Samtaney, Ravi
2012-01-01
We present a numerical method based on an Eulerian approach to solve the Vlasov-Poisson system for 4D drift kinetic turbulence. Our numerical approach uses a conservative formulation with high-order (fourth and higher) evaluation of the numerical fluxes coupled with a fourth-order accurate Poisson solver. The fluxes are computed using a low-dissipation high-order upwind differencing method or a tuned high-resolution finite difference method with no numerical dissipation. Numerical results are presented for the case of imposed ion temperature and density gradients. Different forms of controlled regularization to achieve a well-posed system are used to obtain convergent resolved simulations. The regularization of the equations is achieved by means of a simple collisional model, by inclusion of an ad-hoc hyperviscosity or artificial viscosity term or by implicit dissipation in upwind schemes. Comparisons between the various methods and regularizations are presented. We apply a filtering formalism to the Vlasov equation and derive sub-grid-scale (SGS) terms analogous to the Reynolds stress terms in hydrodynamic turbulence. We present a priori quantifications of these SGS terms in resolved simulations of drift-kinetic turbulence by applying a sharp filter. © 2012 IOP Publishing Ltd.
International Nuclear Information System (INIS)
Samtaney, Ravi
2012-01-01
We present a numerical method based on an Eulerian approach to solve the Vlasov-Poisson system for 4D drift kinetic turbulence. Our numerical approach uses a conservative formulation with high-order (fourth and higher) evaluation of the numerical fluxes coupled with a fourth-order accurate Poisson solver. The fluxes are computed using a low-dissipation high-order upwind differencing method or a tuned high-resolution finite difference method with no numerical dissipation. Numerical results are presented for the case of imposed ion temperature and density gradients. Different forms of controlled regularization to achieve a well-posed system are used to obtain convergent resolved simulations. The regularization of the equations is achieved by means of a simple collisional model, by inclusion of an ad-hoc hyperviscosity or artificial viscosity term or by implicit dissipation in upwind schemes. Comparisons between the various methods and regularizations are presented. We apply a filtering formalism to the Vlasov equation and derive sub-grid-scale (SGS) terms analogous to the Reynolds stress terms in hydrodynamic turbulence. We present a priori quantifications of these SGS terms in resolved simulations of drift-kinetic turbulence by applying a sharp filter.
Simulations of mixing in Inertial Confinement Fusion with front tracking and sub-grid scale models
Rana, Verinder; Lim, Hyunkyung; Melvin, Jeremy; Cheng, Baolian; Glimm, James; Sharp, David
2015-11-01
We present two related results. The first discusses the Richtmyer-Meshkov (RMI) and Rayleigh-Taylor instabilities (RTI) and their evolution in Inertial Confinement Fusion simulations. We show the evolution of the RMI to the late time RTI under transport effects and tracking. The role of the sub-grid scales helps capture the interaction of turbulence with diffusive processes. The second assesses the effects of concentration on the physics model and examines the mixing properties in the low Reynolds number hot spot. We discuss the effect of concentration on the Schmidt number. The simulation results are produced using the University of Chicago code FLASH and Stony Brook University's front tracking algorithm.
International Nuclear Information System (INIS)
Vold, Erik L.; Scannapieco, Tony J.
2007-01-01
A sub-grid mix model based on a volume-of-fluids (VOF) representation is described for computational simulations of the transient mixing between reactive fluids, in which the atomically mixed components enter into the reactivity. The multi-fluid model allows each fluid species to have independent values for density, energy, pressure and temperature, as well as independent velocities and volume fractions. Fluid volume fractions are further divided into mix components to represent their 'mixedness' for more accurate prediction of reactivity. Time dependent conversion from unmixed volume fractions (denoted cf) to atomically mixed (af) fluids by diffusive processes is represented in resolved scale simulations with the volume fractions (cf, af mix). In unresolved scale simulations, the transition to atomically mixed materials begins with a conversion from unmixed material to a sub-grid volume fraction (pf). This fraction represents the unresolved small scales in the fluids, heterogeneously mixed by turbulent or multi-phase mixing processes, and this fraction then proceeds in a second step to the atomically mixed fraction by diffusion (cf, pf, af mix). Species velocities are evaluated with a species drift flux, ρ i u di = ρ i (u i -u), used to describe the fluid mixing sources in several closure options. A simple example of mixing fluids during 'interfacial deceleration mixing with a small amount of diffusion illustrates the generation of atomically mixed fluids in two cases, for resolved scale simulations and for unresolved scale simulations. Application to reactive mixing, including Inertial Confinement Fusion (ICF), is planned for future work.
Implement a Sub-grid Turbulent Orographic Form Drag in WRF and its application to Tibetan Plateau
Zhou, X.; Yang, K.; Wang, Y.; Huang, B.
2017-12-01
Sub-grid-scale orographic variation exerts turbulent form drag on atmospheric flows. The Weather Research and Forecasting model (WRF) includes a turbulent orographic form drag (TOFD) scheme that adds the stress to the surface layer. In this study, another TOFD scheme has been incorporated in WRF3.7, which exerts an exponentially decaying drag on each model layer. To investigate the effect of the new scheme, WRF with the old and new one was used to simulate the climate over the complex terrain of the Tibetan Plateau. The two schemes were evaluated in terms of the direct impact (on wind) and the indirect impact (on air temperature, surface pressure and precipitation). Both in winter and summer, the new TOFD scheme reduces the mean bias in the surface wind, and clearly reduces the root mean square error (RMSEs) in comparisons with the station measurements (Figure 1). Meanwhile, the 2-m air temperature and surface pressure is also improved (Figure 2) due to the more warm air northward transport across south boundary of TP in winter. The 2-m air temperature is hardly improved in summer but the precipitation improvement is more obvious, with reduced mean bias and RMSEs. This is due to the weakening of water vapor flux (at low-level flow with the new scheme) crossing the Himalayan Mountains from South Asia.
Di Sarli, Valeria; Di Benedetto, Almerinda; Russo, Gennaro
2010-08-15
In this work, an assessment of different sub-grid scale (sgs) combustion models proposed for large eddy simulation (LES) of steady turbulent premixed combustion (Colin et al., Phys. Fluids 12 (2000) 1843-1863; Flohr and Pitsch, Proc. CTR Summer Program, 2000, pp. 61-82; Kim and Menon, Combust. Sci. Technol. 160 (2000) 119-150; Charlette et al., Combust. Flame 131 (2002) 159-180; Pitsch and Duchamp de Lageneste, Proc. Combust. Inst. 29 (2002) 2001-2008) was performed to identify the model that best predicts unsteady flame propagation in gas explosions. Numerical results were compared to the experimental data by Patel et al. (Proc. Combust. Inst. 29 (2002) 1849-1854) for premixed deflagrating flame in a vented chamber in the presence of three sequential obstacles. It is found that all sgs combustion models are able to reproduce qualitatively the experiment in terms of step of flame acceleration and deceleration around each obstacle, and shape of the propagating flame. Without adjusting any constants and parameters, the sgs model by Charlette et al. also provides satisfactory quantitative predictions for flame speed and pressure peak. Conversely, the sgs combustion models other than Charlette et al. give correct predictions only after an ad hoc tuning of constants and parameters. Copyright 2010 Elsevier B.V. All rights reserved.
Sub-grid-scale effects on short-wave instability in magnetized hall-MHD plasma
International Nuclear Information System (INIS)
Miura, H.; Nakajima, N.
2010-11-01
Aiming to clarify effects of short-wave modes on nonlinear evolution/saturation of the ballooning instability in the Large Helical Device, fully three-dimensional simulations of the single-fluid MHD and the Hall MHD equations are carried out. A moderate parallel heat conductivity plays an important role both in the two kinds of simulations. In the single-fluid MHD simulations, the parallel heat conduction effectively suppresses short-wave ballooning modes but it turns out that the suppression is insufficient in comparison to an experimental result. In the Hall MHD simulations, the parallel heat conduction triggers a rapid growth of the parallel flow and enhance nonlinear couplings. A comparison between single-fluid and the Hall MHD simulations reveals that the Hall MHD model does not necessarily improve the saturated pressure profile, and that we may need a further extension of the model. We also find by a comparison between two Hall MHD simulations with different numerical resolutions that sub-grid-scales of the Hall term should be modeled to mimic an inverse energy transfer in the wave number space. (author)
Evaluation of sub grid scale and local wall models in Large-eddy simulations of separated flow
Sam Ali Al; Szasz Robert; Revstedt Johan
2015-01-01
The performance of the Sub Grid Scale models is studied by simulating a separated flow over a wavy channel. The first and second order statistical moments of the resolved velocities obtained by using Large-Eddy simulations at different mesh resolutions are compared with Direct Numerical Simulations data. The effectiveness of modeling the wall stresses by using local log-law is then tested on a relatively coarse grid. The results exhibit a good agreement between highly-resolved Large Eddy Simu...
Evaluation of sub grid scale and local wall models in Large-eddy simulations of separated flow
Directory of Open Access Journals (Sweden)
Sam Ali Al
2015-01-01
Full Text Available The performance of the Sub Grid Scale models is studied by simulating a separated flow over a wavy channel. The first and second order statistical moments of the resolved velocities obtained by using Large-Eddy simulations at different mesh resolutions are compared with Direct Numerical Simulations data. The effectiveness of modeling the wall stresses by using local log-law is then tested on a relatively coarse grid. The results exhibit a good agreement between highly-resolved Large Eddy Simulations and Direct Numerical Simulations data regardless the Sub Grid Scale models. However, the agreement is less satisfactory with relatively coarse grid without using any wall models and the differences between Sub Grid Scale models are distinguishable. Using local wall model retuned the basic flow topology and reduced significantly the differences between the coarse meshed Large-Eddy Simulations and Direct Numerical Simulations data. The results show that the ability of local wall model to predict the separation zone depends strongly on its implementation way.
Kumar, R.; Samaniego, L. E.; Livneh, B.
2013-12-01
Knowledge of soil hydraulic properties such as porosity and saturated hydraulic conductivity is required to accurately model the dynamics of near-surface hydrological processes (e.g. evapotranspiration and root-zone soil moisture dynamics) and provide reliable estimates of regional water and energy budgets. Soil hydraulic properties are commonly derived from pedo-transfer functions using soil textural information recorded during surveys, such as the fractions of sand and clay, bulk density, and organic matter content. Typically large scale land-surface models are parameterized using a relatively coarse soil map with little or no information on parametric sub-grid variability. In this study we analyze the impact of sub-grid soil variability on simulated hydrological fluxes over the Mississippi River Basin (≈3,240,000 km2) at multiple spatio-temporal resolutions. A set of numerical experiments were conducted with the distributed mesoscale hydrologic model (mHM) using two soil datasets: (a) the Digital General Soil Map of the United States or STATSGO2 (1:250 000) and (b) the recently collated Harmonized World Soil Database based on the FAO-UNESCO Soil Map of the World (1:5 000 000). mHM was parameterized with the multi-scale regionalization technique that derives distributed soil hydraulic properties via pedo-transfer functions and regional coefficients. Within the experimental framework, the 3-hourly model simulations were conducted at four spatial resolutions ranging from 0.125° to 1°, using meteorological datasets from the NLDAS-2 project for the time period 1980-2012. Preliminary results indicate that the model was able to capture observed streamflow behavior reasonably well with both soil datasets, in the major sub-basins (i.e. the Missouri, the Upper Mississippi, the Ohio, the Red, and the Arkansas). However, the spatio-temporal patterns of simulated water fluxes and states (e.g. soil moisture, evapotranspiration) from both simulations, showed marked
Decker, Jeremy D.; Hughes, J.D.
2013-01-01
Climate change and sea-level rise could cause substantial changes in urban runoff and flooding in low-lying coast landscapes. A major challenge for local government officials and decision makers is to translate the potential global effects of climate change into actionable and cost-effective adaptation and mitigation strategies at county and municipal scales. A MODFLOW process is used to represent sub-grid scale hydrology in urban settings to help address these issues. Coupled interception, surface water, depression, and unsaturated zone storage are represented. A two-dimensional diffusive wave approximation is used to represent overland flow. Three different options for representing infiltration and recharge are presented. Additional features include structure, barrier, and culvert flow between adjacent cells, specified stage boundaries, critical flow boundaries, source/sink surface-water terms, and the bi-directional runoff to MODFLOW Surface-Water Routing process. Some abilities of the Urban RunOff (URO) process are demonstrated with a synthetic problem using four land uses and varying cell coverages. Precipitation from a hypothetical storm was applied and cell by cell surface-water depth, groundwater level, infiltration rate, and groundwater recharge rate are shown. Results indicate the URO process has the ability to produce time-varying, water-content dependent infiltration and leakage, and successfully interacts with MODFLOW.
Directory of Open Access Journals (Sweden)
J. R. Melton
2014-02-01
Full Text Available Terrestrial ecosystem models commonly represent vegetation in terms of plant functional types (PFTs and use their vegetation attributes in calculations of the energy and water balance as well as to investigate the terrestrial carbon cycle. Sub-grid scale variability of PFTs in these models is represented using different approaches with the "composite" and "mosaic" approaches being the two end-members. The impact of these two approaches on the global carbon balance has been investigated with the Canadian Terrestrial Ecosystem Model (CTEM v 1.2 coupled to the Canadian Land Surface Scheme (CLASS v 3.6. In the composite (single-tile approach, the vegetation attributes of different PFTs present in a grid cell are aggregated and used in calculations to determine the resulting physical environmental conditions (soil moisture, soil temperature, etc. that are common to all PFTs. In the mosaic (multi-tile approach, energy and water balance calculations are performed separately for each PFT tile and each tile's physical land surface environmental conditions evolve independently. Pre-industrial equilibrium CLASS-CTEM simulations yield global totals of vegetation biomass, net primary productivity, and soil carbon that compare reasonably well with observation-based estimates and differ by less than 5% between the mosaic and composite configurations. However, on a regional scale the two approaches can differ by > 30%, especially in areas with high heterogeneity in land cover. Simulations over the historical period (1959–2005 show different responses to evolving climate and carbon dioxide concentrations from the two approaches. The cumulative global terrestrial carbon sink estimated over the 1959–2005 period (excluding land use change (LUC effects differs by around 5% between the two approaches (96.3 and 101.3 Pg, for the mosaic and composite approaches, respectively and compares well with the observation-based estimate of 82.2 ± 35 Pg C over the same
Matsui, H.; Buffett, B. A.
2017-12-01
The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.
Modeling lightning-NOx chemistry on a sub-grid scale in a global chemical transport model
Directory of Open Access Journals (Sweden)
A. Gressent
2016-05-01
Full Text Available For the first time, a plume-in-grid approach is implemented in a chemical transport model (CTM to parameterize the effects of the nonlinear reactions occurring within high concentrated NOx plumes from lightning NOx emissions (LNOx in the upper troposphere. It is characterized by a set of parameters including the plume lifetime, the effective reaction rate constant related to NOx–O3 chemical interactions, and the fractions of NOx conversion into HNO3 within the plume. Parameter estimates were made using the Dynamical Simple Model of Atmospheric Chemical Complexity (DSMACC box model, simple plume dispersion simulations, and the 3-D Meso-NH (non-hydrostatic mesoscale atmospheric model. In order to assess the impact of the LNOx plume approach on the NOx and O3 distributions on a large scale, simulations for the year 2006 were performed using the GEOS-Chem global model with a horizontal resolution of 2° × 2.5°. The implementation of the LNOx parameterization implies an NOx and O3 decrease on a large scale over the region characterized by a strong lightning activity (up to 25 and 8 %, respectively, over central Africa in July and a relative increase downwind of LNOx emissions (up to 18 and 2 % for NOx and O3, respectively, in July. The calculated variability in NOx and O3 mixing ratios around the mean value according to the known uncertainties in the parameter estimates is at a maximum over continental tropical regions with ΔNOx [−33.1, +29.7] ppt and ΔO3 [−1.56, +2.16] ppb, in January, and ΔNOx [−14.3, +21] ppt and ΔO3 [−1.18, +1.93] ppb, in July, mainly depending on the determination of the diffusion properties of the atmosphere and the initial NO mixing ratio injected by lightning. This approach allows us (i to reproduce a more realistic lightning NOx chemistry leading to better NOx and O3 distributions on the large scale and (ii to focus on other improvements to reduce remaining uncertainties from processes
Influence of Sub-grid-Scale Isentropic Transports on McRAS Evaluations using ARM-CART SCM Datasets
Sud, Y. C.; Walker, G. K.; Tao, W. K.
2004-01-01
In GCM-physics evaluations with the currently available ARM-CART SCM datasets, McRAS produced very similar character of near surface errors of simulated temperature and humidity containing typically warm and moist biases near the surface and cold and dry biases aloft. We argued it must have a common cause presumably rooted in the model physics. Lack of vertical adjustment of horizontal transport was thought to be a plausible source. Clearly, debarring such a freedom would force the incoming air to diffuse into the grid-cell which would naturally bias the surface air to become warm and moist while the upper air becomes cold and dry, a characteristic feature of McRAS biases. Since, the errors were significantly larger in the two winter cases that contain potentially more intense episodes of cold and warm advective transports, it further reaffirmed our argument and provided additional motivation to introduce the corrections. When the horizontal advective transports were suitably modified to allow rising and/or sinking following isentropic pathways of subgrid scale motions, the outcome was to cool and dry (or warm and moisten) the lower (or upper) levels. Ever, crude approximations invoking such a correction reduced the temperature and humidity biases considerably. The tests were performed on all the available ARM-CART SCM cases with consistent outcome. With the isentropic corrections implemented through two different numerical approximations, virtually similar benefits were derived further confirming the robustness of our inferences. These results suggest the need for insentropic advective transport adjustment in a GCM due to subgrid scale motions.
Turbulence Intensity Scaling: A Fugue
Basse, Nils T.
2018-01-01
We study streamwise turbulence intensity definitions using smooth- and rough-wall pipe flow measurements made in the Princeton Superpipe. Scaling of turbulence intensity with the bulk (and friction) Reynolds number is provided for the definitions. The turbulence intensity is proportional to the square root of the friction factor with the same proportionality constant for smooth- and rough-wall pipe flow. Turbulence intensity definitions providing the best description of the measurements are i...
International Nuclear Information System (INIS)
Laval, Jean Philippe
1999-01-01
We developed a turbulent model based on asymptotic development of the Navier-Stokes equations within the hypothesis of non-local interactions at small scales. This model provides expressions of the turbulent Reynolds sub-grid stresses via estimates of the sub-grid velocities rather than velocities correlations as is usually done. The model involves the coupling of two dynamical equations: one for the resolved scales of motions, which depends upon the Reynolds stresses generated by the sub-grid motions, and one for the sub-grid scales of motions, which can be used to compute the sub-grid Reynolds stresses. The non-locality of interaction at sub-grid scales allows to model their evolution with a linear inhomogeneous equation where the forcing occurs via the energy cascade from resolved to sub-grid scales. This model was solved using a decomposition of sub-grid scales on Gabor's modes and implemented numerically in 2D with periodic boundary conditions. A particles method (PIC) was used to compute the sub-grid scales. The results were compared with results of direct simulations for several typical flows. The model was also applied to plane parallel flows. An analytical study of the equations allows a description of mean velocity profiles in agreement with experimental results and theoretical results based on the symmetries of the Navier-Stokes equation. Possible applications and improvements of the model are discussed in the conclusion. (author) [fr
Outer scale of atmospheric turbulence
Lukin, Vladimir P.
2005-10-01
In the early 70's, the scientists in Italy (A.Consortini, M.Bertolotti, L.Ronchi), USA (R.Buser, Ochs, S.Clifford) and USSR (V.Pokasov, V.Lukin) almost simultaneously discovered the phenomenon of deviation from the power law and the effect of saturation for the structure phase function. During a period of 35 years we have performed successively the investigations of the effect of low-frequency spectral range of atmospheric turbulence on the optical characteristics. The influence of the turbulence models as well as a outer scale of turbulence on the characteristics of telescopes and systems of laser beam formations has been determined too.
Samtaney, Ravi
2012-01-01
of a simple collisional model, by inclusion of an ad-hoc hyperviscosity or artificial viscosity term or by implicit dissipation in upwind schemes. Comparisons between the various methods and regularizations are presented. We apply a filtering formalism
Scale separation closure and Alfven wave turbulence
International Nuclear Information System (INIS)
Chen, C.Y.; Mahajan, S.M.
1985-04-01
Based on the concept of scale separation between coherent response function and incoherent source for renormalized turbulence theories, a closure scheme is proposed. A model problem dealing with shear-Alfven wave turbulence is numerically solved; the solution explicitly shows expected turbulence features such as frequency shift from linear modes, band-broadening, and a power law dependence for the turbulence spectrum
Energy Technology Data Exchange (ETDEWEB)
Toutant, A
2006-12-15
The complex interactions between interfaces and turbulence strongly impact the flow properties. Unfortunately, Direct Numerical Simulations (DNS) have to entail a number of degrees of freedom proportional to the third power of the Reynolds number to correctly describe the flow behaviour. This extremely hard constraint makes it impossible to use DNS for industrial applications. Our strategy consists in using and improving DNS method in order to develop the Interfaces and Sub-grid Scales concept. ISS is a two-phase equivalent to the single-phase Large Eddy Simulation (LES) concept. The challenge of ISS is to integrate the two-way coupling phenomenon into sub-grid models. Applying a space filter, we have exhibited correlations or sub-grid terms that require closures. We have shown that, in two-phase flows, the presence of a discontinuity leads to specific sub-grid terms. Comparing the maximum of the norm of the sub-grid terms with the maximum of the norm of the advection tensor, we have found that sub-grid terms related to interfacial forces and viscous effect are negligible. Consequently, in the momentum balance, only the sub-grid terms related to inertia have to be closed. Thanks to a priori tests performed on several DNS data, we demonstrate that the scale similarity hypothesis, reinterpreted near discontinuity, provides sub-grid models that take into account the two-way coupling phenomenon. These models correspond to the first step of our work. Indeed, in this step, interfaces are smooth and, interactions between interfaces and turbulence occur in a transition zone where each physical variable varies sharply but continuously. The next challenge has been to determine the jump conditions across the sharp equivalent interface corresponding to the sub-grid models of the transition zone. We have used the matched asymptotic expansion method to obtain the jump conditions. The first tests on the velocity of the sharp equivalent interface are very promising (author)
Beyond scale separation in gyrokinetic turbulence
International Nuclear Information System (INIS)
Garbet, X.; Sarazin, Y.; Grandgirard, V.; Dif-Pradalier, G.; Darmet, G.; Ghendrih, Ph.; Angelino, P.; Bertrand, P.; Besse, N.; Gravier, E.; Morel, P.; Sonnendruecker, E.; Crouseilles, N.; Dischler, J.-M.; Latu, G.; Violard, E.; Brunetti, M.; Brunner, S.; Lapillonne, X.; Tran, T.-M.; Villard, L.; Boulet, M.
2007-01-01
This paper presents the results obtained with a set of gyrokinetic codes based on a semi-Lagrangian scheme. Several physics issues are addressed, namely, the comparison between fluid and kinetic descriptions, the intermittent behaviour of flux driven turbulence and the role of large scale flows in toroidal ITG turbulence. The question of the initialization of full-F simulations is also discussed
Composite asymptotic expansions and scaling wall turbulence.
Panton, Ronald L
2007-03-15
In this article, the assumptions and reasoning that yield composite asymptotic expansions for wall turbulence are discussed. Particular attention is paid to the scaling quantities that are used to render the variables non-dimensional and of order one. An asymptotic expansion is proposed for the streamwise Reynolds stress that accounts for the active and inactive turbulence by using different scalings. The idea is tested with the data from the channel flows and appears to have merit.
Speculation about near-wall turbulence scales
International Nuclear Information System (INIS)
Yurchenko, N F
2008-01-01
A strategy to control near-wall turbulence modifying scales of fluid motion is developed. The boundary-layer flow is shown to respond selectively to the scale of streamwise vortices initiated, e.g. with the spanwise regular temperature distribution over a model surface. It is used to generate sustainable streamwise vortices and thus to optimize integral flow characteristics.
Scaling, Intermittency and Decay of MHD Turbulence
International Nuclear Information System (INIS)
Lazarian, A.; Cho, Jungyeon
2005-01-01
We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. Fifth, the intermittency of magnetic field and velocity are different. Both depend on whether the measurements are done in a local system of reference oriented along the local magnetic field or in the global system of reference related to the mean magnetic field
Challenges of Representing Sub-Grid Physics in an Adaptive Mesh Refinement Atmospheric Model
O'Brien, T. A.; Johansen, H.; Johnson, J. N.; Rosa, D.; Benedict, J. J.; Keen, N. D.; Collins, W.; Goodfriend, E.
2015-12-01
Some of the greatest potential impacts from future climate change are tied to extreme atmospheric phenomena that are inherently multiscale, including tropical cyclones and atmospheric rivers. Extremes are challenging to simulate in conventional climate models due to existing models' coarse resolutions relative to the native length-scales of these phenomena. Studying the weather systems of interest requires an atmospheric model with sufficient local resolution, and sufficient performance for long-duration climate-change simulations. To this end, we have developed a new global climate code with adaptive spatial and temporal resolution. The dynamics are formulated using a block-structured conservative finite volume approach suitable for moist non-hydrostatic atmospheric dynamics. By using both space- and time-adaptive mesh refinement, the solver focuses computational resources only where greater accuracy is needed to resolve critical phenomena. We explore different methods for parameterizing sub-grid physics, such as microphysics, macrophysics, turbulence, and radiative transfer. In particular, we contrast the simplified physics representation of Reed and Jablonowski (2012) with the more complex physics representation used in the System for Atmospheric Modeling of Khairoutdinov and Randall (2003). We also explore the use of a novel macrophysics parameterization that is designed to be explicitly scale-aware.
The Phenomenology of Small-Scale Turbulence
Sreenivasan, K. R.; Antonia, R. A.
I have sometimes thought that what makes a man's work classic is often just this multiplicity [of interpretations], which invites and at the same time resists our craving for a clear understanding. Wright (1982, p. 34), on Wittgenstein's philosophy Small-scale turbulence has been an area of especially active research in the recent past, and several useful research directions have been pursued. Here, we selectively review this work. The emphasis is on scaling phenomenology and kinematics of small-scale structure. After providing a brief introduction to the classical notions of universality due to Kolmogorov and others, we survey the existing work on intermittency, refined similarity hypotheses, anomalous scaling exponents, derivative statistics, intermittency models, and the structure and kinematics of small-scale structure - the latter aspect coming largely from the direct numerical simulation of homogeneous turbulence in a periodic box.
Non-equilibrium turbulence scalings in turbulent planar jets
Cafiero, Gioacchino; Vassilicos, John Christos; Turbulence, Mixing; Flow Control Group Team
2017-11-01
A revised version of the Townsend George theory, as proposed by Dairay et al. 2015, is applied to the study of turbulent planar jets (Cafiero and Vassilicos 2017). Requiring the self-similarity of only few quantities along with the non-equilibrium dissipation scaling law (Vassilicos 2015), it implies new mean flow and jet width scalings. In particular, the ratio of characteristic cross-stream to centreline streamwise velocities decays as the -1/3 power of streamwise distance in the region where the non-equilibrium dissipation scaling holds. In the definition of Cɛ both in Dairay et al. 2015 and in Cafiero and Vassilicos 2017 the local Reynolds number is based on the local flow width rather than on the integral lengthscale. We verify that the ratio of the integral lengthscale to the flow width is constant, thus enabling the use of the integral flow width in place of the integral lengthscale for defining Cɛ. The importance of this result is twofold: firstly it further strengthens the scalings obtained in the works of Dairay et al. 2015 and Cafiero and Vassilicos 2017; secondly the flow width is immediately accessible by any mean flow measurement, whereas the estimation of the integral lengthscale often requires an additional hypothesis. ERC Advanced Grant 320560.
Multitude scaling laws in axisymmetric turbulent wake
Layek, G. C.; Sunita
2018-03-01
We establish theoretically multitude scaling laws of a self-similar (statistical) axisymmetric turbulent wake. At infinite Reynolds number limit, the flow evolves as general power law and a new exponential law of streamwise distance, consistent with the criterion of equilibrium similarity hypothesis. We found power law scalings for components of the homogeneous dissipation rate (ɛ) obeying the non-Richardson-Kolmogorov cascade as ɛu˜ku3 /2/(l R elm ) , ɛv˜kv3 /2/l , kv˜ku/R el2 m, 0 stress, l is the local length scale, and Rel is the Reynolds number. The Richardson-Kolmogorov cascade corresponds to m = 0. For m ≈ 1, the power law agrees with non-equilibrium scaling laws observed in recent experiments of the axisymmetric wake. On the contrary, the exponential scaling law follows the above dissipation law with different regions of existence for power index m = 3. At finite Reynolds number with kinematic viscosity ν, scalings obey the dissipation laws ɛu ˜ νku/l2 and ɛv ˜ νkv/l2 with kv˜ku/R eln. The value of n is preferably 0 and 2. Different possibilities of scaling laws and symmetry breaking process are discussed at length.
Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs.
Belochitski, A.; Krueger, S. K.; Moorthi, S.; Bogenschutz, P.; Cheng, A.
2017-12-01
A novel unified representation of sub-grid scale (SGS) turbulence, cloudiness, and shallow convection is being implemented into the NOAA NCEP Global Forecasting System (GFS) general circulation model. The approach, known as Simplified High Order Closure (SHOC), is based on predicting a joint PDF of SGS thermodynamic variables and vertical velocity, and using it to diagnose turbulent diffusion coefficients, SGS fluxes, condensation, and cloudiness. Unlike other similar methods, comparatively few new prognostic variables needs to be introduced, making the technique computationally efficient. In the base version of SHOC it is SGS turbulent kinetic energy (TKE), and in the developmental version — SGS TKE, and variances of total water and moist static energy (MSE). SHOC is now incorporated into a version of GFS that will become a part of the NOAA Next Generation Global Prediction System based around NOAA GFDL's FV3 dynamical core, NOAA Environmental Modeling System (NEMS) coupled modeling infrastructure software, and a set novel physical parameterizations. Turbulent diffusion coefficients computed by SHOC are now used in place of those produced by the boundary layer turbulence and shallow convection parameterizations. Large scale microphysics scheme is no longer used to calculate cloud fraction or the large-scale condensation/deposition. Instead, SHOC provides these quantities. Radiative transfer parameterization uses cloudiness computed by SHOC. An outstanding problem with implementation of SHOC in the NCEP global models is excessively large high level tropical cloudiness. Comparison of the moments of the SGS PDF diagnosed by SHOC to the moments calculated in a GigaLES simulation of tropical deep convection case (GATE), shows that SHOC diagnoses too narrow PDF distributions of total cloud water and MSE in the areas of deep convective detrainment. A subsequent sensitivity study of SHOC's diagnosed cloud fraction (CF) to higher order input moments of the SGS PDF
An Optimal Parametrization of Turbulent Scales
Thalabard, S.
2015-12-01
To numerically capture the large-scale dynamics of atmospheric flows, geophysicists need to rely on reasonable parametrizations of the energy transfers to and from the non-resolved small scale eddies, mediated through turbulence. The task is notoriously not trivial, and is typically solved by ingenious but ad-hoc elaborations on the concept of eddy viscosities. The difficulty is tied into the intrinsic Non-Gaussianity of turbulence, a feature that may explain why standard Quasi-Normal cumulant discard statistical closure strategies can fail dramatically, an example being the development of negative energy spectra in Millionshtchikov's 1941 Quasi-Normal (QN) theory. While Orszag's 1977 Eddy Damped Quasi Normal Markovian closure (EDQNM) provides an ingenious patch to the issue, the reason why the QN theory fails so badly is not so clear. Are closures necessarily either trivial or ad-hoc, when proxies for true ensemble averages are taken to be Gaussian ? The purpose of the talk is to answer negatively, using the lights of a new ``optimal closure framework'' recently exposed by [Turkington,2013]. For turbulence problems, the optimal closure allows a consistent use of a Gaussian Ansatz (and corresponding vanishing third cumulant) that also retains an intrinsic damping. The key to this apparent paradox lies in a clear distinction between the true ensemble averages and their proxies, most easily grasped provided one uses the Liouville equation as a starting point, rather than the cumulant hierarchy. Schematically said, closure is achieved by minimizing a lack-of-fit residual, which retains the intrinsic features of the true dynamics. The optimal closure is not restricted to the Gaussian modeling. Yet, for the sake of clarity, I will discuss the optimal closure on a problem where it can be entirely implemented, and compared to DNS : the relaxation of an arbitrarily far from equilibrium energy shell towards the Gibbs equilibrium for truncated Euler dynamics. Predictive
Directory of Open Access Journals (Sweden)
Liping Chen
2018-05-01
Full Text Available A sub-grid multiple relaxation time (MRT lattice Boltzmann model with curvilinear coordinates is applied to simulate an artificial meandering river. The method is based on the D2Q9 model and standard Smagorinsky sub-grid scale (SGS model is introduced to simulate meandering flows. The interpolation supplemented lattice Boltzmann method (ISLBM and the non-equilibrium extrapolation method are used for second-order accuracy and boundary conditions. The proposed model was validated by a meandering channel with a 180° bend and applied to a steady curved river with piers. Excellent agreement between the simulated results and previous computational and experimental data was found, showing that MRT-LBM (MRT lattice Boltzmann method coupled with a Smagorinsky sub-grid scale (SGS model in a curvilinear coordinates grid is capable of simulating practical meandering flows.
International Nuclear Information System (INIS)
Goetzbach, G.
1977-10-01
For the simulation of non stationary, three-dimensional, turbulent flow- and temperature-fields in channel flows with constant properties a method is presented which is based on a finite difference scheme of the complete conservation equations for mass, momentum and enthalpie. The fluxes of momentum and heat within the grid cells are described by sub-grid scale models. The sub-grid scale model for momentum introduced here is for the first time applicable to small Reynolds-numbers, rather coarse grids, and channels with space dependent roughness distributions. (orig.) [de
Macro-scale turbulence modelling for flows in porous media
International Nuclear Information System (INIS)
Pinson, F.
2006-03-01
- This work deals with the macroscopic modeling of turbulence in porous media. It concerns heat exchangers, nuclear reactors as well as urban flows, etc. The objective of this study is to describe in an homogenized way, by the mean of a spatial average operator, turbulent flows in a solid matrix. In addition to this first operator, the use of a statistical average operator permits to handle the pseudo-aleatory character of turbulence. The successive application of both operators allows us to derive the balance equations of the kind of flows under study. Two major issues are then highlighted, the modeling of dispersion induced by the solid matrix and the turbulence modeling at a macroscopic scale (Reynolds tensor and turbulent dispersion). To this aim, we lean on the local modeling of turbulence and more precisely on the k - ε RANS models. The methodology of dispersion study, derived thanks to the volume averaging theory, is extended to turbulent flows. Its application includes the simulation, at a microscopic scale, of turbulent flows within a representative elementary volume of the porous media. Applied to channel flows, this analysis shows that even within the turbulent regime, dispersion remains one of the dominating phenomena within the macro-scale modeling framework. A two-scale analysis of the flow allows us to understand the dominating role of the drag force in the kinetic energy transfers between scales. Transfers between the mean part and the turbulent part of the flow are formally derived. This description significantly improves our understanding of the issue of macroscopic modeling of turbulence and leads us to define the sub-filter production and the wake dissipation. A f - f - w >f model is derived. It is based on three balance equations for the turbulent kinetic energy, the viscous dissipation and the wake dissipation. Furthermore, a dynamical predictor for the friction coefficient is proposed. This model is then successfully applied to the study of
Sub-Grid Modeling of Electrokinetic Effects in Micro Flows
Chen, C. P.
2005-01-01
Advances in micro-fabrication processes have generated tremendous interests in miniaturizing chemical and biomedical analyses into integrated microsystems (Lab-on-Chip devices). To successfully design and operate the micro fluidics system, it is essential to understand the fundamental fluid flow phenomena when channel sizes are shrink to micron or even nano dimensions. One important phenomenon is the electro kinetic effect in micro/nano channels due to the existence of the electrical double layer (EDL) near a solid-liquid interface. Not only EDL is responsible for electro-osmosis pumping when an electric field parallel to the surface is imposed, EDL also causes extra flow resistance (the electro-viscous effect) and flow anomaly (such as early transition from laminar to turbulent flow) observed in pressure-driven microchannel flows. Modeling and simulation of electro-kinetic effects on micro flows poses significant numerical challenge due to the fact that the sizes of the double layer (10 nm up to microns) are very thin compared to channel width (can be up to 100 s of m). Since the typical thickness of the double layer is extremely small compared to the channel width, it would be computationally very costly to capture the velocity profile inside the double layer by placing sufficient number of grid cells in the layer to resolve the velocity changes, especially in complex, 3-d geometries. Existing approaches using "slip" wall velocity and augmented double layer are difficult to use when the flow geometry is complicated, e.g. flow in a T-junction, X-junction, etc. In order to overcome the difficulties arising from those two approaches, we have developed a sub-grid integration method to properly account for the physics of the double layer. The integration approach can be used on simple or complicated flow geometries. Resolution of the double layer is not needed in this approach, and the effects of the double layer can be accounted for at the same time. With this
Multi-time, multi-scale correlation functions in turbulence and in turbulent models
Biferale, L.; Boffetta, G.; Celani, A.; Toschi, F.
1999-01-01
A multifractal-like representation for multi-time, multi-scale velocity correlation in turbulence and dynamical turbulent models is proposed. The importance of subleading contributions to time correlations is highlighted. The fulfillment of the dynamical constraints due to the equations of motion is
Onset of meso-scale turbulence in active nematics
Doostmohammadi, A.; Shendruk, T.N.; Thijssen, K.; Yeomans, J.M.
2017-01-01
Meso-scale turbulence is an innate phenomenon, distinct from inertial turbulence, that spontaneously occurs at low Reynolds number in fluidized biological systems. This spatiotemporal disordered flow radically changes nutrient and molecular transport in living fluids and can strongly affect the
Anomalous scaling of a scalar field advected by turbulence
Energy Technology Data Exchange (ETDEWEB)
Kraichnan, R.H. [Robert H. Kraichnan, Inc., Santa Fe, NM (United States)
1995-12-31
Recent work leading to deduction of anomalous scaling exponents for the inertial range of an advected passive field from the equations of motion is reviewed. Implications for other turbulence problems are discussed.
On Electron-Scale Whistler Turbulence in the Solar Wind
Narita, Y.; Nakamura, R.; Baumjohann, W.; Glassmeier, K.-H.; Motschmann, U.; Giles, B.; Magnes, W.; Fischer, D.; Torbert, R. B.; Russell, C. T.
2016-01-01
For the first time, the dispersion relation for turbulence magnetic field fluctuations in the solar wind is determined directly on small scales of the order of the electron inertial length, using four-point magnetometer observations from the Magnetospheric Multiscale mission. The data are analyzed using the high-resolution adaptive wave telescope technique. Small-scale solar wind turbulence is primarily composed of highly obliquely propagating waves, with dispersion consistent with that of the whistler mode.
Electron acceleration by turbulent plasmoid reconnection
Zhou, X.; Büchner, J.; Widmer, F.; Muñoz, P. A.
2018-04-01
In space and astrophysical plasmas, like in planetary magnetospheres, as that of Mercury, energetic electrons are often found near current sheets, which hint at electron acceleration by magnetic reconnection. Unfortunately, electron acceleration by reconnection is not well understood yet, in particular, acceleration by turbulent plasmoid reconnection. We have investigated electron acceleration by turbulent plasmoid reconnection, described by MHD simulations, via test particle calculations. In order to avoid resolving all relevant turbulence scales down to the dissipation scales, a mean-field turbulence model is used to describe the turbulence of sub-grid scales and their effects via a turbulent electromotive force (EMF). The mean-field model describes the turbulent EMF as a function of the mean values of current density, vorticity, magnetic field as well as of the energy, cross-helicity, and residual helicity of the turbulence. We found that, mainly around X-points of turbulent reconnection, strongly enhanced localized EMFs most efficiently accelerated electrons and caused the formation of power-law spectra. Magnetic-field-aligned EMFs, caused by the turbulence, dominate the electron acceleration process. Scaling the acceleration processes to parameters of the Hermean magnetotail, electron energies up to 60 keV can be reached by turbulent plasmoid reconnection through the thermal plasma.
Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung
2012-11-01
In this work we clarify the role of Markstein diffusivity on turbulent flame speed and it's scaling, from analysis and experimental measurements on constant-pressure expanding flames propagating in near isotropic turbulence. For all C0-C4 hydrocarbon-air mixtures presented in this work and recently published C8 data from Leeds, the normalized turbulent flame speed data of individual mixtures approximately follows the recent theoretical and experimental ReT, f 0 . 5 scaling, where the average radius is the length scale and thermal diffusivity is the transport property. We observe that for a constant ReT, f 0 . 5 , the normalized turbulent flame speed decreases with increasing Mk. This could be explained by considering Markstein diffusivity as the large wavenumber, flame surface fluctuation dissipation mechanism. As originally suggested by the theory, replacing thermal diffusivity with Markstein diffusivity in the turbulence Reynolds number definition above, the present and Leeds dataset could be scaled by the new ReT, f 0 . 5 irrespective of the fuel considered, equivalence ratio, pressure and turbulence intensity for positive Mk flames. This work was supported by the Combustion Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0001198 and by the Air Force Office of Scientific Research.
Intermittency and scaling laws for wall bounded turbulence
Benzi, R.; Amati, G.; Casciola, C.M.; Toschi, F.; Piva, R.
1999-01-01
Well defined scaling laws clearly appear in wall bounded turbulence, very close to the wall, where a distinct violation of the refined Kolmogorov similarity hypothesis (RKSH) occurs together with the simultaneous persistence of scaling laws. A new form of RKSH for the wall region is here proposed in
A glimpse of fluid turbulence from the molecular scale
Komatsu, Teruhisa S.
2014-08-01
Large-scale molecular dynamics (MD) simulations of freely decaying turbulence in three-dimensional space are reported. Fluid components are defined from the microscopic states by eliminating thermal components from the coarse-grained fields. The energy spectrum of the fluid components is observed to scale reasonably well according to Kolmogorov scaling determined from the energy dissipation rate and the viscosity of the fluid, even though the Kolmogorov length is of the order of the molecular scale. © 2014 The Authors.
Turbulence Spreading into Linearly Stable Zone and Transport Scaling
International Nuclear Information System (INIS)
Hahm, T.S.; Diamond, P.H.; Lin, Z.; Itoh, K.; Itoh, S.-I.
2003-01-01
We study the simplest problem of turbulence spreading corresponding to the spatio-temporal propagation of a patch of turbulence from a region where it is locally excited to a region of weaker excitation, or even local damping. A single model equation for the local turbulence intensity I(x, t) includes the effects of local linear growth and damping, spatially local nonlinear coupling to dissipation and spatial scattering of turbulence energy induced by nonlinear coupling. In the absence of dissipation, the front propagation into the linearly stable zone occurs with the property of rapid progression at small t, followed by slower subdiffusive progression at late times. The turbulence radial spreading into the linearly stable zone reduces the turbulent intensity in the linearly unstable zone, and introduces an additional dependence on the rho* is always equal to rho i/a to the turbulent intensity and the transport scaling. These are in broad, semi-quantitative agreements with a number of global gyrokinetic simulation results with zonal flows and without zonal flows. The front propagation stops when the radial flux of fluctuation energy from the linearly unstable region is balanced by local dissipation in the linearly stable region
Spatial structure of ion-scale plasma turbulence
Directory of Open Access Journals (Sweden)
Yasuhito eNarita
2014-03-01
Full Text Available Spatial structure of small-scale plasma turbulence is studied under different conditions of plasma parameter beta directly in the three-dimensional wave vector domain. Two independent approaches are taken: observations of turbulent magnetic field fluctuations in the solar wind measured by four Cluster spacecraft, and direct numerical simulations of plasma turbulence using the hybrid code AIKEF, both resolving turbulence on the ion kinetic scales. The two methods provide independently evidence of wave vector anisotropy as a function of beta. Wave vector anisotropy is characterized primarily by an extension of the energy spectrum in the direction perpendicular to the large-scale magnetic field. The spectrum is strongly anisotropic at lower values of beta, and is more isotropic at higher values of beta. Cluster magnetic field data analysis also provides evidence of axial asymmetry of the spectrum in the directions around the large-scale field. Anisotropy is interpreted as filament formation as plasma evolves into turbulence. Axial asymmetry is interpreted as the effect of radial expansion of the solar wind from the corona.
The Multifractal Structure of Small-Scale Artificial Ionospheric Turbulence
Directory of Open Access Journals (Sweden)
Vybornov F. I.
2013-03-01
Full Text Available We present the results of investigation of a multifractal structure of the artificial ionospheric turbulence when the midlatitude ionosphere is affected by high-power radio waves. The experimental studies were performed on the basis of the SURA heating facility with the help of radio sounding of the disturbed region of ionospheric plasma by signals from the Earth’s orbital satellities. In the case of vertical radio sounding of the disturbed ionosphere region, the measured multipower and generalized multifractal spectra of turbulence coincide well with similar multifractal characteristics of the ionosperic turbulence under the natural conditions. In the case of oblique sounding of the disturbance region at small angles between the line of sight to the satellite and the direction of the Earth’s magnetic field, a nonuniform structure of the small-scale turbulence with a relatively narrow multipower spectrum and small variations in the generalized multifractal spectrum of the electron density was detected.
Generation of large-scale vortives in compressible helical turbulence
International Nuclear Information System (INIS)
Chkhetiani, O.G.; Gvaramadze, V.V.
1989-01-01
We consider generation of large-scale vortices in compressible self-gravitating turbulent medium. The closed equation describing evolution of the large-scale vortices in helical turbulence with finite correlation time is obtained. This equation has the form similar to the hydromagnetic dynamo equation, which allows us to call the vortx genertation effect the vortex dynamo. It is possible that principally the same mechanism is responsible both for amplification and maintenance of density waves and magnetic fields in gaseous disks of spiral galaxies. (author). 29 refs
Reynolds number scaling of straining motions in turbulence
Elsinga, Gerrit; Ishihara, T.; Goudar, M. V.; da Silva, C. B.; Hunt, J. C. R.
2017-11-01
Strain is an important fluid motion in turbulence as it is associated with the kinetic energy dissipation rate, vorticity stretching, and the dispersion of passive scalars. The present study investigates the scaling of the turbulent straining motions by evaluating the flow in the eigenframe of the local strain-rate tensor. The analysis is based on DNS of homogeneous isotropic turbulence covering a Reynolds number range Reλ = 34.6 - 1131. The resulting flow pattern reveals a shear layer containing tube-like vortices and a dissipation sheet, which both scale on the Kolmogorov length scale, η. The vorticity stretching motions scale on the Taylor length scale, while the flow outside the shear layer scales on the integral length scale. These scaling results are consistent with those in wall-bounded flow, which suggests a quantitative universality between the different flows. The overall coherence length of the vorticity is 120 η in all directions, which is considerably larger than the typical size of individual vortices, and reflects the importance of spatial organization at the small scales. Transitions in flow structure are identified at Reλ 45 and 250. Below these respective Reynolds numbers, the small-scale motions and the vorticity stretching motions appear underdeveloped.
Transition in multiple-scale-lengths turbulence in plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, S.-I.; Yagi, M.; Kawasaki, M.; Kitazawa, A. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics; Itoh, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)
2002-02-01
The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Statistical nonlinear interactions between semi-micro and micro modes are first kept in the analysis as the drag, noise and drive. The nonlinear dynamics determines both the fluctuation levels and the cross field turbulent transport for the fixed global parameters. A quenching or suppressing effect is induced by their nonlinear interplay, even if both modes are unstable when analyzed independently. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. The thermal fluctuation of the scale length of {lambda}{sub D} is assumed to be statistically independent. The hierarchical structure is constructed according to the scale lengths. Transitions in turbulence are found and phase diagrams with cusp type catastrophe are obtained. Dynamics is followed. Statistical properties of the subcritical excitation are discussed. The probability density function (PDF) and transition probability are obtained. Power-laws are obtained in the PDF as well as in the transition probability. Generalization for the case where turbulence is composed of three-classes of modes is also developed. A new catastrophe of turbulent sates is obtained. (author)
Transition in multiple-scale-lengths turbulence in plasmas
International Nuclear Information System (INIS)
Itoh, S.-I.; Yagi, M.; Kawasaki, M.; Kitazawa, A.
2002-02-01
The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Statistical nonlinear interactions between semi-micro and micro modes are first kept in the analysis as the drag, noise and drive. The nonlinear dynamics determines both the fluctuation levels and the cross field turbulent transport for the fixed global parameters. A quenching or suppressing effect is induced by their nonlinear interplay, even if both modes are unstable when analyzed independently. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. The thermal fluctuation of the scale length of λ D is assumed to be statistically independent. The hierarchical structure is constructed according to the scale lengths. Transitions in turbulence are found and phase diagrams with cusp type catastrophe are obtained. Dynamics is followed. Statistical properties of the subcritical excitation are discussed. The probability density function (PDF) and transition probability are obtained. Power-laws are obtained in the PDF as well as in the transition probability. Generalization for the case where turbulence is composed of three-classes of modes is also developed. A new catastrophe of turbulent sates is obtained. (author)
EXTENDED SCALING LAWS IN NUMERICAL SIMULATIONS OF MAGNETOHYDRODYNAMIC TURBULENCE
International Nuclear Information System (INIS)
Mason, Joanne; Cattaneo, Fausto; Perez, Jean Carlos; Boldyrev, Stanislav
2011-01-01
Magnetized turbulence is ubiquitous in astrophysical systems, where it notoriously spans a broad range of spatial scales. Phenomenological theories of MHD turbulence describe the self-similar dynamics of turbulent fluctuations in the inertial range of scales. Numerical simulations serve to guide and test these theories. However, the computational power that is currently available restricts the simulations to Reynolds numbers that are significantly smaller than those in astrophysical settings. In order to increase computational efficiency and, therefore, probe a larger range of scales, one often takes into account the fundamental anisotropy of field-guided MHD turbulence, with gradients being much slower in the field-parallel direction. The simulations are then optimized by employing the reduced MHD equations and relaxing the field-parallel numerical resolution. In this work we explore a different possibility. We propose that there exist certain quantities that are remarkably stable with respect to the Reynolds number. As an illustration, we study the alignment angle between the magnetic and velocity fluctuations in MHD turbulence, measured as the ratio of two specially constructed structure functions. We find that the scaling of this ratio can be extended surprisingly well into the regime of relatively low Reynolds number. However, the extended scaling easily becomes spoiled when the dissipation range in the simulations is underresolved. Thus, taking the numerical optimization methods too far can lead to spurious numerical effects and erroneous representation of the physics of MHD turbulence, which in turn can affect our ability to identify correctly the physical mechanisms that are operating in astrophysical systems.
Scales and scaling in turbulent ocean sciences; physics-biology coupling
Schmitt, Francois
2015-04-01
Geophysical fields possess huge fluctuations over many spatial and temporal scales. In the ocean, such property at smaller scales is closely linked to marine turbulence. The velocity field is varying from large scales to the Kolmogorov scale (mm) and scalar fields from large scales to the Batchelor scale, which is often much smaller. As a consequence, it is not always simple to determine at which scale a process should be considered. The scale question is hence fundamental in marine sciences, especially when dealing with physics-biology coupling. For example, marine dynamical models have typically a grid size of hundred meters or more, which is more than 105 times larger than the smallest turbulence scales (Kolmogorov scale). Such scale is fine for the dynamics of a whale (around 100 m) but for a fish larvae (1 cm) or a copepod (1 mm) a description at smaller scales is needed, due to the nonlinear nature of turbulence. The same is verified also for biogeochemical fields such as passive and actives tracers (oxygen, fluorescence, nutrients, pH, turbidity, temperature, salinity...) In this framework, we will discuss the scale problem in turbulence modeling in the ocean, and the relation of Kolmogorov's and Batchelor's scales of turbulence in the ocean, with the size of marine animals. We will also consider scaling laws for organism-particle Reynolds numbers (from whales to bacteria), and possible scaling laws for organism's accelerations.
Impact of large scale flows on turbulent transport
Energy Technology Data Exchange (ETDEWEB)
Sarazin, Y [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Grandgirard, V [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Dif-Pradalier, G [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Fleurence, E [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Garbet, X [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Ghendrih, Ph [Association Euratom-CEA, CEA/DSM/DRFC centre de Cadarache, 13108 St-Paul-Lez-Durance (France); Bertrand, P [LPMIA-Universite Henri Poincare Nancy I, Boulevard des Aiguillettes BP239, 54506 Vandoe uvre-les-Nancy (France); Besse, N [LPMIA-Universite Henri Poincare Nancy I, Boulevard des Aiguillettes BP239, 54506 Vandoe uvre-les-Nancy (France); Crouseilles, N [IRMA, UMR 7501 CNRS/Universite Louis Pasteur, 7 rue Rene Descartes, 67084 Strasbourg (France); Sonnendruecker, E [IRMA, UMR 7501 CNRS/Universite Louis Pasteur, 7 rue Rene Descartes, 67084 Strasbourg (France); Latu, G [LSIIT, UMR 7005 CNRS/Universite Louis Pasteur, Bd Sebastien Brant BP10413, 67412 Illkirch (France); Violard, E [LSIIT, UMR 7005 CNRS/Universite Louis Pasteur, Bd Sebastien Brant BP10413, 67412 Illkirch (France)
2006-12-15
The impact of large scale flows on turbulent transport in magnetized plasmas is explored by means of various kinetic models. Zonal flows are found to lead to a non-linear upshift of turbulent transport in a 3D kinetic model for interchange turbulence. Such a transition is absent from fluid simulations, performed with the same numerical tool, which also predict a much larger transport. The discrepancy cannot be explained by zonal flows only, despite they being overdamped in fluids. Indeed, some difference remains, although reduced, when they are artificially suppressed. Zonal flows are also reported to trigger transport barriers in a 4D drift-kinetic model for slab ion temperature gradient (ITG) turbulence. The density gradient acts as a source drive for zonal flows, while their curvature back stabilizes the turbulence. Finally, 5D simulations of toroidal ITG modes with the global and full-f GYSELA code require the equilibrium density function to depend on the motion invariants only. If not, the generated strong mean flows can completely quench turbulent transport.
Impact of large scale flows on turbulent transport
International Nuclear Information System (INIS)
Sarazin, Y; Grandgirard, V; Dif-Pradalier, G; Fleurence, E; Garbet, X; Ghendrih, Ph; Bertrand, P; Besse, N; Crouseilles, N; Sonnendruecker, E; Latu, G; Violard, E
2006-01-01
The impact of large scale flows on turbulent transport in magnetized plasmas is explored by means of various kinetic models. Zonal flows are found to lead to a non-linear upshift of turbulent transport in a 3D kinetic model for interchange turbulence. Such a transition is absent from fluid simulations, performed with the same numerical tool, which also predict a much larger transport. The discrepancy cannot be explained by zonal flows only, despite they being overdamped in fluids. Indeed, some difference remains, although reduced, when they are artificially suppressed. Zonal flows are also reported to trigger transport barriers in a 4D drift-kinetic model for slab ion temperature gradient (ITG) turbulence. The density gradient acts as a source drive for zonal flows, while their curvature back stabilizes the turbulence. Finally, 5D simulations of toroidal ITG modes with the global and full-f GYSELA code require the equilibrium density function to depend on the motion invariants only. If not, the generated strong mean flows can completely quench turbulent transport
Semi-local scaling and turbulence modulation in variable property turbulent channel flows
Patel, A.; Peeters, J.W.R.; Boersma, B.J.; Pecnik, R.
2015-01-01
We theoretically and numerically investigate the effect of temperature dependent density and viscosity on turbulence in channel flows. First, a mathematical framework is developed to support the validity of the semi-local scaling as proposed based on heuristic arguments by Huang, Coleman, and
Two-scale analysis of intermittency in fully developed turbulence
Energy Technology Data Exchange (ETDEWEB)
Badii, R; Talkner, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
A self-affinity test for turbulent time series is applied to experimental data for the estimation of intermittency exponents. The method employs exact relations satisfied by joint expectations of observables computed across two different length scales. One of these constitutes a verification tool for the existence and the extent of the inertial range. (author) 2 figs., 13 refs.
Breakdown of large-scale circulation in turbulent rotating convection
Kunnen, R.P.J.; Clercx, H.J.H.; Geurts, Bernardus J.
2008-01-01
Turbulent rotating convection in a cylinder is investigated both numerically and experimentally at Rayleigh number Ra = $10^9$ and Prandtl number $\\sigma$ = 6.4. In this Letter we discuss two topics: the breakdown under rotation of the domain-filling large-scale circulation (LSC) typical for
Turbulence modification by periodically modulated scale-depending forcing
Kuczaj, Arkadiusz K.; Geurts, Bernardus J.; Lohse, Detlef; van de Water, W.
2006-01-01
The response of turbulent flow to time-modulated forcing is studied by direct numerical simulation of the Navier-Stokes equations. The forcing is modulated via periodic energy input variations at a frequency $\\omega$. Such forcing of the large-scales is shown to yield a response maximum at
Turbulence modification by periodically modulated scale-dependent forcing
Kuczaj, A.K.; Geurts, B.J.; Lohse, D.; Water, van de W.
2006-01-01
The response of turbulent flow to time-modulated forcing is studied by direct numerical simulation of the Navier-Stokes equations. The forcing is modulated via periodic energy input variations at a frequency !. Such forcing of the large-scales is shown to yield a response maximum at frequencies in
Turbulence modification by periodically modulated scale-dependent forcing
Kuczaj, A.K.; Geurts, B.J.; Lohse, D.; Water, van de W.
2008-01-01
The response of turbulent flow to time-modulated forcing is studied by direct numerical simulation of the Navier–Stokes equations. The forcing is modulated via periodic energy-input variations at a frequency ¿. Harmonically modulated forcing of the large scales is shown to yield a response maximum
Turbulence modification by periodically modulated scale-dependent forcing
Kuczaj, Arkadiusz K.; Geurts, Bernardus J.; Lohse, Detlef; van de Water, W.
2008-01-01
The response of turbulent flow to time-modulated forcing is studied by direct numerical simulation of the Navier–Stokes equations. The forcing is modulated via periodic energy-input variations at a frequency x. Harmonically modulated forcing of the large scales is shown to yield a response maximum
Scale invariance from phase transitions to turbulence
Lesne, Annick
2012-01-01
During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos ...
Intermittency and scaling laws for wall bounded turbulence
Benzi, R.; Amati, G.; Casciola, C. M.; Toschi, F.; Piva, R.
1998-01-01
Well defined scaling laws clearly appear in wall bounded turbulence, even very close to the wall, where a distinct violation of the refined Kolmogorov similarity hypothesis (RKSH) occurs together with the simultaneous persistence of scaling laws. A new form of RKSH for the wall region is here proposed in terms of the structure functions of order two which, in physical terms, confirms the prevailing role of the momentum transfer towards the wall in the near wall dynamics.
Energy Technology Data Exchange (ETDEWEB)
Vervisch, Luc; Domingo, Pascale; Lodato, Guido [CORIA - CNRS and INSA de Rouen, Technopole du Madrillet, BP 8, 76801 Saint-Etienne-du-Rouvray (France); Veynante, Denis [EM2C - CNRS and Ecole Centrale Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry (France)
2010-04-15
Large-Eddy Simulation (LES) provides space-filtered quantities to compare with measurements, which usually have been obtained using a different filtering operation; hence, numerical and experimental results can be examined side-by-side in a statistical sense only. Instantaneous, space-filtered and statistically time-averaged signals feature different characteristic length-scales, which can be combined in dimensionless ratios. From two canonical manufactured turbulent solutions, a turbulent flame and a passive scalar turbulent mixing layer, the critical values of these ratios under which measured and computed variances (resolved plus sub-grid scale) can be compared without resorting to additional residual terms are first determined. It is shown that actual Direct Numerical Simulation can hardly accommodate a sufficiently large range of length-scales to perform statistical studies of LES filtered reactive scalar-fields energy budget based on sub-grid scale variances; an estimation of the minimum Reynolds number allowing for such DNS studies is given. From these developments, a reliability mesh criterion emerges for scalar LES and scaling for scalar sub-grid scale energy is discussed. (author)
Fragmentation under the Scaling Symmetry and Turbulent Cascade with Intermittency
Gorokhovski, M.
2003-01-01
Fragmentation plays an important role in a variety of physical, chemical, and geological processes. Examples include atomization in sprays, crushing of rocks, explosion and impact of solids, polymer degradation, etc. Although each individual action of fragmentation is a complex process, the number of these elementary actions is large. It is natural to abstract a simple 'effective' scenario of fragmentation and to represent its essential features. One of the models is the fragmentation under the scaling symmetry: each breakup action reduces the typical length of fragments, r (right arrow) alpha r, by an independent random multiplier alpha (0 Saveliev, the fragmentation under the scaling symmetry has been reviewed as a continuous evolution process with new features established. The objective of this paper is twofold. First, the paper synthesizes and completes theoretical part of Gorokhovski & Saveliev. Second, the paper shows a new application of the fragmentation theory under the scale invariance. This application concerns the turbulent cascade with intermittency. We formulate here a model describing the evolution of the velocity increment distribution along the progressively decreasing length scale. The model shows that when the turbulent length scale gets smaller, the velocity increment distribution has central growing peak and develops stretched tails. The intermittency in turbulence is manifested in the same way: large fluctuations of velocity provoke highest strain in narrow (dissipative) regions of flow.
Relating Lagrangian passive scalar scaling exponents to Eulerian scaling exponents in turbulence
Schmitt , François G
2005-01-01
Intermittency is a basic feature of fully developed turbulence, for both velocity and passive scalars. Intermittency is classically characterized by Eulerian scaling exponent of structure functions. The same approach can be used in a Lagrangian framework to characterize the temporal intermittency of the velocity and passive scalar concentration of a an element of fluid advected by a turbulent intermittent field. Here we focus on Lagrangian passive scalar scaling exponents, and discuss their p...
Scalings, spectra, and statistics of strong wave turbulence
International Nuclear Information System (INIS)
Robinson, P.A.
1996-01-01
A two-component model of strongly nonlinear wave turbulence is developed for a broad class of systems in which high-frequency electrostatic waves interact with low-frequency sound-like waves. In this model coherent nonlinear wave packets form and collapse amid a sea of incoherent background waves. It is shown that three classes of turbulence exist, typified by Langmuir, lower-hybrid, and upper-hybrid turbulence. Balance between power input to incoherent waves, and dissipation at the end of collapse determines power-law scalings of turbulent electrostatic energy density, density fluctuations, length and time scales. Knowledge of the evolution of collapsing packets enables probability distributions of the magnitudes of electric fields and density fluctuations to be calculated, yielding power-law dependences. Wavenumber spectra of collapsing waves and associated density fluctuations are also calculated and shown to have power-law forms. Applications to Langmuir, lower-hybrid, and upper-hybrid waves are discussed. In the Langmuir case the results agree with earlier theory and simulations, with one exception, which is consistent only with earlier simulations. In the lower-hybrid and upper-hybrid cases, the results are consistent with the few simulations to date. copyright 1996 American Institute of Physics
On spectral scaling laws for incompressible anisotropic magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Galtier, Sebastien; Pouquet, Annick; Mangeney, Andre
2005-01-01
A heuristic model is given for anisotropic magnetohydrodynamics turbulence in the presence of a uniform external magnetic field B 0 e parallel . The model is valid for both moderate and strong B 0 and is able to describe both the strong and weak wave turbulence regimes as well as the transition between them. The main ingredient of the model is the assumption of constant ratio at all scales between the linear wave period and the nonlinear turnover time scale. Contrary to the model of critical balance introduced by Goldreich and Sridhar [Astrophys. J. 438, 763 (1995)], it is not assumed, in addition, that this ratio be equal to unity at all scales. This allows us to make use of the Iroshnikov-Kraichnan phenomenology; it is then possible to recover the widely observed anisotropic scaling law k parallel ∝k perpendicular 2/3 between parallel and perpendicular wave numbers (with reference to B 0 e parallel and to obtain for the total-energy spectrum E(k perpendicular ,k parallel )∼k perpendicular -α k parallel -β the universal prediction, 3α+2β=7. In particular, with such a prediction, the weak Alfven wave turbulence constant-flux solution is recovered and, for the first time, a possible explanation to its precursor found numerically by Galtier et al. [J. Plasma Phys. 63, 447 (2000)] is given.
Renormalization Group Theory of Bolgiano Scaling in Boussinesq Turbulence
Rubinstein, Robert
1994-01-01
Bolgiano scaling in Boussinesq turbulence is analyzed using the Yakhot-Orszag renormalization group. For this purpose, an isotropic model is introduced. Scaling exponents are calculated by forcing the temperature equation so that the temperature variance flux is constant in the inertial range. Universal amplitudes associated with the scaling laws are computed by expanding about a logarithmic theory. Connections between this formalism and the direct interaction approximation are discussed. It is suggested that the Yakhot-Orszag theory yields a lowest order approximate solution of a regularized direct interaction approximation which can be corrected by a simple iterative procedure.
Dogan, Eda; Hearst, R Jason; Ganapathisubramani, Bharathram
2017-03-13
A turbulent boundary layer subjected to free-stream turbulence is investigated in order to ascertain the scale interactions that dominate the near-wall region. The results are discussed in relation to a canonical high Reynolds number turbulent boundary layer because previous studies have reported considerable similarities between these two flows. Measurements were acquired simultaneously from four hot wires mounted to a rake which was traversed through the boundary layer. Particular focus is given to two main features of both canonical high Reynolds number boundary layers and boundary layers subjected to free-stream turbulence: (i) the footprint of the large scales in the logarithmic region on the near-wall small scales, specifically the modulating interaction between these scales, and (ii) the phase difference in amplitude modulation. The potential for a turbulent boundary layer subjected to free-stream turbulence to 'simulate' high Reynolds number wall-turbulence interactions is discussed. The results of this study have encouraging implications for future investigations of the fundamental scale interactions that take place in high Reynolds number flows as it demonstrates that these can be achieved at typical laboratory scales.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
Numerical assessment of the ion turbulent thermal transport scaling laws
International Nuclear Information System (INIS)
Ottaviani, M.; Manfredi, G.
2001-01-01
Numerical simulations of ion temperature gradient (ITG) driven turbulence were carried out to investigate the parametric dependence of the ion thermal transport on the reduced gyroradius and on the local safety factor. Whereas the simulations show a clear proportionality of the conductivity to the gyroradius, the dependence on the safety factor cannot be represented as a simple power law like the one exhibited by the empirical scaling laws. (author)
Developments and validation of large eddy simulation of turbulent flows in an industrial code
International Nuclear Information System (INIS)
Ackermann, C.
2000-01-01
Large Eddy Simulation, where large scales of the flow are resolved and sub-grid scales are modelled, is well adapted to the study of turbulent flow, in which geometry and/or heat transfer effects lead to unsteady phenomena. To obtain an improved numerical tool, simulations of elementary test cases, Homogeneous Isotropic Turbulence and Turbulent Plane Channel, were clone on both structured and unstructured grids, before moving to more complex geometries. This allowed the influence of the different physical and numerical parameters to be studied separately. On structured grids, the different properties of the numerical methods corresponding to our problem were identified, a new sub-grid model was elaborated and several laws of the wall tested: for this discretization, our numerical tool is yet validated. On unstructured grids, the construction of numerical methods with the same properties as on the structured grids is harder, especially for the convection scheme: several numerical schemes were tested, and sub-grid models and laws of the wall were adapted to unstructured grids. Simulations of the same elementary tests were clone: the results are relatively satisfactorily, even if they are not so good as the one obtained in structured grids, most probably because the numerical methods chosen cannot perfectly isolate the effects between the convection scheme, physical modelling and the mesh chosen. This work is the first stage towards the development of a practical Large Eddy Simulation tool for unstructured grid. (author) [fr
ION-SCALE TURBULENCE IN THE INNER HELIOSPHERE: RADIAL DEPENDENCE
Energy Technology Data Exchange (ETDEWEB)
Comisel, H.; Motschmann, U.; Büchner, J.; Narita, Y.; Nariyuki, Y. [University of Toyama, Faculty of Human Development, 3190, Gofuku, Toyama, 930-8555 (Japan)
2015-10-20
The evolution of the ion-scale plasma turbulence in the inner heliosphere is studied by associating the plasma parameters for hybrid-code turbulence simulations to the radial distance from the Sun via a Solar wind model based mapping procedure. Using a mapping based on a one-dimensional solar wind expansion model, the resulting ion-kinetic scale turbulence is related to the solar wind distance from the Sun. For this purpose the mapping is carried out for various values of ion beta that correspond to the heliocentric distance. It is shown that the relevant normal modes such as ion cyclotron and ion Bernstein modes will occur first at radial distances of about 0.2–0.3 AU, i.e., near the Mercury orbit. This finding can be used as a reference, a prediction to guide the in situ measurements to be performed by the upcoming Solar Orbiter and Solar Probe Plus missions. Furthermore, a radial dependence of the wave-vector anisotropy was obtained. For astrophysical objects this means that the spatial scales of filamentary structures in interstellar media or astrophysical jets can be predicted for photometric observations.
Large-scale influences in near-wall turbulence.
Hutchins, Nicholas; Marusic, Ivan
2007-03-15
Hot-wire data acquired in a high Reynolds number facility are used to illustrate the need for adequate scale separation when considering the coherent structure in wall-bounded turbulence. It is found that a large-scale motion in the log region becomes increasingly comparable in energy to the near-wall cycle as the Reynolds number increases. Through decomposition of fluctuating velocity signals, it is shown that this large-scale motion has a distinct modulating influence on the small-scale energy (akin to amplitude modulation). Reassessment of DNS data, in light of these results, shows similar trends, with the rate and intensity of production due to the near-wall cycle subject to a modulating influence from the largest-scale motions.
Structures and Intermittency in Small Scales Solar Wind Turbulence
International Nuclear Information System (INIS)
Sahraoui, Fouad; Goldstein, Melvyn
2010-01-01
Several observations in space plasmas have reported the presence of coherent structures at different plasma scales. Structure formation is believed to result from nonlinear interactions between the plasma modes, which depend strongly on their phase synchronization. Despite this important role of the phases in turbulence, very limited work has been devoted to study the phases as potential tracers of nonlinearities in comparison with the wealth of literature on power spectra of turbulence where phases are totally missed. The reason why the phases are seldom used is probably because they usually appear to be completely mixed (due to their dependence on an arbitrary time origin and to 2π periodicity). To handle the phases properly, a new method based on using surrogate data has been developed recently to detect coherent structures in magnetized plasmas [Sahraoui, PRE, 2008]. Here, we show new applications of the technique to study the nature (weak vs strong, self-similar vs intermittent) of the small scale turbulence in the solar wind using the Cluster observations.
Large-scale structures in turbulent Couette flow
Kim, Jung Hoon; Lee, Jae Hwa
2016-11-01
Direct numerical simulation of fully developed turbulent Couette flow is performed with a large computational domain in the streamwise and spanwise directions (40 πh and 6 πh) to investigate streamwise-scale growth mechanism of the streamwise velocity fluctuating structures in the core region, where h is the channel half height. It is shown that long streamwise-scale structures (> 3 h) are highly energetic and they contribute to more than 80% of the turbulent kinetic energy and Reynolds shear stress, compared to previous studies in canonical Poiseuille flows. Instantaneous and statistical analysis show that negative-u' structures on the bottom wall in the Couette flow continuously grow in the streamwise direction due to mean shear, and they penetrate to the opposite moving wall. The geometric center of the log layer is observed in the centerline with a dominant outer peak in streamwise spectrum, and the maximum streamwise extent for structure is found in the centerline, similar to previous observation in turbulent Poiseuille flows at high Reynolds number. Further inspection of time-evolving instantaneous fields clearly exhibits that adjacent long structures combine to form a longer structure in the centerline. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).
Multifractal aspects of the scaling laws in fully developed compressible turbulence
International Nuclear Information System (INIS)
Shivamoggi, B.K.
1995-01-01
In this paper, multifractal aspects of the scalings laws in fully developed compressible turbulence are considered. Compressibility effects on known results of incompressible turbulence are pointed out. copyright 1995 Academic Press, Inc
Emergence of multi-scaling in fluid turbulence
Donzis, Diego; Yakhot, Victor
2017-11-01
We present new theoretical and numerical results on the transition to strong turbulence in an infinite fluid stirred by a Gaussian random force. The transition is defined as a first appearance of anomalous scaling of normalized moments of velocity derivatives (or dissipation rates) emerging from the low-Reynolds-number Gaussian background. It is shown that due to multi-scaling, strongly intermittent rare events can be quantitatively described in terms of an infinite number of different ``Reynolds numbers'' reflecting a multitude of anomalous scaling exponents. We found that anomalous scaling for high order moments emerges at very low Reynolds numbers implying that intense dissipative-range fluctuations are established at even lower Reynolds number than that required for an inertial range. Thus, our results suggest that information about inertial range dynamics can be obtained from dissipative scales even when the former does not exit. We discuss our further prediction that transition to fully anomalous turbulence disappears at Rλ < 3 . Support from NSF is acknowledged.
The Effect of Large Scale Salinity Gradient on Langmuir Turbulence
Fan, Y.; Jarosz, E.; Yu, Z.; Jensen, T.; Sullivan, P. P.; Liang, J.
2017-12-01
Langmuir circulation (LC) is believed to be one of the leading order causes of turbulent mixing in the upper ocean. It is important for momentum and heat exchange across the mixed layer (ML) and directly impact the dynamics and thermodynamics in the upper ocean and lower atmosphere including the vertical distributions of chemical, biological, optical, and acoustic properties. Based on Craik and Leibovich (1976) theory, large eddy simulation (LES) models have been developed to simulate LC in the upper ocean, yielding new insights that could not be obtained from field observations and turbulent closure models. Due its high computational cost, LES models are usually limited to small domain sizes and cannot resolve large-scale flows. Furthermore, most LES models used in the LC simulations use periodic boundary conditions in the horizontal direction, which assumes the physical properties (i.e. temperature and salinity) and expected flow patterns in the area of interest are of a periodically repeating nature so that the limited small LES domain is representative for the larger area. Using periodic boundary condition can significantly reduce computational effort in problems, and it is a good assumption for isotropic shear turbulence. However, LC is anisotropic (McWilliams et al 1997) and was observed to be modulated by crosswind tidal currents (Kukulka et al 2011). Using symmetrical domains, idealized LES studies also indicate LC could interact with oceanic fronts (Hamlington et al 2014) and standing internal waves (Chini and Leibovich, 2005). The present study expands our previous LES modeling investigations of Langmuir turbulence to the real ocean conditions with large scale environmental motion that features fresh water inflow into the study region. Large scale gradient forcing is introduced to the NCAR LES model through scale separation analysis. The model is applied to a field observation in the Gulf of Mexico in July, 2016 when the measurement site was impacted by
Gravity, turbulence and the scaling ``laws'' in molecular clouds
Ballesteros-Paredes, Javier
The so-called Larson (1981) scaling laws found empirically in molecular clouds have been generally interpreted as evidence that the clouds are turbulent and fractal. In the present contribution we discussed how recent observations and models of cloud formation suggest that: (a) these relations are the result of strong observational biases due to the cloud definition itself: since the filling factor of the dense structures is small, by thresholding the column density the computed mean density between clouds is nearly constant, and nearly the same as the threshold (Ballesteros-Paredes et al. 2012). (b) When accounting for column density variations, the velocity dispersion-size relation does not appears anymore. Instead, dense cores populate the upper-left corner of the δ v-R diagram (Ballesteros-Paredes et al. 2011a). (c) Instead of a δ v-R relation, a more appropriate relation seems to be δ v 2 / R = 2 GMΣ, which suggest that clouds are in collapse, rather than supported by turbulence (Ballesteros-Paredes et al. 2011a). (d) These results, along with the shapes of the star formation histories (Hartmann, Ballesteros-Paredes & Heitsch 2012), line profiles of collapsing clouds in numerical simulations (Heitsch, Ballesteros-Paredes & Hartmann 2009), core-to-core velocity dispersions (Heitsch, Ballesteros-Paredes & Hartmann 2009), time-evolution of the column density PDFs (Ballesteros-Paredes et al. 2011b), etc., strongly suggest that the actual source of the non-thermal motions is gravitational collapse of the clouds, so that the turbulent, chaotic component of the motions is only a by-product of the collapse, with no significant ``support" role for the clouds. This result calls into question if the scale-free nature of the motions has a turbulent, origin (Ballesteros-Paredes et al. 2011a; Ballesteros-Paredes et al. 2011b, Ballesteros-Paredes et al. 2012).
Measurements of Turbulent Flame Speed and Integral Length Scales in a Lean Stationary Premixed Flame
Klingmann, Jens; Johansson, Bengt
1998-01-01
Turbulent premixed natural gas - air flame velocities have been measured in a stationary axi-symmetric burner using LDA. The flame was stabilized by letting the flow retard toward a stagnation plate downstream of the burner exit. Turbulence was generated by letting the flow pass through a plate with drilled holes. Three different hole diameters were used, 3, 6 and 10 mm, in order to achieve different turbulent length scales. Turbulent integral length scales were measured using two-point LD...
Energy Technology Data Exchange (ETDEWEB)
Pietri, L.; Amielh, M.; Anselmet, F.; Fulachier, L. [Institut de Recherche sur les Phinomenes Hors Equilibre Equipe Turbulence, 13 - Marseille (France)
1997-12-31
Turbulent flows with strong density variations, like helium jets in the ambient air, have specific properties linked with the difference of gas densities. This paper presents some experimental results of turbulence properties inside such flows: the Reynolds tensions and the associated turbulent viscosity, and some characteristics linked with the statistical properties of the different turbulence scales. These last results allows to show the complexity of such flows characterized by the influence of external parameters (Reynolds number, initial density ratio, initial momentum flux) that govern the evolution of these parameters inside the jet from the nozzle up to regions where similarity properties are reached. (J.S.) 12 refs.
Subgrid-scale turbulence in shock-boundary layer flows
Jammalamadaka, Avinash; Jaberi, Farhad
2015-04-01
Data generated by direct numerical simulation (DNS) for a Mach 2.75 zero-pressure gradient turbulent boundary layer interacting with shocks of different intensities are used for a priori analysis of subgrid-scale (SGS) turbulence and various terms in the compressible filtered Navier-Stokes equations. The numerical method used for DNS is based on a hybrid scheme that uses a non-dissipative central scheme in the shock-free turbulent regions and a robust monotonicity-preserving scheme in the shock regions. The behavior of SGS stresses and their components, namely Leonard, Cross and Reynolds components, is examined in various regions of the flow for different shock intensities and filter widths. The backscatter in various regions of the flow is found to be significant only instantaneously, while the ensemble-averaged statistics indicate no significant backscatter. The budgets for the SGS kinetic energy equation are examined for a better understanding of shock-tubulence interactions at the subgrid level and also with the aim of providing useful information for one-equation LES models. A term-by-term analysis of SGS terms in the filtered total energy equation indicate that while each term in this equation is significant by itself, the net contribution by all of them is relatively small. This observation is consistent with our a posteriori analysis.
Analysis of small scale turbulent structures and the effect of spatial scales on gas transfer
Schnieders, Jana; Garbe, Christoph
2014-05-01
The exchange of gases through the air-sea interface strongly depends on environmental conditions such as wind stress and waves which in turn generate near surface turbulence. Near surface turbulence is a main driver of surface divergence which has been shown to cause highly variable transfer rates on relatively small spatial scales. Due to the cool skin of the ocean, heat can be used as a tracer to detect areas of surface convergence and thus gather information about size and intensity of a turbulent process. We use infrared imagery to visualize near surface aqueous turbulence and determine the impact of turbulent scales on exchange rates. Through the high temporal and spatial resolution of these types of measurements spatial scales as well as surface dynamics can be captured. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: 1. The surface heat patterns show characteristic features of scales. 2. The structure of these patterns change with increasing wind stress and surface conditions. In [2] turbulent cell sizes have been shown to systematically decrease with increasing wind speed until a saturation at u* = 0.7 cm/s is reached. Results suggest a saturation in the tangential stress. Similar behaviour has been observed by [1] for gas transfer measurements at higher wind speeds. In this contribution a new model to estimate the heat flux is applied which is based on the measured turbulent cell size und surface velocities. This approach allows the direct comparison of the net effect on heat flux of eddies of different sizes and a comparison to gas transfer measurements. Linking transport models with thermographic measurements, transfer velocities can be computed. In this contribution, we will quantify the effect of small scale
Correlation Scales of the Turbulent Cascade at 1 au
Smith, Charles W.; Vasquez, Bernard J.; Coburn, Jesse T.; Forman, Miriam A.; Stawarz, Julia E.
2018-05-01
We examine correlation functions of the mixed, third-order expressions that, when ensemble-averaged, describe the cascade of energy in the inertial range of magnetohydrodynamic turbulence. Unlike the correlation function of primitive variables such as the magnetic field, solar wind velocity, temperature, and density, the third-order expressions decorrelate at a scale that is approximately 20% of the lag. This suggests the nonlinear dynamics decorrelate in less than one wavelength. Therefore, each scale can behave differently from one wavelength to the next. In the same manner, different scales within the inertial range can behave independently at any given time or location. With such a cascade that can be strongly patchy and highly variable, it is often possible to obtain negative cascade rates for short periods of time, as reported earlier for individual samples of data.
Small Scales Structure of MHD Turbulence, Tubes or Ribbons?
Verdini, A.; Grappin, R.; Alexandrova, O.; Lion, S.
2017-12-01
Observations in the solar wind indicate that turbulent eddies change their anisotropy with scales [1]. At large scales eddies are elongated in direction perpendicular to the mean-field axis. This is the result of solar wind expansion that affects both the anisotropy and single-spacecraft measurments [2,3]. At small scales one recovers the anisotropy expected in strong MHD turbulence and constrained by the so-called critical balance: eddies are elongated along the mean-field axis. However, the actual eddy shape is intermediate between tubes and ribbons, preventing us to discriminate between two concurrent theories that predict 2D axysimmetric anisotropy [4] or full 3D anisotropy [5]. We analyse 10 years of WIND data and apply a numerically-derived criterion to select intervals in which solar wind expansion is expected to be negligible. By computing the anisotropy of structure functions with respect to the local mean field we obtain for the first time scaling relations that are in agreement with full 3D anisotropy, i.e. ribbons-like structures. However, we cannot obtain the expected scaling relations for the alignment angle which, according to the theory, is physically responsible for the departure from axisymmetry. In addition, a further change of anisotropy occurs well above the proton scales. We discuss the implication of our findings and how numerical simulations can help interpreting the observed spectral anisotropy. [1] Chen et al., ApJ, 768:120, 2012 [2] Verdini & Grappin, ApJL, 808:L34, 2015 [3] Vech & Chen, ApJL, 832:L16, 2016 [4] Goldreich & Shridar, ApJ, 438:763, 1995 [5] Boldyrev, ApJL, 626:L37, 2005
Multifractal scaling at the Kolmogorov microscale in fully developed compressible turbulence
International Nuclear Information System (INIS)
Shivamoggi, B.K.
1995-01-01
In this paper, some aspects of multifractal scaling at the Kolmogorov microscale in fully developed compressible turbulence are considered. These considerations, on the one hand, provide an insight into the mechanism of compressible turbulence, and on the other hand enable one to determine the robustness of some known results in incompressible turbulence. copyright 1995 Academic Press, Inc
Turbulence Scaling Comparisons in the Ocean Surface Boundary Layer
Esters, L.; Breivik, Ø.; Landwehr, S.; ten Doeschate, A.; Sutherland, G.; Christensen, K. H.; Bidlot, J.-R.; Ward, B.
2018-03-01
Direct observations of the dissipation rate of turbulent kinetic energy, ɛ, under open ocean conditions are limited. Consequently, our understanding of what chiefly controls dissipation in the open ocean, and its functional form with depth, is poorly constrained. In this study, we report direct open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during five different cruises in the Atlantic Ocean. We then combine these data with ocean-atmosphere flux measurements and wave information in order to evaluate existing turbulence scaling theories under a diverse set of open ocean conditions. Our results do not support the presence of a "breaking" or a "transition layer," which has been previously suggested. Instead, ɛ decays as |z|-1.29 over the depth interval, which was previously defined as "transition layer," and as |z|-1.15 over the mixing layer. This depth dependency does not significantly vary between nonbreaking or breaking wave conditions. A scaling relationship based on the friction velocity, the wave age, and the significant wave height describes the observations best for daytime conditions. For conditions during which convection is important, it is necessary to take buoyancy forcing into account.
Dynamical scaling law in the development of drift wave turbulence
International Nuclear Information System (INIS)
Watanabe, T.; Fujisaka, H.; Iwayama, T.
1997-01-01
The Charney-Hasegawa-Mima equation, with random forcing at the narrow band wave-number region, which is set to be slightly larger than the characteristic wave number λ, evaluating the inverse ion Larmor radius in plasma, is numerically studied. It is shown that the Fourier spectrum of the potential vorticity fluctuation in the development of turbulence with an initial condition of quiescent state obeys a dynamic scaling law for k 1/2 ε 5/4 t 7/4 F(k/bar k(t))[bar k(t)∼λ 3/4 ε -1/8 t -3/8 ] with a scaling function F(x), which turns out to be in good agreement with numerical experiments. copyright 1997 The American Physical Society
A Virtual Study of Grid Resolution on Experiments of a Highly-Resolved Turbulent Plume
Maisto, Pietro M. F.; Marshall, Andre W.; Gollner, Michael J.; Fire Protection Engineering Department Collaboration
2017-11-01
An accurate representation of sub-grid scale turbulent mixing is critical for modeling fire plumes and smoke transport. In this study, PLIF and PIV diagnostics are used with the saltwater modeling technique to provide highly-resolved instantaneous field measurements in unconfined turbulent plumes useful for statistical analysis, physical insight, and model validation. The effect of resolution was investigated employing a virtual interrogation window (of varying size) applied to the high-resolution field measurements. Motivated by LES low-pass filtering concepts, the high-resolution experimental data in this study can be analyzed within the interrogation windows (i.e. statistics at the sub-grid scale) and on interrogation windows (i.e. statistics at the resolved scale). A dimensionless resolution threshold (L/D*) criterion was determined to achieve converged statistics on the filtered measurements. Such a criterion was then used to establish the relative importance between large and small-scale turbulence phenomena while investigating specific scales for the turbulent flow. First order data sets start to collapse at a resolution of 0.3D*, while for second and higher order statistical moments the interrogation window size drops down to 0.2D*.
Directory of Open Access Journals (Sweden)
Christian Beer
2016-08-01
Full Text Available There are massive carbon stocks stored in permafrost-affected soils due to the 3-D soil movement process called cryoturbation. For a reliable projection of the past, recent and future Arctic carbon balance, and hence climate, a reliable concept for representing cryoturbation in a land surface model (LSM is required. The basis of the underlying transport processes is pedon-scale heterogeneity of soil hydrological and thermal properties as well as insulating layers, such as snow and vegetation. Today we still lack a concept of how to reliably represent pedon-scale properties and processes in a LSM. One possibility could be a statistical approach. This perspective paper demonstrates the importance of sub-grid heterogeneity in permafrost soils as a pre-requisite to implement any lateral transport parametrization. Representing such heterogeneity at the sub-pixel size of a LSM is the next logical step of model advancements. As a result of a theoretical experiment, heterogeneity of thermal and hydrological soil properties alone lead to a remarkable initial sub-grid range of subsoil temperature of 2 deg C, and active-layer thickness of 150 cm in East Siberia. These results show the way forward in representing combined lateral and vertical transport of water and soil in LSMs.
A Molecular Dynamics Simulation of the Turbulent Couette Minimal Flow Unit
Smith, Edward
2016-11-01
What happens to turbulent motions below the Kolmogorov length scale? In order to explore this question, a 300 million molecule Molecular Dynamics (MD) simulation is presented for the minimal Couette channel in which turbulence can be sustained. The regeneration cycle and turbulent statistics show excellent agreement to continuum based computational fluid dynamics (CFD) at Re=400. As MD requires only Newton's laws and a form of inter-molecular potential, it captures a much greater range of phenomena without requiring the assumptions of Newton's law of viscosity, thermodynamic equilibrium, fluid isotropy or the limitation of grid resolution. The fundamental nature of MD means it is uniquely placed to explore the nature of turbulent transport. A number of unique insights from MD are presented, including energy budgets, sub-grid turbulent energy spectra, probability density functions, Lagrangian statistics and fluid wall interactions. EPSRC Post Doctoral Prize Fellowship.
International Nuclear Information System (INIS)
Rosa, B.; Parishani, H.; Ayala, O.; Wang, L.-P.
2015-01-01
In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope [“An examination of forcing in direct numerical simulations of turbulence,” Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynolds number of 30 and less. We then study the effects of forcing time scale on the kinematic collision statistics of inertial particles. We show that the radial distribution function and the radial relative velocity may depend on the forcing time scale when it becomes comparable to the eddy turnover time. This dependence, however, can be largely explained in terms of altered flow Reynolds number and the changing range of flow length scales present in the turbulent flow. We argue that removing this dependence is important when studying the Reynolds number dependence of the turbulent collision statistics. The results are also compared to those based on a deterministic forcing scheme to better understand the role of large-scale forcing, relative to that of the small-scale turbulence, on turbulent collision of inertial particles. To further elucidate the correlation between the altered flow structures and dynamics of inertial particles, a conditional analysis has been performed, showing that the regions of higher collision rate of inertial particles are well correlated with the regions of lower vorticity. Regions of higher concentration of pairs at contact are found to be highly correlated with the region of high energy dissipation rate
Zhang, Wei; He, Zhiguo; Jiang, Houshuo
2017-11-01
Time-resolved particle image velocimetry (PIV) has been used to measure instantaneous two-dimensional velocity vector fields of laboratory-generated turbulent buoyant plumes in linearly stratified saltwater over extended periods of time. From PIV-measured time-series flow data, characteristics of plume mean flow and turbulence have been quantified. To be specific, maximum plume penetration scaling and entrainment coefficient determined from the mean flow agree well with the theory based on the entrainment hypothesis for buoyant plumes in stratified fluids. Besides the well-known persistent entrainment along the plume stem (i.e., the 'plume-stem' entrainment), the mean plume velocity field shows persistent entrainment along the outer edge of the plume cap (i.e., the 'plume-cap' entrainment), thereby confirming predictions from previous numerical simulation studies. To our knowledge, the present PIV investigation provides the first measured flow field data in the plume cap region. As to measured plume turbulence, both the turbulent kinetic energy field and the turbulence dissipation rate field attain their maximum close to the source, while the turbulent viscosity field reaches its maximum within the plume cap region; the results also show that maximum turbulent viscosity scales as νt,max = 0.030(B/N)1/2, where B is source buoyancy flux and N is ambient buoyancy frequency. These PIV data combined with previously published numerical simulation results have implications for understanding the roles of hydrothermal plume turbulence, i.e. plume turbulence within the cap region causes the 'plume-cap' entrainment that plays an equally important role as the 'plume-stem' entrainment in supplying the final volume flux at the plume spreading level.
Energy partitioning constraints at kinetic scales in low-β turbulence
Gershman, Daniel J.; F.-Viñas, Adolfo; Dorelli, John C.; Goldstein, Melvyn L.; Shuster, Jason; Avanov, Levon A.; Boardsen, Scott A.; Stawarz, Julia E.; Schwartz, Steven J.; Schiff, Conrad; Lavraud, Benoit; Saito, Yoshifumi; Paterson, William R.; Giles, Barbara L.; Pollock, Craig J.; Strangeway, Robert J.; Russell, Christopher T.; Torbert, Roy B.; Moore, Thomas E.; Burch, James L.
2018-02-01
Turbulence is a fundamental physical process through which energy injected into a system at large scales cascades to smaller scales. In collisionless plasmas, turbulence provides a critical mechanism for dissipating electromagnetic energy. Here, we present observations of plasma fluctuations in low-β turbulence using data from NASA's Magnetospheric Multiscale mission in Earth's magnetosheath. We provide constraints on the partitioning of turbulent energy density in the fluid, ion-kinetic, and electron-kinetic ranges. Magnetic field fluctuations dominated the energy density spectrum throughout the fluid and ion-kinetic ranges, consistent with previous observations of turbulence in similar plasma regimes. However, at scales shorter than the electron inertial length, fluctuation power in electron kinetic energy significantly exceeded that of the magnetic field, resulting in an electron-motion-regulated cascade at small scales. This dominance is highly relevant for the study of turbulence in highly magnetized laboratory and astrophysical plasmas.
International Nuclear Information System (INIS)
Blum, Daniel B; Voth, Greg A; Bewley, Gregory P; Bodenschatz, Eberhard; Gibert, Mathieu; Xu Haitao; Gylfason, Ármann; Mydlarski, Laurent; Yeung, P K
2011-01-01
We present a systematic comparison of conditional structure functions in nine turbulent flows. The flows studied include forced isotropic turbulence simulated on a periodic domain, passive grid wind tunnel turbulence in air and in pressurized SF 6 , active grid wind tunnel turbulence (in both synchronous and random driving modes), the flow between counter-rotating discs, oscillating grid turbulence and the flow in the Lagrangian exploration module (in both constant and random driving modes). We compare longitudinal Eulerian second-order structure functions conditioned on the instantaneous large-scale velocity in each flow to assess the ways in which the large scales affect the small scales in a variety of turbulent flows. Structure functions are shown to have larger values when the large-scale velocity significantly deviates from the mean in most flows, suggesting that dependence on the large scales is typical in many turbulent flows. The effects of the large-scale velocity on the structure functions can be quite strong, with the structure function varying by up to a factor of 2 when the large-scale velocity deviates from the mean by ±2 standard deviations. In several flows, the effects of the large-scale velocity are similar at all the length scales we measured, indicating that the large-scale effects are scale independent. In a few flows, the effects of the large-scale velocity are larger on the smallest length scales. (paper)
The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence
Energy Technology Data Exchange (ETDEWEB)
Staebler, G. M.; Candy, J. [General Atomics, San Diego, California 92186 (United States); Howard, N. T. [Oak Ridge Institute for Science Education (ORISE), Oak Ridge, Tennessee 37831 (United States); Holland, C. [University of California San Diego, San Diego, California 92093 (United States)
2016-06-15
The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the threshold for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
Yue, Chao; Ciais, Philippe; Li, Wei
2018-02-01
Several modelling studies reported elevated carbon emissions from historical land use change (ELUC) by including bidirectional transitions on the sub-grid scale (termed gross land use change), dominated by shifting cultivation and other land turnover processes. However, most dynamic global vegetation models (DGVMs) that have implemented gross land use change either do not account for sub-grid secondary lands, or often have only one single secondary land tile over a model grid cell and thus cannot account for various rotation lengths in shifting cultivation and associated secondary forest age dynamics. Therefore, it remains uncertain how realistic the past ELUC estimations are and how estimated ELUC will differ between the two modelling approaches with and without multiple sub-grid secondary land cohorts - in particular secondary forest cohorts. Here we investigated historical ELUC over 1501-2005 by including sub-grid forest age dynamics in a DGVM. We run two simulations, one with no secondary forests (Sageless) and the other with sub-grid secondary forests of six age classes whose demography is driven by historical land use change (Sage). Estimated global ELUC for 1501-2005 is 176 Pg C in Sage compared to 197 Pg C in Sageless. The lower ELUC values in Sage arise mainly from shifting cultivation in the tropics under an assumed constant rotation length of 15 years, being 27 Pg C in Sage in contrast to 46 Pg C in Sageless. Estimated cumulative ELUC values from wood harvest in the Sage simulation (31 Pg C) are however slightly higher than Sageless (27 Pg C) when the model is forced by reconstructed harvested areas because secondary forests targeted in Sage for harvest priority are insufficient to meet the prescribed harvest area, leading to wood harvest being dominated by old primary forests. An alternative approach to quantify wood harvest ELUC, i.e. always harvesting the close-to-mature forests in both Sageless and Sage, yields similar values of 33 Pg C by both
Development of analysis methodology on turbulent thermal stripping
Energy Technology Data Exchange (ETDEWEB)
Yoo, Geun Jong; Jeon, Won Dae; Han, Jin Woo; Gu, Byong Kook [Changwon National University, Changwon(Korea)
2001-03-01
For developing analysis methodology, important governing factors of thermal stripping phenomena are identified as geometric configuration and flow characteristics such as velocity. Along these factors, performance of turbulence models in existing analysis methodology are evaluated against experimental data. Status of DNS application is also accessed based on literature. Evaluation results are reflected in setting up the new analysis methodology. From the evaluation of existing analysis methodology, Full Reynolds Stress model is identified as best one among other turbulence models. And LES is found to be able to provide time dependent turbulence values. Further improvements in near-wall region and temperature variance equation are required for FRS and implementation of new sub-grid scale models is also required for LES. Through these improvements, new reliable analysis methodology for thermal stripping can be developed. 30 refs., 26 figs., 6 tabs. (Author)
On the calculation of length scales for turbulent heat transfer correlation
Energy Technology Data Exchange (ETDEWEB)
Barrett, M.J.; Hollingsworth, D.K.
1999-07-01
Turbulence length scale calculation methods were critically reviewed for their usefulness in boundary layer heat transfer correlations. Merits and deficiencies in each calculation method were presented. A rigorous method for calculating an energy-based integral scale was introduced. The method uses the variance of the streamwise velocity and a measured dissipation spectrum to calculate the length scale. Advantages and disadvantages of the new method were discussed. A principal advantage is the capability to decisively calculate length scales in a low-Reynolds-number turbulent boundary layer. The calculation method was tested with data from grid-generated, free-shear-layer, and wall-bounded turbulence. In each case, the method proved successful. The length scale is well behaved in turbulent boundary layers with momentum thickness Reynolds numbers from 400 to 2,100 and in flows with turbulent Reynolds numbers as low as 90.
A Lagrangian dynamic subgrid-scale model turbulence
Meneveau, C.; Lund, T. S.; Cabot, W.
1994-01-01
A new formulation of the dynamic subgrid-scale model is tested in which the error associated with the Germano identity is minimized over flow pathlines rather than over directions of statistical homogeneity. This procedure allows the application of the dynamic model with averaging to flows in complex geometries that do not possess homogeneous directions. The characteristic Lagrangian time scale over which the averaging is performed is chosen such that the model is purely dissipative, guaranteeing numerical stability when coupled with the Smagorinsky model. The formulation is tested successfully in forced and decaying isotropic turbulence and in fully developed and transitional channel flow. In homogeneous flows, the results are similar to those of the volume-averaged dynamic model, while in channel flow, the predictions are superior to those of the plane-averaged dynamic model. The relationship between the averaged terms in the model and vortical structures (worms) that appear in the LES is investigated. Computational overhead is kept small (about 10 percent above the CPU requirements of the volume or plane-averaged dynamic model) by using an approximate scheme to advance the Lagrangian tracking through first-order Euler time integration and linear interpolation in space.
Bellan, J.; Okongo, N.
2000-01-01
A study of emerging turbulent scales entropy production is conducted for a supercritical shear layer as a precursor to the eventual modeling of Subgrid Scales (from a turbulent state) leading to Large Eddy Simulations.
Large-eddy simulations for turbulent flows
International Nuclear Information System (INIS)
Husson, S.
2007-07-01
The aim of this work is to study the impact of thermal gradients on a turbulent channel flow with imposed wall temperatures and friction Reynolds numbers of 180 and 395. In this configuration, temperature variations can be strong and induce significant variations of the fluid properties. We consider the low Mach number equations and carry out large eddy simulations. We first validate our simulations thanks to comparisons of some of our LES results with DNS data. Then, we investigate the influence of the variations of the conductivity and the viscosity and show that we can assume these properties constant only for weak temperature gradients. We also study the thermal sub-grid-scale modelling and find no difference when the sub-grid-scale Prandtl number is taken constant or dynamically calculated. The analysis of the effects of strongly increasing the temperature ratio mainly shows a dissymmetry of the profiles. The physical mechanism responsible of these modifications is explained. Finally, we use semi-local scaling and the Van Driest transformation and we show that they lead to a better correspondence of the low and high temperature ratios profiles. (author)
The Storm Surge and Sub-Grid Inundation Modeling in New York City during Hurricane Sandy
Directory of Open Access Journals (Sweden)
Harry V. Wang
2014-03-01
Full Text Available Hurricane Sandy inflicted heavy damage in New York City and the New Jersey coast as the second costliest storm in history. A large-scale, unstructured grid storm tide model, Semi-implicit Eulerian Lagrangian Finite Element (SELFE, was used to hindcast water level variation during Hurricane Sandy in the mid-Atlantic portion of the U.S. East Coast. The model was forced by eight tidal constituents at the model’s open boundary, 1500 km away from the coast, and the wind and pressure fields from atmospheric model Regional Atmospheric Modeling System (RAMS provided by Weatherflow Inc. The comparisons of the modeled storm tide with the NOAA gauge stations from Montauk, NY, Long Island Sound, encompassing New York Harbor, Atlantic City, NJ, to Duck, NC, were in good agreement, with an overall root mean square error and relative error in the order of 15–20 cm and 5%–7%, respectively. Furthermore, using large-scale model outputs as the boundary conditions, a separate sub-grid model that incorporates LIDAR data for the major portion of the New York City was also set up to investigate the detailed inundation process. The model results compared favorably with USGS’ Hurricane Sandy Mapper database in terms of its timing, local inundation area, and the depth of the flooding water. The street-level inundation with water bypassing the city building was created and the maximum extent of horizontal inundation was calculated, which was within 30 m of the data-derived estimate by USGS.
Establishment of DNS database in a turbulent channel flow by large-scale simulations
Abe, Hiroyuki; Kawamura, Hiroshi; 阿部 浩幸; 河村 洋
2008-01-01
In the present study, we establish statistical DNS (Direct Numerical Simulation) database in a turbulent channel flow with passive scalar transport at high Reynolds numbers and make the data available at our web site (http://murasun.me.noda.tus.ac.jp/turbulence/). The established database is reported together with the implementation of large-scale simulations, representative DNS results and results on turbulence model testing using the DNS data.
Energy partition, scale by scale, in magnetic Archimedes Coriolis weak wave turbulence.
Salhi, A; Baklouti, F S; Godeferd, F; Lehner, T; Cambon, C
2017-02-01
Magnetic Archimedes Coriolis (MAC) waves are omnipresent in several geophysical and astrophysical flows such as the solar tachocline. In the present study, we use linear spectral theory (LST) and investigate the energy partition, scale by scale, in MAC weak wave turbulence for a Boussinesq fluid. At the scale k^{-1}, the maximal frequencies of magnetic (Alfvén) waves, gravity (Archimedes) waves, and inertial (Coriolis) waves are, respectively, V_{A}k,N, and f. By using the induction potential scalar, which is a Lagrangian invariant for a diffusionless Boussinesq fluid [Salhi et al., Phys. Rev. E 85, 026301 (2012)PLEEE81539-375510.1103/PhysRevE.85.026301], we derive a dispersion relation for the three-dimensional MAC waves, generalizing previous ones including that of f-plane MHD "shallow water" waves [Schecter et al., Astrophys. J. 551, L185 (2001)AJLEEY0004-637X10.1086/320027]. A solution for the Fourier amplitude of perturbation fields (velocity, magnetic field, and density) is derived analytically considering a diffusive fluid for which both the magnetic and thermal Prandtl numbers are one. The radial spectrum of kinetic, S_{κ}(k,t), magnetic, S_{m}(k,t), and potential, S_{p}(k,t), energies is determined considering initial isotropic conditions. For magnetic Coriolis (MC) weak wave turbulence, it is shown that, at large scales such that V_{A}k/f≪1, the Alfvén ratio S_{κ}(k,t)/S_{m}(k,t) behaves like k^{-2} if the rotation axis is aligned with the magnetic field, in agreement with previous direct numerical simulations [Favier et al., Geophys. Astrophys. Fluid Dyn. (2012)] and like k^{-1} if the rotation axis is perpendicular to the magnetic field. At small scales, such that V_{A}k/f≫1, there is an equipartition of energy between magnetic and kinetic components. For magnetic Archimedes weak wave turbulence, it is demonstrated that, at large scales, such that (V_{A}k/N≪1), there is an equipartition of energy between magnetic and potential components
Structure function scaling in a Reλ = 250 turbulent mixing layer
Attili, Antonio; Bisetti, Fabrizio
2011-01-01
A highly resolved Direct Numerical Simulation of a spatially developing turbulent mixing layer is presented. In the fully developed region, the flow achieves a turbulent Reynolds number Reλ = 250, high enough for a clear separation between large and dissipative scales, so for the presence of an inertial range. Structure functions have been calculated in the self-similar region using velocity time series and Taylor's frozen turbulence hypothesis. The Extended Self-Similarity (ESS) concept has been employed to evaluate relative scaling exponents. A wide range of scales with scaling exponents and intermittency levels equal to homogeneous isotropic turbulence has been identified. Moreover an additional scaling range exists for larger scales; it is characterized by smaller exponents, similar to the values reported in the literature for flows with strong shear.
Structure function scaling in a Reλ = 250 turbulent mixing layer
Attili, Antonio
2011-12-22
A highly resolved Direct Numerical Simulation of a spatially developing turbulent mixing layer is presented. In the fully developed region, the flow achieves a turbulent Reynolds number Reλ = 250, high enough for a clear separation between large and dissipative scales, so for the presence of an inertial range. Structure functions have been calculated in the self-similar region using velocity time series and Taylor\\'s frozen turbulence hypothesis. The Extended Self-Similarity (ESS) concept has been employed to evaluate relative scaling exponents. A wide range of scales with scaling exponents and intermittency levels equal to homogeneous isotropic turbulence has been identified. Moreover an additional scaling range exists for larger scales; it is characterized by smaller exponents, similar to the values reported in the literature for flows with strong shear.
Statistics and scaling of turbulence in a spatially developing mixing layer at Reλ = 250
Attili, Antonio
2012-03-21
The turbulent flow originating from the interaction between two parallel streams with different velocities is studied by means of direct numerical simulation. Rather than the more common temporal evolving layer, a spatially evolving configuration, with perturbed laminar inlet conditions is considered. The streamwise evolution and the self-similar state of turbulence statistics are reported and compared to results available in the literature. The characteristics of the transitional region agree with those observed in other simulations and experiments of mixing layers originating from laminar inlets. The present results indicate that the transitional region depends strongly on the inlet flow. Conversely, the self-similar state of turbulent kinetic energy and dissipation agrees quantitatively with those in a temporal mixing layer developing from turbulent initial conditions [M. M. Rogers and R. D. Moser, “Direct simulation of a self-similar turbulent mixing layer,” Phys. Fluids6, 903 (1994)]. The statistical features of turbulence in the self-similar region have been analysed in terms of longitudinal velocity structure functions, and scaling exponents are estimated by applying the extended self-similarity concept. In the small scale range (60 < r/η < 250), the scaling exponents display the universal anomalous scaling observed in homogeneous isotropic turbulence. The hypothesis of isotropy recovery holds in the turbulent mixing layer despite the presence of strong shear and large-scale structures, independently of the means of turbulence generation. At larger scales (r/η > 400), the mean shear and large coherent structures result in a significant deviation from predictions based on homogeneous isotropic turbulence theory. In this second scaling range, the numerical values of the exponents agree quantitatively with those reported for a variety of other flows characterized by strong shear, such as boundary layers, as well as channel and wake flows.
Statistics and scaling of turbulence in a spatially developing mixing layer at Reλ = 250
Attili, Antonio; Bisetti, Fabrizio
2012-01-01
The turbulent flow originating from the interaction between two parallel streams with different velocities is studied by means of direct numerical simulation. Rather than the more common temporal evolving layer, a spatially evolving configuration, with perturbed laminar inlet conditions is considered. The streamwise evolution and the self-similar state of turbulence statistics are reported and compared to results available in the literature. The characteristics of the transitional region agree with those observed in other simulations and experiments of mixing layers originating from laminar inlets. The present results indicate that the transitional region depends strongly on the inlet flow. Conversely, the self-similar state of turbulent kinetic energy and dissipation agrees quantitatively with those in a temporal mixing layer developing from turbulent initial conditions [M. M. Rogers and R. D. Moser, “Direct simulation of a self-similar turbulent mixing layer,” Phys. Fluids6, 903 (1994)]. The statistical features of turbulence in the self-similar region have been analysed in terms of longitudinal velocity structure functions, and scaling exponents are estimated by applying the extended self-similarity concept. In the small scale range (60 < r/η < 250), the scaling exponents display the universal anomalous scaling observed in homogeneous isotropic turbulence. The hypothesis of isotropy recovery holds in the turbulent mixing layer despite the presence of strong shear and large-scale structures, independently of the means of turbulence generation. At larger scales (r/η > 400), the mean shear and large coherent structures result in a significant deviation from predictions based on homogeneous isotropic turbulence theory. In this second scaling range, the numerical values of the exponents agree quantitatively with those reported for a variety of other flows characterized by strong shear, such as boundary layers, as well as channel and wake flows.
Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales
International Nuclear Information System (INIS)
Howes, G. G.; TenBarge, J. M.; Dorland, W.; Numata, R.; Quataert, E.; Schekochihin, A. A.; Tatsuno, T.
2011-01-01
A three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms. The resulting energy spectra are quantitatively consistent with a magnetic power spectrum scaling of k -2.8 as observed in in situ spacecraft measurements of the 'dissipation range' of solar wind turbulence. Despite the strongly nonlinear nature of the turbulence, the linear kinetic Alfven wave mode quantitatively describes the polarization of the turbulent fluctuations. The collisional ion heating is measured at subion-Larmor radius scales, which provides evidence of the ion entropy cascade in an electromagnetic turbulence simulation.
THE DECAY OF A WEAK LARGE-SCALE MAGNETIC FIELD IN TWO-DIMENSIONAL TURBULENCE
Energy Technology Data Exchange (ETDEWEB)
Kondić, Todor; Hughes, David W.; Tobias, Steven M., E-mail: t.kondic@leeds.ac.uk [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom)
2016-06-01
We investigate the decay of a large-scale magnetic field in the context of incompressible, two-dimensional magnetohydrodynamic turbulence. It is well established that a very weak mean field, of strength significantly below equipartition value, induces a small-scale field strong enough to inhibit the process of turbulent magnetic diffusion. In light of ever-increasing computer power, we revisit this problem to investigate fluids and magnetic Reynolds numbers that were previously inaccessible. Furthermore, by exploiting the relation between the turbulent diffusion of the magnetic potential and that of the magnetic field, we are able to calculate the turbulent magnetic diffusivity extremely accurately through the imposition of a uniform mean magnetic field. We confirm the strong dependence of the turbulent diffusivity on the product of the magnetic Reynolds number and the energy of the large-scale magnetic field. We compare our findings with various theoretical descriptions of this process.
Turbulence Enhancement by Fractal Square Grids: Effects of the Number of Fractal Scales
Omilion, Alexis; Ibrahim, Mounir; Zhang, Wei
2017-11-01
Fractal square grids offer a unique solution for passive flow control as they can produce wakes with a distinct turbulence intensity peak and a prolonged turbulence decay region at the expense of only minimal pressure drop. While previous studies have solidified this characteristic of fractal square grids, how the number of scales (or fractal iterations N) affect turbulence production and decay of the induced wake is still not well understood. The focus of this research is to determine the relationship between the fractal iteration N and the turbulence produced in the wake flow using well-controlled water-tunnel experiments. Particle Image Velocimetry (PIV) is used to measure the instantaneous velocity fields downstream of four different fractal grids with increasing number of scales (N = 1, 2, 3, and 4) and a conventional single-scale grid. By comparing the turbulent scales and statistics of the wake, we are able to determine how each iteration affects the peak turbulence intensity and the production/decay of turbulence from the grid. In light of the ability of these fractal grids to increase turbulence intensity with low pressure drop, this work can potentially benefit a wide variety of applications where energy efficient mixing or convective heat transfer is a key process.
Transport equation for the time scale of a turbulent scalar field
International Nuclear Information System (INIS)
Kurbatskij, A.F.
1999-01-01
The two-parametric turbulence models cause serious difficulties by modeling the near-wall flows due to absence of the natural boundary condition on the wall for dissipation of the ε turbulence energy and the ε θ scalar field destruction. This difficulty may be overcome, if instead of the ε and ε θ , as the second parameter of the model, to apply the time scales of the turbulent dynamic and scalar fields. The equation of the scalar field is derived and numerical coefficients included therein, are determined from the simplest problems on the turbulent heat transfer [ru
Multi-Spacecraft Study of Kinetic scale Turbulence Using MMS Observations in the Solar Wind
Chasapis, A.; Matthaeus, W. H.; Parashar, T.; Fuselier, S. A.; Maruca, B.; Burch, J.; Moore, T. E.; Phan, T.; Pollock, C. J.; Gershman, D. J.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.
2017-12-01
We present a study investigating kinetic scale turbulence in the solar wind. Most previous studies relied on single spacecraft measurements, employing the Taylor hypothesis in order to probe different scales. The small separation of MMS spacecraft, well below the ion inertial scale, allow us for the first time to directly probe turbulent fluctuations at the kinetic range. Using multi-spacecraft measurements, we are able to measure the spatial characteristics of turbulent fluctuations and compare with the traditional Taylor-based single spacecraft approach. Meanwhile, combining observations from Cluster and MMS data we were able to cover a wide range of scales from the inertial range where the turbulent cascade takes place, down to the kinetic range where the energy is eventually dissipated. These observations present an important step in understanding the nature of solar wind turbulence and the processes through which turbulent energy is dissipated into particle heating and acceleration. We compute statistical quantities such as the second order structure function and the scale-dependent kurtosis, along with their dependence on the parameters such as the mean magnetic field direction. Overall, we observe an overall agreement between the single spacecraft and the multi-spacecraft approach. However, a small but significant deviation is observed at the smaller scales near the electron inertial scale. The high values of the scale dependent kurtosis at very small scales, observed via two-point measurements, open up a compelling avenue of investigation for theory and numerical modelling.
International Nuclear Information System (INIS)
Kleiner, S.C.; Dickman, R.L.
1985-01-01
The velocity autocorrelation function (ACF) of observed spectral line centroid fluctuations is noted to effectively reproduce the actual ACF of turbulent gas motions within an interstellar cloud, thereby furnishing a framework for the study of the large scale velocity structure of the Taurus dark cloud complex traced by the present C-13O J = 1-0 observations of this region. The results obtained are discussed in the context of recent suggestions that widely observed correlations between molecular cloud widths and cloud sizes indicate the presence of a continuum of turbulent motions within the dense interstellar medium. Attention is then given to a method for the quantitative study of these turbulent motions, involving the mapping of a source in an optically thin spectral line and studying the spatial correlation properties of the resulting velocity centroid map. 61 references
Scaling of plasma turbulence resulting from parametric instabilities
International Nuclear Information System (INIS)
Ott, E.
1976-01-01
Dimensional analysis is used to obtain results on the turbulent state resulting from parametric instabilities of an initially cold plasma. The results include the possibility of an applied magnetic field, multiple ion species, and arbitrary dimensionality
Gyrokinetic simulations of turbulent transport: size scaling and chaotic behaviour
International Nuclear Information System (INIS)
Villard, L; Brunner, S; Casati, A; Aghdam, S Khosh; Lapillonne, X; McMillan, B F; Bottino, A; Dannert, T; Goerler, T; Hatzky, R; Jenko, F; Merz, F; Chowdhury, J; Ganesh, R; Garbet, X; Grandgirard, V; Latu, G; Sarazin, Y; Idomura, Y; Jolliet, S
2010-01-01
Important steps towards the understanding of turbulent transport have been made with the development of the gyrokinetic framework for describing turbulence and with the emergence of numerical codes able to solve the set of gyrokinetic equations. This paper presents some of the main recent advances in gyrokinetic theory and computing of turbulence. Solving 5D gyrokinetic equations for each species requires state-of-the-art high performance computing techniques involving massively parallel computers and parallel scalable algorithms. The various numerical schemes that have been explored until now, Lagrangian, Eulerian and semi-Lagrangian, each have their advantages and drawbacks. A past controversy regarding the finite size effect (finite ρ * ) in ITG turbulence has now been resolved. It has triggered an intensive benchmarking effort and careful examination of the convergence properties of the different numerical approaches. Now, both Eulerian and Lagrangian global codes are shown to agree and to converge to the flux-tube result in the ρ * → 0 limit. It is found, however, that an appropriate treatment of geometrical terms is necessary: inconsistent approximations that are sometimes used can lead to important discrepancies. Turbulent processes are characterized by a chaotic behaviour, often accompanied by bursts and avalanches. Performing ensemble averages of statistically independent simulations, starting from different initial conditions, is presented as a way to assess the intrinsic variability of turbulent fluxes and obtain reliable estimates of the standard deviation. Further developments concerning non-adiabatic electron dynamics around mode-rational surfaces and electromagnetic effects are discussed.
Verification of Gyrokinetic Particle of Turbulent Simulation of Device Size Scaling Transport
Institute of Scientific and Technical Information of China (English)
LIN Zhihong; S. ETHIER; T. S. HAHM; W. M. TANG
2012-01-01
Verification and historical perspective are presented on the gyrokinetic particle simulations that discovered the device size scaling of turbulent transport and indentified the geometry model as the source of the long-standing disagreement between gyrokinetic particle and continuum simulations.
Estimation of turbulence dissipation rate by Large eddy PIV method in an agitated vessel
Directory of Open Access Journals (Sweden)
Kysela Bohuš
2015-01-01
Full Text Available The distribution of turbulent kinetic energy dissipation rate is important for design of mixing apparatuses in chemical industry. Generally used experimental methods of velocity measurements for measurement in complex geometries of an agitated vessel disallow measurement in resolution of small scales close to turbulence dissipation ones. Therefore, Particle image velocity (PIV measurement method improved by large eddy Ply approach was used. Large eddy PIV method is based on modeling of smallest eddies by a sub grid scale (SGS model. This method is similar to numerical calculations using Large Eddy Simulation (LES and the same SGS models are used. In this work the basic Smagorinsky model was employed and compared with power law approximation. Time resolved PIV data were processed by Large Eddy PIV approach and the obtained results of turbulent kinetic dissipation rate were compared in selected points for several operating conditions (impeller speed, operating liquid viscosity.
The gyro-radius scaling of ion thermal transport from global numerical simulations of ITG turbulence
International Nuclear Information System (INIS)
Ottaviani, M.; Manfredi, G.
1998-12-01
A three-dimensional, fluid code is used to study the scaling of ion thermal transport caused by Ion-Temperature-Gradient-Driven (ITG) turbulence. The code includes toroidal effects and is capable of simulating the whole torus. It is found that both close to the ITG threshold and well above threshold, the thermal transport and the turbulence structures exhibit a gyro-Bohm scaling, at least for plasmas with moderate poloidal flow. (author)
Small-scale turbulence, marine snow formation, and planktivorous feeding
DEFF Research Database (Denmark)
Kiørboe, Thomas
1997-01-01
predators encounter prey in turbulent environments, and the equations are modified to take predator and prey behaviour into account. Simple equations that describe prey encounter rates for cruising predators, suspension feeders, ambush feeders, and pause-travel predators in calm and turbulent water...... are derived. The influence of fluid motion on post-encounter prey capture (pursuit success) is examined. Experimental results on various copepod and larval fish predators will be used to illustrate the theory. Finally, the significance of size and behaviour is discussed. It is shown that turbulence...... is potentially very important for prey encounter in mm-cm sized planktonic predators, while it is unimportant for most larger and smaller ones....
Autonomous Operation of Hybrid Microgrid with AC and DC Sub-Grids
DEFF Research Database (Denmark)
Loh, Poh Chiang; Blaabjerg, Frede
2011-01-01
the power flow among all the sources distributed throughout the two types of sub-grids, which certainly is tougher than previous efforts developed for only either ac or dc microgrid. This wider scope of control has not yet been investigated, and would certainly rely on the coordinated operation of dc...... sources, ac sources and interlinking converters. Suitable control and normalization schemes are therefore developed for controlling them with results presented for showing the overall performance of the hybrid microgrid.......This paper investigates on the active and reactive power sharing of an autonomous hybrid microgrid. Unlike existing microgrids which are purely ac, the hybrid microgrid studied here comprises dc and ac sub-grids, interconnected by power electronic interfaces. The main challenge here is to manage...
Phenomenology of two-dimensional stably stratified turbulence under large-scale forcing
Kumar, Abhishek; Verma, Mahendra K.; Sukhatme, Jai
2017-01-01
In this paper, we characterise the scaling of energy spectra, and the interscale transfer of energy and enstrophy, for strongly, moderately and weakly stably stratified two-dimensional (2D) turbulence, restricted in a vertical plane, under large-scale random forcing. In the strongly stratified case, a large-scale vertically sheared horizontal flow (VSHF) coexists with small scale turbulence. The VSHF consists of internal gravity waves and the turbulent flow has a kinetic energy (KE) spectrum that follows an approximate k−3 scaling with zero KE flux and a robust positive enstrophy flux. The spectrum of the turbulent potential energy (PE) also approximately follows a k−3 power-law and its flux is directed to small scales. For moderate stratification, there is no VSHF and the KE of the turbulent flow exhibits Bolgiano–Obukhov scaling that transitions from a shallow k−11/5 form at large scales, to a steeper approximate k−3 scaling at small scales. The entire range of scales shows a strong forward enstrophy flux, and interestingly, large (small) scales show an inverse (forward) KE flux. The PE flux in this regime is directed to small scales, and the PE spectrum is characterised by an approximate k−1.64 scaling. Finally, for weak stratification, KE is transferred upscale and its spectrum closely follows a k−2.5 scaling, while PE exhibits a forward transfer and its spectrum shows an approximate k−1.6 power-law. For all stratification strengths, the total energy always flows from large to small scales and almost all the spectral indicies are well explained by accounting for the scale-dependent nature of the corresponding flux.
Phenomenology of two-dimensional stably stratified turbulence under large-scale forcing
Kumar, Abhishek
2017-01-11
In this paper, we characterise the scaling of energy spectra, and the interscale transfer of energy and enstrophy, for strongly, moderately and weakly stably stratified two-dimensional (2D) turbulence, restricted in a vertical plane, under large-scale random forcing. In the strongly stratified case, a large-scale vertically sheared horizontal flow (VSHF) coexists with small scale turbulence. The VSHF consists of internal gravity waves and the turbulent flow has a kinetic energy (KE) spectrum that follows an approximate k−3 scaling with zero KE flux and a robust positive enstrophy flux. The spectrum of the turbulent potential energy (PE) also approximately follows a k−3 power-law and its flux is directed to small scales. For moderate stratification, there is no VSHF and the KE of the turbulent flow exhibits Bolgiano–Obukhov scaling that transitions from a shallow k−11/5 form at large scales, to a steeper approximate k−3 scaling at small scales. The entire range of scales shows a strong forward enstrophy flux, and interestingly, large (small) scales show an inverse (forward) KE flux. The PE flux in this regime is directed to small scales, and the PE spectrum is characterised by an approximate k−1.64 scaling. Finally, for weak stratification, KE is transferred upscale and its spectrum closely follows a k−2.5 scaling, while PE exhibits a forward transfer and its spectrum shows an approximate k−1.6 power-law. For all stratification strengths, the total energy always flows from large to small scales and almost all the spectral indicies are well explained by accounting for the scale-dependent nature of the corresponding flux.
An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling
Directory of Open Access Journals (Sweden)
Y. Qian
2010-07-01
Full Text Available One fundamental property and limitation of grid based models is their inability to identify spatial details smaller than the grid cell size. While decades of work have gone into developing sub-grid treatments for clouds and land surface processes in climate models, the quantitative understanding of sub-grid processes and variability for aerosols and their precursors is much poorer. In this study, WRF-Chem is used to simulate the trace gases and aerosols over central Mexico during the 2006 MILAGRO field campaign, with multiple spatial resolutions and emission/terrain scenarios. Our analysis focuses on quantifying the sub-grid variability (SGV of trace gases and aerosols within a typical global climate model grid cell, i.e. 75×75 km^{2}.
Our results suggest that a simulation with 3-km horizontal grid spacing adequately reproduces the overall transport and mixing of trace gases and aerosols downwind of Mexico City, while 75-km horizontal grid spacing is insufficient to represent local emission and terrain-induced flows along the mountain ridge, subsequently affecting the transport and mixing of plumes from nearby sources. Therefore, the coarse model grid cell average may not correctly represent aerosol properties measured over polluted areas. Probability density functions (PDFs for trace gases and aerosols show that secondary trace gases and aerosols, such as O_{3}, sulfate, ammonium, and nitrate, are more likely to have a relatively uniform probability distribution (i.e. smaller SGV over a narrow range of concentration values. Mostly inert and long-lived trace gases and aerosols, such as CO and BC, are more likely to have broad and skewed distributions (i.e. larger SGV over polluted regions. Over remote areas, all trace gases and aerosols are more uniformly distributed compared to polluted areas. Both CO and O_{3} SGV vertical profiles are nearly constant within the PBL during daytime, indicating that trace gases
Queiros-Conde, D.; Foucher, F.; Mounaïm-Rousselle, C.; Kassem, H.; Feidt, M.
2008-12-01
Multi-scale features of turbulent flames near a wall display two kinds of scale-dependent fractal features. In scale-space, an unique fractal dimension cannot be defined and the fractal dimension of the front is scale-dependent. Moreover, when the front approaches the wall, this dependency changes: fractal dimension also depends on the wall-distance. Our aim here is to propose a general geometrical framework that provides the possibility to integrate these two cases, in order to describe the multi-scale structure of turbulent flames interacting with a wall. Based on the scale-entropy quantity, which is simply linked to the roughness of the front, we thus introduce a general scale-entropy diffusion equation. We define the notion of “scale-evolutivity” which characterises the deviation of a multi-scale system from the pure fractal behaviour. The specific case of a constant “scale-evolutivity” over the scale-range is studied. In this case, called “parabolic scaling”, the fractal dimension is a linear function of the logarithm of scale. The case of a constant scale-evolutivity in the wall-distance space implies that the fractal dimension depends linearly on the logarithm of the wall-distance. We then verified experimentally, that parabolic scaling represents a good approximation of the real multi-scale features of turbulent flames near a wall.
PECASE - Multi-Scale Experiments and Modeling in Wall Turbulence
2014-12-23
transition to turbulence in pipe flow have been characterized by the creation of puffs and slugs [Wygnanski and Champagne , 1973]. Puffs have been identified...Fluid Mech., 568:55–76, 2006. I. J. Wygnanski and F. H. Champagne . On transition in a pipe. Part 1: The origin of puffs and slugs and the flow in a
Shih, Hong-Yan; Goldenfeld, Nigel
Experiments on transitional turbulence in pipe flow seem to show that turbulence is a transient metastable state since the measured mean lifetime of turbulence puffs does not diverge asymptotically at a critical Reynolds number. Yet measurements reveal that the lifetime scales with Reynolds number in a super-exponential way reminiscent of extreme value statistics, and simulations and experiments in Couette and channel flow exhibit directed percolation type scaling phenomena near a well-defined transition. This universality class arises from the interplay between small-scale turbulence and a large-scale collective zonal flow, which exhibit predator-prey behavior. Why is asymptotically divergent behavior not observed? Using directed percolation and a stochastic individual level model of predator-prey dynamics related to transitional turbulence, we investigate the relation between extreme value statistics and power law critical behavior, and show that the paradox is resolved by carefully defining what is measured in the experiments. We theoretically derive the super-exponential scaling law, and using finite-size scaling, show how the same data can give both super-exponential behavior and power-law critical scaling.
Turbulent Concentration of mm-Size Particles in the Protoplanetary Nebula: Scale-Dependent Cascades
Cuzzi, J. N.; Hartlep, T.
2015-01-01
estimated using a statistical model with properties inferred from large numerical simulations of turbulence. Nebula turbulence is described by its Reynolds number Re = (L/eta)(exp 4/3), where L = H alpha(exp 1/2) is the largest eddy scale, H is the nebula gas vertical scale height, alpha the turbulent viscosity parameter, and eta is the Kolmogorov or smallest scale in turbulence (typically about 1km), with eddy turnover time t(sub eta). In the nebula, Re is far larger than any numerical simulation can handle, so some physical arguments are needed to extend the results of numerical simulations to nebula conditions. In this paper, we report new physics to be incorporated into our statistical models.
Turbulent boundary layer over 2D and 3D large-scale wavy walls
Chamorro, Leonardo P.; Hamed, Ali M.; Castillo, Luciano
2015-11-01
In this work, an experimental investigation of the developing and developed flow over two- and three-dimensional large-scale wavy walls was performed using high-resolution planar particle image velocimetry in a refractive-index-matching flume. The 2D wall is described by a sinusoidal wave in the streamwise direction with amplitude to wavelength ratio a/ λx = 0.05. The 3D wall is defined with an additional wave superimposed on the 2D wall in the spanwise direction with a/ λy = 0.1. The flow was characterized at Reynolds numbers of 4000 and 40000, based on the bulk velocity and the flume half height. Instantaneous velocity fields and time-averaged turbulence quantities reveal strong coupling between large-scale topography and the turbulence dynamics near the wall. Turbulence statistics show the presence of a well-structured shear layer that enhances the turbulence for the 2D wavy wall, whereas the 3D wall exhibits different flow dynamics and significantly lower turbulence levels, particularly for which shows about 30% reduction. The likelihood of recirculation bubbles, levels and spatial distribution of turbulence, and the rate of the turbulent kinetic energy production are shown to be severely affected when a single spanwise mode is superimposed on the 2D wall. POD analysis was also performed to further understand distinctive features of the flow structures due to surface topography.
Multi-scale viscosity model of turbulence for fully-developed channel flows
International Nuclear Information System (INIS)
Kriventsev, V.; Yamaguchi, A.; Ninokata, H.
2001-01-01
The full text follows. Multi-Scale Viscosity (MSV) model is proposed for estimation of the Reynolds stresses in turbulent fully-developed flow in a straight channel of an arbitrary shape. We assume that flow in an ''ideal'' channel is always stable, i.e. laminar, but turbulence is developing process of external perturbations cased by wall roughness and other factors. We also assume that real flows are always affected by perturbations of every scale lower than the size of the channel. And the turbulence is generated in form of internal, or ''turbulent'' viscosity increase to preserve stability of ''disturbed'' flow. The main idea of MSV can be expressed in the following phenomenological rule: A local deformation of axial velocity can generate the turbulence with the intensity that keeps the value of local turbulent Reynolds number below some critical value. Here, the local turbulent Reynolds number is defined as a product of value of axial velocity deformation for a given scale and generic length of this scale divided by accumulated value of laminar and turbulent viscosity of lower scales. In MSV, the only empirical parameter is the critical Reynolds number that is estimated to be around 100. It corresponds for the largest scale which is hydraulic diameter of the channel and, therefore represents the regular Reynolds number. Thus, the value Re=100 corresponds to conditions when turbulent flow can appear in case of ''significant'' (comparable with size of channel) velocity disturbance in boundary and/or initial conditions for velocity. Of course, most of real flows in channels with relatively smooth walls remain laminar for this small Reynolds number because of absence of such ''significant'' perturbations. MSV model has been applied to the fully-developed turbulent flows in straight channels such as a circular tube and annular channel. Friction factor and velocity profiles predicted with MSV are in a very good agreement with numerous experimental data. Position of
Towards an integrated multiscale simulation of turbulent clouds on PetaScale computers
International Nuclear Information System (INIS)
Wang Lianping; Ayala, Orlando; Parishani, Hossein; Gao, Guang R; Kambhamettu, Chandra; Li Xiaoming; Rossi, Louis; Orozco, Daniel; Torres, Claudio; Grabowski, Wojciech W; Wyszogrodzki, Andrzej A; Piotrowski, Zbigniew
2011-01-01
The development of precipitating warm clouds is affected by several effects of small-scale air turbulence including enhancement of droplet-droplet collision rate by turbulence, entrainment and mixing at the cloud edges, and coupling of mechanical and thermal energies at various scales. Large-scale computation is a viable research tool for quantifying these multiscale processes. Specifically, top-down large-eddy simulations (LES) of shallow convective clouds typically resolve scales of turbulent energy-containing eddies while the effects of turbulent cascade toward viscous dissipation are parameterized. Bottom-up hybrid direct numerical simulations (HDNS) of cloud microphysical processes resolve fully the dissipation-range flow scales but only partially the inertial subrange scales. it is desirable to systematically decrease the grid length in LES and increase the domain size in HDNS so that they can be better integrated to address the full range of scales and their coupling. In this paper, we discuss computational issues and physical modeling questions in expanding the ranges of scales realizable in LES and HDNS, and in bridging LES and HDNS. We review our on-going efforts in transforming our simulation codes towards PetaScale computing, in improving physical representations in LES and HDNS, and in developing better methods to analyze and interpret the simulation results.
International Nuclear Information System (INIS)
Le Roux, J. A.
2011-01-01
Earlier work based on nonlinear guiding center (NLGC) theory suggested that perpendicular cosmic-ray transport is diffusive when cosmic rays encounter random three-dimensional magnetohydrodynamic turbulence dominated by uniform two-dimensional (2D) turbulence with a minor uniform slab turbulence component. In this approach large-scale perpendicular cosmic-ray transport is due to cosmic rays microscopically diffusing along the meandering magnetic field dominated by 2D turbulence because of gyroresonant interactions with slab turbulence. However, turbulence in the solar wind is intermittent and it has been suggested that intermittent turbulence might be responsible for the observation of 'dropout' events in solar energetic particle fluxes on small scales. In a previous paper le Roux et al. suggested, using NLGC theory as a basis, that if gyro-scale slab turbulence is intermittent, large-scale perpendicular cosmic-ray transport in weak uniform 2D turbulence will be superdiffusive or subdiffusive depending on the statistical characteristics of the intermittent slab turbulence. In this paper we expand and refine our previous work further by investigating how both parallel and perpendicular transport are affected by intermittent slab turbulence for weak as well as strong uniform 2D turbulence. The main new finding is that both parallel and perpendicular transport are the net effect of an interplay between diffusive and nondiffusive (superdiffusive or subdiffusive) transport effects as a consequence of this intermittency.
Energy Technology Data Exchange (ETDEWEB)
Le Roux, J. A. [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)
2011-12-10
Earlier work based on nonlinear guiding center (NLGC) theory suggested that perpendicular cosmic-ray transport is diffusive when cosmic rays encounter random three-dimensional magnetohydrodynamic turbulence dominated by uniform two-dimensional (2D) turbulence with a minor uniform slab turbulence component. In this approach large-scale perpendicular cosmic-ray transport is due to cosmic rays microscopically diffusing along the meandering magnetic field dominated by 2D turbulence because of gyroresonant interactions with slab turbulence. However, turbulence in the solar wind is intermittent and it has been suggested that intermittent turbulence might be responsible for the observation of 'dropout' events in solar energetic particle fluxes on small scales. In a previous paper le Roux et al. suggested, using NLGC theory as a basis, that if gyro-scale slab turbulence is intermittent, large-scale perpendicular cosmic-ray transport in weak uniform 2D turbulence will be superdiffusive or subdiffusive depending on the statistical characteristics of the intermittent slab turbulence. In this paper we expand and refine our previous work further by investigating how both parallel and perpendicular transport are affected by intermittent slab turbulence for weak as well as strong uniform 2D turbulence. The main new finding is that both parallel and perpendicular transport are the net effect of an interplay between diffusive and nondiffusive (superdiffusive or subdiffusive) transport effects as a consequence of this intermittency.
Energy Technology Data Exchange (ETDEWEB)
Ren, Y.; Wang, W. X.; LeBlanc, B. P.; Guttenfelder, W.; Kaye, S. M.; Ethier, S.; Mazzucato, E.; Bell, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lee, K. C. [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Domier, C. W. [University of California at Davis, Davis, California 95616 (United States); Smith, D. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)
2015-11-15
In this letter, we report the first observation of the fast response of electron-scale turbulence to auxiliary heating cessation in National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)]. The observation was made in a set of RF-heated L-mode plasmas with toroidal magnetic field of 0.55 T and plasma current of 300 kA. It is observed that electron-scale turbulence spectral power (measured with a high-k collective microwave scattering system) decreases significantly following fast cessation of RF heating that occurs in less than 200 μs. The large drop in the turbulence spectral power has a short time delay of about 1–2 ms relative to the RF cessation and happens on a time scale of 0.5–1 ms, much smaller than the energy confinement time of about 10 ms. Power balance analysis shows a factor of about 2 decrease in electron thermal diffusivity after the sudden drop of turbulence spectral power. Measured small changes in equilibrium profiles across the RF cessation are unlikely able to explain this sudden reduction in the measured turbulence and decrease in electron thermal transport, supported by local linear stability analysis and both local and global nonlinear gyrokinetic simulations. The observations imply that nonlocal flux-driven mechanism may be important for the observed turbulence and electron thermal transport.
Electron Scale Structures and Magnetic Reconnection Signatures in the Turbulent Magnetosheath
Yordanova, E.; Voros, Z.; Varsani, A.; Graham, D. B.; Norgren, C.; Khotyaintsev, Yu. V.; Vaivads, A.; Eriksson, E.; Nakamura, R.; Lindqvist, P.-A.;
2016-01-01
Collisionless space plasma turbulence can generate reconnecting thin current sheets as suggested by recent results of numerical magnetohydrodynamic simulations. The Magnetospheric Multiscale (MMS) mission provides the first serious opportunity to verify whether small ion-electron-scale reconnection, generated by turbulence, resembles the reconnection events frequently observed in the magnetotail or at the magnetopause. Here we investigate field and particle observations obtained by the MMS fleet in the turbulent terrestrial magnetosheath behind quasi-parallel bow shock geometry. We observe multiple small-scale current sheets during the event and present a detailed look of one of the detected structures. The emergence of thin current sheets can lead to electron scale structures. Within these structures, we see signatures of ion demagnetization, electron jets, electron heating, and agyrotropy suggesting that MMS spacecraft observe reconnection at these scales.
Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows
Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel
2017-11-01
We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.
New time scale based k-epsilon model for near-wall turbulence
Yang, Z.; Shih, T. H.
1993-01-01
A k-epsilon model is proposed for wall bonded turbulent flows. In this model, the eddy viscosity is characterized by a turbulent velocity scale and a turbulent time scale. The time scale is bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using this time scale and no singularity exists at the wall. The damping function used in the eddy viscosity is chosen to be a function of R(sub y) = (k(sup 1/2)y)/v instead of y(+). Hence, the model could be used for flows with separation. The model constants used are the same as in the high Reynolds number standard k-epsilon model. Thus, the proposed model will be also suitable for flows far from the wall. Turbulent channel flows at different Reynolds numbers and turbulent boundary layer flows with and without pressure gradient are calculated. Results show that the model predictions are in good agreement with direct numerical simulation and experimental data.
Realization of a Tunable Dissipation Scale in a Turbulent Cascade using a Quantum Gas
Navon, Nir; Eigen, Christoph; Zhang, Jinyi; Lopes, Raphael; Smith, Robert; Hadzibabic, Zoran
2017-04-01
Many turbulent flows form so-called cascades, where excitations injected at large length scales, are transported to gradually smaller scales until they reach a dissipation scale. We initiate a turbulent cascade in a dilute Bose fluid by pumping energy at the container scale of an optical box trap using an oscillating magnetic force. In contrast to classical fluids where the dissipation scale is set by the viscosity of the fluid, the turbulent cascade of our quantum gas finishes when the particles kinetic energy exceeds the laser-trap depth. This mechanism thus allows us to effectively tune the dissipation scale where particles (and energy) are lost, and measure the particle flux in the cascade at the dissipation scale. We observe a unit power-law decay of the particle-dissipation rate with trap depth, which confirms the surprising prediction that in a wave-turbulent direct energy cascade, the particle flux vanishes in the ideal limit where the dissipation length scale tends to zero.
Electromotive force and large-scale magnetic dynamo in a turbulent flow with a mean shear.
Rogachevskii, Igor; Kleeorin, Nathan
2003-09-01
An effect of sheared large-scale motions on a mean electromotive force in a nonrotating turbulent flow of a conducting fluid is studied. It is demonstrated that in a homogeneous divergence-free turbulent flow the alpha effect does not exist, however a mean magnetic field can be generated even in a nonrotating turbulence with an imposed mean velocity shear due to a "shear-current" effect. A mean velocity shear results in an anisotropy of turbulent magnetic diffusion. A contribution to the electromotive force related to the symmetric parts of the gradient tensor of the mean magnetic field (the kappa effect) is found in nonrotating turbulent flows with a mean shear. The kappa effect and turbulent magnetic diffusion reduce the growth rate of the mean magnetic field. It is shown that a mean magnetic field can be generated when the exponent of the energy spectrum of the background turbulence (without the mean velocity shear) is less than 2. The shear-current effect was studied using two different methods: the tau approximation (the Orszag third-order closure procedure) and the stochastic calculus (the path integral representation of the solution of the induction equation, Feynman-Kac formula, and Cameron-Martin-Girsanov theorem). Astrophysical applications of the obtained results are discussed.
ISS modeling strategy for the numerical simulation of turbulent sub-channel liquid-vapor flows
International Nuclear Information System (INIS)
Olivier Lebaigue; Benoit Mathieu; Didier Jamet
2005-01-01
Full text of publication follows: The general objective is to perform numerical simulation of the liquid-vapor turbulent two-phase flows that occur in sub-channels of a nuclear plant assembly under nominal or incidental situations. Additional features concern nucleate boiling at the surface of fuel rods and the sliding of vapor bubbles on this surface with possible dynamic contact lines. The Interfaces and Sub-grid Scales (ISS) modeling strategy for numerical simulations is one of the possible two-phase equivalents for the one-phase LES concept. It consists in solving the two-phase flows features at the scales that are resolved by the grid of the numerical method, and to take into account the unresolved scales with sub-grid models. Interfaces are tracked in a DNS-like approach while specific features of the behavior of interfaces such as contact line physics, coalescence and fragmentation, and the smallest scales of turbulence within each phase have an unresolved scale part that is modeled. The problem of the modeling of the smallest scales of turbulence is rather simple even if the classical situation is altered by the presence of the interfaces. In a typical sub-channel situation (e.g., 15 MPa and 3.5 m.s -1 water flow in a PWR sub-channel), the Kolmogorov scale is ca. 1 μm whereas typical bubble size are supposed to be close to 150 μm. Therefore, the use of a simple sub-grid model between, e.g., 1 and 20 μm allows a drastic reduction of the number of nodes in the space discretization while it remains possible to validate by comparison to true DNS results. Other sub-grid models have been considered to recover physical phenomena that cannot be captured with a realistic discretization: they rely on physical scales from molecular size to 1 μm. In these cases, the use of sub-grid model is no longer a matter of CPU-time and memory saving only, but also a corner stone to recover physical behavior. From this point of view at least we are no longer performing true
Mixing in 3D Sparse Multi-Scale Grid Generated Turbulence
Usama, Syed; Kopec, Jacek; Tellez, Jackson; Kwiatkowski, Kamil; Redondo, Jose; Malik, Nadeem
2017-04-01
Flat 2D fractal grids are known to alter turbulence characteristics downstream of the grid as compared to the regular grids with the same blockage ratio and the same mass inflow rates [1]. This has excited interest in the turbulence community for possible exploitation for enhanced mixing and related applications. Recently, a new 3D multi-scale grid design has been proposed [2] such that each generation of length scale of turbulence grid elements is held in its own frame, the overall effect is a 3D co-planar arrangement of grid elements. This produces a 'sparse' grid system whereby each generation of grid elements produces a turbulent wake pattern that interacts with the other wake patterns downstream. A critical motivation here is that the effective blockage ratio in the 3D Sparse Grid Turbulence (3DSGT) design is significantly lower than in the flat 2D counterpart - typically the blockage ratio could be reduced from say 20% in 2D down to 4% in the 3DSGT. If this idea can be realized in practice, it could potentially greatly enhance the efficiency of turbulent mixing and transfer processes clearly having many possible applications. Work has begun on the 3DSGT experimentally using Surface Flow Image Velocimetry (SFIV) [3] at the European facility in the Max Planck Institute for Dynamics and Self-Organization located in Gottingen, Germany and also at the Technical University of Catalonia (UPC) in Spain, and numerically using Direct Numerical Simulation (DNS) at King Fahd University of Petroleum & Minerals (KFUPM) in Saudi Arabia and in University of Warsaw in Poland. DNS is the most useful method to compare the experimental results with, and we are studying different types of codes such as Imcompact3d, and OpenFoam. Many variables will eventually be investigated for optimal mixing conditions. For example, the number of scale generations, the spacing between frames, the size ratio of grid elements, inflow conditions, etc. We will report upon the first set of findings
International Nuclear Information System (INIS)
Reuss, J.D.; Misguich, J.H.
1996-02-01
An important point for turbulent transport consists in determining the scaling law for the diffusion coefficient D due to electrostatic turbulence. It is well-known that for weak amplitudes or large frequencies, the reduced diffusion coefficient has a quasi-linear like (or gyro-Bohm like) scaling, while for large amplitudes or small frequencies it has been traditionally believed that the scaling is Bohm-like. The aim of this work consists to test this prediction for a given realistic model. This problem is studied by direct simulation of particle trajectories. Guiding centre diffusion in a spectrum of electrostatic turbulence is computed for test particles in a model spectrum, by means of a new parallelized code RADIGUET 2. The results indicate a continuous transition for large amplitudes toward a value which is compatible with the Isichenko percolation prediction. (author)
Investigation of small-scale tokamak plasma turbulence by correlative UHR backscattering diagnostics
International Nuclear Information System (INIS)
Gusakov, E Z; Gurchenko, A D; Altukhov, A B; Bulanin, V V; Esipov, L A; Kantor, M Yu; Kouprienko, D V; Lashkul, S I; Petrov, A V; Stepanov, A Yu
2006-01-01
Fine scale turbulence is considered nowadays as a possible candidate for the explanation of anomalous ion and electron energy transport in magnetized fusion plasmas. The unique correlative upper hybrid resonance backscattering (UHR BS) technique is applied at the FT-2 tokamak for investigation of density fluctuations excited in this turbulence. The measurements are carried out in Ohmic discharge at several values of plasma current and density and during current ramp up experiment. The moveable focusing antennas set have been used in experiments allowing probing out of equatorial plane. The radial wave number spectra of the small-scale component of tokamak turbulence are determined from the correlation data with high spatial resolution. Two small-scale modes possessing substantially different phase velocities are observed in plasma under conditions when the threshold for the electron temperature gradient mode excitation is overcome. The possibility of plasma poloidal velocity profile determination using the UHR BS signal is demonstrated
Anomalous scaling of structure functions and dynamic constraints on turbulence simulations
International Nuclear Information System (INIS)
Yakhot, Victor; Sreenivasan, Katepalli R.
2006-12-01
The connection between anomalous scaling of structure functions (intermittency) and numerical methods for turbulence simulations is discussed. It is argued that the computational work for direct numerical simulations (DNS) of fully developed turbulence increases as Re 4 , and not as Re 3 expected from Kolmogorov's theory, where Re is a large-scale Reynolds number. Various relations for the moments of acceleration and velocity derivatives are derived. An infinite set of exact constraints on dynamically consistent subgrid models for Large Eddy Simulations (LES) is derived from the Navier-Stokes equations, and some problems of principle associated with existing LES models are highlighted. (author)
Logarithmic scaling for fluctuations of a scalar concentration in wall turbulence.
Mouri, Hideaki; Morinaga, Takeshi; Yagi, Toshimasa; Mori, Kazuyasu
2017-12-01
Within wall turbulence, there is a sublayer where the mean velocity and the variance of velocity fluctuations vary logarithmically with the height from the wall. This logarithmic scaling is also known for the mean concentration of a passive scalar. By using heat as such a scalar in a laboratory experiment of a turbulent boundary layer, the existence of the logarithmic scaling is shown here for the variance of fluctuations of the scalar concentration. It is reproduced by a model of energy-containing eddies that are attached to the wall.
A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence
Kibbey, Timothy P.
2014-01-01
A derivation of turbulent flow parameters, combined with data from erosive burning test motors and blowing wall tests results in erosive burning model candidates useful in one-dimensional internal ballistics analysis capable of scaling across wide ranges of motor size. The real-time burn rate data comes from three test campaigns of subscale segmented solid rocket motors tested at two facilities. The flow theory admits the important effect of the blowing wall on the turbulent friction coefficient by using blowing wall data to determine the blowing wall friction coefficient. The erosive burning behavior of full-scale motors is now predicted more closely than with other recent models.
Logarithmic scaling in the near-dissipation range of turbulence
International Nuclear Information System (INIS)
Sreenivasan, K.R.; Bershadskii, A.
2006-12-01
A logarithmic scaling for structure functions, in the form S p ∼ [ln(r/η)] ζp , where η is the Kolmogorov dissipation scale and ζ p are the scaling exponents, is suggested for the statistical description of the near-dissipation range for which classical power-law scaling does not apply. From experimental data at moderate Reynolds numbers, it is shown that the logarithmic scaling, deduced from general considerations for the near-dissipation range, covers almost the entire range of scales (about two decades) of structure functions, for both velocity and passive scalar fields. This new scaling requires two empirical constants, just as the classical scaling does, and can be considered the basis for extended self-similarity. (author)
Collisional effects on diffusion scaling laws in electrostatic turbulence
International Nuclear Information System (INIS)
Vlad, M.; Spineanu, F.; Misguich, J.H.; Vlad, M.; Spineanu, F.; Balescu, R.
1999-07-01
The effect of particle collisions on the effective transport in an electrostatic plasma turbulence is analytically studied in the framework of test particle approach. We show that an amplification of the diffusion coefficient can be produced by the combined effect of collisions and trajectory trapping in the structure of the stochastic potential. The paper is organized as follows. The model and the system of equations are formulated in Sec. 2. A short description of the process of trajectory trapping around the extrema of the stochastic potential and of the de-correlation trajectory method is presented in Sec.3. The effect of particle collisions is treated in Sec. 4 where the running diffusion coefficient is determined. Sec. 5 contains the analyses of the results, and Sec. 6 a detailed study of the possible diffusion regimes. The conclusions are summarized in Sec. 7. (authors)
Large-Eddy Simulation of turbulent vortex shedding
International Nuclear Information System (INIS)
Archambeau, F.
1995-06-01
This thesis documents the development and application of a computational algorithm for Large-Eddy Simulation. Unusually, the method adopts a fully collocated variable storage arrangement and is applicable to complex, non-rectilinear geometries. A Reynolds-averaged Navier-Stokes algorithm has formed the starting point of the development, but has been modified substantially: the spatial approximation of convection is effected by an energy-conserving central-differencing scheme; a second-order time-marching Adams-Bashforth scheme has been introduced; the pressure field is determined by solving the pressure-Poisson equation; this equation is solved either by use of preconditioned Conjugate-Gradient methods or with the Generalised Minimum Residual method; two types of sub-grid scale models have been introduced and examined. The algorithm has been validated by reference to a hierarchy of unsteady flows of increasing complexity starting with unsteady lid-driven cavity flows and ending with 3-D turbulent vortex shedding behind a square prism. In the latter case, for which extensive experimental data are available, special emphasis has been put on examining the dependence of the results on mesh density, near-wall treatment and the nature of the sub-grid-scale model, one of which is an advanced dynamic model. The LES scheme is shown to return time-average and phase-averaged results which agree well with experimental data and which support the view that LES is a promising approach for unsteady flows dominated by large periodic structures. (author)
Turbulent methane combustion in a laboratory-scale furnace
Energy Technology Data Exchange (ETDEWEB)
Oksanen, A.; Maeki-Mantila, E. [Tampere Univ. of Technology (Finland). Energy and Process Engineering
1996-12-31
Methane combustion in the 400 rotational symmetric test chamber by ENEL was investigated. The prediction of the reaction rates of methane and carbon monoxide was based on the models which are taking into consideration the effect of turbulence on the oxidation phenomena namely the eddy dissipation concept model (EDC) and the eddy dissipation model (EDM). The experimental results of the distributions of the different species concentrations, temperature, velocities, turbulence quantities etc. were measured in the chamber cross-sections. The formation of nitric oxide was modelled using the thermal- and prompt-NO formation mechanisms and the formulation was based on the chemical kinetics and the probability density function (pdf) with the {beta}- and {delta}-distributions. If more than one variable is taken into consideration in the use of pdf it is very difficult to find distribution for different variables and especially to solve them with the moderate amount of the computing time. Therefore, in this presentation the amount of the pdf variables was limited as small as possible i.e. only one variable namely the mixture fraction was used the variance of which was solved from the transport equation. The computational domain which was divided into about seven thousand cells includes areas where the mean values of the variables can be supposed to be known and where the distribution of the probability is very narrow. Because in every computational cell the probability distribution as accurate as possible is wanted the linearization of the integration was made. The effect of the local extinction on the reaction rates was also included in the paper
Turbulent methane combustion in a laboratory-scale furnace
Energy Technology Data Exchange (ETDEWEB)
Oksanen, A; Maeki-Mantila, E [Tampere Univ. of Technology (Finland). Energy and Process Engineering
1997-12-31
Methane combustion in the 400 rotational symmetric test chamber by ENEL was investigated. The prediction of the reaction rates of methane and carbon monoxide was based on the models which are taking into consideration the effect of turbulence on the oxidation phenomena namely the eddy dissipation concept model (EDC) and the eddy dissipation model (EDM). The experimental results of the distributions of the different species concentrations, temperature, velocities, turbulence quantities etc. were measured in the chamber cross-sections. The formation of nitric oxide was modelled using the thermal- and prompt-NO formation mechanisms and the formulation was based on the chemical kinetics and the probability density function (pdf) with the {beta}- and {delta}-distributions. If more than one variable is taken into consideration in the use of pdf it is very difficult to find distribution for different variables and especially to solve them with the moderate amount of the computing time. Therefore, in this presentation the amount of the pdf variables was limited as small as possible i.e. only one variable namely the mixture fraction was used the variance of which was solved from the transport equation. The computational domain which was divided into about seven thousand cells includes areas where the mean values of the variables can be supposed to be known and where the distribution of the probability is very narrow. Because in every computational cell the probability distribution as accurate as possible is wanted the linearization of the integration was made. The effect of the local extinction on the reaction rates was also included in the paper
Microwave Scattering System Design for ρe-Scale Turbulence Measurements on NSTX
International Nuclear Information System (INIS)
Smith, D.R.; Mazzucato, E.; Munsat, T.; Park, H.; Johnson, D.; Lin, L.; Domier, C.W.; Johnson, M.; Luhmann, N.C. Jr.
2004-01-01
Despite suppression of ρ i -scale turbulent fluctuations, electron thermal transport remains anomalous in NSTX. For this reason, a microwave scattering system will be deployed to directly observe the w and k spectra of ρ e -scale turbulent fluctuations and characterize the effect on electron thermal transport. The scattering system will employ a Gaussian probe beam produced by a high power 280 GHz microwave source. A five-channel heterodyne detection system will measure radial turbulent spectra in the range |k r | = 0-20 cm -1 . Inboard and outboard launch configurations cover most of the normalized minor radius. Improved spatial localization of measurements is achieved with low aspect ratio and high magnetic shear configurations. This paper will address the global design of the scattering system, such as choice of frequency, size, launching system, and detection system
Large-scale Cosmic-Ray Anisotropy as a Probe of Interstellar Turbulence
Energy Technology Data Exchange (ETDEWEB)
Giacinti, Gwenael; Kirk, John G. [Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)
2017-02-01
We calculate the large-scale cosmic-ray (CR) anisotropies predicted for a range of Goldreich–Sridhar (GS) and isotropic models of interstellar turbulence, and compare them with IceTop data. In general, the predicted CR anisotropy is not a pure dipole; the cold spots reported at 400 TeV and 2 PeV are consistent with a GS model that contains a smooth deficit of parallel-propagating waves and a broad resonance function, though some other possibilities cannot, as yet, be ruled out. In particular, isotropic fast magnetosonic wave turbulence can match the observations at high energy, but cannot accommodate an energy dependence in the shape of the CR anisotropy. Our findings suggest that improved data on the large-scale CR anisotropy could provide a valuable probe of the properties—notably the power-spectrum—of the interstellar turbulence within a few tens of parsecs from Earth.
TURBULENCE-GENERATED PROTON-SCALE STRUCTURES IN THE TERRESTRIAL MAGNETOSHEATH
Energy Technology Data Exchange (ETDEWEB)
Vörös, Zoltán; Narita, Yasuhito [Space Research Institute, Austrian Academy of Sciences, Graz (Austria); Yordanova, Emiliya [Swedish Institute of Space Physics, Uppsala (Sweden); Echim, Marius M. [Belgian Institute for Space Aeronomy, Bruxelles (Belgium); Consolini, Giuseppe, E-mail: zoltan.voeroes@oeaw.ac.at [INAF-Istituto di Astrofisica e Planetologia Spaziali, Roma (Italy)
2016-03-01
Recent results of numerical magnetohydrodynamic simulations suggest that in collisionless space plasmas, turbulence can spontaneously generate thin current sheets. These coherent structures can partially explain the intermittency and the non-homogenous distribution of localized plasma heating in turbulence. In this Letter, Cluster multi-point observations are used to investigate the distribution of magnetic field discontinuities and the associated small-scale current sheets in the terrestrial magnetosheath downstream of a quasi-parallel bow shock. It is shown experimentally, for the first time, that the strongest turbulence-generated current sheets occupy the long tails of probability distribution functions associated with extremal values of magnetic field partial derivatives. During the analyzed one-hour time interval, about a hundred strong discontinuities, possibly proton-scale current sheets, were observed.
The anomalous scaling exponents of turbulence in general dimension from random geometry
Energy Technology Data Exchange (ETDEWEB)
Eling, Christopher [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Oz, Yaron [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)
2015-09-22
We propose an analytical formula for the anomalous scaling exponents of inertial range structure functions in incompressible fluid turbulence. The formula is a Knizhnik-Polyakov-Zamolodchikov (KPZ)-type relation and is valid in any number of space dimensions. It incorporates intermittency in a novel way by dressing the Kolmogorov linear scaling via a coupling to a lognormal random geometry. The formula has one real parameter γ that depends on the number of space dimensions. The scaling exponents satisfy the convexity inequality, and the supersonic bound constraint. They agree with the experimental and numerical data in two and three space dimensions, and with numerical data in four space dimensions. Intermittency increases with γ, and in the infinite γ limit the scaling exponents approach the value one, as in Burgers turbulence. At large n the nth order exponent scales as √n. We discuss the relation between fluid flows and black hole geometry that inspired our proposal.
The time scale for the transition to turbulence in a high Reynolds number, accelerated flow
International Nuclear Information System (INIS)
Robey, H.F.; Zhou Ye; Buckingham, A.C.; Keiter, P.; Remington, B.A.; Drake, R.P.
2003-01-01
An experiment is described in which an interface between materials of different density is subjected to an acceleration history consisting of a strong shock followed by a period of deceleration. The resulting flow at this interface, initiated by the deposition of strong laser radiation into the initially well characterized solid materials, is unstable to both the Richtmyer-Meshkov (RM) and Rayleigh-Taylor (RT) instabilities. These experiments are of importance in their ability to access a difficult experimental regime characterized by very high energy density (high temperature and pressure) as well as large Reynolds number and Mach number. Such conditions are of interest, for example, in the study of the RM/RT induced mixing that occurs during the explosion of a core-collapse supernova. Under these experimental conditions, the flow is in the plasma state and given enough time will transition to turbulence. By analysis of the experimental data and a corresponding one-dimensional numerical simulation of the experiment, it is shown that the Reynolds number is sufficiently large (Re>10 5 ) to support a turbulent flow. An estimate of three key turbulence length scales (the Taylor and Kolmogorov microscales and a viscous diffusion scale), however, shows that the temporal duration of the present flow is insufficient to allow for the development of a turbulent inertial subrange. A methodology is described for estimating the time required under these conditions for the development of a fully turbulent flow
A glimpse of fluid turbulence from the molecular scale
Komatsu, Teruhisa S.; Matsumoto, Shigenori; Shimada, Takashi; Ito, Nobuyasu
2014-01-01
. The energy spectrum of the fluid components is observed to scale reasonably well according to Kolmogorov scaling determined from the energy dissipation rate and the viscosity of the fluid, even though the Kolmogorov length is of the order of the molecular
Effect of plumes on measuring the large scale circulation in turbulent Rayleigh-Bénard convection
Stevens, Richard Johannes Antonius Maria; Clercx, H.J.H.; Lohse, Detlef
2011-01-01
We studied the properties of the large-scale circulation (LSC) in turbulent Rayleigh-Bénard (RB) convection by using results from direct numerical simulations in which we placed a large number of numerical probes close to the sidewall. The LSC orientation is determined by either a cosine or a
Large-scale vortices in compressible turbulent medium with the magnetic field
Gvaramadze, V. V.; Dimitrov, B. G.
1990-08-01
An averaged equation which describes the large scale vortices and Alfven waves generation in a compressible helical turbulent medium with a constant magnetic field is presented. The presence of the magnetic field leads to anisotropization of the vortex generation. Possible applications of the anisotropic vortex dynamo effect are accretion disks of compact objects.
Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry
2017-07-01
Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF
International Nuclear Information System (INIS)
Barsamian, H.R.; Hassan, Y.A.
1996-01-01
Turbulence is one of the most commonly occurring phenomena of engineering interest in the field of fluid mechanics. Since most flows are turbulent, there is a significant payoff for improved predictive models of turbulence. One area of concern is the turbulent buffeting forces experienced by the tubes in steam generators of nuclear power plants. Although the Navier-Stokes equations are able to describe turbulent flow fields, the large number of scales of turbulence limit practical flow field calculations with current computing power. The dynamic subgrid scale closure model of Germano et. al (1991) is used in the large eddy simulation code GUST for incompressible isothermal flows. Tube bundle geometries of staggered and non-staggered arrays are considered in deep bundle simulations. The advantage of the dynamic subgrid scale model is the exclusion of an input model coefficient. The model coefficient is evaluated dynamically for each nodal location in the flow domain. Dynamic subgrid scale results are obtained in the form of power spectral densities and flow visualization of turbulent characteristics. Comparisons are performed among the dynamic subgrid scale model, the Smagorinsky eddy viscosity model (Smagorinsky, 1963) (that is used as the base model for the dynamic subgrid scale model) and available experimental data. Spectral results of the dynamic subgrid scale model correlate better with experimental data. Satisfactory turbulence characteristics are observed through flow visualization
Scaling of spectra in grid turbulence with a mean cross-stream temperature gradient
Bahri, Carla; Arwatz, Gilad; Mueller, Michael E.; George, William K.; Hultmark, Marcus
2014-11-01
Scaling of grid turbulence with a constant mean cross-stream temperature gradient is investigated using a combination of theoretical predictions, DNS, and experimental data. Conditions for self-similarity of the governing equations and the scalar spectrum are investigated, which reveals necessary conditions for self-similarity to exist. These conditions provide a theoretical framework for scaling of the temperature spectrum as well as the temperature flux spectrum. One necessary condition, predicted by the theory, is that the characteristic length scale describing the scalar spectrum must vary as √{ t} for a self-similar solution to exist. In order to investigate this, T-NSTAP sensors, specially designed for temperature measurements at high frequencies, were deployed in a heated passive grid turbulence setup together with conventional cold-wires, and complementary DNS calculations were performed to complement and complete the experimental data. These data are used to compare the behavior of different length scales and validate the theoretical predictions.
Kleeorin, N.
2018-06-01
We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.
Time Resolved Scanning PIV measurements at fine scales in a turbulent jet
International Nuclear Information System (INIS)
Cheng, Y.; Torregrosa, M.M.; Villegas, A.; Diez, F.J.
2011-01-01
The temporal and spatial complexity of turbulent flows at intermediate and small scales has prevented the acquisition of full three-dimensional experimental data sets for validating classical turbulent theory and Direct Numerical Simulations (DNS). Experimental techniques like Particle Velocimetry, PIV, allow non-intrusive planar measurements of turbulent flows. The present work applied a Time Resolved Scanning PIV system, TRS-PIV, capable of obtaining three-dimensional two-component velocities to measure the small scales of a turbulent jet. When probing the small scales of these flows with PIV, the uncertainty of the measured turbulent properties are determined by the characteristics of the PIV system and specially the thickness of the laser sheet. A measurement of the particle distribution across the thickness of the laser sheet is proposed as a more detailed description of the PIV sheet thickness. The high temporal and spatial resolution of the TRS-PIV system allowed obtaining quasi-instantaneous volumetric vector fields at the far field of a round turbulent jet in water, albeit for a low Reynolds number of 1478 due to the speed limitations of the present camera and scanning system. Six of the nine components of the velocity gradient tensor were calculated from the velocity measurements. This allowed the visualization with near Kolmogorov-scale resolution of the velocity gradient structures in three-dimensional space. In general, these structures had a complex geometry corresponding to elongated shapes in the form of sheets and tubes. An analysis of the probability density function, pdf, of the velocity gradients calculated showed that the on-diagonal (off-diagonal) velocity gradient components were very similar to each other even for events at the tails of the pdfs, as required for homogeneous isotropy. The root mean square of the components of the velocity gradients is also calculated and their ratio of off-diagonal components to on-diagonal components
Scaling and interaction of self-similar modes in models of high Reynolds number wall turbulence.
Sharma, A S; Moarref, R; McKeon, B J
2017-03-13
Previous work has established the usefulness of the resolvent operator that maps the terms nonlinear in the turbulent fluctuations to the fluctuations themselves. Further work has described the self-similarity of the resolvent arising from that of the mean velocity profile. The orthogonal modes provided by the resolvent analysis describe the wall-normal coherence of the motions and inherit that self-similarity. In this contribution, we present the implications of this similarity for the nonlinear interaction between modes with different scales and wall-normal locations. By considering the nonlinear interactions between modes, it is shown that much of the turbulence scaling behaviour in the logarithmic region can be determined from a single arbitrarily chosen reference plane. Thus, the geometric scaling of the modes is impressed upon the nonlinear interaction between modes. Implications of these observations on the self-sustaining mechanisms of wall turbulence, modelling and simulation are outlined.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
Phase-relationships between scales in the perturbed turbulent boundary layer
Jacobi, I.; McKeon, B. J.
2017-12-01
The phase-relationship between large-scale motions and small-scale fluctuations in a non-equilibrium turbulent boundary layer was investigated. A zero-pressure-gradient flat plate turbulent boundary layer was perturbed by a short array of two-dimensional roughness elements, both statically, and under dynamic actuation. Within the compound, dynamic perturbation, the forcing generated a synthetic very-large-scale motion (VLSM) within the flow. The flow was decomposed by phase-locking the flow measurements to the roughness forcing, and the phase-relationship between the synthetic VLSM and remaining fluctuating scales was explored by correlation techniques. The general relationship between large- and small-scale motions in the perturbed flow, without phase-locking, was also examined. The synthetic large scale cohered with smaller scales in the flow via a phase-relationship that is similar to that of natural large scales in an unperturbed flow, but with a much stronger organizing effect. Cospectral techniques were employed to describe the physical implications of the perturbation on the relative orientation of large- and small-scale structures in the flow. The correlation and cospectral techniques provide tools for designing more efficient control strategies that can indirectly control small-scale motions via the large scales.
International Nuclear Information System (INIS)
Hornsby, W. A.; Peeters, A. G.; Snodin, A. P.; Casson, F. J.; Camenen, Y.; Szepesi, G.; Siccinio, M.; Poli, E.
2010-01-01
The interaction between small scale turbulence (of the order of the ion Larmor radius) and mesoscale magnetic islands is investigated within the gyrokinetic framework. Turbulence, driven by background temperature and density gradients, over nonlinear mode coupling, pumps energy into long wavelength modes, and can result in an electrostatic vortex mode that coincides with the magnetic island. The strength of the vortex is strongly enhanced by the modified plasma flow response connected with the change in topology, and the transport it generates can compete with the parallel motion along the perturbed magnetic field. Despite the stabilizing effect of sheared plasma flows in and around the island, the net effect of the island is a degradation of the confinement. When density and temperature gradients inside the island are below the threshold for turbulence generation, turbulent fluctuations still persist through turbulence convection and spreading. The latter mechanisms then generate a finite transport flux and, consequently, a finite pressure gradient in the island. A finite radial temperature gradient inside the island is also shown to persist due to the trapped particles, which do not move along the field around the island. In the low collisionality regime, the finite gradient in the trapped population leads to the generation of a bootstrap current, which reduces the neoclassical drive.
Can large-scale oblique undulations on a solid wall reduce the turbulent drag?
Ghebali, Sacha; Chernyshenko, Sergei I.; Leschziner, Michael A.
2017-10-01
Direct numerical simulations of fully developed turbulent channel flows with wavy walls are undertaken. The wavy walls, skewed with respect to the mean flow direction, are introduced as a means of emulating a Spatial Stokes Layer (SSL) induced by in-plane wall motion. The transverse shear strain above the wavy wall is shown to be similar to that of a SSL, thereby affecting the turbulent flow and leading to a reduction in the turbulent skin-friction drag. However, some important differences with respect to the SSL case are brought to light too. In particular, the phase variations of the turbulent properties are accentuated and, unlike in the SSL case, there is a region of increased turbulence production over a portion of the wall, above the leeward side of the wave, thus giving rise to a local increase in dissipation. The pressure- and friction-drag levels are carefully quantified for various flow configurations, exhibiting a combined maximum overall-drag reduction of about 0.6%. The friction-drag reduction is shown to behave approximately quadratically for small wave slopes and then linearly for higher slopes, whilst the pressure-drag penalty increases quadratically. The transverse shear-strain layer is shown to be approximately Reynolds-number independent when the wave geometry is scaled in wall units.
Electron Heating at Kinetic Scales in Magnetosheath Turbulence
International Nuclear Information System (INIS)
Chasapis, Alexandros; Matthaeus, W. H.; Parashar, T. N.; LeContel, O.; Retinò, A.; Breuillard, H.; Khotyaintsev, Y.; Vaivads, A.; Eriksson, E.; Lavraud, B.; Moore, T. E.; Burch, J. L.; Torbert, R. B.; Chutter, M.; Needell, J.; Lindqvist, P.-A.; Marklund, G.; Ergun, R. E.; Goodrich, K. A.; Wilder, F. D.
2017-01-01
We present a statistical study of coherent structures at kinetic scales, using data from the Magnetospheric Multiscale mission in the Earth’s magnetosheath. We implemented the multi-spacecraft partial variance of increments (PVI) technique to detect these structures, which are associated with intermittency at kinetic scales. We examine the properties of the electron heating occurring within such structures. We find that, statistically, structures with a high PVI index are regions of significant electron heating. We also focus on one such structure, a current sheet, which shows some signatures consistent with magnetic reconnection. Strong parallel electron heating coincides with whistler emissions at the edges of the current sheet.
MMS Observations of Ion-Scale Magnetic Island in the Magnetosheath Turbulent Plasma
Huang, S. Y.; Sahraoui, F.; Retino, A.; Contel, O. Le; Yuan, Z. G.; Chasapis, A.; Aunai, N.; Breuillard, H.; Deng, X. H.; Zhou, M.;
2016-01-01
In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized by bipolar variation of magnetic fields with magnetic field compression, strong core field, density depletion, and strong currents dominated by the parallel component to the local magnetic field. The estimated size of magnetic island is about 8 di, where di is the ion inertial length. Distinct particle behaviors and wave activities inside and at the edges of the magnetic island are observed: parallel electron beam accompanied with electrostatic solitary waves and strong electromagnetic lower hybrid drift waves inside the magnetic island and bidirectional electron beams, whistler waves, weak electromagnetic lower hybrid drift waves, and strong broadband electrostatic noise at the edges of the magnetic island. Our observations demonstrate that highly dynamical, strong wave activities and electron-scale physics occur within ion-scale magnetic islands in the magnetosheath turbulent plasma..
Interactions of disparate scales in drift-wave turbulence
International Nuclear Information System (INIS)
Krommes, John A.; Kim, Chang-Bae
2000-01-01
Renormalized statistical theory is used to calculate the interactions between short scales (wave vector k) and long scales (wave vector q parallel =0 fluctuations). The calculations include the zonal-flow growth rate as a special case, but also describe long-wavelength fluctuations with q oriented at an arbitrary angle to the background gradient. The results are fully renormalized. They are subtly different from those of previous authors, in both mathematical form and physical interpretation. A term arising in previous treatments that is related to the propagation of short-scale wave packets is shown to be a higher-order effect that must consistently be neglected to lowest order in a systematic expansion in q/k. Rigorous functional methods are used to show that the long-wavelength growth rate γ q is related to second-order functional variations of the short-wavelength energy and to derive a heuristic algorithm. The principal results are recovered from simple estimates involving the first-order wave-number distension rate tilde γ k (1) dot eqdot kdeltilde Omega k /k 2 , where tilde Ω k is a nonlinear random advection frequency. Fokker-Planck analysis involving tilde γ k (1) is used to heuristically recover the evolution equation for the small scales, and a random-walk flux argument that relates tilde γ k (1) to an effective autocorrelation time is used to give an independent calculation of γ q . Both the rigorous and heuristic derivations demonstrate that the results do not depend on, and cannot be derived from, properties of linear normal modes; they are intrinsically nonlinear. The importance of random-Galilean-invariant renormalization is stressed
A computational study on oblique shock wave-turbulent boundary layer interaction
Joy, Md. Saddam Hossain; Rahman, Saeedur; Hasan, A. B. M. Toufique; Ali, M.; Mitsutake, Y.; Matsuo, S.; Setoguchi, T.
2016-07-01
A numerical computation of an oblique shock wave incident on a turbulent boundary layer was performed for free stream flow of air at M∞ = 2.0 and Re1 = 10.5×106 m-1. The oblique shock wave was generated from a 8° wedge. Reynolds averaged Navier-Stokes (RANS) simulation with k-ω SST turbulence model was first utilized for two dimensional (2D) steady case. The results were compared with the experiment at the same flow conditions. Further, to capture the unsteadiness, a 2D Large Eddy Simulation (LES) with sub-grid scale model WMLES was performed which showed the unsteady effects. The frequency of the shock oscillation was computed and was found to be comparable with that of experimental measurement.
A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization
DEFF Research Database (Denmark)
Luo, Hao; Lu, Bona; Zhang, Jingyuan
2017-01-01
The EMMS/bubbling drag model takes the effects of meso-scale structures (i.e. bubbles) into modeling of drag coefficient and thus improves coarse-grid simulation of bubbling and turbulent fluidized beds. However, its dependence on grid size has not been fully investigated. In this article, we adopt...... a two-step scheme to extend the EMMS/bubbling model to the sub-grid level. Thus the heterogeneity index, HD, which accounts for the hydrodynamic disparity between homogeneous and heterogeneous fluidization, can be correlated as a function of both local voidage and slip velocity. Simulations over...... a periodic domain show the new drag model is less sensitive to grid size because of the additional dependence on local slip velocity. When applying the new drag model to simulations of realistic bubbling and turbulent fluidized beds, we find grid-independent results are easier to obtain for high...
Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface
Mikkelsen, T.; Larsen, S. E.; Jørgensen, H. E.; Astrup, P.; Larsén, X. G.
2017-12-01
Within the lowest kilometer of the Earth’s atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber, or frequency. Spectra are derived from Fourier transforms of wind records as functions of space or time corresponding to wavenumber and frequency spectra, respectively. Atmospheric spectra often exhibit different subranges that can be distinguished and scaled by the physical parameters responsible for: (1) their generation; (2) the cascade of energy across the spectrum from large- to small-scale; and (3) the eventual decay of turbulence into heat owing to viscosity effects on the Kolmogorov microscale, in which the eddy size is only a fraction of a millimeter. This paper addresses atmospheric turbulence spectra in the lowest part of the atmospheric boundary layer—the so-called surface layer—where the wind shear is strong owing to the nonslip condition at the ground. Theoretical results dating back to Tchen’s early work in 1953 ‘on the spectrum of energy in turbulent shear flow’ led Tchen to predict a shear production subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured in a meteorological mast at Høvsøre, Denmark, that support Tchen’s prediction of a shear production subrange following a distinct power law of degree -1
Xiao, Yan; Li, Zhe; Li, Chao; Zhang, Zhen; Guo, Jinsong
2016-01-01
The main goal of the present work is to test the hypothesis that small-scale turbulence affected physiological activities and the morphology of cyanobacteria in high turbulence environments. Using quantified turbulence in a stirring device, we conducted one set of experiments on cultures of two strains of cyanobacteria with different phenotypes; i.e., unicellular Microcystis flos-aquae and colonial Anabaena flos-aquae. The effect of small-scale turbulence examined varied from 0 to 8.01×10-2 m2s-3, covering the range of turbulence intensities experienced by cyanobacteria in the field. The results of photosynthesis activity and the cellular chlorophyll a in both strains did not change significantly among the turbulence levels, indicating that the potential indirect effects of a light regime under the gradient of turbulent mixing could be ignored. However, the experiments demonstrated that small-scale turbulence significantly modulated algal nutrient uptake and growth in comparison to the stagnant control. Cellular N and C of the two stains showed approximately the same responses, resulting in a similar pattern of C/N ratios. Moreover, the change in the phosphate uptake rate was similar to that of growth in two strains, which implied that growth characteristic responses to turbulence may be dependent on the P strategy, which was correlated with accumulation of polyphosphate. Additionally, our results also showed the filament length of A. flos-aquae decreased in response to high turbulence, which could favor enhancement of the nutrient uptake. These findings suggested that both M. flos-aquae and A. flos-aquae adjust their growth rates in response to turbulence levels in the ways of asynchronous cellular stoichiometry of C, N, and P, especially the phosphorus strategy, to improve the nutrient application efficiency. The fact that adaptation strategies of cyanobacteria diversely to turbulence depending on their physiological conditions presents a good example to
Three-dimensional electromagnetic strong turbulence. I. Scalings, spectra, and field statistics
International Nuclear Information System (INIS)
Graham, D. B.; Robinson, P. A.; Cairns, Iver H.; Skjaeraasen, O.
2011-01-01
The first fully three-dimensional (3D) simulations of large-scale electromagnetic strong turbulence (EMST) are performed by numerically solving the electromagnetic Zakharov equations for electron thermal speeds ν e with ν e /c≥0.025. The results of these simulations are presented, focusing on scaling behavior, energy density spectra, and field statistics of the Langmuir (longitudinal) and transverse components of the electric fields during steady-state strong turbulence, where multiple wave packets collapse simultaneously and the system is approximately statistically steady in time. It is shown that for ν e /c > or approx. 0.17 strong turbulence is approximately electrostatic and can be explained using the electrostatic two-component model. For v e /c > or approx. 0.17 the power-law behaviors of the scalings, spectra, and field statistics differ from the electrostatic predictions and results because ν e /c is sufficiently high to allow transverse modes to become trapped in density wells. The results are compared with those of past 3D electrostatic strong turbulence (ESST) simulations and 2D EMST simulations. For number density perturbations, the scaling behavior, spectra, and field statistics are shown to be only weakly dependent on ν e /c, whereas the Langmuir and transverse scalings, spectra, and field statistics are shown to be strongly dependent on ν e /c. Three-dimensional EMST is shown to have features in common with 2D EMST, such as a two-component structure and trapping of transverse modes which are dependent on ν e /c.
Hernandez Perez, F.E.; Yuen, F.T.C.; Groth, C.P.T.; Gülder, O.L.
2011-01-01
Large-eddy simulations (LES) of a turbulent premixed Bunsen flame were carried out with three subfilter-scale (SFS) modelling approaches for turbulent premixed combustion. One approach is based on the artificially thickened flame and power-law flame wrinkling models, the second approach is based on
Scaling Properties of Particle Density Fields Formed in Simulated Turbulent Flows
Hogan, Robert C.; Cuzzi, Jeffrey N.; Dobrovolskis, Anthony R.; DeVincenzi, Donald (Technical Monitor)
1998-01-01
Direct numerical simulations (DNS) of particle concentrations in fully developed 3D turbulence were carried out in order to study the nonuniform structure of the particle density field. Three steady-state turbulent fluid fields with Taylor microscale Reynolds numbers (Re(sub lambda)) of 40, 80 and 140 were generated by solving the Navier-Stokes equations with pseudospectral methods. Large scale forcing was used to drive the turbulence and maintain temporal stationarity. The response of the particles to the fluid was parameterized by the particle Stokes number St, defined as the ratio of the particle's stopping time to the mean period of eddies on the Kolmogorov scale (eta). In this paper, we consider only passive particles optimally coupled to these eddies (St approx. = 1) because of their tendency to concentrate more than particles with lesser or greater St values. The trajectories of up to 70 million particles were tracked in the equilibrated turbulent flows until the particle concentration field reached a statistically stationary state. The nonuniform structure of the concentration fields was characterized by the multifractal singularity spectrum, f(alpha), derived from measures obtained after binning particles into cells ranging from 2(eta) to 15(eta) in size. We observed strong systematic variations of f(alpha) across this scale range in all three simulations and conclude that the particle concentration field is not statistically self similar across the scale range explored. However, spectra obtained at the 2(eta), 4(eta), and 8(eta) scales of each flow case were found to be qualitatively similar. This result suggests that the local structure of the particle concentration field may be flow-Independent. The singularity spectra found for 2n-sized cells were used to predict concentration distributions in good agreement with those obtained directly from the particle data. This Singularity spectrum has a shape similar to the analogous spectrum derived for the
Mathematical model for logarithmic scaling of velocity fluctuations in wall turbulence.
Mouri, Hideaki
2015-12-01
For wall turbulence, moments of velocity fluctuations are known to be logarithmic functions of the height from the wall. This logarithmic scaling is due to the existence of a characteristic velocity and to the nonexistence of any characteristic height in the range of the scaling. By using the mathematics of random variables, we obtain its necessary and sufficient conditions. They are compared with characteristics of a phenomenological model of eddies attached to the wall and also with those of the logarithmic scaling of the mean velocity.
International Nuclear Information System (INIS)
Maroteaux, Fadila; Pommier, Pierre-Lin
2013-01-01
Highlights: ► Turbulent time evolution is introduced in stochastic modeling approach. ► The particles number is optimized trough a restricted initial distribution. ► The initial distribution amplitude is modeled by magnitude of turbulence field. -- Abstract: Homogenous Charge Compression Ignition (HCCI) engine technology is known as an alternative to reduce NO x and particulate matter (PM) emissions. As shown by several experimental studies published in the literature, the ideally homogeneous mixture charge becomes stratified in composition and temperature, and turbulent mixing is found to play an important role in controlling the combustion progress. In a previous study, an IEM model (Interaction by Exchange with the Mean) has been used to describe the micromixing in a stochastic reactor model that simulates the HCCI process. The IEM model is a deterministic model, based on the principle that the scalar value approaches the mean value over the entire volume with a characteristic mixing time. In this previous model, the turbulent time scale was treated as a fixed parameter. The present study focuses on the development of a micro-mixing time model, in order to take into account the physical phenomena it stands for. For that purpose, a (k–ε) model is used to express this micro-mixing time model. The turbulence model used here is based on zero dimensional energy cascade applied during the compression and the expansion cycle; mean kinetic energy is converted to turbulent kinetic energy. Turbulent kinetic energy is converted to heat through viscous dissipation. Besides, in this study a relation to calculate the initial heterogeneities amplitude is proposed. The comparison of simulation results against experimental data shows overall satisfactory agreement at variable turbulent time scale
Properties of small-scale interfacial turbulence from a novel thermography based approach
Schnieders, Jana; Garbe, Christoph
2013-04-01
Oceans cover nearly two thirds of the earth's surface and exchange processes between the Atmosphere and the Ocean are of fundamental environmental importance. At the air-sea interface, complex interaction processes take place on a multitude of scales. Turbulence plays a key role in the coupling of momentum, heat and mass transfer [2]. Here we use high resolution infrared imagery to visualize near surface aqueous turbulence. Thermographic data is analized from a range of laboratory facilities and experimental conditions with wind speeds ranging from 1ms-1 to 7ms-1 and various surface conditions. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: (1) The surface heat patterns show characteristic features of scales. (2) The structure of these patterns change with increasing wind stress and surface conditions. We present a new image processing based approach to the analysis of the spacing of cold streaks based on a machine learning approach [4, 1] to classify the thermal footprints of near surface turbulence. Our random forest classifier is based on classical features in image processing such as gray value gradients and edge detecting features. The result is a pixel-wise classification of the surface heat pattern with a subsequent analysis of the streak spacing. This approach has been presented in [3] and can be applied to a wide range of experimental data. In spite of entirely different boundary conditions, the spacing of turbulent cells near the air-water interface seems to match the expected turbulent cell size for flow near a no-slip wall. The analysis of the spacing of cold streaks shows consistent behavior in a range of laboratory facilities when expressed as a function of water sided friction velocity, u*. The scales
Bursting and large-scale intermittency in turbulent convection with differential rotation
International Nuclear Information System (INIS)
Garcia, O.E.; Bian, N.H.
2003-01-01
The tilting mechanism, which generates differential rotation in two-dimensional turbulent convection, is shown to produce relaxation oscillations in the mean flow energy integral and bursts in the global fluctuation level, akin to Lotka-Volterra oscillations. The basic reason for such behavior is the unidirectional and conservative transfer of kinetic energy from the fluctuating motions to the mean component of the flows, and its dissipation at large scales. Results from numerical simulations further demonstrate the intimate relation between these low-frequency modulations and the large-scale intermittency of convective turbulence, as manifested by exponential tails in single-point probability distribution functions. Moreover, the spatio-temporal evolution of convective structures illustrates the mechanism triggering avalanche events in the transport process. The latter involves the overlap of delocalized mixing regions when the barrier to transport, produced by the mean component of the flow, transiently disappears
Near-Bed Turbulent Kinetic Energy Budget Under a Large-Scale Plunging Breaking Wave Over a Fixed Bar
van der Zanden, Joep; van der A, Dominic A.; Cáceres, Iván.; Hurther, David; McLelland, Stuart J.; Ribberink, Jan S.; O'Donoghue, Tom
2018-02-01
Hydrodynamics under regular plunging breaking waves over a fixed breaker bar were studied in a large-scale wave flume. A previous paper reported on the outer flow hydrodynamics; the present paper focuses on the turbulence dynamics near the bed (up to 0.10 m from the bed). Velocities were measured with high spatial and temporal resolution using a two component laser Doppler anemometer. The results show that even at close distance from the bed (1 mm), the turbulent kinetic energy (TKE) increases by a factor five between the shoaling, and breaking regions because of invasion of wave breaking turbulence. The sign and phase behavior of the time-dependent Reynolds shear stresses at elevations up to approximately 0.02 m from the bed (roughly twice the elevation of the boundary layer overshoot) are mainly controlled by local bed-shear-generated turbulence, but at higher elevations Reynolds stresses are controlled by wave breaking turbulence. The measurements are subsequently analyzed to investigate the TKE budget at wave-averaged and intrawave time scales. Horizontal and vertical turbulence advection, production, and dissipation are the major terms. A two-dimensional wave-averaged circulation drives advection of wave breaking turbulence through the near-bed layer, resulting in a net downward influx in the bar trough region, followed by seaward advection along the bar's shoreward slope, and an upward outflux above the bar crest. The strongly nonuniform flow across the bar combined with the presence of anisotropic turbulence enhances turbulent production rates near the bed.
Global MHD Modelling of the ISM - From large towards small scale turbulence
de Avillez, M.; Breitschwerdt, D.
2005-06-01
Dealing numerically with the turbulent nature and non-linearity of the physical processes involved in the ISM requires the use of sophisticated numerical schemes coupled to HD and MHD mathematical models. SNe are the main drivers of the interstellar turbulence by transferring kinetic energy into the system. This energy is dissipated by shocks (which is more efficient) and by molecular viscosity. We carried out adaptive mesh refinement simulations (with a finest resolution of 0.625 pc) of the turbulent ISM embedded in a magnetic field with mean field components of 2 and 3 μG. The time scale of our run was 400 Myr, sufficiently long to avoid memory effects of the initial setup, and to allow for a global dynamical equilibrium to be reached in case of a constant energy input rate. It is found that the longitudinal and transverse turbulent length scales have a time averaged (over a period of 50 Myr) ratio of 0.52-0.6, almost similar to the one expected for isotropic homogeneous turbulence. The mean characteristic size of the larger eddies is found to be ˜ 75 pc in both runs. In order to check the simulations against observations, we monitored the OVI and HI column densities within a superbubble created by the explosions of 19 SNe having masses and velocities of the stars that exploded in vicinity of the Sun generating the Local Bubble. The model reproduces the FUSE absorption measurements towards 25 white dwarfs of the OVI column density as function of distance and of N(HI). In particular for lines of sight with lengths smaller than 120 pc it is found that there is no correlation between N(OVI) and N(HI).
Effects of turbulent hyporheic mixing on reach-scale solute transport
Roche, K. R.; Li, A.; Packman, A. I.
2017-12-01
Turbulence rapidly mixes solutes and fine particles into coarse-grained streambeds. Both hyporheic exchange rates and spatial variability of hyporheic mixing are known to be controlled by turbulence, but it is unclear how turbulent mixing influences mass transport at the scale of stream reaches. We used a process-based particle-tracking model to simulate local- and reach-scale solute transport for a coarse-bed stream. Two vertical mixing profiles, one with a smooth transition from in-stream to hyporheic transport conditions and a second with enhanced turbulent transport at the sediment-water interface, were fit to steady-state subsurface concentration profiles observed in laboratory experiments. The mixing profile with enhanced interfacial transport better matched the observed concentration profiles and overall mass retention in the streambed. The best-fit mixing profiles were then used to simulate upscaled solute transport in a stream. Enhanced mixing coupled in-stream and hyporheic solute transport, causing solutes exchanged into the shallow subsurface to have travel times similar to the water column. This extended the exponential region of the in-stream solute breakthrough curve, and delayed the onset of the heavy power-law tailing induced by deeper and slower hyporheic porewater velocities. Slopes of observed power-law tails were greater than those predicted from stochastic transport theory, and also changed in time. In addition, rapid hyporheic transport velocities truncated the hyporheic residence time distribution by causing mass to exit the stream reach via subsurface advection, yielding strong exponential tempering in the in-stream breakthrough curves at the timescale of advective hyporheic transport through the reach. These results show that strong turbulent mixing across the sediment-water interface violates the conventional separation of surface and subsurface flows used in current models for solute transport in rivers. Instead, the full distribution of
Benchmarking and scaling studies of pseudospectral code Tarang for turbulence simulations
VERMA, MAHENDRA K
2013-09-21
Tarang is a general-purpose pseudospectral parallel code for simulating flows involving fluids, magnetohydrodynamics, and Rayleigh–Bénard convection in turbulence and instability regimes. In this paper we present code validation and benchmarking results of Tarang. We performed our simulations on 10243, 20483, and 40963 grids using the HPC system of IIT Kanpur and Shaheen of KAUST. We observe good ‘weak’ and ‘strong’ scaling for Tarang on these systems.
Benchmarking and scaling studies of pseudospectral code Tarang for turbulence simulations
VERMA, MAHENDRA K; CHATTERJEE, ANANDO; REDDY, K SANDEEP; YADAV, RAKESH K; PAUL, SUPRIYO; CHANDRA, MANI; Samtaney, Ravi
2013-01-01
Tarang is a general-purpose pseudospectral parallel code for simulating flows involving fluids, magnetohydrodynamics, and Rayleigh–Bénard convection in turbulence and instability regimes. In this paper we present code validation and benchmarking results of Tarang. We performed our simulations on 10243, 20483, and 40963 grids using the HPC system of IIT Kanpur and Shaheen of KAUST. We observe good ‘weak’ and ‘strong’ scaling for Tarang on these systems.
Plasma turbulence driven by transversely large-scale standing shear Alfvén waves
International Nuclear Information System (INIS)
Singh, Nagendra; Rao, Sathyanarayan
2012-01-01
Using two-dimensional particle-in-cell simulations, we study generation of turbulence consisting of transversely small-scale dispersive Alfvén and electrostatic waves when plasma is driven by a large-scale standing shear Alfvén wave (LS-SAW). The standing wave is set up by reflecting a propagating LS-SAW. The ponderomotive force of the standing wave generates transversely large-scale density modifications consisting of density cavities and enhancements. The drifts of the charged particles driven by the ponderomotive force and those directly caused by the fields of the standing LS-SAW generate non-thermal features in the plasma. Parametric instabilities driven by the inherent plasma nonlinearities associated with the LS-SAW in combination with the non-thermal features generate small-scale electromagnetic and electrostatic waves, yielding a broad frequency spectrum ranging from below the source frequency of the LS-SAW to ion cyclotron and lower hybrid frequencies and beyond. The power spectrum of the turbulence has peaks at distinct perpendicular wave numbers (k ⊥ ) lying in the range d e −1 -6d e −1 , d e being the electron inertial length, suggesting non-local parametric decay from small to large k ⊥ . The turbulence spectrum encompassing both electromagnetic and electrostatic fluctuations is also broadband in parallel wave number (k || ). In a standing-wave supported density cavity, the ratio of the perpendicular electric to magnetic field amplitude is R(k ⊥ ) = |E ⊥ (k ⊥ )/|B ⊥ (k ⊥ )| ≪ V A for k ⊥ d e A is the Alfvén velocity. The characteristic features of the broadband plasma turbulence are compared with those available from satellite observations in space plasmas.
Scaling of normalized mean energy and scalar dissipation rates in a turbulent channel flow
Abe, Hiroyuki; Antonia, Robert Anthony
2011-05-01
Non-dimensional parameters for the mean energy and scalar dissipation rates Cɛ and Cɛθ are examined using direct numerical simulation (DNS) data obtained in a fully developed turbulent channel flow with a passive scalar (Pr = 0.71) at several values of the Kármán (Reynolds) number h+. It is shown that Cɛ and Cɛθ are approximately equal in the near-equilibrium region (viz., y+ = 100 to y/h = 0.7) where the production and dissipation rates of either the turbulent kinetic energy or scalar variance are approximately equal and the magnitudes of the diffusion terms are negligibly small. The magnitudes of Cɛ and Cɛθ are about 2 and 1 in the logarithmic and outer regions, respectively, when h+ is sufficiently large. The former value is about the same for the channel, pipe, and turbulent boundary layer, reflecting the similarity between the mean velocity and temperature distributions among these three canonical flows. The latter value is, on the other hand, about twice as large as in homogeneous isotropic turbulence due to the existence of the large-scale u structures in the channel. The behaviour of Cɛ and Cɛθ impacts on turbulence modeling. In particular, the similarity between Cɛ and Cɛθ leads to a simple relation for the scalar variance to turbulent kinetic energy time-scale ratio, an important ingredient in the eddy diffusivity model. This similarity also yields a relation between the Taylor and Corrsin microscales and analogous relations, in terms of h+, for the Taylor microscale Reynolds number and Corrsin microscale Peclet number. This dependence is reasonably well supported by both the DNS data at small to moderate h+ and the experimental data of Comte-Bellot [Ph. D. thesis (University of Grenoble, 1963)] at larger h+. It does not however apply to a turbulent boundary layer where the mean energy dissipation rate, normalized on either wall or outer variables, is about 30% larger than for the channel flow.
Large scale Direct Numerical Simulation of premixed turbulent jet flames at high Reynolds number
Attili, Antonio; Luca, Stefano; Lo Schiavo, Ermanno; Bisetti, Fabrizio; Creta, Francesco
2016-11-01
A set of direct numerical simulations of turbulent premixed jet flames at different Reynolds and Karlovitz numbers is presented. The simulations feature finite rate chemistry with 16 species and 73 reactions and up to 22 Billion grid points. The jet consists of a methane/air mixture with equivalence ratio ϕ = 0 . 7 and temperature varying between 500 and 800 K. The temperature and species concentrations in the coflow correspond to the equilibrium state of the burnt mixture. All the simulations are performed at 4 atm. The flame length, normalized by the jet width, decreases significantly as the Reynolds number increases. This is consistent with an increase of the turbulent flame speed due to the increased integral scale of turbulence. This behavior is typical of flames in the thin-reaction zone regime, which are affected by turbulent transport in the preheat layer. Fractal dimension and topology of the flame surface, statistics of temperature gradients, and flame structure are investigated and the dependence of these quantities on the Reynolds number is assessed.
A Novel Multi-scale Simulation Strategy for Turbulent Reacting Flows
Energy Technology Data Exchange (ETDEWEB)
James, Sutherland [University of Utah
2018-04-12
Abstract In this project, a new methodology was proposed to bridge the gap between Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES). This novel methodology, titled Lattice-Based Multiscale Simulation (LBMS), creates a lattice structure of One-Dimensional Turbulence (ODT) models. This model has been shown to capture turbulent combustion with high fidelity by fully resolving interactions between turbulence and diffusion. By creating a lattice of ODT models, which are then coupled, LBMS overcomes the shortcomings of ODT, which are its inability to capture large scale three dimensional flow structures. However, by spacing these lattices significantly apart, LBMS can avoid the curse of dimensionality that creates untenable computational costs associated with DNS. This project has shown that LBMS is capable of reproducing statistics of isotropic turbulent flows while coarsening the spacing between lines significantly. It also investigates and resolves issues that arise when coupling ODT lines, such as flux reconstruction perpendicular to a given ODT line, preservation of conserved quantities when eddies cross a course cell volume and boundary condition application. Robust parallelization is also investigated.
Development of a three-dimensional local scale atmospheric model with turbulence closure model
International Nuclear Information System (INIS)
Yamazawa, Hiromi
1989-05-01
Through the study to improve SPEEDI's capability, a three-dimensional numerical atmospheric model PHYSIC (Prognostic HYdroStatic model Including turbulence Closure model) was developed to apply it to the transport and diffusion evaluation over complex terrains. The detailed description of the atmospheric model was given. This model consists of five prognostic equations; the momentum equations of horizontal components with the so-called Boussinesq and hydrostatic assumptions, the conservation equations of heat, turbulence kinetic energy and turbulence length scale. The coordinate system used is the terrain following z * coordinate system which allows the existence of complex terrain. The minute formula of the turbulence closure calculation, the surface layer process, the ground surface heat budget, and the atmospheric and solar radiation were also presented. The time integration method used in this model is the Alternating Direction Implicit (A.D.I.) method with a vertically and horizontally staggered grid system. The memory storage needed to execute this model with 31 x 31 x 16 grid points, five layers in soil and double precision variables is about 5.3 MBytes. The CPU time is about 2.2 x 10 -5 s per one step per one grid point with a vector processor FACOM VP-100. (author)
Directory of Open Access Journals (Sweden)
R. André
2003-08-01
Full Text Available Unusual structures characterized by a very high-velocity divergence have been observed in the high-latitude F-region with SuperDARN radars (André et al., 2000. These structures have been interpreted as due to local demagnetization of the plasma in the ionospheric F-region, during very specific geophysical conditions. In this study, the collective wave scattering theory is used to characterize the decameter-scale turbulence (l approx 15 m inside the structures. The distribution function of the diffusion coefficient is modified when the structures are generated, suggesting that two regimes of turbulence coexist. A temporal analysis decorrelates the two regimes and gives access to the dynamics associated with the structures. It is shown that a high turbulent regime precedes the plasma demagnetization and should be related to an energy deposition. Then a second regime appears when the plasma is demagnetized and disappears simultaneously with the structures. This study is the first application of the collective wave scattering theory to a specific geophysical event.Key words. Ionosphere (auroral ionosphere; ionospheric irregularities – Space plasma physics (turbulence
Statistical balance of vorticity and a new scale for vortical structures in turbulence
International Nuclear Information System (INIS)
Novikov, E.A.
1993-01-01
The balance of one-point and two-point statistical characterics of vorticity, is considered on the basis of the Navier-Stokes equations. It is shown that within the inertial range of scales (L Re -3/4 much-lt r much-lt L, L external scale, Re Reynolds number) there is a physically distinguished scale l s ∼L Re -3/10 . The balance of vortical correlations with scales r≥l s is directly affected by the large-scale motion. l s is a natural length scale for the ''vortex strings,'' observed experimentally and numerically in three-dimensional turbulent flows. The twist of vortex lines in the internal structure of vortex strings is also briefly discussed
Scaling laws and vortex profiles in two-dimensional decaying turbulence.
Laval, J P; Chavanis, P H; Dubrulle, B; Sire, C
2001-06-01
We use high resolution numerical simulations over several hundred of turnover times to study the influence of small scale dissipation onto vortex statistics in 2D decaying turbulence. A scaling regime is detected when the scaling laws are expressed in units of mean vorticity and integral scale, like predicted in Carnevale et al., Phys. Rev. Lett. 66, 2735 (1991), and it is observed that viscous effects spoil this scaling regime. The exponent controlling the decay of the number of vortices shows some trends toward xi=1, in agreement with a recent theory based on the Kirchhoff model [C. Sire and P. H. Chavanis, Phys. Rev. E 61, 6644 (2000)]. In terms of scaled variables, the vortices have a similar profile with a functional form related to the Fermi-Dirac distribution.
Derivation of Zagarola-Smits scaling in zero-pressure-gradient turbulent boundary layers
Wei, Tie; Maciel, Yvan
2018-01-01
This Rapid Communication derives the Zagarola-Smits scaling directly from the governing equations for zero-pressure-gradient turbulent boundary layers (ZPG TBLs). It has long been observed that the scaling of the mean streamwise velocity in turbulent boundary layer flows differs in the near surface region and in the outer layer. In the inner region of small-velocity-defect boundary layers, it is generally accepted that the proper velocity scale is the friction velocity, uτ, and the proper length scale is the viscous length scale, ν /uτ . In the outer region, the most generally used length scale is the boundary layer thickness, δ . However, there is no consensus on velocity scales in the outer layer. Zagarola and Smits [ASME Paper No. FEDSM98-4950 (1998)] proposed a velocity scale, U ZS=(δ1/δ ) U∞ , where δ1 is the displacement thickness and U∞ is the freestream velocity. However, there are some concerns about Zagarola-Smits scaling due to the lack of a theoretical base. In this paper, the Zagarola-Smits scaling is derived directly from a combination of integral, similarity, and order-of-magnitude analysis of the mean continuity equation. The analysis also reveals that V∞, the mean wall-normal velocity at the edge of the boundary layer, is a proper scale for the mean wall-normal velocity V . Extending the analysis to the streamwise mean momentum equation, we find that the Reynolds shear stress in ZPG TBLs scales as U∞V∞ in the outer region. This paper also provides a detailed analysis of the mass and mean momentum balance in the outer region of ZPG TBLs.
Cuzzi, Jeffrey N.; Hartlep, Thomas; Weston, B.; Estremera, Shariff Kareem
2014-01-01
The initial accretion of primitive bodies (asteroids and TNOs) from freely-floating nebula particles remains problematic. Here we focus on the asteroids where constituent particle (read "chondrule") sizes are observationally known; similar arguments will hold for TNOs, but the constituent particles in those regions will be smaller, or will be fluffy aggregates, and are unobserved. Traditional growth-bysticking models encounter a formidable "meter-size barrier" [1] (or even a mm-cm-size barrier [2]) in turbulent nebulae, while nonturbulent nebulae form large asteroids too quickly to explain long spreads in formation times, or the dearth of melted asteroids [3]. Even if growth by sticking could somehow breach the meter size barrier, other obstacles are encountered through the 1-10km size range [4]. Another clue regarding planetesimal formation is an apparent 100km diameter peak in the pre-depletion, pre-erosion mass distribution of asteroids [5]; scenarios leading directly from independent nebula particulates to this size, which avoid the problematic m-km size range, could be called "leapfrog" scenarios [6-8]. The leapfrog scenario we have studied in detail involves formation of dense clumps of aerodynamically selected, typically mm-size particles in turbulence, which can under certain conditions shrink inexorably on 100-1000 orbit timescales and form 10-100km diameter sandpile planetesimals. The typical sizes of planetesimals and the rate of their formation [7,8] are determined by a statistical model with properties inferred from large numerical simulations of turbulence [9]. Nebula turbulence can be described by its Reynolds number Re = L/eta sup(4/3), where L = ETA alpha sup (1/2) the largest eddy scale, H is the nebula gas vertical scale height, and a the nebula turbulent viscosity parameter, and ? is the Kolmogorov or smallest scale in turbulence (typically about 1km), with eddy turnover time t?. In the nebula, Re is far larger than any numerical simulation can
Statistical theory and transition in multiple-scale-lengths turbulence in plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)
2001-06-01
The statistical theory of strong turbulence in inhomogeneous plasmas is developed for the cases where fluctuations with different scale-lengths coexist. Nonlinear interactions in the same kind of fluctuations as well as nonlinear interplay between different classes of fluctuations are kept in the analysis. Nonlinear interactions are modelled as turbulent drag, nonlinear noise and nonlinear drive, and a set of Langevin equations is formulated. With the help of an Ansatz of a large number of degrees of freedom with positive Lyapunov number, Langevin equations are solved and the fluctuation dissipation theorem in the presence of strong plasma turbulence has been derived. A case where two driving mechanisms (one for micro mode and the other for semi-micro mode) coexist is investigated. It is found that there are several states of fluctuations: in one state, the micro mode is excited and the semi-micro mode is quenched; in the other state, the semi-micro mode is excited, and the micro mode remains at finite but suppressed level. New type of turbulence transition is obtained, and a cusp type catastrophe is revealed. A phase diagram is drawn for turbulence which is composed of multiple classes of fluctuations. Influence of the inhomogeneous global radial electric field is discussed. A new insight is given for the physics of internal transport barrier. Finally, the nonlocal heat transport due to the long-wave-length fluctuations, which are noise-pumped by shorter-wave-length ones, is analyzed and the impact on transient transport problems is discussed. (author)
A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection
Dabbagh, F.; Trias, F. X.; Gorobets, A.; Oliva, A.
2017-10-01
At the crossroad between flow topology analysis and turbulence modeling, a priori studies are a reliable tool to understand the underlying physics of the subgrid-scale (SGS) motions in turbulent flows. In this paper, properties of the SGS features in the framework of a large-eddy simulation are studied for a turbulent Rayleigh-Bénard convection (RBC). To do so, data from direct numerical simulation (DNS) of a turbulent air-filled RBC in a rectangular cavity of aspect ratio unity and π spanwise open-ended distance are used at two Rayleigh numbers R a ∈{1 08,1 010 } [Dabbagh et al., "On the evolution of flow topology in turbulent Rayleigh-Bénard convection," Phys. Fluids 28, 115105 (2016)]. First, DNS at Ra = 108 is used to assess the performance of eddy-viscosity models such as QR, Wall-Adapting Local Eddy-viscosity (WALE), and the recent S3PQR-models proposed by Trias et al. ["Building proper invariants for eddy-viscosity subgrid-scale models," Phys. Fluids 27, 065103 (2015)]. The outcomes imply that the eddy-viscosity modeling smoothes the coarse-grained viscous straining and retrieves fairly well the effect of the kinetic unfiltered scales in order to reproduce the coherent large scales. However, these models fail to approach the exact evolution of the SGS heat flux and are incapable to reproduce well the further dominant rotational enstrophy pertaining to the buoyant production. Afterwards, the key ingredients of eddy-viscosity, νt, and eddy-diffusivity, κt, are calculated a priori and revealed positive prevalent values to maintain a turbulent wind essentially driven by the mean buoyant force at the sidewalls. The topological analysis suggests that the effective turbulent diffusion paradigm and the hypothesis of a constant turbulent Prandtl number are only applicable in the large-scale strain-dominated areas in the bulk. It is shown that the bulk-dominated rotational structures of vortex-stretching (and its synchronous viscous dissipative structures) hold
Tokamak electron heat transport by direct numerical simulation of small scale turbulence
International Nuclear Information System (INIS)
Labit, B.
2002-10-01
In a fusion machine, understanding plasma turbulence, which causes a degradation of the measured energy confinement time, would constitute a major progress in this field. In tokamaks, the measured ion and electron thermal conductivities are of comparable magnitude. The possible sources of turbulence are the temperature and density gradients occurring in a fusion plasma. Whereas the heat losses in the ion channel are reasonably well understood, the origin of the electron losses is more uncertain. In addition to the radial velocity associated to the fluctuations of the electric field, electrons are more affected than ions by the magnetic field fluctuations. In experiments, the confinement time can be conveniently expressed in terms of dimensionless parameters. Although still somewhat too imprecise, these scaling laws exhibit strong dependencies on the normalized pressure β or the normalized Larmor radius, ρ * . The present thesis assesses whether a tridimensional, electromagnetic, nonlinear fluid model of plasma turbulence driven by a specific instability can reproduce the dependence of the experimental electron heat losses on the dimensionless parameters β and ρ * . The investigated interchange instability is the Electron Temperature Gradient driven one (ETG). The model is built by using the set of Braginskii equations. The developed simulation code is global in the sense that a fixed heat flux is imposed at the inner boundary, leaving the gradients free to evolve. From the nonlinear simulations, we have put in light three characteristics for the ETG turbulence: the turbulent transport is essentially electrostatic; the potential and pressure fluctuations form radially elongated cells called streamers; the transport level is very low compared to the experimental values. The thermal transport dependence study has shown a very small role of the normalized pressure, which is in contradiction with the Ohkama's formula. On the other hand, the crucial role of the
Intermittency and universality of small scales of passive scalar in turbulence
Gotoh, Toshiyuki; Watanabe, Takeshi
2014-11-01
Recent experiments and Direct Numerical Simulations (DNSs) suggest that the small scale statistics of passive scalar may not be as ``universal'' as in the velocity case. To address this problem, we study the moments of scalar increment in steady turbulence at Rλ > 800 by using DNS up to the grid points of 40963. In order for the scalar and turbulent flow to be as faithful as possible to the assumptions that would be made in theories, Scalar 1 and Scalar 2 are simultaneously convected by the identical isotropic turbulent flow but excited by two different methods. Scalar 1 is excited by the random scalar injection which is isotropic, Gaussian and white in time at low wavenumber band, while Scalar 2 is excited by the uniform mean scalar gradient. The moments of two scalars as functions of the separation vector are expanded in terms of the Legendre polynomials to extract the scaling exponents of the moments up to the 4th anisotropic sector for Scalar 2. It is found that the exponents of the isotropic sectors seem to have the same values at separation distances in the narrow range over which the 4/3 law holds simultaneously for two scalars. The exponents of the anisotropic sectors and the cumulants of the moments will also be reported. HPCI, JHPCN, Grant-in-Aid for Sci. Res. No.24360068, Ministry of Edu. Sci., Japan.
Toward topology-based characterization of small-scale mixing in compressible turbulence
Suman, Sawan; Girimaji, Sharath
2011-11-01
Turbulent mixing rate at small scales of motion (molecular mixing) is governed by the steepness of the scalar-gradient field which in turn is dependent upon the prevailing velocity gradients. Thus motivated, we propose a velocity-gradient topology-based approach for characterizing small-scale mixing in compressible turbulence. We define a mixing efficiency metric that is dependent upon the topology of the solenoidal and dilatational deformation rates of a fluid element. The mixing characteristics of solenoidal and dilatational velocity fluctuations are clearly delineated. We validate this new approach by employing mixing data from direct numerical simulations (DNS) of compressible decaying turbulence with passive scalar. For each velocity-gradient topology, we compare the mixing efficiency predicted by the topology-based model with the corresponding conditional scalar variance obtained from DNS. The new mixing metric accurately distinguishes good and poor mixing topologies and indeed reasonably captures the numerical values. The results clearly demonstrate the viability of the proposed approach for characterizing and predicting mixing in compressible flows.
Kinetic-Scale Magnetic Turbulence and Finite Larmor Radius Effects at Mercury
Uritsky, V. M.; Slavin, J. A.; Khazanov, G. V.; Donovan, E. F.; Boardsen, S. A.; Anderson, B. J.; Korth, H.
2011-01-01
We use a nonstationary generalization of the higher-order structure function technique to investigate statistical properties of the magnetic field fluctuations recorded by MESSENGER spacecraft during its first flyby (01/14/2008) through the near-Mercury space environment, with the emphasis on key boundary regions participating in the solar wind - magnetosphere interaction. Our analysis shows, for the first time, that kinetic-scale fluctuations play a significant role in the Mercury's magnetosphere up to the largest resolvable timescale (approx.20 s) imposed by the signal nonstationariry, suggesting that turbulence at this plane I is largely controlled by finite Larmor radius effects. In particular, we report the presence of a highly turbulent and extended foreshock system filled with packets of ULF oscillations, broad-band intermittent fluctuations in the magnetosheath, ion-kinetic turbulence in the central plasma sheet of Mercury's magnetotail, and kinetic-scale fluctuations in the inner current sheet encountered at the outbound (dawn-side) magnetopause. Overall, our measurements indicate that the Hermean magnetosphere, as well as the surrounding region, are strongly affected by non-MHD effects introduced by finite sizes of cyclotron orbits of the constituting ion species. Physical mechanisms of these effects and their potentially critical impact on the structure and dynamics of Mercury's magnetic field remain to be understood.
Energy Technology Data Exchange (ETDEWEB)
Ruiz Ruiz, J.; White, A. E. [MIT-Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lee, K. C. [National Fusion Research Institute, Daejeon (Korea, Republic of); Domier, C. W. [University of California at Davis, Davis, California 95616 (United States); Smith, D. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)
2015-12-15
Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which is shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.
A simple dynamic subgrid-scale model for LES of particle-laden turbulence
Park, George Ilhwan; Bassenne, Maxime; Urzay, Javier; Moin, Parviz
2017-04-01
In this study, a dynamic model for large-eddy simulations is proposed in order to describe the motion of small inertial particles in turbulent flows. The model is simple, involves no significant computational overhead, contains no adjustable parameters, and is flexible enough to be deployed in any type of flow solvers and grids, including unstructured setups. The approach is based on the use of elliptic differential filters to model the subgrid-scale velocity. The only model parameter, which is related to the nominal filter width, is determined dynamically by imposing consistency constraints on the estimated subgrid energetics. The performance of the model is tested in large-eddy simulations of homogeneous-isotropic turbulence laden with particles, where improved agreement with direct numerical simulation results is observed in the dispersed-phase statistics, including particle acceleration, local carrier-phase velocity, and preferential-concentration metrics.
SOMAR-LES: A framework for multi-scale modeling of turbulent stratified oceanic flows
Chalamalla, Vamsi K.; Santilli, Edward; Scotti, Alberto; Jalali, Masoud; Sarkar, Sutanu
2017-12-01
A new multi-scale modeling technique, SOMAR-LES, is presented in this paper. Localized grid refinement gives SOMAR (the Stratified Ocean Model with Adaptive Resolution) access to small scales of the flow which are normally inaccessible to general circulation models (GCMs). SOMAR-LES drives a LES (Large Eddy Simulation) on SOMAR's finest grids, forced with large scale forcing from the coarser grids. Three-dimensional simulations of internal tide generation, propagation and scattering are performed to demonstrate this multi-scale modeling technique. In the case of internal tide generation at a two-dimensional bathymetry, SOMAR-LES is able to balance the baroclinic energy budget and accurately model turbulence losses at only 10% of the computational cost required by a non-adaptive solver running at SOMAR-LES's fine grid resolution. This relative cost is significantly reduced in situations with intermittent turbulence or where the location of the turbulence is not known a priori because SOMAR-LES does not require persistent, global, high resolution. To illustrate this point, we consider a three-dimensional bathymetry with grids adaptively refined along the tidally generated internal waves to capture remote mixing in regions of wave focusing. The computational cost in this case is found to be nearly 25 times smaller than that of a non-adaptive solver at comparable resolution. In the final test case, we consider the scattering of a mode-1 internal wave at an isolated two-dimensional and three-dimensional topography, and we compare the results with Legg (2014) numerical experiments. We find good agreement with theoretical estimates. SOMAR-LES is less dissipative than the closure scheme employed by Legg (2014) near the bathymetry. Depending on the flow configuration and resolution employed, a reduction of more than an order of magnitude in computational costs is expected, relative to traditional existing solvers.
Coherent fine scale eddies in turbulence transition of spatially-developing mixing layer
International Nuclear Information System (INIS)
Wang, Y.; Tanahashi, M.; Miyauchi, T.
2007-01-01
To investigate the relationship between characteristics of the coherent fine scale eddy and a laminar-turbulent transition, a direct numerical simulation (DNS) of a spatially-developing turbulent mixing layer with Re ω,0 = 700 was conducted. On the onset of the transition, strong coherent fine scale eddies appears in the mixing layer. The most expected value of maximum azimuthal velocity of the eddy is 2.0 times Kolmogorov velocity (u k ), and decreases to 1.2u k , which is an asymptotic value in the fully-developed state, through the transition. The energy dissipation rate around the eddy is twice as high compared with that in the fully-developed state. However, the most expected diameter and eigenvalues ratio of strain rate acting on the coherent fine scale eddy are maintained to be 8 times Kolmogorov length (η) and α:β:γ = -5:1:4 in the transition process. In addition to Kelvin-Helmholtz rollers, rib structures do not disappear in the transition process and are composed of lots of coherent fine scale eddies in the fully-developed state instead of a single eddy observed in early stage of the transition or in laminar flow
An improved method to characterise the modulation of small-scale turbulent by large-scale structures
Agostini, Lionel; Leschziner, Michael; Gaitonde, Datta
2015-11-01
A key aspect of turbulent boundary layer dynamics is ``modulation,'' which refers to degree to which the intensity of coherent large-scale structures (LS) cause an amplification or attenuation of the intensity of the small-scale structures (SS) through large-scale-linkage. In order to identify the variation of the amplitude of the SS motion, the envelope of the fluctuations needs to be determined. Mathis et al. (2009) proposed to define this latter by low-pass filtering the modulus of the analytic signal built from the Hilbert transform of SS. The validity of this definition, as a basis for quantifying the modulated SS signal, is re-examined on the basis of DNS data for a channel flow. The analysis shows that the modulus of the analytic signal is very sensitive to the skewness of its PDF, which is dependent, in turn, on the sign of the LS fluctuation and thus of whether these fluctuations are associated with sweeps or ejections. The conclusion is that generating an envelope by use of a low-pass filtering step leads to an important loss of information associated with the effects of the local skewness of the PDF of the SS on the modulation process. An improved Hilbert-transform-based method is proposed to characterize the modulation of SS turbulence by LS structures
Scale dependence of the alignment between strain rate and rotation in turbulent shear flow
Fiscaletti, D.; Elsinga, G. E.; Attili, Antonio; Bisetti, Fabrizio; Buxton, O. R. H.
2016-01-01
The scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-rate tensor e(i), with the vorticity vector omega, is examined in the self-preserving region of a planar turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales and the probability density functions of the magnitude of the alignment cosines between the two unit vectors vertical bar e(i) . (omega) over cap vertical bar are examined. It is observed that the alignment tendencies are insensitive to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local) vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-rate eigenvector e(1), in contrast to the global tendency for omega to be aligned in parallelwith the intermediate strain-rate eigenvector [Hamlington et al., Phys. Fluids 20, 111703 (2008)]. When only data from regions of the flow that exhibit strong swirling are included, the so-called high-enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture. These findings support the notion that the production of enstrophy, responsible for a net cascade of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due to the preferential parallel alignment between omega and nonlocal e(1) and that the strongly swirling worms are kinematically significant to this process.
Scale dependence of the alignment between strain rate and rotation in turbulent shear flow
Fiscaletti, D.
2016-10-24
The scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-rate tensor e(i), with the vorticity vector omega, is examined in the self-preserving region of a planar turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales and the probability density functions of the magnitude of the alignment cosines between the two unit vectors vertical bar e(i) . (omega) over cap vertical bar are examined. It is observed that the alignment tendencies are insensitive to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local) vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-rate eigenvector e(1), in contrast to the global tendency for omega to be aligned in parallelwith the intermediate strain-rate eigenvector [Hamlington et al., Phys. Fluids 20, 111703 (2008)]. When only data from regions of the flow that exhibit strong swirling are included, the so-called high-enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture. These findings support the notion that the production of enstrophy, responsible for a net cascade of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due to the preferential parallel alignment between omega and nonlocal e(1) and that the strongly swirling worms are kinematically significant to this process.
Bifurcation and phase diagram of turbulence constituted from three different scale-length modes
Energy Technology Data Exchange (ETDEWEB)
Itoh, S.-I.; Kitazawa, A.; Yagi, M. [Kyushu Univ., Research Inst. for Applied Mechanics, Kasuga, Fukuoka (Japan); Itoh, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)
2002-04-01
Cases where three kinds of fluctuations having the different typical scale-lengths coexist are analyzed, and the statistical theory of strong turbulence in inhomogeneous plasmas is developed. Statistical nonlinear interactions between fluctuations are kept in the analysis as the renormalized drag, statistical noise and the averaged drive. The nonlinear interplay through them induces a quenching or suppressing effect, even if all the modes are unstable when they are analyzed independently. Variety in mode appearance takes place: one mode quenches the other two modes, or one mode is quenched by the other two modes, etc. The bifurcation of turbulence is analyzed and a phase diagram is drawn. Phase diagrams with cusp type catastrophe and butterfly type catastrophe are obtained. The subcritical bifurcation is possible to occur through the nonlinear interplay, even though each one is supercritical turbulence when analyzed independently. Analysis reveals that the nonlinear stability boundary (marginal point) and the amplitude of each mode may substantially shift from the conventional results of independent analyses. (author)
International Nuclear Information System (INIS)
Ishizawa, A.; Nakajima, N.
2007-01-01
Micro-turbulence and macro-magnetohydrodynamic (macro-MHD) instabilities can appear in plasma at the same time and interact with each other in a plasma confinement. The multi-scale-nonlinear interaction among micro-turbulence, double tearing instability and zonal flow is investigated by numerically solving a reduced set of two-fluid equations. It is found that the double tearing instability, which is a macro-MHD instability, appears in an equilibrium formed by a balance between micro-turbulence and zonal flow when the double tearing mode is unstable. The roles of the nonlinear and linear terms of the equations in driving the zonal flow and coherent convective cell flow of the double tearing mode are examined. The Reynolds stress drives zonal flow and coherent convective cell flow, while the ion diamagnetic term and Maxwell stress oppose the Reynolds stress drive. When the double tearing mode grows, linear terms in the equations are dominant and they effectively release the free energy of the equilibrium current gradient
Energy spectrum scaling in an agent-based model for bacterial turbulence
Mikel-Stites, Maxwell; Staples, Anne
2017-11-01
Numerous models have been developed to examine the behavior of dense bacterial swarms and to explore the visually striking phenomena of bacterial turbulence. Most models directly impose fluid dynamics physics, either by modeling the active matter as a fluid or by including interactions between the bacteria and a fluid. In this work, however, the `turbulence' is solely an emergent property of the collective behavior of the bacterial population, rather than a consequence of imposed fluid dynamics physical modeling. The system is simulated using a two dimensional Vicsek-style model, with the addition of individual repulsion to simulate bacterial collisions and physical interactions, and without the common flocking or sensing behaviors. Initial results indicate the presence of k-1 scaling in a portion of the kinetic energy spectrum that can be considered analogous to the inertial subrange in turbulent energy spectra. This result suggests that the interaction of large numbers of individual active bacteria may also be a contributing factor in the emergence of fluid dynamics phenomena, in addition to the physical interactions between bacteria and their fluid environment.
Multi-scale-nonlinear interactions among macro-MHD mode, micro-turbulence, and zonal flow
International Nuclear Information System (INIS)
Ishizawa, Akihiro; Nakajima, Noriyoshi
2007-01-01
This is the first numerical simulation demonstrating that macro-magnetohydrodynamic (macro-MHD) mode is exited as a result of multi-scale interaction in a quasi-steady equilibrium formed by a balance between zonal flow and micro-turbulence via reduced-two-fluid simulation. Only after obtaining the equilibrium which includes zonal flow and the turbulence caused by kinetic ballooning mode is this simulation of macro-MHD mode, double tearing mode, accomplished. In the quasi-steady equilibrium a macro-fluctuation which has the same helicity as that of double tearing mode is a part of the turbulence until it grows as a macro-MHD mode finally. When the macro-MHD grows it effectively utilize free energy of equilibrium current density gradient because of positive feedback loop between suppression of zonal flow and growth of the macro-fluctuation causing magnetic reconnection. Thus once the macro-MHD grows from the quasi-equilibrium, it does not go back. This simulation is more comparable with experimental observation of growing macro-fluctuation than traditional MHD simulation of linear instabilities in a static equilibrium. (author)
Li, Zhe; Xiao, Yan; Yang, Jixiang; Li, Chao; Gao, Xia; Guo, Jinsong
2017-11-01
Turbulent mixing, in particular on a small scale, affects the growth of microalgae by changing diffusive sublayers and regulating nutrient fluxes of cells. We tested the nutrient flux hypothesis by evaluating the cellular stoichiometry and phosphorus storage of microalgae under different turbulent mixing conditions. Aphanizomenon flos-aquae were cultivated in different stirring batch reactors with turbulent dissipation rates ranging from 0.001 51 m2/s3 to 0.050 58 m2/s3, the latter being the highest range observed in natural aquatic systems. Samples were taken in the exponential growth phase and compared with samples taken when the reactor was completely stagnant. Results indicate that, within a certain range, turbulent mixing stimulates the growth of A. flos-aquae. An inhibitory effect on growth rate was observed at the higher range. Photosynthesis activity, in terms of maximum effective quantum yield of PSII (the ratio of F v/ F m) and cellular chlorophyll a, did not change significantly in response to turbulence. However, Chl a/C mass ratio and C/N molar ratio, showed a unimodal response under a gradient of turbulent mixing, similar to growth rate. Moreover, we found that increases in turbulent mixing might stimulate respiration rates, which might lead to the use of polyphosphate for the synthesis of cellular constituents. More research is required to test and verify the hypothesis that turbulent mixing changes the diffusive sublayer, regulating the nutrient flux of cells.
Experimental study of parametric dependence of electron-scale turbulence in a spherical tokamak
Energy Technology Data Exchange (ETDEWEB)
Ren, Y.; Guttenfelder, W.; Kaye, S. M.; Mazzucato, E.; Bell, R. E.; Diallo, A.; LeBlanc, B. P. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Domier, C. W.; Lee, K. C. [University of California at Davis, Davis, California 95616 (United States); Smith, D. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)
2012-05-15
Electron-scale turbulence is predicted to drive anomalous electron thermal transport. However, experimental study of its relation with transport is still in its early stage. On the National Spherical Tokamak Experiment (NSTX), electron-scale density fluctuations are studied with a novel tangential microwave scattering system with high radial resolution of {+-}2 cm. Here, we report a study of parametric dependence of electron-scale turbulence in NSTX H-mode plasmas. The dependence on density gradient is studied through the observation of a large density gradient variation in the core induced by an edge localized mode (ELM) event, where we found the first clear experimental evidence of density gradient stabilization of electron-gyro scale turbulence in a fusion plasma. This observation, coupled with linear gyro-kinetic calculations, leads to the identification of the observed instability as toroidal electron temperature gradient (ETG) modes. It is observed that longer wavelength ETG modes, k{sub Up-Tack }{rho}{sub s} Less-Than-Or-Equivalent-To 10 ({rho}{sub s} is the ion gyroradius at electron temperature and k{sub Up-Tack} is the wavenumber perpendicular to local equilibrium magnetic field), are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in electron thermal diffusivity. Comparisons with nonlinear ETG gyrokinetic simulations show ETG turbulence may be able to explain the experimental electron heat flux observed before the ELM event. The collisionality dependence of electron-scale turbulence is also studied by systematically varying plasma current and toroidal field, so that electron gyroradius ({rho}{sub e}), electron beta ({beta}{sub e}), and safety factor (q{sub 95}) are kept approximately constant. More than a factor of two change in electron collisionality, {nu}{sub e}{sup *}, was achieved, and we found that the spectral power of electron-scale turbulence appears to increase as {nu}{sub e}{sup *} is
On the impacts of coarse-scale models of realistic roughness on a forward-facing step turbulent flow
International Nuclear Information System (INIS)
Wu, Yanhua; Ren, Huiying
2013-01-01
Highlights: ► Discrete wavelet transform was used to produce coarse-scale models of roughness. ► PIV were performed in a forward-facing step flow with roughness of different scales. ► Impacts of roughness scales on various turbulence statistics were studied. -- Abstract: The present work explores the impacts of the coarse-scale models of realistic roughness on the turbulent boundary layers over forward-facing steps. The surface topographies of different scale resolutions were obtained from a novel multi-resolution analysis using discrete wavelet transform. PIV measurements are performed in the streamwise–wall-normal (x–y) planes at two different spanwise positions in turbulent boundary layers at Re h = 3450 and δ/h = 8, where h is the mean step height and δ is the incoming boundary layer thickness. It was observed that large-scale but low-amplitude roughness scales had small effects on the forward-facing step turbulent flow. For the higher-resolution model of the roughness, the turbulence characteristics within 2h downstream of the steps are observed to be distinct from those over the original realistic rough step at a measurement position where the roughness profile possesses a positive slope immediately after the step’s front. On the other hand, much smaller differences exist in the flow characteristics at the other measurement position whose roughness profile possesses a negative slope following the step’s front
Reversing flow causes passive shark scale actuation in a separating turbulent boundary layer
Lang, Amy; Gemmell, Bradford; Motta, Phil; Habegger, Laura; Du Clos, Kevin; Devey, Sean; Stanley, Caleb; Santos, Leo
2017-11-01
Control of flow separation by shortfin mako skin in experiments has been demonstrated, but the mechanism is still poorly understood yet must be to some extent Re independent. The hypothesized mechanisms inherent in the shark skin for controlling flow separation are: (1) the scales, which are capable of being bristled only by reversing flow, inhibit flow reversal events from further development into larger-scale separation and (2) the cavities formed when scales bristle induces mixing of high momentum flow towards the wall thus energizing the flow close to the surface. Two studies were carried out to measure passive scale actuation caused by reversing flow. A small flow channel induced an unsteady, wake flow over the scales prompting reversing flow events and scale actuation. To resolve the flow and scale movements simultaneously we used specialized optics at high magnification (1 mm field of view) at 50,000 fps. In another study, 3D printed models of shark scales, or microflaps (bristling capability up to 50 degrees), were set into a flat plate. Using a tripped, turbulent boundary layer grown over the long flat plate and a localized adverse pressure gradient, a separation bubble was generated within which the microflaps were placed. Passive flow actuation of both shark scales and microflaps by reversing flow was observed. Funding from Army Research Office and NSF REU site Grant.
Scales of Marine Turbulence in Cook Strait (New Zealand) in the Context of Tidal Energy Turbines
Stevens, Craig
2017-04-01
Cook Strait, the channel separating New Zealand's North and South Islands, is at it's narrowest around 22 km across with flows driven by a semidiurnal tide, wind and a baroclinic pressure gradient. Water depths are around 250-300 m in the main part of the channel, with shoals to the south and the submerged Fishermans Rock (aka pinnacle) in the centre northwest of the Strait. The substantial tidal flow speed is due to the tide being nearly out of phase comparing the ends of the strait and further enhanced by a narrowing of the strait. It has significant potential for a tidal energy resource suitable for extraction due to both its significant energy levels but also its proximity to electricity infrastructure and nationally high uptake of renewable energy in general. Here we describe recent flow and turbulence data and contextualise them in terms of scales relevant to marine energy extraction. With flow speeds reaching 3 m s-1 in a water column of > 200 m depth the setting is heuristically known to be highly turbulent. Turbulent energy dissipation rates are modest but high for oceans, around 5x10-5 W kg-1. Thorpe scales, the observed quantity representing the energy-bearing scale, are often as much as one quarter of the water depth. This means eddy sizes can potentially be larger than blade length. A boundary-layer structure was apparent but highly variable. This has implications for both operation of tidal turbines, as well as modulating their effect on the environment. Fishermans Rock itself is interesting as if can be considered a proxy for a larger array of turbines.
Reynolds stress scaling in pipe flow turbulence-first results from CICLoPE.
Örlü, R; Fiorini, T; Segalini, A; Bellani, G; Talamelli, A; Alfredsson, P H
2017-03-13
This paper reports the first turbulence measurements performed in the Long Pipe Facility at the Center for International Cooperation in Long Pipe Experiments (CICLoPE). In particular, the Reynolds stress components obtained from a number of straight and boundary-layer-type single-wire and X-wire probes up to a friction Reynolds number of 3.8×10 4 are reported. In agreement with turbulent boundary-layer experiments as well as with results from the Superpipe, the present measurements show a clear logarithmic region in the streamwise variance profile, with a Townsend-Perry constant of A 2 ≈1.26. The wall-normal variance profile exhibits a Reynolds-number-independent plateau, while the spanwise component was found to obey a logarithmic scaling over a much wider wall-normal distance than the other two components, with a slope that is nearly half of that of the Townsend-Perry constant, i.e. A 2,w ≈A 2 /2. The present results therefore provide strong support for the scaling of the Reynolds stress tensor based on the attached-eddy hypothesis. Intriguingly, the wall-normal and spanwise components exhibit higher amplitudes than in previous studies, and therefore call for follow-up studies in CICLoPE, as well as other large-scale facilities.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
Correlation of optical emission and turbulent length scale in a coaxial jet diffusion flame
松山, 新吾; Matsuyama, Shingo
2014-01-01
This article investigates the correlation between optical emission and turbulent length scale in a coaxial jet diffusion flame. To simulate the H2O emission from an H2/O2 diffusion flame, radiative transfer is calculated on flame data obtained by numerical simulation. H2O emission characteristics are examined for a one-dimensional opposed-flow diffusion flame. The results indicate that H2O emission intensity is linearly dependent on flame thickness. The simulation of H2O emission is then exte...
Experimental scaling law for the subcritical transition to turbulence in plane Poiseuille flow.
Lemoult, Grégoire; Aider, Jean-Luc; Wesfreid, José Eduardo
2012-02-01
We present an experimental study of the transition to turbulence in a plane Poiseuille flow. Using a well-controlled perturbation, we analyze the flow by using extensive particle image velocimetry and flow visualization (using laser-induced fluorescence) measurements, and use the deformation of the mean velocity profile as a criterion to characterize the state of the flow. From a large parametric study, four different states are defined, depending on the values of the Reynolds number and the amplitude of the perturbation. We discuss the role of coherent structures, such as hairpin vortices, in the transition. We find that the minimal amplitude of the perturbation triggering transition scales asymptotically as Re(-1).
Correlations at large scales and the onset of turbulence in the fast solar wind
International Nuclear Information System (INIS)
Wicks, R. T.; Roberts, D. A.; Mallet, A.; Schekochihin, A. A.; Horbury, T. S.; Chen, C. H. K.
2013-01-01
We show that the scaling of structure functions of magnetic and velocity fields in a mostly highly Alfvénic fast solar wind stream depends strongly on the joint distribution of the dimensionless measures of cross helicity and residual energy. Already at very low frequencies, fluctuations that are both more balanced (cross helicity ∼0) and equipartitioned (residual energy ∼0) have steep structure functions reminiscent of 'turbulent' scalings usually associated with the inertial range. Fluctuations that are magnetically dominated (residual energy ∼–1), and so have closely anti-aligned Elsasser-field vectors, or are imbalanced (cross helicity ∼1), and so have closely aligned magnetic and velocity vectors, have wide '1/f' ranges typical of fast solar wind. We conclude that the strength of nonlinear interactions of individual fluctuations within a stream, diagnosed by the degree of correlation in direction and magnitude of magnetic and velocity fluctuations, determines the extent of the 1/f region observed, and thus the onset scale for the turbulent cascade.
Turbulence effects on warm-rain formation in precipitating shallow convection revisited
Directory of Open Access Journals (Sweden)
A. Seifert
2016-09-01
Full Text Available Two different collection kernels which include turbulence effects on the collision rate of liquid droplets are used as a basis to develop a parameterization of the warm-rain processes autoconversion, accretion, and self-collection. The new parameterization is tested and validated with the help of a 1-D bin microphysics model. Large-eddy simulations of the rain formation in shallow cumulus clouds confirm previous results that turbulence effects can significantly enhance the development of rainwater in clouds and the occurrence and amount of surface precipitation. The detailed behavior differs significantly for the two turbulence models, revealing a considerable uncertainty in our understanding of such effects. In addition, the large-eddy simulations show a pronounced sensitivity to grid resolution, which suggests that besides the effect of sub-grid small-scale isotropic turbulence which is parameterized as part of the collection kernel also the larger turbulent eddies play an important role for the formation of rain in shallow clouds.
Magnetic Reconnection May Control the Ion-scale Spectral Break of Solar Wind Turbulence
Vech, Daniel; Mallet, Alfred; Klein, Kristopher G.; Kasper, Justin C.
2018-03-01
The power spectral density of magnetic fluctuations in the solar wind exhibits several power-law-like frequency ranges with a well-defined break between approximately 0.1 and 1 Hz in the spacecraft frame. The exact dependence of this break scale on solar wind parameters has been extensively studied but is not yet fully understood. Recent studies have suggested that reconnection may induce a break in the spectrum at a “disruption scale” {λ }{{D}}, which may be larger than the fundamental ion kinetic scales, producing an unusually steep spectrum just below the break. We present a statistical investigation of the dependence of the break scale on the proton gyroradius ρ i , ion inertial length d i , ion sound radius ρ s , proton–cyclotron resonance scale ρ c , and disruption scale {λ }{{D}} as a function of {β }\\perp i. We find that the steepest spectral indices of the dissipation range occur when β e is in the range of 0.1–1 and the break scale is only slightly larger than the ion sound scale (a situation occurring 41% of the time at 1 au), in qualitative agreement with the reconnection model. In this range, the break scale shows a remarkably good correlation with {λ }{{D}}. Our findings suggest that, at least at low β e , reconnection may play an important role in the development of the dissipation range turbulent cascade and cause unusually steep (steeper than ‑3) spectral indices.
DEFF Research Database (Denmark)
Kiørboe, Thomas; MacKenzie, Brian
1995-01-01
Turbulent water motion has several effects on the feeding ecology of larval fish and other planktivorous predators. In this paper, we consider the appropriate spatial scales for estimating relative velocities between larval fish predators and their prey, and the effect that different choices of s...... in the range in which turbulent intensity has an overall positive effect on larval fish ingestion rate probability. However, experimental data to test the model predictions are lacking. We suggest that the model inputs require further empirical study....
Energy Technology Data Exchange (ETDEWEB)
Pinson, F
2006-03-15
- This work deals with the macroscopic modeling of turbulence in porous media. It concerns heat exchangers, nuclear reactors as well as urban flows, etc. The objective of this study is to describe in an homogenized way, by the mean of a spatial average operator, turbulent flows in a solid matrix. In addition to this first operator, the use of a statistical average operator permits to handle the pseudo-aleatory character of turbulence. The successive application of both operators allows us to derive the balance equations of the kind of flows under study. Two major issues are then highlighted, the modeling of dispersion induced by the solid matrix and the turbulence modeling at a macroscopic scale (Reynolds tensor and turbulent dispersion). To this aim, we lean on the local modeling of turbulence and more precisely on the k - {epsilon} RANS models. The methodology of dispersion study, derived thanks to the volume averaging theory, is extended to turbulent flows. Its application includes the simulation, at a microscopic scale, of turbulent flows within a representative elementary volume of the porous media. Applied to channel flows, this analysis shows that even within the turbulent regime, dispersion remains one of the dominating phenomena within the macro-scale modeling framework. A two-scale analysis of the flow allows us to understand the dominating role of the drag force in the kinetic energy transfers between scales. Transfers between the mean part and the turbulent part of the flow are formally derived. This description significantly improves our understanding of the issue of macroscopic modeling of turbulence and leads us to define the sub-filter production and the wake dissipation. A
Astrophysical gyrokinetics: turbulence in pressure-anisotropic plasmas at ion scales and beyond
Kunz, M. W.; Abel, I. G.; Klein, K. G.
2018-04-01
We present a theoretical framework for describing electromagnetic kinetic turbulence in a multi-species, magnetized, pressure-anisotropic plasma. The turbulent fluctuations are assumed to be small compared to the mean field, to be spatially anisotropic with respect to it and to have frequencies small compared to the ion cyclotron frequency. At scales above the ion-Larmor radius, the theory reduces to the pressure-anisotropic generalization of kinetic reduced magnetohydrodynamics (KRMHD) formulated by Kunz et al. (J. Plasma Phys., vol. 81, 2015, 325810501). At scales at and below the ion-Larmor radius, three main objectives are achieved. First, we analyse the linear response of the pressure-anisotropic gyrokinetic system, and show it to be a generalization of previously explored limits. The effects of pressure anisotropy on the stability and collisionless damping of Alfvénic and compressive fluctuations are highlighted, with attention paid to the spectral location and width of the frequency jump that occurs as Alfvén waves transition into kinetic Alfvén waves. Secondly, we derive and discuss a very general gyrokinetic free-energy conservation law, which captures both the KRMHD free-energy conservation at long wavelengths and dual cascades of kinetic Alfvén waves and ion entropy at sub-ion-Larmor scales. We show that non-Maxwellian features in the distribution function change the amount of phase mixing and the efficiency of magnetic stresses, and thus influence the partitioning of free energy amongst the cascade channels. Thirdly, a simple model is used to show that pressure anisotropy, even within the bounds imposed on it by firehose and mirror instabilities, can cause order-of-magnitude variations in the ion-to-electron heating ratio due to the dissipation of Alfvénic turbulence. Our theory provides a foundation for determining how pressure anisotropy affects turbulent fluctuation spectra, the differential heating of particle species and the ratio of parallel
A priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence
International Nuclear Information System (INIS)
Chumakov, Sergei
2008-01-01
We perform a direct numerical simulation (DNS) of forced homogeneous isotropic turbulence with a passive scalar that is forced by mean gradient. The DNS data are used to study the properties of subgrid-scale flux of a passive scalar in the framework of large eddy simulation (LES), such as alignment trends between the flux, resolved, and subgrid-scale flow structures. It is shown that the direction of the flux is strongly coupled with the subgrid-scale stress axes rather than the resolved flow quantities such as strain, vorticity, or scalar gradient. We derive an approximate transport equation for the subgrid-scale flux of a scalar and look at the relative importance of the terms in the transport equation. A particular form of LES tensor-viscosity model for the scalar flux is investigated, which includes the subgrid-scale stress. Effect of different models for the subgrid-scale stress on the model for the subgrid-scale flux is studied.
A priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence.
Chumakov, Sergei G
2008-09-01
We perform a direct numerical simulation (DNS) of forced homogeneous isotropic turbulence with a passive scalar that is forced by mean gradient. The DNS data are used to study the properties of subgrid-scale flux of a passive scalar in the framework of large eddy simulation (LES), such as alignment trends between the flux, resolved, and subgrid-scale flow structures. It is shown that the direction of the flux is strongly coupled with the subgrid-scale stress axes rather than the resolved flow quantities such as strain, vorticity, or scalar gradient. We derive an approximate transport equation for the subgrid-scale flux of a scalar and look at the relative importance of the terms in the transport equation. A particular form of LES tensor-viscosity model for the scalar flux is investigated, which includes the subgrid-scale stress. Effect of different models for the subgrid-scale stress on the model for the subgrid-scale flux is studied.
Anderson, William; Yang, Jianzhi
2017-11-01
Spanwise surface heterogeneity beneath high-Reynolds number, fully-rough wall turbulence is known to induce mean secondary flows in the form of counter-rotating streamwise vortices. The secondary flows are a manifestation of Prandtl's secondary flow of the second kind - driven and sustained by spatial heterogeneity of components of the turbulent (Reynolds averaged) stress tensor. The spacing between adjacent surface heterogeneities serves as a control on the spatial extent of the counter-rotating cells, while their intensity is controlled by the spanwise gradient in imposed drag (where larger gradients associated with more dramatic transitions in roughness induce stronger cells). In this work, we have performed an order of magnitude analysis of the mean (Reynolds averaged) streamwise vorticity transport equation, revealing the scaling dependence of circulation upon spanwise spacing. The scaling arguments are supported by simulation data. Then, we demonstrate that mean streamwise velocity can be predicted a priori via a similarity solution to the mean streamwise vorticity transport equation. A vortex forcing term was used to represent the affects of spanwise topographic heterogeneity within the flow. Efficacy of the vortex forcing term was established with large-eddy simulation cases, wherein vortex forcing model parameters were altered to capture different values of spanwise spacing.
Possible effects of small-scale intermittency in turbulent reacting flows
International Nuclear Information System (INIS)
Sreenivasan, K.R.
2006-12-01
It is now well established that quantities such as energy dissipation, scalar dissipation and enstrophy possess huge fluctuations in turbulent flows, and that the fluctuations become increasingly stronger with increasing Reynolds number of the flow. The effects of this small-scale 'intermittency' on various aspects of reacting flows have not been addressed fully. This paper draws brief attention to a few possible effects on reaction rates, flame extinction, flamelet approximation, conditional moment closure methods, and so forth, besides commenting on possible effects on the resolution requirements of direct numerical simulations of turbulence. We also discuss the likelihood that large-amplitude events in a given class of shear flows are characteristic of that class, and that, plausible estimates of such quantities cannot be made, in general, on the hypothesis that large and small scales are independent. Finally, we briefly describe some ideas from multifractals as a potentially useful tool for an economical handling of a few of the problems touched upon here. (author)
Modification of large-scale motions in a turbulent pipe flow
Senshu, Kohei; Shinozaki, Hiroaki; Sakakibara, Jun
2017-11-01
We performed experiments to modify the flow structures in a fully developed turbulent flow in a straight round pipe. The modification of the flow was achieved by installing a short coaxial inner pipe. The inner pipe has ability to add continuous suction or blowing disturbance through its outer surface. The experiments were conducted at a Reynolds number of 44,000 with seven different disturbance patterns. The wall static pressure was measured and pipe friction coefficient was evaluated. The velocity distribution was measured with PIV and very large scale motions (VLSMs) were visualized. Pipe friction coefficient was increased by installing the inner pipe, while turbulence intensities over the cross section were reduced. Slight change of the friction was observed if the disturbance was added. We decomposed fluctuating velocity field in the azimuthal direction by a Fourier series expansion. As a result, we obtained that contribution of lower azimuthal mode numbers (m = 2, 3, 4) reduced while the higher modes increased. This was consistent with the observation of visualized very large scale motions.
International Nuclear Information System (INIS)
Pouransari, Zeinab; Vervisch, Luc; Johansson, Arne V.
2013-01-01
Highlights: ► A non-premixed turbulent flame close to a solid surface is studied using DNS. ► Heat release effects delay transition and enlarge fluctuation of density and pressure. ► The fine-scale structures damped and surface wrinkling diminished due to heat-release. ► Using semilocal scaling improves the collapse of turbulence statistic in inner region. ► There are regions of the flame where considerable (up to 10%) premixed burning occurs. -- Abstract: The present study concerns the role of heat release effects on characteristics mixing scales of turbulence in reacting wall-jet flows. Direct numerical simulations of exothermic reacting turbulent wall-jets are performed and compared to the isothermal reacting case. An evaluation of the heat-release effects on the structure of turbulence is given by examining the mixture fraction surface characteristics, diagnosing vortices and exploring the dissipation rate of the fuel and passive scalar concentrations, and moreover by illustration of probability density functions of reacting species and scatter plots of the local temperature against the mixture fraction. Primarily, heat release effects delay the transition, enlarge the fluctuation intensities of density and pressure and also enhance the fluctuation level of the species concentrations. However, it has a damping effect on all velocity fluctuation intensities and the Reynolds shear stress. A key result is that the fine-scale structures of turbulence are damped, the surface wrinkling is diminished and the vortices become larger due to heat-release effects. Taking into account the varying density by using semi-local scaling improves the collapse of the turbulence statistics in the inner region, but does not eliminate heat release induced differences in the outer region. Examining the two-dimensional premultiplied spanwise spectra of the streamwise velocity fluctuations indicates a shifting in the positions of the outer peaks, associated with large
Energy Technology Data Exchange (ETDEWEB)
Buschman, Francis X., E-mail: Francis.Buschman@unnpp.gov; Aumiller, David L.
2017-02-15
Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet
International Nuclear Information System (INIS)
Buschman, Francis X.; Aumiller, David L.
2017-01-01
Highlights: • Direct contact condensation data on liquid jets up to 1.7 MPa in pure steam and in the presence of noncondensable gas. • Identified a pressure effect on the impact of noncondensables to suppress condensation heat transfer not captured in existing data or correlations. • Pure steam data is used to develop a new correlation for condensation heat transfer on subcooled liquid jets. • Noncondensable data used to develop a modification to the renewal time estimate used in the Young and Bajorek correlation for condensation suppression in the presence of noncondensables. • A jet injection boundary condition, using a sub-grid jet condensation model, is developed for COBRA-IE which provides a more detailed estimate of the condensation rate on the liquid jet and allows the use of jet specific closure relationships. - Abstract: Condensation on liquid jets is an important phenomenon for many different facets of nuclear power plant transients and analyses such as containment spray cooling. An experimental facility constructed at the Pennsylvania State University, the High Pressure Liquid Jet Condensation Heat Transfer facility (HPLJCHT), has been used to perform steady-state condensation heat transfer experiments in which the temperature of the liquid jet is measured at different axial locations allowing the condensation rate to be determined over the jet length. Test data have been obtained in a pure steam environment and with varying concentrations of noncondensable gas. This data extends the available jet condensation data from near atmospheric pressure up to a pressure of 1.7 MPa. An empirical correlation for the liquid side condensation heat transfer coefficient has been developed based on the data obtained in pure steam. The data obtained with noncondensable gas were used to develop a correlation for the renewal time as used in the condensation suppression model developed by Young and Bajorek. This paper describes a new sub-grid liquid jet
Energy Technology Data Exchange (ETDEWEB)
Fang, Le [Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); Zhu, Ying [Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Liu, Yangwei, E-mail: liuyangwei@126.com [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Lu, Lipeng [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China)
2015-10-09
The non-equilibrium property in turbulence is a non-negligible problem in large-eddy simulation but has not yet been systematically considered. The generalization from equilibrium turbulence to non-equilibrium turbulence requires a clear recognition of the non-equilibrium property. As a preliminary step of this recognition, the present letter defines a typical non-equilibrium process, that is, the spectral non-equilibrium process, in homogeneous isotropic turbulence. It is then theoretically investigated by employing the skewness of grid-scale velocity gradient, which permits the decomposition of resolved velocity field into an equilibrium one and a time-reversed one. Based on this decomposition, an improved Smagorinsky model is proposed to correct the non-equilibrium behavior of the traditional Smagorinsky model. The present study is expected to shed light on the future studies of more generalized non-equilibrium turbulent flows. - Highlights: • A spectral non-equilibrium process in isotropic turbulence is defined theoretically. • A decomposition method is proposed to divide a non-equilibrium turbulence field. • An improved Smagorinsky model is proposed to correct the non-equilibrium behavior.
Two regimes of flux scaling in axially homogeneous turbulent convection in vertical tube
Pawar, Shashikant S.; Arakeri, Jaywant H.
2016-08-01
From experiments of axially homogeneous turbulent convection in a vertical tube using heat (Prandtl number Pr≃6 ) and brine (Pr≃600 ) we show that at sufficiently high Rayleigh numbers (Rag), the Nusselt number Nug˜(RagPr)1/2, which corresponds to the so-called ultimate regime scaling. In heat experiments below certain Rag,however,there is transition to a new regime, Nug˜(RagPr)0.3. This transition also seems to exist in earlier reported data for Pr=1 and Pr≃600 , at different Rag. However, the transition occurs at a single Grashof number, Grgc≃1.6 ×105 , and unified flux scalings for Pr≥1 , Nug/Pr˜Grg0.3, and Nug/Pr˜Grg1/2 can be given for the two regimes.
Two-scale correlation and energy cascade in three-dimensional turbulent flows
International Nuclear Information System (INIS)
Huang, Y X; Schmitt, F G; Gagne, Y
2014-01-01
In this paper, we propose a high-order harmonic-free methodology, namely arbitrary-order Hilbert spectral analysis, to estimate the two-scale correlation (TSC). When applied to fully developed turbulent velocity, we find that the scale-dependent Hilbert energy satisfies a lognormal distribution on both the inertial and dissipation ranges. The maximum probability density function of the logarithm of the Hilbert energy obeys a power law with a scaling exponent γ ≃ 0.33 in the inertial range. For the measured TSC, we observe a logarithmic correlation law with an experimental exponent α ≃ 0.37 on both the inertial and dissipation ranges. The correlation itself is found to be self-similar with respect to the distance between the two considered scales and a central frequency ω c in the logarithm space. An empirical nonlinear and nonlocal triad-scale interaction formula is proposed to describe the observed TSC. This triadic interaction can be interpreted as experimental evidence of a small-scale nonlinear and nonlocal coupling inside the self-similarity of the Richardson–Kolmogorov phenomenological cascade picture. (paper)
Tan, Zhihong; Kaul, Colleen M.; Pressel, Kyle G.; Cohen, Yair; Schneider, Tapio; Teixeira, João.
2018-03-01
Large-scale weather forecasting and climate models are beginning to reach horizontal resolutions of kilometers, at which common assumptions made in existing parameterization schemes of subgrid-scale turbulence and convection—such as that they adjust instantaneously to changes in resolved-scale dynamics—cease to be justifiable. Additionally, the common practice of representing boundary-layer turbulence, shallow convection, and deep convection by discontinuously different parameterizations schemes, each with its own set of parameters, has contributed to the proliferation of adjustable parameters in large-scale models. Here we lay the theoretical foundations for an extended eddy-diffusivity mass-flux (EDMF) scheme that has explicit time-dependence and memory of subgrid-scale variables and is designed to represent all subgrid-scale turbulence and convection, from boundary layer dynamics to deep convection, in a unified manner. Coherent up and downdrafts in the scheme are represented as prognostic plumes that interact with their environment and potentially with each other through entrainment and detrainment. The more isotropic turbulence in their environment is represented through diffusive fluxes, with diffusivities obtained from a turbulence kinetic energy budget that consistently partitions turbulence kinetic energy between plumes and environment. The cross-sectional area of up and downdrafts satisfies a prognostic continuity equation, which allows the plumes to cover variable and arbitrarily large fractions of a large-scale grid box and to have life cycles governed by their own internal dynamics. Relatively simple preliminary proposals for closure parameters are presented and are shown to lead to a successful simulation of shallow convection, including a time-dependent life cycle.
Air quality impact of two power plants using a sub-grid
International Nuclear Information System (INIS)
Drevet, Jerome; Musson-Genon, Luc
2012-01-01
Modeling point source emissions of air pollutants with regional Eulerian models is likely to lead to errors because a 3D Eulerian model is not able to correctly reproduce the evolution of a plume near its source. To overcome these difficulties, we applied a Gaussian puff model - imbedded within a 3D Eulerian model - for an impact assessment of EDF fossil fuel-fired power plants of Porcheville and Vitry, Ile-de-France. We simulated an entire year of atmospheric processes for an area covering the Paris region with the Polyphemus platform with which we conducted various scenarios with or without a Gaussian puff model, referred as Plume-in-grid, to independently handle 'with major point source emissions in Ile-de-France. Our study focuses on four chemical compounds (NO, NO 2 , SO 2 and O 3 ). The use of a Gaussian model is important, particularly for primary compounds with low reactivity such as SO, especially as industrial stacks are the major source of its emissions. SO 2 concentrations simulated using Plume-in-grid tare closer to the concentrations measured by the stations of the air quality agencies (Associations Agreees de Surveillance de la Qualite de l'Air, AASQA), although they remain largely overestimated. The use of a Gaussian model increases the concentrations near the source and lowers background levels of various chemical species (except O 3 ). The simulated concentrations may vary by over 30 % depending on whether we consider the Gaussian model for primary compounds such as SO 2 and NO, and around 2 % for secondary compounds such as NO 2 and O 3 . Regarding the impact of fossil fuel-fired power plants, simulated concentrations are increased by about 1 μg/m 3 approximately for SO 2 annual averages close to the Porcheville stack and are lowered by about 0.5 μg/m 3 far from the sources, highlighting the less diffusive character of the Gaussian model by comparison with the Eulerian model. The integration of a sub-grid Gaussian model offers the advantage of
On the role of the smallest scales of a passive scalar field in a near-wall turbulent flow
Energy Technology Data Exchange (ETDEWEB)
Robert, Bergant; Iztok, Tiselj [Jozef Stefan Institute, Ljubljana (Slovenia)
2006-03-01
Role of the smallest diffusive scales of a passive scalar field in the near-wall turbulent flow was examined with pseudo-spectral numerical simulations. Temperature fields were analyzed at friction Reynolds number Re{sub {tau}}=171 and at Prandtl numbers, Pr=1 and Pr=5.4. Results of direct numerical simulations (DNS) were compared with the under-resolved simulations where the velocity field was still resolved with the DNS accuracy, while a coarser grid was used to describe the temperature fields. Since the smallest temperature scales remained unresolved in these simulations, an appropriate spectral turbulent thermal diffusivity was applied to avoid pile-up at the higher wave numbers. In spite of coarser numerical grids, the temperature fields are still highly correlated with the DNS results, including instantaneous temperature fields. Results point to practically negligible role of the diffusive temperature scales on the macroscopic behavior of the turbulent heat transfer. (orig.)
Fractal-Markovian scaling of turbulent bursting process in open channel flow
International Nuclear Information System (INIS)
Keshavarzi, Ali Reza; Ziaei, Ali Naghi; Homayoun, Emdad; Shirvani, Amin
2005-01-01
The turbulent coherent structure of flow in open channel is a chaotic and stochastic process in nature. The coherence structure of the flow or bursting process consists of a series of eddies with a variety of different length scales and it is very important for the entrainment of sediment particles from the bed. In this study, a fractal-Markovian process is applied to the measured turbulent data in open channel. The turbulent data was measured in an experimental flume using three-dimensional acoustic Doppler velocity meter (ADV). A fractal interpolation function (FIF) algorithm was used to simulate more than 500,000 time series data of measured instantaneous velocity fluctuations and Reynolds shear stress. The fractal interpolation functions (FIF) enables to simulate and construct time series of u', v', and u'v' for any particular movement and state in the Markov process. The fractal dimension of the bursting events is calculated for 16 particular movements with the transition probability of the events based on 1st order Markov process. It was found that the average fractal dimensions of the streamwise flow velocity (u') are; 1.73, 1.74, 1.71 and 1.74 with the transition probability of 60.82%, 63.77%, 59.23% and 62.09% for the 1-1, 2-2, 3-3 and 4-4 movements, respectively. It was also found that the fractal dimensions of Reynold stress u'v' for quadrants 1, 2, 3 and 4 are 1.623, 1.623, 1.625 and 1.618, respectively
Challenges in Scale-Resolving Simulations of turbulent wake flows with coherent structures
Pereira, Filipe S.; Eça, Luís; Vaz, Guilherme; Girimaji, Sharath S.
2018-06-01
The objective of this work is to investigate the challenges encountered in Scale-Resolving Simulations (SRS) of turbulent wake flows driven by spatially-developing coherent structures. SRS of practical interest are expressly intended for efficiently computing such flows by resolving only the most important features of the coherent structures and modelling the remainder as stochastic field. The success of SRS methods depends upon three important factors: i) ability to identify key flow mechanisms responsible for the generation of coherent structures; ii) determine the optimum range of resolution required to adequately capture key elements of coherent structures; and iii) ensure that the modelled part is comprised nearly exclusively of fully-developed stochastic turbulence. This study considers the canonical case of the flow around a circular cylinder to address the aforementioned three key issues. It is first demonstrated using experimental evidence that the vortex-shedding instability and flow-structure development involves four important stages. A series of SRS computations of progressively increasing resolution (decreasing cut-off length) are performed. An a priori basis for locating the origin of the coherent structures development is proposed and examined. The criterion is based on the fact that the coherent structures are generated by the Kelvin-Helmholtz (KH) instability. The most important finding is that the key aspects of coherent structures can be resolved only if the effective computational Reynolds number (based on total viscosity) exceeds the critical value of the KH instability in laminar flows. Finally, a quantitative criterion assessing the nature of the unresolved field based on the strain-rate ratio of mean and unresolved fields is examined. The two proposed conditions and rationale offer a quantitative basis for developing "good practice" guidelines for SRS of complex turbulent wake flows with coherent structures.
Large-Eddy Simulation of turbulent vortex shedding
Energy Technology Data Exchange (ETDEWEB)
Archambeau, F
1995-06-01
This thesis documents the development and application of a computational algorithm for Large-Eddy Simulation. Unusually, the method adopts a fully collocated variable storage arrangement and is applicable to complex, non-rectilinear geometries. A Reynolds-averaged Navier-Stokes algorithm has formed the starting point of the development, but has been modified substantially: the spatial approximation of convection is effected by an energy-conserving central-differencing scheme; a second-order time-marching Adams-Bashforth scheme has been introduced; the pressure field is determined by solving the pressure-Poisson equation; this equation is solved either by use of preconditioned Conjugate-Gradient methods or with the Generalised Minimum Residual method; two types of sub-grid scale models have been introduced and examined. The algorithm has been validated by reference to a hierarchy of unsteady flows of increasing complexity starting with unsteady lid-driven cavity flows and ending with 3-D turbulent vortex shedding behind a square prism. In the latter case, for which extensive experimental data are available, special emphasis has been put on examining the dependence of the results on mesh density, near-wall treatment and the nature of the sub-grid-scale model, one of which is an advanced dynamic model. The LES scheme is shown to return time-average and phase-averaged results which agree well with experimental data and which support the view that LES is a promising approach for unsteady flows dominated by large periodic structures. (author) 87 refs.
A dynamic global-coefficient mixed subgrid-scale model for large-eddy simulation of turbulent flows
International Nuclear Information System (INIS)
Singh, Satbir; You, Donghyun
2013-01-01
Highlights: ► A new SGS model is developed for LES of turbulent flows in complex geometries. ► A dynamic global-coefficient SGS model is coupled with a scale-similarity model. ► Overcome some of difficulties associated with eddy-viscosity closures. ► Does not require averaging or clipping of the model coefficient for stabilization. ► The predictive capability is demonstrated in a number of turbulent flow simulations. -- Abstract: A dynamic global-coefficient mixed subgrid-scale eddy-viscosity model for large-eddy simulation of turbulent flows in complex geometries is developed. In the present model, the subgrid-scale stress is decomposed into the modified Leonard stress, cross stress, and subgrid-scale Reynolds stress. The modified Leonard stress is explicitly computed assuming a scale similarity, while the cross stress and the subgrid-scale Reynolds stress are modeled using the global-coefficient eddy-viscosity model. The model coefficient is determined by a dynamic procedure based on the global-equilibrium between the subgrid-scale dissipation and the viscous dissipation. The new model relieves some of the difficulties associated with an eddy-viscosity closure, such as the nonalignment of the principal axes of the subgrid-scale stress tensor and the strain rate tensor and the anisotropy of turbulent flow fields, while, like other dynamic global-coefficient models, it does not require averaging or clipping of the model coefficient for numerical stabilization. The combination of the global-coefficient eddy-viscosity model and a scale-similarity model is demonstrated to produce improved predictions in a number of turbulent flow simulations
Large eddy simulation of turbulent premixed combustion flows over backward facing step
Energy Technology Data Exchange (ETDEWEB)
Park, Nam Seob [Yuhan University, Bucheon (Korea, Republic of); Ko, Sang Cheol [Jeju National University, Jeju (Korea, Republic of)
2011-03-15
Large eddy simulation (LES) of turbulent premixed combustion flows over backward facing step has been performed using a dynamic sub-grid G-equation flamelet model. A flamelet model for the premixed flame is combined with a dynamic sub-grid combustion model for the filtered propagation of flame speed. The objective of this study is to investigate the validity of the dynamic sub-grid G-equation model in a complex turbulent premixed combustion flow. For the purpose of validating the LES combustion model, the LES of isothermal and reacting shear layer formed at a backward facing step is carried out. The calculated results are compared with the experimental results, and a good agreement is obtained.
Large eddy simulation of turbulent premixed combustion flows over backward facing step
International Nuclear Information System (INIS)
Park, Nam Seob; Ko, Sang Cheol
2011-01-01
Large eddy simulation (LES) of turbulent premixed combustion flows over backward facing step has been performed using a dynamic sub-grid G-equation flamelet model. A flamelet model for the premixed flame is combined with a dynamic sub-grid combustion model for the filtered propagation of flame speed. The objective of this study is to investigate the validity of the dynamic sub-grid G-equation model in a complex turbulent premixed combustion flow. For the purpose of validating the LES combustion model, the LES of isothermal and reacting shear layer formed at a backward facing step is carried out. The calculated results are compared with the experimental results, and a good agreement is obtained
Canuto, V. M.
1994-01-01
The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 10(exp 8) for the planetary boundary layer and Re approximately equals 10(exp 14) for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re(exp 9/4) exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The
``Large''- vs Small-scale friction control in turbulent channel flow
Canton, Jacopo; Örlü, Ramis; Chin, Cheng; Schlatter, Philipp
2017-11-01
We reconsider the ``large-scale'' control scheme proposed by Hussain and co-workers (Phys. Fluids 10, 1049-1051 1998 and Phys. Rev. Fluids, 2, 62601 2017), using new direct numerical simulations (DNS). The DNS are performed in a turbulent channel at friction Reynolds number Reτ of up to 550 in order to eliminate low-Reynolds-number effects. The purpose of the present contribution is to re-assess this control method in the light of more modern developments in the field, in particular also related to the discovery of (very) large-scale motions. The goals of the paper are as follows: First, we want to better characterise the physics of the control, and assess what external contribution (vortices, forcing, wall motion) are actually needed. Then, we investigate the optimal parameters and, finally, determine which aspects of this control technique actually scale in outer units and can therefore be of use in practical applications. In addition to discussing the mentioned drag-reduction effects, the present contribution will also address the potential effect of the naturally occurring large-scale motions on frictional drag, and give indications on the physical processes for potential drag reduction possible at all Reynolds numbers.
Kadum, Hawwa; Rockel, Stanislav; Holling, Michael; Peinke, Joachim; Cal, Raul Bayon
2017-11-01
The wake behind a floating model horizontal axis wind turbine during pitch motion is investigated and compared to a fixed wind turbine wake. An experiment is conducted in an acoustic wind tunnel where hot-wire data are acquired at five downstream locations. At each downstream location, a rake of 16 hot-wires was used with placement of the probes increasing radially in the vertical, horizontal, and diagonally at 45 deg. In addition, the effect of turbulence intensity on the floating wake is examined by subjecting the wind turbine to different inflow conditions controlled through three settings in the wind tunnel grid, a passive and two active protocols, thus varying in intensity. The wakes are inspected by statistics of the point measurements, where the various length/time scales are considered. The wake characteristics for a floating wind turbine are compared to a fixed turbine, and uncovering its features; relevant as the demand for exploiting deep waters in wind energy is increasing.
Experimental investigation of small scale geometries in a turbulent round jet
Energy Technology Data Exchange (ETDEWEB)
Gampert, Markus; Schaefer, Philip; Peters, Norbert, E-mail: mgampert@itv.rwth-aachen.de [Institute for Combustion Technology, RWTH Aachen Templergraben 64, 52056 Aachen (Germany)
2011-12-22
In the present work, we present a method to gather highly accurate three-dimensional measurements of a scalar field in order to experimentally validate the theory of dissipation elements as developped by Wang and Peters (2006, 2008). Combining a two-dimensional high-speed Rayleigh scattering technique with Taylor's hypothesis allows to resolve the concentration field of gaseous propane discharging into ambient air from a turbulent round jet at a Reynolds number (based on nozzle diameter and exit velocity) of 2,800 down to the Kolmogorov scale in every spatial direction. Based on the acquired data, the normalized probability density function of the length of dissipation elements P-tilde (l-tilde) is investigated at various downstream positions x/d = 15 - 40 and an excellent agreement with the theoretically derived model equation is obtained.
New insights into sub-ion scale turbulence in Earth's magnetosheath using MMS data
Breuillard, Hugo; Andriopoulou, Maria; Graham, Daniel; Le Contel, Olivier; Huang, Shiyong; Hadid, Lina; Sahraoui, Fouad; Alexandrova, Olga; Berthomier, Matthieu; Retino, Alessandro; Nakamura, Rumi; Baumjohann, Wolfgang
2017-04-01
On January 22nd 2016, MMS was located in Earth's magnetosheath and detected intense lion roars showing a secondary bandwidth. Detailed polarization analysis, using burst data from SCM and EDP instruments, and numerical simulation, using WHAMP, are performed in this study. They show that these mainly perpendicular fluctuations are highly nonlinear whistler wave packets, and that a high sampling rate is needed to pick up the peaks of the signal. As a result, their amplitude might have been underestimated in previous missions such as Cluster, which can have a significant impact on electron dynamics. Using FPI burst data, we show that electron velocity distribution functions exhibit a gyrophase-bunched signature in the presence of these lion roars. The analysis of magnetic and density fluctuations, inferred from spacecraft potential, also show the highly-compressible nature of turbulence up to electron scales.
Energy Technology Data Exchange (ETDEWEB)
Wu, Wen-fei; Xie, Jing-xing; Gong, Zhi-jun; Li, Bao-wei [Inner Mongolia Univ. of Science and Technology, Baotou (China). Inner Mongolia Key Lab. for Utilization of Bayan Obo Multi-Metallic Resources: Elected State Key Lab.
2013-07-01
The process of the pulverized coal combustion in tangential firing boiler has prominent significance on improving boiler operation efficiency and reducing NO{sub X} emission. This paper aims at researching complex turbulent vortex coherent structure formed by the four corners jets in the burner zone, a cold experimental model of tangential firing boiler has been built. And by employing spatial correlation analysis method and PIV (Particle Image Velocimetry) technique, the law of Vortex scale distribution on the three typical horizontal layers of the model based on the turbulent Integral Length Scale (ILS) has been researched. According to the correlation analysis of ILS and the temporal average velocity, it can be seen that the turbulent vortex scale distribution in the burner zone of the model is affected by both jet velocity and the position of wind layers, and is not linear with the variation of jet velocity. The vortex scale distribution of the upper primary air is significantly different from the others. Therefore, studying the ILS of turbulent vortex integral scale is instructive to high efficiency cleaning combustion of pulverized coal in theory.
The smallest thermal scales in a turbulent channel flow at Prandtl number
International Nuclear Information System (INIS)
Bergant, R.; Tiselj, I.
2004-01-01
For describing the turbulent heat transfer from a wall to a fluid at low Reynolds (Re < 10000) and low Prandtl numbers (Pr < 20) a direct numerical simulation (DNS) can be used, which describes all the length and time scales of the phenomenon. The object of this paper is to find out the influence of the smallest temperature scales on the largest ones, which are responsible for the macro behavior of the near-wall heat transfer. Simulation, performed at Re = 2650 and Pr = 1, was calculated for velocity field with the DNS accuracy and for three different temperature fields. First temperature field, calculated with the DNS accuracy, was used as a reference to the second and third temperature fields where the highest Fourier coefficients in streamwise and spanwise directions were filtered and damped. It means, that the smallest temperature scales were not described with DNS accuracy anymore. New approach shows that results, for at least first and second order statistics, are comparable to the DNS ones without filtering and damping. (author)
Fathali, M.; Deshiri, M. Khoshnami
2016-04-01
The shearless mixing layer is generated from the interaction of two homogeneous isotropic turbulence (HIT) fields with different integral scales ℓ1 and ℓ2 and different turbulent kinetic energies E1 and E2. In this study, the sensitivity of temporal evolutions of two-dimensional, incompressible shearless mixing layers to the parametric variations of ℓ1/ℓ2 and E1/E2 is investigated. The sensitivity methodology is based on the nonintrusive approach; using direct numerical simulation and generalized polynomial chaos expansion. The analysis is carried out at Reℓ 1=90 for the high-energy HIT region and different integral length scale ratios 1 /4 ≤ℓ1/ℓ2≤4 and turbulent kinetic energy ratios 1 ≤E1/E2≤30 . It is found that the most influential parameter on the variability of the mixing layer evolution is the turbulent kinetic energy while variations of the integral length scale show a negligible influence on the flow field variability. A significant level of anisotropy and intermittency is observed in both large and small scales. In particular, it is found that large scales have higher levels of intermittency and sensitivity to the variations of ℓ1/ℓ2 and E1/E2 compared to the small scales. Reconstructed response surfaces of the flow field intermittency and the turbulent penetration depth show monotonic dependence on ℓ1/ℓ2 and E1/E2 . The mixing layer growth rate and the mixing efficiency both show sensitive dependence on the initial condition parameters. However, the probability density function of these quantities shows relatively small solution variations in response to the variations of the initial condition parameters.
Energy Technology Data Exchange (ETDEWEB)
Bogenschutz, Peter [National Center for Atmospheric Research, Boulder, CO (United States); Moeng, Chin-Hoh [National Center for Atmospheric Research, Boulder, CO (United States)
2015-10-13
The PI’s at the National Center for Atmospheric Research (NCAR), Chin-Hoh Moeng and Peter Bogenschutz, have primarily focused their time on the implementation of the Simplified-Higher Order Turbulence Closure (SHOC; Bogenschutz and Krueger 2013) to the Multi-scale Modeling Framework (MMF) global model and testing of SHOC on deep convective cloud regimes.
Felder, Stefan; Chanson, Hubert
2009-07-01
In high-velocity free-surface flows, air entrainment is common through the interface, and intense interactions take place between turbulent structures and entrained bubbles. Two-phase flow properties were measured herein in high-velocity open channel flows above a stepped chute. Detailed turbulence measurements were conducted in a large-size facility, and a comparative analysis was applied to test the validity of the Froude and Reynolds similarities. The results showed consistently that the Froude similitude was not satisfied using a 2:1 geometric scaling ratio. Lesser number of entrained bubbles and comparatively greater bubble sizes were observed at the smaller Reynolds numbers, as well as lower turbulence levels and larger turbulent length and time scales. The results implied that small-size models did underestimate the rate of energy dissipation and the aeration efficiency of prototype stepped spillways for similar flow conditions. Similarly a Reynolds similitude was tested. The results showed also some significant scale effects. However a number of self-similar relationships remained invariant under changes of scale and confirmed the analysis of Chanson and Carosi (Exp Fluids 42:385-401, 2007). The finding is significant because self-similarity may provide a picture general enough to be used to characterise the air-water flow field in large prototype channels.
Ghannam, Khaled
The atmospheric boundary-layer is the lowest 500-2000 m of the Earth's atmosphere where much of human life and ecosystem services reside. This layer responds to land surface (e.g. buoyancy and roughness elements) and slowly evolving free tropospheric (e.g. temperature and humidity lapse rates) conditions that arguably mediate and modulate biosphere-atmosphere interactions. Such response often results in spatially- and temporally-rich turbulence scales that continue to be the subject of inquiry given their significance to a plethora of applications in environmental sciences and engineering. The work here addresses key aspects of boundary layer turbulence with a focus on the role of roughness elements (vegetation canopies) and buoyancy (surface heating) in modifying the well-studied picture of shear-dominated wall-bounded turbulence. A combination of laboratory channel experiments, field experiments, and numerical simulations are used to explore three distinct aspects of boundary layer turbulence. These are: • The concept of ergodicity in turbulence statistics within canopies: It has been long-recognized that homogeneous and stationary turbulence is ergodic, but less is known about the effects of inhomogeneity introduced by the presence of canopies on the turbulence statistics. A high resolution (temporal and spatial) flume experiment is used here to test the convergence of the time statistics of turbulent scalar concentrations to their ensemble (spatio-temporal) counterpart. The findings indicate that within-canopy scalar statistics have a tendency to be ergodic, mostly in shallow layers (close to canopy top) where the sweeping flow events appear to randomize the statistics. Deeper layers within the canopy are dominated by low-dimensional (quasi-deterministic) von Karman vortices that tend to break ergodicity. • Scaling laws of turbulent velocity spectra and structure functions in near-surface atmospheric turbulence: the existence of a logarithmic scaling in the
Evaluation of scalar mixing and time scale models in PDF simulations of a turbulent premixed flame
Energy Technology Data Exchange (ETDEWEB)
Stoellinger, Michael; Heinz, Stefan [Department of Mathematics, University of Wyoming, Laramie, WY (United States)
2010-09-15
Numerical simulation results obtained with a transported scalar probability density function (PDF) method are presented for a piloted turbulent premixed flame. The accuracy of the PDF method depends on the scalar mixing model and the scalar time scale model. Three widely used scalar mixing models are evaluated: the interaction by exchange with the mean (IEM) model, the modified Curl's coalescence/dispersion (CD) model and the Euclidean minimum spanning tree (EMST) model. The three scalar mixing models are combined with a simple model for the scalar time scale which assumes a constant C{sub {phi}}=12 value. A comparison of the simulation results with available measurements shows that only the EMST model calculates accurately the mean and variance of the reaction progress variable. An evaluation of the structure of the PDF's of the reaction progress variable predicted by the three scalar mixing models confirms this conclusion: the IEM and CD models predict an unrealistic shape of the PDF. Simulations using various C{sub {phi}} values ranging from 2 to 50 combined with the three scalar mixing models have been performed. The observed deficiencies of the IEM and CD models persisted for all C{sub {phi}} values considered. The value C{sub {phi}}=12 combined with the EMST model was found to be an optimal choice. To avoid the ad hoc choice for C{sub {phi}}, more sophisticated models for the scalar time scale have been used in simulations using the EMST model. A new model for the scalar time scale which is based on a linear blending between a model for flamelet combustion and a model for distributed combustion is developed. The new model has proven to be very promising as a scalar time scale model which can be applied from flamelet to distributed combustion. (author)
Scale-similar clustering of heavy particles in the inertial range of turbulence
Ariki, Taketo; Yoshida, Kyo; Matsuda, Keigo; Yoshimatsu, Katsunori
2018-03-01
Heavy particle clustering in turbulence is discussed from both phenomenological and analytical points of view, where the -4 /3 power law of the pair-correlation function is obtained in the inertial range. A closure theory explains the power law in terms of the balance between turbulence mixing and preferential-concentration mechanism. The obtained -4 /3 power law is supported by a direct numerical simulation of particle-laden turbulence.
International Nuclear Information System (INIS)
Lee, Gonghee; Bang, Youngseok; Woo, Swengwoong; Kim, Dohyeong; Kang, Minku
2013-01-01
The types of errors in CFD simulation can be divided into the two main categories: numerical errors and model errors. Turbulence model is one of the important sources for model errors. In this study, in order to assess the prediction performance of Reynolds-averaged Navier-Stokes (RANS)-based two equations turbulence models for the analysis of flow distribution inside a 1/5 scale-down APR+, the simulation was conducted with the commercial CFD software, ANSYS CFX V. 14. In this study, in order to assess the prediction performance of turbulence models for the analysis of flow distribution inside a 1/5 scale-down APR+, the simulation was conducted with the commercial CFD software, ANSYS CFX V. 14. Both standard k-ε model and SST model predicted the similar flow pattern inside reactor. Therefore it was concluded that the prediction performance of both turbulence models was nearly same. Complex thermal-hydraulic characteristics exist inside reactor because the reactor internals consist of fuel assembly, control rod assembly, and the internal structures. Either flow distribution test for the scale-down reactor model or computational fluid dynamics (CFD) simulation have been conducted to understand these complex thermal-hydraulic features inside reactor
International Nuclear Information System (INIS)
Antonov, N V
2006-01-01
Recent progress on the anomalous scaling in models of turbulent heat and mass transport is reviewed with the emphasis on the approach based on the field-theoretic renormalization group (RG) and operator product expansion (OPE). In that approach, the anomalous scaling is established as a consequence of the existence in the corresponding field-theoretic models of an infinite number of 'dangerous' composite fields (operators) with negative critical dimensions, which are identified with the anomalous exponents. This allows one to calculate the exponents in a systematic perturbation expansion, similar to the ε expansion in the theory of critical phenomena. The RG and OPE approach is presented in a self-contained way for the example of a passive scalar field (temperature, concentration of an impurity, etc) advected by a self-similar Gaussian velocity ensemble with vanishing correlation time, the so-called Kraichnan's rapid-change model, where the anomalous exponents are known up to order O(ε 3 ). Effects of anisotropy, compressibility and the correlation time of the velocity field are discussed. Passive advection by non-Gaussian velocity field governed by the stochastic Navier-Stokes equation and passively advected vector (e.g. magnetic) fields are considered
International Nuclear Information System (INIS)
Tokgoz, S; Elsinga, G E; Delfos, R; Westerweel, J
2011-01-01
The effect of flow structures to the torque values of fully turbulent Taylor-Couette flow was experimentally studied using tomographic PIV. The measurements were performed for various relative cylinder rotation speeds and Reynolds numbers, based on a study of Ravelet et al. (2010). We confirmed that the flow structures are strongly influenced by the rotation number. Our analyses using time-averaged mean flow showed the presence of Taylor vortices for the two smallest rotation numbers that were studied. Increasing the rotation number initially resulted in the shape deformation of the Taylor vortices. Further increment towards only outer cylinder rotation, showed transition to the dominance of the small scale vortices and absence of Taylor vortex-like structures. We compared the transition of the flow structures with the curves of dimensionless torque. Sudden changes of the flow structures confirmed the presence of transition points on the torque curve, where the dominance of small and large scale vortical structures on the mean flow interchanges.
Kinetic turbulence simulations at extreme scale on leadership-class systems
Energy Technology Data Exchange (ETDEWEB)
Wang, Bei [Princeton Univ., Princeton, NJ (United States); Ethier, Stephane [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Tang, William [Princeton Univ., Princeton, NJ (United States); Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Williams, Timothy [Argonne National Lab. (ANL), Argonne, IL (United States); Ibrahim, Khaled Z. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Madduri, Kamesh [The Pennsylvania State Univ., University Park, PA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2013-01-01
Reliable predictive simulation capability addressing confinement properties in magnetically confined fusion plasmas is critically-important for ITER, a 20 billion dollar international burning plasma device under construction in France. The complex study of kinetic turbulence, which can severely limit the energy confinement and impact the economic viability of fusion systems, requires simulations at extreme scale for such an unprecedented device size. Our newly optimized, global, ab initio particle-in-cell code solving the nonlinear equations underlying gyrokinetic theory achieves excellent performance with respect to "time to solution" at the full capacity of the IBM Blue Gene/Q on 786,432 cores of Mira at ALCF and recently of the 1,572,864 cores of Sequoia at LLNL. Recent multithreading and domain decomposition optimizations in the new GTC-P code represent critically important software advances for modern, low memory per core systems by enabling routine simulations at unprecedented size (130 million grid points ITER-scale) and resolution (65 billion particles).
Griffiths, Ross W; Gayen, Bishakhdatta
2015-11-13
A large-scale circulation, a turbulent boundary layer, and a turbulent plume are noted features of convection at large Rayleigh numbers under differential heating on a single horizontal boundary. These might be attributed to the forcing, which in all studies has been limited to a unidirectional gradient over the domain scale. We instead apply forcing on a length scale smaller than the domain, and with variation in both horizontal directions. Direct numerical simulations show turbulence throughout the domain, a regime transition to a dominant domain-scale circulation, and a region of logarithmic velocity in the boundary layer, despite zero net heat flux. The results show significant similarities to Rayleigh-Bénard convection, demonstrate the significance of plume merging, support the hypothesis that the key driver of convection is the production of available potential energy without necessarily supplying total potential energy, and imply that contributions to domain-scale circulation in the oceans need not be solely from the large-scale gradients of forcing.
Self-adaptive Newton-based iteration strategy for the LES of turbulent multi-scale flows
International Nuclear Information System (INIS)
Daude, F.; Mary, I.; Comte, P.
2014-01-01
An improvement of the efficiency of implicit schemes based on Newton-like methods for the simulation of turbulent flows by compressible LES or DNS is proposed. It hinges on a zonal Self-Adaptive Newton method (hereafter denoted SAN), capable of taking advantage of Newton convergence rate heterogeneities in multi-scale flow configurations due to a strong spatial variation of the mesh resolution, such as transitional or turbulent flows controlled by small actuators or passive devices. Thanks to a predictor of the local Newton convergence rate, SAN provides computational savings by allocating resources in regions where they are most needed. The consistency with explicit time integration and the efficiency of the method are checked in three test cases: - The standard test-case of 2-D linear advection of a vortex, on three different two-block grids. - Transition to 3-D turbulence on the lee-side of an airfoil at high angle of attack, which features a challenging laminar separation bubble with a turbulent reattachment. - A passively-controlled turbulent transonic cavity flow, for which the CPU time is reduced by a factor of 10 with respect to the baseline algorithm, illustrates the interest of the proposed algorithm. (authors)
Energy Technology Data Exchange (ETDEWEB)
Urbin, Gerald [Institut National Polytechnique, 38 - Grenoble (France)
1998-02-02
This study highlights the potentialities of the numerical technique of large scale simulation in describing and understanding the turbulent flows in a complex geometry. Particularly, it is focussed on flows of free jet, confined jets and multiple jets of high solidity grid. Spatial simulations of the circular zone close to a free jet, of high Reynolds number were performed. In spite of an evident sensitivity to upstream conditions good agreement between our statistical predictions and different experimental measurements was obtained. The multiple coherent vortical structures implied in the transition to turbulence of the jet were found. At the same time, helical or annular axisymmetric vortices were observed. Also, an original vortical arrangement was evidenced, resulting from the alternating inclination and local pairing of these rings. It could been forced through an ad-hoc excitation which modifies subsequently drastically the jet development. When an axisymmetric excitation is imposed after formation of annular structures, pairs of counter-rotative longitudinal vortices occur and generate lateral jets. Their nature and presence in case of a helical excitation are discussed. An efficient method for controlling their number is developed. Then, one is studied the very low frequency periodic phenomenon of backward-facing transition to turbulence which develops in the confined jet and grid multiple jets (a phenomenon generic in numerous flows). It was found to depend not only on the characteristic of the re-circulation (pre-transition) zones but also on the upstream flow (zone of post-transition stagnation, pressure effect). Large scale transversal motions of the fluid have been found beginning from the grid. An interpretation of this phenomenon is suggested 193 refs., 109 figs.
Air-chemistry "turbulence": power-law scaling and statistical regularity
Directory of Open Access Journals (Sweden)
H.-m. Hsu
2011-08-01
Full Text Available With the intent to gain further knowledge on the spectral structures and statistical regularities of surface atmospheric chemistry, the chemical gases (NO, NO_{2}, NO_{x}, CO, SO_{2}, and O_{3} and aerosol (PM_{10} measured at 74 air quality monitoring stations over the island of Taiwan are analyzed for the year of 2004 at hourly resolution. They represent a range of surface air quality with a mixed combination of geographic settings, and include urban/rural, coastal/inland, plain/hill, and industrial/agricultural locations. In addition to the well-known semi-diurnal and diurnal oscillations, weekly, and intermediate (20 ~ 30 days peaks are also identified with the continuous wavelet transform (CWT. The spectra indicate power-law scaling regions for the frequencies higher than the diurnal and those lower than the diurnal with the average exponents of −5/3 and −1, respectively. These dual-exponents are corroborated with those with the detrended fluctuation analysis in the corresponding time-lag regions. These exponents are mostly independent of the averages and standard deviations of time series measured at various geographic settings, i.e., the spatial inhomogeneities. In other words, they possess dominant universal structures. After spectral coefficients from the CWT decomposition are grouped according to the spectral bands, and inverted separately, the PDFs of the reconstructed time series for the high-frequency band demonstrate the interesting statistical regularity, −3 power-law scaling for the heavy tails, consistently. Such spectral peaks, dual-exponent structures, and power-law scaling in heavy tails are important structural information, but their relations to turbulence and mesoscale variability require further investigations. This could lead to a better understanding of the processes controlling air quality.
Nickelsen, Daniel
2017-07-01
The statistics of velocity increments in homogeneous and isotropic turbulence exhibit universal features in the limit of infinite Reynolds numbers. After Kolmogorov’s scaling law from 1941, many turbulence models aim for capturing these universal features, some are known to have an equivalent formulation in terms of Markov processes. We derive the Markov process equivalent to the particularly successful scaling law postulated by She and Leveque. The Markov process is a jump process for velocity increments u(r) in scale r in which the jumps occur randomly but with deterministic width in u. From its master equation we establish a prescription to simulate the She-Leveque process and compare it with Kolmogorov scaling. To put the She-Leveque process into the context of other established turbulence models on the Markov level, we derive a diffusion process for u(r) using two properties of the Navier-Stokes equation. This diffusion process already includes Kolmogorov scaling, extended self-similarity and a class of random cascade models. The fluctuation theorem of this Markov process implies a ‘second law’ that puts a loose bound on the multipliers of the random cascade models. This bound explicitly allows for instances of inverse cascades, which are necessary to satisfy the fluctuation theorem. By adding a jump process to the diffusion process, we go beyond Kolmogorov scaling and formulate the most general scaling law for the class of Markov processes having both diffusion and jump parts. This Markov scaling law includes She-Leveque scaling and a scaling law derived by Yakhot.
Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface
DEFF Research Database (Denmark)
Mikkelsen, Torben Krogh; Larsen, Søren Ejling; Ejsing Jørgensen, Hans
2017-01-01
Within the lowest kilometer of the Earth's atmosphere, in the so-called atmospheric boundary layer, winds are often gusty and turbulent. Nearest to the ground, the turbulence is predominately generated by mechanical wall-bounded wind shear, whereas at higher altitudes turbulent mixing of heat...... subrange with a distinct inverse-linear power law for turbulence in a strongly sheared high-Reynolds number wall-bounded flow, as is encountered in the lowest sheared part of the atmospheric boundary layer, also known as the eddy surface layer. This paper presents observations of spectra measured...... and moisture also play a role. The variance (square of the standard deviation) of the fluctuation around the mean wind speed is a measure of the kinetic energy content of the turbulence. This kinetic energy can be resolved into the spectral distributions, or spectra, as functions of eddy size, wavenumber...
Kassem, Hachem; Thompson, Charlotte E. L.; Amos, Carl L.; Townend, Ian H.
2015-10-01
The suspension of sediments by oscillatory flows is a complex case of fluid-particle interaction. The aim of this study is to provide insight into the spatial (time) and scale (frequency) relationships between wave-generated boundary layer turbulence and event-driven sediment transport beneath irregular shoaling and breaking waves in the nearshore of a prototype sandy barrier beach, using data collected through the Barrier Dynamics Experiment II (BARDEX II). Statistical, quadrant and spectral analyses reveal the anisotropic and intermittent nature of Reynolds' stresses (momentum exchange) in the wave boundary layer, in all three orthogonal planes of motion. The fractional contribution of coherent turbulence structures appears to be dictated by the structural form of eddies beneath plunging and spilling breakers, which in turn define the net sediment mobilisation towards or away from the barrier, and hence ensuing erosion and accretion trends. A standing transverse wave is also observed in the flume, contributing to the substantial skewness of spanwise turbulence. Observed low frequency suspensions are closely linked to the mean flow (wave) properties. Wavelet analysis reveals that the entrainment and maintenance of sediment in suspension through a cluster of bursting sequence is associated with the passage of intermittent slowly-evolving large structures, which can modulate the frequency of smaller motions. Outside the boundary layer, small scale, higher frequency turbulence drives the suspension. The extent to which these spatially varied perturbation clusters persist is associated with suspension events in the high frequency scales, decaying as the turbulent motion ceases to supply momentum, with an observed hysteresis effect.
Energy Technology Data Exchange (ETDEWEB)
Boivin, M.
1996-12-31
An investigation of dilute dispersed turbulent two-way coupling two-phase flows has been undertaken with the hemp of Direct Numerical Simulations (DNS) on stationary-forced homogeneous isotropic turbulence. The particle relaxation times range from the Kolmogorov to the Eulerian time scales and the load goes up to 1. The analyses is made within the Eulerian-model framework, enhanced by the National Hydraulics Laboratory Lagrangian approach, which is extended here to include inverse coupling and Reynolds effects. Particles are found to dissipate on average turbulence energy. The spectra of the fluid-particle exchange energy rate show that small particles drag the fluid at high wavenumbers, which explains the observed relative increase of small scale energy. A spectral analysis points as responsible mechanism the transfer of fluid-particle covariance by fluid turbulence. Regarding the modeling, he Reynolds dependency and the load contribution are found crucial for good predictions of the dispersed phase moments. A study for practical applications with Large Eddy Simulations (LES) has yielded: LES can be used two-way coupling two-phase flows provided that a dynamic mixed sub-grid scale model is adopted and the particle relaxation time is larger than the cutoff filter one; the inverse coupling should depend more on the position of this relaxation time with respect to the Eulerian one than to the Kolmogorov one. (author) 67 refs.
Cessations and reversals of the large-scale circulation in turbulent thermal convection.
Xi, Heng-Dong; Xia, Ke-Qing
2007-06-01
We present an experimental study of cessations and reversals of the large-scale circulation (LSC) in turbulent thermal convection in a cylindrical cell of aspect ratio (Gamma) 1/2 . It is found that cessations and reversals of the LSC occur in Gamma = 1/2 geometry an order-of-magnitude more frequently than they do in Gamma=1 cells, and that after a cessation the LSC is most likely to restart in the opposite direction, i.e., reversals of the LSC are the most probable cessation events. This contrasts sharply to the finding in Gamma=1 geometry and implies that cessations in the two geometries are governed by different dynamics. It is found that the occurrence of reversals is a Poisson process and that a stronger rebound of the flow strength after a reversal or cessation leads to a longer period of stability of the LSC. Several properties of reversals and cessations in this system are found to be statistically similar to those of geomagnetic reversals. A direct measurement of the velocity field reveals that a cessation corresponds to a momentary decoherence of the LSC.
Large scale structures in a turbulent boundary layer and their imprint on wall shear stress
Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark
2015-11-01
Experiments were performed on a turbulent boundary layer developing on a flat plate model under zero pressure gradient flow. A MEMS differential capacitive shear stress sensor with a 1 mm × 1 mm floating element was used to capture the fluctuating wall shear stress simultaneously with streamwise velocity measurements from a hot-wire anemometer traversed in the wall normal direction. Near the wall, the peak in the cross correlation corresponds to an organized motion inclined 45° from the wall. In the outer region, the peak diminishes in value, but is still significant at a distance greater than half the boundary layer thickness, and corresponds to a structure inclined 14° from the wall. High coherence between the two signals was found for the low-frequency content, reinforcing the belief that large scale structures have a vital impact on wall shear stress. Thus, estimation of the wall shear stress from the low-frequency velocity signal will be performed, and is expected to be statistically significant in the outer boundary layer. Additionally, conditionally averaged mean velocity profiles will be presented to assess the effects of high and low shear stress. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.
Scaling of Polymer Degradation Rate within a High-Reynolds-Number Turbulent Boundary Layer
Elbing, Brian; Solomon, Michael; Perlin, Marc; Dowling, David; Ceccio, Steven
2009-11-01
An experiment conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate test model produced the first quantitative measurements of polymer molecular weight within a turbulent boundary layer. Testing was conducted at speeds to 20 m/s and downstream distance based Reynolds numbers to 220 million. These results showed that the rate of polymer degradation by scission of the polymer chains increases with increased speed, downstream distance and surface roughness. With the surface fully rough at 20 m/s there was no measureable level of drag reduction at the first measurement location (0.56 m downstream of injection). These results are scaled with the assumption that the rate of degradation is dependent on the polymer residence time in the flow and the local shear rate. A successful collapse of the data within the measurement uncertainty was achieved over a range of flow speed (6.6 to 20 m/s), surface roughness (smooth and fully rough) and downstream distance from injection (0.56 to 9.28 m).
Molz, F. J.; Kozubowski, T. J.; Miller, R. S.; Podgorski, K.
2005-12-01
The theory of non-stationary stochastic processes with stationary increments gives rise to stochastic fractals. When such fractals are used to represent measurements of (assumed stationary) physical properties, such as ln(k) increments in sediments or velocity increments "delta(v)" in turbulent flows, the resulting measurements exhibit scaling, either spatial, temporal or both. (In the present context, such scaling refers to systematic changes in the statistical properties of the increment distributions, such as variance, with the lag size over which the increments are determined.) Depending on the class of probability density functions (PDFs) that describe the increment distributions, the resulting stochastic fractals will display different properties. Until recently, the stationary increment process was represented using mainly Gaussian, Gamma or Levy PDFs. However, measurements in both sediments and fluid turbulence indicate that these PDFs are not commonly observed. Based on recent data and previous studies referenced and discussed in Meerschaert et al. (2004) and Molz et al. (2005), the measured increment PDFs display an approximate double exponential (Laplace) shape at smaller lags, and this shape evolves towards Gaussian at larger lags. A model for this behavior based on the Generalized Laplace PDF family called fractional Laplace motion, in analogy with its Gaussian counterpart - fractional Brownian motion, has been suggested (Meerschaert et al., 2004) and the necessary mathematics elaborated (Kozubowski et al., 2005). The resulting stochastic fractal is not a typical self-affine monofractal, but it does exhibit monofractal-like scaling in certain lag size ranges. To date, it has been shown that the Generalized Laplace family fits ln(k) increment distributions and reproduces the original 1941 theory of Kolmogorov when applied to Eulerian turbulent velocity increments. However, to make a physically self-consistent application to turbulence, one must adopt a
Elsas, José Hugo; Szalay, Alexander S.; Meneveau, Charles
2018-04-01
Motivated by interest in the geometry of high intensity events of turbulent flows, we examine the spatial correlation functions of sets where turbulent events are particularly intense. These sets are defined using indicator functions on excursion and iso-value sets. Their geometric scaling properties are analysed by examining possible power-law decay of their radial correlation function. We apply the analysis to enstrophy, dissipation and velocity gradient invariants Q and R and their joint spatial distributions, using data from a direct numerical simulation of isotropic turbulence at Reλ ≈ 430. While no fractal scaling is found in the inertial range using box-counting in the finite Reynolds number flow considered here, power-law scaling in the inertial range is found in the radial correlation functions. Thus, a geometric characterisation in terms of these sets' correlation dimension is possible. Strong dependence on the enstrophy and dissipation threshold is found, consistent with multifractal behaviour. Nevertheless, the lack of scaling of the box-counting analysis precludes direct quantitative comparisons with earlier work based on multifractal formalism. Surprising trends, such as a lower correlation dimension for strong dissipation events compared to strong enstrophy events, are observed and interpreted in terms of spatial coherence of vortices in the flow.
Ivers, D. J.; Phillips, C. G.
2018-03-01
We re-consider the plate-like model of turbulence in the Earth's core, proposed by Braginsky and Meytlis (1990), and show that it is plausible for core parameters not only in polar regions but extends to mid- and low-latitudes where rotation and gravity are not parallel, except in a very thin equatorial layer. In this model the turbulence is highly anisotropic with preferred directions imposed by the Earth's rotation and the magnetic field. Current geodynamo computations effectively model sub-grid scale turbulence by using isotropic viscous and thermal diffusion values significantly greater than the molecular values of the Earth's core. We consider a local turbulent dynamo model for the Earth's core in which the mean magnetic field, velocity and temperature satisfy the Boussinesq induction, momentum and heat equations with an isotropic turbulent Ekman number and Roberts number. The anisotropy is modelled only in the thermal diffusion tensor with the Earth's rotation and magnetic field as preferred directions. Nonlocal organising effects of gravity and rotation (but not aspect ratio in the Earth's core) such as an inverse cascade and nonlocal transport are assumed to occur at longer length scales, which computations may accurately capture with sufficient resolution. To investigate the implications of this anisotropy for the proposed turbulent dynamo model we investigate the linear instability of turbulent magnetoconvection on length scales longer than the background turbulence in a rotating sphere with electrically insulating exterior for no-slip and isothermal boundary conditions. The equations are linearised about an axisymmetric basic state with a conductive temperature, azimuthal magnetic field and differential rotation. The basic state temperature is a function of the anisotropy and the spherical radius. Elsasser numbers in the range 1-20 and turbulent Roberts numbers 0.01-1 are considered for both equatorial symmetries of the magnetic basic state. It is found
EINOx scaling in a non-premixed turbulent hydrogen jet with swirled coaxial air
Energy Technology Data Exchange (ETDEWEB)
Oh, Jeongseog; Hwang, Jeongjae; Yoon, Youngbin [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742 (Korea)
2010-08-15
The effect of swirl flow on pollutant emission (nitrous oxide) was studied in a non-premixed turbulent hydrogen jet with coaxial air. A swirl vane was equipped in a coaxial air feeding line and the angle of the swirl vane was varied from 30 to 90 degrees. Under a fixed global equivalence ratio of {phi}{sub G} = 0.5, fuel jet air velocity and coaxial air velocity were varied in an attached flame region as u{sub F} = 85.7-160.2 m/s and u{sub A} = 7.4-14.4 m/s. In the present study, two mixing variables of coaxial air and swirl flow were considered: the flame residence time and global strain rate. The objective of the current study was to analyze the flame length behavior, and the characteristics of nitrous oxide emissions under a swirl flow conditions, and to suggest a new parameter for EINOx (the emission index of nitrous oxide) scaling. From the experimental results, EINOx decreased with the swirl vane angle and increased with the flame length (L). We found the scaling variables for the flame length and EINOx using the effective diameter (d{sub F,eff}) in a far-field concept. Normalized flame length (L divided by d{sub F,eff}) fitted well with the theoretical expectations. EINOx increased in proportion to the flame residence time ({proportional_to}{tau}{sub R}{sup 1/2.8}) and the global strain rate ({proportional_to}S{sub G}{sup 1/2.8}). (author)
International Nuclear Information System (INIS)
Inagaki, Masahide; Abe, Ken-ichi
2017-01-01
Highlights: • An anisotropy-resolving subgrid-scale model, covering a wide range of grid resolutions, is improved. • The new model enhances its applicability to flows in the laminar-turbulent transition region. • A mixed-timescale subgrid-scale model is used as the eddy viscosity model. • The proposed model successfully predicts the channel flows at transitional Reynolds numbers. • The influence of the definition of the grid-filter width is also investigated. - Abstract: Some types of mixed subgrid-scale (SGS) models combining an isotropic eddy-viscosity model and a scale-similarity model can be used to effectively improve the accuracy of large eddy simulation (LES) in predicting wall turbulence. Abe (2013) has recently proposed a stabilized mixed model that maintains its computational stability through a unique procedure that prevents the energy transfer between the grid-scale (GS) and SGS components induced by the scale-similarity term. At the same time, since this model can successfully predict the anisotropy of the SGS stress, the predictive performance, particularly at coarse grid resolutions, is remarkably improved in comparison with other mixed models. However, since the stabilized anisotropy-resolving SGS model includes a transport equation of the SGS turbulence energy, k SGS , containing a production term proportional to the square root of k SGS , its applicability to flows with both laminar and turbulent regions is not so high. This is because such a production term causes k SGS to self-reproduce. Consequently, the laminar–turbulent transition region predicted by this model depends on the inflow or initial condition of k SGS . To resolve these issues, in the present study, the mixed-timescale (MTS) SGS model proposed by Inagaki et al. (2005) is introduced into the stabilized mixed model as the isotropic eddy-viscosity part and the production term in the k SGS transport equation. In the MTS model, the SGS turbulence energy, k es , estimated by
Modeling Macro- and Micro-Scale Turbulent Mixing and Chemistry in Engine Exhaust Plumes
Menon, Suresh
1998-01-01
Simulation of turbulent mixing and chemical processes in the near-field plume and plume-vortex regimes has been successfully carried out recently using a reduced gas phase kinetics mechanism which substantially decreased the computational cost. A detailed mechanism including gas phase HOx, NOx, and SOx chemistry between the aircraft exhaust and the ambient air in near-field aircraft plumes is compiled. A reduced mechanism capturing the major chemical pathways is developed. Predictions by the reduced mechanism are found to be in good agreement with those by the detailed mechanism. With the reduced chemistry, the computer CPU time is saved by a factor of more than 3.5 for the near-field plume modeling. Distributions of major chemical species are obtained and analyzed. The computed sensitivities of major species with respect to reaction step are deduced for identification of the dominant gas phase kinetic reaction pathways in the jet plume. Both the near field plume and the plume-vortex regimes were investigated using advanced mixing models. In the near field, a stand-alone mixing model was used to investigate the impact of turbulent mixing on the micro- and macro-scale mixing processes using a reduced reaction kinetics model. The plume-vortex regime was simulated using a large-eddy simulation model. Vortex plume behind Boeing 737 and 747 aircraft was simulated along with relevant kinetics. Many features of the computed flow field show reasonable agreement with data. The entrainment of the engine plumes into the wing tip vortices and also the partial detrainment of the plume were numerically captured. The impact of fluid mechanics on the chemical processes was also studied. Results show that there are significant differences between spatial and temporal simulations especially in the predicted SO3 concentrations. This has important implications for the prediction of sulfuric acid aerosols in the wake and may partly explain the discrepancy between past numerical studies
Wang, Wenkang; Pan, Chong; Wang, Jinjun
2018-01-01
The identification and separation of multi-scale coherent structures is a critical task for the study of scale interaction in wall-bounded turbulence. Here, we propose a quasi-bivariate variational mode decomposition (QB-VMD) method to extract structures with various scales from instantaneous two-dimensional (2D) velocity field which has only one primary dimension. This method is developed from the one-dimensional VMD algorithm proposed by Dragomiretskiy and Zosso (IEEE Trans Signal Process 62:531-544, 2014) to cope with a quasi-2D scenario. It poses the feature of length-scale bandwidth constraint along the decomposed dimension, together with the central frequency re-balancing along the non-decomposed dimension. The feasibility of this method is tested on both a synthetic flow field and a turbulent boundary layer at moderate Reynolds number (Re_{τ } = 3458) measured by 2D particle image velocimetry (PIV). Some other popular scale separation tools, including pseudo-bi-dimensional empirical mode decomposition (PB-EMD), bi-dimensional EMD (B-EMD) and proper orthogonal decomposition (POD), are also tested for comparison. Among all these methods, QB-VMD shows advantages in both scale characterization and energy recovery. More importantly, the mode mixing problem, which degrades the performance of EMD-based methods, is avoided or minimized in QB-VMD. Finally, QB-VMD analysis of the wall-parallel plane in the log layer (at y/δ = 0.12) of the studied turbulent boundary layer shows the coexistence of large- or very large-scale motions (LSMs or VLSMs) and inner-scaled structures, which can be fully decomposed in both physical and spectral domains.
Fu, X.; Li, H.; Guo, F.; Li, X.; Roytershteyn, V.
2017-12-01
The solar wind is a turbulent magnetized plasma extending from the upper atmosphere of the sun to the edge of the heliosphere. It carries charged particles and magnetic fields originated from the Sun, which have great impact on the geomagnetic environment and human activities in space. In such a magnetized plasma, Alfven waves play a crucial role in carrying energy from the surface of the Sun, injecting into the solar wind and establishing power-law spectra through turbulent energy cascades. On the other hand, in compressible plasmas large amplitude Alfven waves are subject to a parametric decay instability (PDI) which converts an Alfven wave to another counter-propagating Alfven wave and an ion acoustic wave (slow mode). The counter-propagating Alfven wave provides an important ingredient for turbulent cascade, and the slow-mode wave provides a channel for solar wind heating in a spatial scale much larger than ion kinetic scales. Growth and saturation of PDI in quiet plasma have been intensively studied using linear theory and nonlinear simulations in the past. Here using 3D hybrid simulations, we show that PDI is still effective in turbulent low-beta plasmas, generating slow modes and causing ion heating. Selected events in WIND data are analyzed to identify slow modes in the solar wind and the role of PDI, and compared with our simulation results. We also investigate the validity of linear Vlasov theory regarding PDI growth and slow mode damping in turbulent plasmas. Since PDI favors low plasma beta, we expect to see more evidence of PDI in the solar wind close to the Sun, especially from the upcoming NASA's Parker Solar Probe mission which will provide unprecedented wave and plasma data as close as 8.5 solar radii from the Sun.
Computational model for turbulent flow around a grid spacer with mixing vane
International Nuclear Information System (INIS)
Tsutomu Ikeno; Takeo Kajishima
2005-01-01
Turbulent mixing coefficient and pressure drop are important factors in subchannel analysis to predict onset of DNB. However, universal correlations are difficult since these factors are significantly affected by the geometry of subchannel and a grid spacer with mixing vane. Therefore, we propose a computational model to estimate these factors. Computational model: To represent the effect of geometry of grid spacer in computational model, we applied a large eddy simulation (LES) technique in couple with an improved immersed-boundary method. In our previous work (Ikeno, et al., NURETH-10), detailed properties of turbulence in subchannel were successfully investigated by developing the immersed boundary method in LES. In this study, additional improvements are given: new one-equation dynamic sub-grid scale (SGS) model is introduced to account for the complex geometry without any artificial modification; the higher order accuracy is maintained by consistent treatment for boundary conditions for velocity and pressure. NUMERICAL TEST AND DISCUSSION: Turbulent mixing coefficient and pressure drop are affected strongly by the arrangement and inclination of mixing vane. Therefore, computations are carried out for each of convolute and periodic arrangements, and for each of 30 degree and 20 degree inclinations. The difference in turbulent mixing coefficient due to these factors is reasonably predicted by our method. (An example of this numerical test is shown in Fig. 1.) Turbulent flow of the problem includes unsteady separation behind the mixing vane and vortex shedding in downstream. Anisotropic distribution of turbulent stress is also appeared in rod gap. Therefore, our computational model has advantage for assessing the influence of arrangement and inclination of mixing vane. By coarser computational mesh, one can screen several candidates for spacer design. Then, by finer mesh, more quantitative analysis is possible. By such a scheme, we believe this method is useful
Rani, Sarma; Pratap Vanka, Surya
1999-11-01
A LES study of the modification of turbulence in a fully-developed turbulent pipe flow by dispersed heavy particles at Re_τ = 360 is presented. A 64 (radial) x 64 (azimuthal) x 128 (axial) grid has been used. An Eulerian-Lagrangian approach has been used for treating the continuous and the dispersed phases respectively. The particle equation of motion included only the drag force. Three different LES models are used in the continuous fluid simulation: (i) A “No-Model” LES (coarse-grid DNS) (ii) Smagorinsky’s model and (iii) Schumann’s model . The motivation behind employing the Schumann’s model is to study the impact of sub-grid-scale fluctuations on the particle motion and their (SGS fluctuations) modulation, in turn, by the particles. The effect of particles on fluid turbulence is investigated by tracking 100000 particles of different diameters. Our studies confirm the preferential concentration of particles in the near wall region. It is observed that the inclusion of two-way coupling reduces the preferential concentration of particles. In addition, it was found that two-way coupling attenuates the fluid turbulence. However, we expect the above trends to differ depending upon the particle diameter, volumetric and mass fractions. The effect of SGS fluctuations on the particle dispersion and turbulence modulation is also being investigated. Other relevant statistics for the continuous and the dispersed phases are collected for the cases of one-way and two-way coupling. These statistics are compared to study the modulation of turbulence by the particles.
International Nuclear Information System (INIS)
Payri, Raul; López, J. Javier; Martí-Aldaraví, Pedro; Giraldo, Jhoan S.
2016-01-01
Highlights: • LES in a non-reacting jet with co-flow is performed with OpenFoam. • Smagorinsky (SMAG) and One Equation Eddy (OEE) approaches are compared. • A turbulent pipe is used to generate and map coherent inlet turbulence structure. • Fluctuating inlet boundary condition requires much less computational cost. - Abstract: In this paper, the behavior and turbulence structure of a non-reacting jet with a co-flow stream is described by means of Large Eddy Simulations (LES) carried out with the computational tool OpenFoam. In order to study the influence of the sub-grid scale (SGS) model on the main flow statistics, Smagorinsky (SMAG) and One Equation Eddy (OEE) approaches are used to model the smallest scales involved in the turbulence of the jet. The impact of cell size and turbulent inlet boundary condition in resulting velocity profiles is analyzed as well. Four different tasks have been performed to accomplish these objectives. Firstly, the simulation of a turbulent pipe, which is necessary to generate and map coherent turbulence structure into the inlet of the non-reacting jet domain. Secondly, a structured mesh based on hexahedrons has been built for the jet and its co-flow. The third task consists on performing four different simulations. In those, mapping statistics from the turbulent pipe is compared with the use of fluctuating inlet boundary condition available in OpenFoam; OEE and SMAG approaches are contrasted; and the effect of changing cell size is investigated. Finally, as forth task, the obtained results are compared with experimental data. As main conclusions of this comparison, it has been proved that the fluctuating boundary condition requires much less computational cost, but some inaccuracies were found close to the nozzle. Also, both SGS models are capable to simulate this kind of jets with a co-flow stream with exactitude.
The effect of mixing-vane arrangements in a subchannel turbulent flow
International Nuclear Information System (INIS)
Ikeno, Tsutomu; Murata, Tamotsu; Kajishima, Takeo
2006-01-01
Large eddy simulation (LES) of developed turbulent flows in a rod bundle was carried out for four spacer designs. The mixing-vanes attached at the spacer were inclined at 30degC or 20deg; they were arranged to promote the swirling or convective flow. These arrangements are possible elements to compose an actual rod bundle. Our LES technique with a consistent higher-order immersed boundary method and a one-equation dynamic sub-grid scale model contributed to an efficient treatment of the complex wall configurations of rods and spacers. The computational results reasonably reproduced experimental results for the drag coefficient and the decay rate of swirling flow. The profiles of the axial velocities and the turbulence intensities indicated reasonable trend for the turbulent flow in the rod bundle. The effect of mixing-vane arrangement on the lateral flows was successfully clarified: the cross flow took the longer way on the rod surface than the swirling flow and then was more significantly influenced by momentum diffusion at the no-slip wall. Therefore, the largely inclined mixing-vanes promoted the cross flow only in the neighborhood of the spacer, the swirling flow inside a subchannel could reach farther downstream than the cross flow. (author)
Equilibrium-eulerian les model for turbulent poly-dispersed particle-laden flow
Icardi, Matteo
2013-04-01
An efficient Eulerian method for poly-dispersed particles in turbulent flows is implemented, verified and validated for a channel flow. The approach couples a mixture model with a quadrature-based moment method for the particle size distribution in a LES framework, augmented by an approximate deconvolution method to reconstructs the unfiltered velocity. The particle velocity conditioned on particle size is calculated with an equilibrium model, valid for low Stokes numbers. A population balance equation is solved with the direct quadrature method of moments, that efficiently represents the continuous particle size distribution. In this first study particulate processes are not considered and the capability of the model to properly describe particle transport is investigated for a turbulent channel flow. First, single-phase LES are validated through comparison with DNS. Then predictions for the two-phase system, with particles characterised by Stokes numbers ranging from 0.2 to 5, are compared with Lagrangian DNS in terms of particle velocity and accumulation at the walls. Since this phenomenon (turbophoresis) is driven by turbulent fluctuations and depends strongly on the particle Stokes number, the approximation of the particle size distribution, the choice of the sub-grid scale model and the use of an approximate deconvolution method are important to obtain good results. Our method can be considered as a fast and efficient alternative to classical Lagrangian methods or Eulerian multi-fluid models in which poly-dispersity is usually neglected.
Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations
Directory of Open Access Journals (Sweden)
S. Nishizawa
2015-10-01
Full Text Available We examine the influence of the grid aspect ratio of horizontal to vertical grid spacing on turbulence in the planetary boundary layer (PBL in a large-eddy simulation (LES. In order to clarify and distinguish them from other artificial effects caused by numerical schemes, we used a fully compressible meteorological LES model with a fully explicit scheme of temporal integration. The influences are investigated with a series of sensitivity tests with parameter sweeps of spatial resolution and grid aspect ratio. We confirmed that the mixing length of the eddy viscosity and diffusion due to sub-grid-scale turbulence plays an essential role in reproducing the theoretical −5/3 slope of the energy spectrum. If we define the filter length in LES modeling based on consideration of the numerical scheme, and introduce a corrective factor for the grid aspect ratio into the mixing length, the theoretical slope of the energy spectrum can be obtained; otherwise, spurious energy piling appears at high wave numbers. We also found that the grid aspect ratio has influence on the turbulent statistics, especially the skewness of the vertical velocity near the top of the PBL, which becomes spuriously large with large aspect ratio, even if a reasonable spectrum is obtained.
Equilibrium-eulerian les model for turbulent poly-dispersed particle-laden flow
Icardi, Matteo; Marchisio, Daniele Luca; Chidambaram, Narayanan; Fox, Rodney O.
2013-01-01
An efficient Eulerian method for poly-dispersed particles in turbulent flows is implemented, verified and validated for a channel flow. The approach couples a mixture model with a quadrature-based moment method for the particle size distribution in a LES framework, augmented by an approximate deconvolution method to reconstructs the unfiltered velocity. The particle velocity conditioned on particle size is calculated with an equilibrium model, valid for low Stokes numbers. A population balance equation is solved with the direct quadrature method of moments, that efficiently represents the continuous particle size distribution. In this first study particulate processes are not considered and the capability of the model to properly describe particle transport is investigated for a turbulent channel flow. First, single-phase LES are validated through comparison with DNS. Then predictions for the two-phase system, with particles characterised by Stokes numbers ranging from 0.2 to 5, are compared with Lagrangian DNS in terms of particle velocity and accumulation at the walls. Since this phenomenon (turbophoresis) is driven by turbulent fluctuations and depends strongly on the particle Stokes number, the approximation of the particle size distribution, the choice of the sub-grid scale model and the use of an approximate deconvolution method are important to obtain good results. Our method can be considered as a fast and efficient alternative to classical Lagrangian methods or Eulerian multi-fluid models in which poly-dispersity is usually neglected.
Statistical Mechanics of Turbulent Flows
International Nuclear Information System (INIS)
Cambon, C
2004-01-01
counterparts at the molecular level. In addition, equations are given for multicomponent reacting systems. The chapter ends with miscellaneous topics, including DNS (idea of) the energy cascade, and RANS. Chapter 5 is devoted to stochastic models for the large scales of turbulence. Langevin-type models for velocity (and particle position) are presented, and their various consequences for second-order single-point correlations (Reynolds stress components, Kolmogorov constant) are discussed. These models are then presented for the scalar. The chapter ends with compressible high-speed flows and various models, ranging from k-ε to hybrid RANS-pdf. Stochastic models for small-scale turbulence are addressed in chapter 6. These models are based on the concept of a filter density function (FDF) for the scalar, and a more conventional SGS (sub-grid-scale model) for the velocity in LES. The final chapter, chapter 7, is entitled 'The unification of turbulence models' and aims at reconciling large-scale and small-scale modelling. This book offers a timely survey of techniques in modern computational fluid mechanics for turbulent flows with reacting scalars. It should be of interest to engineers, while the discussion of the underlying tools, namely pdfs, stochastic and statistical equations should also be attractive to applied mathematicians and physicists. The book's emphasis on local pdfs and stochastic Langevin models gives a consistent structure to the book and allows the author to cover almost the whole spectrum of practical modelling in turbulent CFD. On the other hand, one might regret that non-local issues are not mentioned explicitly, or even briefly. These problems range from the presence of pressure-strain correlations in the Reynolds stress transport equations to the presence of two-point pdfs in the single-point pdf equation derived from the Navier--Stokes equations. (One may recall that, even without scalar transport, a general closure problem for turbulence statistics
Scale-invariance in three-dimensional isotropic turbulence: a paradox and its resolution
International Nuclear Information System (INIS)
McComb, David
2008-01-01
If the Reynolds number is large enough, turbulence is expected to exhibit scale invariance in an intermediate ('inertial') range of wave numbers, as shown by power-law behaviour of the energy spectrum and also by a constant rate of energy transfer through wave number. However, although it has long been known that the first of these is true, there has been little recognition of the fact that, if the second is to hold, then there is a contradiction between the definition of the energy flux (as the integral of the transfer spectrum) and the observed behaviour of the transfer spectrum itself. This is because the transfer spectrum T(k) is invariably found to have a zero crossing at a single point (at k 0 , say), implying that the corresponding energy flux cannot have an extended plateau but must instead have a maximum value at k = k 0 . We outline the resulting paradox and note that it may be resolved by the observation that the symmetry of the triadic interactions means that T(k) is not the relevant transfer term in determining the energy flux. Instead the relevant term is a filtered/partitioned version, herein denoted by T +- (k|k c ), where k = k c is the cut-off wave number for low/high-pass filtering. It is known from studies of spectral subgrid transfer that T +- (k|k c ) is zero over an extended range of wave numbers. As this is the case for quite modest Reynolds numbers, it not only resolves the paradox, but may also shed some light on the 'embarrassment of success' of the Kolmogorov theory
Three-dimensional spatial structures of solar wind turbulence from 10 000-km to 100-km scales
Directory of Open Access Journals (Sweden)
Y. Narita
2011-10-01
Full Text Available Using the four Cluster spacecraft, we have determined the three-dimensional wave-vector spectra of fluctuating magnetic fields in the solar wind. Three different solar wind intervals of Cluster data are investigated for this purpose, representing three different spatial scales: 10 000 km, 1000 km, and 100 km. The spectra are determined using the wave telescope technique (k-filtering technique without assuming the validity of Taylor's frozen-in-flow hypothesis nor are any assumptions made as to the symmetry properties of the fluctuations. We find that the spectra are anisotropic on all the three scales and the power is extended primarily in the directions perpendicular to the mean magnetic field, as might be expected of two-dimensional turbulence, however, the analyzed fluctuations are not axisymmetric. The lack of axisymmetry invalidates some earlier techniques using single spacecraft observations that were used to estimate the percentage of magnetic energy residing in quasi-two-dimensional power. However, the dominance of two-dimensional turbulence is consistent with the relatively long mean free paths of cosmic rays in observed in the heliosphere. On the other hand, the spectra also exhibit secondary extended structures oblique from the mean magnetic field direction. We discuss possible origins of anisotropy and asymmetry of solar wind turbulence spectra.
Isterling, William M; Dally, Bassam B; Alwahabi, Zeyad T; Dubovinsky, Miro; Wright, Daniel
2012-01-01
Narrow laser beams directed from aircraft may at times pass through the exhaust plume of the engines and potentially degrade some of the laser beam characteristics. This paper reports on controlled studies of laser beam deviation arising from propagation through turbulent hot gases, in a well-characterized laboratory burner, with conditions of relevance to aircraft engine exhaust plumes. The impact of the temperature, laser wavelength, and turbulence length scale on the beam deviation has been investigated. It was found that the laser beam displacement increases with the turbulent integral length scale. The effect of temperature on the laser beam angular deviation, σ, using two different laser wavelengths, namely 4.67 μm and 632.8 nm, was recorded. It was found that the beam deviation for both wavelengths may be semiempirically modeled using a single function of the form, σ=a(b+(1/T)(2))(-1), with two parameters only, a and b, where σ is in microradians and T is the temperature in °C. © 2012 Optical Society of America
High Reynolds Number Turbulence
National Research Council Canada - National Science Library
Smits, Alexander J
2007-01-01
The objectives of the grant were to provide a systematic study to fill the gap between existing research on low Reynolds number turbulent flows to the kinds of turbulent flows encountered on full-scale vehicles...
Tchen, C. M.
1986-01-01
Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.
International Nuclear Information System (INIS)
Edenstrasser, J.W.
1995-01-01
A multiple time-scale derivative expansion scheme is applied to the dimensionless Fokker--Planck equation and to Maxwell's equations, where the parameter range of a typical fusion plasma was assumed. Within kinetic theory, the four time scales considered are those of Larmor gyration, particle transit, collisions, and classical transport. The corresponding magnetohydrodynamic (MHD) time scales are those of ion Larmor gyration, Alfven, MHD collision, and resistive diffusion. The solution of the zeroth-order equations results in the force-free equilibria and ideal Ohm's law. The solution of the first-order equations leads under the assumption of a weak collisional plasma to the ideal MHD equations. On the MHD-collision time scale, not only the full set of the MHD transport equations is obtained, but also turbulent terms, where the related transport quantities are one order in the expansion parameter larger than those of classical transport. Finally, at the resistive diffusion time scale the known transport equations are arrived at including, however, also turbulent contributions. copyright 1995 American Institute of Physics
Feldmann, Daniel; Bauer, Christian; Wagner, Claus
2018-03-01
We present results from direct numerical simulations (DNS) of turbulent pipe flow at shear Reynolds numbers up to Reτ = 1500 using different computational domains with lengths up to ?. The objectives are to analyse the effect of the finite size of the periodic pipe domain on large flow structures in dependency of Reτ and to assess a minimum ? required for relevant turbulent scales to be captured and a minimum Reτ for very large-scale motions (VLSM) to be analysed. Analysing one-point statistics revealed that the mean velocity profile is invariant for ?. The wall-normal location at which deviations occur in shorter domains changes strongly with increasing Reτ from the near-wall region to the outer layer, where VLSM are believed to live. The root mean square velocity profiles exhibit domain length dependencies for pipes shorter than 14R and 7R depending on Reτ. For all Reτ, the higher-order statistical moments show only weak dependencies and only for the shortest domain considered here. However, the analysis of one- and two-dimensional pre-multiplied energy spectra revealed that even for larger ?, not all physically relevant scales are fully captured, even though the aforementioned statistics are in good agreement with the literature. We found ? to be sufficiently large to capture VLSM-relevant turbulent scales in the considered range of Reτ based on our definition of an integral energy threshold of 10%. The requirement to capture at least 1/10 of the global maximum energy level is justified by a 14% increase of the streamwise turbulence intensity in the outer region between Reτ = 720 and 1500, which can be related to VLSM-relevant length scales. Based on this scaling anomaly, we found Reτ⪆1500 to be a necessary minimum requirement to investigate VLSM-related effects in pipe flow, even though the streamwise energy spectra does not yet indicate sufficient scale separation between the most energetic and the very long motions.
Tang, Zhanqi; Jiang, Nan
2018-05-01
This study reports the modifications of scale interaction and arrangement in a turbulent boundary layer perturbed by a wall-mounted circular cylinder. Hot-wire measurements were executed at multiple streamwise and wall-normal wise locations downstream of the cylindrical element. The streamwise fluctuating signals were decomposed into large-, small-, and dissipative-scale signatures by corresponding cutoff filters. The scale interaction under the cylindrical perturbation was elaborated by comparing the small- and dissipative-scale amplitude/frequency modulation effects downstream of the cylinder element with the results observed in the unperturbed case. It was obtained that the large-scale fluctuations perform a stronger amplitude modulation on both the small and dissipative scales in the near-wall region. At the wall-normal positions of the cylinder height, the small-scale amplitude modulation coefficients are redistributed by the cylinder wake. The similar observation was noted in small-scale frequency modulation; however, the dissipative-scale frequency modulation seems to be independent of the cylindrical perturbation. The phase-relationship observation indicated that the cylindrical perturbation shortens the time shifts between both the small- and dissipative-scale variations (amplitude and frequency) and large-scale fluctuations. Then, the integral time scale dependence of the phase-relationship between the small/dissipative scales and large scales was also discussed. Furthermore, the discrepancy of small- and dissipative-scale time shifts relative to the large-scale motions was examined, which indicates that the small-scale amplitude/frequency leads the dissipative scales.
International Nuclear Information System (INIS)
Kowal, Grzegorz; Lazarian, A.
2010-01-01
We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho and Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field reference frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz- Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.
Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection
Ahlers, Günter; Grossmann, Siegfried; Lohse, Detlef
2009-01-01
The progress in our understanding of several aspects of turbulent Rayleigh-Bénard convection is reviewed. The focus is on the question of how the Nusselt number and the Reynolds number depend on the Rayleigh number Ra and the Prandtl number Pr, and on how the thicknesses of the thermal and the
Plasma turbulence and kinetic instabilities at ion scales in the expanding solar wind
Czech Academy of Sciences Publication Activity Database
Hellinger, Petr; Matteini, L.; Landi, S.; Verdini, A.; Franci, L.; Trávníček, Pavel M.
2015-01-01
Roč. 811, č. 2 (2015), L32/1-L32/6 ISSN 2041-8205 Institutional support: RVO:68378289 Keywords : instabilities * solar wind * turbulence * waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.487, year: 2015 http://iopscience.iop.org/article/10.1088/2041-8205/811/2/L32/pdf
Plasma Turbulence and Kinetic Instabilities at Ion Scales in the Expanding Solar Wind
Czech Academy of Sciences Publication Activity Database
Hellinger, Petr; Matteini, L.; Landi, S.; Franci, L.; Trávníček, Pavel M.
2015-01-01
Roč. 812, č. 2 (2015), L32/1-L32/6 ISSN 2041-8205 R&D Projects: GA ČR GA15-10057S Grant - others:European Commission(XE) 284515 Institutional support: RVO:67985815 Keywords : instabilities * solar wind * turbulence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.487, year: 2015
Magnetic Reconnection as a Driver for a Sub-ion-scale Cascade in Plasma Turbulence
Czech Academy of Sciences Publication Activity Database
Franci, L.; Cerri, S.S.; Califano, F.; Landi, S.; Papini, E.; Verdini, A.; Matteini, L.; Jenko, F.; Hellinger, Petr
2017-01-01
Roč. 850, č. 1 (2017), L16/1-L16/6 ISSN 2041-8205 R&D Projects: GA ČR GA15-10057S Institutional support: RVO:67985815 Keywords : magnetic reconnection * solar wind * turbulence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.522, year: 2016
High-resolution Hybrid Simulations of Kinetic Plasma Turbulence at Proton Scales
Czech Academy of Sciences Publication Activity Database
Franci, L.; Landi, S.; Matteini, L.; Verdini, A.; Hellinger, Petr
2015-01-01
Roč. 812, č. 1 (2015), 21/1-21/15 ISSN 0004-637X R&D Projects: GA ČR GA15-10057S Institutional support: RVO:67985815 Keywords : plasmas * solar wind * turbulence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015
Bursting and large-scale intermittency in turbulent convection with differential rotation
DEFF Research Database (Denmark)
Garcia, O.E.; Bian, N.H.
2003-01-01
The tilting mechanism, which generates differential rotation in two-dimensional turbulent convection, is shown to produce relaxation oscillations in the mean flow energy integral and bursts in the global fluctuation level, akin to Lotka-Volterra oscillations. The basic reason for such behavior...
Vreman, A.W.; Oijen, van J.A.; Goey, de L.P.H.; Bastiaans, R.J.M.
2009-01-01
Large-eddy simulation (LES) of turbulent combustion with premixed flamelets is investigated in this paper. The approach solves the filtered Navier-Stokes equations supplemented with two transport equations, one for the mixture fraction and another for a progress variable. The LES premixed flamelet
Self-sustained large-scale flow in turbulent cryogenic convection
Czech Academy of Sciences Publication Activity Database
Niemela, J. J.; Skrbek, Ladislav; Sreenivasan, K. R.; Donnelly, R. J.
2002-01-01
Roč. 126, 1/2 (2002), s. 297-302 ISSN 0022-2291 Institutional research plan: CEZ:AV0Z1010914 Keywords : thermal convection * turbulence * cryogenic Subject RIV: BK - Fluid Dynamics Impact factor: 1.139, year: 2002
International Nuclear Information System (INIS)
Day, M S; Bell, J B; Beckner, V E; Lijewski, M J; Cheng, R K; Tachibana, S
2009-01-01
One strategy for reducing US dependence on petroleum is to develop new combustion technologies for burning the fuel-lean mixtures of hydrogen or hydrogen-rich syngas fuels obtained from the gasification of coal and biomass. Fuel-flexible combustion systems based on lean premixed combustion have the potential for dramatically reducing pollutant emissions in transportation systems, heat and stationary power generation. However, lean premixed flames are highly susceptible to fluid-dynamical combustion instabilities making robust and reliable systems difficult to design. Low swirl burners are emerging as an important technology for meeting design requirements in terms of both reliability and emissions for next generation combustion devices. In this paper, we present simulations of a lean, premixed hydrogen flame stabilized on a laboratory-scale low swirl burner. The simulations use detailed chemistry and transport without incorporating explicit models for turbulence or turbulence/chemistry interaction. Here we discuss the overall structure of the flame and compare with experimental data. We also use the simulation data to elucidate the characteristics of the turbulent flame interaction and how this impacts the analysis of experimental measurements.
Energy Technology Data Exchange (ETDEWEB)
Monty, J.P.; Lien, K.; Chong, M.S. [University of Melbourne, Department of Mechanical Engineering, Parkville, VIC (Australia); Allen, J.J. [New Mexico State University, Department of Mechanical Engineering, Las Cruces, NM (United States)
2011-12-15
A high Reynolds number boundary-layer wind-tunnel facility at New Mexico State University was fitted with a regularly distributed braille surface. The surface was such that braille dots were closely packed in the streamwise direction and sparsely spaced in the spanwise direction. This novel surface had an unexpected influence on the flow: the energy of the very large-scale features of wall turbulence (approximately six-times the boundary-layer thickness in length) became significantly attenuated, even into the logarithmic region. To the author's knowledge, this is the first experimental study to report a modification of 'superstructures' in a rough-wall turbulent boundary layer. The result gives rise to the possibility that flow control through very small, passive surface roughness may be possible at high Reynolds numbers, without the prohibitive drag penalty anticipated heretofore. Evidence was also found for the uninhibited existence of the near-wall cycle, well known to smooth-wall-turbulence researchers, in the spanwise space between roughness elements. (orig.)
Yang, X. I. A.; Marusic, I.; Meneveau, C.
2016-06-01
Townsend [Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, UK, 1976)] hypothesized that the logarithmic region in high-Reynolds-number wall-bounded flows consists of space-filling, self-similar attached eddies. Invoking this hypothesis, we express streamwise velocity fluctuations in the inertial layer in high-Reynolds-number wall-bounded flows as a hierarchical random additive process (HRAP): uz+=∑i=1Nzai . Here u is the streamwise velocity fluctuation, + indicates normalization in wall units, z is the wall normal distance, and ai's are independently, identically distributed random additives, each of which is associated with an attached eddy in the wall-attached hierarchy. The number of random additives is Nz˜ln(δ /z ) where δ is the boundary layer thickness and ln is natural log. Due to its simplified structure, such a process leads to predictions of the scaling behaviors for various turbulence statistics in the logarithmic layer. Besides reproducing known logarithmic scaling of moments, structure functions, and correlation function [" close="]3/2 uz(x ) uz(x +r ) >, new logarithmic laws in two-point statistics such as uz4(x ) > 1 /2, 1/3, etc. can be derived using the HRAP formalism. Supporting empirical evidence for the logarithmic scaling in such statistics is found from the Melbourne High Reynolds Number Boundary Layer Wind Tunnel measurements. We also show that, at high Reynolds numbers, the above mentioned new logarithmic laws can be derived by assuming the arrival of an attached eddy at a generic point in the flow field to be a Poisson process [Woodcock and Marusic, Phys. Fluids 27, 015104 (2015), 10.1063/1.4905301]. Taken together, the results provide new evidence supporting the essential ingredients of the attached eddy hypothesis to describe streamwise velocity fluctuations of large, momentum transporting eddies in wall-bounded turbulence, while observed deviations suggest the need for further extensions of the
1983-01-01
Influence Scaling of 2D and 3D Shock/Turbulent ioundary Layer Interactions at Compression Corners." AIM Paper 81-334, January 1981. 5. Kubota, H...generating 3D shock wave/boundary layer interactions 2 Unswept sharp fin interaction and coordinate system 3 Cobra probe measurements of Peake (4) at Mach 4...were made by two Druck 50 PSI transducers, each in- stalled in a computer-controlled 48-port Model 48J4 Scani- valve and referenced to vacuum. A 250
Wang, Yin; Xu, Wei; He, Xiao-Zhou; Yik, Hiu-Fai; Wang, Xiao-Ping; Schumacher, Jorg; Tong, Penger
2017-11-01
We report a combined experimental and numerical study of the scaling properties of the temperature variance profile η(z) along the central z axis of turbulent Rayleigh-Bénard convection in a thin disk cell and an upright cylinder of aspect ratio unity. In the mixing zone outside the thermal boundary layer region, the measured η(z) is found to scale with the cell height H in both cells and obey a power law, η(z) (z/H)ɛ, with the obtained values of ɛ being very close to -1. Based on the experimental and numerical findings, we derive a new equation for η(z) in the mixing zone, which has a power-law solution in good agreement with the experimental and numerical results. Our work thus provides a common framework for understanding the effect of boundary layer fluctuations on the scaling properties of the temperature variance profile in turbulent Rayleigh-Bénard convection. This work was supported in part by Hong Kong Research Grants Council.
Atkinson, Callum; Buchmann, Nicolas; Kuehn, Matthias; Soria, Julio
2011-11-01
Large-scale three-dimensional (3D) structures in a turbulent boundary layer at Reθ = 2000 are examined via the streamwise extrapolation of time-resolved stereo particle image velocimetry (SPIV) measurements in a wall-normal spanwise plane using Taylor's hypothesis. Two overlapping SPIV systems are used to provide a field of view similar to that of direct numerical simulations (DNS) on the order of 50 δ × 1 . 5 δ × 3 . 0 δ in the streamwise, wall-normal and spanwise directions, respectively, with an interrogation window size of 40+ ×20+ ×60+ wall units. Velocity power spectra are compared with DNS to examine the effective resolution of these measurements and two-point correlations are performed to investigate the integral length scales associated with coherent velocity and vorticity fluctuations. Individual coherent structures are detected to provide statistics on the 3D size, spacing, and angular orientation of large-scale structures, as well as their contribution to the total turbulent kinetic energy and Reynolds shear stress. The support of the ARC through Discovery (and LIEF) grants is gratefully acknowledged.
Small-scale kinematic dynamo and non-dynamo in inertial-range turbulence
International Nuclear Information System (INIS)
Eyink, Gregory L; Neto, Antonio F
2010-01-01
We investigate the Lagrangian mechanism of the kinematic 'fluctuation' magnetic dynamo in a turbulent plasma flow at small magnetic Prandtl numbers. The combined effect of turbulent advection and plasma resistivity is to carry infinitely many field lines to each space point, with the resultant magnetic field at that point given by the average over all the individual line vectors. As a consequence of the roughness of the advecting velocity, this remains true even in the limit of zero resistivity. We show that the presence of the dynamo effect requires sufficient angular correlation of the passive line vectors that arrive simultaneously at the same space point. We illustrate this in detail for the Kazantsev-Kraichnan model of the kinematic dynamo with a Gaussian advecting velocity that is spatially rough and white noise in time. In the regime where dynamo action fails, we also obtain the precise rate of decay of the magnetic energy. These exact results for the model are obtained by a generalization of the 'slow-mode expansion' of Bernard, Gawedzki and Kupiainen to non-Hermitian evolution. Much of our analysis applies also to magnetohydrodynamic turbulence.
Local velocity scaling in T400 vessel agitated by Rushton turbine in a fully turbulent region
Directory of Open Access Journals (Sweden)
Šulc Radek
2017-01-01
Full Text Available The hydrodynamics and flow field were measured in an agitated vessel using 2-D Time Resolved Particle Image Velocimetry (2-D TR PIV. The experiments were carried out in a fully baffled cylindrical flat bottom vessel 400 mm in inner diameter agitated by a Rushton turbine 133 mm in diameter. The velocity fields were measured in the zone in upward flow to the impeller for impeller rotation speeds from 300 rpm to 850 rpm and three liquids of different viscosities (i.e. (i distilled water, ii a 28% vol. aqueous solution of glycol, and iii a 43% vol. aqueous solution of glycol, corresponding to the impeller Reynolds number in the range 50 000 < Re < 189 000. This Re range secures the fully-developed turbulent flow of agitated liquid. In accordance with the theory of mixing, the dimensionless mean and fluctuation velocities in the measured directions were found to be constant and independent of the impeller Reynolds number. On the basis of the test results the spatial distributions of dimensionless velocities were calculated. The axial turbulence intensity was found to be in the majority in the range from 0.388 to 0.540, which corresponds to the high level of turbulence intensity.
Local velocity scaling in T400 vessel agitated by Rushton turbine in a fully turbulent region
Šulc, Radek; Ditl, Pavel; Fořt, Ivan; Jašíkova, Darina; Kotek, Michal; Kopecký, Václav; Kysela, Bohuš
The hydrodynamics and flow field were measured in an agitated vessel using 2-D Time Resolved Particle Image Velocimetry (2-D TR PIV). The experiments were carried out in a fully baffled cylindrical flat bottom vessel 400 mm in inner diameter agitated by a Rushton turbine 133 mm in diameter. The velocity fields were measured in the zone in upward flow to the impeller for impeller rotation speeds from 300 rpm to 850 rpm and three liquids of different viscosities (i.e. (i) distilled water, ii) a 28% vol. aqueous solution of glycol, and iii) a 43% vol. aqueous solution of glycol), corresponding to the impeller Reynolds number in the range 50 000 < Re < 189 000. This Re range secures the fully-developed turbulent flow of agitated liquid. In accordance with the theory of mixing, the dimensionless mean and fluctuation velocities in the measured directions were found to be constant and independent of the impeller Reynolds number. On the basis of the test results the spatial distributions of dimensionless velocities were calculated. The axial turbulence intensity was found to be in the majority in the range from 0.388 to 0.540, which corresponds to the high level of turbulence intensity.
Esters, L. T.; Ward, B.; Sutherland, G.; Ten Doeschate, A.; Landwehr, S.; Bell, T. G.; Christensen, K. H.
2016-02-01
The air-sea exchange of heat, gas and momentum plays an important role for the Earth's weather and global climate. The exchange processes between ocean and atmosphere are influenced by the prevailing surface ocean dynamics. This surface ocean is a highly turbulent region where there is enhanced production of turbulent kinetic energy (TKE). The dissipation rate of TKE (ɛ) in the surface ocean is an important process for governing the depth of both the mixing and mixed layers, which are important length-scales for many aspects of ocean research. However, there exist very limited observations of ɛ under open ocean conditions and consequently our understanding of how to model the dissipation profile is very limited. The approaches to model profiles of ɛ that exist, differ by orders of magnitude depending on their underlying theoretical assumption and included physical processes. Therefore, scaling ɛ is not straight forward and requires open ocean measurements of ɛ to validate the respective scaling laws. This validated scaling of ɛ, is for example required to produce accurate mixed layer depths in global climate models. Errors in the depth of the ocean surface boundary layer can lead to biases in sea surface temperature. Here, we present open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during several cruises in different ocean basins. ASIP is an autonomous upwardly rising microstructure profiler allowing undisturbed profiling up to the ocean surface. These direct measurements of ɛ under various types of atmospheric and oceanic conditions along with measurements of atmospheric fluxes and wave conditions allow us to make a unique assessment of several scaling approaches based on wind, wave and buoyancy forcing. This will allow us to best assess the most appropriate ɛ-based parameterisation for air-sea exchange.
Turbulent Diffusion in Non-Homogeneous Environments
Diez, M.; Redondo, J. M.; Mahjoub, O. B.; Sekula, E.
2012-04-01
distribution of mesoscale vortices and other dominant features [5,2]. We present relationships used to parameterise the sub-grid turbulence in terms of generalized diffusivities that take into account the topology and the self-similarity of the sea surface environment. Multifractal analysis can also be used to distinguish fresh oil spills and natural slicks in the ocean surface, with residence time the diference diminishes (The Damkholer number scales the time with rough weather accelerating the dilution). Modelling the Rossby deformation scale dynamics is fundamental to predict oil spill behaviour as this range is the most energetic. [1] Sekula E., Redondo J. M.;The structure of turbulent jets, vortices and boundary layer: Laboratory and fieldobservations, Il Nuovo Cimento, Vol. 31, N. 5-6, 2008, pp. 893-907 [2]Platonov A., Carillo A., Matulka A., Sekula E., Grau J., Redondo J. M., TarquisA. M. (2009) "Multifractal observations of eddies, oil spills and natural slicks in the ocean surface", Il Nuovo Cimento, Vol. 31 C, N. 5-6, DOI10.1393/ncc/i2009-10349-0, pp. 861-880. [3] Platonov, A., Redondo, J. M. 2003 .Contaminación superficial del Mediterráneo Noroccidental: detección de derrames de crudo. Revista Ingeniería del Agua. Vol 10, 2 , 149-162. [4] Platonov, A., Redondo, J.M., Grau, J.B. 2001. Water wash spill pollution danger in the NW Mediterranean: statistical analysis of two-year satellite observation. "Maritime Transport" - proceedings of the Maritime Transport 2001 International Conference. Ed. by Dept. of Nautical Science and Engineering, UPC, Barcelona. [5]Redondo, J. M., Platonov, A. 2001. Aplicación de las imágenes SAR en el estudio de la dinámica de las aguas y de la polución del mar Mediterráneo cerca de Barcelona. Ingeniería del Agua, Vol. 8/ 1.
Solar Plasma Radio Emission in the Presence of Imbalanced Turbulence of Kinetic-Scale Alfvén Waves
Lyubchyk, O.; Kontar, E. P.; Voitenko, Y. M.; Bian, N. H.; Melrose, D. B.
2017-09-01
We study the influence of kinetic-scale Alfvénic turbulence on the generation of plasma radio emission in the solar coronal regions where the ratio β of plasma to magnetic pressure is lower than the electron-to-ion mass ratio me/mi. The present study is motivated by the phenomenon of solar type I radio storms that are associated with the strong magnetic field of active regions. The measured brightness temperature of the type I storms can be up to 10^{10} K for continuum emission, and can exceed 10^{11} K for type I bursts. At present, there is no generally accepted theory explaining such high brightness temperatures and some other properties of the type I storms. We propose a model with an imbalanced turbulence of kinetic-scale Alfvén waves that produce an asymmetric quasi-linear plateau on the upper half of the electron velocity distribution. The Landau damping of resonant Langmuir waves is suppressed and their amplitudes grow spontaneously above the thermal level. The estimated saturation level of Langmuir waves is high enough to generate observed type I radio emission at the fundamental plasma frequency. Harmonic emission does not appear in our model because the backward-propagating Langmuir waves undergo strong Landau damping. Our model predicts 100% polarization in the sense of the ordinary (o-) mode of type I emission.
Energy Technology Data Exchange (ETDEWEB)
Vinkovic, I.
2005-07-15
In order to study atmospheric pollution and the dispersion of industrial stack emissions, a large eddy simulation with the dynamic Smagorinsky-Germano sub-grid-scale model is coupled with Lagrangian tracking of fluid particles containing scalar, solid particles and droplets. The movement of fluid particles at a sub-grid level is given by a three-dimensional Langevin model. The stochastic model is written in terms of sub-grid-scale statistics at a mesh level. By introducing a diffusion model, the coupling between the large-eddy simulation and the modified three-dimensional Langevin model is applied to passive scalar dispersion. The results are validated by comparison with the wind-tunnel experiments of Fackrell and Robins (1982). The equation of motion of a small rigid sphere in a turbulent flow is introduced. Solid particles and droplets are tracked in a Lagrangian way. The velocity of solid particles and droplets is considered to have a large scale component (directly computed by the large-eddy simulation) and a sub-grid scale part. Because of inertia and gravity effects, solid particles and droplets, deviate from the trajectories of the surrounding fluid particles. Therefore, a modified Lagrangian correlation timescale is introduced into the Langevin model previously developed for the sub-grid velocity of fluid particles. Two-way coupling and collisions are taken into account. The results of the large-eddy simulation with solid particles are compared with the wind-tunnel experiments of Nalpanis et al. (1993) and of Taniere et al. (1997) on sand particles in saltation and in modified saltation, respectively. A model for droplet coalescence and breakup is implemented which allows to predict droplet interactions under turbulent flow conditions in the frame of the Euler/Lagrange approach. Coalescence and breakup are considered as a stochastic process with simple scaling symmetry assumption for the droplet radius, initially proposed by Kolmogorov (1941). At high
International Nuclear Information System (INIS)
Vallieres, Xavier
2002-01-01
SuperDARN is a coherent HF radar network dedicated to the study of high-latitude ionospheric plasma convection and finds its major applications in the field of Sun/Earth connection. This work deals with the interactions between a transmitted radar wave and ionisation gradients at different scales and their impact on measurements. Studies are performed in order to detect the ion cyclotron signature, superimposed to turbulent motions, in observed spectra. On the other hand, the role of intermediate scales (from hundreds of meters to kilometers) on spectral width estimation is evidenced. Statistical studies show that the value of this parameter depends upon transmitted frequency and echo range. We propose an interpretation in terms of a wave front de-correlation during propagation and validate it with numerical simulations based upon realistic ionospheric parameters. (author) [fr
The fusion code XGC: Enabling kinetic study of multi-scale edge turbulent transport in ITER
Energy Technology Data Exchange (ETDEWEB)
D' Azevedo, Eduardo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abbott, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koskela, Tuomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Worley, Patrick [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ku, Seung-Hoe [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ethier, Stephane [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Yoon, Eisung [Rensselaer Polytechnic Inst., Troy, NY (United States); Shephard, Mark [Rensselaer Polytechnic Inst., Troy, NY (United States); Hager, Robert [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lang, Jianying [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Intel Corporation, Santa Clara, CA (United States); Choi, Jong [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Podhorszki, Norbert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Klasky, Scott [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Parashar, Manish [Rutgers Univ., Piscataway, NJ (United States); Chang, Choong-Seock [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
2017-01-01
The XGC fusion gyrokinetic code combines state-of-the-art, portable computational and algorithmic technologies to enable complicated multiscale simulations of turbulence and transport dynamics in ITER edge plasma on the largest US open-science computer, the CRAY XK7 Titan, at its maximal heterogeneous capability, which have not been possible before due to a factor of over 10 shortage in the time-to-solution for less than 5 days of wall-clock time for one physics case. Frontier techniques such as nested OpenMP parallelism, adaptive parallel I/O, staging I/O and data reduction using dynamic and asynchronous applications interactions, dynamic repartitioning.
Energy Technology Data Exchange (ETDEWEB)
Cao, G.M., E-mail: gmcao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei, Anhui 230031 (China); Li, Y.D. [Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei, Anhui 230031 (China); Li, Q. [School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Zhang, X.D.; Sun, P.J.; Wu, G.J.; Hu, L.Q. [Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei, Anhui 230031 (China)
2014-12-15
Highlights: • A tangential CO{sub 2} laser collective scattering system was first installed on EAST. • It can measure the short-scale fluctuations in different regions simultaneously. • It can study the broadband fluctuations, QC fluctuations, MHD phenomenon, etc. - Abstract: A tangential CO{sub 2} laser collective scattering system has been first installed on the Experimental Advanced Superconducting Tokamak (EAST) to measure short-scale turbulent fluctuations in EAST plasmas. The system can measure fluctuations with up to four distinct wavenumbers simultaneously ranging from 10 cm{sup −1} to 26 cm{sup −1}, and correspondingly k{sub ⊥}ρ{sub s}∼1.5−4.3. The system is designed based on the oblique propagation of the probe beam with respect to the magnetic field, and thus the enhanced spatial localization can be achieved by taking full advantage of turbulence anisotropy and magnetic field inhomogeneity. The simultaneous measurements of turbulent fluctuations in different regions can be taken by special optical setup. Initial measurements indicate rich short-scale turbulent dynamics in both core and outer regions of EAST plasmas. The system will be a powerful tool for investigating the features of short-scale turbulent fluctuations in EAST plasmas.
Small scale structure in the wall region of a turbulent boundary layer
International Nuclear Information System (INIS)
Bogar, T.J.
1975-01-01
This paper is a report of the construction and application of an extremely small hot-wire X-probe (typical dimensions of 100 μ) to the measurement of Reynolds stress in the wall region of the turbulent boundary layer of a flat plate at high Reynolds number (Re/sub theta/ = 11,300). In the present flow, the size of the probe corresponds to a dimensionless length based on wall parameters of lu/sub tau//ν = 3. Probe construction methods are described. The Wyngaard-Lumley constant temperature anemometer used to heat the wire is analyzed, and a direct acoustical frequency calibration of the wire is made. This calibration shows the small wire to have uniform frequency response to 15 kHz. A novel calibration technique is employed using a high speed, digital mini-computer to determine the velocity in the stream direction and in a direction normal to the wall by matching the unique voltage pairs produced by the X-wire array in a turbulent flow to the voltage pairs produced when the probe is exposed to a known uniform flow inclined at various angles
Directory of Open Access Journals (Sweden)
J. Dole
2001-08-01
Full Text Available Very high resolution radar measurements were performed in the troposphere and lower stratosphere by means of the PROUST radar. The PROUST radar operates in the UHF band (961 MHz and is located in St. Santin, France (44°39’ N, 2°12’ E. A field campaign involving high resolution balloon measurements and the PROUST radar was conducted during April 1998. Under the classical hypothesis that refractive index inhomogeneities at half radar wavelength lie within the inertial subrange, assumed to be isotropic, kinetic energy and temperature variance dissipation rates were estimated independently in the lower stratosphere. The dissipation rate of temperature variance is proportional to the dissipation rate of available potential energy. We therefore estimate the ratio of dissipation rates of potential to kinetic energy. This ratio is a key parameter of atmospheric turbulence which, in locally homogeneous and stationary conditions, is simply related to the flux Richardson number, Rf .Key words. Meteorology and atmospheric dynamics (turbulence – Radio science (remote sensing
Directory of Open Access Journals (Sweden)
J. Dole
Full Text Available Very high resolution radar measurements were performed in the troposphere and lower stratosphere by means of the PROUST radar. The PROUST radar operates in the UHF band (961 MHz and is located in St. Santin, France (44°39’ N, 2°12’ E. A field campaign involving high resolution balloon measurements and the PROUST radar was conducted during April 1998. Under the classical hypothesis that refractive index inhomogeneities at half radar wavelength lie within the inertial subrange, assumed to be isotropic, kinetic energy and temperature variance dissipation rates were estimated independently in the lower stratosphere. The dissipation rate of temperature variance is proportional to the dissipation rate of available potential energy. We therefore estimate the ratio of dissipation rates of potential to kinetic energy. This ratio is a key parameter of atmospheric turbulence which, in locally homogeneous and stationary conditions, is simply related to the flux Richardson number, R_{f} .
Key words. Meteorology and atmospheric dynamics (turbulence – Radio science (remote sensing
Analysis of Flame Characteristics in a Laboratory-Scale Turbulent Lifted Jet Flame via DNS
Directory of Open Access Journals (Sweden)
Haiou Wang
2013-09-01
Full Text Available A fully compressible 3D solver for reacting flows has been developed and applied to investigate a turbulent lifted jet flame in a vitiated coflow by means of direct numerical simulation (DNS to validate the solver and analyze the flame characteristics. An eighth-order central differencing scheme is used for spatial discretization and a fourth-order Runge-Kutta method is employed for time integration. The DNS results agree well with the experimental measurements for the conditional means of reactive scalars. However, the lift-off height is under predicted. The mean axial velocity develops into a self-similar profile after x/D = 6. The normalized flame index is employed to characterize the combustion regime. It is found that at the flame base the gradients of the reactants are opposed and diffusion combustion is dominant. Further downstream, the contribution of premixed combustion increases and peaks at x/D = 8. Finally, the stabilization process is examined. The turbulent lifted flame is proved to stabilize in the lean mixtures and low scalar dissipation rate regions.
International Nuclear Information System (INIS)
Metzger, M.
2006-01-01
Reynolds number effects on relevant length and time scales in the near-wall region of a canonical turbulent boundary layer are investigated. Well resolved measurements in the atmospheric surface layer are compared with existing laboratory data to give a composite Reynolds number range spanning over three orders of magnitude. In the field experiments, a vertical rake of twenty single element hot-wires was used to measure the axial velocity, u, characteristics in the lower log layer region of the atmospheric surface layer that flows over Utah's western desert. Only data acquired under conditions of near-neutral thermal stability are analyzed. The shape of the power spectra of u as a function of distance from the wall, y, and Reynolds number is investigated, with emphasis on the appropriate scaling parameters valid across different wavenumber, k, bands. In particular, distance from the wall is found to scale the region of the u spectra around ky = 1. The presence of a k -1 slope in the spectra is also found to correlate with the Reynolds number dependence in the peak of the root mean square u profile. In addition, Reynolds number trends in the profiles of the Taylor microscales, which represent intermediate length and time scales in the boundary layer, are shown to deviate from classical scaling
Directory of Open Access Journals (Sweden)
P R Renosh
Full Text Available Satellite remote sensing observations allow the ocean surface to be sampled synoptically over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a, and the Sea Surface Temperature (SST, rarely studied. The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. For that purpose, we show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics.
Directory of Open Access Journals (Sweden)
David Barton Bray
2012-08-01
Full Text Available Some important elements of common property theory include a focus on individual communities or user groups, local level adjudication of conflicts, local autonomy in rule making, physical harvests, and low levels of articulation with markets. We present a case study of multi-scale collective action around indigenous/community conserved areas (ICCAs in Oaxaca, Mexico that suggests a modification of these components of common property theory. A multi-community ICCA in Oaxaca demonstrates the importance of inter-community collective action as key link in multi-scale governance, that conflicts are often negotiated in multiple arenas, that rules emerge at multiple scales, and that management for conservation and environmental services implies no physical harvests. Realizing economic gains from ICCAs for strict conservation may require something very different than traditional natural resource management. It requires intense engagement with extensive networks of government and civil society actors and new forms of community and inter-community collection action, or multi-scale governance. Multi-scale governance is built on trust and social capital at multiple scales and also constitutes collective action at multiple scales. However, processes of multi-scale governance are also necessarily “turbulent” with actors frequently having conflicting values and goals to be negotiated. We present an analytic history of the process of emergence of community and inter-community collective action around strict conservation and examples of internal and external turbulence. We argue that this case study and other literature requires an extensions of the constitutive elements of common property theory.
Cheng, Anning; Xu, Kuan-Man
2015-01-01
Five-year simulation experiments with a multi-scale modeling Framework (MMF) with a advanced intermediately prognostic higher-order turbulence closure (IPHOC) in its cloud resolving model (CRM) component, also known as SPCAM-IPHOC (super parameterized Community Atmospheric Model), are performed to understand the fast tropical (30S-30N) cloud response to an instantaneous doubling of CO2 concentration with SST held fixed at present-day values. SPCAM-IPHOC has substantially improved the low-level representation compared with SPCAM. It is expected that the cloud responses to greenhouse warming in SPCAM-IPHOC is more realistic. The change of rising motion, surface precipitation, cloud cover, and shortwave and longwave cloud radiative forcing in SPCAM-IPHOC from the greenhouse warming will be presented in the presentation.
On the Full-range β Dependence of Ion-scale Spectral Break in the Solar Wind Turbulence
Wang, Xin; Tu, Chuanyi; He, Jiansen; Wang, Linghua
2018-04-01
The power spectrum of magnetic fluctuations has a break at the high-frequency end of the inertial range. Beyond this break, the spectrum becomes steeper than the Kolmogorov law f ‑5/3. The break frequency was found to be associated with plasma beta (β). However, the full-range β dependence of the ion-scale spectral break has not been presented before in observational studies. Here we show the continuous variation of the break frequency on full-range β in the solar wind turbulence. By using measurements from the WIND and Ulysses spacecraft, we show the break frequency (f b ) normalized, respectively, by the frequencies corresponding to ion inertial length (f di ), ion gyroradius ({f}ρ i), and cyclotron resonance scale (f ri ) as a function of β for 1306 intervals. Their β values spread from 0.005 to 20, which nearly covers the full β range of the observed solar wind turbulence. It is found that {f}b/{f}{di} ({f}b/{f}ρ i) generally decreases (increases) with β, while {f}b/{f}{ri} is nearly a constant. We perform a linear fit on the statistical result, and obtain the empirical formulas {f}b/{f}{di}∼ {β }-1/4, {f}b/{f}ρ i∼ {β }1/4, and {f}b/{f}{ri}∼ 0.90 to describe the relation between f b and β. We also compare our observations with a numerical simulation and the prediction by ion cyclotron resonance theory. Our result favors the idea that the cyclotron resonance is an important mechanism for energy dissipation at the spectral break. When β ≪ 1 and β ≫ 1, the break at f di and {f}ρ i may also be associated with other processes.
Energy Technology Data Exchange (ETDEWEB)
Chasapis, Alexandros; Matthaeus, W. H.; Parashar, T. N.; Maruca, B. A. [University of Delaware, Newark, DE (United States); Fuselier, S. A.; Burch, J. L. [Southwest Research Institute, San Antonio, TX (United States); Phan, T. D. [Space Sciences Laboratory, University of California, Berkeley, CA (United States); Moore, T. E.; Pollock, C. J.; Gershman, D. J. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Torbert, R. B. [University of New Hampshire, Durham, NH (United States); Russell, C. T.; Strangeway, R. J., E-mail: chasapis@udel.edu [University of California, Los Angeles, CA (United States)
2017-07-20
Using data from the Magnetospheric Multiscale (MMS) and Cluster missions obtained in the solar wind, we examine second-order and fourth-order structure functions at varying spatial lags normalized to ion inertial scales. The analysis includes direct two-spacecraft results and single-spacecraft results employing the familiar Taylor frozen-in flow approximation. Several familiar statistical results, including the spectral distribution of energy, and the sale-dependent kurtosis, are extended down to unprecedented spatial scales of ∼6 km, approaching electron scales. The Taylor approximation is also confirmed at those small scales, although small deviations are present in the kinetic range. The kurtosis is seen to attain very high values at sub-proton scales, supporting the previously reported suggestion that monofractal behavior may be due to high-frequency plasma waves at kinetic scales.
A Study on Time-Scales Ratio and Turbulent Prandtl Number in Ducts of Industrial Applications
DEFF Research Database (Denmark)
Rokni, Masoud
2006-01-01
is solved using a two-equation heat ﬂux model. The computed results compare satisfactory with the available experimental data. The time-scale ratio R is deﬁned as the ratio between the dynamic time-scale (k/ε) and the scalar time-scale(0.5θθ/εθ). Based on existing DNS data and calculations in this work...... of heat exchangers for various applications area....
Czech Academy of Sciences Publication Activity Database
Nakayama, H.; Jurčáková, Klára; Nagai, H.
2013-01-01
Roč. 50, č. 5 (2013), s. 503-519 ISSN 0022-3131 Institutional support: RVO:61388998 Keywords : local-scale high-resolution dispersion model * nuclear emergency response system * large-eddy simulation * spatially developing turbulent boundary layer flow Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.452, year: 2013
Reversed magnetic shear suppression of electron-scale turbulence on NSTX
Yuh, Howard Y.; Levinton, F. M.; Bell, R. E.; Hosea, J. C.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E.; Smith, D. R.; Domier, C. W.; Luhmann, N. C.; Park, H. K.
2009-11-01
Electron thermal internal transport barriers (e-ITBs) are observed in reversed (negative) magnetic shear NSTX discharges^1. These e-ITBs can be created with either neutral beam heating or High Harmonic Fast Wave (HHFW) RF heating. The e-ITB location occurs at the location of minimum magnetic shear determined by Motional Stark Effect (MSE) constrained equilibria. Statistical studies show a threshold condition in magnetic shear for e-ITB formation. High-k fluctuation measurements at electron turbulence wavenumbers^3 have been made under several different transport regimes, including a bursty regime that limits temperature gradients at intermediate magnetic shear. The growth rate of fluctuations has been calculated immediately following a change in the local magnetic shear, resulting in electron temperature gradient relaxation. Linear gyrokinetic simulation results for NSTX show that while measured electron temperature gradients exceed critical linear thresholds for ETG instability, growth rates can remain low under reversed shear conditions up to high electron temperatures gradients. ^1H. Yuh, et. al., PoP 16, 056120 ^2D.R. Smith, E. Mazzucato et al., RSI 75, 3840 ^3E. Mazzucato, D.R. Smith et al., PRL 101, 075001
Scaling of mean inertia and theoretical basis for a log law in turbulent boundary layers
Philip, Jimmy; Morrill-Winter, Caleb; Klewicki, Joseph
2017-11-01
Log law in the mean streamwise velocity (U) for pipes/channels is well accepted based on the derivation from the mean momentum balance (MMB) equation and support from experimental data. For flat plate turbulent boundary layers (TBLs), however, there is only empirical evidence and a theoretical underpinning of the kind available for pipes/channels in lacking. The main difficultly is the mean inertia (MI) term in the MMB equation, which, unlike in pipes/channels, is not a constant in TBLs. We present results from our paper (JFM `` 2017, Vol 813, pp 594-617), where the MI term for TBL is transformed so as to render it invariant in the outer region, corroborated with high Re (δ+) data from Melbourne Wind Tunnel and New Hampshire Flow Physics Facility. The transformation is possible because the MI term in the TBL has a `shape' which becomes invariant with increasing δ+ and a `magnitude' which is proportional to 1 /δ+ . The transformed equation is then employed to derive a log law for U with κ an order one (von-Karman) constant. We also show that the log law begins at y+ =C1√{δ+} , and the peak location of the Reynolds shear stress, ym+ =C2√{δ+} , where, C1 3.6 and C2 2.17 are from high Re data. Australian Research Council and the US National Science Foundation.
Multi-fidelity uncertainty quantification in large-scale predictive simulations of turbulent flow
Geraci, Gianluca; Jofre-Cruanyes, Lluis; Iaccarino, Gianluca
2017-11-01
The performance characterization of complex engineering systems often relies on accurate, but computationally intensive numerical simulations. It is also well recognized that in order to obtain a reliable numerical prediction the propagation of uncertainties needs to be included. Therefore, Uncertainty Quantification (UQ) plays a fundamental role in building confidence in predictive science. Despite the great improvement in recent years, even the more advanced UQ algorithms are still limited to fairly simplified applications and only moderate parameter dimensionality. Moreover, in the case of extremely large dimensionality, sampling methods, i.e. Monte Carlo (MC) based approaches, appear to be the only viable alternative. In this talk we describe and compare a family of approaches which aim to accelerate the convergence of standard MC simulations. These methods are based on hierarchies of generalized numerical resolutions (multi-level) or model fidelities (multi-fidelity), and attempt to leverage the correlation between Low- and High-Fidelity (HF) models to obtain a more accurate statistical estimator without introducing additional HF realizations. The performance of these methods are assessed on an irradiated particle laden turbulent flow (PSAAP II solar energy receiver). This investigation was funded by the United States Department of Energy's (DoE) National Nuclear Security Administration (NNSA) under the Predicitive Science Academic Alliance Program (PSAAP) II at Stanford University.
Trapping of Solar Energetic Particles by Small-Scale Topology of Solar Wind Turbulence
Ruffolo, D.; Matthaeus, W. H.; Chuychai, P.
2004-05-01
The transport of energetic particles perpendicular to the mean magnetic field in space plasmas long has been viewed as a diffusive process. However, there is an apparent conflict between recent observations of solar energetic particles (SEP): 1) impulsive solar flares can exhibit ``dropouts" in which SEP intensity near Earth repeatedly disappears and reappears, indicating a filamentary distribution of SEPs and little diffusion across these boundaries. 2) Observations by the IMP-8 and Ulysses spacecraft, while they were on opposite sides of the Sun, showed similar time-intensity profiles for many SEP events, indicating rapid lateral diffusion of particles throughout the inner solar system within a few days. We explain these seemingly contradictory observations using a theoretical model, supported by computer simulations, in which many particles are temporarily trapped within topological structures in statistically homogeneous magnetic turbulence, and ultimately escape to diffuse at a much faster rate. This work was supported by the Thailand Research Fund, the Rachadapisek Sompoj Fund of Chulalongkorn University, and the NASA Sun-Earth Connections Theory Program (grant NAG5-8134).
BOOK REVIEW: Statistical Mechanics of Turbulent Flows
Cambon, C.
2004-10-01
counterparts at the molecular level. In addition, equations are given for multicomponent reacting systems. The chapter ends with miscellaneous topics, including DNS, (idea of) the energy cascade, and RANS. Chapter 5 is devoted to stochastic models for the large scales of turbulence. Langevin-type models for velocity (and particle position) are presented, and their various consequences for second-order single-point corelations (Reynolds stress components, Kolmogorov constant) are discussed. These models are then presented for the scalar. The chapter ends with compressible high-speed flows and various models, ranging from k-epsilon to hybrid RANS-pdf. Stochastic models for small-scale turbulence are addressed in chapter 6. These models are based on the concept of a filter density function (FDF) for the scalar, and a more conventional SGS (sub-grid-scale model) for the velocity in LES. The final chapter, chapter 7, is entitled `The unification of turbulence models' and aims at reconciling large-scale and small-scale modelling. This book offers a timely survey of techniques in modern computational fluid mechanics for turbulent flows with reacting scalars. It should be of interest to engineers, while the discussion of the underlying tools, namely pdfs, stochastic and statistical equations should also be attractive to applied mathematicians and physicists. The book's emphasis on local pdfs and stochastic Langevin models gives a consistent structure to the book and allows the author to cover almost the whole spectrum of practical modelling in turbulent CFD. On the other hand, one might regret that non-local issues are not mentioned explicitly, or even briefly. These problems range from the presence of pressure-strain correlations in the Reynolds stress transport equations to the presence of two-point pdfs in the single-point pdf equation derived from the Navier--Stokes equations. (One may recall that, even without scalar transport, a general closure problem for turbulence statistics
Tiselj, Iztok
2014-12-01
Channel flow DNS (Direct Numerical Simulation) at friction Reynolds number 180 and with passive scalars of Prandtl numbers 1 and 0.01 was performed in various computational domains. The "normal" size domain was ˜2300 wall units long and ˜750 wall units wide; size taken from the similar DNS of Moser et al. The "large" computational domain, which is supposed to be sufficient to describe the largest structures of the turbulent flows was 3 times longer and 3 times wider than the "normal" domain. The "very large" domain was 6 times longer and 6 times wider than the "normal" domain. All simulations were performed with the same spatial and temporal resolution. Comparison of the standard and large computational domains shows the velocity field statistics (mean velocity, root-mean-square (RMS) fluctuations, and turbulent Reynolds stresses) that are within 1%-2%. Similar agreement is observed for Pr = 1 temperature fields and can be observed also for the mean temperature profiles at Pr = 0.01. These differences can be attributed to the statistical uncertainties of the DNS. However, second-order moments, i.e., RMS temperature fluctuations of standard and large computational domains at Pr = 0.01 show significant differences of up to 20%. Stronger temperature fluctuations in the "large" and "very large" domains confirm the existence of the large-scale structures. Their influence is more or less invisible in the main velocity field statistics or in the statistics of the temperature fields at Prandtl numbers around 1. However, these structures play visible role in the temperature fluctuations at low Prandtl number, where high temperature diffusivity effectively smears the small-scale structures in the thermal field and enhances the relative contribution of large-scales. These large thermal structures represent some kind of an echo of the large scale velocity structures: the highest temperature-velocity correlations are not observed between the instantaneous temperatures and
International Nuclear Information System (INIS)
Min, Min; Zhang, Zhibo
2014-01-01
The objective of this study is to understand how cloud fraction diurnal cycle and sub-grid cloud optical thickness variability influence the all-sky direct aerosol radiative forcing (DARF). We focus on the southeast Atlantic region where transported smoke is often observed above low-level water clouds during burning seasons. We use the CALIOP observations to derive the optical properties of aerosols. We developed two diurnal cloud fraction variation models. One is based on sinusoidal fitting of MODIS observations from Terra and Aqua satellites. The other is based on high-temporal frequency diurnal cloud fraction observations from SEVIRI on board of geostationary satellite. Both models indicate a strong cloud fraction diurnal cycle over the southeast Atlantic region. Sensitivity studies indicate that using a constant cloud fraction corresponding to Aqua local equatorial crossing time (1:30 PM) generally leads to an underestimated (less positive) diurnal mean DARF even if solar diurnal variation is considered. Using cloud fraction corresponding to Terra local equatorial crossing time (10:30 AM) generally leads overestimation. The biases are a typically around 10–20%, but up to more than 50%. The influence of sub-grid cloud optical thickness variability on DARF is studied utilizing the cloud optical thickness histogram available in MODIS Level-3 daily data. Similar to previous studies, we found the above-cloud smoke in the southeast Atlantic region has a strong warming effect at the top of the atmosphere. However, because of the plane-parallel albedo bias the warming effect of above-cloud smoke could be significantly overestimated if the grid-mean, instead of the full histogram, of cloud optical thickness is used in the computation. This bias generally increases with increasing above-cloud aerosol optical thickness and sub-grid cloud optical thickness inhomogeneity. Our results suggest that the cloud diurnal cycle and sub-grid cloud variability are important factors
Directory of Open Access Journals (Sweden)
A. Mangeney
2006-12-01
waves. Our observations imply that the e.m. frequencies observed in the magnetosheath result from the Doppler shift of a spatial turbulence frozen in the plasma, and that the intensity of the turbulent k spectrum is strongly anisotropic, for both e.m. and e.s. fluctuations. We conclude that the turbulence has strongly anisotropic k distributions, on scales ranging from kc/ωpe≃0.3 (50 km to kλDe≃1 (30 m, i.e. at electron scales, smaller than the Cluster separation.
International Nuclear Information System (INIS)
Hooper, J.D.
1984-01-01
Experimental studies of developed axial single-phase flow through closely spaced rod arrays have shown, with reducing p/d ratio, the development of high axial and azimuthal turbulence intensities in the rod gap region. Associated with this is the existence of very high levels of the azimuthal Reynolds shear stress component either side of the rod gap centre. Spatial correlation analysis of the three turbulent velocity components has shown a large scale coherent and almost periodic structure in the rod gap region. The structure is markedly different to the currently accepted secondary flow model. 14 references
Buaria, D.; Yeung, P. K.
2017-12-01
A new parallel algorithm utilizing a partitioned global address space (PGAS) programming model to achieve high scalability is reported for particle tracking in direct numerical simulations of turbulent fluid flow. The work is motivated by the desire to obtain Lagrangian information necessary for the study of turbulent dispersion at the largest problem sizes feasible on current and next-generation multi-petaflop supercomputers. A large population of fluid particles is distributed among parallel processes dynamically, based on instantaneous particle positions such that all of the interpolation information needed for each particle is available either locally on its host process or neighboring processes holding adjacent sub-domains of the velocity field. With cubic splines as the preferred interpolation method, the new algorithm is designed to minimize the need for communication, by transferring between adjacent processes only those spline coefficients determined to be necessary for specific particles. This transfer is implemented very efficiently as a one-sided communication, using Co-Array Fortran (CAF) features which facilitate small data movements between different local partitions of a large global array. The cost of monitoring transfer of particle properties between adjacent processes for particles migrating across sub-domain boundaries is found to be small. Detailed benchmarks are obtained on the Cray petascale supercomputer Blue Waters at the University of Illinois, Urbana-Champaign. For operations on the particles in a 81923 simulation (0.55 trillion grid points) on 262,144 Cray XE6 cores, the new algorithm is found to be orders of magnitude faster relative to a prior algorithm in which each particle is tracked by the same parallel process at all times. This large speedup reduces the additional cost of tracking of order 300 million particles to just over 50% of the cost of computing the Eulerian velocity field at this scale. Improving support of PGAS models on
Energy Technology Data Exchange (ETDEWEB)
Nagaosa, Ryuichi [Research Center for Compact Chemical System (CCS), AIST, 4-2-1 Nigatake, Miyagino, Sendai 983-8551 (Japan); Handler, Robert A, E-mail: ryuichi.nagaosa@aist.go.jp [Department of Mechanical Engineering, Texas A and M University, College Station, TX 77843-3123 (United States)
2011-12-22
The purpose of this study is to model scalar transfer mechanisms in a fully developed turbulence for accurate predictions of the turbulent scalar flux across a shear-free gas-liquid interface. The concept of the surface-renewal approximation (Dankwerts, 1951) is introduced in this study to establish the predictive models for the interfacial scalar flux. Turbulent flow realizations obtained by a direct numerical simulation technique are employed to prepare details of three-dimensional information on turbulence in the region very close to the interface. Two characteristic time scales at the interface have been examined for exact prediction of the scalar transfer flux. One is the time scale which is reciprocal of the root-mean-square surface divergence, T{sub {gamma}} = ({gamma}{gamma}){sup -1/2}, where {gamma} is the surface divergence. The other time scale to be examined is T{sub S} = {Lambda}/V, where {Lambda} is the zero-correlation length of the surface divergence as the interfacial length scale, and V is the root-mean-square velocity fluctuation in the streamwise direction as the interfacial velocity scale. The results of this study suggests that T{sub {gamma}} is slightly unsatisfactory to correlate the turbulent scalar flux at the gas-liquid interface based on the surface-renewal approximation. It is also found that the proportionality constant appear to be 0.19, which is different with that observed in the laboratory experiments, 0.34 (Komori, Murakami, and Ueda, 1989). It is concluded that the time scale, T{sub {gamma}}, is considered a different kind of the time scale observed in the laboratory experiments. On the other hand, the present in-silico experiments indicate that T{sub s} predicts the turbulent scalar flux based on the surface-renewal approximation in a satisfactory manner. It is also elucidated that the proportionality constant for T{sub s} is approximately 0.36, which is very close to that found by the laboratory experiments. This fact shows
International Nuclear Information System (INIS)
Nagaosa, Ryuichi; Handler, Robert A
2011-01-01
The purpose of this study is to model scalar transfer mechanisms in a fully developed turbulence for accurate predictions of the turbulent scalar flux across a shear-free gas-liquid interface. The concept of the surface-renewal approximation (Dankwerts, 1951) is introduced in this study to establish the predictive models for the interfacial scalar flux. Turbulent flow realizations obtained by a direct numerical simulation technique are employed to prepare details of three-dimensional information on turbulence in the region very close to the interface. Two characteristic time scales at the interface have been examined for exact prediction of the scalar transfer flux. One is the time scale which is reciprocal of the root-mean-square surface divergence, T γ = (γγ) −1/2 , where γ is the surface divergence. The other time scale to be examined is T S = Λ/V, where Λ is the zero-correlation length of the surface divergence as the interfacial length scale, and V is the root-mean-square velocity fluctuation in the streamwise direction as the interfacial velocity scale. The results of this study suggests that T γ is slightly unsatisfactory to correlate the turbulent scalar flux at the gas-liquid interface based on the surface-renewal approximation. It is also found that the proportionality constant appear to be 0.19, which is different with that observed in the laboratory experiments, 0.34 (Komori, Murakami, and Ueda, 1989). It is concluded that the time scale, T γ , is considered a different kind of the time scale observed in the laboratory experiments. On the other hand, the present in-silico experiments indicate that T s predicts the turbulent scalar flux based on the surface-renewal approximation in a satisfactory manner. It is also elucidated that the proportionality constant for T s is approximately 0.36, which is very close to that found by the laboratory experiments. This fact shows that the time scale T s appears to be essentially the same as the time scale
Stirring turbulence with turbulence
Cekli, H.E.; Joosten, R.; van de Water, W.
2015-01-01
We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the
Mantica, Paola
2016-10-01
Heat transport experiments in JET, based on ICRH heat flux scans and temperature modulation, have confirmed the importance of two transport mechanisms that are often neglected in modeling experimental results, but are crucial to reach agreement between theory and experiment and may be significant in ITER. The first mechanism is the stabilizing effect of the total pressure gradient (including fast ions) on ITG driven ion heat transport. Such stabilization is found in non-linear gyro-kinetic electro-magnetic simulations using GENE and GYRO, and is the explanation for the observed loss of ion stiffness in the core of high NBI-power JET plasmas. The effect was recently observed also in JET plasmas with dominant ICRH heating and small rotation, due to ICRH fast ions, which is promising for ITER. Such mechanism dominates over ExB flow shear in the core and needs to be included in quasi-linear models to increase their ability to capture the relevant physics. The second mechanism is the capability of small- scale ETG instabilities to carry a significant fraction of electron heat. A decrease in Te peaking is observed when decreasing Zeff Te/Ti, which cannot be ascribed to TEMs but is in line with ETGs. Non-linear GENE single-scale simulations of ETGs and ITG/TEMs show that the ITG/TEM electron heat flux is not enough to match experiment. TEM stiffness is also much lower than measured. In the ETG single scale simulations the external flow shear is used to saturate the ETG streamers. Multi-scale simulations are ongoing, in which the ion zonal flows are the main saturating mechanism for ETGs. These costly simulations should provide the final answer on the importance of ETG-driven electron heat flux in JET. with JET contributors [F.Romanelli, Proc.25thIAEA FEC]. Supported by EUROfusion Grant 633053.
Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark
2016-11-01
Particle image velocimetry (PIV) and fluctuating wall shear stress experiments were performed on a flat plate turbulent boundary layer (TBL) under zero pressure gradient conditions. The fluctuating wall shear stress was measured using a microelectromechanical 1mm × 1mm floating element capacitive shear stress sensor (CSSS) developed at the University of Florida. The experiments elucidated the imprint of the organized motions in a TBL on the wall shear stress through its direct measurement. Spatial autocorrelation of the streamwise velocity from the PIV snapshots revealed large scale motions that scale on the order of boundary layer thickness. However, the captured inclination angle was lower than that determined using the classic method by means of wall shear stress and hot-wire anemometry (HWA) temporal cross-correlations and a frozen field hypothesis using a convection velocity. The current study suggests the large size of these motions begins to degrade the applicability of the frozen field hypothesis for the time resolved HWA experiments. The simultaneous PIV and CSSS measurements are also used for spatial reconstruction of the velocity field during conditionally sampled intense wall shear stress events. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.
Anomalous scaling of low-order structure functions of turbulent velocity
International Nuclear Information System (INIS)
Chen, S.Y.; Dhruva, B.; Kurien, S.; Sreenivasan, K.R.; Taylor, M.A.
2006-12-01
It is now believed that the scaling exponents of moments of velocity increments are anomalous, or that the departures from Kolmogorov's (1941) self-similar scaling increase nonlinearly with the increasing order of the moment. This appears to be true whether one considers velocity increments themselves or their absolute values. However, moments of order lower than 2 of the absolute values of velocity increments have not been investigated thoroughly for anomaly. Here, we discuss the importance of the scaling of non-integer moments of order between +2 and -1, and obtain them from direct numerical simulations at moderate Taylor microscale Reynolds numbers R λ ≤ 450, and experimental data at high Reynolds numbers (R λ ∼ 10 000). The relative difference between the measured exponents and Kolmogorov's prediction increases as the moment order decreases towards -1, thus showing that the anomaly is manifested in low-order moments as well. (author)
COHERENT EVENTS AND SPECTRAL SHAPE AT ION KINETIC SCALES IN THE FAST SOLAR WIND TURBULENCE
International Nuclear Information System (INIS)
Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud
2016-01-01
In this paper we investigate spectral and phase coherence properties of magnetic fluctuations in the vicinity of the spectral transition from large, magnetohydrodynamic to sub-ion scales using in situ measurements of the Wind spacecraft in a fast stream. For the time interval investigated by Leamon et al. (1998) the phase coherence analysis shows the presence of sporadic quasi-parallel Alfvén ion cyclotron (AIC) waves as well as coherent structures in the form of large-amplitude, quasi-perpendicular Alfvén vortex-like structures and current sheets. These waves and structures importantly contribute to the observed power spectrum of magnetic fluctuations around ion scales; AIC waves contribute to the spectrum in a narrow frequency range whereas the coherent structures contribute to the spectrum over a wide frequency band from the inertial range to the sub-ion frequency range. We conclude that a particular combination of waves and coherent structures determines the spectral shape of the magnetic field spectrum around ion scales. This phenomenon provides a possible explanation for a high variability of the magnetic power spectra around ion scales observed in the solar wind.
COHERENT EVENTS AND SPECTRAL SHAPE AT ION KINETIC SCALES IN THE FAST SOLAR WIND TURBULENCE
Energy Technology Data Exchange (ETDEWEB)
Lion, Sonny; Alexandrova, Olga; Zaslavsky, Arnaud, E-mail: sonny.lion@obspm.fr [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité (France)
2016-06-10
In this paper we investigate spectral and phase coherence properties of magnetic fluctuations in the vicinity of the spectral transition from large, magnetohydrodynamic to sub-ion scales using in situ measurements of the Wind spacecraft in a fast stream. For the time interval investigated by Leamon et al. (1998) the phase coherence analysis shows the presence of sporadic quasi-parallel Alfvén ion cyclotron (AIC) waves as well as coherent structures in the form of large-amplitude, quasi-perpendicular Alfvén vortex-like structures and current sheets. These waves and structures importantly contribute to the observed power spectrum of magnetic fluctuations around ion scales; AIC waves contribute to the spectrum in a narrow frequency range whereas the coherent structures contribute to the spectrum over a wide frequency band from the inertial range to the sub-ion frequency range. We conclude that a particular combination of waves and coherent structures determines the spectral shape of the magnetic field spectrum around ion scales. This phenomenon provides a possible explanation for a high variability of the magnetic power spectra around ion scales observed in the solar wind.
Winter, W. de; Wesselman, D.; Grasso, F.R.; Ruessink, B.G.
2013-01-01
In 2012, large-scale laboratory experiments were carried out in the Deltagoot in the framework of the Hydralab IV-funded BARDEXII project. The overall project aims were to examine the effect of swash/groundwater interactions to sand transport and morphological development in the swash zone and,
Generation and saturation of large-scale flows in flute turbulence
International Nuclear Information System (INIS)
Sandberg, I.; Isliker, H.; Pavlenko, V. P.; Hizanidis, K.; Vlahos, L.
2005-01-01
The excitation and suppression of large-scale anisotropic modes during the temporal evolution of a magnetic-curvature-driven electrostatic flute instability are numerically investigated. The formation of streamerlike structures is attributed to the linear development of the instability while the subsequent excitation of the zonal modes is the result of the nonlinear coupling between linearly grown flute modes. When the amplitudes of the zonal modes become of the same order as that of the streamer modes, the flute instabilities get suppressed and poloidal (zonal) flows dominate. In the saturated state that follows, the dominant large-scale modes of the potential and the density are self-organized in different ways, depending on the value of the ion temperature
Exploring the large-scale structure of Taylor–Couette turbulence through Large-Eddy Simulations
Ostilla-Mónico, Rodolfo; Zhu, Xiaojue; Verzicco, Roberto
2018-04-01
Large eddy simulations (LES) of Taylor-Couette (TC) flow, the flow between two co-axial and independently rotating cylinders are performed in an attempt to explore the large-scale axially-pinned structures seen in experiments and simulations. Both static and dynamic LES models are used. The Reynolds number is kept fixed at Re = 3.4 · 104, and the radius ratio η = ri /ro is set to η = 0.909, limiting the effects of curvature and resulting in frictional Reynolds numbers of around Re τ ≈ 500. Four rotation ratios from Rot = ‑0.0909 to Rot = 0.3 are simulated. First, the LES of TC is benchmarked for different rotation ratios. Both the Smagorinsky model with a constant of cs = 0.1 and the dynamic model are found to produce reasonable results for no mean rotation and cyclonic rotation, but deviations increase for increasing rotation. This is attributed to the increasing anisotropic character of the fluctuations. Second, “over-damped” LES, i.e. LES with a large Smagorinsky constant is performed and is shown to reproduce some features of the large-scale structures, even when the near-wall region is not adequately modeled. This shows the potential for using over-damped LES for fast explorations of the parameter space where large-scale structures are found.
Scaling forecast models for wind turbulence and wind turbine power intermittency
Duran Medina, Olmo; Schmitt, Francois G.; Calif, Rudy
2017-04-01
The intermittency of the wind turbine power remains an important issue for the massive development of this renewable energy. The energy peaks injected in the electric grid produce difficulties in the energy distribution management. Hence, a correct forecast of the wind power in the short and middle term is needed due to the high unpredictability of the intermittency phenomenon. We consider a statistical approach through the analysis and characterization of stochastic fluctuations. The theoretical framework is the multifractal modelisation of wind velocity fluctuations. Here, we consider three wind turbine data where two possess a direct drive technology. Those turbines are producing energy in real exploitation conditions and allow to test our forecast models of power production at a different time horizons. Two forecast models were developed based on two physical principles observed in the wind and the power time series: the scaling properties on the one hand and the intermittency in the wind power increments on the other. The first tool is related to the intermittency through a multifractal lognormal fit of the power fluctuations. The second tool is based on an analogy of the power scaling properties with a fractional brownian motion. Indeed, an inner long-term memory is found in both time series. Both models show encouraging results since a correct tendency of the signal is respected over different time scales. Those tools are first steps to a search of efficient forecasting approaches for grid adaptation facing the wind energy fluctuations.
Turbulent boundary layer over roughness transition with variation in spanwise roughness length scale
Westerweel, Jerry; Tomas, Jasper; Eisma, Jerke; Pourquie, Mathieu; Elsinga, Gerrit; Jonker, Harm
2016-11-01
Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic PIV and LIF were done to investigate pollutant dispersion in a region where the surface changes from rural to urban roughness. This consists of rectangular obstacles where we vary the spanwise aspect ratio of the obstacles. A line source of passive tracer was placed upstream of the roughness transition. The objectives of the study are: (i) to determine the influence of the aspect ratio on the roughness-transition flow, and (ii) to determine the dominant mechanisms of pollutant removal from street canyons in the transition region. It is found that for a spanwise aspect ratio of 2 the drag induced by the roughness is largest of all considered cases, which is caused by a large-scale secondary flow. In the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identied that is responsible for exchange of the fluid between the roughness obstacles and the outer part of the boundary layer. Furthermore, it is found that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the roughness region.
Xi, Heng-Dong; Chen, Xin; Xia, Ke-Qing
2017-11-01
We report an experimental study of the temperature oscillation and the sloshing motion of the large-scale circulation (LSC) in turbulent Rayleigh-Bénard convection in water. Temperature measurements were made in aspect ratio one cylindrical cell by probes put in fluid and embedded in the sidewall simultaneously, and located at the 1/4, 1/2 and 3/4 heights of the convection cell. The results show that the temperature measured in fluid contains information of both the LSC and the signature of the hot and cold plumes, while the temperature measured in sidewall only contains information of the LSC. It is found that the sloshing motion of the LSC can be measured by both the temperatures in fluid and in sidewall. We also studies the effect of cell tilting on the temperature oscillation and sloshing motion of the LSC. It is found that both the amplitude and the frequency of the temperature oscillation (and the sloshing motion) increase when the tilt angle increases, while the off-center distance of the sloshing motion of the LSC remains unchanged. This work is supported by the NSFC of China (Grant Nos. 11472094 and U1613227), the RGC of Hong Kong SAR (Grant No. 403712) and the 111 project of China (Grant No. B17037).
Directory of Open Access Journals (Sweden)
Wen-Tao Su
2014-07-01
Full Text Available This paper is to make a better understanding of the flow instabilities and turbulent kinetic energy (TKE features in a large-scale Francis hydroturbine model. The flow instability with aspect of pressure oscillation and pressure-velocity correlation was investigated using large eddy simulation (LES method along with two-phase cavitation model. The numerical simulation procedures were validated by the existing experimental result, and further the TKE evolution was analyzed in a curvilinear coordinates. By monitoring the fluctuating pressure and velocities in the vanes’ wake region, the local pressure and velocity variations were proven to have a phase difference approaching π/2, with a reasonable cross-correlation coefficient. Also the simultaneous evolution of pressure fluctuations at the opposite locations possessed a clear phase difference of π, indicating the stresses variations on the runner induced by pressure oscillation were in an odd number of nodal diameter. Considering the TKE generation, the streamwise velocity component us′2 contributed the most to the TKE, and thus the normal stress production term and shear stress production term imparted more instability to the flow than other production terms.
Chikishev, Leonid; Lobasov, Aleksei; Sharaborin, Dmitriy; Markovich, Dmitriy; Dulin, Vladimir; Hanjalic, Kemal
2017-11-01
We investigate flame-flow interactions in an atmospheric turbulent high-swirl methane/air lean jet-flame at Re from 5,000 to 10,000 and equivalence ratio below 0.75 at the conditions of vortex breakdown. The focus is on the spatial correlation between the propagation of large-scale vortex structures, including precessing vortex core, and the variations of the local heat release. The measurements are performed by planar laser-induced fluorescence of hydroxyl and formaldehyde, applied simultaneously with the stereoscopic particle image velocimetry technique. The data are processed by the proper orthogonal decomposition. The swirl rate exceeded critical value for the vortex breakdown resulting in the formation of a processing vortex core and secondary helical vortex filaments that dominate the unsteady flow dynamics both of the non-reacting and reacting jet flows. The flame front is located in the inner mixing layer between the recirculation zone and the annular swirling jet. A pair of helical vortex structures, surrounding the flame, stretch it and cause local flame extinction before the flame is blown away. This work is supported by Russian Science Foundation (Grant No 16-19-10566).
Energy Technology Data Exchange (ETDEWEB)
Fang, L. [LMP, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); Co-Innovation Center for Advanced Aero-Engine, Beihang University, Beijing 100191 (China); Sun, X.Y. [LMP, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); Liu, Y.W., E-mail: liuyangwei@126.com [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Co-Innovation Center for Advanced Aero-Engine, Beihang University, Beijing 100191 (China)
2016-12-09
In order to shed light on understanding the subgrid-scale (SGS) modelling methodology, we analyze and define the concepts of assumption and restriction in the modelling procedure, then show by a generalized derivation that if there are multiple stationary restrictions in a modelling, the corresponding assumption function must satisfy a criterion of orthogonality. Numerical tests using one-dimensional nonlinear advection equation are performed to validate this criterion. This study is expected to inspire future research on generally guiding the SGS modelling methodology. - Highlights: • The concepts of assumption and restriction in the SGS modelling procedure are defined. • A criterion of orthogonality on the assumption and restrictions is derived. • Numerical tests using one-dimensional nonlinear advection equation are performed to validate this criterion.
Rotating Turbulent Flow Simulation with LES and Vreman Subgrid-Scale Models in Complex Geometries
Directory of Open Access Journals (Sweden)
Tao Guo
2014-07-01
Full Text Available The large eddy simulation (LES method based on Vreman subgrid-scale model and SIMPIEC algorithm were applied to accurately capture the flowing character in Francis turbine passage under the small opening condition. The methodology proposed is effective to understand the flow structure well. It overcomes the limitation of eddy-viscosity model which is excessive, dissipative. Distributions of pressure, velocity, and vorticity as well as some special flow structure in guide vane near-wall zones and blade passage were gained. The results show that the tangential velocity component of fluid has absolute superiority under small opening condition. This situation aggravates the impact between the wake vortices that shed from guide vanes. The critical influence on the balance of unit by spiral vortex in blade passage and the nonuniform flow around guide vane, combined with the transmitting of stress wave, has been confirmed.
Spectral analysis of structure functions and their scaling exponents in forced isotropic turbulence
Linkmann, Moritz; McComb, W. David; Yoffe, Samuel; Berera, Arjun
2014-11-01
The pseudospectral method, in conjunction with a new technique for obtaining scaling exponents ζn from the structure functions Sn (r) , is presented as an alternative to the extended self-similarity (ESS) method and the use of generalized structure functions. We propose plotting the ratio | Sn (r) /S3 (r) | against the separation r in accordance with a standard technique for analysing experimental data. This method differs from the ESS technique, which plots the generalized structure functions Gn (r) against G3 (r) , where G3 (r) ~ r . Using our method for the particular case of S2 (r) we obtain the new result that the exponent ζ2 decreases as the Taylor-Reynolds number increases, with ζ2 --> 0 . 679 +/- 0 . 013 as Rλ --> ∞ . This supports the idea of finite-viscosity corrections to the K41 prediction for S2, and is the opposite of the result obtained by ESS. The pseudospectral method permits the forcing to be taken into account exactly through the calculation of the energy input in real space from the work spectrum of the stirring forces. The combination of the viscous and the forcing corrections as calculated by the pseudospectral method is shown to account for the deviation of S3 from Kolmogorov's ``four-fifths''-law at all scales. This work has made use of the resources provided by the UK supercomputing service HECToR, made available through the Edinburgh Compute and Data Facility (ECDF). A. B. is supported by STFC, S. R. Y. and M. F. L. are funded by EPSRC.
Katul, Gabriel G; Porporato, Amilcare; Nikora, Vladimir
2012-12-01
The existence of a "-1" power-law scaling at low wavenumbers in the longitudinal velocity spectrum of wall-bounded turbulence was explained by multiple mechanisms; however, experimental support has not been uniform across laboratory studies. This letter shows that Heisenberg's eddy viscosity approach can provide a theoretical framework that bridges these multiple mechanisms and explains the elusiveness of the "-1" power law in some experiments. Novel theoretical outcomes are conjectured about the role of intermittency and very-large scale motions in modifying the k⁻¹ scaling.
Leung, Marco Y. T.; Zhou, Wen; Shun, Chi-Ming; Chan, Pak-Wai
2018-04-01
This study identifies the atmospheric circulation features that are favorable for the occurrence of low-level turbulence at Hong Kong International Airport [below 1600 feet (around 500 m)]. By using LIDAR data at the airport, turbulence and nonturbulence cases are selected. It is found that the occurrence of turbulence is significantly related to the strength of the southerly wind at 850 hPa over the South China coast. On the other hand, the east-west wind at this height demonstrates a weak relation to the occurrence. This suggests that turbulence is generated by flow passing Lantau Island from the south. The southerly wind also transports moisture from the South China Sea to Hong Kong, reducing local stability. This is favorable for the development of strong turbulence. It is also noted that the strong southerly wind during the occurrence of low-level turbulence is contributed by an anomalous zonal gradient of geopotential in the lower troposphere over the South China Sea. This gradient is caused by the combination of variations at different timescales. These are the passage of synoptic extratropical cyclones and anticyclones and the intraseasonal variation in the western North Pacific subtropical high. The seasonal variation in geopotential east of the Tibetan Plateau leads to a seasonal change in meridional wind, by which the frequency of low-level turbulence is maximized in spring and minimized in autumn.
M. M. Clark; T. H. Fletcher; R. R. Linn
2010-01-01
The chemical processes of gas phase combustion in wildland fires are complex and occur at length-scales that are not resolved in computational fluid dynamics (CFD) models of landscape-scale wildland fire. A new approach for modelling fire chemistry in HIGRAD/FIRETEC (a landscape-scale CFD wildfire model) applies a mixtureâ fraction model relying on thermodynamic...
SMALL-SCALE SOLAR WIND TURBULENCE DUE TO NONLINEAR ALFVÉN WAVES
Energy Technology Data Exchange (ETDEWEB)
Kumar, Sanjay; Moon, Y.-J. [School of Space Research, Kyung Hee University, Yongin, Gyeonggi-Do, 446-701 (Korea, Republic of); Sharma, R. P., E-mail: sanjaykumar@khu.ac.kr [Centre for Energy Studies, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016 (India)
2015-10-10
We present an evolution of wave localization and magnetic power spectra in solar wind plasma using kinetic Alfvén waves (AWs) and fast AWs. We use a two-fluid model to derive the dynamical equations of these wave modes and then numerically solve these nonlinear dynamical equations to analyze the power spectra and wave localization at different times. The ponderomotive force associated with the kinetic AW (or pump) is responsible for the wave localization, and these thin slabs (or sheets) become more chaotic as the system evolves with time until the modulational instability (or oscillating two-stream instability) saturates. From our numerical results, we notice a steepening of the spectra from the inertial range (k{sup −1.67}) to the dispersion range (k{sup −3.0}). The steepening of the spectra could be described as the energy transference from longer to smaller scales. The formation of complex magnetic thin slabs and the change of the spectral index may be considered to be the main reason for the charged particles acceleration in solar wind plasma.
Numerical Simulation of a Laboratory-Scale Turbulent SlotFlame
Energy Technology Data Exchange (ETDEWEB)
Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski,Michael J.; Driscoll, James F.; Filatyev, Sergei A.
2006-04-20
We present three-dimensional, time-dependent simulations ofthe flowfield of a laboratory-scale slot burner. The simulations areperformed using an adaptive time-dependent low Mach number combustionalgorithm based on a second-order projection formulation that conservesboth species mass and total enthalpy. The methodology incorporatesdetailed chemical kinetics and a mixture model for differential speciesdiffusion. Methane chemistry and transport are modeled using the DRM-19mechanism along with its associated thermodynamics and transportdatabases. Adaptive mesh refinementdynamically resolves the flame andturbulent structures. Detailedcomparisons with experimental measurementsshow that the computational results provide a good prediction of theflame height, the shape of the time-averaged parabolic flame surfacearea, and the global consumption speed (the volume per second ofreactants consumed divided by the area of the time-averaged flame). Thethickness of the computed flamebrush increases in the streamwisedirection, and the flamesurface density profiles display the same generalshapes as the experiment. The structure of the simulated flame alsomatches the experiment; reaction layers are thin (typically thinner than1 mm) and the wavelengths of large wrinkles are 5--10 mm. Wrinklesamplify to become long fingers of reactants which burn through at a neckregion, forming isolated pockets of reactants. Thus both the simulatedflame and the experiment are in the "corrugated flameletregime."
Schneiderbauer, Simon; Saeedipour, Mahdi
2018-02-01
Highly resolved two-fluid model (TFM) simulations of gas-solid flows in vertical periodic channels have been performed to study closures for the filtered drag force and the Reynolds-stress-like contribution stemming from the convective terms. An approximate deconvolution model (ADM) for the large-eddy simulation of turbulent gas-solid suspensions is detailed and subsequently used to reconstruct those unresolved contributions in an a priori manner. With such an approach, an approximation of the unfiltered solution is obtained by repeated filtering allowing the determination of the unclosed terms of the filtered equations directly. A priori filtering shows that predictions of the ADM model yield fairly good agreement with the fine grid TFM simulations for various filter sizes and different particle sizes. In particular, strong positive correlation (ρ > 0.98) is observed at intermediate filter sizes for all sub-grid terms. Additionally, our study reveals that the ADM results moderately depend on the choice of the filters, such as box and Gaussian filter, as well as the deconvolution order. The a priori test finally reveals that ADM is superior compared to isotropic functional closures proposed recently [S. Schneiderbauer, "A spatially-averaged two-fluid model for dense large-scale gas-solid flows," AIChE J. 63, 3544-3562 (2017)].
Directory of Open Access Journals (Sweden)
Vesselin Krassimirov Krastev
2017-12-01
Full Text Available The unsteady and random character of turbulent flow motion is a key aspect of the multidimensional modeling of internal combustion engines (ICEs. A typical example can be found in the prediction of the cycle-to-cycle variability (CCV in modern, highly downsized gasoline direct injection (GDI engines, which strongly depends on the accurate simulation of turbulent in-cylinder flow structures. The current standard for turbulence modeling in ICEs is still represented by the unsteady form of Reynold-averaged Navier Stokes equations (URANS, which allows the simulation of full engine cycles at relatively low computational costs. URANS-based methods, however, are only able to return a statistical description of turbulence, as the effects of all scales of motion are entirely modeled. Therefore, during the last decade, scale-resolving methods such as large eddy simulation (LES or hybrid URANS/LES approaches are gaining increasing attention among the engine-modeling community. In the present paper, we propose a scale-resolving capable modification of the popular RNG k– ε URANS model. The modification is based on a detached-eddy simulation (DES framework and allows one to explicitly set the behavior (URANS, DES or LES of the model in different zones of the computational domain. The resulting zonal formulation has been tested on two reference test cases, comparing the numerical predictions with the available experimental data sets and with previous computational studies. Overall, the scale-resolved part of the computed flow has been found to be consistent with the expected flow physics, thus confirming the validity of the proposed simulation methodology.
Czech Academy of Sciences Publication Activity Database
Musilová, Věra; Králík, Tomáš; La Mantia, M.; Macek, Michal; Urban, Pavel; Skrbek, L.
2017-01-01
Roč. 832, OCT 26 (2017), s. 721-744 ISSN 0022-1120 R&D Projects: GA ČR(CZ) GA17-03572S; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : Benard convection * turbulent convection * turbulent flows Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.821, year: 2016
Variational Multi-Scale method with spectral approximation of the sub-scales.
Dia, Ben Mansour; Chá con-Rebollo, Tomas
2015-01-01
A variational multi-scale method where the sub-grid scales are computed by spectral approximations is presented. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base
LITOS – a new balloon-borne instrument for fine-scale turbulence soundings in the stratosphere
Directory of Open Access Journals (Sweden)
A. Theuerkauf
2011-01-01
Full Text Available We have developed a new compact balloon payload called LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere for high resolution wind turbulence soundings in the stratosphere up to 35 km altitude. The wind measurements are performed using a constant temperature anemometer (CTA with a vertical resolution of ~2.5 mm, i.e. 2 kHz sampling rate at 5 m/s ascent speed. Thereby, for the first time, it is possible to study the entire turbulence spectrum down to the viscous subrange in the stratosphere. Including telemetry, housekeeping, batteries and recovery unit, the payload weighs less than 5 kg and can be launched from any radiosonde station. Since autumn 2007, LITOS has been successfully launched several times from the Leibniz-Institute of Atmospheric Physics (IAP in Kühlungsborn, Germany (54° N, 12° E. Two additional soundings were carried out in 2008 and 2009 in Kiruna, Sweden (67° N, 21° E as part of the BEXUS program (Balloon-borne EXperiments for University Students. We describe here the basic principle of CTA measurements and prove the validity of this method in the stratosphere. A first case study allows a clear distinction between non-turbulent regions and a turbulent layer with a thickness of some tens of meters. Since our measurements cover the transition between the inertial and viscous subrange, energy dissipation rates can be calculated with high reliability.
Energy Technology Data Exchange (ETDEWEB)
Klein, Kristopher G.; Howes, Gregory G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); TenBarge, Jason M. [IREAP, University of Maryland, College Park, MD 20742 (United States); Podesta, John J., E-mail: kristopher-klein@uiowa.edu [Center for Space Plasma Physics, Space Science Institute, Boulder, CO 80301 (United States)
2014-04-20
Motivated by recent observations of distinct parallel and perpendicular signatures in magnetic helicity measurements segregated by wave period and angle between the local magnetic field and the solar wind velocity, this paper undertakes a comparison of three intervals of Ulysses data with synthetic time series generated from a physically motivated turbulence model. From these comparisons, it is hypothesized that the observed signatures result from a perpendicular cascade of Alfvénic fluctuations and a local, non-turbulent population of ion-cyclotron or whistler waves generated by temperature anisotropy instabilities. By constraining the model's free parameters through comparison to in situ data, it is found that, on average, ∼95% of the power near dissipative scales is contained in a perpendicular Alfvénic cascade and that the parallel fluctuations are propagating nearly unidirectionally. The effects of aliasing on magnetic helicity measurements are considered and shown to be significant near the Nyquist frequency.
International Nuclear Information System (INIS)
Klein, Kristopher G.; Howes, Gregory G.; TenBarge, Jason M.; Podesta, John J.
2014-01-01
Motivated by recent observations of distinct parallel and perpendicular signatures in magnetic helicity measurements segregated by wave period and angle between the local magnetic field and the solar wind velocity, this paper undertakes a comparison of three intervals of Ulysses data with synthetic time series generated from a physically motivated turbulence model. From these comparisons, it is hypothesized that the observed signatures result from a perpendicular cascade of Alfvénic fluctuations and a local, non-turbulent population of ion-cyclotron or whistler waves generated by temperature anisotropy instabilities. By constraining the model's free parameters through comparison to in situ data, it is found that, on average, ∼95% of the power near dissipative scales is contained in a perpendicular Alfvénic cascade and that the parallel fluctuations are propagating nearly unidirectionally. The effects of aliasing on magnetic helicity measurements are considered and shown to be significant near the Nyquist frequency.
Energy Technology Data Exchange (ETDEWEB)
Labit, B
2002-10-01
In a fusion machine, understanding plasma turbulence, which causes a degradation of the measured energy confinement time, would constitute a major progress in this field. In tokamaks, the measured ion and electron thermal conductivities are of comparable magnitude. The possible sources of turbulence are the temperature and density gradients occurring in a fusion plasma. Whereas the heat losses in the ion channel are reasonably well understood, the origin of the electron losses is more uncertain. In addition to the radial velocity associated to the fluctuations of the electric field, electrons are more affected than ions by the magnetic field fluctuations. In experiments, the confinement time can be conveniently expressed in terms of dimensionless parameters. Although still somewhat too imprecise, these scaling laws exhibit strong dependencies on the normalized pressure {beta} or the normalized Larmor radius, {rho}{sub *}. The present thesis assesses whether a tridimensional, electromagnetic, nonlinear fluid model of plasma turbulence driven by a specific instability can reproduce the dependence of the experimental electron heat losses on the dimensionless parameters {beta} and {rho}{sub *}. The investigated interchange instability is the Electron Temperature Gradient driven one (ETG). The model is built by using the set of Braginskii equations. The developed simulation code is global in the sense that a fixed heat flux is imposed at the inner boundary, leaving the gradients free to evolve. From the nonlinear simulations, we have put in light three characteristics for the ETG turbulence: the turbulent transport is essentially electrostatic; the potential and pressure fluctuations form radially elongated cells called streamers; the transport level is very low compared to the experimental values. The thermal transport dependence study has shown a very small role of the normalized pressure, which is in contradiction with the Ohkama's formula. On the other hand
Chacó n Rebollo, Tomá s; Dia, Ben Mansour
2015-01-01
This paper introduces a variational multi-scale method where the sub-grid scales are computed by spectral approximations. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. This allows to element-wise calculate the sub-grid scales by means of the associated spectral expansion. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a finite number of modes. We apply this general framework to the convection-diffusion equation, by analytically computing the family of eigenfunctions. We perform a convergence and error analysis. We also present some numerical tests that show the stability of the method for an odd number of spectral modes, and an improvement of accuracy in the large resolved scales, due to the adding of the sub-grid spectral scales.
Chacón Rebollo, Tomás
2015-03-01
This paper introduces a variational multi-scale method where the sub-grid scales are computed by spectral approximations. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. This allows to element-wise calculate the sub-grid scales by means of the associated spectral expansion. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a finite number of modes. We apply this general framework to the convection-diffusion equation, by analytically computing the family of eigenfunctions. We perform a convergence and error analysis. We also present some numerical tests that show the stability of the method for an odd number of spectral modes, and an improvement of accuracy in the large resolved scales, due to the adding of the sub-grid spectral scales.
Energy Technology Data Exchange (ETDEWEB)
Rai, Raj K. [Pacific Northwest National Laboratory, Richland, Washington; Berg, Larry K. [Pacific Northwest National Laboratory, Richland, Washington; Pekour, Mikhail [Pacific Northwest National Laboratory, Richland, Washington; Shaw, William J. [Pacific Northwest National Laboratory, Richland, Washington; Kosovic, Branko [National Center for Atmospheric Research, Boulder, Colorado; Mirocha, Jeffrey D. [Lawrence Livermore National Laboratory, Livermore, California; Ennis, Brandon L. [Sandia National Laboratories, Albuquerque, New Mexico
2017-12-01
The assumption of sub-grid scale (SGS) horizontal homogeneity within a model grid cell, which forms the basis of SGS turbulence closures used by mesoscale models, becomes increasingly tenuous as grid spacing is reduced to a few kilometers or less, such as in many emerging high-resolution applications. Herein, we use the turbulence kinetic energy (TKE) budget equation to study the spatio-temporal variability in two types of terrain—complex (Columbia Basin Wind Energy Study [CBWES] site, north-eastern Oregon) and flat (ScaledWind Farm Technologies [SWiFT] site, west Texas) using the Weather Research and Forecasting (WRF) model. In each case six-nested domains (three domains each for mesoscale and large-eddy simulation [LES]) are used to downscale the horizontal grid spacing from 10 km to 10 m using the WRF model framework. The model output was used to calculate the values of the TKE budget terms in vertical and horizontal planes as well as the averages of grid cells contained in the four quadrants (a quarter area) of the LES domain. The budget terms calculated along the planes and the mean profile of budget terms show larger spatial variability at CBWES site than at the SWiFT site. The contribution of the horizontal derivative of the shear production term to the total production shear was found to be 45% and 15% of the total shear, at the CBWES and SWiFT sites, respectively, indicating that the horizontal derivatives applied in the budget equation should not be ignored in mesoscale model parameterizations, especially for cases with complex terrain with <10 km scale.
Magnetohydrodynamic turbulence
Biskamp, Dieter
2003-01-01
This book presents an introduction to, and modern account of, magnetohydrodynamic (MHD) turbulence, an active field both in general turbulence theory and in various areas of astrophysics. The book starts by introducing the MHD equations, certain useful approximations and the transition to turbulence. The second part of the book covers incompressible MHD turbulence, the macroscopic aspects connected with the different self-organization processes, the phenomenology of the turbulence spectra, two-point closure theory, and intermittency. The third considers two-dimensional turbulence and compressi
Magnetohydrodynamic Turbulence
Montgomery, David C.
2004-01-01
Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.
Group-kinetic theory and modeling of atmospheric turbulence
Tchen, C. M.
1989-01-01
A group kinetic method is developed for analyzing eddy transport properties and relaxation to equilibrium. The purpose is to derive the spectral structure of turbulence in incompressible and compressible media. Of particular interest are: direct and inverse cascade, boundary layer turbulence, Rossby wave turbulence, two phase turbulence; compressible turbulence, and soliton turbulence. Soliton turbulence can be found in large scale turbulence, turbulence connected with surface gravity waves and nonlinear propagation of acoustical and optical waves. By letting the pressure gradient represent the elementary interaction among fluid elements and by raising the Navier-Stokes equation to higher dimensionality, the master equation was obtained for the description of the microdynamical state of turbulence.
Kramer, W.; Clercx, H.J.H.; van Heijst, G.J.F.
2008-01-01
This paper reports on a numerical study of forced two-dimensional turbulence in a periodic channel with flat no-slip walls. Since corners or curved domain boundaries, which are met in the standard rectangular, square, or circular geometries, are absent in this geometry, the (statistical) analysis of
Kramer, W.; Clercx, H.J.H.; Heijst, van G.J.F.
2008-01-01
This paper reports on a numerical study of forced two-dimensional turbulence in a periodic channel with flat no-slip walls. Since corners or curved domain boundaries, met in the standard rectangular, square or circular geometries, are absent in this geometry, the (statistical) analysis of the flow
International Nuclear Information System (INIS)
ColIn, Pedro; Vazquez-Semadeni, Enrique; Avila-Reese, Vladimir; Valenzuela, Octavio; Ceverino, Daniel
2010-01-01
We present numerical simulations aimed at exploring the effects of varying the sub-grid physics parameters on the evolution and the properties of the galaxy formed in a low-mass dark matter halo (∼7 x 10 10 h -1 M sun at redshift z = 0). The simulations are run within a cosmological setting with a nominal resolution of 218 pc comoving and are stopped at z = 0.43. For simulations that cannot resolve individual molecular clouds, we propose the criterion that the threshold density for star formation, n SF , should be chosen such that the column density of the star-forming cells equals the threshold value for molecule formation, N ∼ 10 21 cm -2 , or ∼8 M sun pc -2 . In all of our simulations, an extended old/intermediate-age stellar halo and a more compact younger stellar disk are formed, and in most cases, the halo's specific angular momentum is slightly larger than that of the galaxy, and sensitive to the SF/feedback parameters. We found that a non-negligible fraction of the halo stars are formed in situ in a spheroidal distribution. Changes in the sub-grid physics parameters affect significantly and in a complex way the evolution and properties of the galaxy: (1) lower threshold densities n SF produce larger stellar effective radii R e , less peaked circular velocity curves V c (R), and greater amounts of low-density and hot gas in the disk mid-plane; (2) when stellar feedback is modeled by temporarily switching off radiative cooling in the star-forming regions, R e increases (by a factor of ∼2 in our particular model), the circular velocity curve becomes flatter, and a complex multi-phase gaseous disk structure develops; (3) a more efficient local conversion of gas mass to stars, measured by a stellar particle mass distribution biased toward larger values, increases the strength of the feedback energy injection-driving outflows and inducing burstier SF histories; (4) if feedback is too strong, gas loss by galactic outflows-which are easier to produce in low
International Nuclear Information System (INIS)
Donnelly, R.J.
1988-01-01
Most flows of fluids, in nature and in technology, are turbulent. Since much of the energy expended by machines and devices that involve fluid flows is spent in overcoming drag caused by turbulence, there is a strong motivation to understand the phenomena. Surprisingly, the peculiar, quantum-mechanical form of turbulence that can form in superfluid helium may turn out to be much simpler to understand that the classical turbulence that forms in normal fluids. It now seems that the study of superfluid turbulence may provide simplified model systems for studying some forms of classical turbulence. There are also practical motivations for studying superfluid turbulence. For example, superfuid helium is often used as a coolant in superconducting machinery. Superfluid turbulence is the primary impediment to the transfer of heat by superfluid helium; an understanding of the phenomena may make it possible to design more efficient methods of refrigeration for superconducting devices. 8 figs
Hill, James C.; Liu, Zhenping; Fox, Rodney O.; Passalacqua, Alberto; Olsen, Michael G.
2015-11-01
The multi-inlet vortex reactor (MIVR) has been developed to provide a platform for rapid mixing in the application of flash nanoprecipitation (FNP) for manufacturing functional nanoparticles. Unfortunately, commonly used RANS methods are unable to accurately model this complex swirling flow. Large eddy simulations have also been problematic, as expensive fine grids to accurately model the flow are required. These dilemmas led to the strategy of applying a Delayed Detached Eddy Simulation (DDES) method to the vortex reactor. In the current work, the turbulent swirling flow inside a scaled-up MIVR has been investigated by using a dynamic DDES model. In the DDES model, the eddy viscosity has a form similar to the Smagorinsky sub-grid viscosity in LES and allows the implementation of a dynamic procedure to determine its coefficient. The complex recirculating back flow near the reactor center has been successfully captured by using this dynamic DDES model. Moreover, the simulation results are found to agree with experimental data for mean velocity and Reynolds stresses.
Miranda, Rodrigo A.; Schelin, Adriane B.; Chian, Abraham C.-L.; Ferreira, José L.
2018-03-01
In a recent paper (Chian et al., 2016) it was shown that magnetic reconnection at the interface region between two magnetic flux ropes is responsible for the genesis of interplanetary intermittent turbulence. The normalized third-order moment (skewness) and the normalized fourth-order moment (kurtosis) display a quadratic relation with a parabolic shape that is commonly observed in observational data from turbulence in fluids and plasmas, and is linked to non-Gaussian fluctuations due to coherent structures. In this paper we perform a detailed study of the relation between the skewness and the kurtosis of the modulus of the magnetic field |B| during a triple interplanetary magnetic flux rope event. In addition, we investigate the skewness-kurtosis relation of two-point differences of |B| for the same event. The parabolic relation displays scale dependence and is found to be enhanced during magnetic reconnection, rendering support for the generation of non-Gaussian coherent structures via rope-rope magnetic reconnection. Our results also indicate that a direct coupling between the scales of magnetic flux ropes and the scales within the inertial subrange occurs in the solar wind.
Turbulence measurements in fusion plasmas
International Nuclear Information System (INIS)
Conway, G D
2008-01-01
Turbulence measurements in magnetically confined toroidal plasmas have a long history and relevance due to the detrimental role of turbulence induced transport on particle, energy, impurity and momentum confinement. The turbulence-the microscopic random fluctuations in particle density, temperature, potential and magnetic field-is generally driven by radial gradients in the plasma density and temperature. The correlation between the turbulence properties and global confinement, via enhanced diffusion, convection and direct conduction, is now well documented. Theory, together with recent measurements, also indicates that non-linear interactions within the turbulence generate large scale zonal flows and geodesic oscillations, which can feed back onto the turbulence and equilibrium profiles creating a complex interdependence. An overview of the current status and understanding of plasma turbulence measurements in the closed flux surface region of magnetic confinement fusion devices is presented, highlighting some recent developments and outstanding problems.
Directory of Open Access Journals (Sweden)
H. Z. Baumert
2009-03-01
Full Text Available This paper extends a turbulence closure-like model for stably stratified flows into a new dynamic domain in which turbulence is generated by internal gravity waves rather than mean shear. The model turbulent kinetic energy (TKE, K balance, its first equation, incorporates a term for the energy transfer from internal waves to turbulence. This energy source is in addition to the traditional shear production. The second variable of the new two-equation model is the turbulent enstrophy (Ω. Compared to the traditional shear-only case, the Ω-equation is modified to account for the effect of the waves on the turbulence time and space scales. This modification is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean shear when turbulence is produced exclusively by internal waves. This paper is part 1 of a continuing theoretical development. It accounts for mean shear- and internal wave-driven mixing only in the two limits of mean shear and no waves and waves but no mean shear, respectively.
The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000b. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E^{2}. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E^{1}. This is observed, for example, in the highly energetic tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.
International Nuclear Information System (INIS)
Javadi, Ardalan; Nilsson, Håkan
2014-01-01
The strongly swirling turbulent flow through an abrupt expansion is investigated using highly resolved LES and SAS, to shed more light on the stagnation region and the helical vortex breakdown. The vortex breakdown in an abrupt expansion resembles the so-called vortex rope occurring in hydro power draft tubes. It is known that the large-scale helical vortex structures can be captured by regular RANS turbulence models. However, the spurious suppression of the small-scale structures should be avoided using less diffusive methods. The present work compares LES and SAS results with the experimental measurement of Dellenback et al. (1988). The computations are conducted using a general non-orthogonal finite-volume method with a fully collocated storage available in the OpenFOAM-2.1.x CFD code. The dynamics of the flow is studied at two Reynolds numbers, Re=6.0×10 4 and Re=10 5 , at the almost constant high swirl numbers of Sr=1.16 and Sr=1.23, respectively. The time-averaged velocity and pressure fields and the root mean square of the velocity fluctuations, are captured and investigated qualitatively. The flow with the lower Reynolds number gives a much weaker outburst although the frequency of the structures seems to be constant for the plateau swirl number
Tearing instabilities in turbulence
International Nuclear Information System (INIS)
Ishizawa, A.; Nakajima, N.
2009-01-01
Full text: Effects of micro-turbulence on tearing instabilities are investigated by numerically solving a reduced set of two-fluid equations. Micro-turbulence excites both large-scale and small-scale Fourier modes through energy transfer due to nonlinear mode coupling. The energy transfer to large scale mode does not directly excite tearing instability but it gives an initiation of tearing instability. When tearing instability starts to grow, the excited small scale mode plays an important role. The mixing of magnetic flux by micro-turbulence is the dominant factor of non-ideal MHD effect at the resonant surface and it gives rise to magnetic reconnection which causes tearing instability. Tearing instabilities were investigated against static equilibrium or flowing equilibrium so far. On the other hand, the recent progress of computer power allows us to investigate interactions between turbulence and coherent modes such as tearing instabilities in magnetically confined plasmas by means of direct numerical simulations. In order to investigate effects of turbulence on tearing instabilities we consider a situation that tearing mode is destabilized in a quasi-equilibrium including micro-turbulence. We choose an initial equilibrium that is unstable against kinetic ballooning modes and tearing instabilities. Tearing instabilities are current driven modes and thus they are unstable for large scale Fourier modes. On the other hand kinetic ballooning modes are unstable for poloidal Fourier modes that are characterized by ion Larmor radius. The energy of kinetic ballooning modes spreads over wave number space through nonlinear Fourier mode coupling. We present that micro-turbulence affects tearing instabilities in two different ways by three-dimensional numerical simulation of a reduced set of two-fluid equations. One is caused by energy transfer to large scale modes, the other is caused by energy transfer to small scale modes. The former is the excitation of initial
Xie, S.; Archer, C. L.
2013-12-01
In this study, a new large-eddy simulation code, the Wind Turbine and Turbulence Simulator (WiTTS), is developed to study the wake generated from a single wind turbine in the neutral ABL. The WiTTS formulation is based on a scale-dependent Lagrangian dynamical model of the sub-grid shear stress and uses actuator lines to simulate the effects of the rotating blades. WiTTS is first tested against wind tunnel experiments and then used to study the commonly-used assumptions of self-similarity and axis-symmetry of the wake under neutral conditions for a variety of wind speeds and turbine properties. The mean velocity deficit shows good self-similarity properties following a normal distribution in the horizontal plane at the hub-height level. Self-similarity is a less valid approximation in the vertical near the ground, due to strong wind shear and ground effects. The mean velocity deficit is strongly dependent on the thrust coefficient or induction factor. A new relationship is proposed to model the mean velocity deficit along the centerline at the hub-height level to fit the LES results piecewise throughout the wake. A logarithmic function is used in the near and intermediate wake regions whereas a power function is used in the far-wake. These two functions provide a better fit to both simulated and observed wind velocity deficits than other functions previously used in wake models such as WAsP. The wind shear and impact with the ground cause an anisotropy in the expansion of the wake such that the wake grows faster horizontally than vertically. The wake deforms upon impact with the ground and spreads laterally. WiTTS is also used to study the turbulence characteristics in the wake. Aligning with the mean wind direction, the streamwise component of turbulence intensity is the dominant among the three components and thus it is further studied. The highest turbulence intensity occurs near the top-tip level. The added turbulence intensity increases fast in the near
Bruno, Roberto
2016-01-01
This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in...
Turbulence and fossil turbulence lead to life in the universe
International Nuclear Information System (INIS)
Gibson, Carl H
2013-01-01
Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than all the other forces that tend to damp the eddies out. Fossil turbulence is a perturbation produced by turbulence that persists after the fluid ceases to be turbulent at the scale of the perturbation. Because vorticity is produced at small scales, turbulence must cascade from small scales to large, providing a consistent physical basis for Kolmogorovian universal similarity laws. Oceanic and astrophysical mixing and diffusion are dominated by fossil turbulence and fossil turbulent waves. Observations from space telescopes show turbulence and vorticity existed in the beginning of the universe and that their fossils persist. Fossils of big bang turbulence include spin and the dark matter of galaxies: clumps of ∼10 12 frozen hydrogen planets that make globular star clusters as seen by infrared and microwave space telescopes. When the planets were hot gas, they hosted the formation of life in a cosmic soup of hot-water oceans as they merged to form the first stars and chemicals. Because spontaneous life formation according to the standard cosmological model is virtually impossible, the existence of life falsifies the standard cosmological model. (paper)
Tang, S.; Xie, S.; Tang, Q.; Zhang, Y.
2017-12-01
Two types of instruments, the eddy correlation flux measurement system (ECOR) and the energy balance Bowen ratio system (EBBR), are used at the Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) site to measure surface latent and sensible fluxes. ECOR and EBBR typically sample different land surface types, and the domain-mean surface fluxes derived from ECOR and EBBR are not always consistent. The uncertainties of the surface fluxes will have impacts on the derived large-scale forcing data and further affect the simulations of single-column models (SCM), cloud-resolving models (CRM) and large-eddy simulation models (LES), especially for the shallow-cumulus clouds which are mainly driven by surface forcing. This study aims to quantify the uncertainties of the large-scale forcing caused by surface turbulence flux measurements and investigate the impacts on cloud simulations using long-term observations from the ARM SGP site.
Chkhetiani, O G; Jurcisinova, E; Jurcisin, M; Mazzino, A; Repasan, M
2005-01-01
The advection of a passive scalar quantity by incompressible helical turbulent flow has been investigated in the framework of an extended Kraichnan model. Statistical fluctuations of the velocity field are assumed to have the Gaussian distribution with zero mean and defined noise with finite-time correlation. Actual calculations have been done up to two-loop approximation in the framework of the field-theoretic renormalization group approach. It turned out that the space parity violation (helicity) of a stochastic environment does not affect anomalous scaling which is the peculiar attribute of a corresponding model without helicity. However, stability of asymptotic regimes, where anomalous scaling takes place, and the effective diffusivity strongly depend on the amount of helicity.
Transitional-turbulent spots and turbulent-turbulent spots in boundary layers.
Wu, Xiaohua; Moin, Parviz; Wallace, James M; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre
2017-07-03
Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional-turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a [Formula: see text] vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional-turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional-turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional-turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent-turbulent spots. These turbulent-turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional-turbulent spots, these turbulent-turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent-turbulent spots.
Inflow Turbulence Generation Methods
Wu, Xiaohua
2017-01-01
Research activities on inflow turbulence generation methods have been vigorous over the past quarter century, accompanying advances in eddy-resolving computations of spatially developing turbulent flows with direct numerical simulation, large-eddy simulation (LES), and hybrid Reynolds-averaged Navier-Stokes-LES. The weak recycling method, rooted in scaling arguments on the canonical incompressible boundary layer, has been applied to supersonic boundary layer, rough surface boundary layer, and microscale urban canopy LES coupled with mesoscale numerical weather forecasting. Synthetic methods, originating from analytical approximation to homogeneous isotropic turbulence, have branched out into several robust methods, including the synthetic random Fourier method, synthetic digital filtering method, synthetic coherent eddy method, and synthetic volume forcing method. This article reviews major progress in inflow turbulence generation methods with an emphasis on fundamental ideas, key milestones, representative applications, and critical issues. Directions for future research in the field are also highlighted.
Coughtrie, A R; Borman, D J; Sleigh, P A
2013-06-01
Flow in a gas-lift digester with a central draft-tube was investigated using computational fluid dynamics (CFD) and different turbulence closure models. The k-ω Shear-Stress-Transport (SST), Renormalization-Group (RNG) k-∊, Linear Reynolds-Stress-Model (RSM) and Transition-SST models were tested for a gas-lift loop reactor under Newtonian flow conditions validated against published experimental work. The results identify that flow predictions within the reactor (where flow is transitional) are particularly sensitive to the turbulence model implemented; the Transition-SST model was found to be the most robust for capturing mixing behaviour and predicting separation reliably. Therefore, Transition-SST is recommended over k-∊ models for use in comparable mixing problems. A comparison of results obtained using multiphase Euler-Lagrange and singlephase approaches are presented. The results support the validity of the singlephase modelling assumptions in obtaining reliable predictions of the reactor flow. Solver independence of results was verified by comparing two independent finite-volume solvers (Fluent-13.0sp2 and OpenFOAM-2.0.1). Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhou, Xu; Yang, Kun; Wang, Yan
2018-04-01
Sub-grid-scale orographic variation (smaller than 5 km) exerts turbulent form drag on atmospheric flows and significantly retards the wind speed. The Weather Research and Forecasting model (WRF) includes a turbulent orographic form drag (TOFD) scheme that adds the drag to the surface layer. In this study, another TOFD scheme has been incorporated in WRF3.7, which exerts an exponentially decaying drag from the surface layer to upper layers. To investigate the effect of the new scheme, WRF with the old scheme and with the new one was used to simulate the climate over the complex terrain of the Tibetan Plateau from May to October 2010. The two schemes were evaluated in terms of the direct impact (on wind fields) and the indirect impact (on air temperature and precipitation). The new TOFD scheme alleviates the mean bias in the surface wind components, and clearly reduces the root mean square error (RMSEs) in seasonal mean wind speed (from 1.10 to 0.76 m s-1), when referring to the station observations. Furthermore, the new TOFD scheme also generally improves the simulation of wind profile, as characterized by smaller biases and RMSEs than the old one when referring to radio sounding data. Meanwhile, the simulated precipitation with the new scheme is improved, with reduced mean bias (from 1.34 to 1.12 mm day-1) and RMSEs, which is due to the weakening of water vapor flux at low-level atmosphere with the new scheme when crossing the Himalayan Mountains. However, the simulation of 2-m air temperature is little improved.
Sediment and plankton lift off recirculations in strong synthetic turbulence (KS)
Redondo, Jose M.; Castilla, Roberto; Sekula, Emil; Furmanek, Petr
2014-05-01
equilibrium (or not) cascade may lead to more physically realistic (and understandable) models to paramerize sub-grid scaling. Care has to be taken when interpreting the direct 3D Kolmogorov cascade and the Inverse 2D Kraichnan Cascade. It is very interesting to use ESS and the third order structure functions (p=3) to investigate the scale to scale transfer of energy (and enstrophy) A parameter space based on Richardson numbers, Rossby numbers and Reynolds Numbers can be used to determine the dominant instability with different intermittencies in a complex full stratified-rotating flow. Intermittency diminishes as spectral slope increases between 5/3 (Kolmogorov's local energy balance) and 3 (Kraichnan's local enstrophy balance) like near a boundary. (Rodriguez et al 1999, Redondo et al. 1993)(Gabaldon and Redondo 2001) Helicity local balance leads to a 7/3 Energy spectra that may be strongly affected by intermittency. It should also depend on the length scale. So in K62, Kolmogorov introduced the notion of intermittency, and he would transpose the universality character of his previous constant to the universality of several parameters, the intermittence which is generalized to higher orders p, μ(p). We know that μ is not universal, as it varies from approximately 0.2 to 0.7, according to different experiments. The new energy spectra, E(k,p), has a correction term in its power: -5/3 becomes -5/3-μ(p)/9, thus, the global form of the spectra is E(k) ~ k -β(p), The different simulations produce very different spatial distributions of the bio-tracers. Gabaldon J., Redondo J.M. (2009) Plankton vertical distribution in the ocean, CUM, XTDFTG in Advances in Environmental Turbulence. UPC, Barcelona. 212. Kraichnan, R.H.: (1966), 'Dispersion of particle pairs in homogeneous turbulence', Physics Fluids, 9, 1728. Kolmogorov, A. N. (1941). The local structure of turbulence in Incompressible viscous fluid at very large Reynolds numbers. C. R. Acad. Sci. URSS 30:301. Richardson, L. F
Interstellar turbulence and shock waves
International Nuclear Information System (INIS)
Bykov, A.M.
1982-01-01
Random deflections of shock fronts propagated through the turbulent interstellar medium can produce the strong electro-density fluctuations on scales l> or approx. =10 13 cm inferred from pulsar radio scintillations. The development of turbulence in the hot-phase ISM is discussed
Containerless Ripple Turbulence
Putterman, Seth; Wright, William; Duval, Walter; Panzarella, Charles
2002-11-01
One of the longest standing unsolved problems in physics relates to the behavior of fluids that are driven far from equilibrium such as occurs when they become turbulent due to fast flow through a grid or tidal motions. In turbulent flows the distribution of vortex energy as a function of the inverse length scale [or wavenumber 'k'] of motion is proportional to 1/k5/3 which is the celebrated law of Kolmogorov. Although this law gives a good description of the average motion, fluctuations around the average are huge. This stands in contrast with thermally activated motion where large fluctuations around thermal equilibrium are highly unfavorable. The problem of turbulence is the problem of understanding why large fluctuations are so prevalent which is also called the problem of 'intermittency'. Turbulence is a remarkable problem in that its solution sits simultaneously at the forefront of physics, mathematics, engineering and computer science. A recent conference [March 2002] on 'Statistical Hydrodynamics' organized by the Los Alamos Laboratory Center for Nonlinear Studies brought together researchers in all of these fields. Although turbulence is generally thought to be described by the Navier-Stokes Equations of fluid mechanics the solution as well as its existence has eluded researchers for over 100 years. In fact proof of the existence of such a solution qualifies for a 1 M millennium prize. As part of our NASA funded research we have proposed building a bridge between vortex turbulence and wave turbulence. The latter occurs when high amplitude waves of various wavelengths are allowed to mutually interact in a fluid. In particular we have proposed measuring the interaction of ripples [capillary waves] that run around on the surface of a fluid sphere suspended in a microgravity environment. The problem of ripple turbulence poses similar mathematical challenges to the problem of vortex turbulence. The waves can have a high amplitude and a strong nonlinear
Containerless Ripple Turbulence
Putterman, Seth; Wright, William; Duval, Walter; Panzarella, Charles
2002-01-01
One of the longest standing unsolved problems in physics relates to the behavior of fluids that are driven far from equilibrium such as occurs when they become turbulent due to fast flow through a grid or tidal motions. In turbulent flows the distribution of vortex energy as a function of the inverse length scale [or wavenumber 'k'] of motion is proportional to 1/k(sup 5/3) which is the celebrated law of Kolmogorov. Although this law gives a good description of the average motion, fluctuations around the average are huge. This stands in contrast with thermally activated motion where large fluctuations around thermal equilibrium are highly unfavorable. The problem of turbulence is the problem of understanding why large fluctuations are so prevalent which is also called the problem of 'intermittency'. Turbulence is a remarkable problem in that its solution sits simultaneously at the forefront of physics, mathematics, engineering and computer science. A recent conference [March 2002] on 'Statistical Hydrodynamics' organized by the Los Alamos Laboratory Center for Nonlinear Studies brought together researchers in all of these fields. Although turbulence is generally thought to be described by the Navier-Stokes Equations of fluid mechanics the solution as well as its existence has eluded researchers for over 100 years. In fact proof of the existence of such a solution qualifies for a 1 M$ millennium prize. As part of our NASA funded research we have proposed building a bridge between vortex turbulence and wave turbulence. The latter occurs when high amplitude waves of various wavelengths are allowed to mutually interact in a fluid. In particular we have proposed measuring the interaction of ripples [capillary waves] that run around on the surface of a fluid sphere suspended in a microgravity environment. The problem of ripple turbulence poses similar mathematical challenges to the problem of vortex turbulence. The waves can have a high amplitude and a strong nonlinear
Structure and modeling of turbulence
International Nuclear Information System (INIS)
Novikov, E.A.
1995-01-01
The open-quotes vortex stringsclose quotes scale l s ∼ LRe -3/10 (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scale motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES)
Directory of Open Access Journals (Sweden)
G. V. Levina
2000-01-01
Full Text Available The work is concerned with the results of theoretical and laboratory modelling the processes of the large-scale structure generation under turbulent convection in the rotating-plane horizontal layer of an incompressible fluid with unstable stratification. The theoretical model describes three alternative ways of creating unstable stratification: a layer heating from below, a volumetric heating of a fluid with internal heat sources and combination of both factors. The analysis of the model equations show that under conditions of high intensity of the small-scale convection and low level of heat loss through the horizontal layer boundaries a long wave instability may arise. The condition for the existence of an instability and criterion identifying the threshold of its initiation have been determined. The principle of action of the discovered instability mechanism has been described. Theoretical predictions have been verified by a series of experiments on a laboratory model. The horizontal dimensions of the experimentally-obtained long-lived vortices are 4÷6 times larger than the thickness of the fluid layer. This work presents a description of the laboratory setup and experimental procedure. From the geophysical viewpoint the examined mechanism of the long wave instability is supposed to be adequate to allow a description of the initial step in the evolution of such large-scale vortices as tropical cyclones - a transition form the small-scale cumulus clouds to the state of the atmosphere involving cloud clusters (the stage of initial tropical perturbation.
International Nuclear Information System (INIS)
Mahalov, Alex
2014-01-01
Multiscale modeling and high resolution three-dimensional simulations of nonequilibrium ionospheric dynamics are major frontiers in the field of space sciences. The latest developments in fast computational algorithms and novel numerical methods have advanced reliable forecasting of ionospheric environments at fine scales. These new capabilities include improved physics-based predictive modeling, nesting and implicit relaxation techniques that are designed to integrate models of disparate scales. A range of scales, from mesoscale to ionospheric microscale, are included in a 3D modeling framework. Analyses and simulations of primary and secondary Rayleigh–Taylor instabilities in the equatorial spread F (ESF), the response of the plasma density to the neutral turbulent dynamics, and wave breaking in the lower region of the ionosphere and nonequilibrium layer dynamics at fine scales are presented for coupled systems (ions, electrons and neutral winds), thus enabling studies of mesoscale/microscale dynamics for a range of altitudes that encompass the ionospheric E and F layers. We examine the organizing mixing patterns for plasma flows, which occur due to polarized gravity wave excitations in the neutral field, using Lagrangian coherent structures (LCS). LCS objectively depict the flow topology and the extracted scintillation-producing irregularities that indicate a generation of ionospheric density gradients, due to the accumulation of plasma. The scintillation effects in propagation, through strongly inhomogeneous ionospheric media, are induced by trapping electromagnetic (EM) waves in parabolic cavities, which are created by the refractive index gradients along the propagation paths. (paper)
Ida, Masato; Taniguchi, Nobuyuki
2003-09-01
This paper introduces a candidate for the origin of the numerical instabilities in large eddy simulation repeatedly observed in academic and practical industrial flow computations. Without resorting to any subgrid-scale modeling, but based on a simple assumption regarding the streamwise component of flow velocity, it is shown theoretically that in a channel-flow computation, the application of the Gaussian filtering to the incompressible Navier-Stokes equations yields a numerically unstable term, a cross-derivative term, which is similar to one appearing in the Gaussian filtered Vlasov equation derived by Klimas [J. Comput. Phys. 68, 202 (1987)] and also to one derived recently by Kobayashi and Shimomura [Phys. Fluids 15, L29 (2003)] from the tensor-diffusivity subgrid-scale term in a dynamic mixed model. The present result predicts that not only the numerical methods and the subgrid-scale models employed but also only the applied filtering process can be a seed of this numerical instability. An investigation concerning the relationship between the turbulent energy scattering and the unstable term shows that the instability of the term does not necessarily represent the backscatter of kinetic energy which has been considered a possible origin of numerical instabilities in large eddy simulation. The present findings raise the question whether a numerically stable subgrid-scale model can be ideally accurate.
Calderer, Antoni; Guo, Xin; Shen, Lian; Sotiropoulos, Fotis
2018-02-01
We develop a numerical method for simulating coupled interactions of complex floating structures with large-scale ocean waves and atmospheric turbulence. We employ an efficient large-scale model to develop offshore wind and wave environmental conditions, which are then incorporated into a high resolution two-phase flow solver with fluid-structure interaction (FSI). The large-scale wind-wave interaction model is based on a two-fluid dynamically-coupled approach that employs a high-order spectral method for simulating the water motion and a viscous solver with undulatory boundaries for the air motion. The two-phase flow FSI solver is based on the level set method and is capable of simulating the coupled dynamic interaction of arbitrarily complex bodies with airflow and waves. The large-scale wave field solver is coupled with the near-field FSI solver with a one-way coupling approach by feeding into the latter waves via a pressure-forcing method combined with the level set method. We validate the model for both simple wave trains and three-dimensional directional waves and compare the results with experimental and theoretical solutions. Finally, we demonstrate the capabilities of the new computational framework by carrying out large-eddy simulation of a floating offshore wind turbine interacting with realistic ocean wind and waves.
MULTIFLUID MAGNETOHYDRODYNAMIC TURBULENT DECAY
International Nuclear Information System (INIS)
Downes, T. P.; O'Sullivan, S.
2011-01-01
It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation that occurs within them. Non-ideal magnetohydrodynamic (MHD) effects are known to influence the nature of this turbulence. We present the results of a suite of 512 3 resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity, and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingly we find that, at least at these resolutions, the majority of the physics of multifluid turbulence can be captured by simply introducing fixed (in time and space) resistive terms into the induction equation without the need for a full multifluid MHD treatment. The velocity dispersion is also examined and, in common with previously published results, it is found not to be power law in nature.
EuHIT, Collaboration
2015-01-01
As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.
International Nuclear Information System (INIS)
Horton, W.
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates
Wall roughness induces asymptotic ultimate turbulence
Zhu, Xiaojue; Verschoof, Ruben Adriaan; Bakhuis, Dennis; Huisman, Sander Gerard; Verzicco, Roberto; Sun, Chao; Lohse, Detlef
2018-01-01
Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by
Kaplan, Michael L.; Huffman, Allan W.; Lux, Kevin M.; Cetola, Jeffrey D.; Charney, Joseph J.; Riordan, Allen J.; Lin, Yuh-Lang; Waight, Kenneth T., III; Proctor, Fred (Technical Monitor)
2003-01-01
Simulation experiments reveal key processes that organize a hydrostatic environment conducive to severe turbulence. The paradigm requires juxtaposition of the entrance region of a curved jet stream, which is highly subgeostrophic, with the entrance region of a straight jet stream, which is highly supergeostrophic. The wind and mass fields become misphased as the entrance regions converge resulting in the significant spatial variation of inertial forcing, centripetal forcing, and along- and cross-stream pressure gradient forcing over a mesobeta scale region. This results in frontogenesis and the along-stream divergence of cyclonic and convergence of cyclonic ageostrophic vertical vorticity. The centripetally forced mesoscale front becomes the locus of large gradients of ageostrophic vertical vorticity along an overturning isentrope. This region becomes favorable for streamwise vorticity gradient formation enhancing the environment for organization of horizontal vortex tubes in the presence of buoyant forcing.
Magnetohydrodynamic turbulence revisited
International Nuclear Information System (INIS)
Goldreich, P.; Sridhar, S.
1997-01-01
In 1965, Kraichnan proposed that MHD turbulence occurs as a result of collisions between oppositely directed Alfvacute en wave packets. Recent work has generated some controversy over the nature of nonlinear couplings between colliding Alfvacute en waves. We find that the resolution to much of the confusion lies in the existence of a new type of turbulence, intermediate turbulence, in which the cascade of energy in the inertial range exhibits properties intermediate between those of weak and strong turbulent cascades. Some properties of intermediate MHD turbulence are the following: (1) in common with weak turbulent cascades, wave packets belonging to the inertial range are long-lived; (2) however, components of the strain tensor are so large that, similar to the situation in strong turbulence, perturbation theory is not applicable; (3) the breakdown of perturbation theory results from the divergence of neighboring field lines due to wave packets whose perturbations in velocity and magnetic fields are localized, but whose perturbations in displacement are not; (4) three-wave interactions dominate individual collisions between wave packets, but interactions of all orders n≥3 make comparable contributions to the intermediate turbulent energy cascade; (5) successive collisions are correlated since wave packets are distorted as they follow diverging field lines; (6) in common with the weak MHD cascade, there is no parallel cascade of energy, and the cascade to small perpendicular scales strengthens as it reaches higher wavenumbers; (7) for an appropriate weak excitation, there is a natural progression from a weak, through an intermediate, to a strong cascade. copyright 1997 The American Astronomical Society
Energy Technology Data Exchange (ETDEWEB)
Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.
2011-07-01
Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)
Stochastic modelling of turbulence
DEFF Research Database (Denmark)
Sørensen, Emil Hedevang Lohse
previously been shown to be closely connected to the energy dissipation. The incorporation of the small scale dynamics into the spatial model opens the door to a fully fledged stochastic model of turbulence. Concerning the interaction of wind and wind turbine, a new method is proposed to extract wind turbine...
Saturation of the turbulent dynamo.
Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S
2015-08-01
The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.
Hanratty, Thomas J.
1980-01-01
This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)
CERN. Geneva. Audiovisual Unit
2005-01-01
Understanding turbulence is vital in astrophysics, geophysics and many engineering applications, with thermal convection playing a central role. I shall describe progress that has recently been made in understanding this ubiquitous phenomenon by making controlled experiments using low-temperature helium, and a brief account of the frontier topic of superfluid turbulence will also be given. CERN might be able to play a unique role in experiments to probe these two problems.
Variational Multi-Scale method with spectral approximation of the sub-scales.
Dia, Ben Mansour
2015-01-07
A variational multi-scale method where the sub-grid scales are computed by spectral approximations is presented. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a nite number of modes.
International Nuclear Information System (INIS)
Guo Fan; Giacalone, Joe
2010-01-01
We study the physics of electron acceleration at collisionless shocks that move through a plasma containing large-scale magnetic fluctuations. We numerically integrate the trajectories of a large number of electrons, which are treated as test particles moving in the time-dependent electric and magnetic fields determined from two-dimensional hybrid simulations (kinetic ions and fluid electron). The large-scale magnetic fluctuations effect the electrons in a number of ways and lead to efficient and rapid energization at the shock front. Since the electrons mainly follow along magnetic lines of force, the large-scale braiding of field lines in space allows the fast-moving electrons to cross the shock front several times, leading to efficient acceleration. Ripples in the shock front occurring at various scales will also contribute to the acceleration by mirroring the electrons. Our calculation shows that this process favors electron acceleration at perpendicular shocks. The current study is also helpful in understanding the injection problem for electron acceleration by collisionless shocks. It is also shown that the spatial distribution of energetic electrons is similar to in situ observations. The process may be important to our understanding of energetic electrons in planetary bow shocks and interplanetary shocks, and explaining herringbone structures seen in some type II solar radio bursts.
Oceanic turbulence - Big bangs or continuous creation?
Caldwell, D. R.
1983-01-01
A hypothesis concerning the turbulence characteristics of 'microstructure' patches in the ocean is proposed in which a turbulence field is driven at the same time and scale at which it is observed. The driving energy is converted into turbulence kinetic energy in such a way that the observed overturning thickness scale is linearly related to the length scale. This hypothesis is contrasted with that of Gibson (1982), in which the 'patches' are produced by rare, powerful turbulence generators that have 'fossilized' prior to their observation. Careful attention is given to the sampling process and its assumptions.
Slabaugh, Carson Daniel
two-dimensional, two-component velocity field measurements is discussed. The effects of high flame luminosity and particle defocusing on the signal-to-noise ratio are discussed. Laser sheet absorption effects, which have been reported to be severe in many previous high pressure OH-PLIF attempts, were not observed to be significant in this work. The time-averaged peak and (spatial) mean signal to noise ratios were 12.7 and 6.3, respectively, at the flame B operating condition; 550 kW total thermal power and 1.0 MPa combustion chamber pressure. Simultaneous 5 kHz PIV and OH-PLIF measurements showed good agreement between single-shot flow-flame interactions, but unresolved, out-of-plane velocity components restricted the interpretation of the temporal context. At a 5 kHz interrogation frequency, the temporal resolution of the measurements was found to be sufficient for only the largest scales within the turbulent flame. The development of an analysis library for the extraction of physical data from highly-resolved planar measurements is also described. The resolution of the measurements, in space and time, is described with respect to the integral scales of the flow. The mean flow structure and its resultant effect on flame behavior is discussed. A method to perform mass-weighted averaging of flow variables was developed for direct comparison of turbulent flow properties between experimental measurements and computations. Conditional statistical sampling and length-scale filtering were used to elucidate details of flow-flame interactions as they pertain to sub-grid modeling in large-eddy simulations.
Energy Technology Data Exchange (ETDEWEB)
Hassan, Yassin A., E-mail: y-hassan@tamu.edu
2016-04-01
Highlights: • Near wall full-field velocity components under subcooled boiling were measured. • Simultaneous shadowgraphy, infrared thermometry wall temperature and particle-tracking velocimetry techniques were combined. • Near wall velocity modifications under subcooling boiling were observed. - Abstract: Multi-phase flows are one of the challenges on which the CFD simulation community has been working extensively with a relatively low success. The phenomena associated behind the momentum and heat transfer mechanisms associated to multi-phase flows are highly complex requiring resolving simultaneously for multiple scales on time and space. Part of the reasons behind the low predictive capability of CFD when studying multi-phase flows, is the scarcity of CFD-grade experimental data for validation. The complexity of the phenomena and its sensitivity to small sources of perturbations makes its measurements a difficult task. Non-intrusive and innovative measuring techniques are required to accurately measure multi-phase flow parameters while at the same time satisfying the high resolution required to validate CFD simulations. In this context, this work explores the feasible implementation of innovative measuring techniques that can provide whole-field and multi-scale measurements of two-phase flow turbulence, heat transfer, and boiling parameters. To this end, three visualization techniques are simultaneously implemented to study subcooled boiling flow through a vertical rectangular channel with a single heated wall. These techniques are listed next and are used as follow: (1) High-speed infrared thermometry (IR-T) is used to study the impact of the boiling level on the heat transfer coefficients at the heated wall, (2) Particle Tracking Velocimetry (PTV) is used to analyze the influence that boiling parameters have on the liquid phase turbulence statistics, (3) High-speed shadowgraphy with LED illumination is used to obtain the gas phase dynamics. To account
Wang, J.; van der Hoef, Martin Anton; Kuipers, J.A.M.
2010-01-01
Two-fluid modeling of the hydrodynamics of industrial-scale gas-fluidized beds proves a long-standing challenge for both engineers and scientists. In this study, we suggest a simple method to modify currently available drag correlations to allow for the effect of unresolved sub-grid scale
2018-02-15
conservation equations. The closure problem hinges on the evaluation of the filtered chemical production rates. In MRA/MSR, simultaneous large-eddy... simultaneous , constrained large-eddy simulations at three different mesh levels as a means of connecting reactive scalar information at different...functions of a locally normalized subgrid Damköhler number (a measure of the distribution of inverse chemical time scales in the neighborhood of a
Wang, X.; Tu, C. Y.; He, J.; Wang, L.
2017-12-01
The spectrum break at the ion scale of the solar wind magnetic fluctuations are considered to give important clue on the turbulence dissipation mechanism. Among several possible mechanisms, the most notable ones are the two mechanisms that related respectively with proton thermal gyro-radius and proton inertial length. However, no definite conclusion has been given for which one is more reasonable because the two parameters have similar values in the normal plasma beta range. Here we do a statistical study for the first time to see if the two mechanism predictions have different dependence on the solar wind velocity and on the plasma beta in the normal plasma beta range in the solar wind at 1 AU. From magnetic measurements by Wind, Ulysses and Messenger, we select 60 data sets with duration longer than 8 hours. We found that the ratio between the proton inertial scale and the spectrum break scale do not change considerably with both varying the solar wind speed from 300km/s to 800km/s and varying the plasma beta from 0.2 to 1.4. The average value of the ratio times 2pi is 0.46 ± 0.08. However, the ratio between the proton gyro-radius and the break scale changes clearly. This new result shows that the proton inertial scale could be a single factor that determines the break length scale and hence gives a strong evidence to support the dissipation mechanism related to it in the normal plasma beta range. The value of the constant ratio may relate with the dissipation mechanism, but it needs further theoretical study to give detailed explanation.
Large eddy simulation of turbulent and stably-stratified flows
International Nuclear Information System (INIS)
Fallon, Benoit
1994-01-01
The unsteady turbulent flow over a backward-facing step is studied by mean of Large Eddy Simulations with structure function sub grid model, both in isothermal and stably-stratified configurations. Without stratification, the flow develops highly-distorted Kelvin-Helmholtz billows, undergoing to helical pairing, with A-shaped vortices shed downstream. We show that forcing injected by recirculation fluctuations governs this oblique mode instabilities development. The statistical results show good agreements with the experimental measurements. For stably-stratified configurations, the flow remains more bi-dimensional. We show with increasing stratification, how the shear layer growth is frozen by inhibition of pairing process then of Kelvin-Helmholtz instabilities, and the development of gravity waves or stable density interfaces. Eddy structures of the flow present striking analogies with the stratified mixing layer. Additional computations show the development of secondary Kelvin-Helmholtz instabilities on the vorticity layers between two primary structures. This important mechanism based on baroclinic effects (horizontal density gradients) constitutes an additional part of the turbulent mixing process. Finally, the feasibility of Large Eddy Simulation is demonstrated for industrial flows, by studying a complex stratified cavity. Temperature fluctuations are compared to experimental measurements. We also develop three-dimensional un-stationary animations, in order to understand and visualize turbulent interactions. (author) [fr
Debussche, A.; Dubois, T.; Temam, R.
1993-01-01
Using results of Direct Numerical Simulation (DNS) in the case of two-dimensional homogeneous isotropic flows, the behavior of the small and large scales of Kolmogorov like flows at moderate Reynolds numbers are first analyzed in detail. Several estimates on the time variations of the small eddies and the nonlinear interaction terms were derived; those terms play the role of the Reynolds stress tensor in the case of LES. Since the time step of a numerical scheme is determined as a function of the energy-containing eddies of the flow, the variations of the small scales and of the nonlinear interaction terms over one iteration can become negligible by comparison with the accuracy of the computation. Based on this remark, a multilevel scheme which treats differently the small and the large eddies was proposed. Using mathematical developments, estimates of all the parameters involved in the algorithm, which then becomes a completely self-adaptive procedure were derived. Finally, realistic simulations of (Kolmorov like) flows over several eddy-turnover times were performed. The results are analyzed in detail and a parametric study of the nonlinear Galerkin method is performed.
International Nuclear Information System (INIS)
Drury, L.O.; Stewart, J.M.
1976-01-01
A generalization of a transformation due to Kurskov and Ozernoi is used to rewrite the usual equations governing subsonic turbulence in Robertson-Walker cosmological models as Navier-Stokes equations with a time-dependent viscosity. This paper first rederives some well-known results in a very simple way by means of this transformation. The main result however is that the establishment of a Kolmogorov spectrum at recombination appears to be incompatible with subsonic turbulence. The conditions after recombination are also discussed briefly. (author)
Toy models of developed turbulence
Directory of Open Access Journals (Sweden)
M.Hnatich
2005-01-01
Full Text Available We have investigated the advection of a passive scalar quantity by incompressible helical turbulent flow within the framework of extended Kraichnan model. Turbulent fluctuations of velocity field are assumed to have the Gaussian statistics with zero mean and defined noise with finite time-correlation. Actual calculations have been done up to two-loop approximation within the framework of field-theoretic renormalization group approach. It turned out that space parity violation (helicity of turbulent environment does not affect anomalous scaling which is a peculiar attribute of the corresponding model without helicity. However, stability of asymptotic regimes, where anomalous scaling takes place, strongly depends on the amount of helicity. Moreover, helicity gives rise to the turbulent diffusivity, which has been calculated in one-loop approximation.
PROTOSTELLAR OUTFLOW EVOLUTION IN TURBULENT ENVIRONMENTS
International Nuclear Information System (INIS)
Cunningham, Andrew J.; Frank, Adam; Carroll, Jonathan; Blackman, Eric G.; Quillen, Alice C.
2009-01-01
The link between turbulence in star-forming environments and protostellar jets remains controversial. To explore issues of turbulence and fossil cavities driven by young stellar outflows, we present a series of numerical simulations tracking the evolution of transient protostellar jets driven into a turbulent medium. Our simulations show both the effect of turbulence on outflow structures and, conversely, the effect of outflows on the ambient turbulence. We demonstrate how turbulence will lead to strong modifications in jet morphology. More importantly, we demonstrate that individual transient outflows have the capacity to re-energize decaying turbulence. Our simulations support a scenario in which the directed energy/momentum associated with cavities is randomized as the cavities are disrupted by dynamical instabilities seeded by the ambient turbulence. Consideration of the energy power spectra of the simulations reveals that the disruption of the cavities powers an energy cascade consistent with Burgers'-type turbulence and produces a driving scale length associated with the cavity propagation length. We conclude that fossil cavities interacting either with a turbulent medium or with other cavities have the capacity to sustain or create turbulent flows in star-forming environments. In the last section, we contrast our work and its conclusions with previous studies which claim that jets cannot be the source of turbulence.
Turbulent effective absorptivity and refractivity
International Nuclear Information System (INIS)
Rax, J.M.
1984-09-01
The problem of wave propagation in a turbulent magnetized plasma is investigated. Considering small scale, low frequency density fluctuations we solve the Maxwell equations and show that the eikonal approximation remains valid with an effective refractivity and an effective absorptivity taking into account the energy diffusion due to the turbulent motion. Then the result is applied to the problem of lower hybrid waves scattering by drift waves density fluctuations in tokamaks
Multiscale coherent structures in tokamak plasma turbulence
International Nuclear Information System (INIS)
Xu, G. S.; Wan, B. N.; Zhang, W.; Yang, Q. W.; Wang, L.; Wen, Y. Z.
2006-01-01
A 12-tip poloidal probe array is used on the HT-7 superconducting tokamak [Li, Wan, and Mao, Plasma Phys. Controlled Fusion 42, 135 (2000)] to measure plasma turbulence in the edge region. Some statistical analysis techniques are used to characterize the turbulence structures. It is found that the plasma turbulence is composed of multiscale coherent structures, i.e., turbulent eddies and there is self-similarity in a relative short scale range. The presence of the self-similarity is found due to the structural similarity of these eddies between different scales. These turbulent eddies constitute the basic convection cells, so the self-similar range is just the dominant scale range relevant to transport. The experimental results also indicate that the plasma turbulence is dominated by low-frequency and long-wavelength fluctuation components and its dispersion relation shows typical electron-drift-wave characteristics. Some large-scale coherent structures intermittently burst out and exhibit a very long poloidal extent, even longer than 6 cm. It is found that these large-scale coherent structures are mainly contributed by the low-frequency and long-wavelength fluctuating components and their presence is responsible for the observations of long-range correlations, i.e., the correlation in the scale range much longer than the turbulence decorrelation scale. These experimental observations suggest that the coexistence of multiscale coherent structures results in the self-similar turbulent state
Energy Technology Data Exchange (ETDEWEB)
Randall, David A. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Atmospheric Science
2015-11-01
We proposed to implement, test, and evaluate recently developed turbulence parameterizations, using a wide variety of methods and modeling frameworks together with observations including ARM data. We have successfully tested three different turbulence parameterizations in versions of the Community Atmosphere Model: CLUBB, SHOC, and IPHOC. All three produce significant improvements in the simulated climate. CLUBB will be used in CAM6, and also in ACME. SHOC is being tested in the NCEP forecast model. In addition, we have achieved a better understanding of the strengths and limitations of the PDF-based parameterizations of turbulence and convection.
DEFF Research Database (Denmark)
Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens
2011-01-01
term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence...
Dissipative structures in magnetorotational turbulence
Ross, Johnathan; Latter, Henrik N.
2018-03-01
Via the process of accretion, magnetorotational turbulence removes energy from a disk's orbital motion and transforms it into heat. Turbulent heating is far from uniform and is usually concentrated in small regions of intense dissipation, characterised by abrupt magnetic reconnection and higher temperatures. These regions are of interest because they might generate non-thermal emission, in the form of flares and energetic particles, or thermally process solids in protoplanetary disks. Moreover, the nature of the dissipation bears on the fundamental dynamics of the magnetorotational instability (MRI) itself: local simulations indicate that the large-scale properties of the turbulence (e.g. saturation levels, the stress-pressure relationship) depend on the short dissipative scales. In this paper we undertake a numerical study of how the MRI dissipates and the small-scale dissipative structures it employs to do so. We use the Godunov code RAMSES and unstratified compressible shearing boxes. Our simulations reveal that dissipation is concentrated in ribbons of strong magnetic reconnection that are significantly elongated in azimuth, up to a scale height. Dissipative structures are hence meso-scale objects, and potentially provide a route by which large scales and small scales interact. We go on to show how these ribbons evolve over time — forming, merging, breaking apart, and disappearing. Finally, we reveal important couplings between the large-scale density waves generated by the MRI and the small-scale structures, which may illuminate the stress-pressure relationship in MRI turbulence.
ADIABATIC HEATING OF CONTRACTING TURBULENT FLUIDS
International Nuclear Information System (INIS)
Robertson, Brant; Goldreich, Peter
2012-01-01
Turbulence influences the behavior of many astrophysical systems, frequently by providing non-thermal pressure support through random bulk motions. Although turbulence is commonly studied in systems with constant volume and mean density, turbulent astrophysical gases often expand or contract under the influence of pressure or gravity. Here, we examine the behavior of turbulence in contracting volumes using idealized models of compressed gases. Employing numerical simulations and an analytical model, we identify a simple mechanism by which the turbulent motions of contracting gases 'adiabatically heat', experiencing an increase in their random bulk velocities until the largest eddies in the gas circulate over a Hubble time of the contraction. Adiabatic heating provides a mechanism for sustaining turbulence in gases where no large-scale driving exists. We describe this mechanism in detail and discuss some potential applications to turbulence in astrophysical settings.
Turbulence and particle acceleration
International Nuclear Information System (INIS)
Scott, J.S.
1975-01-01
A model for the production of high energy particles in the supernova remnant Cas A is considered. The ordered expansion of the fast moving knots produce turbulent cells in the ambient interstellar medium. The turbulent cells act as magnetic scattering centers and charged particles are accelerated to large energies by the second order Fermi mechanism. Model predictions are shown to be consistent with the observed shape and time dependence of the radio spectrum, and with the scale size of magnetic field irregularities. Assuming a galactic supernova rate at 1/50 yr -1 , this mechanism is capable of producing the observed galactic cosmic ray flux and spectrum below 10 16 eV/nucleon. Several observed features of galactic cosmic rays are shown to be consistent with model predictions. A model for the objects known as radio tall galaxies is also presented. Independent blobs of magnetized plasma emerging from an active radio galaxy into an intracluster medium become turbulent due to Rayleigh--Taylor and Kelvin--Helmholz instabilities. The turbulence produces both in situ betatron and 2nd order Fermi accelerations. Predictions of the dependence of spectral index and flux on distance along the tail match observations well. Fitting provides values of physical parameters in the blobs. The relevance of this method of particle acceleration for the problem of the origin of x-ray emission in clusters of galaxies is discussed
Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers
Watanabe, T.; Zhang, X.; Nagata, K.
2018-03-01
The turbulent/non-turbulent interface (TNTI) detected in direct numerical simulations is studied for incompressible, temporally developing turbulent boundary layers at momentum thickness Reynolds number Reθ ≈ 2000. The outer edge of the TNTI layer is detected as an isosurface of the vorticity magnitude with the threshold determined with the dependence of the turbulent volume on a threshold level. The spanwise vorticity magnitude and passive scalar are shown to be good markers of turbulent fluids, where the conditional statistics on a distance from the outer edge of the TNTI layer are almost identical to the ones obtained with the vorticity magnitude. Significant differences are observed for the conditional statistics between the TNTI detected by the kinetic energy and vorticity magnitude. A widely used grid setting determined solely from the wall unit results in an insufficient resolution in a streamwise direction in the outer region, whose influence is found for the geometry of the TNTI and vorticity jump across the TNTI layer. The present results suggest that the grid spacing should be similar for the streamwise and spanwise directions. Comparison of the TNTI layer among different flows requires appropriate normalization of the conditional statistics. Reference quantities of the turbulence near the TNTI layer are obtained with the average of turbulent fluids in the intermittent region. The conditional statistics normalized by the reference turbulence characteristics show good quantitative agreement for the turbulent boundary layer and planar jet when they are plotted against the distance from the outer edge of the TNTI layer divided by the Kolmogorov scale defined for turbulent fluids in the intermittent region.
Turbulent jet in confined counterflow
Indian Academy of Sciences (India)
The mean flowfield of a turbulent jet issuing into a confined, uniform counterflow was investigated computationally. Based on dimensional analysis, the jet penetration length was shown to scale with jet-to-counterflow momentum flux ratio. This scaling and the computational results reproduce the well-known correct limit of ...
Magnetic turbulence and anomalous transport
International Nuclear Information System (INIS)
Garbet, X.; Mourgues, F.; Samain, A.
1990-01-01
The self consistency conditions for magnetic turbulence are reviewed. The main features of magnetic topology involving stochastic flux lines are summarized. Two driving sources are considered: thermal effects which require large scale residual islands and electron diamagnetism which involves fluctuation scales smaller than the ion Larmor radius and a β p threshold of order one. Stability criteria and transport coefficients are given
Aperture averaging in strong oceanic turbulence
Gökçe, Muhsin Caner; Baykal, Yahya
2018-04-01
Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.
Measurements of the vertical correlation in turbulence under broken waves
DEFF Research Database (Denmark)
Pedersen, Claus; Deigaard, Rolf; Sutherland, James
1998-01-01
Turbulence measurements have been carried out in the surf zone of a wave flume. The purpose of the measurements is to determine the length scale of the turbulence generated by the wave breaking. The length scale of the turbulence is estimated on basis of the correlation between simultaneous measu...... measurements of the vertical turbulent fluctuations, taken at different levels above the bed, (C) 1998 Elsevier Science B.V. All rights reserved....
Visualization of a Turbulent Jet Using Wavelets
Institute of Scientific and Technical Information of China (English)
Hui LI
2001-01-01
An application of multiresolution image analysis to turbulence was investigated in this paper, in order to visualize the coherent structure and the most essential scales governing turbulence. The digital imaging photograph of jet slice was decomposed by two-dimensional discrete wavelet transform based on Daubechies, Coifman and Baylkin bases. The best choice of orthogonal wavelet basis for analyzing the image of the turbulent structures was first discussed. It is found that these orthonormal wavelet families with index N＜10 were inappropriate for multiresolution image analysis of turbulent flow. The multiresolution images of turbulent structures were very similar when using the wavelet basis with the higher index number, even though wavelet bases are different functions. From the image components in orthogonal wavelet spaces with different scales, the further evident of the multi-scale structures in jet can be observed, and the edges of the vortices at different resolutions or scales and the coherent structure can be easily extracted.
Synchronization of two coupled turbulent fires
Takagi, Kazushi; Gotoda, Hiroshi; Miyano, Takaya; Murayama, Shogo; Tokuda, Isao T.
2018-04-01
We numerically study the scale-free nature of a buoyancy-induced turbulent fire and synchronization of two coupled turbulent fires. A scale-free structure is detected in weighted networks between vortices, while its lifetime obeys a clear power law, indicating intermittent appearances, disappearances, and reappearances of the scale-free property. A significant decrease in the distance between the two fire sources gives rise to a synchronized state in the near field dominated by the unstable motion of large-scale of transverse vortex rings. The synchronized state vanishes in the far field forming well-developed turbulent plumes, regardless of the distance between the two fire sources.
On the theory of turbulent flame velocity
Bychkov, Vitaly; Akkerman, Vyacheslav; Petchenko, Arkady
2012-01-01
The renormalization ideas of self-similar dynamics of a strongly turbulent flame front are applied to the case of a flame with realistically large thermal expansion of the burning matter. In that case a flame front is corrugated both by external turbulence and the intrinsic flame instability. The analytical formulas for the velocity of flame propagation are obtained. It is demonstrated that the flame instability is of principal importance when the integral turbulent length scale is much large...
Prediction of free turbulent mixing using a turbulent kinetic energy method
Harsha, P. T.
1973-01-01
Free turbulent mixing of two-dimensional and axisymmetric one- and two-stream flows is analyzed by a relatively simple turbulent kinetic energy method. This method incorporates a linear relationship between the turbulent shear and the turbulent kinetic energy and an algebraic relationship for the length scale appearing in the turbulent kinetic energy equation. Good results are obtained for a wide variety of flows. The technique is shown to be especially applicable to flows with heat and mass transfer, for which nonunity Prandtl and Schmidt numbers may be assumed.
Two-dimensional turbulent convection
Mazzino, Andrea
2017-11-01
We present an overview of the most relevant, and sometimes contrasting, theoretical approaches to Rayleigh-Taylor and mean-gradient-forced Rayleigh-Bénard two-dimensional turbulence together with numerical and experimental evidences for their support. The main aim of this overview is to emphasize that, despite the different character of these two systems, especially in relation to their steadiness/unsteadiness, turbulent fluctuations are well described by the same scaling relationships originated from the Bolgiano balance. The latter states that inertial terms and buoyancy terms balance at small scales giving rise to an inverse kinetic energy cascade. The main difference with respect to the inverse energy cascade in hydrodynamic turbulence [R. H. Kraichnan, "Inertial ranges in two-dimensional turbulence," Phys. Fluids 10, 1417 (1967)] is that the rate of cascade of kinetic energy here is not constant along the inertial range of scales. Thanks to the absence of physical boundaries, the two systems here investigated turned out to be a natural physical realization of the Kraichnan scaling regime hitherto associated with the elusive "ultimate state of thermal convection" [R. H. Kraichnan, "Turbulent thermal convection at arbitrary Prandtl number," Phys. Fluids 5, 1374-1389 (1962)].
Dissipation range turbulent cascades in plasmas
International Nuclear Information System (INIS)
Terry, P. W.; Almagri, A. F.; Forest, C. B.; Nornberg, M. D.; Rahbarnia, K.; Sarff, J. S.; Fiksel, G.; Hatch, D. R.; Jenko, F.; Prager, S. C.; Ren, Y.
2012-01-01
Dissipation range cascades in plasma turbulence are described and spectra are formulated from the scaled attenuation in wavenumber space of the spectral energy transfer rate. This yields spectra characterized by the product of a power law and exponential fall-off, applicable to all scales. Spectral indices of the power law and exponential fall-off depend on the scaling of the dissipation, the strength of the nonlinearity, and nonlocal effects when dissipation rates of multiple fluctuation fields are different. The theory is used to derive spectra for MHD turbulence with magnetic Prandtl number greater than unity, extending previous work. The theory is also applied to generic plasma turbulence by considering the spectrum from damping with arbitrary wavenumber scaling. The latter is relevant to ion temperature gradient turbulence modeled by gyrokinetics. The spectrum in this case has an exponential component that becomes weaker at small scale, giving a power law asymptotically. Results from the theory are compared to three very different types of turbulence. These include the magnetic plasma turbulence of the Madison Symmetric Torus, the MHD turbulence of liquid metal in the Madison Dynamo Experiment, and gyrokinetic simulation of ion temperature gradient turbulence.
National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...
Graphical Turbulence Guidance - Composite
National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...
Measurement of beam driven hydrodynamic turbulence
International Nuclear Information System (INIS)
Norem, J.; Black, E.; Bandura, L.; Errede, D.; Cummings, M. A. C.
2003-01-01
Cooling intense muon beams in liquid hydrogen absorbers introduces kW of heating to the cold fluid, which will drive turbulent flow. The amount of turbulence may be sufficient to help cool the liquid, but calculations are difficult. We have used a 20 MeV electron beam in a water tank to look at the scale of the beam driven convection and turbulence. The density and flow measurements are made with schlieren and Ronchi systems. We describe the optical systems and the turbulence measured. These data are being used to calibrate hydrodynamic calculations of convection driven and forced flow cooling in muon cooling absorbers
Quantify the complexity of turbulence
Tao, Xingtian; Wu, Huixuan
2017-11-01
Many researchers have used Reynolds stress, power spectrum and Shannon entropy to characterize a turbulent flow, but few of them have measured the complexity of turbulence. Yet as this study shows, conventional turbulence statistics and Shannon entropy have limits when quantifying the flow complexity. Thus, it is necessary to introduce new complexity measures- such as topology complexity and excess information-to describe turbulence. Our test flow is a classic turbulent cylinder wake at Reynolds number 8100. Along the stream-wise direction, the flow becomes more isotropic and the magnitudes of normal Reynolds stresses decrease monotonically. These seem to indicate the flow dynamics becomes simpler downstream. However, the Shannon entropy keeps increasing along the flow direction and the dynamics seems to be more complex, because the large-scale vortices cascade to small eddies, the flow is less correlated and more unpredictable. In fact, these two contradictory observations partially describe the complexity of a turbulent wake. Our measurements (up to 40 diameters downstream the cylinder) show that the flow's degree-of-complexity actually increases firstly and then becomes a constant (or drops slightly) along the stream-wise direction. University of Kansas General Research Fund.
Decay of passive scalar fluctuations in axisymmetric turbulence
Yoshimatsu, Katsunori; Davidson, Peter A.; Kaneda, Yukio
2016-11-01
Passive scalar fluctuations in axisymmetric Saffman turbulence are examined theoretically and numerically. Theoretical predictions are verified by direct numerical simulation (DNS). According to the DNS, self-similar decay of the turbulence and the persistency of the large-scale anisotropy are found for its fully developed turbulence. The DNS confirms the time-independence of the Corrsin integral.
Czech Academy of Sciences Publication Activity Database
Franci, L.; Landi, S.; Matteini, L.; Verdini, A.; Hellinger, Petr
2016-01-01
Roč. 833, č. 1 (2016), 91/1-91/7 ISSN 0004-637X R&D Projects: GA ČR GA15-10057S Institutional support: RVO:67985815 Keywords : plasmas * solar wind * turbulence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.533, year: 2016
Relation of astrophysical turbulence and magnetic reconnection
Energy Technology Data Exchange (ETDEWEB)
Lazarian, A. [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, Wisconsin 53706 (United States); Eyink, Gregory L. [Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Vishniac, E. T. [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)
2012-01-15
Astrophysical fluids are generically turbulent and this must be taken into account for most transport processes. We discuss how the preexisting turbulence modifies magnetic reconnection and how magnetic reconnection affects the MHD turbulent cascade. We show the intrinsic interdependence and interrelation of magnetic turbulence and magnetic reconnection, in particular, that strong magnetic turbulence in 3D requires reconnection and 3D magnetic turbulence entails fast reconnection. We follow the approach in Eyink et al.[Astrophys. J. 743, 51 (2011)] to show that the expressions of fast magnetic reconnection in A. Lazarian and E. T. Vishniac [Astrophys. J. 517, 700 (1999)] can be recovered if Richardson diffusion of turbulent flows is used instead of ordinary Ohmic diffusion. This does not revive, however, the concept of magnetic turbulent diffusion which assumes that magnetic fields can be mixed up in a passive way down to a very small dissipation scales. On the contrary, we are dealing the reconnection of dynamically important magnetic field bundles which strongly resist bending and have well defined mean direction weakly perturbed by turbulence. We argue that in the presence of turbulence the very concept of flux-freezing requires modification. The diffusion that arises from magnetic turbulence can be called reconnection diffusion as it based on reconnection of magnetic field lines. The reconnection diffusion has important implications for the continuous transport processes in magnetized plasmas and for star formation. In addition, fast magnetic reconnection in turbulent media induces the First order Fermi acceleration of energetic particles, can explain solar flares and gamma ray bursts. However, the most dramatic consequence of these developments is the fact that the standard flux freezing concept must be radically modified in the presence of turbulence.
Electromotive force in strongly compressible magnetohydrodynamic turbulence
Yokoi, N.
2017-12-01
Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow
Dewan, E. M.
1986-01-01
The problem of how to empirically distinguish between velocity fluctuations due to turbulence and those due to atmospheric waves is addressed. The physical differences between waves and turbulence are reviewed. New theoretical ideas on the subject of bouyancy range turbulence are presented. A unique scale K sub B is given that allows one to differentiate between waves and turbulence for the special case of theta = 0 (i.e., horizontal propagating waves).
New perspectives on superparameterization for geophysical turbulence
International Nuclear Information System (INIS)
Majda, Andrew J.; Grooms, Ian
2014-01-01
This is a research expository paper regarding superparameterization, a class of multi-scale numerical methods designed to cope with the intermittent multi-scale effects of inhomogeneous geophysical turbulence where energy often inverse-cascades from the unresolved scales to the large scales through the effects of waves, jets, vortices, and latent heat release from moist processes. Original as well as sparse space–time superparameterization algorithms are discussed for the important case of moist atmospheric convection including the role of multi-scale asymptotic methods in providing self-consistent constraints on superparameterization algorithms and related deterministic and stochastic multi-cloud parameterizations. Test models for the statistical numerical analysis of superparameterization algorithms are discussed both to elucidate the performance of the basic algorithms and to test their potential role in efficient multi-scale data assimilation. The very recent development of grid-free seamless stochastic superparameterization methods for geophysical turbulence appropriate for “eddy-permitting” mesoscale ocean turbulence is presented here including a general formulation and illustrative applications to two-layer quasigeostrophic turbulence, and another difficult test case involving one-dimensional models of dispersive wave turbulence. This last test case has randomly generated solitons as coherent structures which collapse and radiate wave energy back to the larger scales, resulting in strong direct and inverse turbulent energy cascades
International Nuclear Information System (INIS)
Imaizumi, Ryota; Morikawa, Koichi; Higuchi, Masamori; Saito, Takayuki
2009-01-01
In this study, the interaction between a bubble swarm and homogeneous isotropic turbulence was experimentally investigated. The objective is to clarify the turbulence modulation induced by interaction between the bubble swarm and the homogeneous isotropic turbulence without mean flow. In order to generate simultaneously ideally homogeneous isotropic turbulence and a sufficiently controlled bubble swarm, we employed both oscillating grid and bubble generators equipped with audio speakers. First, the homogeneous isotropic turbulence was formed by operating the oscillating grid cylindrical acrylic pipe (height: 600 mm, inner diameter: 149 mm) filled with ion-exchanged and degassed water. Second, we stopped the oscillating-grid in arbitrary time after the homogeneous isotropic turbulence was achieved. A few moments later, the controlled bubble swarm (number of bubbles: 3, average equivalent diameter of bubble: 3 mm, bubble Reynolds number: 859, Weber number: 3.48) was launched into the decaying turbulence described above, using the bubble generators. The bubble formation, bubble size and bubble-launch timing are controlled arbitrarily and precisely by this device. In this study, we conducted the following experiments: 1) measurement of the motion of bubbles in rest water and oscillating grid turbulence via high-speed visualization, 2) measurement of the liquid phase motion around the bubbles in rest water via PIV system with LIF method, 3) measurement of the liquid phase motion around the bubbles in oscillating-grid turbulence via PIV system with LIF method. In the vitalization of the liquid-phase motion of both experiments, two high speed video cameras were employed in order to simultaneously film large- and small-scale interrogation areas. The liquid-phase ambient turbulence hastened the change of the bubble motion from zigzag mode to spiral mode. The interaction between the bubble swarm and liquid-phase turbulence increased decay-rate of the turbulence. (author)
Turbulence modulation induced by bubble swarm in oscillating-grid turbulence
International Nuclear Information System (INIS)
Morikawa, Koichi; Urano, Shigeyuki; Saito, Takayuki
2007-01-01
In the present study, liquid-phase turbulence modulation induced by a bubble swarm ascending in arbitrary turbulence was experimentally investigated. Liquid-phase homogeneous isotropic turbulence was formed using an oscillating grid in a cylindrical acrylic vessel of 149 mm in inner diameter. A bubble swarm consisting of 19 bubbles of 2.8 mm in equivalent diameter was examined; the bubble size and launching time were completely controlled using a bubble launching device through audio speakers. This bubble launching device was able to repeatedly control the bubble swarm arbitrarily and precisely. The bubble swarm was launched at a frequency of 4 Hz. The liquid phase motion was measured via two LDA (Laser Doppler Anemometer) probes. The turbulence intensity, spatial correlation and integral scale were calculated from LDA data obtained by the two spatially-separate-point measurement. When the bubble swarm was added, the turbulence intensity dramatically changed. The original isotropic turbulence was modulated to the anisotropic turbulence by the mutual interference between the bubble swarm and ambient isotropic turbulence. The integral scales were calculated from the spatial correlation function. The effects of the bubble swarm on the integral scales showed the tendencies similar to those on turbulence intensity. (author)
Wavenumber spectrum of whistler turbulence: Particle-in-cell simulation
International Nuclear Information System (INIS)
Saito, S.; Gary, S. Peter; Narita, Y.
2010-01-01
The forward cascade of decaying whistler turbulence is studied in low beta plasma to understand essential properties of the energy spectrum at electron scales, by using a two-dimensional electromagnetic particle-in-cell (PIC) simulation. This simulation demonstrates turbulence in which the energy cascade rate is greater than the dissipation rate at the electron inertial length. The PIC simulation shows that the magnetic energy spectrum of forward-cascaded whistler turbulence at electron inertial scales is anisotropic and develops a very steep power-law spectrum which is consistent with recent solar wind observations. A comparison of the simulated spectrum with that predicted by a phenomenological turbulence scaling model suggests that the energy cascade at the electron inertial scale depends on both magnetic fluctuations and electron velocity fluctuations, as well as on the whistler dispersion relation. Thus, not only kinetic Alfven turbulence but also whistler turbulence may explain recent solar wind observations of very steep magnetic spectra at short scales.
Transport due to ion pressure gradient turbulence
International Nuclear Information System (INIS)
Connor, J.W.
1986-01-01
Turbulent transport due to the ion pressure gradient (or temperature drift) instability is thought to be significant when etasub(i)=d(ln Tsub(i))/d(ln n)>1. The invariance properties of the governing equations under scale transformations are used to discuss the characteristics of this turbulence. This approach not only clarifies the relationships between earlier treatments but also, in certain limits, completely determines the scaling properties of the fluctuations and the consequent thermal transport. (author)
Experiments in turbulent pipe flow
Energy Technology Data Exchange (ETDEWEB)
Torbergsen, Lars Even
1998-12-31
This thesis reports experimental results for the mean velocity and turbulence statistics in two straight pipe sections for bulk Reynolds numbers in the range 22000 to 75000. The flow was found consistent with a fully developed state. Detailed turbulence spectra were obtained for low and moderate turbulent Reynolds number. For the pipe centre line location at R{sub {lambda}} = 112, a narrow range in the streamwise power spectrum applied to the -5/3 inertial subrange. However this range was influenced both by turbulence production and viscous dissipation, and therefore did not reflect a true inertial range. The result indicates how the intermediate range between the production and dissipative scales can be misinterpreted as an inertial range for low and moderate R{sub {lambda}}. To examine the universal behaviour of the inertial range, the inertial scaling of the streamwise power spectrum is compared to the inertial scaling of the second order longitudinal velocity structure function, which relate directly by a Fourier transform. Increasing agreement between the Kolmogorov constant C{sub K} and the second order structure function scaling constant C{sub 2} was observed with increasing R{sub {lambda}}. The result indicates that a true inertial range requires several decades of separation between the energy containing and dissipative scales. A method for examining spectral anisotropy is reported and applied to turbulence spectra in fully developed pipe flow. It is found that the spectral redistribution from the streamwise to the two lateral spectra goes primarily to the circumferential component. Experimental results are reported for an axisymmetric contraction of a fully developed pipe flow. 67 refs., 75 figs., 9 tabs.
Directory of Open Access Journals (Sweden)
G. Manju
2005-06-01
Full Text Available The spatial and temporal variations of various parameters associated with plasma wave turbulence in the equatorial electrojet (EEJ at the magnetic equatorial location of Trivandrum (8.5° N, 77° E; dip 0.5° N are studied for the first time, using co-located HF (18MHz and VHF (54.95MHz coherent backscatter radar observations (daytime in the altitude region of 95-110km, mostly on magnetically quiet days. The derived turbulence parameters are the mean electron density irregularity strength (δn/n, anomalous electron collision frequency (ν_{e}* and the corrected east-west electron drift velocity (V_{ey}. The validity of the derived parameters is confirmed using radar data at two different frequencies and comparing with in-situ measurements. The behaviour of δn/n in relation to the backscattered power during weak and strong EEJ conditions is also examined to understand the growth and evolution of turbulence in the electrojet.
Directory of Open Access Journals (Sweden)
G. Manju
2005-06-01
Full Text Available The spatial and temporal variations of various parameters associated with plasma wave turbulence in the equatorial electrojet (EEJ at the magnetic equatorial location of Trivandrum (8.5° N, 77° E; dip 0.5° N are studied for the first time, using co-located HF (18MHz and VHF (54.95MHz coherent backscatter radar observations (daytime in the altitude region of 95-110km, mostly on magnetically quiet days. The derived turbulence parameters are the mean electron density irregularity strength (δn/n, anomalous electron collision frequency (νe* and the corrected east-west electron drift velocity (Vey. The validity of the derived parameters is confirmed using radar data at two different frequencies and comparing with in-situ measurements. The behaviour of δn/n in relation to the backscattered power during weak and strong EEJ conditions is also examined to understand the growth and evolution of turbulence in the electrojet.
Stochastic Theory of Turbulence Mixing by Finite Eddies in the Turbulent Boundary Layer
Dekker, H.; Leeuw, G. de; Maassen van den Brink, A.
1995-01-01
Turbulence mixing is treated by means of a novel formulation of nonlocal K-theory, involving sample paths and a stochastic hypothesis. The theory simplifies for mixing by exchange (strong-eddies) and is then applied to the boundary layer (involving scaling). This maps boundary layer turbulence onto
Nondissipative gravitational turbulence
International Nuclear Information System (INIS)
Gurevich, A.V.; Zybin, K.P.
1988-01-01
The nonlinear stage of development of the Jeans instability in a cold nondissipative gravitating gas is considered. It is shown that for a time exceeding the Jeans time a nondissipative gravitational singularity (NGS) is formed in the vicinity of a local density maximum. The NGS is a stationary dynamic structure, the basis of which is the singularity. The density of the gas at the center of the NGS (for r → 0) tends to infinity, and the field potential and the mean velocity of the trapped gas, possess a power singularity. The turbulent state arises as the result of development of the instability in the case of an irregular initial density distribution. It is an hierarchic structure consisting of nested moving NGS of various sizes, the NGS of smaller dimensions being trapped in the field of a NGS of larger dimensions. The scaling relations for each given NGS in this case hold for both the gas density and density of smaller size trapped NGS. A brief comparison with the observational data shows that the real hierarchic structure of the Universe ranging from scales pertaining to spherical stellar clusters up to those of rich galaxy clusters is apparently a developed gravitational turbulence
ANISOTROPIC INTERMITTENCY OF MAGNETOHYDRODYNAMIC TURBULENCE
International Nuclear Information System (INIS)
Osman, K. T.; Kiyani, K. H.; Chapman, S. C.; Hnat, B.
2014-01-01
A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsässer field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multiexponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations are interpreted as evidence for the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. As such, these results present strong observational constraints on the statistical nature of intermittency in turbulent plasmas
ENERGY DISSIPATION PROCESSES IN SOLAR WIND TURBULENCE
Energy Technology Data Exchange (ETDEWEB)
Wang, Y.; Wei, F. S.; Feng, X. S.; Sun, T. R.; Zuo, P. B. [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Xu, X. J. [Space Science Institute, Macau University of Science and Technology, Macao (China); Zhang, J., E-mail: yw@spaceweather.ac.cn [School of Physics, Astronomy and Computational Sciences, George Mason University, 4400 University Drive, MSN 3F3, Fairfax, Virginia 22030 (United States)
2015-12-15
Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation ultimately cannot be achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection (MR) are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind MR region. We find that the MR region shows unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for intermittent multifractal dissipation region scaling around a MR site, and they also have significant implications for the fundamental energy dissipation process.
Cascade of circulations in fluid turbulence.
Eyink, Gregory L
2006-12-01
Kelvin's theorem on conservation of circulations is an essential ingredient of Taylor's theory of turbulent energy dissipation by the process of vortex-line stretching. In previous work, we have proposed a nonlinear mechanism for the breakdown of Kelvin's theorem in ideal turbulence at infinite Reynolds number. We develop here a detailed physical theory of this cascade of circulations. Our analysis is based upon an effective equation for large-scale coarse-grained velocity, which contains a turbulent-induced vortex force that can violate Kelvin's theorem. We show that singularities of sufficient strength, which are observed to exist in turbulent flow, can lead to nonvanishing dissipation of circulation for an arbitrarily small coarse-graining length in the effective equations. This result is an analog for circulation of Onsager's theorem on energy dissipation for singular Euler solutions. The physical mechanism of the breakdown of Kelvin's theorem is diffusion of lines of large-scale vorticity out of the advected loop. This phenomenon can be viewed as a classical analog of the Josephson-Anderson phase-slip phenomenon in superfluids due to quantized vortex lines. We show that the circulation cascade is local in scale and use this locality to develop concrete expressions for the turbulent vortex force by a multiscale gradient expansion. We discuss implications for Taylor's theory of turbulent dissipation and we point out some related cascade phenomena, in particular for magnetic flux in magnetohydrodynamic turbulence.
Generation of compressible modes in MHD turbulence
Energy Technology Data Exchange (ETDEWEB)
Cho, Jungyeon [Chungnam National Univ., Daejeon (Korea); Lazarian, A. [Univ. of Wisconsin, Madison, WI (United States)
2005-05-01
Astrophysical turbulence is magnetohydrodynamic (MHD) in nature. We discuss fundamental properties of MHD turbulence and in particular the generation of compressible MHD waves by Alfvenic turbulence and show that this process is inefficient. This allows us to study the evolution of different types of MHD perturbations separately. We describe how to separate MHD fluctuations into three distinct families: Alfven, slow, and fast modes. We find that the degree of suppression of slow and fast modes production by Alfvenic turbulence depends on the strength of the mean field. We review the scaling relations of the modes in strong MHD turbulence. We show that Alfven modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfven modes. However, fast modes exhibit isotropy and a scaling similar to that of acoustic turbulence both in high and low {beta} plasmas. We show that our findings entail important consequences for star formation theories, cosmic ray propagation, dust dynamics, and gamma ray bursts. We anticipate many more applications of the new insight to MHD turbulence and expect more revisions of the existing paradigms of astrophysical processes as the field matures. (orig.)
Dynamic structure in self-sustained turbulence
International Nuclear Information System (INIS)
Itoh, K.; Itoh, S.; Yagi, M.; Fukuyama, A.
1995-06-01
Dynamical equation for the self-sustained and pressure-driven turbulence in toroidal plasmas is derived. The growth rate of the dressed-test mode, which belongs to the subcritical turbulence, is obtained as a function of the turbulent transport coefficient. In the limit of the low fluctuation level, the mode has the feature of the nonlinear instability and shows the explosive growth. The growth rate vanishes when the driven transport reaches to the stationarily-turbulent level. The stationary solution is thermodynamically stable. The characteristic time, by which the stationary and self-sustained turbulence is established, scales with the ion-sound transit time and is accelerated by the bad magnetic curvature. Influences of the pressure gradient as well as the radial electric field inhomogeneity are quantified. (author)
Assessment of the turbulence parameterization schemes for the Martian mesoscale simulations
Temel, Orkun; Karatekin, Ozgur; Van Beeck, Jeroen
2016-07-01
Turbulent transport within the Martian atmospheric boundary layer (ABL) is one of the most important physical processes in the Martian atmosphere due to the very thin structure of Martian atmosphere and super-adiabatic conditions during the diurnal cycle [1]. The realistic modeling of turbulent fluxes within the Martian ABL has a crucial effect on the many physical phenomena including dust devils [2], methane dispersion [3] and nocturnal jets [4]. Moreover, the surface heat and mass fluxes, which are related with the mass transport within the sub-surface of Mars, are being computed by the turbulence parameterization schemes. Therefore, in addition to the possible applications within the Martian boundary layer, parameterization of turbulence has an important effect on the biological research on Mars including the investigation of water cycle or sub-surface modeling. In terms of the turbulence modeling approaches being employed for the Martian ABL, the "planetary boundary layer (PBL) schemes" have been applied not only for the global circulation modeling but also for the mesoscale simulations [5]. The PBL schemes being used for Mars are the variants of the PBL schemes which had been developed for the Earth and these schemes are either based on the empirical determination of turbulent fluxes [6] or based on solving a one dimensional turbulent kinetic energy equation [7]. Even though, the Large Eddy Simulation techniques had also been applied with the regional models for Mars, it must be noted that these advanced models also use the features of these traditional PBL schemes for sub-grid modeling [8]. Therefore, assessment of these PBL schemes is vital for a better understanding the atmospheric processes of Mars. In this framework, this present study is devoted to the validation of different turbulence modeling approaches for the Martian ABL in comparison to Viking Lander [9] and MSL [10] datasets. The GCM/Mesoscale code being used is the PlanetWRF, the extended version
Flux driven turbulence in tokamaks
International Nuclear Information System (INIS)
Garbet, X.; Ghendrih, P.; Ottaviani, M.; Sarazin, Y.; Beyer, P.; Benkadda, S.; Waltz, R.E.
1999-01-01
This work deals with tokamak plasma turbulence in the case where fluxes are fixed and profiles are allowed to fluctuate. These systems are intermittent. In particular, radially propagating fronts, are usually observed over a broad range of time and spatial scales. The existence of these fronts provide a way to understand the fast transport events sometimes observed in tokamaks. It is also shown that the confinement scaling law can still be of the gyroBohm type in spite of these large scale transport events. Some departure from the gyroBohm prediction is observed at low flux, i.e. when the gradients are close to the instability threshold. Finally, it is found that the diffusivity is not the same for a turbulence calculated at fixed flux than at fixed temperature gradient, with the same time averaged profile. (author)
Weiss, Stephan; Wei, Ping; Ahlers, Guenter
2015-11-01
Turbulent thermal convection under rotation shows a remarkable variety of different flow states. The Nusselt number (Nu) at slow rotation rates (expressed as the dimensionless inverse Rossby number 1/Ro), for example, is not a monotonic function of 1/Ro. Different 1/Ro-ranges can be observed with different slopes ∂Nu / ∂ (1 / Ro) . Some of these ranges are connected by sharp transitions where ∂Nu / ∂ (1 / Ro) changes discontinuously. We investigate different regimes in cylindrical samples of aspect ratio Γ = 1 by measuring temperatures at the sidewall of the sample for various Prandtl numbers in the range 3 Deutsche Forschungsgemeinschaft.
Flames in fractal grid generated turbulence
Energy Technology Data Exchange (ETDEWEB)
Goh, K H H; Hampp, F; Lindstedt, R P [Department of Mechanical Engineering, Imperial College, London SW7 2AZ (United Kingdom); Geipel, P, E-mail: p.lindstedt@imperial.ac.uk [Siemens Industrial Turbomachinery AB, SE-612 83 Finspong (Sweden)
2013-12-15
Twin premixed turbulent opposed jet flames were stabilized for lean mixtures of air with methane and propane in fractal grid generated turbulence. A density segregation method was applied alongside particle image velocimetry to obtain velocity and scalar statistics. It is shown that the current fractal grids increase the turbulence levels by around a factor of 2. Proper orthogonal decomposition (POD) was applied to show that the fractal grids produce slightly larger turbulent structures that decay at a slower rate as compared to conventional perforated plates. Conditional POD (CPOD) was also implemented using the density segregation technique and the results show that CPOD is essential to segregate the relative structures and turbulent kinetic energy distributions in each stream. The Kolmogorov length scales were also estimated providing values {approx}0.1 and {approx}0.5 mm in the reactants and products, respectively. Resolved profiles of flame surface density indicate that a thin flame assumption leading to bimodal statistics is not perfectly valid under the current conditions and it is expected that the data obtained will be of significant value to the development of computational methods that can provide information on the conditional structure of turbulence. It is concluded that the increase in the turbulent Reynolds number is without any negative impact