz.,electronics engineering, software engineering, mechanical engineering, structural engineering and power systems engineering. The book describes the latest applications in the area of probabilistic safety assessment, such as technical specification optimization, risk monitoring and risk informed in-service inspection. Reliability and safety studies must, inevitably, deal with uncertainty, so the book includes uncertainty propagation methods: Monte Carlo simulation, fuzzy arithmetic, Dempster-Shafer theory and probability bounds. Reliability and Safety Engineering also highlights advances in system reliability and safety assessment including dynamic system modeling and uncertainty management. Cas...

  20. Integration of field emitter array and thin-film transistor using polycrystalline silicon process technology

    CERN Document Server

    Song, Y H; Kang, S Y; Park Jeong Man; Cho, K I

    1998-01-01

    We present the monolithic integration of a gated polycrystalline silicon field emitter array (poly-Si FEA) and a thin-film transistor(TFT) on an insulating substrate for active-matrix field emission displays (AMFEDs). The TFT was designed to have low off-state currents even at a high drain voltage. Amorphous silicon has been used as a starting material of the poly-Si FEA for improving surface smoothness and uniformity of the tips, and the gate holes have been formed by using an etch-back process. The integrated poly-Si TFT controlled electron emissions of the poly-Si FEA actively, resulting in great improvement in the emission reliability along with a low-voltage control, below 15 V, of field emission, The developed technology has potential applications in AMFEDs on glass substrates.

  1. Direct growth of vertically-oriented graphene for field-effect transistor biosensor.

    Science.gov (United States)

    Mao, Shun; Yu, Kehan; Chang, Jingbo; Steeber, Douglas A; Ocola, Leonidas E; Chen, Junhong

    2013-01-01

    A sensitive and selective field-effect transistor (FET) biosensor is demonstrated using vertically-oriented graphene (VG) sheets labeled with gold nanoparticle (NP)-antibody conjugates. VG sheets are directly grown on the sensor electrode using a plasma-enhanced chemical vapor deposition (PECVD) method and function as the sensing channel. The protein detection is accomplished through measuring changes in the electrical signal from the FET sensor upon the antibody-antigen binding. The novel biosensor with unique graphene morphology shows high sensitivity (down to ~2 ng/ml or 13 pM) and selectivity towards specific proteins. The PECVD growth of VG presents a one-step and reliable approach to prepare graphene-based electronic biosensors.

  2. Direct Growth of Vertically-oriented Graphene for Field-Effect Transistor Biosensor

    Science.gov (United States)

    Mao, Shun; Yu, Kehan; Chang, Jingbo; Steeber, Douglas A.; Ocola, Leonidas E.; Chen, Junhong

    2013-04-01

    A sensitive and selective field-effect transistor (FET) biosensor is demonstrated using vertically-oriented graphene (VG) sheets labeled with gold nanoparticle (NP)-antibody conjugates. VG sheets are directly grown on the sensor electrode using a plasma-enhanced chemical vapor deposition (PECVD) method and function as the sensing channel. The protein detection is accomplished through measuring changes in the electrical signal from the FET sensor upon the antibody-antigen binding. The novel biosensor with unique graphene morphology shows high sensitivity (down to ~2 ng/ml or 13 pM) and selectivity towards specific proteins. The PECVD growth of VG presents a one-step and reliable approach to prepare graphene-based electronic biosensors.

  3. Molecular doping for control of gate bias stress in organic thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Moritz P., E-mail: hein@iapp.de; Lüssem, Björn; Jankowski, Jens; Tietze, Max L.; Riede, Moritz K. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Zakhidov, Alexander A. [Fraunhofer COMEDD, Maria-Reiche-Str. 2, 01109 Dresden (Germany); Leo, Karl [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Fraunhofer COMEDD, Maria-Reiche-Str. 2, 01109 Dresden (Germany)

    2014-01-06

    The key active devices of future organic electronic circuits are organic thin film transistors (OTFTs). Reliability of OTFTs remains one of the most challenging obstacles to be overcome for broad commercial applications. In particular, bias stress was identified as the key instability under operation for numerous OTFT devices and interfaces. Despite a multitude of experimental observations, a comprehensive mechanism describing this behavior is still missing. Furthermore, controlled methods to overcome these instabilities are so far lacking. Here, we present the approach to control and significantly alleviate the bias stress effect by using molecular doping at low concentrations. For pentacene and silicon oxide as gate oxide, we are able to reduce the time constant of degradation by three orders of magnitude. The effect of molecular doping on the bias stress behavior is explained in terms of the shift of Fermi Level and, thus, exponentially reduced proton generation at the pentacene/oxide interface.

  4. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors

    Science.gov (United States)

    Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth

    2017-01-01

    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design. PMID:28145438

  5. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors

    Science.gov (United States)

    Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth

    2017-02-01

    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design.

  6. Structural Reliability Methods

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Madsen, H. O.

    The structural reliability methods quantitatively treat the uncertainty of predicting the behaviour and properties of a structure given the uncertain properties of its geometry, materials, and the actions it is supposed to withstand. This book addresses the probabilistic methods for evaluation...... of structural reliability, including the theoretical basis for these methods. Partial safety factor codes under current practice are briefly introduced and discussed. A probabilistic code format for obtaining a formal reliability evaluation system that catches the most essential features of the nature...

  7. Measurement System Reliability Assessment

    Directory of Open Access Journals (Sweden)

    Kłos Ryszard

    2015-06-01

    Full Text Available Decision-making in problem situations is based on up-to-date and reliable information. A great deal of information is subject to rapid changes, hence it may be outdated or manipulated and enforce erroneous decisions. It is crucial to have the possibility to assess the obtained information. In order to ensure its reliability it is best to obtain it with an own measurement process. In such a case, conducting assessment of measurement system reliability seems to be crucial. The article describes general approach to assessing reliability of measurement systems.

  8. Circuit design for reliability

    CERN Document Server

    Cao, Yu; Wirth, Gilson

    2015-01-01

    This book presents physical understanding, modeling and simulation, on-chip characterization, layout solutions, and design techniques that are effective to enhance the reliability of various circuit units.  The authors provide readers with techniques for state of the art and future technologies, ranging from technology modeling, fault detection and analysis, circuit hardening, and reliability management. Provides comprehensive review on various reliability mechanisms at sub-45nm nodes; Describes practical modeling and characterization techniques for reliability; Includes thorough presentation of robust design techniques for major VLSI design units; Promotes physical understanding with first-principle simulations.

  9. Technology and Reliability of Normally-Off GaN HEMTs with p-Type Gate

    Directory of Open Access Journals (Sweden)

    Matteo Meneghini

    2017-01-01

    Full Text Available GaN-based transistors with p-GaN gate are commonly accepted as promising devices for application in power converters, thanks to the positive and stable threshold voltage, the low on-resistance and the high breakdown field. This paper reviews the most recent results on the technology and reliability of these devices by presenting original data. The first part of the paper describes the technological issues related to the development of a p-GaN gate, and the most promising solutions for minimizing the gate leakage current. In the second part of the paper, we describe the most relevant mechanisms that limit the dynamic performance and the reliability of GaN-based normally-off transistors. More specifically, we discuss the following aspects: (i the trapping effects specific for the p-GaN gate; (ii the time-dependent breakdown of the p-GaN gate during positive gate stress and the related physics of failure; (iii the stability of the electrical parameters during operation at high drain voltages. The results presented within this paper provide information on the current status of the performance and reliability of GaN-based E-mode transistors, and on the related technological issues.

  10. Advanced insulated gate bipolar transistor gate drive

    Science.gov (United States)

    Short, James Evans [Monongahela, PA; West, Shawn Michael [West Mifflin, PA; Fabean, Robert J [Donora, PA

    2009-08-04

    A gate drive for an insulated gate bipolar transistor (IGBT) includes a control and protection module coupled to a collector terminal of the IGBT, an optical communications module coupled to the control and protection module, a power supply module coupled to the control and protection module and an output power stage module with inputs coupled to the power supply module and the control and protection module, and outputs coupled to a gate terminal and an emitter terminal of the IGBT. The optical communications module is configured to send control signals to the control and protection module. The power supply module is configured to distribute inputted power to the control and protection module. The control and protection module outputs on/off, soft turn-off and/or soft turn-on signals to the output power stage module, which, in turn, supplies a current based on the signal(s) from the control and protection module for charging or discharging an input capacitance of the IGBT.

  11. Two-dimensional bipolar junction transistors

    Science.gov (United States)

    Gharekhanlou, Behnaz; Khorasani, Sina; Sarvari, Reza

    2014-03-01

    Recent development in fabrication technology of planar two-dimensional (2D) materials has introduced the possibility of numerous novel applications. Our recent analysis has revealed that by definition of p-n junctions through appropriate patterned doping of 2D semiconductors, ideal exponential I-V characteristics may be expected. However, the theory of 2D junctions turns out to be very different to that of standard bulk junctions. Based on this theory of 2D diodes, we construct for the first time a model to describe 2D bipolar junction transistors (2D-BJTs). We derive the small-signal equivalent model, and estimate the performance of a 2D-BJT device based on graphone as the example material. A current gain of about 138 and maximum threshold frequency of 77 GHz, together with a power-delay product of only 4 fJ per 1 μm lateral width is expected at an operating voltage of 5 V. In addition, we derive the necessary formulae and a new approximate solution for the continuity equation in the 2D configuration, which have been verified against numerical solutions.

  12. Contact effects in graphene nanoribbon transistors.

    Science.gov (United States)

    Liang, Gengchiau; Neophytou, Neophytos; Lundstrom, Mark S; Nikonov, Dmitri E

    2008-07-01

    The effects of the various contact types and shapes on the performance of Schottky barrier graphene nanoribbon field-effect-transistors (GNRFETs) have been investigated using a real-space quantum transport simulator based on the NEGF approach self-consistently coupled to a three-dimensional Poisson solver for treating the electrostatics. The device channel considered is a double gate semiconducting armchair nanoribbon. The types of contacts considered are (a) a semi-infinite normal metal, (b) a semi-infinite graphene sheet, (c) finite size rectangular shape armchair graphene contacts, (d) finite size wedge shape graphene contacts, and (e) zigzag graphene nanoribbon contacts. Among these different contact types, the semi-infinite graphene sheet contacts show the worst performance because of their very low density of states around the Dirac point resulting in low transmission possibility through the Schottky barrier, both at ON and OFF states. Although all other types of contacts can have significant enhancement in I ON to I OFF ratio, the zigzag GNR contacts show promising and size invariant performance due to the metallic properties.

  13. Comparison between Field Effect Transistors and Bipolar Junction Transistors as Transducers in Electrochemical Sensors

    Science.gov (United States)

    Zafar, Sufi; Lu, Minhua; Jagtiani, Ashish

    2017-01-01

    Field effect transistors (FET) have been widely used as transducers in electrochemical sensors for over 40 years. In this report, a FET transducer is compared with the recently proposed bipolar junction transistor (BJT) transducer. Measurements are performed on two chloride electrochemical sensors that are identical in all details except for the transducer device type. Comparative measurements show that the transducer choice significantly impacts the electrochemical sensor characteristics. Signal to noise ratio is 20 to 2 times greater for the BJT sensor. Sensitivity is also enhanced: BJT sensing signal changes by 10 times per pCl, whereas the FET signal changes by 8 or less times. Also, sensor calibration curves are impacted by the transducer choice. Unlike a FET sensor, the calibration curve of the BJT sensor is independent of applied voltages. Hence, a BJT sensor can make quantitative sensing measurements with minimal calibration requirements, an important characteristic for mobile sensing applications. As a demonstration for mobile applications, these BJT sensors are further investigated by measuring chloride levels in artificial human sweat for potential cystic fibrosis diagnostic use. In summary, the BJT device is demonstrated to be a superior transducer in comparison to a FET in an electrochemical sensor.

  14. Thin Film Silicon-On-Insulator of Bipolar Junction Transistor: Process Fabrication and characterization Technology

    OpenAIRE

    Osama S Hammad; Othman Sidek; Kamarul Azizi Ibrahim

    2010-01-01

    The great success of semiconductor industry has been driven by the advancement in transistor technology in its early era. The industry could improve the performance of their products by shrinking the transistor dimensions and integrating more transistors. However, this strategy is becoming less effective, as the transistors demandedsubstantial interconnections between them, and the speed of integrated circuit products are being dominated by interconnections. Innovations are necessary in the i...

  15. Electromechanical field effect transistors based on multilayer phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Z.T., E-mail: jiangzhaotan@hotmail.com; Lv, Z.T.; Zhang, X.D.

    2017-06-21

    Based on the tight-binding Hamiltonian approach, we demonstrate that the electromechanical field effect transistors (FETs) can be realized by using the multilayer phosphorene nanoribbons (PNRs). The synergistic combination of the electric field and the external strains can establish the on–off switching since the electric field can shift or split the energy band, and the mechanical strains can widen or narrow the band widths. This kind of multilayer PNR FETs, much solider than the monolayer PNR one and more easily biased by different electric fields, has more transport channels consequently leading to the higher on–off current ratio or the higher sensitivity to the electric fields. Meanwhile, the strain-induced band-flattening will be beneficial for improving the flexibility in designing the electromechanical FETs. In addition, such electromechanical FETs can act as strain-controlled FETs or mechanical detectors for detecting the strains, indicating their potential applications in nano- and micro-electromechanical fields. - Highlights: • Electromechanical transistors are designed with multilayer phosphorene nanoribbons. • Electromechanical synergistic effect can establish the on–off switching more flexibly. • Multilayer transistors, solider and more easily biased, has more transport channels. • Electromechanical transistors can act as strain-controlled transistors or mechanical detectors.

  16. Evaluation of mirror full adder circuit reliability performance due to negative bias temperature instability (NBTI) effects based on different defect mechanisms

    Science.gov (United States)

    Shaari, I. B.; Zainudin, M. F.; Saini, M. S. A.; Hussin, H.; Halim, A. K.

    2017-09-01

    Negative bias temperature instability (NBTI) is an aging effect that can cause the threshold voltage to be shifted hence reduce the drain current. This will subsequently leads to main aging effect in sub-micron CMOS circuits. The NBTI defect mechanisms consist of interface trap generation and hole trapping effect. The main objective of this work was to study the impact of NBTI effect on the circuit performance based on different defect mechanisms. The percentage of how the performance affected in terms of delay by different defect mechanisms will be evaluated based on mirror full adder circuit. To study the reliability issues on circuit, model cards based on 45nm, 65nm and 90nm Predictive Technology Model (PTM) have been used along with the MOSRA model. The impact of NBTI on this circuit were evaluated based on the performance of the circuit which is the propagation delay. To understand the effect of different defect mechanism, analysis at the device level was conducted where the threshold voltage shift of the p-MOSFETs were evaluated. It is shown that the delay degradation will increase with the increasing of the temperature.

  17. Ambipolar Organic Tri-Gate Transistor for Low-Power Complementary Electronics

    NARCIS (Netherlands)

    Torricelli, F.; Ghittorelli, M.; Smits, E.C.P.; Roelofs, C.W.S.; Janssen, R.A.J.; Gelinck, G.H.; Kovács-Vajna, Z.M.; Cantatore, E.

    2016-01-01

    Ambipolar transistors typically suffer from large off-current inherently due to ambipolar conduction. Using a tri-gate transistor it is shown that it is possible to electrostatically switch ambipolar polymer transistors from ambipolar to unipolar mode. In unipolar mode, symmetric characteristics

  18. Structural Reliability Methods

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Madsen, H. O.

    of structural reliability, including the theoretical basis for these methods. Partial safety factor codes under current practice are briefly introduced and discussed. A probabilistic code format for obtaining a formal reliability evaluation system that catches the most essential features of the nature...

  19. Hawaii Electric System Reliability

    Energy Technology Data Exchange (ETDEWEB)

    Loose, Verne William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silva Monroy, Cesar Augusto [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-08-01

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers’ views of reliability “worth” and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers’ views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  20. Hawaii electric system reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Silva Monroy, Cesar Augusto; Loose, Verne William

    2012-09-01

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  1. Improving machinery reliability

    CERN Document Server

    Bloch, Heinz P

    1998-01-01

    This totally revised, updated and expanded edition provides proven techniques and procedures that extend machinery life, reduce maintenance costs, and achieve optimum machinery reliability. This essential text clearly describes the reliability improvement and failure avoidance steps practiced by best-of-class process plants in the U.S. and Europe.

  2. LED system reliability

    NARCIS (Netherlands)

    Driel, W.D. van; Yuan, C.A.; Koh, S.; Zhang, G.Q.

    2011-01-01

    This paper presents our effort to predict the system reliability of Solid State Lighting (SSL) applications. A SSL system is composed of a LED engine with micro-electronic driver(s) that supplies power to the optic design. Knowledge of system level reliability is not only a challenging scientific

  3. An overview of the reliability prediction related aspects of high power IGBTs in wind power applications

    DEFF Research Database (Denmark)

    Busca, Christian; Teodorescu, Remus; Blaabjerg, Frede

    2011-01-01

    Reliability is becoming more and more important as the size and number of installed Wind Turbines (WTs) increases. Very high reliability is especially important for offshore WTs because the maintenance and repair of such WTs in case of failures can be very expensive. WT manufacturers need...... to consider the reliability aspect when they design new power converters. By designing the power converter considering the reliability aspect the manufacturer can guarantee that the end product will ensure high availability. This paper represents an overview of the various aspects of reliability prediction...... of high power Insulated Gate Bipolar Transistors (IGBTs) in the context of wind power applications. At first the latest developments and future predictions about wind energy are briefly discussed. Next the dominant failure mechanisms of high power IGBTs are described and the most commonly used lifetime...

  4. Reliability Design for Neutron Induced Single-Event Burnout of IGBT

    Science.gov (United States)

    Shoji, Tomoyuki; Nishida, Shuichi; Ohnishi, Toyokazu; Fujikawa, Touma; Nose, Noboru; Hamada, Kimimori; Ishiko, Masayasu

    Single-event burnout (SEB) caused by cosmic ray neutrons leads to catastrophic failures in insulated gate bipolar transistors (IGBTs). It was found experimentally that the incident neutron induced SEB failure rate increases as a function of the applied collector voltage. Moreover, the failure rate increased sharply with an increase in the applied collector voltage when the voltage exceeded a certain threshold value (SEB cutoff voltage). In this paper, transient device simulation results indicate that impact ionization at the n-drift/n+ buffer boundary is a crucially important factor in the turning-on of the parasitic pnp transistor, and eventually latch-up of the parasitic thyristor causes SEB. In addition, the device parameter dependency of the SEB cutoff voltage was analytically derived from the latch-up condition of the parasitic thyristor. As a result, it was confirmed that reducing the current gain of the parasitic transistor, such as by increasing the n-drift region thickness d was effective in increasing the SEB cutoff voltage. Furthermore, `white' neutron-irradiation experiments demonstrated that suppressing the inherent parasitic thyristor action leads to an improvement of the SEB cutoff voltage. It was confirmed that current gain optimization of the parasitic transistor is a crucial factor for establishing highly reliable design against chance failures.

  5. Modeling and PSPICE simulation of NBTI effects in VDMOS transistors

    Directory of Open Access Journals (Sweden)

    Marjanović Miloš

    2015-01-01

    Full Text Available In this paper the results of modeling and simulation of NBTI effects in p-channel power VDMOS transistor have been presented. Based on the experimental results, the threshold voltage shifts and changes of transconductance during the NBT stress have been modeled and implemented in the PSPICE model of the IRF9520 transistor. By predefining the threshold voltage value before the NBT stress, and by assigning the stress time, transfer characteristics of the transistor are simulated. These characteristics are within (1.33÷11.25% limits in respect to the measured ones, which represents a good agreement. [Projekat Ministarstva nauke Republike Srbije, br. OI 171026 i br. TR 32026

  6. Fully printed metabolite sensor using organic electrochemical transistor

    Science.gov (United States)

    Scheiblin, Gaëtan; Aliane, Abdelkader; Coppard, Romain; Owens, Róisín. M.; Mailley, Pascal; Malliaras, George G.

    2015-08-01

    As conducting polymer based devices, organic electrochemical transistors (OECTs) are suited for printing process. The convenience of the screen-printing techniques allowed us to design and fabricate OECTs with a selected design and using different gate material. Depending on the material used, we were able to tune the transistor for different biological application. Ag/AgCl gate provided transistor with good transconductance, and electrochemical sensitivity to pH was provided by polyaniline ink. Finally, we validate the enzymatic sensing of glucose and lactate with a Poly(3,4-ethylene dioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) gate often used due to its biocompatible properties. The screen-printing process allowed us to fabricate a large amount of devices in a short period of time, using only commercially available grades of ink, showing by this way the possible transfer to industrial purpose.

  7. Fabrication of organic electrochemical transistor arrays for biosensing.

    Science.gov (United States)

    Zhang, Meng; Lin, Peng; Yang, Mo; Yan, Feng

    2013-09-01

    Organic electrochemical transistors (OECT) have been used as various types of biosensors with very high sensitivity. The OECTs show advantages of easy fabrication, low operational voltage, excellent flexibility and biocompatibility. OECT arrays based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) were fabricated in poly(ethylene glycol) (PEG) microwells by physical delamination. The OECTs show fast response time, stable channel current and excellent transistor characteristics. The PEG microwells can be used to trap cells on top of the OECTs, which will be important for the application of the OECT arrays as cell-based biosensors. This technique provides a feasible way for high-throughput cell analysis based on transistor arrays. This article is part of a Special Issue entitled Organic Bioelectronics-Novel Applications in Biomedicine. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi

    2012-10-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been developed using pure semiconducting carbon nanotubes. The source and drain were vertically stacked, separated by a dielectric, and the carbon nanotubes were placed on the sidewall of the stack to bridge the source and drain. Both the effective gate dielectric and gate electrode were normal to the substrate surface. The channel length is determined by the dielectric thickness between source and drain electrodes, making it easier to fabricate sub-micrometer transistors without using time-consuming electron beam lithography. The transistor area is much smaller than the planar CNTFET due to the vertical arrangement of source and drain and the reduced channel area. © 2012 Elsevier Ltd. All rights reserved.

  9. Molecular gating of transistors by amine-terminated layers

    Energy Technology Data Exchange (ETDEWEB)

    Shaya, O.; Amit, I.; Einati, H. [School of Electrical Engineering, Faculty of Engineering, Tel-Aviv University, Ramat-Aviv, 69978 (Israel); Burstein, L. [Wolfson Applied Materials Research Center, Tel-Aviv University, Ramat-Aviv, 69978 (Israel); Shacham-Diamand, Y. [School of Electrical Engineering, Faculty of Engineering, Tel-Aviv University, Ramat-Aviv, 69978 (Israel); Rosenwaks, Y., E-mail: yossir@eng.tau.ac.il [School of Electrical Engineering, Faculty of Engineering, Tel-Aviv University, Ramat-Aviv, 69978 (Israel)

    2012-02-01

    Self-assembly of amine-terminated layers on a transistor gate dielectric leads to gating of the transistor even without the use of a reference electrode or any voltage drop across the organic layer. This effect was studied using in situ electrical measurements, Kelvin probe force microscopy and X-ray photoelectron spectroscopy of (3-aminopropyl)-trimethoxysilane (APTMS) gated transistors. Current-voltage characteristics measured during the self-assembly process showed that the gating occurs only following exposure of the device to ambient humidity. X-ray photoelectron spectroscopy measurements of the layers showed a high percentage of protonated amine groups on the surface. Therefore, it is concluded that the charging of the amine group due to protonation under ambient conditions is the cause for the molecular-gating.

  10. Low-frequency noise in single electron tunneling transistor

    DEFF Research Database (Denmark)

    Tavkhelidze, A.N.; Mygind, Jesper

    1998-01-01

    The noise in current biased aluminium single electron tunneling (SET) transistors has been investigated in the frequency range of 5 mHz electromagnetic radiation and especially high energy...... of order seconds. In some cases, the positive and negative slopes of the V(Vg) curve have different overlaid noise patterns. For fixed bias on both slopes, we measure the same noise spectrum, and believe that the asymmetric noise is due to dynamic charge trapping near or inside one of the junctions induced...... when ramping the junction voltage. Dynamic trapping may limit the high frequency applications of the SET transistor. Also reported on are the effects of rf irradiation and the dependence of the SET transistor noise on bias voltage. ©1998 American Institute of Physics....

  11. Liquid-state field-effect transistors using electrowetting

    Science.gov (United States)

    Kim, D. Y.; Steckl, A. J.

    2007-01-01

    The authors report the demonstration of transistor action in the liquid state. The control of current flow in a liquid field-effect transistor (LiquiFET) was achieved by electrowetting between competitive insulating/conducting fluids. The LiquiFET structure included dielectric/hydrophobic layers, source/drain regions, a gate electrode, and hydrophilic/hydrophobic grids to contain the liquids. For a 400μm long channel, turn-on occurs at 2.5-3V drain voltage. On/off current ratios >10000:1 were measured. Linear gate voltage control over drain current was obtained with a transconductance up to 40nS. A calculated channel mobility of ˜1cm2/Vs indicates that electronic charge transport dominates transistor operation.

  12. Nanowire transistors physics of devices and materials in one dimension

    CERN Document Server

    Colinge, Jean-Pierre

    2016-01-01

    From quantum mechanical concepts to practical circuit applications, this book presents a self-contained and up-to-date account of the physics and technology of nanowire semiconductor devices. It includes a unified account of the critical ideas central to low-dimensional physics and transistor physics which equips readers with a common framework and language to accelerate scientific and technological developments across the two fields. Detailed descriptions of novel quantum mechanical effects such as quantum current oscillations, the metal-to-semiconductor transition and the transition from classical transistor to single-electron transistor operation are described in detail, in addition to real-world applications in the fields of nanoelectronics, biomedical sensing techniques, and advanced semiconductor research. Including numerous illustrations to help readers understand these phenomena, this is an essential resource for researchers and professional engineers working on semiconductor devices and materials in ...

  13. Transistorized PWM inverter-induction motor drive system

    Science.gov (United States)

    Peak, S. C.; Plunkett, A. B.

    1982-01-01

    This paper describes the development of a transistorized PWM inverter-induction motor traction drive system. A vehicle performance analysis was performed to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of inverter and motor specifications. The inverter was a transistorized three-phase bridge using General Electric power Darlington transistors. The description of the design and development of this inverter is the principal object of this paper. The high-speed induction motor is a design which is optimized for use with an inverter power source. The primary feedback control is a torque angle control with voltage and torque outer loop controls. A current-controlled PWM technique is used to control the motor voltage. The drive has a constant torque output with PWM operation to base motor speed and a constant horsepower output with square wave operation to maximum speed. The drive system was dynamometer tested and the results are presented.

  14. Organic thin-film transistors for chemical and biological sensing.

    Science.gov (United States)

    Lin, Peng; Yan, Feng

    2012-01-03

    Organic thin-film transistors (OTFTs) show promising applications in various chemical and biological sensors. The advantages of OTFT-based sensors include high sensitivity, low cost, easy fabrication, flexibility and biocompatibility. In this paper, we review the chemical sensors and biosensors based on two types of OTFTs, including organic field-effect transistors (OFETs) and organic electrochemical transistors (OECTs), mainly focusing on the papers published in the past 10 years. Various types of OTFT-based sensors, including pH, ion, glucose, DNA, enzyme, antibody-antigen, cell-based sensors, dopamine sensor, etc., are classified and described in the paper in sequence. The sensing mechanisms and the detection limits of the devices are described in details. It is expected that OTFTs may have more important applications in chemical and biological sensing with the development of organic electronics. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Implosion lessons from national security, high reliability spacecraft, electronics, and the forces which changed them

    CERN Document Server

    Temple, L Parker

    2012-01-01

    Implosion is a focused study of the history and uses of high-reliability, solid-state electronics, military standards, and space systems that support our national security and defense. This book is unique in combining the interdependent evolution of and interrelationships among military standards, solid-state electronics, and very high-reliability space systems. Starting with a brief description of the physics that enabled the development of the first transistor, Implosion covers the need for standardizing military electronics, which began during World War II and continu

  16. Chemical Gated Field Effect Transistor by Hybrid Integration of One-Dimensional Silicon Nanowire and Two-Dimensional Tin Oxide Thin Film for Low Power Gas Sensor.

    Science.gov (United States)

    Han, Jin-Woo; Rim, Taiuk; Baek, Chang-Ki; Meyyappan, M

    2015-09-30

    Gas sensors based on metal-oxide-semiconductor transistor with the polysilicon gate replaced by a gas sensitive thin film have been around for over 50 years. These are not suitable for the emerging mobile and wearable sensor platforms due to operating voltages and powers far exceeding the supply capability of batteries. Here we present a novel approach to decouple the chemically sensitive region from the conducting channel for reducing the drive voltage and increasing reliability. This chemically gated field effect transistor uses silicon nanowire for the current conduction channel with a tin oxide film on top of the nanowire serving as the gas sensitive medium. The potential change induced by the molecular adsorption and desorption allows the electrically floating tin oxide film to gate the silicon channel. As the device is designed to be normally off, the power is consumed only during the gas sensing event. This feature is attractive for the battery operated sensor and wearable electronics. In addition, the decoupling of the chemical reaction and the current conduction regions allows the gas sensitive material to be free from electrical stress, thus increasing reliability. The device shows excellent gas sensitivity to the tested analytes relative to conventional metal oxide transistors and resistive sensors.

  17. All diamond self-aligned thin film transistor

    Science.gov (United States)

    Gerbi, Jennifer [Champaign, IL

    2008-07-01

    A substantially all diamond transistor with an electrically insulating substrate, an electrically conductive diamond layer on the substrate, and a source and a drain contact on the electrically conductive diamond layer. An electrically insulating diamond layer is in contact with the electrically conductive diamond layer, and a gate contact is on the electrically insulating diamond layer. The diamond layers may be homoepitaxial, polycrystalline, nanocrystalline or ultrananocrystalline in various combinations.A method of making a substantially all diamond self-aligned gate transistor is disclosed in which seeding and patterning can be avoided or minimized, if desired.

  18. Are spin junction transistors suitable for signal processing?

    Science.gov (United States)

    Bandyopadhyay, S.; Cahay, M.

    2005-03-01

    A number of spintronic analogs of bipolar junction transistors have been proposed for signal processing applications. Here, we show that some of these transistors unfortunately may not have sufficient voltage and current gains for signal processing. They may also have poor isolation between input and output terminals which hinders unidirectional propagation of logic signal from the driver stage to the output. Therefore, these devices may not improve state-of-the-art signal processing capability, although they may provide some additional functionality by offering nonvolatile storage. They may also have niche applications in nonlinear circuits.

  19. Can Molecular Quantum Interference Effect Transistors Survive Vibration?

    Science.gov (United States)

    Chen, Shuguang; Zhou, WeiJun; Zhang, Qing; Kwok, YanHo; Chen, GuanHua; Ratner, Mark A

    2017-10-19

    Quantum interference in cross-conjugated molecules can be utilized to construct molecular quantum interference effect transistors. However, whether its application can be achieved depends on the survivability of the quantum interference under real conditions such as nuclear vibration. We use two simulation methods to investigate the effects of nuclear vibration on quantum interference in a meta-linked benzene system. The simulation results suggest that the quantum interference is robust against nuclear vibration not only in the steady state but also in its transient dynamics, and thus the molecular quantum interference effect transistors can be realized.

  20. Chemical and biological sensing with organic thin-film transistors

    Science.gov (United States)

    Mabeck, Jeffrey Todd

    Organic thin-film transistors (OTFTs) offer a great deal of promise for applications in chemical and biological sensing where there is a demand for small, portable, and inexpensive sensors. OTFTs have many advantages over other types of sensors, including low-cost fabrication, straightforward miniaturization, simple instrumentation, and inherent signal amplification. This dissertation examines two distinct types of OTFTs: organic field-effect transistors (OFETs) based on pentacene, and organic electrochemical transistors (OECTs) based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). The bulk of the previous work on sensing with OFETs has focused on gas sensing, and this dissertation contributes to this body of work by briefly treating the large, reversible response of pentacene OFETs to humidity. However, there are many applications where the analyte of interest must be detected in an aqueous environment rather than a gaseous environment, and very little work has been done in this area for OFETs. Therefore, the integration of pentacene OFETs with microfluidics is treated in detail. Using poly(dimethylsiloxane) (PDMS) microfluidic channels to confine aqueous solutions over the active region of pentacene transistors, it is demonstrated that the current-voltage characteristics remain stable under aqueous flow with a decrease in mobility of ˜30% compared to its value when dry. The operation of PEDOT:PSS transistors is also treated in detail. It is demonstrated that their transistor behavior cannot be attributed solely to a field effect and that ion motion is key to the switching mechanism. It is also demonstrated that simple glucose sensors based on PEDOT:PSS OECTs are sensitive to low glucose concentrations below 1 mM, therefore showing promise for potential application in the field of noninvasive glucose monitoring for diabetic patients using saliva rather than blood samples. Furthermore, a novel microfluidic gating technique has been

  1. Ultrathin GaGeTe p-type transistors

    Science.gov (United States)

    Wang, Weike; Li, Liang; Zhang, Zhitao; Yang, Jiyong; Tang, Dongsheng; Zhai, Tianyou

    2017-11-01

    We exfoliated bulk GaGeTe crystals down to ultrathin flakes using the scotch tape method and fabricated field effect transistors (FETs). The GaGeTe FETs display a p-type behavior with drain current modulation on the order of 103, hole mobility of 0.45 cm2 V-1 s-1, and photoresponsivity of 3.6 A W-1 at room temperature. These findings suggest that the layered GaGeTe is a promising 2D semiconductor for fabricating devices, such as transistors and photodetectors.

  2. Implantation-Free 4H-SiC Bipolar Junction Transistors with Double Base Epi-layers

    Science.gov (United States)

    2007-05-14

    junction transistor ( BJT ) which is completely free of ion implantation and hence is free of the implantation- induced crystal damages and high-temperature...Index Terms—Silicon carbide, bipolar junction transistors ( BJTs ), power transistors ...Std Z39-18 I. INTRODUCTION 4H-SiC bipolar junction transistor ( BJT ) is an important switching device for high power and high temperature

  3. Structural Reliability Methods

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Madsen, H. O.

    The structural reliability methods quantitatively treat the uncertainty of predicting the behaviour and properties of a structure given the uncertain properties of its geometry, materials, and the actions it is supposed to withstand. This book addresses the probabilistic methods for evaluation...... of structural reliability, including the theoretical basis for these methods. Partial safety factor codes under current practice are briefly introduced and discussed. A probabilistic code format for obtaining a formal reliability evaluation system that catches the most essential features of the nature...... of the uncertainties and their interplay is the developed, step-by-step. The concepts presented are illustrated by numerous examples throughout the text....

  4. High-reliability computing for the smarter planet

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Heather M [Los Alamos National Laboratory; Graham, Paul [Los Alamos National Laboratory; Manuzzato, Andrea [UNIV OF PADOVA; Dehon, Andre [UNIV OF PENN; Carter, Nicholas [INTEL CORPORATION

    2010-01-01

    The geometric rate of improvement of transistor size and integrated circuit performance, known as Moore's Law, has been an engine of growth for our economy, enabling new products and services, creating new value and wealth, increasing safety, and removing menial tasks from our daily lives. Affordable, highly integrated components have enabled both life-saving technologies and rich entertainment applications. Anti-lock brakes, insulin monitors, and GPS-enabled emergency response systems save lives. Cell phones, internet appliances, virtual worlds, realistic video games, and mp3 players enrich our lives and connect us together. Over the past 40 years of silicon scaling, the increasing capabilities of inexpensive computation have transformed our society through automation and ubiquitous communications. In this paper, we will present the concept of the smarter planet, how reliability failures affect current systems, and methods that can be used to increase the reliable adoption of new automation in the future. We will illustrate these issues using a number of different electronic devices in a couple of different scenarios. Recently IBM has been presenting the idea of a 'smarter planet.' In smarter planet documents, IBM discusses increased computer automation of roadways, banking, healthcare, and infrastructure, as automation could create more efficient systems. A necessary component of the smarter planet concept is to ensure that these new systems have very high reliability. Even extremely rare reliability problems can easily escalate to problematic scenarios when implemented at very large scales. For life-critical systems, such as automobiles, infrastructure, medical implantables, and avionic systems, unmitigated failures could be dangerous. As more automation moves into these types of critical systems, reliability failures will need to be managed. As computer automation continues to increase in our society, the need for greater radiation reliability is

  5. Enhancement of Transistor-to-Transistor Variability Due to Total Dose Effects in 65-nm MOSFETs

    CERN Document Server

    Gerardin, S; Cornale, D; Ding, L; Mattiazzo, S; Paccagnella, A; Faccio, F; Michelis, S

    2015-01-01

    We studied device-to-device variations as a function of total dose in MOSFETs, using specially designed test structures and procedures aimed at maximizing matching between transistors. Degradation in nMOSFETs is less severe than in pMOSFETs and does not show any clear increase in sample-to-sample variability due to the exposure. At doses smaller than 1 Mrad( SiO2) variability in pMOSFETs is also practically unaffected, whereas at very high doses-in excess of tens of Mrad( SiO2)-variability in the on-current is enhanced in a way not correlated to pre-rad variability. The phenomenon is likely due to the impact of random dopant fluctuations on total ionizing dose effects.

  6. Highly specific and sensitive non-enzymatic determination of uric acid in serum and urine by extended gate field effect transistor sensors.

    Science.gov (United States)

    Guan, Weihua; Duan, Xuexin; Reed, Mark A

    2014-01-15

    A potentiometric non-enzymatic sensor using off-chip extended-gate field effect transistor (EGFET) with a ferrocenyl-alkanethiol modified gold electrode is demonstrated for determining the uric acid concentration in human serum and urine. Hexacyanoferrate (II) and (III) ions are used as redox reagent. This potentiometric sensor measures the interface potential on the ferrocene immobilized gold electrode, which is modulated by the redox reaction between uric acid and hexacyanoferrate ions. The device shows a near Nernstian response to uric acid and is highly specific. The interference that comes from glucose, bilirubin, ascorbic acid and hemoglobin is negligible in normal concentration range of these interferents. The sensor also exhibits excellent long term reliability. This extended gate field effect transistor based sensors can be used as a point of care UA testing tool, due to the small size, low cost, and low sample volume consumption. © 2013 Elsevier B.V. All rights reserved.

  7. A Numerical Study on Phonon Spectral Contributions to Thermal Conduction in Silicon-on-Insulator Transistor Using Electron-Phonon Interaction Model

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyung-sun; Koh, Young Ha; Jin, Jae Sik [Chosun College of Science and Technology, Gwangju (Korea, Republic of)

    2017-06-15

    The aim of this study is to understand the phonon transfer characteristics of a silicon thin film transistor. For this purpose, the Joule heating mechanism was considered through the electron-phonon interaction model whose validation has been done. The phonon transport characteristics were investigated in terms of phonon mean free path for the variations in the device power and silicon layer thickness from 41 nm to 177 nm. The results may be used for developing the thermal design strategy for achieving reliability and efficiency of the silicon-on-insulator (SOI) transistor, further, they will increase the understanding of heat conduction in SOI systems, which are very important in the semiconductor industry and the nano-fabrication technology.

  8. Recent progress on ZnO-based metal-semiconductor field-effect transistors and their application in transparent integrated circuits.

    Science.gov (United States)

    Frenzel, Heiko; Lajn, Alexander; von Wenckstern, Holger; Lorenz, Michael; Schein, Friedrich; Zhang, Zhipeng; Grundmann, Marius

    2010-12-14

    Metal-semiconductor field-effect transistors (MESFETs) are widely known from opaque high-speed GaAs or high-power SiC and GaN technology. For the emerging field of transparent electronics, only metal-insulator-semiconductor field-effect transistors (MISFETs) were considered so far. This article reviews the progress of high-performance MESFETs in oxide electronics and reflects the recent advances of this technique towards transparent MESFET circuitry. We discuss design prospects as well as limitations regarding device performance, reliability and stability. The presented ZnO-based MESFETs and inverters have superior properties compared to MISFETs, i.e., high channel mobilities and on/off-ratios, high gain, and low uncertainty level at comparatively low operating voltages. This makes them a promising approach for future low-cost transparent electronics.

  9. The rating reliability calculator

    Directory of Open Access Journals (Sweden)

    Solomon David J

    2004-04-01

    Full Text Available Abstract Background Rating scales form an important means of gathering evaluation data. Since important decisions are often based on these evaluations, determining the reliability of rating data can be critical. Most commonly used methods of estimating reliability require a complete set of ratings i.e. every subject being rated must be rated by each judge. Over fifty years ago Ebel described an algorithm for estimating the reliability of ratings based on incomplete data. While his article has been widely cited over the years, software based on the algorithm is not readily available. This paper describes an easy-to-use Web-based utility for estimating the reliability of ratings based on incomplete data using Ebel's algorithm. Methods The program is available public use on our server and the source code is freely available under GNU General Public License. The utility is written in PHP, a common open source imbedded scripting language. The rating data can be entered in a convenient format on the user's personal computer that the program will upload to the server for calculating the reliability and other statistics describing the ratings. Results When the program is run it displays the reliability, number of subject rated, harmonic mean number of judges rating each subject, the mean and standard deviation of the averaged ratings per subject. The program also displays the mean, standard deviation and number of ratings for each subject rated. Additionally the program will estimate the reliability of an average of a number of ratings for each subject via the Spearman-Brown prophecy formula. Conclusion This simple web-based program provides a convenient means of estimating the reliability of rating data without the need to conduct special studies in order to provide complete rating data. I would welcome other researchers revising and enhancing the program.

  10. On Reliability and Validity

    OpenAIRE

    MARTINS, Gilberto de Andrade

    2007-01-01

    In order to assess, evaluate or quantify financial, equity, auditing and controllership oriented data related both to private and public sectors, the practioner or the researcher has to pay close attention to the significance and accurateness criteria of the research tools he is about to employ: validity and reliability. The validity criterion refers to the instrument capacity of assessing what it intends to assess; reliability deals with the constancy of results when the same individual or o...

  11. Metrology automation reliability

    Science.gov (United States)

    Chain, Elizabeth E.

    1996-09-01

    At Motorola's MOS-12 facility automated measurements on 200- mm diameter wafers proceed in a hands-off 'load-and-go' mode requiring only wafer loading, measurement recipe loading, and a 'run' command for processing. Upon completion of all sample measurements, the data is uploaded to the factory's data collection software system via a SECS II interface, eliminating the requirement of manual data entry. The scope of in-line measurement automation has been extended to the entire metrology scheme from job file generation to measurement and data collection. Data analysis and comparison to part specification limits is also carried out automatically. Successful integration of automated metrology into the factory measurement system requires that automated functions, such as autofocus and pattern recognition algorithms, display a high degree of reliability. In the 24- hour factory reliability data can be collected automatically on every part measured. This reliability data is then uploaded to the factory data collection software system at the same time as the measurement data. Analysis of the metrology reliability data permits improvements to be made as needed, and provides an accurate accounting of automation reliability. This reliability data has so far been collected for the CD-SEM (critical dimension scanning electron microscope) metrology tool, and examples are presented. This analysis method can be applied to such automated in-line measurements as CD, overlay, particle and film thickness measurements.

  12. Semiconductor data book characteristics of approx. 10,000 transistors, FETs, UJTs, diodes, rectifiers, optical semiconductors, triacs and SCRs

    CERN Document Server

    Ball, A M

    1981-01-01

    Semiconductor Data Book, 11th Edition presents tables for ratings and characteristics of transistors and multiple transistors; silicon field effect transistors; unijunction transistors; low power-, variable-, power rectifier-, silicon reference-, and light emitting diodes; photodetectors; triacs; thyristors; lead identification; and transistor comparable types. The book starts by providing an introduction and explanation of tables and manufacturers' codes and addresses. Professionals requiring such data about semiconductors will find the book useful.

  13. Reconfigurable Complementary Logic Circuits with Ambipolar Organic Transistors

    NARCIS (Netherlands)

    Yoo, H.; Ghittorelli, M.; Smits, E.C.P.; Gelinck, G.H.; Lee, H.K.; Torricelli, F.; Kim, J.J.

    2016-01-01

    Ambipolar organic electronics offer great potential for simple and low-cost fabrication of complementary logic circuits on large-area and mechanically flexible substrates. Ambipolar transistors are ideal candidates for the simple and low-cost development of complementary logic circuits since they

  14. Physics of organic ferroelectric field-effect transistors

    NARCIS (Netherlands)

    Brondijk, J.J.; Asadi, K.; Blom, P.W.M.; Leeuw, D.M. de

    2012-01-01

    Most of the envisaged applications of organic electronics require a nonvolatile memory that can be programmed, erased, and read electrically. Ferroelectric field-effect transistors (FeFET) are especially suitable due to the nondestructive read-out and low power consumption. Here, an analytical model

  15. Magnetic tunnel transistor with a silicon hot-electron emitter

    NARCIS (Netherlands)

    Le Minh, P.; Gökcan, H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    We report on a modified magnetic tunnel transistor having a silicon tunnel emitter. The device has the structure Si/Al2O3 /base/Si with a spin-valve metal base, a Schottky barrier collector, but a silicon emitter separated from the base by a thin tunnel oxide. The energy of the hot electrons

  16. Frequency response of electrolyte-gated graphene electrodes and transistors

    Science.gov (United States)

    Drieschner, Simon; Guimerà, Anton; Cortadella, Ramon G.; Viana, Damià; Makrygiannis, Evangelos; Blaschke, Benno M.; Vieten, Josua; Garrido, Jose A.

    2017-03-01

    The interface between graphene and aqueous electrolytes is of high importance for applications of graphene in the field of biosensors and bioelectronics. The graphene/electrolyte interface is governed by the low density of states of graphene that limits the capacitance near the Dirac point in graphene and the sheet resistance. While several reports have focused on studying the capacitance of graphene as a function of the gate voltage, the frequency response of graphene electrodes and electrolyte-gated transistors has not been discussed so far. Here, we report on the impedance characterization of single layer graphene electrodes and transistors, showing that due to the relatively high sheet resistance of graphene, the frequency response is governed by the distribution of resistive and capacitive circuit elements along the graphene/electrolyte interface. Based on an analytical solution for the impedance of the distributed circuit elements, we model the graphene/electrolyte interface both for the electrode and the transistor configurations. Using this model, we can extract the relevant material and device parameters such as the voltage-dependent intrinsic sheet and series resistances as well as the interfacial capacitance. The model also provides information about the frequency threshold of electrolyte-gated graphene transistors, above which the device exhibits a non-resistive response, offering an important insight into the suitable frequency range of operation of electrolyte-gated graphene devices.

  17. Quantum transport in molybdenum disulfide and germanane transistors

    NARCIS (Netherlands)

    Chen, Qihong

    2017-01-01

    In the past decades, electronic devices are getting smaller and more powerful, following the Moore’s Law. Nevertheless, silicon-based field effect transistors are rapidly approaching their scaling limit. Thus, exploring new channel materials as well as novel device architectures are highly demanded

  18. Integrated circuits based on bilayer MoS₂ transistors.

    Science.gov (United States)

    Wang, Han; Yu, Lili; Lee, Yi-Hsien; Shi, Yumeng; Hsu, Allen; Chin, Matthew L; Li, Lain-Jong; Dubey, Madan; Kong, Jing; Palacios, Tomas

    2012-09-12

    Two-dimensional (2D) materials, such as molybdenum disulfide (MoS(2)), have been shown to exhibit excellent electrical and optical properties. The semiconducting nature of MoS(2) allows it to overcome the shortcomings of zero-bandgap graphene, while still sharing many of graphene's advantages for electronic and optoelectronic applications. Discrete electronic and optoelectronic components, such as field-effect transistors, sensors, and photodetectors made from few-layer MoS(2) show promising performance as potential substitute of Si in conventional electronics and of organic and amorphous Si semiconductors in ubiquitous systems and display applications. An important next step is the fabrication of fully integrated multistage circuits and logic building blocks on MoS(2) to demonstrate its capability for complex digital logic and high-frequency ac applications. This paper demonstrates an inverter, a NAND gate, a static random access memory, and a five-stage ring oscillator based on a direct-coupled transistor logic technology. The circuits comprise between 2 to 12 transistors seamlessly integrated side-by-side on a single sheet of bilayer MoS(2). Both enhancement-mode and depletion-mode transistors were fabricated thanks to the use of gate metals with different work functions.

  19. Selected Transistor Material for the Information-Seeking Adult.

    Science.gov (United States)

    Ringold, Dorman R.

    This study was undertaken to identify and organize meaningful and useful basic materials on transistor principles and applications, and to explore some of the elements required for adult teaching. It was limited to the apparent needs of information-seeking adults in greater Los Angeles who desired occupational skills. A literature review…

  20. Multicolored Nanofiber Based Organic Light-Emitting Transistor

    DEFF Research Database (Denmark)

    With Jensen, Per Baunegaard; Kjelstrup-Hansen, Jakob; Tavares, Luciana

    driven device by combining nanofibers made from two different molecules, parahexaphenylene (p6P) and 5,5´-Di-4-biphenyl-2,2´-bithiophene (PPTTPP), which emits blue and green light, respectively. The organic nanofibers are implemented on a bottom gate/bottom contact field-effect transistor platform using...

  1. Multiple facets of tightly coupled transducer-transistor structures.

    Science.gov (United States)

    Heidari, Hadi; Dahiya, Ravinder

    2015-12-04

    The ever increasing demand for data processing requires different paradigms for electronics. Excellent performance capabilities such as low power and high speed in electronics can be attained through several factors including using functional materials, which sometimes acquire superior electronic properties. The transduction-based transistor switching mechanism is one such possibility, which exploits the change in electrical properties of the transducer as a function of a mechanically induced deformation. Originally developed for deformation sensors, the technique is now moving to the centre stage of the electronic industry as the basis for new transistor concepts to circumvent the gate voltage bottleneck in transistor miniaturization. In issue 37 of Nanotechnology, Chang et al show the piezoelectronic transistor (PET), which uses a fast, low-power mechanical transduction mechanism to propagate an input gate voltage signal into an output resistance modulation. The findings by Chang et al will spur further research into piezoelectric scaling, and the PET fabrication techniques needed to advance this type of device in the future.

  2. Metal-nanoparticle single-electron transistors fabricated using electromigration

    DEFF Research Database (Denmark)

    Bolotin, K I; Kuemmeth, Ferdinand; Pasupathy, A N

    2004-01-01

    We have fabricated single-electron transistors from individual metal nanoparticles using a geometry that provides improved coupling between the particle and the gate electrode. This is accomplished by incorporating a nanoparticle into a gap created between two electrodes using electromigration, all...

  3. Effects of overheating in a single-electron transistor

    DEFF Research Database (Denmark)

    Korotkov, A. N.; Samuelsen, Mogens Rugholm; Vasenko, S. A.

    1994-01-01

    Heating of a single-electron transistor (SET) caused by the current flowing through it is considered. The current and the temperature increase should be calculated self-consistently taking into account various paths of the heat drain. Even if there is no heat drain from the central electrode...

  4. Ultrathin regioregular poly(3-hexyl thiophene) field-effect transistors

    DEFF Research Database (Denmark)

    Sandberg, H.G.O.; Frey, G.L.; Shkunov, M.N.

    2002-01-01

    Ultrathin films of regioregular poly(3-hexyl thiophene) (RR-P3HT) were deposited through a dip-coating technique and utilized as the semiconducting film in field-effect transistors (FETs). Proper selection of the substrate and solution concentration enabled the growth of a monolayer-thick RR-P3HT...

  5. Transistor-like behavior of transition metal complexes

    DEFF Research Database (Denmark)

    Albrecht, Tim; Guckian, A; Ulstrup, Jens

    2005-01-01

    scanning tunneling microscope (in situ STM). This configuration resembles a single-molecule transistor, where the reference electrode corresponds to the gate electrode. It operates at room temperature in a condensed matter (here aqueous) environment. Amplification on-off ratios up to 50 are found when...

  6. Quantum thermal rectification to design thermal diodes and transistors

    Energy Technology Data Exchange (ETDEWEB)

    Joulain, Karl; Ezzahri, Younes; Ordonez-Miranda, Jose [Univ. de Poitiers, Futuroscope Chasseneuil (France). Inst. Pprime, CNRS

    2017-05-01

    We study in this article how heat can be exchanged between two-level systems, each of them being coupled to a thermal reservoir. Calculations are performed solving a master equation for the density matrix using the Born-Markov approximation. We analyse the conditions for which a thermal diode and a thermal transistor can be obtained as well as their optimisation.

  7. Nanoscaled biological gated field effect transistors for cytogenetic analysis

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dimaki, Maria; Andersen, Karsten Brandt

    2014-01-01

    Cytogenetic analysis is the study of chromosome structure and function, and is often used in cancer diagnosis, as many chromosome abnormalities are linked to the onset of cancer. A novel label free detection method for chromosomal translocation analysis using nanoscaled field effect transistors...

  8. Transistors-From Point Contact to Single Electron

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 12. Transistors – From Point Contact to Single Electron. D N Bose. General Article Volume 2 Issue 12 December 1997 pp 39-54. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/002/12/0039-0054 ...

  9. Development of insulated gate bipolar transistor-based power ...

    Indian Academy of Sciences (India)

    Development of insulated gate bipolar transistor-based power supply for elemental copper vapour laser. R K MISHRA∗, S V NAKHE, G N TIWARI and J K MITTAL. Laser Systems Engineering Division, Raja Ramanna Centre for Advanced Technology,. Indore 452 013, India. *Corresponding author. E-mail: rkm@rrcat.gov.in.

  10. Identifying failure mechanisms in LDMOS transistors by analytical stability analysis

    NARCIS (Netherlands)

    Ferrara, A.; Steeneken, P.G.; Boksteen, B.K.; Heringa, A.; Scholten, A.J.; Schmitz, Jurriaan; Hueting, Raymond Josephus Engelbart

    2014-01-01

    In this work, analytical stability equations are derived and combined with a physics-based model of an LDMOS transistor in order to identify the primary cause of failure in different operating and bias conditions. It is found that there is a gradual boundary between an electrical failure region at

  11. Electronics: Mott Transistor: Fundamental Studies and Device Operation Mechanisms

    Science.gov (United States)

    2016-03-21

    display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Harvard University Office for Sponsored Programs...Transistor: Fundamental studies and device operation mechanisms PI: Shriram Ramanathan, Harvard University Grant Number: W911NF-14-1-0669 OVERVIEW The

  12. Development of insulated gate bipolar transistor-based power ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 75; Issue 5. Development of insulated gate bipolar transistor-based power supply for ... Author Affiliations. R K Mishra1 S V Nakhe1 G N Tiwari1 J K Mittal1. Laser Systems Engineering Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013, India ...

  13. Investigations of electron injection in a methanofullerene thin film transistor

    NARCIS (Netherlands)

    von Hauff, Elizabeth; Parisi, Juergen; Dyakonov, Vladimir

    2006-01-01

    In this study we investigate charge injection into a methanofullerene. The temperature and electric field dependent source-drain currents from contact limited [6,6]-phenyl C61-butyric acid methyl ester (PCBM) thin film transistors (TFTs) were analyzed. A form for the temperature and field dependent

  14. Operational Stability of Organic Field‐Effect Transistors

    NARCIS (Netherlands)

    Bobbert, P.A.; Sharma, A.; Matthijssen, S.J.G.; Kemerink, M.; de Leeuw, D.M.

    2012-01-01

    Organic field-effect transistors (OFETs) are considered in technological applications for which low cost or mechanical flexibility are crucial factors. The environmental stability of the organic semiconductors used in OFETs has improved to a level that is now sufficient for commercialization.

  15. Multiple facets of tightly coupled transducer-transistor structures

    Science.gov (United States)

    Heidari, Hadi; Dahiya, Ravinder

    2015-12-01

    The ever increasing demand for data processing requires different paradigms for electronics. Excellent performance capabilities such as low power and high speed in electronics can be attained through several factors including using functional materials, which sometimes acquire superior electronic properties. The transduction-based transistor switching mechanism is one such possibility, which exploits the change in electrical properties of the transducer as a function of a mechanically induced deformation. Originally developed for deformation sensors, the technique is now moving to the centre stage of the electronic industry as the basis for new transistor concepts to circumvent the gate voltage bottleneck in transistor miniaturization. In issue 37 of Nanotechnology, Chang et al show the piezoelectronic transistor (PET), which uses a fast, low-power mechanical transduction mechanism to propagate an input gate voltage signal into an output resistance modulation. The findings by Chang et al will spur further research into piezoelectric scaling, and the PET fabrication techniques needed to advance this type of device in the future.

  16. Flexible thin-film transistors using multistep UV nanoimprint lithography

    NARCIS (Netherlands)

    Moonen, P.; Vratzov, B.; Smaal, W.T.T.; Kjellander, B.K.C.; Gelinck, G.H.; Meinders, E.R.; Huskens, Jurriaan

    2012-01-01

    A multistep imprinting process is presented for the fabrication of a bottom-contact, bottom-gate thin-film transistor (TFT) on poly(ethylene naphthalate) (PEN) foil by patterning all layers of the metal–insulator–metal stack by UV nanoimprint lithography (UV NIL). The flexible TFTs were fabricated

  17. Development of the spin valve transistor (invited paper)

    NARCIS (Netherlands)

    Monsma, D.J.; Vlutters, R.; Shimatsu, T.; Shimatsu, T.; Keim, Enrico G.; Mollema, R.H.; Lodder, J.C.

    1997-01-01

    As the easiest experimental approach, GMR (giant magnetoresistance) is usually measured using the current in plane (CIP)-GMR. The spin-valve transistor has previously been presented as a spectroscopic tool to measure current perpendicular to the planes (CPP)-GMR. Hot electrons cross the magnetic

  18. Bipolar Transistors Can Detect Charge in Electrostatic Experiments

    Science.gov (United States)

    Dvorak, L.

    2012-01-01

    A simple charge indicator with bipolar transistors is described that can be used in various electrostatic experiments. Its behaviour enables us to elucidate links between 'static electricity' and electric currents. In addition it allows us to relate the sign of static charges to the sign of the terminals of an ordinary battery. (Contains 7 figures…

  19. Graphene transistors with multifunctional polymer brushes for biosensing applications.

    Science.gov (United States)

    Hess, Lucas H; Lyuleeva, Alina; Blaschke, Benno M; Sachsenhauser, Matthias; Seifert, Max; Garrido, Jose A; Deubel, Frank

    2014-06-25

    Exhibiting a combination of exceptional structural and electronic properties, graphene has a great potential for the development of highly sensitive sensors. To date, many challenging chemical, biochemical, and biologic sensing tasks have been realized based on graphene. However, many of these sensors are rather unspecific. To overcome this problem, for instance, the sensor surface can be modified with analyte-specific transducers such as enzymes. One problem associated with the covalent attachment of such biomolecular systems is the introduction of crystal defects that have a deleterious impact on the electronic properties of the sensor. In this work, we present a versatile platform for biosensing applications based on polymer-modified CVD-grown graphene transistors. The functionalization method of graphene presented here allows one to integrate several functional groups within surface-bound polymer brushes without the introduction of additional defects. To demonstrate the potential of this polymer brush functionalization scaffold, we modified solution-gated graphene field-effect transistors with the enzyme acetylcholinesterase and a transducing group, allowing the detection of the neurotransmitter acetylcholine. Taking advantage of the transducing capability of graphene transistors and the versatility of polymer chemistry and enzyme biochemistry, this study presents a novel route for the fabrication of highly sensitive, multipurpose transistor sensors that can find application for a multitude of biologically relevant analytes.

  20. Microwave flexible transistors on cellulose nanofibrillated fiber substrates

    Science.gov (United States)

    Jung-Hun Seo; Tzu-Hsuan Chang; Jaeseong Lee; Ronald Sabo; Weidong Zhou; Zhiyong Cai; Shaoqin Gong; Zhenqiang Ma

    2015-01-01

    In this paper, we demonstrate microwave flexible thin-film transistors (TFTs) on biodegradable substrates towards potential green portable devices. The combination of cellulose nanofibrillated fiber (CNF) substrate, which is a biobased and biodegradable platform, with transferrable single crystalline Si nanomembrane (Si NM), enables the realization of truly...

  1. High mobility polymer gated organic field effect transistor using zinc ...

    Indian Academy of Sciences (India)

    Mater. Sci., Vol. 37, No. 1, February 2014, pp. 95–99. c Indian Academy of Sciences. High mobility polymer gated organic field effect transistor using zinc phthalocyanine. K R RAJESH. ∗. , V KANNAN, M R KIM, Y S CHAE and J K RHEE. Millimeter- Wave Innovation Technology Research Centre (MINT), Dongguk University,.

  2. Influence of halo doping profiles on MOS transistor mismatch

    NARCIS (Netherlands)

    Andricciola, P.; Tuinhout, H.

    2009-01-01

    Halo implants are used in modern CMOS technology to reduce the short channel effect. However, the lateral non-uniformity of the channel doping has been proven to degenerate the mismatch performance. With this paper we want to discuss the influence of the halo profile on MOS transistor mismatch. The

  3. The spin-valve transistor: a preview and outlook

    NARCIS (Netherlands)

    Jansen, R.

    2003-01-01

    Combining ferromagnetic and semiconductor materials is a challenging route to create new options for electronic devices in which the spin of the electron is employed. The spin-valve transistor (SVT) is the first of such hybrid devices shown to work successfully. This review describes the basic

  4. The spin-valve transistor: Fabrication, characterization and physics

    NARCIS (Netherlands)

    Jansen, R.; van 't Erve, O.M.J.; Kim, S.D.; Vlutters, R.; Anil Kumar, P.S.; Lodder, J.C.

    2001-01-01

    An overview is given of the fabrication, basic properties, and physics of the spin-valve transistor. We describe the layout of this three-terminal ferromagnet/semiconductor hybrid device, as well as the operating principle. Fabrication technologies are discussed, including vacuum metal bonding. We

  5. Conducted EMI in Inverters with SiC Transistors

    NARCIS (Netherlands)

    Gong, X.

    2013-01-01

    Conducted EMI in Inverters with SiC Transistors Electromagnetic Interference (EMI) is the main side effect accompanied with the fast voltage and current switching transients in power electronics applications. Compliance of the Electromagnetic Compatibility (EMC) standard is prescribed for any power

  6. Transistor analogs of emergent iono-neuronal dynamics

    Science.gov (United States)

    Rachmuth, Guy; Poon, Chi-Sang

    2008-01-01

    Neuromorphic analog metal-oxide-silicon (MOS) transistor circuits promise compact, low-power, and high-speed emulations of iono-neuronal dynamics orders-of-magnitude faster than digital simulation. However, their inherently limited input voltage dynamic range vs power consumption and silicon die area tradeoffs makes them highly sensitive to transistor mismatch due to fabrication inaccuracy, device noise, and other nonidealities. This limitation precludes robust analog very-large-scale-integration (aVLSI) circuits implementation of emergent iono-neuronal dynamics computations beyond simple spiking with limited ion channel dynamics. Here we present versatile neuromorphic analog building-block circuits that afford near-maximum voltage dynamic range operating within the low-power MOS transistor weak-inversion regime which is ideal for aVLSI implementation or implantable biomimetic device applications. The fabricated microchip allowed robust realization of dynamic iono-neuronal computations such as coincidence detection of presynaptic spikes or pre- and postsynaptic activities. As a critical performance benchmark, the high-speed and highly interactive iono-neuronal simulation capability on-chip enabled our prompt discovery of a minimal model of chaotic pacemaker bursting, an emergent iono-neuronal behavior of fundamental biological significance which has hitherto defied experimental testing or computational exploration via conventional digital or analog simulations. These compact and power-efficient transistor analogs of emergent iono-neuronal dynamics open new avenues for next-generation neuromorphic, neuroprosthetic, and brain-machine interface applications. PMID:19404469

  7. Organic transistors in optical displays and microelectronic applications

    NARCIS (Netherlands)

    Gelinck, G.H.; Heremans, P.; Nomoto, K.; Anthopoulos, T.D.

    2010-01-01

    Organic thin-film transistors (OTFTs) offer unprecedented opportunities for implementation in a broad range of technological applications spanning from large-volume microelectronics and optical displays to chemical and biological sensors. In this Progress Report, we review the application of organic

  8. Discontinuous pn-heterojunction for organic thin film transistors

    NARCIS (Netherlands)

    Cho, B.; Yu, S.H.; Kim, M.; Lee, M.H.; Huh, W.; Lee, J.; Kim, J.; Cho, J.H.; Lee, J.Y.; Song, Y.J.; Kang, M.S.

    2014-01-01

    Utilization of discontinuous pn-oragnic heterojunction is introduced as a versatile method to improve charge transport in organic thin film transistors (OTFTs). The method is demonstrated by depositing n-type dioctyl perylene tetracarboxylic diimide (PTCDI-C8) discontinuously onto base p-type

  9. Pentacene organic thin film transistors with anodized gate dielectric

    NARCIS (Netherlands)

    Goettling, S.; Brill, J.; Fruehauf, N.; Pflaum, J.; Margallo-Balbás, E.

    2005-01-01

    A low temperature high quality gate dielectric process for bottom gate organic thin film transistors (OTFT) is introduced which is compatible to plastic substrates. The Al2O3 dielectric is grown from the aluminum gate electrode by anodic oxidation at room temperature and exhibits an exceptionally

  10. Carbon nanotube thin film transistors based on aerosol methods.

    Science.gov (United States)

    Zavodchikova, Marina Y; Kulmala, Tero; Nasibulin, Albert G; Ermolov, Vladimir; Franssila, Sami; Grigoras, Kestutis; Kauppinen, Esko I

    2009-02-25

    We demonstrate a fabrication method for high-performance field-effect transistors (FETs) based on dry-processed random single-walled carbon nanotube networks (CNTNs) deposited at room temperature. This method is an advantageous alternative to solution-processed and direct CVD grown CNTN FETs, which allows using various substrate materials, including heat-intolerant plastic substrates, and enables an efficient, density-controlled, scalable deposition of as-produced single-walled CNTNs on the substrate directly from the aerosol (floating catalyst) synthesis reactor. Two types of thin film transistor (TFT) structures were fabricated to evaluate the FET performance of dry-processed CNTNs: bottom-gate transistors on Si/SiO2 substrates and top-gate transistors on polymer substrates. Devices exhibited on/off ratios up to 10(5) and field-effect mobilities up to 4 cm(2) V(-1) s(-1). The suppression of hysteresis in the bottom-gate device transfer characteristics by means of thermal treatment in vacuum and passivation by an atomic layer deposited Al(2)O(3) film was investigated. A 32 nm thick Al(2)O(3) layer was found to be able to eliminate the hysteresis.

  11. Single-molecule probes in organic field-effect transistors

    NARCIS (Netherlands)

    Nicolet, Aurélien Armel Louis

    2007-01-01

    The goal of this thesis is to study charge transport phenomena in organic materials. This is done optically by means of single-molecule spectroscopy in a field-effect transistor based on a molecular crystal. We present (in Chapter 2) a fundamental requirement for single-molecule spectroscopy

  12. Field-Induced Superconductivity in Electric Double Layer Transistors

    NARCIS (Netherlands)

    Ueno, Kazunori; Shimotani, Hidekazu; Yuan, Hongtao; Ye, Jianting; Kawasaki, Masashi; Iwasa, Yoshihiro

    Electric field tuning of superconductivity has been a long-standing issue in solid state physics since the invention of the field-effect transistor (FET) in 1960. Owing to limited available carrier density in conventional FET devices, electric-field-induced superconductivity was believed to be

  13. High mobility polymer gated organic field effect transistor using zinc ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 37; Issue 1. High mobility polymer gated organic field effect transistor using zinc ... fabricated using evaporated zinc phthalocyanine as the active layer. Parylene film prepared by chemical vapour deposition was used as the organic gate insulator. The annealing of the ...

  14. Proton-sensing transistor systems for detecting ion leakage from plasma membranes under chemical stimuli.

    Science.gov (United States)

    Imaizumi, Yuki; Goda, Tatsuro; Schaffhauser, Daniel F; Okada, Jun-Ichi; Matsumoto, Akira; Miyahara, Yuji

    2017-03-01

    many years while leaving some major issues such as sensitivity, accuracy, and fast response. The paper describes a new way of measuring the plasma membrane leakage in real time upon challenge by toxic reagents using a solid-state transistor that is sensitive to proton as the smallest indicator. Our system was reliable and was correlated to the results from hemolysis assay with advanced features in sensitivity, fast response, and wide applicability to chemical species. The downsizing and integration features of semiconductor fabrication technologies may realize cytotoxicity assays at the single-cell level in multi-parallel. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Lifetime of Poly(triaryl amine) Based Organic Field Effect Transistors under Different Environmental Conditions

    Science.gov (United States)

    Lau, Tobias; Lorenz, Enno; Koyuncu, Metin

    2013-04-01

    Characterization of reliability and lifetime is a key issue on the way to commercialization of products based on organic electronics. Prediction of the lifetime requires the understanding of failure mechanisms and the circumstances leading to failure. In this work the stability of poly(triaryl amine) (PTAA) based organic field effect transistors (OFETs) on a poly(ethylene naphthalate) (PEN) substrate is investigated under environmental stressing. PTAA is known to form amorphous thin films after spin coating and to be air stable for extended periods of time. This inherent air stability makes it a good candidate for testing of environmental influences. The samples were electrically characterized regularly between storage cycles at 85 °C and 85 °C/85% relative humidity (RH). Samples stored under dry atmosphere and inert gas were used as reference. More than 1700 OFETs were produced in multiple batches and measured using an automated measurement system to collect statistically significant data. Circuit-relevant OFET parameters such as on- and off-current, mobility, threshold voltage and gate leakage current were extracted applying a thin film transistor (TFT) device model to the measured transfer and output curves. The threshold voltage is found to be the most sensitive parameter especially for the samples stored at 85 °C. The effect of storage under 85 °C/85%RH is observed to be comparably small. Fourier transform infrared (FT-IR) measurements of the aged OFET samples indicate a correlation between the shift of the electrical parameters and the appearance of carbonyl groups in the dielectric layer of the devices. Possible degradation mechanisms are discussed based on this observation.

  16. Photovoltaic module reliability workshop

    Science.gov (United States)

    Mrig, L.

    The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986 to 1990. The reliability photovoltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warrantees available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the U.S., PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

  17. Photovoltaic module reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Mrig, L. (ed.)

    1990-01-01

    The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986--1990. The reliability Photo Voltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warranties available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the US, PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

  18. Effect of traps and defects on high temperature performance of Ge channel junctionless nanowire transistors

    Directory of Open Access Journals (Sweden)

    Chuanchuan Sun

    2017-07-01

    Full Text Available We investigate the effect of traps and defects on high temperature performance of p-type germanium-on-insulator (GOI based junctionless nanowire transistors (JNTs at temperatures ranging from 300 to 450 K. Temperature dependence of the main electrical parameters, such as drive current (Ion, leakage current (Ioff, threshold voltage (Vt, transconductance (Gm and subthreshold slope (SS are extracted and compared with the reported results of conventional inversion mode (IM MOSFETs and Si based JNTs. The results show that the high interface trap density (Dit and defects can degrade high temperature reliability of GOI based JNTs significantly, in terms of Ioff, Vt variation, Gm-max and SS values. The Ioff is much more dependent on temperature than Ion and mainly affected by trap-assisted-tunneling (TAT current. The Vt variation with temperature is larger than that for IM MOSFETs and SOI based JNTs, which can be mostly attributed to the high Dit. The high Dit can also induce high SS values. The maximum Gm has a weak dependence on temperature and is significantly influenced by neutral defects scattering. Limiting the Dit and neutral defect densities is critical for the reliability of GOI based JNTs working at high temperatures.

  19. Gearbox Reliability Collaborative Update (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, S.; Keller, J.; Glinsky, C.

    2013-10-01

    This presentation was given at the Sandia Reliability Workshop in August 2013 and provides information on current statistics, a status update, next steps, and other reliability research and development activities related to the Gearbox Reliability Collaborative.

  20. Study of performance scaling of 22-nm epitaxial delta-doped channel MOS transistor

    Science.gov (United States)

    Sengupta, Sarmista; Pandit, Soumya

    2015-06-01

    Epitaxial delta-doped channel (EδDC) profile is a promising approach for extending the scalability of bulk metal oxide semiconductor (MOS) technology for low-power system-on-chip applications. A comparative study between EδDC bulk MOS transistor with gate length Lg = 22 nm and a conventional uniformly doped channel (UDC) bulk MOS transistor, with respect to various digital and analogue performances, is presented. The study has been performed using Silvaco technology computer-aided design device simulator, calibrated with experimental results. This study reveals that at smaller gate length, EδDC transistor outperforms the UDC transistor with respect to various studied performances. The reduced contribution of the lateral electric field in the channel plays the key role in this regard. Further, the carrier mobility in EδDC transistor is higher compared to UDC transistor. For moderate gate and drain bias, the impact ionisation rate of the carriers for EδDC MOS transistor is lower than that of the UDC transistor. In addition, at 22 nm, the performances of a EδDC transistor are competitive to that of an ultra-thin body silicon-on-insulator transistor.

  1. Low Power Band to Band Tunnel Transistors

    Science.gov (United States)

    2010-12-15

    ultrathin-body SOI MOSFETs”, Electron Devices Meeting, 2004. IEDM Technical Digest . IEEE International, pp. 229- 232, 13-15 Dec. 2004 [1.12] M. L. Lee...dependence of the performance enhancement in strained-Si n-MOSFETs," Electron Devices Meeting, 1994. IEDM 󈨢. Technical Digest , International, pp.373-376...H. J. Tao, S. C. Chen, C. H. Diaz, T. Ong, A. S. Oates , M. S. Liang, M. H. Chi, "Reliability of HfSiON as gate dielectric for advanced CMOS

  2. Total dose effects on elementary transistors of a comparator in bipolar technology; Effets de la dose cumulee sur les transistors elementaires d`un comparateur en technologie bipolaire

    Energy Technology Data Exchange (ETDEWEB)

    Sarrabayrouse, G. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France). Lab. d`Automatique et d`Analyse des Systemes; Bosc, J.M. [Motorola, 31 - Toulouse (France); Guerre, F.X. [Hirex Engineering, 31 - Toulouse (France)

    1995-12-31

    In the present work we investigate elementary transistors behaviour of an Integrated Circuit using junction isolation bipolar technology. Polarization conditions and dose rate effects on the main elementary transistor types are analysed. Furthermore, the IC electronic function degradations are studied. Finally, a comparison between the function degradations and the elementary component ones is attempted. (author). 10 refs.

  3. Structural Reliability Methods

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Madsen, H. O.

    The structural reliability methods quantitatively treat the uncertainty of predicting the behaviour and properties of a structure given the uncertain properties of its geometry, materials, and the actions it is supposed to withstand. This book addresses the probabilistic methods for evaluation...

  4. EXPLOITATION RELIABILITY OF RECUPERATORS

    OpenAIRE

    A. M. Selutin; V. A. Zharanov; A. V. Tkachenko

    2006-01-01

    The investigations and experience of implementation of constructions, that provide increase of gas-tightness of heat-exchangers, are described in the article. The given variants of compensators of different types allow to increase the reliability of operation of systems of the fuel furnaces waste flue gases heat using.

  5. EXPLOITATION RELIABILITY OF RECUPERATORS

    Directory of Open Access Journals (Sweden)

    A. M. Selutin

    2006-01-01

    Full Text Available The investigations and experience of implementation of constructions, that provide increase of gas-tightness of heat-exchangers, are described in the article. The given variants of compensators of different types allow to increase the reliability of operation of systems of the fuel furnaces waste flue gases heat using.

  6. Reliability based structural design

    NARCIS (Netherlands)

    Vrouwenvelder, A.C.W.M.

    2013-01-01

    According to ISO 2394, structures shall be designed, constructed and maintained in such a way that they are suited for their use during the design working life in an economic way. To fulfil this requirement one needs insight into the risk and reliability under expected and non-expected actions. A

  7. The value of reliability

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Karlström, Anders

    2010-01-01

    We derive the value of reliability in the scheduling of an activity of random duration, such as travel under congested conditions. Using a simple formulation of scheduling utility, we show that the maximal expected utility is linear in the mean and standard deviation of trip duration, regardless...

  8. Reliability and Model Fit

    Science.gov (United States)

    Stanley, Leanne M.; Edwards, Michael C.

    2016-01-01

    The purpose of this article is to highlight the distinction between the reliability of test scores and the fit of psychometric measurement models, reminding readers why it is important to consider both when evaluating whether test scores are valid for a proposed interpretation and/or use. It is often the case that an investigator judges both the…

  9. Reliability of Plastic Slabs

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    1989-01-01

    In the paper it is shown how upper and lower bounds for the reliability of plastic slabs can be determined. For the fundamental case it is shown that optimal bounds of a deterministic and a stochastic analysis are obtained on the basis of the same failure mechanisms and the same stress fields....

  10. Travel time reliability modeling.

    Science.gov (United States)

    2011-07-01

    This report includes three papers as follows: : 1. Guo F., Rakha H., and Park S. (2010), "A Multi-state Travel Time Reliability Model," : Transportation Research Record: Journal of the Transportation Research Board, n 2188, : pp. 46-54. : 2. Park S.,...

  11. Parametric Mass Reliability Study

    Science.gov (United States)

    Holt, James P.

    2014-01-01

    The International Space Station (ISS) systems are designed based upon having redundant systems with replaceable orbital replacement units (ORUs). These ORUs are designed to be swapped out fairly quickly, but some are very large, and some are made up of many components. When an ORU fails, it is replaced on orbit with a spare; the failed unit is sometimes returned to Earth to be serviced and re-launched. Such a system is not feasible for a 500+ day long-duration mission beyond low Earth orbit. The components that make up these ORUs have mixed reliabilities. Components that make up the most mass-such as computer housings, pump casings, and the silicon board of PCBs-typically are the most reliable. Meanwhile components that tend to fail the earliest-such as seals or gaskets-typically have a small mass. To better understand the problem, my project is to create a parametric model that relates both the mass of ORUs to reliability, as well as the mass of ORU subcomponents to reliability.

  12. Reliability of semiology description.

    Science.gov (United States)

    Heo, Jae-Hyeok; Kim, Dong Wook; Lee, Seo-Young; Cho, Jinwhan; Lee, Sang-Kun; Nam, Hyunwoo

    2008-01-01

    Seizure semiology is important for classifying patients' epilepsy. Physicians usually get most of the seizure information from observers though there have been few reports on the reliability of the observers' description. This study aims at determining the reliability of observers' description of the semiology. We included 92 patients who had their habitual seizures recorded during video-EEG monitoring. We compared the semiology described by the observers with that recorded on the videotape, and reviewed which characteristics of the observers affected the reliability of their reported data. The classification of seizures and the individual components of the semiology based only on the observer-description was somewhat discordant compared with the findings from the videotape (correct classification, 85%). The descriptions of some ictal behaviors such as oroalimentary automatism, tonic/dystonic limb posturing, and head versions were relatively accurate, but those of motionless staring and hand automatism were less accurate. The specified directions by the observers were relatively correct. The accuracy of the description was related to the educational level of the observers. Much of the information described by well-educated observers is reliable. However, every physician should keep in mind the limitations of this information and use this information cautiously.

  13. Reliability measurement without limits

    NARCIS (Netherlands)

    Reidsma, Dennis; Carletta, J.

    In computational linguistics, a reliability measurement of 0.8 on some statistic such as $\\kappa$ is widely thought to guarantee that hand-coded data is fit for purpose, with lower values suspect. We demonstrate that the main use of such data, machine learning, can tolerate data with a low

  14. High reliability organizations

    NARCIS (Netherlands)

    Gallis, R.; Zwetsloot, G.I.J.M.

    2014-01-01

    High Reliability Organizations (HRO’s) are organizations that constantly face serious and complex (safety) risks yet succeed in realising an excellent safety performance. In such situations acceptable levels of safety cannot be achieved by traditional safety management only. HRO’s manage safety

  15. 60Co γ-ray induced gain degradation in bipolar junction transistors

    Science.gov (United States)

    Kulkami, S. R.; Damle, R.

    2011-03-01

    Commercial indigenously made npn and pnp bipolar junction switching transistors used for space applications are investigated for 60Co γ-ray induced effects. The on-line as well as off-line measurements indicate that the forward current gain of the transistors decreases significantly as the accumulated dose increases. Excess base current model is employed to account for the current gain degradation. The pnp transistor undergoes as much degradation as the npn type. It is found that bulk degradation by displacement damage is the dominant mechanism leading to reduction in forward current gain of npn transistors. On the other hand it appears that, in addition to bulk damage, surface degradation due to accumulation of interface states at the silicon-silicon dioxide interface also contributes significantly to gain degradation in pnp transistor as evident from thermal annealing studies. Further, estimation reveals that the transistor with larger base width has higher displacement damage factor.

  16. High-frequency noise characterization of graphene field effect transistors on SiC substrates

    Science.gov (United States)

    Yu, C.; He, Z. Z.; Song, X. B.; Liu, Q. B.; Dun, S. B.; Han, T. T.; Wang, J. J.; Zhou, C. J.; Guo, J. C.; Lv, Y. J.; Cai, S. J.; Feng, Z. H.

    2017-07-01

    Considering its high carrier mobility and high saturation velocity, a low-noise amplifier is thought of as being the most attractive analogue application of graphene field-effect transistors. The noise performance of graphene field-effect transistors at frequencies in the K-band remains unknown. In this work, the noise parameters of a graphene transistor are measured from 10 to 26 GHz and noise models are built with the data. The extrinsic minimum noise figure for a graphene transistor reached 1.5 dB, and the intrinsic minimum noise figure was as low as 0.8 dB at a frequency of 10 GHz, which were comparable with the results from tests on Si CMOS and started to approach those for GaAs and InP transistors. Considering the short development time, the current results are a significant step forward for graphene transistors and show their application potential in high-frequency electronics.

  17. Enhanced Amplification and Fan-Out Operation in an All-Magnetic Transistor.

    Science.gov (United States)

    Barman, Saswati; Saha, Susmita; Mondal, Sucheta; Kumar, Dheeraj; Barman, Anjan

    2016-09-14

    Development of all-magnetic transistor with favorable properties is an important step towards a new paradigm of all-magnetic computation. Recently, we showed such possibility in a Magnetic Vortex Transistor (MVT). Here, we demonstrate enhanced amplification in MVT achieved by introducing geometrical asymmetry in a three vortex sequence. The resulting asymmetry in core to core distance in the three vortex sequence led to enhanced amplification of the MVT output. A cascade of antivortices travelling in different trajectories including a nearly elliptical trajectory through the dynamic stray field is found to be responsible for this amplification. This asymmetric vortex transistor is further used for a successful fan-out operation, which gives large and nearly equal gains in two output branches. This large amplification in magnetic vortex gyration in magnetic vortex transistor is proposed to be maintained for a network of vortex transistor. The above observations promote the magnetic vortex transistors to be used in complex circuits and logic operations.

  18. Reliability in the utility computing era: Towards reliable Fog computing

    DEFF Research Database (Denmark)

    Madsen, Henrik; Burtschy, Bernard; Albeanu, G.

    2013-01-01

    This paper considers current paradigms in computing and outlines the most important aspects concerning their reliability. The Fog computing paradigm as a non-trivial extension of the Cloud is considered and the reliability of the networks of smart devices are discussed. Combining the reliability...... requirements of grid and cloud paradigms with the reliability requirements of networks of sensor and actuators it follows that designing a reliable Fog computing platform is feasible....

  19. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

    KAUST Repository

    Alfaraj, Nasir

    2015-10-26

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  20. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    Science.gov (United States)

    Minati, Ludovico

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  1. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: phase, amplitude, and clustering effects.

    Science.gov (United States)

    Minati, Ludovico

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  2. Energy-Filtered Tunnel Transistor: A New Device Concept Toward Extremely-Low Energy Consumption Electronics

    Science.gov (United States)

    2015-12-17

    technical report 3. DATES COVERED {From - To) Apri 1 1, 2012 - September 30, 2015 4. TITLE AND SUBTITLE Energy-Filtered Tunnel Transistor : A...occurring at room temperature as well as its applications to practical devices such as room-temperature single-electron transistors and ultralow...energy consumption transistors . We have experimentally demonstrated, for the first time, that a quantum well energy level can filter out energetic

  3. Noise performance of the radio-frequency single-electron transistor

    OpenAIRE

    Roschier, Leif; Hakonen, Pertti J.; Bladh, K.; Delsing, P.; Lehnert, K. W.; Spietz, Lafe; Schoelkopf, Rob

    2004-01-01

    We have analyzed a radio-frequency single-electron-transistor (RF-SET) circuit that includes a high-electron-mobility-transistor (HEMT)amplifier, coupled to the single-electron-transistor (SET) via an impedance transformer. We consider how power is transferred between different components of the circuit, model noise components, and analyze the operating conditions of practical importance. The results are compared with experimental data on SETs. Good agreement is obtained between our noise mod...

  4. Subthreshold-swing physics of tunnel field-effect transistors

    Science.gov (United States)

    Cao, Wei; Sarkar, Deblina; Khatami, Yasin; Kang, Jiahao; Banerjee, Kaustav

    2014-06-01

    Band-to-band tunnel field-effect-transistors (TFETs) are considered a possible replacement for the conventional metal-oxide-semiconductor field-effect transistors due to their ability to achieve subthreshold swing (SS) below 60 mV/decade. This letter reports a comprehensive study of the SS of TFETs by examining the effects of electrostatics and material parameters of TFETs on their SS through a physics based analytical model. Based on the analysis, an intrinsic SS degradation effect in TFETs is uncovered. Meanwhile, it is also shown that designing a strong onset condition, quantified by an introduced concept - "onset strength", for TFETs can effectively overcome this degradation at the onset stage, and thereby achieve ultra-sharp switching characteristics. The uncovered physics provides theoretical support to recent experimental results, and forward looking insight into more advanced TFET design.

  5. Subthreshold-swing physics of tunnel field-effect transistors

    Directory of Open Access Journals (Sweden)

    Wei Cao

    2014-06-01

    Full Text Available Band-to-band tunnel field-effect-transistors (TFETs are considered a possible replacement for the conventional metal-oxide-semiconductor field-effect transistors due to their ability to achieve subthreshold swing (SS below 60 mV/decade. This letter reports a comprehensive study of the SS of TFETs by examining the effects of electrostatics and material parameters of TFETs on their SS through a physics based analytical model. Based on the analysis, an intrinsic SS degradation effect in TFETs is uncovered. Meanwhile, it is also shown that designing a strong onset condition, quantified by an introduced concept - “onset strength”, for TFETs can effectively overcome this degradation at the onset stage, and thereby achieve ultra-sharp switching characteristics. The uncovered physics provides theoretical support to recent experimental results, and forward looking insight into more advanced TFET design.

  6. Laser-Printed Organic Thin-Film Transistors

    KAUST Repository

    Diemer, Peter J.

    2017-09-20

    Solution deposition of organic optoelectronic materials enables fast roll-to-roll manufacturing of photonic and electronic devices on any type of substrate and at low cost. But controlling the film microstructure when it crystallizes from solution can be challenging. This represents a major limitation of this technology, since the microstructure, in turn, governs the charge transport properties of the material. Further, the solvents typically used are hazardous, which precludes their incorporation in large-scale manufacturing processes. Here, the first ever organic thin-film transistor fabricated with an electrophotographic laser printing process using a standard office laser printer is reported. This completely solvent-free additive manufacturing method allows for simultaneous deposition, purification, and patterning of the organic semiconductor layer. Laser-printed transistors using triisopropylsilylethynyl pentacene as the semiconductor layer are realized on flexible substrates and characterized, making this a successful first demonstration of the potential of laser printing of organic semiconductors.

  7. A Fast Dynamic 64-bit Comparator with Small Transistor Count

    Directory of Open Access Journals (Sweden)

    Chua-Chin Wang

    2002-01-01

    Full Text Available In this paper, we propose a 64-bit fast dynamic CMOS comparator with small transistor count. Major features of the proposed comparator are the rearrangement and re-ordering of transistors in the evaluation block of a dynamic cell, and the insertion of a weak n feedback inverter, which helps the pull-down operation to ground. The simulation results given by pre-layout tools, e.g. HSPICE, and post-layout tools, e.g. TimeMill, reveal that the delay is around 2.5 ns while the operating clock rate reaches 100 MHz. A physical chip is fabricated to verify the correctness of our design by using UMC (United Microelectronics Company 0.5 μm (2P2M technology.

  8. All 2D, high mobility, flexible, transparent thin film transistor

    Science.gov (United States)

    Das, Saptarshi; Sumant, Anirudha V.; Roelofs, Andreas

    2017-01-17

    A two-dimensional thin film transistor and a method for manufacturing a two-dimensional thin film transistor includes layering a semiconducting channel material on a substrate, providing a first electrode material on top of the semiconducting channel material, patterning a source metal electrode and a drain metal electrode at opposite ends of the semiconducting channel material from the first electrode material, opening a window between the source metal electrode and the drain metal electrode, removing the first electrode material from the window located above the semiconducting channel material providing a gate dielectric above the semiconducting channel material, and providing a top gate above the gate dielectric, the top gate formed from a second electrode material. The semiconducting channel material is made of tungsten diselenide, the first electrode material and the second electrode material are made of graphene, and the gate dielectric is made of hexagonal boron nitride.

  9. Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose

    Science.gov (United States)

    Yuen, Jonathan D.; Walper, Scott A.; Melde, Brian J.; Daniele, Michael A.; Stenger, David A.

    2017-01-01

    We report an ultra-thin electronic decal that can simultaneously collect, transmit and interrogate a bio-fluid. The described technology effectively integrates a thin-film organic electrochemical transistor (sensing component) with an ultrathin microbial nanocellulose wicking membrane (sample handling component). As far as we are aware, OECTs have not been integrated in thin, permeable membrane substrates for epidermal electronics. The design of the biocompatible decal allows for the physical isolation of the electronics from the human body while enabling efficient bio-fluid delivery to the transistor via vertical wicking. High currents and ON-OFF ratios were achieved, with sensitivity as low as 1 mg·L-1.

  10. High mobility solution-processed hybrid light emitting transistors

    Science.gov (United States)

    Walker, Bright; Ullah, Mujeeb; Chae, Gil Jo; Burn, Paul L.; Cho, Shinuk; Kim, Jin Young; Namdas, Ebinazar B.; Seo, Jung Hwa

    2014-11-01

    We report the design, fabrication, and characterization of high-performance, solution-processed hybrid (inorganic-organic) light emitting transistors (HLETs). The devices employ a high-mobility, solution-processed cadmium sulfide layer as the switching and transport layer, with a conjugated polymer Super Yellow as an emissive material in non-planar source/drain transistor geometry. We demonstrate HLETs with electron mobilities of up to 19.5 cm2/V s, current on/off ratios of >107, and external quantum efficiency of 10-2% at 2100 cd/m2. These combined optical and electrical performance exceed those reported to date for HLETs. Furthermore, we provide full analysis of charge injection, charge transport, and recombination mechanism of the HLETs. The high brightness coupled with a high on/off ratio and low-cost solution processing makes this type of hybrid device attractive from a manufacturing perspective.

  11. Thin film transistors for displays on plastic substrates

    Science.gov (United States)

    Lee, M. J.; Judge, C. P.; Wright, S. W.

    2000-08-01

    We have successfully made thin film transistors on transparent, flexible polymer substrates. These transistors have electrical properties suitable for driving the pixels in active matrix liquid crystal displays and also for building integrated row driver circuits. The devices are fabricated on polyethylene naphthalate using a low temperature CdSe process at a maximum temperature of 150°C, by evaporation and radio frequency sputtering onto unheated substrates, with pattern definition using standard photolithography and etching. Electrical properties achieved include carrier field effect mobilities of >30 cm 2/V s, threshold voltages of ˜2 V, switching ratio >10 6, an off-state leakage current of 1 μA with a gate voltage swing of <10 V, and a sub-threshold slope of 0.25 V/decade for devices of unity aspect ratio. The electrical properties were found to scale with device channel length and width.

  12. Ferroelectric field-effect transistor based on transparent oxides

    Energy Technology Data Exchange (ETDEWEB)

    Titkov, Ilya [Department of Solid State Electronics, Ioffe Institute RAS, 26, Polytechnicheskaya str., 194021 St. Petersburg (Russian Federation)], E-mail: ititkov@mail.ioffe.ru; Pronin, Igor [Department of Solid State Electronics, Ioffe Institute RAS, 26, Polytechnicheskaya str., 194021 St. Petersburg (Russian Federation)], E-mail: petrovich@mail.ioffe.ru; Delimova, Lubov [Department of Solid State Electronics, Ioffe Institute RAS, 26, Polytechnicheskaya str., 194021 St. Petersburg (Russian Federation)], E-mail: ladel@mail.ioffe.ru; Liniichuk, Ivan [Department of Solid State Electronics, Ioffe Institute RAS, 26, Polytechnicheskaya str., 194021 St. Petersburg (Russian Federation)], E-mail: liniv@mail.ioffe.ru; Grekhov, Igor [Department of Solid State Electronics, Ioffe Institute RAS, 26, Polytechnicheskaya str., 194021 St. Petersburg (Russian Federation)], E-mail: grekhov@mail.ioffe.ru

    2007-10-15

    We studied a Pb{sub x}Zr{sub 1-x}TiO{sub 3}/SnO{sub 2}/Al{sub 2}O{sub 3} heterostructure as a base for transparent ferroelectric field-effect transistor. Single-crystal SnO{sub 2}/Al{sub 2}O{sub 3} epitaxial films with the electron mobility of 25 cm{sup 2}/V were grown by pulsed laser deposition using two YAG:Nd lasers. Depletion mode transistor Au/PZT/SnO{sub 2}/Al{sub 2}O{sub 3} was produced by laser ablation and RF sputtering. All the samples demonstrate clockwise hysteresis of the source-drain characteristic. The energy distribution of traps at the PZT/SnO{sub 2} interface was determined using a modified version of a transient current method. The effect of PZT intergrain boundaries on the retention time was taken into account for experimental data discussion.

  13. Graphene-graphite oxide field-effect transistors.

    Science.gov (United States)

    Standley, Brian; Mendez, Anthony; Schmidgall, Emma; Bockrath, Marc

    2012-03-14

    Graphene's high mobility and two-dimensional nature make it an attractive material for field-effect transistors. Previous efforts in this area have used bulk gate dielectric materials such as SiO(2) or HfO(2). In contrast, we have studied the use of an ultrathin layered material, graphene's insulating analogue, graphite oxide. We have fabricated transistors comprising single or bilayer graphene channels, graphite oxide gate insulators, and metal top-gates. The graphite oxide layers show relatively minimal leakage at room temperature. The breakdown electric field of graphite oxide was found to be comparable to SiO(2), typically ~1-3 × 10(8) V/m, while its dielectric constant is slightly higher, κ ≈ 4.3. © 2012 American Chemical Society

  14. Practical guide to organic field effect transistor circuit design

    CERN Document Server

    Sou, Antony

    2016-01-01

    The field of organic electronics spans a very wide range of disciplines from physics and chemistry to hardware and software engineering. This makes the field of organic circuit design a daunting prospect full of intimidating complexities, yet to be exploited to its true potential. Small focussed research groups also find it difficult to move beyond their usual boundaries and create systems-on-foil that are comparable with the established silicon world.This book has been written to address these issues, intended for two main audiences; firstly, physics or materials researchers who have thus far designed circuits using only basic drawing software; and secondly, experienced silicon CMOS VLSI design engineers who are already knowledgeable in the design of full custom transistor level circuits but are not familiar with organic devices or thin film transistor (TFT) devices.In guiding the reader through the disparate and broad subject matters, a concise text has been written covering the physics and chemistry of the...

  15. Thin film transistors for flexible electronics: Contacts, dielectrics and semiconductors

    KAUST Repository

    Quevedo-López, Manuel Angel Quevedo

    2011-06-01

    The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed. Copyright © 2011 American Scientific Publishers.

  16. Organic thin-film transistors on plastic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Chul [Electronics and Telecommunications Research Institute, Gajeong-dong, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Seong Hyun [Electronics and Telecommunications Research Institute, Gajeong-dong, Yuseong-gu, Daejeon 305-350 (Korea, Republic of)]. E-mail: kimsh@etri.re.kr; Lee, Jung Hun [Electronics and Telecommunications Research Institute, Gajeong-dong, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Information Display Department, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Yu, Han Young [Electronics and Telecommunications Research Institute, Gajeong-dong, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Park, Yongsub [Surface Analysis Group and National Research Laboratory for Surface Analysis, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of); Kim, Dojin [Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Zyung, Taehyoung [Electronics and Telecommunications Research Institute, Gajeong-dong, Yuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2005-08-15

    In this paper, organic thin-film transistors (OTFTs) were fabricated on polyethersulfone (PES) and silicon (Si) substrates with top-contact geometry. Several kinds of metals with different work functions were used for source and drain electrodes, and optimum fabrication conditions were found. Photo cross-linkable polymeric gate dielectrics and thermal silicone oxide (SiO{sub 2}) were used for the plastic and Si OTFTs, respectively. From the electrical measurements, typical I-V characteristics of the thin-film transistor (TFT) were observed. The field-effect mobility, {mu}, was obtained to be 2.59 cm{sup 2}/(V s) from the flexible OTFT with polymeric gate dielectrics. Moreover, a possible critical work function of 4.3 eV for the electrode of pentacene OTFT with top-contact geometry.

  17. Field-effect transistor memories based on ferroelectric polymers

    Science.gov (United States)

    Zhang, Yujia; Wang, Haiyang; Zhang, Lei; Chen, Xiaomeng; Guo, Yu; Sun, Huabin; Li, Yun

    2017-11-01

    Field-effect transistors based on ferroelectrics have attracted intensive interests, because of their non-volatile data retention, rewritability, and non-destructive read-out. In particular, polymeric materials that possess ferroelectric properties are promising for the fabrications of memory devices with high performance, low cost, and large-area manufacturing, by virtue of their good solubility, low-temperature processability, and good chemical stability. In this review, we discuss the material characteristics of ferroelectric polymers, providing an update on the current development of ferroelectric field-effect transistors (Fe-FETs) in non-volatile memory applications. Program supported partially by the NSFC (Nos. 61574074, 61774080), NSFJS (No. BK20170075), and the Open Partnership Joint Projects of NSFC–JSPS Bilateral Joint Research Projects (No. 61511140098).

  18. High current gain silicon-based spin transistor

    CERN Document Server

    Dennis, C L; Ensell, G J; Gregg, J F; Thompson, S M

    2003-01-01

    A silicon-based spin transistor of novel operating principle has been demonstrated in which the current gain at room temperature is 1.4 (n-type) and 0.97 (p-type). This high current gain was obtained from a hybrid metal/semiconductor analogue to the bipolar junction transistor which functions by tunnel-injecting carriers from a ferromagnetic emitter into a diffusion driven silicon base and then tunnel-collecting them via a ferromagnetic collector. The switching of the magnetic state of the collector ferromagnet controls the collector efficiency and the current gain. Furthermore, the magnetocurrent, which is determined to be 98% (140%) for p-type (n-type) in -110 Oe, is attributable to the spin-polarized base diffusion current.

  19. Wavy channel transistor for area efficient high performance operation

    KAUST Repository

    Fahad, Hossain M.

    2013-04-05

    We report a wavy channel FinFET like transistor where the channel is wavy to increase its width without any area penalty and thereby increasing its drive current. Through simulation and experiments, we show the effectiveness of such device architecture is capable of high performance operation compared to conventional FinFETs with comparatively higher area efficiency and lower chip latency as well as lower power consumption.

  20. Lactate Detection in Tumor Cell Cultures Using Organic Transistor Circuits.

    Science.gov (United States)

    Braendlein, Marcel; Pappa, Anna-Maria; Ferro, Marc; Lopresti, Alexia; Acquaviva, Claire; Mamessier, Emilie; Malliaras, George G; Owens, Róisín M

    2017-04-01

    A biosensing platform based on an organic transistor circuit for metabolite detection in highly complex biological media is introduced. The sensor circuit provides inherent background subtraction allowing for highly specific, sensitive lactate detection in tumor cell cultures. The proposed sensing platform paves the way toward rapid, label-free, and cost-effective clinically relevant in vitro diagnostic tools. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Graphene-based field-effect transistor biosensors

    Science.gov (United States)

    Chen; , Junhong; Mao, Shun; Lu, Ganhua

    2017-06-14

    The disclosure provides a field-effect transistor (FET)-based biosensor and uses thereof. In particular, to FET-based biosensors using thermally reduced graphene-based sheets as a conducting channel decorated with nanoparticle-biomolecule conjugates. The present disclosure also relates to FET-based biosensors using metal nitride/graphene hybrid sheets. The disclosure provides a method for detecting a target biomolecule in a sample using the FET-based biosensor described herein.

  2. InP Heterojunction Bipolar Transistor Amplifiers to 255 GHz

    Science.gov (United States)

    Radisic, Vesna; Sawdai, Donald; Scott, Dennis; Deal, William; Dang, Linh; Li, Danny; Cavus, Abdullah; To, Richard; Lai, Richard

    2009-01-01

    Two single-stage InP heterojunction bipolar transistor (HBT) amplifiers operate at 184 and 255 GHz, using Northrop Grumman Corporation s InP HBT MMIC (monolithic microwave integrated circuit) technology. At the time of this reporting, these are reported to be the highest HBT amplifiers ever created. The purpose of the amplifier design is to evaluate the technology capability for high-frequency designs and verify the model for future development work.

  3. Gain Dependence of the Noise in the Single Electron Transistor

    OpenAIRE

    Starmark, B.; Henning, Torsten; Korotkov, A. N.; Claeson, T.; Delsing, P.

    1998-01-01

    An extensive investigation of low frequency noise in single electron transistors as a function of gain is presented. Comparing the output noise with gain for a large number of bias points, it is found that the noise is dominated by external charge noise. For low gains we find an additional noise contribution which is compared to a model including resistance fluctuations. We conclude that this excess noise is not only due to resistance fluctuations. For one sample, we find a record low minimum...

  4. Transistor electronics use of semiconductor components in switching operations

    CERN Document Server

    Rumpf, Karl-Heinz

    2014-01-01

    Transistor Electronics: Use of Semiconductor Components in Switching Operations presents the semiconductor components as well as their elementary circuits. This book discusses the scope of application of electronic devices to increase productivity. Organized into eight chapters, this book begins with an overview of the general equation for the representation of integer positive numbers. This text then examines the properties and characteristics of basic electronic components, which relates to an understanding of the operation of semiconductors. Other chapters consider the electronic circuit ar

  5. Gas Sensors Based on Polymer Field-Effect Transistors

    OpenAIRE

    Aifeng Lv; Yong Pan; Lifeng Chi

    2017-01-01

    This review focuses on polymer field-effect transistor (PFET) based gas sensor with polymer as the sensing layer, which interacts with gas analyte and thus induces the change of source-drain current (?I SD). Dependent on the sensing layer which can be semiconducting polymer, dielectric layer or conducting polymer gate, the PFET sensors can be subdivided into three types. For each type of sensor, we present the molecular structure of sensing polymer, the gas analyte and the sensing performance...

  6. Accelerator reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  7. Human Reliability Program Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Landers, John; Rogers, Erin; Gerke, Gretchen

    2014-05-18

    A Human Reliability Program (HRP) is designed to protect national security as well as worker and public safety by continuously evaluating the reliability of those who have access to sensitive materials, facilities, and programs. Some elements of a site HRP include systematic (1) supervisory reviews, (2) medical and psychological assessments, (3) management evaluations, (4) personnel security reviews, and (4) training of HRP staff and critical positions. Over the years of implementing an HRP, the Department of Energy (DOE) has faced various challenges and overcome obstacles. During this 4-day activity, participants will examine programs that mitigate threats to nuclear security and the insider threat to include HRP, Nuclear Security Culture (NSC) Enhancement, and Employee Assistance Programs. The focus will be to develop an understanding of the need for a systematic HRP and to discuss challenges and best practices associated with mitigating the insider threat.

  8. Laser System Reliability

    Science.gov (United States)

    1977-03-01

    RELIABILITY INTERACTION WITH MANAGEMENT This section describes how reliability, in a general sense, plays Into the overall development of an optimally...8217— "l ’ ^’^Tt^jli^^ D. DEFINITIONS The hierarchy of levels of the physical system breakdown plays an . important role in the total under s t andi...plp2p3p4p5I6 (J). + plp2p3p«ii5W6 * plp2p3W6 * plp2£3V5W6 * hVlVA * ilW2W3V5W6 ; (J) whore , «gain, the (J) symbol Implies that the

  9. Reliability and construction control

    Directory of Open Access Journals (Sweden)

    Sherif S. AbdelSalam

    2016-06-01

    Full Text Available The goal of this study was to determine the most reliable and efficient combination of design and construction methods required for vibro piles. For a wide range of static and dynamic formulas, the reliability-based resistance factors were calculated using EGYPT database, which houses load test results for 318 piles. The analysis was extended to introduce a construction control factor that determines the variation between the pile nominal capacities calculated using static versus dynamic formulae. From the major outcomes, the lowest coefficient of variation is associated with Davisson’s criterion, and the resistance factors calculated for the AASHTO method are relatively high compared with other methods. Additionally, the CPT-Nottingham and Schmertmann method provided the most economic design. Recommendations related to a pile construction control factor were also presented, and it was found that utilizing the factor can significantly reduce variations between calculated and actual capacities.

  10. Reliability of Circumplex Axes

    Directory of Open Access Journals (Sweden)

    Micha Strack

    2013-06-01

    Full Text Available We present a confirmatory factor analysis (CFA procedure for computing the reliability of circumplex axes. The tau-equivalent CFA variance decomposition model estimates five variance components: general factor, axes, scale-specificity, block-specificity, and item-specificity. Only the axes variance component is used for reliability estimation. We apply the model to six circumplex types and 13 instruments assessing interpersonal and motivational constructs—Interpersonal Adjective List (IAL, Interpersonal Adjective Scales (revised; IAS-R, Inventory of Interpersonal Problems (IIP, Impact Messages Inventory (IMI, Circumplex Scales of Interpersonal Values (CSIV, Support Action Scale Circumplex (SAS-C, Interaction Problems With Animals (IPI-A, Team Role Circle (TRC, Competing Values Leadership Instrument (CV-LI, Love Styles, Organizational Culture Assessment Instrument (OCAI, Customer Orientation Circle (COC, and System for Multi-Level Observation of Groups (behavioral adjectives; SYMLOG—in 17 German-speaking samples (29 subsamples, grouped by self-report, other report, and metaperception assessments. The general factor accounted for a proportion ranging from 1% to 48% of the item variance, the axes component for 2% to 30%; and scale specificity for 1% to 28%, respectively. Reliability estimates varied considerably from .13 to .92. An application of the Nunnally and Bernstein formula proposed by Markey, Markey, and Tinsley overestimated axes reliabilities in cases of large-scale specificities but otherwise works effectively. Contemporary circumplex evaluations such as Tracey’s RANDALL are sensitive to the ratio of the axes and scale-specificity components. In contrast, the proposed model isolates both components.

  11. Wind turbine reliability analysis

    OpenAIRE

    Pinar Pérez, Jesús María; García Márquez, Fausto Pedro; Tobias, Andrew Mark; Papaelias, Mayorkinos

    2013-01-01

    Against the background of steadily increasing wind power generation worldwide, wind turbine manufacturers are continuing to develop a range of configurations with different combinations of pitch control, rotor speeds, gearboxes, generators and converters. This paper categorizes the main designs, focusing on their reliability by bringing together and comparing data from a selection of major studies in the literature. These are not particularly consistent but plotting failure rates against hour...

  12. Self-Aligned, Vertical-Channel, Polymer Field-Effect Transistors

    National Research Council Canada - National Science Library

    Natalie Stutzmann; Richard H. Friend; Henning Sirringhaus

    2003-01-01

    The manufacture of high-performance, conjugated polymer transistor circuits on flexible plastic substrates requires patterning techniques that are capable of defining critical features with submicrometer resolution...

  13. Coulomb blockade in a Si channel gated by an Al single-electron transistor

    OpenAIRE

    Sun, L.; Brown, K. R.; Kane, B. E.

    2007-01-01

    We incorporate an Al-AlO_x-Al single-electron transistor as the gate of a narrow (~100 nm) metal-oxide-semiconductor field-effect transistor (MOSFET). Near the MOSFET channel conductance threshold, we observe oscillations in the conductance associated with Coulomb blockade in the channel, revealing the formation of a Si single-electron transistor. Abrupt steps present in sweeps of the Al transistor conductance versus gate voltage are correlated with single-electron charging events in the Si t...

  14. Transistor-based filter for inhibiting load noise from entering a power supply

    Science.gov (United States)

    Taubman, Matthew S

    2013-07-02

    A transistor-based filter for inhibiting load noise from entering a power supply is disclosed. The filter includes a first transistor having an emitter coupled to a power supply, a collector coupled to a load, and a base. The filter also includes a first capacitor coupled between the base of the first transistor and a ground terminal. The filter further includes an impedance coupled between the base and a node between the collector and the load, or a second transistor and second capacitor. The impedance can be a resistor or an inductor.

  15. Terahertz detection of magnetic field-driven topological phase transition in HgTe-based transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kadykov, A. M. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, Universite Montpellier, 34095 Montpellier (France); Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, Nizhny Novgorod 603950 (Russian Federation); Teppe, F., E-mail: frederic.teppe@univ-montp2.fr; Consejo, C.; Ruffenach, S.; Marcinkiewicz, M.; Desrat, W.; Dyakonova, N.; Knap, W. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, Universite Montpellier, 34095 Montpellier (France); Viti, L.; Vitiello, M. S. [NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Krishtopenko, S. S.; Morozov, S. V.; Gavrilenko, V. I. [Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, 23 Prospekt Gagarina, 603950 Nizhny Novgorod (Russian Federation); Mikhailov, N. N.; Dvoretsky, S. A. [Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent' eva 13, Novosibirsk 630090 (Russian Federation)

    2015-10-12

    We report on terahertz photoconductivity under magnetic field up to 16 T of field effect transistor based on HgTe quantum well (QW) with an inverted band structure. We observe pronounced cyclotron resonance and Shubnikov-de Haas-like oscillations, indicating a high mobility electron gas in the transistor channel. We discover that nonlinearity of the transistor channel allows for observation of characteristic features in photoconductivity at critical magnetic field corresponding to the phase transition between topological quantum spin Hall and trivial quantum Hall states in HgTe QW. Our results pave the way towards terahertz topological field effect transistors.

  16. Charge movement in a GaN-based hetero-structure field effect transistor structure with carbon doped buffer under applied substrate bias

    Energy Technology Data Exchange (ETDEWEB)

    Pooth, Alexander, E-mail: a.pooth@bristol.ac.uk [Center for Device Thermography and Reliability, H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); IQE (Europe) Ltd., Pascal Close, St. Mellons, Cardiff CF3 0LW (United Kingdom); Uren, Michael J.; Cäsar, Markus; Kuball, Martin [Center for Device Thermography and Reliability, H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Martin, Trevor [IQE (Europe) Ltd., Pascal Close, St. Mellons, Cardiff CF3 0LW (United Kingdom)

    2015-12-07

    Charge trapping and transport in the carbon doped GaN buffer of a GaN-based hetero-structure field effect transistor (HFET) has been investigated under both positive and negative substrate bias. Clear evidence of redistribution of charges in the carbon doped region by thermally generated holes is seen, with electron injection and capture observed during positive bias. Excellent agreement is found with simulations. It is shown that these effects are intrinsic to the carbon doped GaN and need to be controlled to provide reliable and efficient GaN-based power HFETs.

  17. Atypical transistor-based chaotic oscillators: Design, realization, and diversity

    Science.gov (United States)

    Minati, Ludovico; Frasca, Mattia; OświÈ©cimka, Paweł; Faes, Luca; DroŻdŻ, Stanisław

    2017-07-01

    In this paper, we show that novel autonomous chaotic oscillators based on one or two bipolar junction transistors and a limited number of passive components can be obtained via random search with suitable heuristics. Chaos is a pervasive occurrence in these circuits, particularly after manual adjustment of a variable resistor placed in series with the supply voltage source. Following this approach, 49 unique circuits generating chaotic signals when physically realized were designed, representing the largest collection of circuits of this kind to date. These circuits are atypical as they do not trivially map onto known topologies or variations thereof. They feature diverse spectra and predominantly anti-persistent monofractal dynamics. Notably, we recurrently found a circuit comprising one resistor, one transistor, two inductors, and one capacitor, which generates a range of attractors depending on the parameter values. We also found a circuit yielding an irregular quantized spike-train resembling some aspects of neural discharge and another one generating a double-scroll attractor, which represent the smallest known transistor-based embodiments of these behaviors. Through three representative examples, we additionally show that diffusive coupling of heterogeneous oscillators of this kind may give rise to complex entrainment, such as lag synchronization with directed information transfer and generalized synchronization. The replicability and reproducibility of the experimental findings are good.

  18. Organic transistors with high thermal stability for medical applications.

    Science.gov (United States)

    Kuribara, Kazunori; Wang, He; Uchiyama, Naoya; Fukuda, Kenjiro; Yokota, Tomoyuki; Zschieschang, Ute; Jaye, Cherno; Fischer, Daniel; Klauk, Hagen; Yamamoto, Tatsuya; Takimiya, Kazuo; Ikeda, Masaaki; Kuwabara, Hirokazu; Sekitani, Tsuyoshi; Loo, Yueh-Lin; Someya, Takao

    2012-03-06

    The excellent mechanical flexibility of organic electronic devices is expected to open up a range of new application opportunities in electronics, such as flexible displays, robotic sensors, and biological and medical electronic applications. However, one of the major remaining issues for organic devices is their instability, especially their thermal instability, because low melting temperatures and large thermal expansion coefficients of organic materials cause thermal degradation. Here we demonstrate the fabrication of flexible thin-film transistors with excellent thermal stability and their viability for biomedical sterilization processes. The organic thin-film transistors comprise a high-mobility organic semiconductor, dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene, and thin gate dielectrics comprising a 2-nm-thick self-assembled monolayer and a 4-nm-thick aluminium oxide layer. The transistors exhibit a mobility of 1.2 cm(2) V(-1)s(-1) within a 2 V operation and are stable even after exposure to conditions typically used for medical sterilization.

  19. Nanogap Electrodes towards Solid State Single-Molecule Transistors.

    Science.gov (United States)

    Cui, Ajuan; Dong, Huanli; Hu, Wenping

    2015-12-01

    With the establishment of complementary metal-oxide-semiconductor (CMOS)-based integrated circuit technology, it has become more difficult to follow Moore's law to further downscale the size of electronic components. Devices based on various nanostructures were constructed to continue the trend in the minimization of electronics, and molecular devices are among the most promising candidates. Compared with other candidates, molecular devices show unique superiorities, and intensive studies on molecular devices have been carried out both experimentally and theoretically at the present time. Compared to two-terminal molecular devices, three-terminal devices, namely single-molecule transistors, show unique advantages both in fundamental research and application and are considered to be an essential part of integrated circuits based on molecular devices. However, it is very difficult to construct them using the traditional microfabrication techniques directly, thus new fabrication strategies are developed. This review aims to provide an exclusive way of manufacturing solid state gated nanogap electrodes, the foundation of constructing transistors of single or a few molecules. Such single-molecule transistors have the potential to be used to build integrated circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Tribotronic Transistor Array as an Active Tactile Sensing System.

    Science.gov (United States)

    Yang, Zhi Wei; Pang, Yaokun; Zhang, Limin; Lu, Cunxin; Chen, Jian; Zhou, Tao; Zhang, Chi; Wang, Zhong Lin

    2016-12-27

    Large-scale tactile sensor arrays are of great importance in flexible electronics, human-robot interaction, and medical monitoring. In this paper, a flexible 10 × 10 tribotronic transistor array (TTA) is developed as an active tactile sensing system by incorporating field-effect transistor units and triboelectric nanogenerators into a polyimide substrate. The drain-source current of each tribotronic transistor can be individually modulated by the corresponding external contact, which has induced a local electrostatic potential to act as the conventional gate voltage. By scaling down the pixel size from 5 × 5 to 0.5 × 0.5 mm 2 , the sensitivities of single pixels are systematically investigated. The pixels of the TTA show excellent durability, independence, and synchronicity, which are suitable for applications in real-time tactile sensing, motion monitoring, and spatial mapping. The integrated tribotronics provides an unconventional route to realize an active tactile sensing system, with prospective applications in wearable electronics, human-machine interfaces, fingerprint identification, and so on.

  1. Electrical/optical dual-function redox potential transistor

    Science.gov (United States)

    Li, Shunpu; Wang, Wensi; Xu, Ju; Chu, Daping; Shen, Z. John; Roy, Saibal

    2013-01-01

    We demonstrate a new type of transistors, the electrical/optical “dual-function redox-potential transistors”, which is solution processable and environmentally stable. This device consists of vertically staked electrodes that act as gate, emitter and collector. It can perform as a normal transistor, whilst one electrode which is sensitised by dye enables to generate photocurrent when illuminated. Solution processable oxide-nanoparticles were used to form various functional layers, which allow an electrolyte to penetrate through and, consequently, the current between emitter and collector can be controlled by the gate potential modulated distribution of ions. The result here shows that the device performs with high ON-current under low driving voltage (transistor performance can readily be controlled by photo-illumination. Such device with combined optical and electrical functionalities allows single device to perform the tasks that are usually done by a circuit/system with multiple optical and electrical components, and it is promising for various applications. PMID:24310311

  2. Conformal transistor arrays based on solution-processed organic crystals.

    Science.gov (United States)

    Zhao, Xiaoli; Zhang, Bing; Tang, Qingxin; Ding, Xueyan; Wang, Shuya; Zhou, Yuying; Tong, Yanhong; Liu, Yichun

    2017-11-13

    Conformal transistor array based on solution-processed organic crystals, which can provide sensory and scanning features for monitoring, biofeedback, and tracking of physiological function, presents one of the most promising technologies for future large-scale low-cost wearable and implantable electronics. However, it is still a huge challenge for the integration of solution-processed organic crystals into conformal FETs owing to a generally existing swelling phenomenon of the elastic materials and the lack of the corresponding device fabrication technology. Here, we present a promising route to fabricate a conformal field-effect transistor (FET) array based on solution-processed TIPS-pentacene single-crystal micro/nanowire array. By simply drop-casting the organic solution on an anti-solvent photolithography-compatible electrode with bottom-contact coplanar configuration, the transistor array can be formed and can conform onto uneven objects. Excellent electrical properties with device yield as high as 100%, field-effect mobility up to 0.79 cm 2 V -1 s -1 , low threshold voltage, and good device uniformity are demonstrated. The results open up the capability of solution-processed organic crystals for conformal electronics, suggesting their substantial promise for next-generation wearable and implantable electronics.

  3. Carbon nanotube transistors scaled to a 40-nanometer footprint

    Science.gov (United States)

    Cao, Qing; Tersoff, Jerry; Farmer, Damon B.; Zhu, Yu; Han, Shu-Jen

    2017-06-01

    The International Technology Roadmap for Semiconductors challenges the device research community to reduce the transistor footprint containing all components to 40 nanometers within the next decade. We report on a p-channel transistor scaled to such an extremely small dimension. Built on one semiconducting carbon nanotube, it occupies less than half the space of leading silicon technologies, while delivering a significantly higher pitch-normalized current density—above 0.9 milliampere per micrometer at a low supply voltage of 0.5 volts with a subthreshold swing of 85 millivolts per decade. Furthermore, we show transistors with the same small footprint built on actual high-density arrays of such nanotubes that deliver higher current than that of the best-competing silicon devices under the same overdrive, without any normalization. We achieve this using low-resistance end-bonded contacts, a high-purity semiconducting carbon nanotube source, and self-assembly to pack nanotubes into full surface-coverage aligned arrays.

  4. Oxide-based thin film transistors for flexible electronics

    Science.gov (United States)

    He, Yongli; Wang, Xiangyu; Gao, Ya; Hou, Yahui; Wan, Qing

    2018-01-01

    The continuous progress in thin film materials and devices has greatly promoted the development in the field of flexible electronics. As one of the most common thin film devices, thin film transistors (TFTs) are significant building blocks for flexible platforms. Flexible oxide-based TFTs are well compatible with flexible electronic systems due to low process temperature, high carrier mobility, and good uniformity. The present article is a review of the recent progress and major trends in the field of flexible oxide-based thin film transistors. First, an introduction of flexible electronics and flexible oxide-based thin film transistors is given. Next, we introduce oxide semiconductor materials and various flexible oxide-based TFTs classified by substrate materials including polymer plastics, paper sheets, metal foils, and flexible thin glass. Afterwards, applications of flexible oxide-based TFTs including bendable sensors, memories, circuits, and displays are presented. Finally, we give conclusions and a prospect for possible development trends. Project supported in part by the National Science Foundation for Distinguished Young Scholars of China (No. 61425020), in part by the National Natural Science Foundation of China (No. 11674162).

  5. Self-Aligned van der Waals Heterojunction Diodes and Transistors.

    Science.gov (United States)

    Sangwan, Vinod K; Beck, Megan E; Henning, Alex; Luo, Jiajia; Bergeron, Hadallia; Kang, Junmo; Balla, Itamar; Inbar, Hadass; Lauhon, Lincoln J; Hersam, Mark C

    2018-02-14

    A general self-aligned fabrication scheme is reported here for a diverse class of electronic devices based on van der Waals materials and heterojunctions. In particular, self-alignment enables the fabrication of source-gated transistors in monolayer MoS 2 with near-ideal current saturation characteristics and channel lengths down to 135 nm. Furthermore, self-alignment of van der Waals p-n heterojunction diodes achieves complete electrostatic control of both the p-type and n-type constituent semiconductors in a dual-gated geometry, resulting in gate-tunable mean and variance of antiambipolar Gaussian characteristics. Through finite-element device simulations, the operating principles of source-gated transistors and dual-gated antiambipolar devices are elucidated, thus providing design rules for additional devices that employ self-aligned geometries. For example, the versatility of this scheme is demonstrated via contact-doped MoS 2 homojunction diodes and mixed-dimensional heterojunctions based on organic semiconductors. The scalability of this approach is also shown by fabricating self-aligned short-channel transistors with subdiffraction channel lengths in the range of 150-800 nm using photolithography on large-area MoS 2 films grown by chemical vapor deposition. Overall, this self-aligned fabrication method represents an important step toward the scalable integration of van der Waals heterojunction devices into more sophisticated circuits and systems.

  6. Capacitance-modulated transistor detects odorant binding protein chiral interactions

    Science.gov (United States)

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand-protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein-ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters.

  7. High-Efficiency Harmonically Terminated Diode and Transistor Rectifiers

    Energy Technology Data Exchange (ETDEWEB)

    Roberg, M; Reveyrand, T; Ramos, I; Falkenstein, EA; Popovic, Z

    2012-12-01

    This paper presents a theoretical analysis of harmonically terminated high-efficiency power rectifiers and experimental validation on a class-C single Schottky-diode rectifier and a class-F-1 GaN transistor rectifier. The theory is based on a Fourier analysis of current and voltage waveforms, which arise across the rectifying element when different harmonic terminations are presented at its terminals. An analogy to harmonically terminated power amplifier (PA) theory is discussed. From the analysis, one can obtain an optimal value for the dc load given the RF circuit design. An upper limit on rectifier efficiency is derived for each case as a function of the device on-resistance. Measured results from fundamental frequency source-pull measurement of a Schottky diode rectifier with short-circuit terminations at the second and third harmonics are presented. A maximal device rectification efficiency of 72.8% at 2.45 GHz matches the theoretical prediction. A 2.14-GHz GaN HEMT rectifier is designed based on a class-F-1 PA. The gate of the transistor is terminated in an optimal impedance for self-synchronous rectification. Measurements of conversion efficiency and output dc voltage for varying gate RF impedance, dc load, and gate bias are shown with varying input RF power at the drain. The rectifier demonstrates an efficiency of 85% for a 10-W input RF power at the transistor drain with a dc voltage of 30 V across a 98-Omega resistor.

  8. Polymer-electrolyte-gated nanowire synaptic transistors for neuromorphic applications

    Science.gov (United States)

    Zou, Can; Sun, Jia; Gou, Guangyang; Kong, Ling-An; Qian, Chuan; Dai, Guozhang; Yang, Junliang; Guo, Guang-hua

    2017-09-01

    Polymer-electrolytes are formed by dissolving a salt in polymer instead of water, the conducting mechanism involves the segmental motion-assisted diffusion of ion in the polymer matrix. Here, we report on the fabrication of tin oxide (SnO2) nanowire synaptic transistors using polymer-electrolyte gating. A thin layer of poly(ethylene oxide) and lithium perchlorate (PEO/LiClO4) was deposited on top of the devices, which was used to boost device performances. A voltage spike applied on the in-plane gate attracts ions toward the polymer-electrolyte/SnO2 nanowire interface and the ions are gradually returned after the pulse is removed, which can induce a dynamic excitatory postsynaptic current in the nanowire channel. The SnO2 synaptic transistors exhibit the behavior of short-term plasticity like the paired-pulse facilitation and self-adaptation, which is related to the electric double-effect regulation. In addition, the synaptic logic functions and the logical function transformation are also discussed. Such single SnO2 nanowire-based synaptic transistors are of great importance for future neuromorphic devices.

  9. A tight-binding study of single-atom transistors.

    Science.gov (United States)

    Ryu, Hoon; Lee, Sunhee; Fuechsle, Martin; Miwa, Jill A; Mahapatra, Suddhasatta; Hollenberg, Lloyd C L; Simmons, Michelle Y; Klimeck, Gerhard

    2015-01-21

    A detailed theoretical study of the electronic and transport properties of a single atom transistor, where a single phosphorus atom is embedded within a single crystal transistor architecture, is presented. Using a recently reported deterministic single-atom transistor as a reference, the electronic structure of the device is represented atomistically with a tight-binding model, and the channel modulation is simulated self-consistently with a Thomas-Fermi method. The multi-scale modeling approach used allows confirmation of the charging energy of the one-electron donor charge state and explains how the electrostatic environments of the device electrodes affects the donor confinement potential and hence extent in gate voltage of the two-electron charge state. Importantly, whilst devices are relatively insensitive to dopant ordering in the highly doped leads, a ∼1% variation of the charging energy is observed when a dopant is moved just one lattice spacing within the device. The multi-scale modeling method presented here lays a strong foundation for the understanding of single-atom device structures: essential for both classical and quantum information processing. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ferroelectric Field-Effect Transistor Differential Amplifier Circuit Analysis

    Science.gov (United States)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat D.

    2008-01-01

    There has been considerable research investigating the Ferroelectric Field-Effect Transistor (FeFET) in memory circuits. However, very little research has been performed in applying the FeFET to analog circuits. This paper investigates the use of FeFETs in a common analog circuit, the differential amplifier. The two input Metal-Oxide-Semiconductor (MOS) transistors in a general MOS differential amplifier circuit are replaced with FeFETs. Resistors are used in place of the other three MOS transistors. The FeFET model used in the analysis has been previously reported and was based on experimental device data. Because of the FeFET hysteresis, the FeFET differential amplifier has four different operating modes depending on whether the FeFETs are positively or negatively polarized. The FeFET differential amplifier operation in the different modes was analyzed by calculating the amplifier voltage transfer and gain characteristics shown in figures 2 through 5. Comparisons were made between the FeFET differential amplifier and the standard MOS differential amplifier. Possible applications and benefits of the FeFET differential amplifier are discussed.

  11. Infrared light gated MoS₂ field effect transistor.

    Science.gov (United States)

    Fang, Huajing; Lin, Ziyuan; Wang, Xinsheng; Tang, Chun-Yin; Chen, Yan; Zhang, Fan; Chai, Yang; Li, Qiang; Yan, Qingfeng; Chan, H L W; Dai, Ji-Yan

    2015-12-14

    Molybdenum disulfide (MoS₂) as a promising 2D material has attracted extensive attentions due to its unique physical, optical and electrical properties. In this work, we demonstrate an infrared (IR) light gated MoS₂ transistor through a device composed of MoS₂ monolayer and a ferroelectric single crystal Pb(Mg(1/3)Nb(2/3))O₃-PbTiO₃ (PMN-PT). With a monolayer MoS₂ onto the top surface of (111) PMN-PT crystal, the drain current of MoS₂ channel can be modulated with infrared illumination and this modulation process is reversible. Thus, the transistor can work as a new kind of IR photodetector with a high IR responsivity of 114%/Wcm⁻². The IR response of MoS₂ transistor is attributed to the polarization change of PMN-PT single crystal induced by the pyroelectric effect which results in a field effect. Our result promises the application of MoS₂ 2D material in infrared optoelectronic devices. Combining with the intrinsic photocurrent feature of MoS₂ in the visible range, the MoS₂ on ferroelectric single crystal may be sensitive to a broadband wavelength of light.

  12. Hysteresis free negative total gate capacitance in junctionless transistors

    Science.gov (United States)

    Gupta, Manish; Kranti, Abhinav

    2017-09-01

    In this work, we report on the hysteresis free impact ionization induced off-to-on transition while preserving sub-60 mV/decade Subthreshold swing (S-swing) using asymmetric mode operation in double gate silicon (Si) and germanium (Ge) junctionless (JL) transistor. It is shown that sub-60 mV/decade steep switching due to impact ionization implies a negative value of the total gate capacitance. The performance of asymmetric gate JL transistor is compared with symmetric gate operation of JL device, and the condition for hysteresis free current transition with a sub-60 mV/decade switching is analyzed through the product of current density (J) and electric field (E). It is shown that asymmetric gate operation limits the degree of impact ionization inherent in the semiconductor film to levels sufficient for negative total gate capacitance but lower than that required for the occurrence of hysteresis. The work highlights new viewpoints related to the suppression of hysteresis associated with steep switching JL transistors while maintaining S-swing within the range 6-15 mV/decade leading to the negative value of total gate capacitance.

  13. Organic transistors with high thermal stability for medical applications

    Science.gov (United States)

    Kuribara, Kazunori; Wang, He; Uchiyama, Naoya; Fukuda, Kenjiro; Yokota, Tomoyuki; Zschieschang, Ute; Jaye, Cherno; Fischer, Daniel; Klauk, Hagen; Yamamoto, Tatsuya; Takimiya, Kazuo; Ikeda, Masaaki; Kuwabara, Hirokazu; Sekitani, Tsuyoshi; Loo, Yueh-Lin; Someya, Takao

    2012-03-01

    The excellent mechanical flexibility of organic electronic devices is expected to open up a range of new application opportunities in electronics, such as flexible displays, robotic sensors, and biological and medical electronic applications. However, one of the major remaining issues for organic devices is their instability, especially their thermal instability, because low melting temperatures and large thermal expansion coefficients of organic materials cause thermal degradation. Here we demonstrate the fabrication of flexible thin-film transistors with excellent thermal stability and their viability for biomedical sterilization processes. The organic thin-film transistors comprise a high-mobility organic semiconductor, dinaphtho[2,3-b:2‧,3‧-f]thieno[3,2-b]thiophene, and thin gate dielectrics comprising a 2-nm-thick self-assembled monolayer and a 4-nm-thick aluminium oxide layer. The transistors exhibit a mobility of 1.2 cm2 V-1s-1 within a 2 V operation and are stable even after exposure to conditions typically used for medical sterilization.

  14. Compact modeling of CMOS transistors under variable uniaxial stress

    Science.gov (United States)

    Wacker, Nicoleta; Richter, Harald; Hassan, Mahadi-Ul; Rempp, Horst; Burghartz, Joachim N.

    2011-03-01

    This paper presents a novel implementation of variable uniaxial mechanical stress model to be used with DC circuit simulation, e.g. using BSIM3v3 transistor model. Based on transistor measurements under various uniaxial stress conditions two stress-dependent parameters are identified, namely the carriers mobility and to a lesser extend the carrier saturation velocity. The effect of the parasitic source/drain resistance on the piezoresistive coefficient determination is addressed in detail. Using the fundamental piezoresistive coefficients, the model has implemented a general relation to calculate the coefficients for arbitrary directions of current and stress in the (0 0 1) silicon (Si) plane. The extended transistor model allows for simulating the effect of uniaxial stress on any MOSFET geometry, under different operation conditions and for any combination of the drain current and stress orientations in the (0 0 1) silicon (Si) plane. The method proposed in this paper is validated by static and dynamic stress-dependent simulations and comparison with experimental data. The method is simulator-independent and can be adapted to other bulk CMOS technologies including SOI processes.

  15. An air gap moderates the performance of nanowire array transistors.

    Science.gov (United States)

    Yang, Tong; Mehta, Jeremy S; Mativetsky, Jeffrey M

    2017-03-24

    Solution-processed nanowires are promising for low-cost and flexible electronics. When depositing nanowires from solution, due to stacking of the nanowires, an air gap exists between the substrate and much of the active material. Here, using confocal Raman spectroscopy, we quantify the thickness of the air gap in transistors comprising organic semiconductor nanowires. The average air gap thickness is found to be unexpectedly large, being at least three times larger than the nanowire diameter, leading to a significant impact on transistor performance. The air gap acts as an additional dielectric layer that reduces the accumulation of charge carriers due to a gate voltage. Conventional determination of the charge carrier mobility ignores the presence of an air gap, resulting in an overestimate of charge carrier accumulation and an underestimate of charge carrier mobility. It is shown that the larger the air gap, the larger the mobility correction (which can be greater than an order of magnitude) and the larger the degradation in on-off current ratio. These results demonstrate the importance of minimizing the air gap and of taking the air gap into consideration when analyzing the electrical performance of transistors consisting of stacked nanowires. This finding is applicable to all types of stacked one-dimensional materials including organic and inorganic nanowires, and carbon nanotubes.

  16. Modeling and Simulation of - and Silicon Germanium-Base Bipolar Transistors Operating at a Wide Range of Temperatures.

    Science.gov (United States)

    Shaheed, M. Reaz

    1995-01-01

    Higher speed at lower cost and at low power consumption is a driving force for today's semiconductor technology. Despite a substantial effort toward achieving this goal via alternative technologies such as III-V compounds, silicon technology still dominates mainstream electronics. Progress in silicon technology will continue for some time with continual scaling of device geometry. However, there are foreseeable limits on achievable device performance, reliability and scaling for room temperature technologies. Thus, reduced temperature operation is commonly viewed as a means for continuing the progress towards higher performance. Although silicon CMOS will be the first candidate for low temperature applications, bipolar devices will be used in a hybrid fashion, as line drivers or in limited critical path elements. Silicon -germanium-base bipolar transistors look especially attractive for low-temperature bipolar applications. At low temperatures, various new physical phenomena become important in determining device behavior. Carrier freeze-out effects which are negligible at room temperature, become of crucial importance for analyzing the low temperature device characteristics. The conventional Pearson-Bardeen model of activation energy, used for calculation of carrier freeze-out, is based on an incomplete picture of the physics that takes place and hence, leads to inaccurate results at low temperatures. Plasma -induced bandgap narrowing becomes more pronounced in device characteristics at low temperatures. Even with modern numerical simulators, this effect is not well modeled or simulated. In this dissertation, improved models for such physical phenomena are presented. For accurate simulation of carrier freeze-out, the Pearson-Bardeen model has been extended to include the temperature dependence of the activation energy. The extraction of the model is based on the rigorous, first-principle theoretical calculations available in the literature. The new model is shown

  17. Characterization and analysis of sub-micron surface roughness of injection moulded microfluidic systems using White Light Interferometry

    DEFF Research Database (Denmark)

    Tosello, Guido; Marinello, Francesco; Hansen, Hans Nørgaard

    2009-01-01

    Surface topography is of great importance in polymer micro fluidics, therefore the replication capability of the process and the surface quality of the tool has to be suitably optimized. In this paper, optical profilometry (white light interferometry, WLI) is implemented for topographical...

  18. Characterization and analysis of micro channels and sub-micron surface roughness of injection moulded microfluidic systems using optical metrology

    DEFF Research Database (Denmark)

    Tosello, Guido; Marinello, Francesco; Hansen, Hans Nørgaard

    2012-01-01

    Precision injection moulding of miniaturized products with micro features such as channels for microfluidic applications poses the greatest challenges in terms of tooling technology and process optimization. The injection moulding process window of polypropylene was validated using a metrological...... approach for the production of a microfluidic substrate. Dimensional accuracy of micro channels 48 µm wide and 110 µm deep, as well as quality surface topography replication (surface roughness from 30 nm to 360 nm) were investigated using non-contact measuring instruments such as an optical coordinate...... measuring machine and a white light interferometer respectively. The effect of the dimensional scale range on the micro/nano features replication was evaluated and it was found to be the dominant parameter if compared with the effect of the other process-related parameters investigated (melt and mould...

  19. Characterization and analysis of micro channels and sub-micron surface roughness of injection moulded microfluidic systems using optical metrology

    DEFF Research Database (Denmark)

    Tosello, Guido; Marinello, Francesco; Hansen, Hans Nørgaard

    2009-01-01

    Precision injection moulding of miniaturized products with micro features such as channels for microfluidic applications poses the greatest challenges in terms of tooling technology and process optimization. The injection moulding process window of polypropylene was validated using a metrological...... approach for the production of a microfluidic substrate. Dimensional accuracy of micro channels 48 µm wide and 110 µm deep, as well as quality surface topography replication (surface roughness from 30 nm to 360 nm) were investigated using non-contact measuring instruments such as an optical coordinate...... measuring machine and a white light interferometer respectively. The effect of the dimensional scale range on the micro/nano features replication was evaluated and it was found to be the dominant parameter if compared with the effect of the other process-related parameters investigated (melt and mould...

  20. Characterization of the critical current and physical properties of superconducting epitaxial NbTiN sub-micron structures

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, A., E-mail: aklimov@ite.waw.pl [Institute of Electron Technology, Al. Lotników 32/46, 02-668 Warsaw (Poland); Słysz, W.; Guziewicz, M. [Institute of Electron Technology, Al. Lotników 32/46, 02-668 Warsaw (Poland); Kolkovsky, V.; Zaytseva, I.; Malinowski, A. [Institute of Physics Polish Academy of Science, Al. Lotników 32/46, 02-668 Warsaw (Poland)

    2017-05-15

    Highlights: • This manuscript presents investigation of the critical current dependence of Nb(Ti)N nanostructured superconducting single photon detectors (SNSPD) in function of temperature and applied magnetic field. • Presented results are complimentary and compared with the same data received for submicron-wide single bridge Nb(Ti)N structures. • Our data demonstrate significant influence of local constrictions on physical properties of our SNSPD detectors. - Abstract: Measurements of critical current in NbTiN as a function of applied magnetic field and temperature are reported for two samples: 700-nm-wide bridge and 100-nm-wide meander. In 700-nm-wide NbTiN bridge we pinpointed the limiting factors for the critical current density to be current-driven vortex de-pinning at low temperatures and thermally activated flux flow closer to the transition temperature. In 100-nm-wide NbTiN meander we found phase slips activation, accompanied by hotspots formation at all measured temperatures. These two types of structures demonstrate different dependence of the critical current on the applied magnetic field. Although our NbTiN meander structures has high de-pairing critical current densities ∼10{sup 7} A/cm{sup 2} at low temperatures, the real critical currents are smaller due to the presence of the local constrictions.