WorldWideScience

Sample records for sub-disciplines water resources

  1. Hydrography - Water Resources

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Water Resource is a DEP primary facility type related to the Water Use Planning Program. The sub-facility types related to Water Resources that are included are:...

  2. Factors Influencing Water Resource Governance among Pastoral Community at Mkondoa Sub-Catchment Morogoro Region Tanzania

    Directory of Open Access Journals (Sweden)

    Yeremia Yohana Masifia

    2017-06-01

    Full Text Available The importance of proper Water Resource Management with greater emphasis on ensuring sustainability quality accountability and community participation has become imminent as water resources increasingly become scarce Harvey et al 2007. Water resources management in Tanzania is governed under the National Water Policy of 2002 and Water Resources Management Act No.11 of year 2009. Other related legislations include Environmental Management Act No. 20 of year 2004 Forest Policy and Forest Act No. 14 of year 2002 and Water Supply Act No.12 of year 2009 among others. However the mechanisms processes and institutions through which all stakeholders articulate their priorities exercise their legal rights meet their obligations and mediate their differences is still missing. This study employed descriptive exploratory research design. Data collection was done by the use of both structured and semi structured interview to respondents who were both purpose and simple randomly selected observation and focus group discussion. Review of reports from Districts and Basin offices and internet to access relevant secondary information was done. Results show that WUAs LGAs and WSSAs lack relevant understanding capacities management and law enforcement as result water management generally remains non participatory inefficient and expensive and increased water user conflicts in Kisangata and Ilonga WUAs of Mkondoa sub catchment Morogoro region. The study propose participatory approaches best practices on water resource management at local level for embracement of Community- Based Water Resource Management as the only option of managing sub catchment water resources and reduce water related conflicts among water users. Awareness creation on policy and establishment of alternative economic activities like horticulture bee keeping and poultry is significant to give relief to land.

  3. Identification and preliminary characterization of global water resource issues which may be affected by CO/sub 2/-induced climate change

    Energy Technology Data Exchange (ETDEWEB)

    Callaway, J.M.; Cohen, M.L.; Currie, J.W.

    1984-04-01

    The objectives were to: (1) identify, characterize, and define existing or projected regional and global water resource management issues which may be affected by CO/sub 2/-induced climate changes; and (2) develop research priorities for acquiring additional information about the potential effects of a CO/sub 2/-induced climate change on the availability and allocation of freshwater supplies. The research was broken into four work elements: (1) identification of water resource management issues on a global and regional basis; (2) identification of a subset of generic CO/sub 2/-related water resource management issues believed to have the highest probability of being affected, beneficially or adversely, by a CO/sub 2/-induced climate change; (3) selection of specific sites for examining the potential effect of a CO/sub 2/-induced climate change on these issues; and (4) conducting detailed case studies at these sites, the results from which will be used to identify future research and data needs in the area of water resources. This report summarizes the research related to the first three work elements. 6 figures, 9 tables.

  4. Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Charles A. Osunla

    2017-10-01

    Full Text Available Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens.

  5. Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa.

    Science.gov (United States)

    Osunla, Charles A; Okoh, Anthony I

    2017-10-07

    Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens.

  6. Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa

    Science.gov (United States)

    Osunla, Charles A.

    2017-01-01

    Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens. PMID:28991153

  7. Why Should I Use University Library Website Resources? Discipline Differences

    Science.gov (United States)

    Kim, Yong-Mi

    2011-01-01

    Users across academic disciplines utilize different information sources based on the resource's usefulness and relevance. This study's findings show that users from arts and sciences disciplines are much more likely to utilize university library website resources and printed materials than business users who heavily rely on commercial websites.…

  8. Summary Report on CO{sub 2} Geologic Sequestration & Water Resources Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Varadharajan, C.; Birkholzer, J.; Kraemer, S.; Porse, S.; Carroll, S.; Wilkin, R.; Maxwell, R.; Bachu, S.; Havorka, S.; Daley, T.; Digiulio, D.; Carey, W.; Strasizar, B.; Huerta, N.; Gasda, S.; Crow, W.

    2012-02-15

    The United States Environmental Protection Agency (EPA) and Lawrence Berkeley National Laboratory (LBNL) jointly hosted a workshop on “CO{sub 2} Geologic Sequestration and Water Resources” in Berkeley, June 1–2, 2011. The focus of the workshop was to evaluate R&D needs related to geological storage of CO{sub 2} and potential impacts on water resources. The objectives were to assess the current status of R&D, to identify key knowledge gaps, and to define specific research areas with relevance to EPA’s mission. About 70 experts from EPA, the DOE National Laboratories, industry, and academia came to Berkeley for two days of intensive discussions. Participants were split into four breakout session groups organized around the following themes: Water Quality and Impact Assessment/Risk Prediction; Modeling and Mapping of Area of Potential Impact; Monitoring and Mitigation; Wells as Leakage Pathways. In each breakout group, participants identified and addressed several key science issues. All groups developed lists of specific research needs; some groups prioritized them, others developed short-term vs. long-term recommendations for research directions. Several crosscutting issues came up. Most participants agreed that the risk of CO{sub 2} leakage from sequestration sites that are properly selected and monitored is expected to be low. However, it also became clear that more work needs to be done to be able to predict and detect potential environmental impacts of CO{sub 2} storage in cases where the storage formation may not provide for perfect containment and leakage of CO{sub 2}–brine might occur.

  9. Quantification of water resources uncertainties in the Luvuvhu sub-basin of the Limpopo river basin

    Science.gov (United States)

    Oosthuizen, N.; Hughes, D.; Kapangaziwiri, E.; Mwenge Kahinda, J.; Mvandaba, V.

    2018-06-01

    In the absence of historical observed data, models are generally used to describe the different hydrological processes and generate data and information that will inform management and policy decision making. Ideally, any hydrological model should be based on a sound conceptual understanding of the processes in the basin and be backed by quantitative information for the parameterization of the model. However, these data are often inadequate in many sub-basins, necessitating the incorporation of the uncertainty related to the estimation process. This paper reports on the impact of the uncertainty related to the parameterization of the Pitman monthly model and water use data on the estimates of the water resources of the Luvuvhu, a sub-basin of the Limpopo river basin. The study reviews existing information sources associated with the quantification of water balance components and gives an update of water resources of the sub-basin. The flows generated by the model at the outlet of the basin were between 44.03 Mm3 and 45.48 Mm3 per month when incorporating +20% uncertainty to the main physical runoff generating parameters. The total predictive uncertainty of the model increased when water use data such as small farm and large reservoirs and irrigation were included. The dam capacity data was considered at an average of 62% uncertainty mainly as a result of the large differences between the available information in the national water resources database and that digitised from satellite imagery. Water used by irrigated crops was estimated with an average of about 50% uncertainty. The mean simulated monthly flows were between 38.57 Mm3 and 54.83 Mm3 after the water use uncertainty was added. However, it is expected that the uncertainty could be reduced by using higher resolution remote sensing imagery.

  10. Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin

    Directory of Open Access Journals (Sweden)

    N. Oosthuizen

    2018-05-01

    Full Text Available The demand for water resources is rapidly growing, placing more strain on access to water and its management. In order to appropriately manage water resources, there is a need to accurately quantify available water resources. Unfortunately, the data required for such assessment are frequently far from sufficient in terms of availability and quality, especially in southern Africa. In this study, the uncertainty related to the estimation of water resources of two sub-basins of the Limpopo River Basin – the Mogalakwena in South Africa and the Shashe shared between Botswana and Zimbabwe – is assessed. Input data (and model parameters are significant sources of uncertainty that should be quantified. In southern Africa water use data are among the most unreliable sources of model input data because available databases generally consist of only licensed information and actual use is generally unknown. The study assesses how these uncertainties impact the estimation of surface water resources of the sub-basins. Data on farm reservoirs and irrigated areas from various sources were collected and used to run the model. Many farm dams and large irrigation areas are located in the upper parts of the Mogalakwena sub-basin. Results indicate that water use uncertainty is small. Nevertheless, the medium to low flows are clearly impacted. The simulated mean monthly flows at the outlet of the Mogalakwena sub-basin were between 22.62 and 24.68 Mm3 per month when incorporating only the uncertainty related to the main physical runoff generating parameters. The range of total predictive uncertainty of the model increased to between 22.15 and 24.99 Mm3 when water use data such as small farm and large reservoirs and irrigation were included. For the Shashe sub-basin incorporating only uncertainty related to the main runoff parameters resulted in mean monthly flows between 11.66 and 14.54 Mm3. The range of predictive uncertainty changed to between 11.66 and 17

  11. Sustainable Development of Africa's Water Resources

    OpenAIRE

    Narenda P. Sharma

    1996-01-01

    This study, African water resources: challenges and opportunities for sustainable management propose a long-term strategy for water resource management, emphasizing the socially sustainable development imperatives for Sub-Saharan Africa (SSA). The message of this strategy is one of optimism - the groundwork already exists for the sustainable management of Africa's water resources. The stra...

  12. REVIEW OF MOODLE PLUGINS FOR DESIGNING MULTIMEDIA ELECTRONIC EDUCATIONAL RESOURCES FROM LANGUAGE DISCIPLINES

    Directory of Open Access Journals (Sweden)

    Anton M. Avramchuk

    2015-09-01

    Full Text Available Today the problem of designing multimedia electronic educational resources from language disciplines in Moodle is very important. This system has a lot of different, powerful resources, plugins to facilitate the learning of students with language disciplines. This article presents an overview and comparative analysis of the five Moodle plugins for designing multimedia electronic educational resources from language disciplines. There have been considered their key features and functionality in order to choose the best for studying language disciplines in the Moodle. Plugins are compared by a group of experts according to the criteria: efficiency, functionality and easy use. For a comparative analysis of the plugins it is used the analytic hierarchy process.

  13. Toward the second 50 years of Water Resources Research

    Science.gov (United States)

    Rajaram, H.

    2014-12-01

    Since the first issue in 1965, 49 volumes and 464 issues of Water Resources Research (WRR) have been published, including more than 13,800 contributions that received more than 380,000 citations. WRR has always maintained a forward-looking vision, providing an interdisciplinary platform to nurture the initiation and development of numerous sub-disciplines and research themes in hydrology, water resources, and earth sciences and over the last 50 years. This vision, supported in no small measure by a dedicated community of researchers who submitted their best research to WRR, have helped the journal maintain its international leadership in this field. As we enter the second 50 years of WRR, new trends in scientific publishing, open access publication and web-based discussion forums, pose challenges (and opportunities) for sustaining WRR's leadership role. In this presentation, we will present the vision of the present editorial board for the future of WRR, and discuss several steps we are undertaking to adapt the journal to modern trends in communicating scientific research. This includes the introduction of new article types, such as the forthcoming "Debates on Water Resources", targeted special sections, and efforts to improve the timeliness of the review process. We humbly stand on the shoulders of the thirty-four dedicated previous editors of WRR, and remain open to receiving suggestions from the AGU hydrologic community.

  14. Hyphenated hydrology: Interdisciplinary evolution of water resource science

    Science.gov (United States)

    McCurley, Kathryn L.; Jawitz, James W.

    2017-04-01

    Hydrology has advanced considerably as a scientific discipline since its recognized inception in the mid-twentieth century. Modern water resource related questions have forced adaptation from exclusively physical or engineering science viewpoints toward a deliberate interdisciplinary context. Over the past few decades, many of the eventual manifestations of this evolution were foreseen by prominent expert hydrologists. However, their narrative descriptions have lacked substantial quantification. This study addressed that gap by measuring the prevalence of and analyzing the relationships between the terms most frequently used by hydrologists to define and describe their research. We analyzed 16,591 journal article titles from 1965-2015 in Water Resources Research, through which the scientific dialogue and its time-sensitive progression emerged. Our word frequency and term cooccurrence network results revealed the dynamic timing of the lateral movement of hydrology across multiple disciplines as well as the deepening of scientific discourse with respect to traditional hydrologic questions. The conversation among water resource scientists surrounding the hydrologic subdisciplines of catchment-hydrology, hydro-meteorology, socio-hydrology, hydro-climatology, and eco-hydrology gained statistically significant momentum in the analyzed time period, while that of hydro-geology and contaminant-hydrology experienced periods of increase followed by significant decline. This study concludes that formerly exotic disciplines can potentially modify hydrology, prompting new insights and inspiring unconventional perspectives on old questions that may have otherwise become obsolete.

  15. Impact of Discipline on Academic Performance of Pupils in Public Primary Schools in Muhoroni Sub-County, Kenya

    Science.gov (United States)

    Simba, Nicholas Odoyo; Agak, John Odwar; Kabuka, Eric K.

    2016-01-01

    In Muhoroni Sub-County, Kenya, pupils' academic performance has received little attention in relation to discipline. The objectives of this study were to determine the level of discipline and extent of impact of discipline on academic performance among class eight pupils in the sub-county's public primary schools. The study adopted descriptive…

  16. Discipline, availability of electronic resources and the use of Finnish National Electronic Library - FinELib

    Directory of Open Access Journals (Sweden)

    Sanna Torma

    2004-01-01

    Full Text Available This study elaborated relations between digital library use by university faculty, users' discipline and the availability of key resources in the Finnish National Electronic Library (FinELib, Finnish national digital library, by using nationwide representative survey data. The results show that the perceived availability of key electronic resources by researchers in FinELib was a stronger predictor of the frequency and purpose of use of its services than users' discipline. Regardless of discipline a good perceived provision of central resources led to a more frequent use of FinELib. The satisfaction with the services did not vary with the discipline, but with the perceived availability of resources.

  17. Legislative drafting: a new sub-discipline of law is born

    Directory of Open Access Journals (Sweden)

    Helen Xanthaki

    2013-09-01

    Full Text Available Professor Helen Xanthaki (Academic Director of the Sir William Dale Centre for Legislative Studies at IALS explains how legislative drafting has been transformed from a skill often associated with government lawyers to a new sub-discipline of law and subject for legal research and scholarship. Her paper describes the creation of a dynamic process with new doctrines, new questions, new answers in the field. Some have been there for a while, others are being introduced or are being borrowed and applied by other disciplines of law and other social sciences. So, is there a new discipline? And what is its place in the study of law? And what is its main philosophy? And what are its main elements?

  18. Hyphenated hydrology: Multidisciplinary evolution of water resource science

    Science.gov (United States)

    McCurley, K. 4553; Jawitz, J. W.

    2016-12-01

    Hydrology has advanced considerably as a scientific discipline since its recognized inception in the mid-20th century. While hydrology may have evolved from the singular viewpoint of a more rigid physical or engineering science, modern water resource related questions have forced adaptation toward a deliberate interdisciplinary context. Over the past few decades, many of the eventual manifestations of this evolution have been foreseen by prominent expert hydrologists, though their narrative descriptions were not substantially quantified. This study addresses that gap by directly measuring and inspecting the words that hydrologists use to define and describe their research endeavors. We analyzed 16,591 journal article titles from 1965-2015 in Water Resources Research, through which the scientific dialogue and its time-sensitive progression emerges. Word frequency and term concurrence reveal the dynamic timing of the lateral movement of hydrology across multiple disciplines and a deepening of scientific discourse with respect to traditional hydrologic questions. This study concludes that formerly exotic disciplines are increasingly modifying hydrology, prompting new insights as well as inspiring unconventional perspectives on old questions.

  19. Isotope methods in water resources assessment and environmental management

    International Nuclear Information System (INIS)

    Araguas-Araguas, L.

    1996-01-01

    Availability of water and protection of water resources have become top environmental issues in many countries. Governments are forced to issue strict guidelines to protect the environment and create agencies to pursue these aspects as well as enforce such regulations. The supply of good-quality water from rivers and lakes is becoming a costly and complex problem for many institutes responsible for water supply. Because of the high pollution levels in surface waters, ground water is the main source of drinking water in many countries. It is estimated that 1.5 billion people world-wide depend on it for drinking water. Since ground water cannot be directly measured, and despite its importance for drinking purposes there is not enough public concern about its protection. In other cases, it is found that the exploited ground water is not a renewable resource. In many countries in arid and semi-arid regions, fossil ground water is being tapped for extensive agricultural development, but such extraction depletes the reserves, in the same way as an oil reservoir. The availability of correct information, before decisions are taken will lead to improved management of water resources, distributing the available resources for different uses according to their quality, and ultimately, to manage the resource. Nuclear science has developed a series of methodologies based on the use of naturally-occurring isotopes and artificial tracers to study the processes involved in the occurrence and circulation of water. The discipline called 'Isotope Hydrology' provides a deep insight into many parts of the water cycle; from the evaporation over the ocean or the continents, to the formation of surface runoff and ground water and in the discharge of aquifer systems into the ocean. Isotope hydrology, as a scientific and applied discipline in earth sciences, was created during the late 1950s and early 1960s, beyond the classical hydrological science. In these early stages, new methodologies

  20. Water reform in Sub-Saharan Africa: what is the difference?

    Science.gov (United States)

    Van Koppen, Barbara

    Since the early 1990s African governments took an active part in the global movement of water reform towards Integrated Water Resources Management (IWRM). The first step consisted primarily of assimilating the generic principles of IWRM. At this generic level, water reform in Sub-Saharan Africa seems quite similar to water reform elsewhere in the developed and developing world. However, in taking the second step of operationalizing generic principles into concrete actions on the ground, at least three salient differences between Sub-Saharan Africa and elsewhere emerged: (a) Africa’s relative abundance of water resources but its scarcity of economic means to harness available water resources; (b) the importance of agriculture and agricultural water development for economic growth and poverty eradication; and (c) the need for systems of water rights and financial resource mobilization that are separated and suit the African reality in which large water users are relatively few, while the bulk of water users are scattered smallholders. This paper discusses the early operationalization with regard to these three unique features and identifies lessons learnt.

  1. WATER RESOURCES AND URBAN PLANNING: THE CASE OF A COASTAL AREA IN BRAZIL

    Directory of Open Access Journals (Sweden)

    Iana Alexandra Alves Rufino

    2009-06-01

    Full Text Available Urban planning requires the integration of several disciplines, among them ones related to water resources. The impacts of urban development on those resources, and viceversa, are well known, but some aspects have not been well characterized in literature. This research analyzes a case that shows interesting relationships between urban planning, its legislation, the evolution of urban occupation and several aspects of water resources: groundwater, surface water, drainage and saltwater intrusion. The research argues for integrated and dynamic planning, monitoring and directive enforcement of the urban processes, including environmental dimension and water resources. Advanced decision support techniques are suggested as tools for supporting this integrated approach.

  2. Managing the impact of gold panning activities within the context of integrated water resources management planning in the Lower Manyame Sub-Catchment, Zambezi Basin, Zimbabwe

    Science.gov (United States)

    Zwane, Nonhlanhla; Love, David; Hoko, Zvikomborero; Shoko, Dennis

    Riverbed alluvial gold panning activities are a cause for degradation of river channels and banks as well as water resources, particularly through accelerated erosion and siltation, in many areas of Zimbabwe. The lower Manyame sub-catchment located in the Northern part of the country is one such area. This study analysed the implications of cross-sectoral coordination of the management of panning and its impacts. This is within the context of conflicts of interests and responsibilities. A situational analysis of different stakeholders from sectors that included mining, environment, water, local government and water users who were located next to identified panning sites, as well as panners was carried out. Selected sites along the Dande River were observed to assess the environmental effects. The study determined that all stakeholder groups perceived siltation and river bank degradation as the most severe effect of panning on water resources, yet there were divergent views with regards to coordination of panning management. The Water Act of 1998 does not give enough power to management institutions including the Lower Manyame Sub-catchment Council to protect water resources from the impacts of panning, despite the fact that the activities affect the water resource base. The Mines and Minerals Act of 1996 remains the most powerful legislation, while mining sector activities adversely affect environmental resources. Furthermore, complexities were caused by differences in the definition of water resources management boundaries as compared to the overall environmental resources management boundaries according to the Environmental Management Act (EMA) of 2000, and by separate yet parallel water and environmental planning processes. Environmental sector institutions according to the EMA are well linked to local government functions and resource management is administrative, enhancing efficient coordination.

  3. Engaging the creative to better build science into water resource solutions

    Science.gov (United States)

    Klos, P. Z.

    2014-12-01

    Psychological thought suggests that social engagement with an environmental problem requires 1) cognitive understanding of the problem, 2) emotional engagement with the problem, and 3) perceived efficacy that there is something we can do to solve the problem. Within the water sciences, we form problem-focused, cross-disciplinary teams to help address complex water resource problems, but often we only seek teammates from other disciplines within the realms of engineering and the natural/social sciences. Here I argue that this science-centric focus fails to fully solve these water resource problems, and often the science goes unheard because it is heavily cognitive and lacks the ability to effectively engage the audience through crucial social-psychological aspects of emotion and efficacy. To solve this, future cross-disciplinary collaborations that seek to include creative actors from the worlds of art, humanities, and design can begin to provide a much stronger overlap of the cognition, emotion, and efficacy needed to communicate the science, engage the audience, and create the solutions needed to solve or world's most complex water resource problems. Disciplines across the arts, sciences, and engineering all bring unique strengths that, through collaboration, allow for uniquely creative modes of art-science overlap that can engage people through additions of emotion and efficacy that compliment the science and go beyond the traditional cognitive approach. I highlight examples of this art-science overlap in action and argue that water resource collaborations like these will be more likely to have their hydrologic science accepted and applied by those who decide on water resource solutions. For this Pop-up Talk session, I aim to share the details of this proposed framework in the context of my own research and the work of others. I hope to incite discussion regarding the utility and relevance of this framework as a future option for other water resource

  4. Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin

    CSIR Research Space (South Africa)

    Oosthuizen, Nadia

    2017-07-01

    Full Text Available frica Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin Nadia Oosthuizen1,2, Denis A. Hughes2, Evison Kapangaziwiri1, Jean-Marc Mwenge Kahinda1, and Vuyelwa Mvandaba1,2 1...

  5. NETL CO<sub>2sub> Storage prospeCtive Resource Estimation Excel aNalysis (CO<sub>2sub>-SCREEN) User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Sanguinito, Sean M. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Goodman, Angela [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Levine, Jonathan [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2017-04-03

    This user’s manual guides the use of the National Energy Technology Laboratory’s (NETL) CO<sub>2sub> Storage prospeCtive Resource Estimation Excel aNalysis (CO<sub>2sub>-SCREEN) tool, which was developed to aid users screening saline formations for prospective CO<sub>2sub> storage resources. CO<sub>2sub>- SCREEN applies U.S. Department of Energy (DOE) methods and equations for estimating prospective CO<sub>2sub> storage resources for saline formations. CO2-SCREEN was developed to be substantive and user-friendly. It also provides a consistent method for calculating prospective CO<sub>2sub> storage resources that allows for consistent comparison of results between different research efforts, such as the Regional Carbon Sequestration Partnerships (RCSP). CO<sub>2sub>-SCREEN consists of an Excel spreadsheet containing geologic inputs and outputs, linked to a GoldSim Player model that calculates prospective CO<sub>2sub> storage resources via Monte Carlo simulation.

  6. Assessing The Ecosystem Service Freshwater Production From An Integrated Water Resources Management Perspective. Case Study: The Tormes Water Resources System (Spain)

    Science.gov (United States)

    Momblanch, Andrea; Paredes-Arquiola, Javier; Andreu, Joaquín; Solera, Abel

    2014-05-01

    The Ecosystem Services are defined as the conditions and processes through which natural ecosystems, and the species that make them up, sustain and fulfil human life. A strongly related concept is the Integrated Water Resources Management. It is a process which promotes the coordinated development and management of water, land and related resources in order to maximise the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems. From these definitions, it is clear that in order to cover so many water management and ecosystems related aspects the use of integrative models is increasingly necessary. In this study, we propose to link a hydrologic model and a water allocation model in order to assess the Freshwater Production as an Ecosystem Service in anthropised river basins. First, the hydrological model allows determining the volume of water generated by each sub-catchment; that is, the biophysical quantification of the service. This result shows the relevance of each sub-catchment as a source of freshwater and how this could change if the land uses are modified. On the other hand, the water management model allocates the available water resources among the different water uses. Then, it is possible to provide an economic value to the water resources through the use of demand curves, or other economic concepts. With this second model, we are able to obtain the economical quantification of the Ecosystem Service. Besides, the influence of water management and infrastructures on the service provision can be analysed. The methodology is applied to the Tormes Water Resources System, in Spain. The software used are EVALHID and SIMGES, for hydrological and management aspects, respectively. Both models are included in the Decision Support System Shell AQUATOOL for water resources planning and management. A scenario approach is presented to illustrate the potential of the methodology, including the current

  7. Isotope techniques in water resources development 1991

    International Nuclear Information System (INIS)

    1992-01-01

    Water resources are scarce in many parts of the world. Often, the only water resource is groundwater. Overuse usually invites a rapid decline in groundwater resources which are recharged insufficiently, or not at all, by prevailing climatic conditions. These and other problems currently encountered in hydrology and associated environmental fields have prompted an increasing demand for the utilization of isotope methods. Such methods have been recognized as being indispensable for solving problems such as the identification of pollution sources, characterization of palaeowater resources, evaluation of recharge and evaporative discharge under arid and semi-arid conditions, reconstruction of past climates, study of the interrelationships between surface and groundwater, dating of groundwater and validation of contaminant transport models. Moreover, in combination with other hydrogeological and geochemical methods, isotope techniques can provide useful hydrological information, such as data on the origin, replenishment and dynamics of groundwater. It was against this background that the International Atomic Energy Agency, in co-operation with the United Nations Educational, Scientific and Cultural Organization and the International Association of Hydrological Sciences, organized this symposium on the Use of Isotope Techniques in Water Resources Development, which took place in Vienna from 11 to 15 March 1991. The main themes of the symposium were the use of isotope techniques in solving practical problems of water resources assessment and development, particularly with respect to groundwater protection, and in studying environmental problems related to water, including palaeohydrological and palaeoclimatological problems. A substantial part of the oral presentations was concerned with the present state and trends in groundwater dating, and with some methodological aspects. These proceedings contain the papers of 37 oral and the extended synopses of 47 poster

  8. Water Resources

    International Nuclear Information System (INIS)

    Abira, M.A.

    1997-01-01

    Water is essential for life and ecological sustenance; its availability is essential component of national welfare and productivity.The country's socio-economic activities are largely dependent on the natural endowment of water resources. Kenya's water resources comprises of surface waters (rivers, lakes and wetlands) and ground water. Surface water forms 86% of total water resources while the rest is ground water Geological, topographical and climatic factors influence the natural availability and distribution of water with the rainfall distribution having the major influence. Water resources in Kenya are continuously under threat of depletion and quality degradation owing to rising population, industrialization, changing land use and settlement activities as well as natural changes. However, the anticipated climate change is likely to exacerbate the situation resulting in increased conflict over water use rights in particular, and, natural resource utilisation in general. The impacts of climate change on the water resources would lead to other impacts on environmental and socio-economic systems

  9. Factors Influencing Water Resource Governance among Pastoral Community at Mkondoa Sub-Catchment Morogoro Region Tanzania

    OpenAIRE

    Yeremia Yohana Masifia; Sarone Ole Sena

    2017-01-01

    The importance of proper Water Resource Management with greater emphasis on ensuring sustainability quality accountability and community participation has become imminent as water resources increasingly become scarce Harvey et al 2007. Water resources management in Tanzania is governed under the National Water Policy of 2002 and Water Resources Management Act No.11 of year 2009. Other related legislations include Environmental Management Act No. 20 of year 2004 Forest Policy and Forest Act No...

  10. Water Resources: the Central Component of the WEF Nexus?

    Science.gov (United States)

    Ding, K.; Gunda, T.; Hornberger, G. M.

    2017-12-01

    Increasing population growth, consumption of natural resources, and deterioration of the environment coupled with climate change impacts (such as increased variability in precipitation) will challenge our abilities to provide water, energy and food (WEF) to the global populace. Less developed areas, such as the countries in Sub-Saharan Africa, are particularly vulnerable to such resource issues due to immature governance and management structures and strategies. We introduce an integrated approach to resource security analysis, which traditionally has focused on the WEF components separately and apply the methods to a suite of countries in Sub-Saharan Africa. Specifically, we evaluate the inter-connected nature of WEF securities by considering physical, demographic, socioeconomic, health, and institutional parameters related to each of the resource securities and by analyzing the relationships among the metrics. For example, reported food deficits for countries are strongly correlated with reported levels of access to safe drinking water. Multivariate statistical analyses are applied to identify relationships among resources and to develop indices that robustly and comprehensively capture the WEF nexus. Our results indicate that water plays the central role in the WEF nexus, due to its extensive use for both food and energy production in these countries. This approach provides a framework for analyzing the WEF nexus in other regions of the world.

  11. Foreign Agricultural Land Acquisition and the Visibility of Water Resource Impacts in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Philip Woodhouse

    2012-06-01

    Full Text Available The many headlines focusing on 'land grabbing' have distracted attention from the role that access to water plays in underpinning the projected productivity of foreign direct investment in acquisition of agricultural land in developing countries. This paper identifies questions that arise about the explicit and implicit water requirements for irrigation in agricultural projects on land that is subject to such foreign investment deals. It focuses particularly on land acquisition in sub-Saharan Africa (SSA, where, for savanna ecosystems that cover some two thirds of the region, rainfall uncertainty is the principal constraint to increased agricultural productivity. The paper argues that, even where land acquisition deals do not specify irrigation, choice of location and/or crop type indicates this is invariably an implicit requirement of projects. It is arguable that private investment in water infrastructure (e.g. for water storage could provide wider benefits to neighbouring small-scale producers, thus reducing the risk inherent in much of African agriculture. However, it is also possible that foreign investment may compete with existing water use, and some land deals have included provisions for priority access to water in cases of scarcity. Empirical studies are used to identify the mechanisms through which large-scale land investments influence water availability for smaller-scale land users. The paper concludes that, although effects on water resources may constitute one of the main impacts of land deals, this is likely to be obscured by the lack of transparency over water requirements of agricultural projects and the invisibility of much existing local agricultural water management to government planning agencies.

  12. An integrated model for assessing both crop productivity and agricultural water resources at a large scale

    Science.gov (United States)

    Okada, M.; Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2012-12-01

    Agricultural production utilizes regional resources (e.g. river water and ground water) as well as local resources (e.g. temperature, rainfall, solar energy). Future climate changes and increasing demand due to population increases and economic developments would intensively affect the availability of water resources for agricultural production. While many studies assessed the impacts of climate change on agriculture, there are few studies that dynamically account for changes in water resources and crop production. This study proposes an integrated model for assessing both crop productivity and agricultural water resources at a large scale. Also, the irrigation management to subseasonal variability in weather and crop response varies for each region and each crop. To deal with such variations, we used the Markov Chain Monte Carlo technique to quantify regional-specific parameters associated with crop growth and irrigation water estimations. We coupled a large-scale crop model (Sakurai et al. 2012), with a global water resources model, H08 (Hanasaki et al. 2008). The integrated model was consisting of five sub-models for the following processes: land surface, crop growth, river routing, reservoir operation, and anthropogenic water withdrawal. The land surface sub-model was based on a watershed hydrology model, SWAT (Neitsch et al. 2009). Surface and subsurface runoffs simulated by the land surface sub-model were input to the river routing sub-model of the H08 model. A part of regional water resources available for agriculture, simulated by the H08 model, was input as irrigation water to the land surface sub-model. The timing and amount of irrigation water was simulated at a daily step. The integrated model reproduced the observed streamflow in an individual watershed. Additionally, the model accurately reproduced the trends and interannual variations of crop yields. To demonstrate the usefulness of the integrated model, we compared two types of impact assessment of

  13. Cost Implications of Uncertainty in CO{sub 2} Storage Resource Estimates: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Steven T., E-mail: sanderson@usgs.gov [National Center, U.S. Geological Survey (United States)

    2017-04-15

    Carbon capture from stationary sources and geologic storage of carbon dioxide (CO{sub 2}) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO{sub 2} storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference, and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO{sub 2}, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO{sub 2} storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO{sub 2} injection will be mitigated by reservoir pressure management, estimates of the costs of CO{sub 2} storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO{sub 2} storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO{sub 2} storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the

  14. Policies, Programmes and Institutions of Water Sector in Sub-Saharan Africa

    International Nuclear Information System (INIS)

    Krhoda, G.O

    2001-01-01

    Meaningful investment in the water sector can easily increase food production and productivity of human resources and thus stimulate economic growth, human and environmental health. The author indicates that, the Mar del Plata Action Plan (1977), the New Delhi Statement (1990), Dublin Statement (1991)and the Agenda 21 Chapter 18 of UNCED (1992) emphasise the urgent need for integrated, sustainable water resources management. The publication looks at the policy development in the water sector, the disparities in the allocation of water supplies in the urban and the rural areas, the importance of water in the development of the industrial sector and how to manage the demand for water in sub-Saharan Africa

  15. Water resources of the Chad Basin Region

    Directory of Open Access Journals (Sweden)

    Franklyn R. Kaloko

    2013-07-01

    Full Text Available River basin development is seen as a very effective means of improving agricultural productivity. In the Chad Basin area of the Sahelian Zone of the West African Sub-Region, the water resources have been harnessed to ensure viable agricultural programmes for Nigeria. However,the resultant successes have met by many problems that range from physical to socio-economic and of which water losses have been the most threatening. The study has called for the use of Hexa.deconal (C1-OH film on the water surface of the Chad as a means of reducing evaporation.

  16. Simulated effects of groundwater pumping and artificial recharge on surface-water resources and riparian vegetation in the Verde Valley sub-basin, Central Arizona

    Science.gov (United States)

    Leake, Stanley A.; Pool, Donald R.

    2010-01-01

    In the Verde Valley sub-basin, groundwater use has increased in recent decades. Residents and stakeholders in the area have established several groups to help in planning for sustainability of water and other resources of the area. One of the issues of concern is the effect of groundwater pumping in the sub-basin on surface water and on groundwater-dependent riparian vegetation. The Northern Arizona Regional Groundwater-Flow Model by Pool and others (in press) is the most comprehensive and up-to-date tool available to understand the effects of groundwater pumping in the sub-basin. Using a procedure by Leake and others (2008), this model was modified and used to calculate effects of groundwater pumping on surface-water flow and evapotranspiration for areas in the sub-basin. This report presents results for the upper two model layers for pumping durations of 10 and 50 years. Results are in the form of maps that indicate the fraction of the well pumping rate that can be accounted for as the combined effect of reduced surface-water flow and evapotranspiration. In general, the highest and most rapid responses to pumping were computed to occur near surface-water features simulated in the modified model, but results are not uniform along these features. The results are intended to indicate general patterns of model-computed response over large areas. For site-specific projects, improved results may require detailed studies of the local hydrologic conditions and a refinement of the modified model in the area of interest.

  17. CO sub 2 induced climate change in Ontario: Interdependencies and resource strategies. Changement climatique cause par le CO sub 2 en Ontario: Interdependances et strategies en matiere de ressources

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    A summary is presented of a workshop held in November 1985 which was convened to extend the results of an earlier study on the effect of CO{sub 2}-induced climate change on specific components of the air-water-land biota systems and resource uses in Ontario. The workshop examined the interdependencies of those impact sectors and possible resource and socio-economic strategies to mitigate the effects of climate change. Impacts on such matters as streamflow, water quality, wetlands, snowfall, solar energy, municipal water use, hydroelectric power, tourism and recreation, food production, forest resources, and residential heating requirements were evaluated. It was found that almost all components of the climate system and resource use were affected by CO{sub 2}-induced warming, but the nature and magnitude of these impacts vary considerably across resource sectors and are intricately interdependent. Direct impacts are driven by changes in temperature, precipitation, or cloud cover and affect climate system components, and interdependencies among these sectors cause indirect impacts which affect resource use. For example, changes in temperaure and precipitation affect streamflow which indirectly impacts water use, commercial shipping, and recreation. Strategies to mitigate these effects include both preventive and adjustment strategies, some of which require significant forward planning. The timing and pattern of CO{sub 2}-induced change are important in determining the most likely and desirable strategies. A 5-point framework was developed to evaluate strategies and identify research priorities. Among resource and socioeconomic adjustment strategies, research into the forestry sector is of primary importance.

  18. Estimation of crop water requirements using remote sensing for operational water resources management

    Science.gov (United States)

    Vasiliades, Lampros; Spiliotopoulos, Marios; Tzabiras, John; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-06-01

    An integrated modeling system, developed in the framework of "Hydromentor" research project, is applied to evaluate crop water requirements for operational water resources management at Lake Karla watershed, Greece. The framework includes coupled components for operation of hydrotechnical projects (reservoir operation and irrigation works) and estimation of agricultural water demands at several spatial scales using remote sensing. The study area was sub-divided into irrigation zones based on land use maps derived from Landsat 5 TM images for the year 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) was used to derive actual evapotranspiration (ET) and crop coefficient (ETrF) values from Landsat TM imagery. Agricultural water needs were estimated using the FAO method for each zone and each control node of the system for a number of water resources management strategies. Two operational strategies of hydro-technical project development (present situation without operation of the reservoir and future situation with the operation of the reservoir) are coupled with three water demand strategies. In total, eight (8) water management strategies are evaluated and compared. The results show that, under the existing operational water resources management strategies, the crop water requirements are quite large. However, the operation of the proposed hydro-technical projects in Lake Karla watershed coupled with water demand management measures, like improvement of existing water distribution systems, change of irrigation methods, and changes of crop cultivation could alleviate the problem and lead to sustainable and ecological use of water resources in the study area.

  19. State of the Science for Sub-Seasonal to Seasonal Precipitation Forecasting in Support of Water Resource Managers

    Science.gov (United States)

    DeWitt, D. G.

    2017-12-01

    Water resource managers are one of the communities that would strongly benefit from highly-skilled sub-seasonal to seasonal precipitation forecasts. Unfortunately, the current state of the art prediction tools frequently fail to provide a level of skill sufficient to meet the stakeholders needs, especially on the monthly and seasonal timescale. On the other hand, the skill of precipitation forecasts on the week-2 timescale are relatively high and arguably useful in many decision-making contexts. This talk will present a comparison of forecast skill for the week-2 through the first season timescale and describe current efforts within NOAA and elsewhere to try to improve forecast skill beyond week-2, including research gaps that need to be addressed in order to make progress.

  20. Risk across disciplines: An interdisciplinary examination of water and drought risk in South-Central Oklahoma

    Science.gov (United States)

    Lazrus, H.; Paimazumder, D.; Towler, E.; McPherson, R. A.

    2013-12-01

    Drought is a challenge faced by communities across the United States, exacerbated by growing demands on water resources and climate variability and change. The Arbuckle-Simpson Aquifer (ASA) in south-central Oklahoma, situated in the heart of the Chickasaw Nation, is the state's only sole-source groundwater basin and sustains the Blue River, the state's only free-flowing river. The recent comprehensive hydrological studies of the aquifer indicate the need for sustainable management of the amount of water extracted. However, the question of how to deal with that management in the face of increasing drought vulnerability, diverse demands, and climate variability and change remains. Water management carries a further imperative to be inclusive of tribal and non-tribal interests. To examine this question, we are conducting an investigation of drought risk from multiple disciplines. Anthropological data comes from stakeholder interviews that were designed to investigate conflict over water management by understanding how people perceive risk differently based on different opinions about the structure of the resource, varying levels of trust in authorities, and unequal access to resources. . The Cultural Theory of Risk is used to explain how people view risks as part of their worldviews and why people who hold different worldviews disagree about risks associated with water availability. Meteorological analyses of longitudinal data indicate periods of drought that are noted in stakeholder interviews. Analysis of stream gauge data investigates the influence of climate variability on local hydrologic impacts, such as changing groundwater levels and streamflows, that are relevant to planning and management decisions in the ASA. Quantitative assessment of future drought risk and associated uncertainty and their effect on type and scale of future economic and social impacts are achieved by combining elements of statistical and dynamical downscaling to improve predictions of

  1. Climate change and mountain water resources: overview and recommendations for research, management and policy

    Directory of Open Access Journals (Sweden)

    D. Viviroli

    2011-02-01

    Full Text Available Mountains are essential sources of freshwater for our world, but their role in global water resources could well be significantly altered by climate change. How well do we understand these potential changes today, and what are implications for water resources management, climate change adaptation, and evolving water policy? To answer above questions, we have examined 11 case study regions with the goal of providing a global overview, identifying research gaps and formulating recommendations for research, management and policy.

    After setting the scene regarding water stress, water management capacity and scientific capacity in our case study regions, we examine the state of knowledge in water resources from a highland-lowland viewpoint, focusing on mountain areas on the one hand and the adjacent lowland areas on the other hand. Based on this review, research priorities are identified, including precipitation, snow water equivalent, soil parameters, evapotranspiration and sublimation, groundwater as well as enhanced warming and feedback mechanisms. In addition, the importance of environmental monitoring at high altitudes is highlighted. We then make recommendations how advancements in the management of mountain water resources under climate change could be achieved in the fields of research, water resources management and policy as well as through better interaction between these fields.

    We conclude that effective management of mountain water resources urgently requires more detailed regional studies and more reliable scenario projections, and that research on mountain water resources must become more integrative by linking relevant disciplines. In addition, the knowledge exchange between managers and researchers must be improved and oriented towards long-term continuous interaction.

  2. Front Range Infrastructure Resources Project: water-resources activities

    Science.gov (United States)

    Robson, Stanley G.; Heiny, Janet S.

    1998-01-01

    Infrastructure, such as roads, buildings, airports, and dams, is built and maintained by use of large quantities of natural resources such as aggregate (sand and gravel), energy, and water. As urban area expand, local sources of these resource are becoming inaccessible (gravel cannot be mined from under a subdivision, for example), or the cost of recovery of the resource becomes prohibitive (oil and gas drilling in urban areas is costly), or the resources may become unfit for some use (pollution of ground water may preclude its use as a water supply). Governmental land-use decision and environmental mandates can further preclude development of natural resources. If infrastructure resources are to remain economically available. current resource information must be available for use in well-reasoned decisions bout future land use. Ground water is an infrastructure resource that is present in shallow aquifers and deeper bedrock aquifers that underlie much of the 2,450-square-mile demonstration area of the Colorado Front Range Infrastructure Resources Project. In 1996, mapping of the area's ground-water resources was undertaken as a U.S. Geological Survey project in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, and the Colorado Water Conservation Board.

  3. Water resources

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on water resources describes how climate change will affect the supply of water in Canada. Water is one of Canada's greatest resources, which contributes about $7.5 to 23 billion per year to the Canadian economy. The decisions taken to adapt to climate change within the water resources sector will have profound implications in many other areas such as agriculture, human health, transportation and industry. The water related problems include water quality issues that relate to water shortages from droughts, or excesses from floods. The Intergovernmental Panel on Climate Change forecasts an increase in global average surface air temperatures of 1.4 to 5.8 degrees C by 2100. Such a change would impact the hydrological cycle, affecting runoff, evaporation patterns, and the amount of water stored in glaciers, lakes, wetlands and groundwater. The uncertainty as to the magnitude of these changes is due to the difficulty that climate models have in projecting future changes in regional precipitation patterns and extreme events. This chapter presents potential impacts of climate change on water resources in the Yukon, British Columbia, the Prairies, the Great Lakes basin, the Atlantic provinces, and the Arctic and Subarctic. The associated concerns for each region were highlighted. Adaptation research has focused on the impacts of supply and demand, and on options to adapt to these impacts. 60 refs., 2 tabs., 1 fig

  4. Promoting interdisciplinary education - the Vienna Doctoral Programme on Water Resource Systems

    Science.gov (United States)

    Blöschl, G.; Carr, G.; Bucher, C.; Farnleitner, A. H.; Rechberger, H.; Wagner, W.; Zessner, M.

    2012-02-01

    The Vienna Doctoral Programme on Water Resource Systems (DK-WRS) is a programme that aims to educate students in interdisciplinary water science through cutting edge research at an international level. It is funded by the Austrian Science Fund and designed to run over a period of 12 yr during which 80 doctoral students are anticipated to graduate. This paper reports on our experiences of setting up and implementing the Programme. We identify three challenges: integrating the disciplines, maintaining depth in an interdisciplinary programme, and teaching subjects remote to each student's core expertise. To address these challenges we adopt a number of approaches. We use three levels of instruments to foster integration across the disciplines: joint groups (e.g. a joint study programme), joint science questions (e.g. developed in annual symposia), and joint study sites. To maintain depth we apply a system of quality control including regular feedback sessions, theses by journal publications and international study exchange. For simultaneously teaching students from civil and environmental engineering, biology, geology, chemistry, mathematics we use visually explicit teaching, learning by doing, extra mentoring and by cross relating associated subjects. Our initial assessment of the Programme shows some very positive outcomes. Joint science questions formed between students from various disciplines indicate integration is being achieved. The number of successful publications in top journals suggests that depth is maintained. Positive feedback from the students on the variety and clarity of the courses indicates the teaching strategy is working well. Our experiences have shown that implementing and running an interdisciplinary doctoral programme has its challenges and is demanding in terms of time and human resources but seeing interactions progress and watching people grow and develop their way of thinking in an interdisciplinary environment is a valuable reward.

  5. Save Our Water Resources.

    Science.gov (United States)

    Bromley, Albert W.

    The purpose of this booklet, developed as part of Project SOAR (Save Our American Resources), is to give Scout leaders some facts about the world's resources, the sources of water pollution, and how people can help in obtaining solutions. Among the topics discussed are the world's water resources, the water cycle, water quality, sources of water…

  6. Geochemistry's vital contribution to solving water resource problems

    International Nuclear Information System (INIS)

    Edmunds, W.M.

    2009-01-01

    As part of the events celebrating 40 a of IAGC, it is fitting to trace the modern evolution and development of hydrogeochemistry. However, fascination with water quality can be traced back more than 2 ka. In the post-war years, hydrogeochemistry was influenced heavily by the advances in other disciplines including physical chemistry, metallurgy and oceanography. Hydrological applications of isotope science also developed rapidly at this time, and important advances in analytical chemistry allowed multi-element and trace element applications to be made. Experimental studies on equilibrium processes and reaction kinetics allowed bench-scale insight into water-rock interaction. Consolidation of knowledge on processes in groundwaters and the current awareness of hydrogeochemistry by water professionals owe much to the work of Robert Garrels, John Hem, and co-workers in the early 1960s. Studies of down-gradient evolution enabled a field-scale understanding of groundwater quality and geochemical processes as a function of residence time (dissolution and precipitation processes in carbonate and non-carbonate aquifers; redox processes; cation exchange and salinity origins). Emerging water resource and water quality issues in the 1960s and 70s permitted the application of hydrogeochemistry to contaminant and related problems and this trend continues. The impacts of diffuse pollution from intensive agriculture, waste disposal and point source pollution from urban and industrial sources relied on geochemistry to solve questions of origin and attenuation. In semi-arid regions facing water scarcity, geochemical approaches have been vital in the assessment of renewability and characterising palaeowaters. The protection and new incoming regulation of water resources will rely increasingly on a sound geochemical basis for management.

  7. Using FRAMES to Manage Environmental and Water Resources

    International Nuclear Information System (INIS)

    Whelan, Gene; Millard, W. David; Gelston, Gariann M.; Khangaonkar, Tarang P.; Pelton, Mitch A.; Strenge, Dennis L.; Yang, Zhaoqing; Lee, Cheegwan; Sivaraman, Chitra; Stephan, Alex J.; Hoopes, Bonnie L.; Castleton, Karl J.

    2007-01-01

    The Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES) is decision-support middleware that provides users the ability to design software solutions for complex problems. It is a software platform that provides seamless and transparent communication between modeling components by using a multi-thematic approach to provide a flexible and holistic understanding of how environmental factors potentially affect humans and the environment. It incorporates disparate components (e.g., models, databases, and other frameworks) that integrate across scientific disciplines, allowing for tailored solutions to specific activities. This paper discusses one example application of FRAMES, where several commercial off-the-shelf (COTS) software products are seamlessly linked into a planning and decision-support tool that helps manage water-based emergency situations and sustainable response. Multiple COTS models, including three surface water models, and a number of databases are linked through FRAMES to assess the impact of three asymmetric and simultaneous events, two of which impact water resources. The asymmetric events include (1) an unconventional radioactive release into a large potable water body, (2) a conventional contaminant (oil) release into navigable waters, and (3) an instantaneous atmospheric radioactive release

  8. Natural Resources, Oil and Economic Growth in Sub-Saharan Africa

    OpenAIRE

    Janda, Karel; Quarshie, Gregory

    2017-01-01

    This paper takes a critical look at the natural resource curse in countries in sub-Saharan Africa and it highlights the role of institutionalised authority. The paper first provides a comprehensive literature review of natural resource curse, Dutch disease and the role of oil resources in resource curse. This is follow by the description of the relevant economic factors in sub-Saharan Africa, which is taken as prime example of the region with both important oil and other natural resources and...

  9. TOURISM DEVELOPMENT IMPACTS ON WATER RESOURCES IN NORTHERN KUTA DISTRICT OF BADUNG BALI

    Directory of Open Access Journals (Sweden)

    I Nyoman Sunarta

    2016-03-01

    Full Text Available One of the problem in the development of Bali tourism is declining carrying capacity supporting tourism resources, especially water. In the past, rural areas have never experienced a lack of water, by which presently facing a water crisis. This condition corresponds to the higher intensity of exploitation of water resources as a result of tourism development. The rapid development of business on accommodation facilities in North Kuta District is potential to accupy rice paddy and water resources. If this development is not properly controlled can cause negative impacts not only on the existence of the fields, but also for the potential of water resources. Tourism is significantly depend on adequacy of water resources to be able to function properly, thus in case of a water crisis in the tourist areas of Bali in particular, then sooner or later will create the economic crisis and the crisis of tourism. The research was located in North Kuta District aimed to know the impacts of the development of the tourism on water resources potential. In order to understand the impact on water resources used geography disciplines approach, and applying survey research methods. Tourism development is determined by the interpretation of Quickbird imagery in a different location. Carrying capacity of water resources is determined by using the guidelines of Per Men LH. No. 17 year 2009. Impact of tourism development on water resources was determined using comparative analysis of surface water and groundwater, both an quantity and quality. There were two patterns of land use change in North Kuta District, namely from the rice fields to tourist accommodation and from the dryland/orchard land, to tourist accommodation. Changes from rice field for about 16 years (1992-2008 in North Kuta District was 1,218.44 Ha. Carrying capacity of water resources was considered deficit at all village in North Kuta District. Development of tourism, especially tourism accommodation

  10. Ohio Water Resources Council

    Science.gov (United States)

    Ohio.gov State Agencies | Online Services Twitter YouTube EPA IMAGE Ohio Water Resources Committee Ohio enjoys abundant water resources. Few states enjoy as many streams, rivers, lakes and wetlands as Ohio. Numerous agencies and organizations are involved in protecting Ohio's valuable water resources

  11. Preliminary research on quantitative methods of water resources carrying capacity based on water resources balance sheet

    Science.gov (United States)

    Wang, Yanqiu; Huang, Xiaorong; Gao, Linyun; Guo, Biying; Ma, Kai

    2018-06-01

    Water resources are not only basic natural resources, but also strategic economic resources and ecological control factors. Water resources carrying capacity constrains the sustainable development of regional economy and society. Studies of water resources carrying capacity can provide helpful information about how the socioeconomic system is both supported and restrained by the water resources system. Based on the research of different scholars, major problems in the study of water resources carrying capacity were summarized as follows: the definition of water resources carrying capacity is not yet unified; the methods of carrying capacity quantification based on the definition of inconsistency are poor in operability; the current quantitative research methods of water resources carrying capacity did not fully reflect the principles of sustainable development; it is difficult to quantify the relationship among the water resources, economic society and ecological environment. Therefore, it is necessary to develop a better quantitative evaluation method to determine the regional water resources carrying capacity. This paper proposes a new approach to quantifying water resources carrying capacity (that is, through the compilation of the water resources balance sheet) to get a grasp of the regional water resources depletion and water environmental degradation (as well as regional water resources stock assets and liabilities), figure out the squeeze of socioeconomic activities on the environment, and discuss the quantitative calculation methods and technical route of water resources carrying capacity which are able to embody the substance of sustainable development.

  12. NASA Water Resources Program

    Science.gov (United States)

    Toll, David L.

    2011-01-01

    With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. In addition to the numerous water availability issues, water quality related problems are seriously affecting human health and our environment. The potential crises and conflicts especially arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. and also in numerous parts of the world. Mitigating these conflicts and meeting water demands and needs requires using existing water resources more efficiently. The NASA Water Resources Program Element works to use NASA products and technology to address these critical water issues. The primary goal of the Water Resources is to facilitate application of NASA Earth science products as a routine use in integrated water resources management for the sustainable use of water. This also includes the extreme events of drought and floods and the adaptation to the impacts from climate change. NASA satellite and Earth system observations of water and related data provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as precipitation, snow, soil moisture, water levels, land cover type, vegetation type, and health. NASA Water Resources Program works closely to use NASA and Earth science data with other U.S. government agencies, universities, and non-profit and private sector organizations both domestically and internationally. The NASA Water Resources Program organizes its

  13. Ceramics Studio to Podiatry Clinic: The Impact of Multimedia Resources in the Teaching of Practical Skills across Diverse Disciplines

    Science.gov (United States)

    Matheson, Ruth; Mathieson, Ian

    2016-01-01

    This paper draws on the experiences of students from two vastly different disciplines to both explore the theoretical background supporting the use of multimedia resources to teach practical skills and provide a qualitative evaluation of student perceptions and experiences of using bespoke resources. Within ceramics and podiatry, practical skills…

  14. Measuring CO <sub>2sub> and N <sub>2sub> O Mass Transfer into GAP-1 CO <sub>2sub> –Capture Solvents at Varied Water Loadings

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, Greg A.; Zwoster, Andy; Zheng, Feng; Perry, Robert J.; Wood, Benjamin R.; Spiry, Irina; Freeman, Charles J.; Heldebrant, David J.

    2017-04-12

    This paper investigates the CO<sub>2sub> and N<sub>2sub> O absorption behavior in the water-lean gamma amino propyl (GAP)-1/TEG solvent system using a wetted-wall contactor. Testing was performed on a blend of GAP-1 aminosilicone in triethylene glycol at varied water loadings in the solvent. Measurements were made with CO<sub>2sub> and N<sub>2sub> O at representative lean (0.04 mol CO<sub>2sub>/mol alkalinity), middle (0.13 mol CO<sub>2sub> /mol alkalinity) and rich (0.46 mol CO<sub>2sub> /mol alkalinity) solvent loadings at 0, 5, 10 and 15 wt% water loadings at 40, 60 and 80C° and N<sub>2sub> O at (0.08-0.09 mol CO<sub>2sub> /mol alkalinity) at 5 wt% water at 40, 60 and 80C°. CO<sub>2sub> flux was found to be non-linear with respect to log mean pressure driving force (LMPD). Liquid-film mass transfer coefficients (k'g) were calculated by subtracting the gas film resistance (determined from a correlation from literature) from the overall mass transfer measurement. The resulting k'g values for CO<sub>2sub> and N<sub>2sub> O in GAP-1/TEG mixtures were found to be higher than that of 5M aqueous monoethanolamine under comparable driving force albeit at higher solvent viscosities. The k'g values for CO<sub>2sub> were also found to decrease with increasing solvent water content and increase with a decrease in temperature. These observations indicate that mass transfer of CO<sub>2sub> in GAP-1/TEG is linked to the physical solubility of CO<sub>2sub> , which is higher in organic solvents compared to water. This paper expands on the understanding of the unique mass transfer behavior and kinetics of CO<sub>2sub> capture in water-lean solvents.

  15. Optimizing and Quantifying CO<sub>2sub> Storage Resource in Saline Formations and Hydrocarbon Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bosshart, Nicholas W. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Ayash, Scott C. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Azzolina, Nicholas A. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Peck, Wesley D. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Gorecki, Charles D. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Ge, Jun [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Jiang, Tao [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Burton-Kelly, Matthew E. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Anderson, Parker W. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Dotzenrod, Neil W. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Gorz, Andrew J. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center

    2017-06-30

    In an effort to reduce carbon dioxide (CO<sub>2sub>) emissions from large stationary sources, carbon capture and storage (CCS) is being investigated as one approach. This work assesses CO<sub>2sub> storage resource estimation methods for deep saline formations (DSFs) and hydrocarbon reservoirs undergoing CO<sub>2sub> enhanced oil recovery (EOR). Project activities were conducted using geologic modeling and simulation to investigate CO<sub>2sub> storage efficiency. CO<sub>2sub> storage rates and efficiencies in DSFs classified by interpreted depositional environment were evaluated at the regional scale over a 100-year time frame. A focus was placed on developing results applicable to future widespread commercial-scale CO<sub>2sub> storage operations in which an array of injection wells may be used to optimize storage in saline formations. The results of this work suggest future investigations of prospective storage resource in closed or semiclosed formations need not have a detailed understanding of the depositional environment of the reservoir to generate meaningful estimates. However, the results of this work also illustrate the relative importance of depositional environment, formation depth, structural geometry, and boundary conditions on the rate of CO<sub>2sub> storage in these types of systems. CO<sub>2sub> EOR occupies an important place in the realm of geologic storage of CO<sub>2sub>, as it is likely to be the primary means of geologic CO<sub>2sub> storage during the early stages of commercial implementation, given the lack of a national policy and the viability of the current business case. This work estimates CO<sub>2sub> storage efficiency factors using a unique industry database of CO<sub>2sub> EOR sites and 18 different reservoir simulation models capturing fluvial clastic and shallow shelf carbonate depositional environments for reservoir depths of 1219 and 2438 meters (4000 and 8000 feet) and 7.6-, 20-, and 64-meter (25-, 66

  16. California Institute for Water Resources - California Institute for Water

    Science.gov (United States)

    Resources Skip to Content Menu California Institute for Water Resources Share Print Site Map Resources Publications Keep in Touch QUICK LINKS Our Blog: The Confluence Drought & Water Information University of California California Institute for Water Resources California Institute for Water Resources

  17. PEDAGOGICAL BASIS OF DEVELOPING OF EDUCATIONAL WEB RESOURCE IN THE DISCIPLINE “INFORMATICS AND SYSTEMOLOGY” FOR FUTURE ECOLOGIES

    Directory of Open Access Journals (Sweden)

    Sherman M.

    2017-12-01

    Full Text Available Based on the analysis of the information presented in psychological and pedagogical sources, educational and methodological works and the results of own research, a number of contradictions are identified, without which the process of formation of the professional information culture of future ecologists is problematic and uncertain. The main contradictions between the modern social requirements to the level of professional information and technological training of future ecologists and the current state of its organization in state agricultural universities are insufficient in the content of the disciplines «Fundamentals of Informatics and Computer Technology», «Informatics and Systemology», «Information Technologies», «Statistics» the direction needs by which the training of future ecologists is carried out; the actual realization of these disciplines is only a general development function in teaching process, while the realization of tasks of professional computer-information training of future ecologists is secondary task; the interdisciplinary and inter-cycle connections between professionally oriented ecological disciplines and computer science and related disciplines are insufficiently clearly identified and outlined. In order to overcome the above contradictions, we selected the professional-pedagogical principles of creating the content of the discipline «Informatics and Systemology» (principles of professional orientation, professional conformity, integrity, continuity, consistency, logical consistency, pedagogical expediency, information security ensuring, the starting level of mastering by means of information-communication technologies, there is structurization of content of discipline in accordance with the spatio- temporal boundaries, provided by the curriculum of future ecologists professional training, the components of methodological support of teaching of the discipline are developed. The web-resource of educational

  18. Promoting interdisciplinary education − the Vienna Doctoral Programme on Water Resource Systems

    Directory of Open Access Journals (Sweden)

    W. Wagner

    2012-02-01

    Full Text Available The Vienna Doctoral Programme on Water Resource Systems (DK-WRS is a programme that aims to educate students in interdisciplinary water science through cutting edge research at an international level. It is funded by the Austrian Science Fund and designed to run over a period of 12 yr during which 80 doctoral students are anticipated to graduate. This paper reports on our experiences of setting up and implementing the Programme. We identify three challenges: integrating the disciplines, maintaining depth in an interdisciplinary programme, and teaching subjects remote to each student's core expertise. To address these challenges we adopt a number of approaches. We use three levels of instruments to foster integration across the disciplines: joint groups (e.g. a joint study programme, joint science questions (e.g. developed in annual symposia, and joint study sites. To maintain depth we apply a system of quality control including regular feedback sessions, theses by journal publications and international study exchange. For simultaneously teaching students from civil and environmental engineering, biology, geology, chemistry, mathematics we use visually explicit teaching, learning by doing, extra mentoring and by cross relating associated subjects. Our initial assessment of the Programme shows some very positive outcomes. Joint science questions formed between students from various disciplines indicate integration is being achieved. The number of successful publications in top journals suggests that depth is maintained. Positive feedback from the students on the variety and clarity of the courses indicates the teaching strategy is working well. Our experiences have shown that implementing and running an interdisciplinary doctoral programme has its challenges and is demanding in terms of time and human resources but seeing interactions progress and watching people grow and develop their way of thinking in an interdisciplinary environment is a

  19. Water - an inexhaustible resource?

    Science.gov (United States)

    Le Divenah, C.; Esperou, E.

    2012-04-01

    We have chosen to present the topic "Water", by illustrating problems that will give better opportunities for interdisciplinary work between Natural Science (Physics, Chemistry, Biology and Geology) teachers at first, but also English teachers and maybe others. Water is considered in general, in all its shapes and states. The question is not only about drinking water, but we would like to demonstrate that water can both be a fragile and short-lived resource in some ways, and an unlimited energy resource in others. Water exists on Earth in three states. It participates in a large number of chemical and physical processes (dissolution, dilution, biogeochemical cycles, repartition of heat in the oceans and the atmosphere, etc.), helping to maintain the homeostasis of the entire planet. It is linked to living beings, for which water is the major compound. The living beings essentially organized themselves into or around water, and this fact is also valid for human kind (energy, drinking, trade…). Water can also be a destroying agent for living beings (tsunamis, mud flows, collapse of electrical dams, pollution...) and for the solid earth (erosion, dissolution, fusion). I) Water, an essential resource for the human kind After having highlighted the disparities and geopolitical problems, the pupils will study the chemistry of water with its components and their origins (isotopes, water trip). Then the ways to make it drinkable will be presented (filtration, decantation, iceberg carrying…) II) From the origin of water... We could manage an activity where different groups put several hypotheses to the test, with the goal to understand the origin(s?) of water on Earth. Example: Isotopic signature of water showing its extraterrestrial origin.. Once done, we'll try to determine the origin of drinking water, as a fossil resource. Another use of isotopes will allow them to evaluate the drinking water age, to realize how precious it can be. III) Water as a sustainable energy

  20. Adsorption of acid red from dye wastewater by Zn{sub 2}Al-NO{sub 3} LDHs and the resource of adsorbent sludge as nanofiller for polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Tianshan; Gao, Yanshan; Zhang, Zhang [College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083 (China); Umar, Ahmad, E-mail: ahmadumar786@gmail.com [Department of Chemistry, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Yan, Xingru; Zhang, Xi; Guo, Zhanhu [Integrated Composites Laboratory, Dan F Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710 (United States); Wang, Qiang, E-mail: qiang.wang.ox@gmail.com [College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083 (China)

    2014-02-25

    Highlights: • High removal efficiency of acid red 97 from dye wastewater was achieved by using Zn{sub 2}Al-NO{sub 3} LDHs adsorbent. • The resource of the LDH adsorbent sludge as nanofiller for polypropylene (PP) was proposed for the first time. • The thermal stability of PP was significantly improved by introducing only small amount of LDH adsorbent sludge. • The resource the dye adsorbent sludge as multifunctional nanofiller for polymers is a very promising option. -- Abstract: In this contribution, we report the removal of acid red 97 (AC97) from simulated dye wastewater by using Zn{sub 2}Al-NO{sub 3} layered double hydroxides (LDHs) adsorbent, and the resource of the LDH adsorbent sludge as nanofiller for polypropylene (PP) for the first time. The obtained Zn{sub 2}Al-NO{sub 3} LDH was analyzed using X-ray diffraction and scanning electron microscopy analysis, confirming the formation of pure and platelike LDH nanoparticles. The effects of adsorption time and initial dye concentration on the removal of AC97 from wastewater were systematically investigated, showing that the Zn{sub 2}Al-NO{sub 3} LDHs is very efficient in removing AC97. The saturated adsorption capacity of water washed and acetone washed Zn{sub 2}Al-LDHs is 204.4 and 299.5 mg/g, respectively. Finally, the LDH adsorbent sludge was added into PP using a modified solvent mixing method. Thermal gravimetric analysis and ultraviolet (UV) absorption analysis of PP/Zn{sub 2}Al-AC97 LDHs nanocomposites suggested that the Zn{sub 2}Al-AC97 LDH can significantly improve the thermal stability and UV shielding ability of PP. This data demonstrated that it is very promising to resource the dye adsorbent sludge as multifunctional nanofiller for polymers.

  1. Water Resource Sustainability Conference 2015

    Science.gov (United States)

    Water Resource Sustainability Issues on Tropical Islands December 1 - 3, 2015 | Hilton Hawaiian Village | Honolulu, Hawaii Presented By Water Resources Research Center (WRRC), Hawaii and American Samoa Water and Environmental Research Institute (WERI), Guam Puerto Rico Water Resources and Environmental Research Institute

  2. Simulation of blue and green water resources in the Wei River basin, China

    Directory of Open Access Journals (Sweden)

    Z. Xu

    2014-09-01

    Full Text Available The Wei River is the largest tributary of the Yellow River in China and it is suffering from water scarcity and water pollution. In order to quantify the amount of water resources in the study area, a hydrological modelling approach was applied by using SWAT (Soil and Water Assessment Tool, calibrated and validated with SUFI-2 (Sequential Uncertainty Fitting program based on river discharge in the Wei River basin (WRB. Sensitivity and uncertainty analyses were also performed to improve the model performance. Water resources components of blue water flow, green water flow and green water storage were estimated at the HRU (Hydrological Response Unit scales. Water resources in HRUs were also aggregated to sub-basins, river catchments, and then city/region scales for further analysis. The results showed that most parts of the WRB experienced a decrease in blue water resources between the 1960s and 2000s, with a minimum value in the 1990s. The decrease is particularly significant in the most southern part of the WRB (Guanzhong Plain, one of the most important grain production basements in China. Variations of green water flow and green water storage were relatively small on the spatial and temporal dimensions. This study provides strategic information for optimal utilization of water resources and planning of cultivating seasons in the Wei River basin.

  3. Eclectic continuum, distinct discipline or sub-domain of communication studies? Theoretical considerations and empirical findings on the disciplinarity, multidisciplinarity and transdisciplinarity of journalism studies

    Directory of Open Access Journals (Sweden)

    Martin Löffelholz

    2011-06-01

    Full Text Available Is journalism studies a sub-domain of communication studies, adistinct discipline, a multidisciplinary merger or a transdisciplinary endeavour? This question is discussed by analyzing the 2008 and2009 volumes of seven academic journals focusing on journalismresearch. The sample includes 349 articles published in BrazilianJournalism Research, Ecquid Novi, Journalism & CommunicationMonographs, Journalism & Mass Communication Quarterly, PacificJournalism Review, Journalism Studies, or Journalism: Theory,Practice and Criticism. Overall, the findings reveal that journalismresearch mainly applies theoretical approaches and empiricalmethods deriving from other disciplines, particularly sociology, psychology or cultural studies. In many countries, however, journalism studies has reached a comparatively high level of institutionalization indicated by the large number of specific schools, professorships, professional associations and respective academic journals. In conclusion, we argue that journalism studies is a sub-domain of communication studies, which integrates andtranscends various disciplines aiming to become one of the axialsubjects of the 21st century.

  4. ECLECTIC CONTINUUM, DISTINCT DISCIPLINE OR SUB-DOMAIN OF COMMUNICATION STUDIES? Theoretical considerations and empirical findings on the disciplinarity, multidisciplinarity and transdisciplinarity of journalism studies

    Directory of Open Access Journals (Sweden)

    Liane Rothenberger

    2011-06-01

    Full Text Available Is journalism studies a sub-domain of communication studies, adistinct discipline, a multidisciplinary merger or a transdisciplinary endeavour? This question is discussed by analyzing the 2008 and2009 volumes of seven academic journals focusing on journalismresearch. The sample includes 349 articles published in BrazilianJournalism Research, Ecquid Novi, Journalism & CommunicationMonographs, Journalism & Mass Communication Quarterly, PacificJournalism Review, Journalism Studies, or Journalism: Theory,Practice and Criticism. Overall, the findings reveal that journalismresearch mainly applies theoretical approaches and empiricalmethods deriving from other disciplines, particularly sociology, psychology or cultural studies. In many countries, however, journalism studies has reached a comparatively high level of institutionalization indicated by the large number of specific schools, professorships, professional associations and respective academic journals. In conclusion, we argue that journalism studies is a sub-domain of communication studies, which integrates andtranscends various disciplines aiming to become one of the axialsubjects of the 21st century.

  5. Isotope hydrology: applied discipline in earth sciences

    International Nuclear Information System (INIS)

    Froehlich, K.; Rozanski, K.; Araguas Araguas, L.

    1998-01-01

    The discipline 'isotope hydrology' is being reviewed from the perspective of the Isotope Hydrology Section of the International Atomic Energy Agency in Vienna. The Section was created in the late fifties and is activities involved int the scientific progress of the discipline. The role of the IAEA in the development of isotope hydrology has always been of a dual nature: on one hand, the Section has been and still is heavily engaged in supporting and coordinating further development of isotope methodologies, on the other hand, it serves as an interface between the methodological development in research institutes and the applied work using proven techniques in field projects on water resources assessment and management. The paper provides a brief overview of applications of isotope-based methodologies in hydrology, with emphasis on new trends and challenges related to man's growing impact on the water cycle. This contribution is a tribute to the memory of the former Head of the Isotope Hydrology Section, Jean-Charles Fontes, to whom we owe so much. (authors)

  6. Recovery of Organic and Amino Acids from Sludge and Fish Waste in Sub Critical Water Conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal

    2011-12-01

    Full Text Available The possibility of organic and amino acid production from the treatment of sludge and fish waste using water at sub critical conditions was investigated. The results indicated that at sub-critical conditions, where the ion product of water went through a maximum, the formation of organic acids was favorable. The presence of oxidant favored formation of acetic and formic acid. Other organic acids of significant amount were propionic, succinic and lactic acids. Depending on the type of wastes, formation of other organic acids was also possible. Knowing the organic acids obtained by hydrolysis and oxidation in sub-critical water of various wastes are useful in designing of applicable waste treatment process, complete degradation of organic wastes into volatile carbon and water, and also on the viewpoint of resource recovery. The production of lactic acid was discussed as well. The results indicated that temperature of 573 K, with the absence of oxidant, yield of lactic acid from fish waste was higher than sewage sludge. The maximum yield of total amino acids (137 mg/g-dry fish from waste fish entrails was obtained at subcritical condition (T = 523 K, P = 4 MPa at reaction time of 60 min by using the batch reactor. The amino acids obtained in this study were mainly alanine and glycine. Keywords:  organic acids, amino acids, sub-critical water, hydrothermal, resources recovery

  7. Climate change adaptation strategies: Water resources management options for smallholder farming systems in sub-Saharan Africa

    OpenAIRE

    Ngigi, S.N.

    2009-01-01

    Metadata only record This report describes a study that evaluated water management systems and their potential to address water scarcity problems in sub-Saharan Africa. Stress on water availability induced by climate change is negatively affecting smallholders causing crop productivity to decline. This study also notes that political and financial support of these small-scale water management systems is very important for sustainability. These researchers argue that there needs to be a Blu...

  8. Framework for Assessing Water Resource Sustainability in River Basins

    Science.gov (United States)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    indicators to use in the analytical evaluation. A software template guides users through this process. For demonstration, the RBAF-C template has been applied to address competing irrigation demand-anadromous fish flow requirements in the Lemhi Basin, Idaho, and the increase in municipal and industrial demand in the Upper Bhima River Basin, India, which affects water supply to downstream irrigation command areas. The RBAF-A is for quantitatively evaluating the current conditions of water resources in a river basin and testing potential scenarios with respect to the sustainability criterion. The primary foundation for quantifying water movement is a river basin model. Upon this, the RBAF-A Interface organizes input data, collects output data from each discipline, and reports the HWB. Within the RBAF-A Interface, the EGS-HWB Calculator collects output time series data, processes the data with respect to space and time, and computes the ecologic, economic, and social well-being. The Reporting Tool presents the scenario output as values and trends in well-being. To demonstrate the technology, the RBAF-A was applied to the Lemhi Basin, Idaho. The RBAF supports the IWRM process by providing a structured and transparent means to understand the water related issues, analyses to conduct, and indicators to select in assessing the sustainability of water programs and policies in river basins.

  9. Water management - management actions applied to water resources system

    International Nuclear Information System (INIS)

    Petkovski, Ljupcho; Tanchev, Ljubomir

    2001-01-01

    In this paper are presented a general description of water resource systems, a systematisation of the management tasks and the approaches for solution, including a review of methods used for solution of water management tasks and the fundamental postulates in the management. The management of water resources is a synonym for the management actions applied to water resource systems. It is a general term that unites planning and exploitation of the systems. The modern planning assumes separating the water racecourse part from the hydro technical part of the project. The water resource study is concerned with the solution for the resource problem. This means the parameters of the system are determined in parallel with the definition of the water utilisation regime. The hydro-technical part of the project is the design of structures necessary for the water resource solution. (Original)

  10. The Benefit of Using Isotopes in NO{sub 3}{sup -} Water Quality Management

    Energy Technology Data Exchange (ETDEWEB)

    Widory, D. [BRGM, MMA/ISO, Orleans (France)

    2013-05-15

    Nitrate (NO{sub 3}{sup -}) is one of the world's major pollutants of drinking water resources. Although recent European directives have reduced input from intensive agriculture, NO{sub 3}{sup -} levels in groundwater are dangerously approaching the drinking water limit of 50 mg/L almost everywhere. Determining the sources of groundwater contamination is an important first step towards improving its quality through emission control. It is with this aim that we will review the benefit of using a multi-isotopic approach ({delta}{sup 15}N, {delta}{sup 18}O and {delta}{sup 11}B), in addition to conventional hydrogeological analyses, to trace the origin of NO{sub 3}{sup -} pollution in water. Recent research widely shows the significant added value of using these three isotopes to precisely distinguish nitrate sources, trace them in water and (semi)-quantify their respective contributions. The isotope approach inherently provides more information than classical chemical studies (based mainly on the monitoring of NO{sub 3}{sup -} concentrations), and the technical/economical feasibility of integrating it as part of water body characterization and analysis of pressure and impact due to nitrate pollution, for the more effective implementation of environmental management measures in river basins can be demonstrated to policy makers. (author)

  11. Fourth Tennessee water resources symposium

    International Nuclear Information System (INIS)

    Sale, M.J.; Presley, P.M.

    1991-01-01

    The annual Tennessee Water Resources Symposium was initiated in 1988 as a means to bring together people with common interests in the state's important water-related resources at a technical, professional level. Initially the symposium was sponsored by the American Institute of Hydrology and called the Hydrology Symposium, but the Tennessee Section of the American Water Resources Association (AWRA) has taken on the primary coordination role for the symposium over the last two years and the symposium name was changed in 1990 to water resources to emphasize a more inter-disciplinary theme. This year's symposium carries on the successful tradition of the last three years. Our goal is to promote communication and cooperation among Tennessee's water resources professionals: scientists, engineers, and researchers from federal, state, academic, and private institutions and organizations who have interests and responsibilities for the state's water resources. For these conference proceedings, individual papers are processed separately for the Energy Data Base

  12. Linking scientific disciplines: Hydrology and social sciences

    Science.gov (United States)

    Seidl, R.; Barthel, R.

    2017-07-01

    The integration of interdisciplinary scientific and societal knowledge plays an increasing role in sustainability science and more generally, in global change research. In the field of water resources, interdisciplinarity has long been recognized as crucial. Recently, new concepts and ideas about how to approach water resources management more holistically have been discussed. The emergence of concepts such as socio-hydrology indicates the growing relevance of connections between social and hydrological disciplines. In this paper, we determine how well social sciences are integrated with hydrological research by using two approaches. First, we conducted a questionnaire survey with a sample of hydrology researchers and professionals (N = 353) to explore current opinions and developments related to interdisciplinary collaboration between hydrologists and social scientists. Second, we analyzed the disciplinary composition of author teams and the reference lists of articles pertaining to the socio-hydrology concept. We conclude that interdisciplinarity in water resources research is on a promising track but may need to mature further in terms of its aims and methods of integration. We find that current literature pays little attention to the following questions: What kind of interdisciplinarity do different scholars want? What are social scientists' preferred roles and knowledge from a hydrology perspective?

  13. Economic Requirements of Water Resources Management

    Directory of Open Access Journals (Sweden)

    Nasser Khiabani

    2017-03-01

    Full Text Available Indicators of water resources status and water consumption in Iran reveal an imbalance between supply and demand. This is compounded by the current unrealistic water price that signals the inefficiency of the water market in Iran. In economics parlance, the most important factors responsible for the low efficiency of water market are inaccurate valuation and failure to define the ownership rights of water. Low prices, low sensitivity of water demand to prices, and the lack of proper inputs as substitutes for water resources have collectively contributed to excessive pressures on the available water resources for domestic, industrial, and agricultural uses. A brief glance reveals that water resources in Iran are merely priced based on cost accounting. This is while study has shown that developed countries adopt approaches to water pricing that not only consider the final cost of water but also take into account such other parameters that are affected by intrinsic value of water including its bequest and existence values. The present paper draws upon the concepts of value, expenses, and pricing of water in an attempt to explore the marketing and pricing of water resources as the two major tools economists employ in the management of these resources. It is the objective of the study to arrive at an accurate definition of ownership rights of water resources to improve upon the present water marketing. In doing so, the more important components of modern pricing strategies adopted by developed nations will also be investigated. Results indicate that the present cost accounting method used in pricing water in Iran will in the long-run lead to the wastage of water resources and that it should, therefore, be given up in favor modern and more realistic policies to avoid such waste of resources.

  14. Water resources assessment and prediction in China

    Directory of Open Access Journals (Sweden)

    W. Guangsheng

    2016-10-01

    Full Text Available Water resources assessment in China, can be classified into three groups: (i comprehensive water resources assessment, (ii annual water resources assessment, and (iii industrial project water resources assessment. Comprehensive water resources assessment is the conventional assessment where the frequency distribution of water resources in basins or provincial regions are analyzed. For the annual water resources assessment, water resources of the last year in basins or provincial regions are usually assessed. For the industrial project water resources assessment, the water resources situation before the construction of industrial project has to be assessed. To address the climate and environmental changes, hydrological and statistical models are widely applied for studies on assessing water resources changes. For the water resources prediction in China usually the monthly runoff prediction is used. In most low flow seasons, the flow recession curve is commonly used as prediction method. In the humid regions, the rainfall-runoff ensemble prediction (ESP has been widely applied for the monthly runoff prediction. The conditional probability method for the monthly runoff prediction was also applied to assess next month runoff probability under a fixed initial condition.

  15. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring.

    Science.gov (United States)

    Peletz, Rachel; Kumpel, Emily; Bonham, Mateyo; Rahman, Zarah; Khush, Ranjiv

    2016-03-02

    Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies) across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO) Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies), served larger populations, operated in urban settings, and had higher water quality budgets (all p water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety.

  16. Resource reliability, accessibility and governance: pillars for managing water resources to achieve water security in Nepal

    Science.gov (United States)

    Biggs, E. M.; Duncan, J.; Atkinson, P.; Dash, J.

    2013-12-01

    As one of the world's most water-abundant countries, Nepal has plenty of water yet resources are both spatially and temporally unevenly distributed. With a population heavily engaged in subsistence farming, whereby livelihoods are entirely dependent on rain-fed agriculture, changes in freshwater resources can substantially impact upon survival. The two main sources of water in Nepal come from monsoon precipitation and glacial runoff. The former is essential for sustaining livelihoods where communities have little or no access to perennial water resources. Much of Nepal's population live in the southern Mid-Hills and Terai regions where dependency on the monsoon system is high and climate-environment interactions are intricate. Any fluctuations in precipitation can severely affect essential potable resources and food security. As the population continues to expand in Nepal, and pressures build on access to adequate and clean water resources, there is a need for institutions to cooperate and increase the effectiveness of water management policies. This research presents a framework detailing three fundamental pillars for managing water resources to achieve sustainable water security in Nepal. These are (i) resource reliability; (ii) adequate accessibility; and (iii) effective governance. Evidence is presented which indicates that water resources are adequate in Nepal to sustain the population. In addition, aspects of climate change are having less impact than previously perceived e.g. results from trend analysis of precipitation time-series indicate a decrease in monsoon extremes and interannual variation over the last half-century. However, accessibility to clean water resources and the potential for water storage is limiting the use of these resources. This issue is particularly prevalent given the heterogeneity in spatial and temporal distributions of water. Water governance is also ineffective due to government instability and a lack of continuity in policy

  17. Context Matters – Rethinking the Resource Curse in Sub-Saharan Africa

    OpenAIRE

    Matthias Basedau

    2005-01-01

    Natural resources in sub-Saharan Africa suffer from a bad reputation. Oil and diamonds, particularly, have been blamed for a number of Africa’s illnesses such as poverty, corruption, dictatorship and war. This paper outlines the different areas and transmission channels of how this so-called “resource curse” is said to materialize. By assessing empirical evidence on sub-Saharan Africa it concludes that the resource curse theory fails to sufficiently explain why and how several countries have ...

  18. Modern water resources engineering

    CERN Document Server

    Yang, Chih

    2014-01-01

    The Handbook of Environmental Engineering series is an incredible collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. This exciting new addition to the series, Volume 15: Modern Water Resources Engineering , has been designed to serve as a water resources engineering reference book as well as a supplemental textbook. We hope and expect it will prove of equal high value to advanced undergraduate and graduate students, to designers of water resources systems, and to scientists and researchers. A critical volume in the Handbook of Environmental Engineering series, chapters employ methods of practical design and calculation illustrated by numerical examples, include pertinent cost data whenever possible, and explore in great detail the fundamental principles of the field. Volume 15: Modern Water Resources Engineering, provides information on some of the most innovative and ground-breaking advances in the field today from a panel of esteemed...

  19. Water resource management: an Indian perspective.

    Science.gov (United States)

    Khadse, G K; Labhasetwar, P K; Wate, S R

    2012-10-01

    Water is precious natural resource for sustaining life and environment. Effective and sustainable management of water resources is vital for ensuring sustainable development. In view of the vital importance of water for human and animal life, for maintaining ecological balance and for economic and developmental activities of all kinds, and considering its increasing scarcity, the planning and management of water resource and its optimal, economical and equitable use has become a matter of the utmost urgency. Management of water resources in India is of paramount importance to sustain one billion plus population. Water management is a composite area with linkage to various sectors of Indian economy including the agricultural, industrial, domestic and household, power, environment, fisheries and transportation sector. The water resources management practices should be based on increasing the water supply and managing the water demand under the stressed water availability conditions. For maintaining the quality of freshwater, water quality management strategies are required to be evolved and implemented. Decision support systems are required to be developed for planning and management of the water resources project. There is interplay of various factors that govern access and utilization of water resources and in light of the increasing demand for water it becomes important to look for holistic and people-centered approaches for water management. Clearly, drinking water is too fundamental and serious an issue to be left to one institution alone. It needs the combined initiative and action of all, if at all we are serious in socioeconomic development. Safe drinking water can be assured, provided we set our mind to address it. The present article deals with the review of various options for sustainable water resource management in India.

  20. Water resources in the Everglades

    Science.gov (United States)

    Schneider, William J.

    1966-01-01

    Aerial photography is playing an important role in the evaluation of the water resources of the almost-inaccessible 1,400 square miles of Everglades in southern Florida. Color, infrared, and panchromatic photographs show salient features that permit evaluation of the overall water resources picture. The fresh water-salt water interface, drainage patterns, ecologic changes resulting from flood and drought, quantities of flow, and other hydrologic features are easily observed or measured from the photographs. Such data permit areal extension of very limited point observations of water resources data, and will assist in providing the necessary guidelines for decisions in water management in the Everglades.

  1. Rapid extraction of uranium from sea water using Fe{sub 3}O{sub 4} and humic acid coated Fe{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, Pallavi, E-mail: psinghal@barc.gov.in [Homi Bhabha National Institute, Mumbai 400094 (India); Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Jha, Sanjay K. [Homi Bhabha National Institute, Mumbai 400094 (India); Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Pandey, Shailaja P. [Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Neogy, Suman [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2017-08-05

    Highlights: • Uranium extraction using Fe{sub 3}O{sub 4} and HA coated Fe{sub 3}O{sub 4} NPs has been demonstrated. • Result indicates uranium extraction from both water and sea water matrix. • With increase in HA coating uranium extraction increases. • Fe{sub 3}O{sub 4}/HA 1 is the best material among synthesized one for uranium extraction. - Abstract: Uranium is one of the most toxic elements present in the environment and a number of methods have been developed for its extraction. Herein we have demonstrated a new method using magnetic nanoparticles (NPs) that can be used for uranium extraction from water and sea water matrix. Fe{sub 3}O{sub 4} and humic acid (HA) coated Fe{sub 3}O{sub 4} NPs with different amount of HA coating were synthesized and uranium sorption from water and sea water matrix was demonstrated. It was observed that sorption increases with increase in amount of HA coating. NPs settlement in presence of magnetic field was monitored where only bare Fe{sub 3}O{sub 4} and Fe{sub 3}O{sub 4}/HA 1 NPs settles while no settlement was observed for Fe{sub 3}O{sub 4}/HA 2 and Fe{sub 3}O{sub 4}/HA 3 NPs. Considering both sorption and particle separation from the matrix Fe{sub 3}O{sub 4}/HA 1 NPs are the best among synthesized ones with maximum sorption capacity of 10.5 mg of U/g of NPs. The results presented here reveal the exceptional potential of magnetic NPs and functionalized magnetic NPs for environmental remediation of uranium and to extract uranium from sea water on which to the best of our knowledge no report is available till now.

  2. Optimal Allocation of Water Resources Based on Water Supply Security

    Directory of Open Access Journals (Sweden)

    Jianhua Wang

    2016-06-01

    Full Text Available Under the combined impacts of climate change and human activities, a series of water issues, such as water shortages, have arisen all over the world. According to current studies in Science and Nature, water security has become a frontier critical topic. Water supply security (WSS, which is the state of water resources and their capacity and their capacity to meet the demand of water users by water supply systems, is an important part of water security. Currently, WSS is affected by the amount of water resources, water supply projects, water quality and water management. Water shortages have also led to water supply insecurity. WSS is now evaluated based on the balance of the supply and demand under a single water resources condition without considering the dynamics of the varying conditions of water resources each year. This paper developed an optimal allocation model for water resources that can realize the optimal allocation of regional water resources and comprehensively evaluate WSS. The objective of this model is to minimize the duration of water shortages in the long term, as characterized by the Water Supply Security Index (WSSI, which is the assessment value of WSS, a larger WSSI value indicates better results. In addition, the simulation results of the model can determine the change process and dynamic evolution of the WSS. Quanzhou, a city in China with serious water shortage problems, was selected as a case study. The allocation results of the current year and target year of planning demonstrated that the level of regional comprehensive WSS was significantly influenced by the capacity of water supply projects and the conditions of the natural water resources. The varying conditions of the water resources allocation results in the same year demonstrated that the allocation results and WSSI were significantly affected by reductions in precipitation, decreases in the water yield coefficient, and changes in the underlying surface.

  3. The Water Resources Board: England and Wales’ Venture into National Water Resources Planning, 1964-1973

    Directory of Open Access Journals (Sweden)

    Christine S. McCulloch

    2009-10-01

    Full Text Available An era of technocratic national planning of water resources is examined against the views of a leading liberal economist and critics, both contemporary and retrospective. Post Second World War Labour Governments in Britain failed to nationalise either land or water. As late as 1965, the idea of public ownership of all water supplies appeared in the Labour Party manifesto and a short-lived Ministry of Land and Natural Resources, 1964-1966, had amongst its duties the development of plans for reorganising the water supply industry under full public ownership. However, instead of pursuing such a politically dangerous takeover of the industry, in July 1964, a Water Resources Board (WRB, a special interest group dominated by engineers, was set up to advise on the development of water resources. In its first Annual Report (1965 WRB claimed its role as "the master planner of the water resources of England and Wales". The WRB had a great deal of influence and justified its national planning role by promoting large-scale supply schemes such as interbasin transfers of water, large reservoirs and regulated rivers. Feasibility studies were even carried out for building innovative, large storage reservoirs in tidal estuaries. Less progress was made on demand reduction. Yet the seeds of WRB’s demise were contained in its restricted terms of reference. The lack of any remit over water quality was a fatal handicap. Quantity and quality needed to be considered together. Privatisation of the water industry in 1989 led to a shift from national strategic planning by engineers to attempts to strengthen economic instruments to fit supply more closely to demand. Engineers have now been usurped as leaders in water resources management by economists and accountants. Yet climate change may demand a return to national strategic planning of engineered water supply, with greater democratic input.

  4. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Rachel Peletz

    2016-03-01

    Full Text Available Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies, served larger populations, operated in urban settings, and had higher water quality budgets (all p < 0.05. Our results indicate that smaller water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety.

  5. Promoting Interdisciplinary Education: The Vienna Doctoral Programme on Water Resource Systems

    Science.gov (United States)

    Blöschl, Günter; Bucher, Christian; Carr, Gemma; Farnleitner, Andreas; Rechberger, Helmut; Wagner, Wolfgang; Zessner, Matthias

    2010-05-01

    An interdisciplinary approach is often described as a valuable strategy to assist in overcoming the existing and emerging challenges to water resource management. The development of educational approaches to instil a culture of interdisciplinarity in the future generation of water resource professionals will help to meet this strategic need. The Vienna Doctoral Programme on Water Resource Systems demonstrates how the adoption of an interdisciplinary education framework has been applied to a graduate programme in the water sciences. The interdisciplinary approach aims to provide doctoral research students with an understanding of the wide spectrum of processes relevant to water resource systems. This will enable them to bring together a range of ideas, strategies and methods to their current research and future careers. The education programme also aims to teach the softer skills required for successful interdisciplinary work such as the ability to communicate clearly with non-specialist professionals and the capacity to listen to and accommodate suggestions from experts in different disciplines, which have often not traditionally been grouped together. The Vienna Doctoral Programme achieves these aims through teaching an appreciation for a wide variety of approaches including laboratory analysis, field studies and numerical methods across the fields of hydrology, remote sensing, hydrogeology, structural mechanics, microbiology, water quality and resource management. Teaching takes the form of a detailed study programme on topics such as socio-economic concepts, resource and river basin management, modelling and simulation methods, health related water quality targets, urban water management, spatial data from remote sensing and basics for stochastic mechanics. Courses are also held by internationally recognised top scientists, and a guest scientist seminar series allows doctoral researchers to profit from the expertise of senior researchers from around the world

  6. Water : a commodity or resource?

    International Nuclear Information System (INIS)

    Pomeroy, G.

    2003-01-01

    Over the past several years, natural gas demand has increased significantly, as it is seen as an environmentally friendly, convenient and cost effective fuel. As a result, Alberta should experience the development of a sustainable resource in the form of natural gas from coal, provided adequate management of associated water is in place. The environmental impact and volume of water produced with natural gas from coal can be significant. Water is scarce and demand is growing. Gas producers are faced with the challenge of high water production and disposal costs, and often choose the deep disposal option as the most economical solution. However, environmentalists and agriculture groups who view water as a valuable resource, warrant the costs associated with the treatment of produced water. The author proposed a conceptual solution to this dilemma concerning produced water. It was suggested that producers of water should be connected with consumers, while allowing free market supply and demand dynamics to price out the inefficient use of the resource. The author also discussed the related regulatory, environmental, technological, economic, and commercial issues. It was concluded that water is both a resource and a commodity. Alberta should implement measures to promote water conservation, pollute less, and manage supply and demand. figs

  7. Lunar Water Resource Demonstration

    Science.gov (United States)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  8. Something for Everyone? The Different Approaches of Academic Disciplines to Open Educational Resources and the Effect on Widening Participation

    Science.gov (United States)

    Coughlan, Tony; Perryman, Leigh-Anne

    2011-01-01

    This article explores the relationship between academic disciplines' representation in the United Kingdom Open University's (OU) OpenLearn open educational resources (OER) repository and in the OU's fee-paying curriculum. Becher's (1989) typology was used to subdivide the OpenLearn and OU fee-paying curriculum content into four disciplinary…

  9. Human Resources Department: report on the settlement of disputes and discipline

    CERN Multimedia

    HR Department

    2016-01-01

    The 2015 Annual Report from the Human Resources Department concerning the settlement of disputes and discipline under Chapter VI of the Staff Rules and Regulations.   Introduction The 2015 Annual Report under Chapter VI (“Settlement of Disputes and Discipline”) of the Staff Rules and Regulations serves to report: cases of submission of requests for review; internal appeals; complaints before the Administrative Tribunal of the International Labour Organization (ILOAT); and cases in which disciplinary action was taken. Requests for Review and Internal Appeals Under Article S VI 1.01 of the Staff Rules, members of the personnel may challenge an administrative decision by the Director-General where it adversely affects the conditions of employment or association that derive from their contract or from the Staff Rules and Regulations. If permitted by the Staff Rules and Regulations, a decision may be challenged internally within the Organization: through a review procedure; or ...

  10. Regional water resources assessments using an uncertain modelling approach: The example of Swaziland

    Directory of Open Access Journals (Sweden)

    C. Ndzabandzaba

    2017-04-01

    New hydrological insights for this region: The analysis of hydrological indices highlights the regional variations in hydrological processes and sub-basin response. The adopted modelling approach provides further insight into all of the uncertainties associated with quantifying the available water resources of Swaziland. The study has provided more insight into the spatial variability of the hydrological response and existing development impacts than was previously available. These new insights should provide an improved basis for future water management in Swaziland.

  11. From Conflict to Co-co-operation in International Water Resources Management: Challenges and Opportunities in Sub-Saharan Africa

    International Nuclear Information System (INIS)

    Onyango, O.W

    2006-01-01

    Water and life are interdependent and inseparable. In order to achieve effective water management strategies ought to be premised on good understanding of ecosystems within the environment. Fresh water resources experience a lot of stress due to high competition which results in local, national and regional conflicts due to lack of co-ordinated water management system. The fresh water basins comprise nearly half of the territory and population of the world. In 2002, the World Summit on Sustainable development held in Johannesburg pointed out that, due to looming water shortage other sectors of life like health, human rights, environment, welfare politics and culture. On the other hand, due to diminishing trans-boundary water resources and their variable occurrence in space and time, there is a likelihood of inter-state tensions with possibilities of armed conflict. The paper therefore recommended for integrated, cooperative and culturally adapted solutions which take into account the diversity of human interactions with water

  12. Total Water Management: The New Paradigm for Urban Water Resources Planning

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  13. High efficient multifunctional Ag{sub 3}PO{sub 4} loaded hydroxyapatite nanowires for water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaling; Zhou, Hangyu; Zhu, Genxing [Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou (China); Shao, Changyu; Pan, Haihua; Xu, Xurong [Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou (China); Qiushi Academy for Advanced Studies, Zhejiang University (China); Tang, Ruikang, E-mail: rtang@zju.edu.cn [Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou (China); Qiushi Academy for Advanced Studies, Zhejiang University (China)

    2015-12-15

    Highlights: • The multifunctional Ag{sub 3}PO{sub 4} loaded hydroxyapatite (HAP) nanowires were synthesized via a facile in-situ precipitation method. • By optimizing the initial concentration of AgNO{sub 3}, the well-distributed Ag{sub 3}PO{sub 4}/HAP composites could be achieved. • The Ag{sub 3}PO{sub 4}/HAP composites showed excellent photocatalytic performance for the decomposition of dyes under visible light irradiation. • The maximum absorption capacity of the Ag{sub 3}PO{sub 4}/HAP composites for Pb(II) was 250 mg/g, approximately three times as that of pure HAP. • The Ag{sub 3}PO{sub 4}/HAP composites also exhibited excellent antibacterial activities even at relative low concentrations. - Abstract: Organic, inorganic, and biological pollutants are typical water contaminants and they seriously affect water quality. In this study, we suggested that a novel multifunctional Ag{sub 3}PO{sub 4} loaded hydroxyapatite (HAP) material can remove the typical pollutants from water. The Ag{sub 3}PO{sub 4}/HAP composites were synthesized facilely via in-situ precipitation of Ag{sub 3}PO{sub 4} on the pre-existing HAP nanowires. By optimizing the composition of Ag{sub 3}PO{sub 4} and HAP, the material could achieve an optimal photocatalytic activity to decompose rhodamine B (RhB), methyl orange (MO) and methylene blue (MB) under visible light irradiations with enhanced pH stability. Besides, the adsorption of Pb(II) on the Ag{sub 3}PO{sub 4}/HAP reached a maximum capacity of 250 mg/g and this value was approximately three times as that of pure HAP. Furthermore, the composite material exhibited excellent antibacterial activities towards gram-negative bacterium (Escherichia coli) and gram-positive bacterium (Stphylococcus aureus). The results highlighted the cooperative effect between Ag{sub 3}PO{sub 4} and hydroxyapatite (HAP). The simultaneous removals of dyes, toxic metal ions, and bacteria with a high efficiency followed an easy approach for the purification

  14. An Exploration of the Relationships between Student Racial Background and the School Sub-Contexts of Office Discipline Referrals: A Critical Race Theory Analysis

    Science.gov (United States)

    Anyon, Yolanda; Lechuga, Chalane; Ortega, Debora; Downing, Barbara; Greer, Eldridge; Simmons, John

    2018-01-01

    A growing body of research indicates that exclusionary school discipline practices disproportionately impact students of color. Some scholars have theorized that racial disparities likely vary across school sub-contexts, as implicit bias in perceptions of student behavior may be more influential in locations where students and adults have weaker…

  15. Architectural anthropology – potentials and pitfalls of mixing disciplines

    DEFF Research Database (Denmark)

    Stender, Marie

    approaches to e.g. understand and involve users, clients and citizens. Several other disciplines currently also approach and embrace anthropological methods, and new sub-disciplines such as design anthropology, architectural anthropology, business anthropology and techno-anthropology have emerged...... these cross-disciplinary and applied settings, and how it may contribute to anthropology in general. Based on research and teaching in the field of architectural anthropology, the paper discuss the potentials and pitfalls of mixing approaches from the two disciplines using examples of architects’ approaches...

  16. Contamination of water resources by pathogenic bacteria

    Science.gov (United States)

    2014-01-01

    Water-borne pathogen contamination in water resources and related diseases are a major water quality concern throughout the world. Increasing interest in controlling water-borne pathogens in water resources evidenced by a large number of recent publications clearly attests to the need for studies that synthesize knowledge from multiple fields covering comparative aspects of pathogen contamination, and unify them in a single place in order to present and address the problem as a whole. Providing a broader perceptive of pathogen contamination in freshwater (rivers, lakes, reservoirs, groundwater) and saline water (estuaries and coastal waters) resources, this review paper attempts to develop the first comprehensive single source of existing information on pathogen contamination in multiple types of water resources. In addition, a comprehensive discussion describes the challenges associated with using indicator organisms. Potential impacts of water resources development on pathogen contamination as well as challenges that lie ahead for addressing pathogen contamination are also discussed. PMID:25006540

  17. Geomorphologic and geologic overview for water resources development: Kharit basin, Eastern Desert, Egypt

    Science.gov (United States)

    Mosaad, Sayed

    2017-10-01

    This study demonstrates the importance of geomorphologic, geologic and hydrogeologic assessment as an efficient approach for water resources development in the Kharit watershed. Kharit is one of largest watersheds in the Eastern Desert that lacks water for agricultural and drinking purposes, for the nomadic communities. This study aims to identify and evaluate the geomorphologic, geologic and hydrogeologic conditions in the Kharit watershed relative to water resource development using remote sensing and GIS techniques. The results reveal that the watershed contains 15 sub-basins and morphometric analyses show high probability for flash floods. These hazards can be managed by constructing earth dikes and masonry dams to minimize damage from flash floods and allow recharge of water to shallow groundwater aquifers. The Quaternary deposits and the Nubian sandstone have moderate to high infiltration rates and are relatively well drained, facilitating surface runoff and deep percolation into the underlying units. The sediments cover 54% of the watershed area and have high potential for groundwater extraction.

  18. Water vapor concentration dependence and temperature dependence of Li mass loss from Li{sub 2}TiO{sub 3} with excess Li and Li{sub 4}SiO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Shimozori, Motoki [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Katayama, Kazunari, E-mail: kadzu@nucl.kyushu-u.ac.jp [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Hoshino, Tsuyoshi [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Obuch, Omotedate, Rokkasho-mura, Kamikita-gun, Aomori 039-3212 (Japan); Ushida, Hiroki; Yamamoto, Ryotaro; Fukada, Satoshi [Interdisciplinary Graduate School of Engineering Science, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan)

    2015-10-15

    Highlights: • Li mass loss from Li{sub 2.11}TiO{sub 3} increased proportionally to water vapor pressure. • Li mass loss from Li{sub 2.11}TiO{sub 3} at 600 °C was significantly smaller than expected. • Differences of Li mass loss behavior from Li{sub 2.11}TiO{sub 3} and Li{sub 4}SiO{sub 4} were shown. - Abstract: In this study, weight reduction of Li{sub 2}TiO{sub 3} with excess Li and Li{sub 4}SiO{sub 4} at elevated temperatures under hydrogen atmosphere or water vapor atmosphere was investigated. The Li mass loss for the Li{sub 2}TiO{sub 3} at 900 °C was 0.4 wt% under 1000 Pa H{sub 2} atmosphere and 1.5 wt% under 50 Pa H{sub 2}O atmosphere. The Li mass loss for the Li{sub 2}TiO{sub 3} increased proportionally to the water vapor pressure in the range from 50 to 200 Pa at 900 °C and increased with increasing temperature from 700 to 900 °C although Li mass loss at 600 °C was significantly smaller than expected. It was found that water vapor concentration dependence and temperature dependence of Li mass loss for the Li{sub 2}TiO{sub 3} and the Li{sub 4}SiO{sub 4} used in this work were quite different. Water vapor is released from the ceramic breeder materials into the purge gas due to desorption of adsorbed water and water formation reaction. The released water vapor possibly promotes Li mass loss with the formation of LiOH on the surface.

  19. Cybernetics in water resources management

    International Nuclear Information System (INIS)

    Alam, N.

    2005-01-01

    The term Water Resources is used to refer to the management and use of water primarily for the benefit of people. Hence, successful management of water resources requires a solid understanding of Hydrology. Cybernetics in Water Resources Management is an endeavor to analyze and enhance the beneficial exploitation of diverse scientific approaches and communication methods; to control the complexity of water management; and to highlight the importance of making right decisions at the right time, avoiding the devastating effects of drought and floods. Recent developments in computer technology and advancement of mathematics have created a new field of system analysis i.e. Mathematical Modeling. Based on mathematical models, several computer based Water Resources System (WRS) Models were developed across the world, to solve the water resources management problems, but these were not adaptable and were limited to computation by a well defined algorithm, with information input at various stages and the management tasks were also formalized in that well structured algorithm. The recent advancements in information technology has revolutionized every field of the contemporary world and thus, the WRS has also to be diversified by broadening the knowledge base of the system. The updation of this knowledge should be a continuous process acquired through the latest techniques of networking from all its concerned sources together with the expertise of the specialists and the analysis of the practical experiences. The system should then be made capable of making inferences and shall have the tendency to apply the rules based on the latest information and inferences in a given stage of problem solving. Rigid programs cannot adapt to changing conditions and new knowledge. Thus, there is a need for an evolutionary development based on mutual independence of computational procedure and knowledge with capability to adapt itself to the increasing complexity of problem. The subject

  20. Hydrological Modeling and WEB-GIS for the Water Resource Management

    Science.gov (United States)

    Pierleoni, A.; Bellezza, M.; Casadei, S.; Manciola, P.

    2006-12-01

    Water resources are a strategically natural resource although they can be extremely susceptible to degradation. As a matter of fact the increasing demand from multipurpose uses, which often are in competition amongst themselves, seems to affect the concept of sustainability per se', thus highlighting phenomena of quality-quantity degradation of water resources. In this context, the issue of water resource management rises to a more important role, especially when, other then the traditional uses for civil, industrial and agronomic purposes, environmental demands are taken into consideration. In particular, for environmental demands we mean: to preserve minimal flows, to conserve ecosystems and biodiversities, to protect and improve the environment and finally also the recreational facilities. In the present work, two software tools are presented; they combine the scientific aspect of the issues with a feasible and widely accessible application of the mathematical modeling in techno-operative fields within a sustainable management policy of the water resource at the basin scale. The first evaluation model of the available superficial water resource bases its algorithms upon regionalization procedures of flow parameters deduced from the geomorphologic features of the soil of the basin (BFI, Area) and presents, as output, a set of duration curves (DC) of the natural, measurable (natural after withdrawal), and residual (discharge usable for dissipative use) flow. The hydrological modeling combined with a GIS engine allows to process the dataset and regionalize the information of each section of the hydrographic network, in order to attain information about the effect of upriver withdrawals, in terms of evaluation parameters (measurable DC) to maintain an optimal water supply all along the entire downstream network. This model, projected with a WEB interface developed in PERL and connected to a MySQL database, has also been tested at the basin and sub-basin scale as an

  1. Magnetic solid phase extraction of brominated flame retardants and pentachlorophenol from environmental waters with carbon doped Fe{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jing [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Center of Materials Analysis, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023 (China); Li, Jia-yuan; Qiao, Jun-qin [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Center of Materials Analysis, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Cui, Shi-hai [Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023 (China); Lian, Hong-zhen, E-mail: hzlian@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Center of Materials Analysis, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Chen, Hong-yuan [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering and Center of Materials Analysis, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)

    2014-12-01

    Graphical abstract: - Highlights: • Magnetic Fe{sub 3}O{sub 4}/C nanospheres were used in MSPE of BFRs and PCP from water samples. • The method shows merits of simpleness, reliableness and environmental friendliness. • The bonding between Fe{sub 3}O{sub 4} and coated organic carbon has been demonstrated in Fe{sub 3}O{sub 4}/C. • The straight influences of synthesis conditions of Fe{sub 3}O{sub 4}/C on MSPE were investigated. • The extraction characteristics of Fe{sub 3}O{sub 4}/C nanoparticles were further elucidated. - Abstract: Carbon doped Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4}/C) prepared by a facile hydrothermal reaction of glucose with iron resource have been applied as magnetic solid-phase extraction (MSPE) sorbent, for the first time, to extract trace brominated flame retardants (BFRs) and pentachlorophenol (PCP) from environmental waters. Various MSPE parameters were optimized including amount of Fe{sub 3}O{sub 4}/C nanoparticles, pH of sample solution, enrichment factor of analytes and reusability of Fe{sub 3}O{sub 4}/C sorbent. The reliability of the MSPE method was evaluated by the recoveries of BFRs and PCP in spiked water samples. Good recoveries (80.0–110.0%) were achieved with the relative standard deviations range from 0.3% to 6.8%. In this paper, the extraction characteristics of Fe{sub 3}O{sub 4}/C sorbent were further elucidated. It is found that the adsorption process of Fe{sub 3}O{sub 4}/C to analytes predominates the MSPE efficiency. There is hybrid hydrophobic interaction and hydrogen bonding or dipole–dipole attraction between Fe{sub 3}O{sub 4}/C and analytes. Notably, the chemical components of carbon layer on the surface of Fe{sub 3}O{sub 4} nanoparticles were identified by X-ray photoelectron spectroscopy and thermogravimetry-mass spectrometry, and in consequence the covalent bonds between Fe{sub 3}O{sub 4} and the coated carbon have been observed. In addition, the straight influence of synthesis condition of Fe{sub

  2. NWS Water Resource Services Branch Division

    Science.gov (United States)

    the NWS homepage NWS Water Resources Program OS Home News Organization Search Search Home About Us Water Resources Policy Flood Loss Data AHPS Program Office (OHD) AHPS Software Development Hydrology Lab AHPS Toolbox Flood Safety Service Hydrology Program Turn Around Don't Drown! High Water Mark Signs

  3. Applying the WEAP Model to Water Resource

    DEFF Research Database (Denmark)

    Gao, Jingjing; Christensen, Per; Li, Wei

    efficiency, treatment and reuse of water. The WEAP model was applied to the Ordos catchment where it was used for the first time in China. The changes in water resource utilization in Ordos basin were assessed with the model. It was found that the WEAP model is a useful tool for water resource assessment......Water resources assessment is a tool to provide decision makers with an appropriate basis to make informed judgments regarding the objectives and targets to be addressed during the Strategic Environmental Assessment (SEA) process. The study shows how water resources assessment can be applied in SEA...... in assessing the effects on water resources using a case study on a Coal Industry Development Plan in an arid region in North Western China. In the case the WEAP model (Water Evaluation And Planning System) were used to simulate various scenarios using a diversity of technological instruments like irrigation...

  4. Water Resources of Tajikistan and Water Use Issues in Central Asia

    Directory of Open Access Journals (Sweden)

    H. M. Mukhabbatov

    2016-01-01

    Full Text Available This paper investigates the formation and use of water resources in Tajikistan. The natural and geographic conditions as well as distribution of water resources across the economic regions are analyzed. It is stressed that after breakup of the Soviet Union the water use issues in Central Asia have acquired the dimensions of the interstate economic and political problems. Demographic growth, activation of desertification, global warming make most relevant the issue of equitable redistribution of water resources as the most valuable resource for economy.

  5. Water resources management plan

    Directory of Open Access Journals (Sweden)

    Glauco Maia

    2011-12-01

    Full Text Available Water resources manageWith the mission of providing reliable data for water supply activities in medium and large firefighting operations, the Firefighting Water Supply Tactical Group (GTSAI represents an important sector of the Rio de Janeiro State Fire Departmentment plan strategic support. Acting proactively, the Tactical Group prepared a Water Resources Management Plan, aiming to set up water resources for each jurisdiction of firefighters in the City of Rio de Janeiro, in order to assist the Fire Department in its missions. This goal was reached, and in association with LAGEOP (Geoprocessing Laboratory, UFRJ, the Tactical Group started using GIS techniques. The plan provides for the register of existing operational structures within each group (troops, vehicles and special equipment, along with knowledge about the nature and operating conditions of fire hydrants, as well as a detailed survey of areas considered to be "critical". The survey helps to support actions related to environmental disasters involved in the aforementioned critical areas (hospital, churches, schools, and chemical industries, among others. The Caju neighborhood, in Rio de Janeiro, was defined as initial application area, and was the first jurisdiction to have the system implemented, followed by Copacabana, Leblon, Lagoa, and Catete districts.

  6. Atomic layer deposition of Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}/TiO{sub 2} barrier coatings to reduce the water vapour permeability of polyetheretherketone

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadzada, Tamkin, E-mail: tahm4852@uni.sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); McKenzie, David R.; James, Natalie L.; Yin, Yongbai [School of Physics, University of Sydney, NSW 2006 (Australia); Li, Qing [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia)

    2015-09-30

    We demonstrate significantly enhanced barrier properties of polyetheretherketone (PEEK) against water vapour penetration by depositing Al{sub 2}O{sub 3} or Al{sub 2}O{sub 3}/TiO{sub 2} nanofilms grown by atomic layer deposition (ALD). Nanoindentation analysis revealed good adhesion strength of a bilayer Al{sub 2}O{sub 3}/TiO{sub 2} coating to PEEK, while the single layer Al{sub 2}O{sub 3} coating displayed flaking and delamination. We identified three critical design parameters for achieving the optimum barrier properties of ALD Al{sub 2}O{sub 3}/TiO{sub 2} coatings on PEEK. These are a minimum total thickness dependent on the required water vapour transmission rate, the use of an Al{sub 2}O{sub 3}/TiO{sub 2} bilayer coating and the application of the coating to both sides of the PEEK film. Using these design parameters, we achieved a reduction in moisture permeability of PEEK of over two orders of magnitude while maintaining good adhesion strength of the polymer–thin film system. - Highlights: • Atomic layer deposition of Al{sub 2}O{sub 3}/TiO{sub 2} coatings reduced water vapour permeability. • Bilayer coatings reduced the permeability more than single layer coatings. • Bilayer coatings displayed higher adhesion strength than the single layer coatings. • Double-sided coatings performed better than single-sided coatings. • Correlation was found between total thickness and reduced water vapour permeability.

  7. A Multi-Objective Input–Output Linear Model for Water Supply, Economic Growth and Environmental Planning in Resource-Based Cities

    Directory of Open Access Journals (Sweden)

    Wenlan Ke

    2016-02-01

    Full Text Available Water resource and environment capacity have become two of the most important restrictions for sustainable development in resource-based cities whose leading industries are the exploitation and processing of resources. Taking Ordos in China as an example, this article constructs an integrated model combining a multi-objective optimization model with input–output analysis to achieve the tradeoffs between economic growth, water utilization and environmental protection. This dynamic model includes socioeconomic, water supply–demand, water quality control, air quality control, energy consumption control and integrated policy sub-models. These six sub-models interact with each other. After simulation, this article proposes efficient solutions on industrial restructuring by maximizing the Gross Regional Product of Ordos from 394.3 in 2012 to 785.1 billion RMB in 2025 with a growth rate of 6.4% annually; and presents a water supply plan by maximizing the proportion of reclaimed water from 2% to 6.3% through sewage treatment technology selection and introduction, and effective water allocation. Meanwhile, the environmental impacts are all in line with the planning targets. This study illustrates that the integrated modeling is generic and can be applied to any region suffering uncoordinated development issues and can serve as a pre-evaluation approach for conducting early warning research to offer suggestions for government decision-making.

  8. Water, Society and the future of water resources research (Invited)

    Science.gov (United States)

    Brown, C. M.

    2013-12-01

    The subject of water and society is broad, but at heart is the study of water as a resource, essential to human activities, a vital input to food and energy production, the sustaining medium for ecosystems and yet also a destructive hazard. Society demands, withdraws, competes, uses and wastes the resource in dynamic counterpart. The science of water management emerges from this interface, a field at the nexus of engineering and geoscience, with substantial influence from economics and other social sciences. Within this purview are some of the most pressing environmental questions of our time, such as adaptation to climate change, direct and indirect connections between water and energy policy, the continuing dependence of agriculture on depletion of the world's aquifers, the conservation or preservation of ecosystems within increasingly human-influenced river systems, and food security and poverty reduction for the earth's poorest inhabitants. This presentation will present and support the hypothesis that water resources research is a scientific enterprise separate from, yet closely interrelated to, hydrologic science. We will explore the scientific basis of water resources research, review pressing research questions and opportunities, and propose an action plan for the advancement of the science of water management. Finally, the presentation will propose a Chapman Conference on Water and Society: The Future of Water Resources Research in the spring of 2015.

  9. Discussion on water resources value accounting and its application

    Science.gov (United States)

    Guo, Biying; Huang, Xiaorong; Ma, Kai; Gao, Linyun; Wang, Yanqiu

    2018-06-01

    The exploration of the compilation of natural resources balance sheet has been proposed since 2013. Several elements of water resources balance sheet have been discussed positively in China, including basic concept, framework and accounting methods, which focused on calculating the amount of water resources with statistical methods but lacked the analysis of the interrelationship between physical volume and magnitude of value. Based on the study of physical accounting of water resources balance sheet, the connotation of water resources value is analyzed in combination with research on the value of water resources in the world. What's more, the theoretical framework, form of measurement and research methods of water resources value accounting are further explored. Taking Chengdu, China as an example, the index system of water resources balance sheet in Chengdu which includes both physical and valuable volume is established to account the depletion of water resources, environmental damage and ecological water occupation caused by economic and social water use. Moreover, the water resources balance sheet in this region which reflects the negative impact of the economy on the environment is established. It provides a reference for advancing water resources management, improving government and social investment, realizing scientific and rational allocation of water resources.

  10. Draft environmental impact report. California Department of Water Resources, Bottle Rock geothermal power plant, Lake County, CA

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The California Department of Water Resources (DWR) proposes to construct the Bottle Rock power plant, a 55 MW geothermal power plant, at The Geysers Known Geothermal Resource Area (KGRA). The plant is projected to begin operation in April of 1983, and will be located in Lake County near the Sonoma County line on approximately 7.2 acres of the Francisco leasehold. The steam to operate the power plant, approximately 1,000,000 pounds/h, will be provided by McCulloch Geothermal Corporation. The power plant's appearance and operation will be basically the same as the units in operation or under construction in the KGRA. The power plant and related facilities will consist of a 55 MW turbine generator, a 1.1 mile (1.81 km) long transmission line, a condensing system, cooling tower, electrical switchyard, gas storage facility, cistern, and an atmospheric emission control system. DWR plans to abate hydrogen sulfide (H/sub 2/S) emissions through the use of the Stretford Process which scrubs the H/sub 2/S from the condenser vent gas stream and catalytically oxides the gas to elemental sulfur. If the Stretford Process does not meet emission limitations, a secondary H/sub 2/S abatement system using hydrogen peroxide/iron catalyst is proposed. The Bottle Rock project and other existing and future geothermal projects in the KGRA may result in cumulative impacts to soils, biological resources, water quality, geothermal steam resources, air quality, public health, land use, recreation, cultural resources, and aesthetics.

  11. Water Resources Research Center

    Science.gov (United States)

    Untitled Document  Search Welcome to the University of Hawai'i at Manoa Water Resources Research Center At WRRC we concentrate on addressing the unique water and wastewater management problems and issues elsewhere by researching water-related issues distinctive to these areas. We are Hawaii's link in a network

  12. Water Resources Assessment and Management in Drylands

    Directory of Open Access Journals (Sweden)

    Magaly Koch

    2016-06-01

    Full Text Available Drylands regions of the world face difficult issues in maintaining water resources to meet current demands which will intensify in the future with population increases, infrastructure development, increased agricultural water demands, and climate change impacts on the hydrologic system. New water resources evaluation and management methods will be needed to assure that water resources in drylands are optimally managed in a sustainable manner. Development of water management and conservation methods is a multi-disciplinary endeavor. Scientists and engineers must collaborate and cooperate with water managers, planners, and politicians to successfully adopt new strategies to manage water not only for humans, but to maintain all aspects of the environment. This particularly applies to drylands regions where resources are already limited and conflicts over water are occurring. Every aspect of the hydrologic cycle needs to be assessed to be able to quantify the available water resources, to monitor natural and anthropogenic changes, and to develop flexible policies and management strategies that can change as conditions dictate. Optimal, sustainable water management is achieved by cooperation and not conflict, thereby necessitating the need for high quality scientific research and input into the process.

  13. Water Resources Availability in Kabul, Afghanistan

    Science.gov (United States)

    Akbari, A. M.; Chornack, M. P.; Coplen, T. B.; Emerson, D. G.; Litke, D. W.; Mack, T. J.; Plummer, N.; Verdin, J. P.; Verstraeten, I. M.

    2008-12-01

    The availability of water resources is vital to the rebuilding of Kabul, Afghanistan. In recent years, droughts and increased water use for drinking water and agriculture have resulted in widespread drying of wells. Increasing numbers of returning refugees, rapid population growth, and potential climate change have led to heightened concerns for future water availability. The U.S. Geological Survey, with support from the U.S. Agency for International Development, began collaboration with the Afghanistan Geological Survey and Ministry of Energy and Water on water-resource investigations in the Kabul Basin in 2004. This has led to the compilation of historic and recent water- resources data, creation of monitoring networks, analyses of geologic, geophysical, and remotely sensed data. The study presented herein provides an assessment of ground-water availability through the use of multidisciplinary hydrogeologic data analysis. Data elements include population density, climate, snowpack, geology, mineralogy, surface water, ground water, water quality, isotopic information, and water use. Data were integrated through the use of conceptual ground-water-flow model analysis and provide information necessary to make improved water-resource planning and management decisions in the Kabul Basin. Ground water is currently obtained from a shallow, less than 100-m thick, highly productive aquifer. CFC, tritium, and stable hydrogen and oxygen isotopic analyses indicate that most water in the shallow aquifer appears to be recharged post 1970 by snowmelt-supplied river leakage and secondarily by late winter precipitation. Analyses indicate that increasing withdrawals are likely to result in declining water levels and may cause more than 50 percent of shallow supply wells to become dry or inoperative particularly in urbanized areas. The water quality in the shallow aquifer is deteriorated in urban areas by poor sanitation and water availability concerns may be compounded by poor well

  14. Water resource management : a strategy for Nova Scotia

    International Nuclear Information System (INIS)

    Theakston, J.

    1998-01-01

    Since 1995, the Nova Scotia Department of the Environment has been the lead agency responsible for water resource management in the province. The agency's mandate has been to establish a water resource management strategy and to report periodically to the people of the province on the state of the environment, including air, water and waste resource management. One of the Department's goals is to ensure that surface and groundwater resources are being adequately protected. This paper summarizes issues related to dams and how they will be addressed. The Department allocates water through approvals and regulates use and alteration of watercourses. The construction of a dam and water withdrawal for municipal, industrial, hydroelectric or other purposes requires an approval. The major concerns with these activities are flows to sustain downstream habitat, competing demand for water, public safety, and water quality impacts. The main water management actions established under the water strategy involve: (1) geo-referencing water resource use and allocation, (2) protecting water quality, (3) integrating management of natural resources, and (4) promoting partnership in stewardship

  15. Estimated Critical Conditions for UO(Sub 2)F(Sub 2)-H(Sub 2)O Systems in Fully Water-Reflected Spherical Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, W.C.

    1992-01-01

    The purpose of this report is to document reference calculations performed using the SCALE-4.0 code system to determine the critical parameters of UO{sub 2}F{sub 2}-H{sub 2}O spheres. The calculations are an extension of those documented in ORNL/CSD/TM-284. Specifically, the data for low-enriched UO{sub 2}F{sub 2}-H{sub 2}O spheres have been extended to highly enriched uranium. These calculations, together with those reported in ORNL/CSD/TM-284, provide a consistent set of critical parameters (k{sub {infinity}}, volume, mass, mass of water) for UO{sub 2}F{sub 2} and water over the full range of enrichment and moderation ratio.

  16. Estimated critical conditions for UO{sub 2}F{sub 2}--H{sub 2}O systems in fully water-reflected spherical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, W.C.; Turner, J.C.

    1992-12-01

    The purpose of this report is to document reference calculations performed using the SCALE-4.0 code system to determine the critical parameters of UO{sub 2}F{sub 2}-H{sub 2}O spheres. The calculations are an extension of those documented in ORNL/CSD/TM-284. Specifically, the data for low-enriched UO{sub 2}F{sub 2}-H{sub 2}O spheres have been extended to highly enriched uranium. These calculations, together with those reported in ORNL/CSD/TM-284, provide a consistent set of critical parameters (k{sub {infinity}}, volume, mass, mass of water) for UO{sub 2}F{sub 2} and water over the full range of enrichment and moderation ratio.

  17. Regional energy resource development and energy security under CO{sub 2} emission constraint in the greater Mekong sub-region countries (GMS)

    Energy Technology Data Exchange (ETDEWEB)

    Watcharejyothin, Mayurachat; Shrestha, Ram M. [School of Environment, Resources and Development, Asian Institute of Technology (Thailand)

    2009-11-15

    The paper evaluates effects of energy resource development within the Greater Mekong Sub-region (GMS) on energy supply mix, energy system cost, energy security and environment during 2000-2035. A MARKAL-based integrated energy system model of the five GMS countries was developed to examine benefits of regional energy resource development for meeting the energy demand of these countries. The study found that an unrestricted energy resource development and trade within the region would reduce the total-regional energy systems cost by 18% and would abate the total CO{sub 2} emission by 5% as compared to the base case. All the five countries except Myanmar would benefit from the expansion of regional energy resource integration in terms of lower energy systems costs and better environmental qualities. An imposition of CO{sub 2} emission reduction constraint by 5% on each of the study countries from that of the corresponding emissions under the unrestricted energy resource development in the GMS is found to improve energy security, reduce energy import and fossil fuels dependences and increase volume of power trade within the region. The total energy system cost under the joint CO{sub 2} emission reduction strategy would be less costly than that under the individual emission targets set for each country. (author)

  18. Integrated Water Resources Simulation Model for Rural Community

    Science.gov (United States)

    Li, Y.-H.; Liao, W.-T.; Tung, C.-P.

    2012-04-01

    The purpose of this study is to develop several water resources simulation models for residence houses, constructed wetlands and farms and then integrate these models for a rural community. Domestic and irrigation water uses are the major water demand in rural community. To build up a model estimating domestic water demand for residence houses, the average water use per person per day should be accounted first, including water uses of kitchen, bathroom, toilet and laundry. On the other hand, rice is the major crop in the study region, and its productive efficiency sometimes depends on the quantity of irrigation water. The water demand can be estimated by crop water use, field leakage and water distribution loss. Irrigation water comes from rainfall, water supply system and reclaimed water which treated by constructed wetland. In recent years, constructed wetlands play an important role in water resources recycle. They can purify domestic wastewater for water recycling and reuse. After treating from constructed wetlands, the reclaimed water can be reused in washing toilets, watering gardens and irrigating farms. Constructed wetland is one of highly economic benefits for treating wastewater through imitating the processing mechanism of natural wetlands. In general, the treatment efficiency of constructed wetlands is determined by evapotranspiration, inflow, and water temperature. This study uses system dynamics modeling to develop models for different water resource components in a rural community. Furthermore, these models are integrated into a whole system. The model not only is utilized to simulate how water moves through different components, including residence houses, constructed wetlands and farms, but also evaluates the efficiency of water use. By analyzing the flow of water, the water resource simulation model can optimizes water resource distribution under different scenarios, and the result can provide suggestions for designing water resource system of a

  19. Nuclear contamination of water resources

    International Nuclear Information System (INIS)

    1990-01-01

    In the wake of the Chernobyl accident, the vulnerability of the water cycle to radionuclide contamination has been an issue of great concern. The impact of the event throughout Europe has been highly variable and wide-ranging, and has demonstrated the need to evaluate the potential risk to drinking water supplies, soilwater and the food chain. This book provides information on radiological standards as they exist at present, on the methods of monitoring, and on concepts in design to minimize risk and to highlight the possible consequences of a nuclear event. With contributions from engineers and scientists from eight countries, this book is a unique source of information about present radiological standards and monitoring requirements. It also includes comprehensive coverage of the effects on water resources of, and deals with the development of management strategies designed to cope with, a nuclear event. There are 19 papers all indexed separately. These are divided into sections -introduction, present radiological standards relating to drinking water, radiological monitoring requirements, the consequences of a nuclear event on water resources and water resource management strategy. The discussion at the end of each section is recorded. (author)

  20. Advances in water resources management

    CERN Document Server

    Yang, Chih; Wang, Mu-Hao

    2016-01-01

    This volume provides in-depth coverage of such topics as multi-reservoir system operation theory and practice, management of aquifer systems connected to streams using semi-analytical models, one-dimensional model of water quality and aquatic ecosystem-ecotoxicology in river systems, environmental and health impacts of hydraulic fracturing and shale gas, bioaugmentation for water resources protection, wastewater renovation by flotation for water pollution control, determination of receiving water’s reaeration coefficient in the presence of salinity for water quality management, sensitivity analysis for stream water quality management, river ice process, and computer-aided mathematical modeling of water properties. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of water resources systems, and scientists and researchers. The goals of the Handbook of Environmental Engineering series are: (1) to cover entire environmental fields, includin...

  1. The Connotation and Extension of Agricultural Water Resources Security

    Institute of Scientific and Technical Information of China (English)

    LIU Bu-chun; MEI Xu-rong; LI Yu-zhong; YANG You-lu

    2007-01-01

    The objective of this study is to define agricultural water resources security and its connotation and extension. The definitions of water security, water resources security, and water environment security were summarized, and their relationship was differentiated and analyzed. Based on these, the elements of the conception of agricultural water resources security were hashed and the conception was defined. Agricultural water resources security is the provision of water resource that ensures protection of agriculture against threat, hazards, destruction, and loss. Moreover, the connotation and extension of agricultural water resources security were ascertained. In detail, the connotation of the definition has natural attributes, socioeconomic attributes, and cultural attributes. The extensions of agricultural water resources security include both broad and narrow ones, as well as, food security, agroenvironmental security, agroeconomic security, rural society security, etc. The definition will serve as the frame of reference for developing the researches, limiting the frame of the theory, and founding a appraising system for agricultural water resources security.

  2. Improving assessment of groundwater-resource sustainability with deterministic modelling: a case study of the semi-arid Musi sub-basin, South India

    Science.gov (United States)

    Massuel, S.; George, B. A.; Venot, J.-P.; Bharati, L.; Acharya, S.

    2013-11-01

    Since the 1990s, Indian farmers, supported by the government, have partially shifted from surface-water to groundwater irrigation in response to the uncertainty in surface-water availability. Water-management authorities only slowly began to consider sustainable use of groundwater resources as a prime concern. Now, a reliable integration of groundwater resources for water-allocation planning is needed to prevent aquifer overexploitation. Within the 11,000-km2 Musi River sub-basin (South India), human interventions have dramatically impacted the hard-rock aquifers, with a water-table drop of 0.18 m/a over the period 1989-2004. A fully distributed numerical groundwater model was successfully implemented at catchment scale. The model allowed two distinct conceptualizations of groundwater availability to be quantified: one that was linked to easily quantified fluxes, and one that was more expressive of long-term sustainability by taking account of all sources and sinks. Simulations showed that the latter implied 13 % less available groundwater for exploitation than did the former. In turn, this has major implications for the existing water-allocation modelling framework used to guide decision makers and water-resources managers worldwide.

  3. Armenia : Towards Integrated Water Resources Management

    OpenAIRE

    World Bank

    2001-01-01

    The objective of this paper is to examine the challenges in the water sector faced by Armenia today, and outline options for management and allocation of its water resources in the future, considering the need for a stable, transparent apublic sector management framework and sustainable resource use for long-term private investment and job creation, and for appropriate balances among water...

  4. Resource Rents, Democracy and Corruption: Evidence from Sub-Saharan Africa

    OpenAIRE

    Rabah Arezki; Thorvaldur Gylfason

    2011-01-01

    We examine the effect of the interaction between resource rents and democracy on corruption for a panel of 29 Sub-Saharan countries during the period from 1985 to 2007. We find that higher resource rents lead to more corruption and that the effect is significantly stronger in less democratic countries. Surprisingly, we also find that higher resource rents lead to fewer internal conflicts and that less democratic countries face not a higher but a lower likelihood of conflicts following an incr...

  5. Game Theory in water resources management

    Science.gov (United States)

    Katsanevaki, Styliani Maria; Varouchakis, Emmanouil; Karatzas, George

    2015-04-01

    Rural water management is a basic requirement for the development of the primary sector and involves the exploitation of surface/ground-water resources. Rational management requires the study of parameters that determine their exploitation mainly environmental, economic and social. These parameters reflect the influence of irrigation on the aquifer behaviour and on the level-streamflow of nearby rivers as well as on the profit from the farming activity for the farmers' welfare. The question of rural water management belongs to the socio-political problems, since the factors involved are closely related to user behaviour and state position. By applying Game Theory one seeks to simulate the behaviour of the system 'surface/ground-water resources to water-users' with a model based on a well-known game, "The Prisoner's Dilemma" for economic development of the farmers without overexploitation of the water resources. This is a game of two players that have been extensively studied in Game Theory, economy and politics because it can describe real-world cases. The present proposal aims to investigate the rural water management issue that is referred to two competitive small partnerships organised to manage their agricultural production and to achieve a better profit. For the farmers' activities water is required and ground-water is generally preferable because consists a more stable recourse than river-water which in most of the cases in Greece are of intermittent flow. If the two farmer groups cooperate and exploit the agreed water quantities they will gain equal profits and benefit from the sustainable availability of the water recourses (p). If both groups overexploitate the resource to maximize profit, then in the medium-term they will incur a loss (g), due to the water resources reduction and the increase of the pumping costs. If one overexploit the resource while the other use the necessary required, then the first will gain great benefit (P), and the second will

  6. Learning about water resource sharing through game play

    Directory of Open Access Journals (Sweden)

    T. Ewen

    2016-10-01

    Full Text Available Games are an optimal way to teach about water resource sharing, as they allow real-world scenarios to be enacted. Both students and professionals learning about water resource management can benefit from playing games, through the process of understanding both the complexity of sharing of resources between different groups and decision outcomes. Here we address how games can be used to teach about water resource sharing, through both playing and developing water games. An evaluation of using the web-based game Irrigania in the classroom setting, supported by feedback from several educators who have used Irrigania to teach about the sustainable use of water resources, and decision making, at university and high school levels, finds Irrigania to be an effective and easy tool to incorporate into a curriculum. The development of two water games in a course for masters students in geography is also presented as a way to teach and communicate about water resource sharing. Through game development, students learned soft skills, including critical thinking, problem solving, team work, and time management, and overall the process was found to be an effective way to learn about water resource decision outcomes. This paper concludes with a discussion of learning outcomes from both playing and developing water games.

  7. Learning about water resource sharing through game play

    Science.gov (United States)

    Ewen, Tracy; Seibert, Jan

    2016-10-01

    Games are an optimal way to teach about water resource sharing, as they allow real-world scenarios to be enacted. Both students and professionals learning about water resource management can benefit from playing games, through the process of understanding both the complexity of sharing of resources between different groups and decision outcomes. Here we address how games can be used to teach about water resource sharing, through both playing and developing water games. An evaluation of using the web-based game Irrigania in the classroom setting, supported by feedback from several educators who have used Irrigania to teach about the sustainable use of water resources, and decision making, at university and high school levels, finds Irrigania to be an effective and easy tool to incorporate into a curriculum. The development of two water games in a course for masters students in geography is also presented as a way to teach and communicate about water resource sharing. Through game development, students learned soft skills, including critical thinking, problem solving, team work, and time management, and overall the process was found to be an effective way to learn about water resource decision outcomes. This paper concludes with a discussion of learning outcomes from both playing and developing water games.

  8. Analyses on Water Vapor Resource in Chengdu City

    Science.gov (United States)

    Liu, B.; Xiao, T.; Wang, C.; Chen, D.

    2017-12-01

    Chengdu is located in the Sichuan basin, and it is the most famous inland city in China. With suitable temperatures and rainfall, Chengdu is the most livable cities in China. With the development of urban economy and society, the population has now risen to 16 million, and it will up to 22 million in 2030. This will cause the city water resources demand, and the carrying capacity of water resources become more and more serious. In order to improve the contradiction between urban waterlogging and water shortage, sponge city planning was proposed by Chengdu government, and this is of great practical significance for promoting the healthy development of the city. Base on the reanalysis data from NCEP during 2007-2016, the characters of Water Vapor Resources was analyzed, and the main contents of this research are summarized as follows: The water vapor resource in Chengdu plain is more than that in Southeast China and less in Northwest China. The annual average water vapor resource is approximately 160 mm -320 mm, and the water vapor resource in summer can reach 3 times in winter. But the annual average precipitation in Chengdu is about 800 mm -1200 mm and it is far greater than the water vapor resource, this is because of the transport of water vapor. Using the formula of water vapor flux, the water vapor in Chengdu is comes from the west and the south, and the value is around 50kg/(ms). Base on the calculation of boundary vapor budget, the water vapor transport under 500hPa accounted for 97% of the total. Consider the water vapor transport, transformation and urban humidification effect, the Water Vapor Resource in Chengdu is 2500mm, and it can be used by artificial precipitation enhancement. Therefore, coordinated development of weather modification and sponge city construction, the shortage of water resources in Chengdu plain can be solved. Key words: Chengdu; Sponge city; Water vapor resource; Precipitation; Artificial precipitation enhancement Acknowledgements

  9. Review - Water resources development

    International Nuclear Information System (INIS)

    Todd, David K.

    1970-01-01

    For the past 15 years the possibilities of employing nuclear explosives to develop and manage water resources for the benefit of man have been studied, Experimental and theoretical studies of many types have been undertaken. Numerous applications have been considered including site studies for particular projects. Attention has been given to the economics of specific applications, to hazards and safety problems, to legal limitations, to geologic and hydrologic considerations, and to effects on water quality. The net result of this effort has been the development of a large body of knowledge ready to be drawn upon wherever and whenever needed. Nuclear explosives are important tools for water resources development; they must be carefully selected so as to serve their intended purpose at minimum cost with few side effects. (author)

  10. Review - Water resources development

    Energy Technology Data Exchange (ETDEWEB)

    Todd, David K [Civil Engineering, University of California, Berkeley (United States)

    1970-05-15

    For the past 15 years the possibilities of employing nuclear explosives to develop and manage water resources for the benefit of man have been studied, Experimental and theoretical studies of many types have been undertaken. Numerous applications have been considered including site studies for particular projects. Attention has been given to the economics of specific applications, to hazards and safety problems, to legal limitations, to geologic and hydrologic considerations, and to effects on water quality. The net result of this effort has been the development of a large body of knowledge ready to be drawn upon wherever and whenever needed. Nuclear explosives are important tools for water resources development; they must be carefully selected so as to serve their intended purpose at minimum cost with few side effects. (author)

  11. Exploring the link between meteorological drought and streamflow to inform water resource management

    Science.gov (United States)

    Lennard, Amy; Macdonald, Neil; Hooke, Janet

    2015-04-01

    Drought indicators are an under-used metric in UK drought management. Standardised drought indicators offer a potential monitoring and management tool for operational water resource management. However, the use of these metrics needs further investigation. This work uses statistical analysis of the climatological drought signal based on meteorological drought indicators and observed streamflow data to explore the link between meteorological drought and hydrological drought to inform water resource management for a single water resource region. The region, covering 21,000 km2 of the English Midlands and central Wales, includes a variety of landscapes and climatological conditions. Analysis of the links between meteorological drought and hydrological drought performed using streamflow data from 'natural' catchments indicates a close positive relationship between meteorological drought indicators and streamflow, enhancing confidence in the application of drought indicators for monitoring and management. However, many of the catchments in the region are subject to modification through impoundments, abstractions and discharge. Therefore, it is beneficial to explore how climatological drought signal propagates into managed hydrological systems. Using a longitudinal study of catchments and sub-catchments that include natural and modified river reaches the relationship between meteorological and hydrological drought is explored. Initial statistical analysis of meteorological drought indicators and streamflow data from modified catchments shows a significantly weakened statistical relationship and reveals how anthropogenic activities may alter hydrological drought characteristics in modified catchments. Exploring how meteorological drought indicators link to streamflow across the water supply region helps build an understanding of their utility for operational water resource management.

  12. Infusing Sustainability Across Disciplines to Build Student Engagement

    Science.gov (United States)

    Bruckner, M. Z.; O'Connell, K.; McDaris, J. R.; Kirk, K. B.; Larsen, K.; Kent, M.; Manduca, C. A.; Egger, A. E.; Blockstein, D.; Mogk, D. W.; Taber, J.

    2014-12-01

    Establishing relevance and effective communication are key mechanisms for building student and community engagement in a topic and can be used to promote the importance of working across disciplines to solve problems. Sustainability, including the impacts of and responses to climate change, is an inherently interdisciplinary issue and can be infused across courses and curricula in a variety of ways. Key topics such as climate change, hazards, and food, water, and energy production and sustainability are relevant to a wide audience and can be used to build student engagement. Using real-world examples, service learning, and focusing on the local environment may further boost engagement by establishing relevance between sustainability issues and students' lives. Communication plays a key role in the exchange of information across disciplines and allows for a more holistic approach to tackling the complex climate and sustainability issues our society faces. It has the power to bridge gaps, break down disciplinary silos, and build connections among diverse audiences with a wide range of expertise, including scientists, policy-makers, stakeholders, and the general public. It also aids in planning and preparation for, response to, and mitigation of issues related to sustainability, including the impacts of climate change, to lessen the detrimental effects of unavoidable events such as sea level rise and extreme weather events. Several workshops from the InTeGrate and On the Cutting Edge projects brought together educators and practitioners from a range of disciplines including geoscience, engineering, social science, and more to encourage communication and collaboration across disciplines. They supported networking, community-building, and sharing of best practices for preparing our students for a sustainable future, both in and out of the workplace, and across disciplines. Interdisciplinary teams are also working together to author curricular materials that highlight

  13. 18 CFR 701.76 - The Water Resources Council Staff.

    Science.gov (United States)

    2010-04-01

    ... Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The Water Resources Council Staff (hereinafter the Staff) serves the Council and the Chairman in the performance of...

  14. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 34, 1988.

    Science.gov (United States)

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  15. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 32, 1987.

    Science.gov (United States)

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  16. Using NASA Products of the Water Cycle for Improved Water Resources Management

    Science.gov (United States)

    Toll, D. L.; Doorn, B.; Engman, E. T.; Lawford, R. G.

    2010-12-01

    NASA Water Resources works within the Earth sciences and GEO community to leverage investments of space-based observation and modeling results including components of the hydrologic cycle into water resources management decision support tools for the goal towards the sustainable use of water. These Earth science hydrologic related observations and modeling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years. Observations of this type enable assessment of numerous water resources management issues including water scarcity, extreme events of drought and floods, and water quality. Examples of water cycle estimates make towards the contributions to the water management community include snow cover and snowpack, soil moisture, evapotranspiration, precipitation, streamflow and ground water. The availability of water is also contingent on the quality of water and hence water quality is an important part of NASA Water Resources. Water quality activities include both nonpoint source (agriculture land use, ecosystem disturbances, impervious surfaces, etc.) and direct remote sensing ( i.e., turbidity, algae, aquatic vegetation, temperature, etc.). . The NASA Water Resources Program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use and irrigation (includes evapotranspiration); 3) drought; 4) water quality; and 5) climate impacts on water resources. Currently NASA Water Resources is supporting 21 funded projects with 11 additional projects being concluded. To maximize the use of NASA water cycle measurements end to projects are supported with strong links with decision support systems. The NASA Water Resources Program works closely with other government agencies NOAA, USDA-FAS, USGS, AFWA, USAID, universities, and non-profit, international, and private sector organizations. International water cycle applications include: 1) Famine Early Warning System Network

  17. Scenario-based Water Resources Management Using the Water Value Concept

    Science.gov (United States)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard

    2013-04-01

    The Saskatchewan River is the key water resource for the 3 prairie provinces of Alberta, Saskatchewan and Manitoba in Western Canada, and thus it is necessary to pursue long-term regional and watershed-based planning for the river basin. The water resources system is complex because it includes multiple components, representing various demand sectors, including the environment, which impose conflicting objectives, and multiple jurisdictions. The biophysical complexity is exacerbated by the socioeconomic dimensions associated for example with impacts of land and water management, value systems including environmental flows, and policy and governance dimensions.. We focus on the South Saskatchewan River Basin (SSRB) in Alberta and Saskatchewan, which is already fully allocated in southern Alberta and is subject to increasing demand due to rapid economic development and a growing population. Multiple sectors and water uses include agricultural, municipal, industrial, mining, hydropower, and environmental flow requirements. The significant spatial variability in the level of development and future needs for water places different values on water across the basin. Water resources planning and decision making must take these complexities into consideration, yet also deal with a new dimension—climate change and its possible future impacts on water resources systems. There is a pressing need to deal with water in terms of its value, rather than a mere commodity subject to traditional quantitative optimization. In this research, a value-based water resources system (VWRS) model is proposed to couple the hydrological and the societal aspects of water resources in one integrated modeling tool for the SSRB. The objective of this work is to develop the VWRS model as a negotiation, planning, and management tool that allows for the assessment of the availability, as well as the allocation scenarios, of water resources for competing users under varying conditions. The proposed

  18. Water Resources Research Institute | Mississippi State University

    Science.gov (United States)

    Welcome The Mississippi Water Resources Research Institute provides a statewide center of expertise in water and associated land-use and serves as a repository of knowledge for use in education private interests in the conservation, development, and use of water resources; to provide training

  19. Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H{sub 2}O{sub 2}, O{sub 3}/H{sub 2}O{sub 2} and O{sub 3}/activated carbon)

    Energy Technology Data Exchange (ETDEWEB)

    Medellin-Castillo, Nahum A. [Centro de Investigacion y Estudios de Posgrado, Facultad de Ingenieria, Universidad Autonoma de San Luis Potosi, Av. Dr. M. Nava No.6, San Luis de Potosi, 78290 (Mexico); Ocampo-Perez, Raul [Centro de Investigacion y Estudios de Posgrado, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi, 78290 (Mexico); Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Granada, 18071, Granada (Spain); Leyva-Ramos, Roberto [Centro de Investigacion y Estudios de Posgrado, Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi, 78290 (Mexico); Sanchez-Polo, Manuel [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Granada, 18071, Granada (Spain); Rivera-Utrilla, Jose, E-mail: jrivera@ugr.es [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Granada, 18071, Granada (Spain); Mendez-Diaz, Jose D. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Granada, 18071, Granada (Spain)

    2013-01-01

    The objective of this work was to compare the effectiveness of conventional technologies (adsorption on activated carbon, AC, and ozonation) and technologies based on advanced oxidation processes, AOPs, (UV/H{sub 2}O{sub 2}, O{sub 3}/AC, O{sub 3}/H{sub 2}O{sub 2}) to remove phthalates from aqueous solution (ultrapure water, surface water and wastewater). Diethyl phthalate (DEP) was chosen as a model pollutant because of its high water solubility (1080 mg/L at 293 K) and toxicity. The activated carbons showed a high adsorption capacity to adsorb DEP in aqueous solution (up to 858 mg/g), besides the adsorption mechanism of DEP on activated carbon is governed by dispersive interactions between {pi} electrons of its aromatic ring with {pi} electrons of the carbon graphene planes. The photodegration process showed that the pH solution does not significantly affect the degradation kinetics of DEP and the first-order kinetic model satisfactorily fitted the experimental data. It was observed that the rate of decomposition of DEP with the O{sub 3}/H{sub 2}O{sub 2} and O{sub 3}/AC systems is faster than that with only O{sub 3}. The technologies based on AOPs (UV/H{sub 2}O{sub 2}, O{sub 3}/H{sub 2}O{sub 2}, O{sub 3}/AC) significantly improve the degradation of DEP compared to conventional technologies (O{sub 3}, UV). AC adsorption, UV/H{sub 2}O{sub 2}, O{sub 3}/H{sub 2}O{sub 2}, and O{sub 3}/AC showed a high yield to remove DEP; however, the disadvantage of AC adsorption is its much longer time to reach maximum removal. The best system to treat water (ultrapure and natural) polluted with DEP is the O{sub 3}/AC one since it achieved the highest DEP degradation and TOC removal, as well as the lower water toxicity. -- Highlights: Black-Right-Pointing-Pointer Activated carbons showed a high adsorption capacity (up to 858 mg/g) to remove DEP. Black-Right-Pointing-Pointer The pH solution did not significantly affect the photodegradation kinetics of DEP. Black

  20. Research advances on thereasonable water resources allocation in irrigation district

    DEFF Research Database (Denmark)

    Xuebin, Qi; Zhongdong, Huang; Dongmei, Qiao

    2015-01-01

    The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area. The prog......The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area...... mechanism of water resources is not perfect, the model for optimal water resources allocation is not practical, and the basic conditions for optimal allocation of water resources is relatively weak. In order to solve those problems in water resources allocation practice, six important as?pects must...... in irrigation districts, studying the water resources control technology in irrigation districts by hydrology ecological system, studying the technologies of real?time risk dispatching and intelligent management in irrigation districts, and finally studying the technology of cou?pling optimal allocation...

  1. A General Water Resources Regulation Software System in China

    Science.gov (United States)

    LEI, X.

    2017-12-01

    To avoid iterative development of core modules in water resource normal regulation and emergency regulation and improve the capability of maintenance and optimization upgrading of regulation models and business logics, a general water resources regulation software framework was developed based on the collection and analysis of common demands for water resources regulation and emergency management. It can provide a customizable, secondary developed and extensible software framework for the three-level platform "MWR-Basin-Province". Meanwhile, this general software system can realize business collaboration and information sharing of water resources regulation schemes among the three-level platforms, so as to improve the decision-making ability of national water resources regulation. There are four main modules involved in the general software system: 1) A complete set of general water resources regulation modules allows secondary developer to custom-develop water resources regulation decision-making systems; 2) A complete set of model base and model computing software released in the form of Cloud services; 3) A complete set of tools to build the concept map and model system of basin water resources regulation, as well as a model management system to calibrate and configure model parameters; 4) A database which satisfies business functions and functional requirements of general water resources regulation software can finally provide technical support for building basin or regional water resources regulation models.

  2. Assessing interactions of hydrophilic nanoscale TiO{sub 2} with soil water

    Energy Technology Data Exchange (ETDEWEB)

    Priester, John H.; Ge, Yuan; Chang, Vivian [University of California, Santa Barbara, Bren School of Environmental Science and Management (United States); Stoimenov, Peter K. [University of California, Santa Barbara, Department of Chemistry and Biochemistry (United States); Schimel, Joshua P. [University of California, Santa Barbara, Earth Research Institute (United States); Stucky, Galen D. [University of California, Santa Barbara, UC Center for the Environmental Implications of Nanotechnology (United States); Holden, Patricia A., E-mail: holden@bren.ucsb.edu [University of California, Santa Barbara, Bren School of Environmental Science and Management (United States)

    2013-09-15

    The implications of manufactured nanoscale materials (MNMs) in unsaturated soil are mostly unknown. Owing to its widespread use, nanoscale (n) TiO{sub 2} is expected to enter soils where its accumulation could impact soil processes. Yet fundamental information is lacking regarding nTiO{sub 2} in situ wettability, i.e., interactions with soil water that relate to nTiO{sub 2} exposure and bioavailability. To probe nTiO{sub 2} interactions with soil water, we amended a natural soil with 20 mg per g of P25 nTiO{sub 2}, a high-production, hydrophilic MNM that, based on its small size (25 nm nominal), provides ample specific surface area (SSA) for water sorption. We then measured nTiO{sub 2}-amended soil SSA, and conducted a dynamic water vapor conditioning experiment. Early time-course water sorption into soil, with and without nTiO{sub 2}, was clearly diffusional. Over 9 months, soil water content asymptotically equilibrated. However, despite amending with nTiO{sub 2} levels that increased the soil SSA by 16 %, measured water sorption rates and endpoint soil water contents were mostly unchanged by P25 nTiO{sub 2}. Our results indicate that as-manufactured hydrophilic P25 nTiO{sub 2} was hydrophobic in soil, a finding relevant to nTiO{sub 2} bioavailability and transport.

  3. Assessing water resource use in livestock production

    NARCIS (Netherlands)

    Ran, Y.; Lannerstad, M.; Herrero, M.; Middelaar, Van C.E.; Boer, De I.J.M.

    2016-01-01

    This paper reviews existing methods for assessing livestock water resource use, recognizing that water plays a vital role in global food supply and that livestock production systems consumes a large amount of the available water resources. A number of methods have contributed to the development

  4. Isotope Hydrology: Understanding and Managing Water Resources

    International Nuclear Information System (INIS)

    Madsen, Michael

    2013-01-01

    Development is intricately linked to water whether concerning issues of health, food and agriculture, sanitation, the environment, industry, or energy. The IAEA, through its Water Resources Programme provides its Member States with science-based information and technical skills to improve understanding and management of their water resources

  5. High-Resolution Hydrological Sub-Seasonal Forecasting for Water Resources Management Over Europe

    Science.gov (United States)

    Wood, E. F.; Wanders, N.; Pan, M.; Sheffield, J.; Samaniego, L. E.; Thober, S.; Kumar, R.; Prudhomme, C.; Houghton-Carr, H.

    2017-12-01

    For decision-making at the sub-seasonal and seasonal time scale, hydrological forecasts with a high temporal and spatial resolution are required by water managers. So far such forecasts have been unavailable due to 1) lack of availability of meteorological seasonal forecasts, 2) coarse temporal resolution of meteorological seasonal forecasts, requiring temporal downscaling, 3) lack of consistency between observations and seasonal forecasts, requiring bias-correction. The EDgE (End-to-end Demonstrator for improved decision making in the water sector in Europe) project commissioned by the ECMWF (C3S) created a unique dataset of hydrological seasonal forecasts derived from four global climate models (CanCM4, FLOR-B01, ECMF, LFPW) in combination with four global hydrological models (PCR-GLOBWB, VIC, mHM, Noah-MP), resulting in 208 forecasts for any given day. The forecasts provide a daily temporal and 5-km spatial resolution, and are bias corrected against E-OBS meteorological observations. The forecasts are communicated to stakeholders via Sectoral Climate Impact Indicators (SCIIs), created in collaboration with the end-user community of the EDgE project (e.g. the percentage of ensemble realizations above the 10th percentile of monthly river flow, or below the 90th). Results show skillful forecasts for discharge from 3 months to 6 months (latter for N Europe due to snow); for soil moisture up to three months due precipitation forecast skill and short initial condition memory; and for groundwater greater than 6 months (lowest skill in western Europe.) The SCIIs are effective in communicating both forecast skill and uncertainty. Overall the new system provides an unprecedented ensemble for seasonal forecasts with significant skill over Europe to support water management. The consistency in both the GCM forecasts and the LSM parameterization ensures a stable and reliable forecast framework and methodology, even if additional GCMs or LSMs are added in the future.

  6. Transboundary water resources management and livelihoods: interactions in the Senegal river

    Science.gov (United States)

    Bruckmann, Laurent; Beltrando, Gérard

    2016-04-01

    In Sub-Saharan Africa, 90 % of wetlands provide ecosystem services to societies, especially for agriculture and fishing. However, tropical rivers are increasingly regulated to provide hydroelectricity and irrigated agriculture. Modifications of flows create new hydrological conditions that affect floodplains ecology and peoples' livelihoods. In the Senegal river valley, large dams were built during the 1980's to secure water resources after a decade of water scarcity in the 1970's: Manantali in the upper basin with a reservoir of 12km3 and Diama close to estuary to avoid saltwater intrusion during dry season. Senegal river water resources are known under the supervision of Senegal River Basin Development Organization (OMVS), which defines water allocation between different goals (electricity, irrigation, traditional activities). This study, based on the concept of socio-hydrology, analyses socio-ecological changes following thirty years of dam management. The work enlightens adaptation mechanisms of livelihoods from people living along the river floodplain and feedback on water ressources. The study uses a mixed method approach, combining hydrological analyses, literature review and data collection from surveys on stakeholders and key informants level in the middle Senegal valley. Our results suggest that in all the Senegal river valley, socio-ecological changes are driven by new hydrological conditions. If dam management benefit for peoples with electrification and development of an irrigated agriculture, it has also emphasized the floodplain degradation. Flooded area has decline and are more irregular, causing an erosion of floodplain supporting services (traditional activities as fishing, grazing and flood-recession agriculture). These conditions reduce peoples' livelihood possibilities and irrigation is the only regular activity. As a feedback, irrigated agriculture increases withdrawals in the river and, recently, in aquifers posing a new uncertainty on water

  7. Climate change and water resources

    International Nuclear Information System (INIS)

    Younos, Tamim; Grady, Caitlin A.

    2013-01-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  8. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  9. Towards integrated water resources management in Colombia: challenges and opportunities for spatial environmental planning

    Science.gov (United States)

    Salazar, Sergio; Hernández, Sebastián

    2015-04-01

    actions to a water culture and water use conflict management. With the premise that "access to information and research are crucial for the integrated water resources management", different planning tools have been implemented in several case studies, considering several hydro-climatic, bio-geographic and socio-cultural contexts. It was supported with a transdisciplinary approach (integrated visions from disciplines such as hydrology, biology, ecology, pedology, geomorphology, geology, economy and social sciences among others) with a key protagonist: the technical and scientific capacity available in the country. From this practical experiences at different spatial scales, we have identified a battery of key challenges: i) extend the spatial and temporal coverage of hydrometeorological and water quality monitoring networks at regional scale; ii) expand the knowledge base of aquatic and transition ecosystem as well as the environmental baseline from regional to local scales; iii) researches about the state of subterranean water resources and their interactions with lotic and lentic systems; iv) move towards the establishment of decision support systems that integrate policy objectives at different scales; v) strengthening technical and scientific capacity of the country expanding academic and research public offer; vi) unifying technical criteria and standards environment management policy; vii) institutional architecture redesign. If there is a political and socio-economical consensus about the urgency to move towards the key aspect summarized here, Colombian people will be giving the definitive step towards integrated water resources management as a cornerstone of spatial environmental planning and water governance. Disclaimer: The views and opinions expressed in this abstract are those of the authors and do not necessarily reflect the official position of the Colombian Ministry of Environment and Sustainable Development or any agency of the Colombian government.

  10. Water footprint as a tool for integrated water resources management

    Science.gov (United States)

    Aldaya, Maite; Hoekstra, Arjen

    2010-05-01

    In a context where water resources are unevenly distributed and, in some regions precipitation and drought conditions are increasing, enhanced water management is a major challenge to final consumers, businesses, water resource users, water managers and policymakers in general. By linking a large range of sectors and issues, virtual water trade and water footprint analyses provide an appropriate framework to find potential solutions and contribute to a better management of water resources. The water footprint is an indicator of freshwater use that looks not only at direct water use of a consumer or producer, but also at the indirect water use. The water footprint of a product is the volume of freshwater used to produce the product, measured over the full supply chain. It is a multi-dimensional indicator, showing water consumption volumes by source and polluted volumes by type of pollution; all components of a total water footprint are specified geographically and temporally. The water footprint breaks down into three components: the blue (volume of freshwater evaporated from surface or groundwater systems), green (water volume evaporated from rainwater stored in the soil as soil moisture) and grey water footprint (the volume of polluted water associated with the production of goods and services). Closely linked to the concept of water footprint is that of virtual water trade, which represents the amount of water embedded in traded products. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. Virtual water trade between nations and even continents could thus be used as an instrument to improve global water use efficiency and to achieve water security in water-poor regions of the world. The virtual water trade

  11. Water Resources: Management and Strategies in Nigeria ...

    African Journals Online (AJOL)

    Water Resources: Management and Strategies in Nigeria. ... the rational use of water resources poses a great problem and challenge to the nation. ... Suggestions were made on ways of planning sustainable water supply systems for Nigeria ... South Africa (96); South Sudan (1); Sudan (3); Swaziland (3); Tanzania (19) ...

  12. Water Resources Management in Tanzania: Identifying Research ...

    African Journals Online (AJOL)

    by human-induced activities. Over the past ... Review of water resources management in Tanzania; Global literature review on water resources ..... requirements for biodiversity and human health. .... Global warming is altering regional climates.

  13. Radio resource management using geometric water-filling

    CERN Document Server

    He, Peter; Zhou, Sheng; Niu, Zhisheng

    2014-01-01

    This brief introduces the fundamental theory and development of managing radio resources using a water-filling algorithm that can optimize system performance in wireless communication. Geometric Water-Filling (GWF) is a crucial underlying tool in emerging communication systems such as multiple input multiple output systems, cognitive radio systems, and green communication systems. Early chapters introduce emerging wireless technologies and provide a detailed analysis of water-filling. The brief investigates single user and multi-user issues of radio resource management, allocation of resources

  14. More Water Resources but Less for Irrigation: Adaptation Strategy of the Yellow River in a Changing Environment

    Science.gov (United States)

    Tang, Q.; Yin, Y. Y.

    2015-12-01

    The Yellow River is the primary source of freshwater to the northern China. Increasing population and socio-economic development have put great pressure on water resources of the river basin. The anticipated climate and socio-economic changes may further increase water stress. Development of adaptation strategies would have significant implications for water and food security of this region. In this study, the outputs of multiple hydrological models forced with the bias-corrected climatic variables from multiple global climate models were used to assess the change in renewable water resources of the river basin in the 21st century. The outputs of multiple crop models were used to assess the change in agricultural water demand. The domestic and industrial water demands were estimated based on the future socio-economic conditions under the Shared Socio-economic Pathways (SSPs). Besides basic ecosystem needs for water which must be met, the water use in domestic and industrial sectors is considered to have a higher priority than the agricultural water use when water is insufficient. The results show that the renewable water resources of the basin would increase as global mean temperature increases while the water demand would grow much more rapidly, largely due to water demand increase in domestic and industrial sectors. In most of the sub-basins of the Yellow River basin, the available water resources can not sustain all the water use sectors starting from the next a few decades. As more water resources would be appropriated by domestic and industrial sectors, a part of irrigated area had to be converted to rainfed agriculture which led to a large reduction in food production. This study highlights the linked water and food security in a changing environment and suggests that the trade-off should be considered when developing regional adaptation strategies.

  15. Evolution of the societal value of water resources for economic development versus environmental sustainability in Australia from 1843 to 2011

    Science.gov (United States)

    Wei, Y.; Wei, J., , Dr; Western, A. W.

    2017-12-01

    towards sustainable water resource use. Our results show that the transition of the societal value has not yet reached stabilization, which may stabilize, backlash or lead to system breakdown in future. The approach developed in this study provides a roadmap for the development of new disciplines across social and natural science.

  16. Challenges and Opportunities for Establishing Design as a Research Discipline in Civil and Environmental Engineering

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn

    2013-01-01

    faculty, research and education communities, conferences, and journals. However, design remains an emerging sub-discipline in civil and environmental engineering – practiced, valued, and taught but not subject to rigorous academic research. This paper presents some of the challenges associated...... with the establishment of design as a research discipline within civil and environmental engineering, some of the benefits and opportunities that will come from that establishment, and some evidence for the fact that this process has already begun.......There are a number of fields including architecture, industrial design, and urban planning and design, where design is the discipline upon which all research and teaching activities are based. In other fields such as aerospace and mechanical engineering, design is a sub-discipline with its own...

  17. GEO/SQL in water resource manegement

    Directory of Open Access Journals (Sweden)

    Andrej Vidmar

    1992-12-01

    Full Text Available The development of water resource management concepts shouis the problem of collecting, combining, and using alphanumerical and graphical spatial data. The solution of this problem lies in the use of geographic information systems - GIS. This paper describes the usefulness of GIS programming tool Geo/SQL in water resources management.

  18. Water resources of Sedgwick County, Kansas

    Science.gov (United States)

    Bevans, H.E.

    1989-01-01

    Hydrologic data from streams, impoundments, and wells are interpreted to: (1) document water resources characteristics; (2) describe causes and extent of changes in water resources characteristics; and (3) evaluate water resources as sources of supply. During 1985, about 134,200 acre-ft of water (84% groundwater) were used for public (42%), irrigation, (40%), industrial (14%), and domestic (4%) supplies. Streamflow and groundwater levels are related directly to precipitation, and major rivers are sustained by groundwater inflow. Significant groundwater level declines have occurred only in the Wichita well field. The Arkansas and Ninnescah Rivers have sodium chloride type water; the Little Arkansas River, calcium bicarbonate type water. Water quality characteristics of water in small streams and wells depend primarily on local geology. The Wellington Formation commonly yields calcium sulfate type water; Ninnescah Shale and unconsolidated deposits generally yield calcium bicarbonate type water. Sodium chloride and calcium sulfate type water in the area often have dissolved-solids concentrations exceeding 1,000 mg/L. Water contamination by treated sewage effluent was detected inparts of the Arkansas River, Little Arkansas River, and Cowskin Creek. Nitrite plus nitrate as nitrogen contamination was detected in 11 of 101 wells; oilfield brine was detected in the Wichita-Valley Center Floodway, Prairie Creek, Whitewater Creek, and 16 of 101 wells; and agricultural pesticides were detected in 8 of 14 impoundments and 5 of 19 wells. Generally, the water is acceptable for most uses. (USGS)

  19. Tunable surface wettability and water adhesion of Sb{sub 2}S{sub 3} micro-/nanorod films

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xin; Zhao, Huiping [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Street, Wuhan 430073 (China); Yang, Hao, E-mail: hyangwit@hotmail.com [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Street, Wuhan 430073 (China); Liu, Yunling [State Key laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Yan, Guoping [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Street, Wuhan 430073 (China); Chen, Rong, E-mail: rchenhku@hotmail.com [Key Laboratory for Green Chemical Process of Ministry of Education and Hubei Novel Reactor and Green Chemical Technology Key Laboratory, Wuhan Institute of Technology, Xiongchu Street, Wuhan 430073 (China)

    2014-01-15

    Antimony sulfide (Sb{sub 2}S{sub 3}) films were successfully prepared by spin coating Sb{sub 2}S{sub 3} micro-/nanorods with different sizes on glass slides, which was synthesized via a facile and rapid microwave irradiation method. The prepared Sb{sub 2}S{sub 3} micro-/nanorods and films were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle (CA). The as-prepared Sb{sub 2}S{sub 3} films exhibited different surface wettabilities ranging from superhydrophilicity to superhydrophobicity, which was strongly dependent on the diameter of Sb{sub 2}S{sub 3} micro-/nanorod. Sb{sub 2}S{sub 3} film made by nanorods possessed superhydrophobic surface and high water adhesive property. After surface modification with stearic acid, the superhydrophobic surface exhibited an excellent self-cleaning property owing to its low adhesive force. The clarification of three possible states including Wenzel's state, “Gecko” state and Cassie's state for Sb{sub 2}S{sub 3} film surfaces was also proposed to provide a better understanding of interesting surface phenomena on Sb{sub 2}S{sub 3} films.

  20. Integration of hydrogeology and soil science for sustainable water resources-focus on water quantity

    Science.gov (United States)

    Increased biofuel production has heightened awareness of the strong linkages between crop water use and depletion of water resources. Irrigated agriculture consumed 90% of global fresh water resources during the past century. Addressing crop water use and depletion of groundwater resources requires ...

  1. Reuse of Produced Water from CO<sub>2sub> Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, Chad [Univ. of Illinois, Champaign, IL (United States); Dastgheib, Seyed A. [Univ. of Illinois, Champaign, IL (United States); Yang, Yaning [Univ. of Illinois, Champaign, IL (United States); Ashraf, Ali [Univ. of Illinois, Champaign, IL (United States); Duckworth, Cole [Univ. of Illinois, Champaign, IL (United States); Sinata, Priscilla [Univ. of Illinois, Champaign, IL (United States); Sugiyono, Ivan [Univ. of Illinois, Champaign, IL (United States); Shannon, Mark A. [Univ. of Illinois, Champaign, IL (United States); Werth, Charles J. [Univ. of Illinois, Champaign, IL (United States)

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO<sub>2sub> enhanced oil recovery (CO<sub>2sub>-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO<sub>2sub>-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter

  2. GIS and Game Theory for Water Resource Management

    Science.gov (United States)

    Ganjali, N.; Guney, C.

    2017-11-01

    In this study, aspects of Game theory and its application on water resources management combined with GIS techniques are detailed. First, each term is explained and the advantages and limitations of its aspect is discussed. Then, the nature of combinations between each pair and literature on the previous studies are given. Several cases were investigated and results were magnified in order to conclude with the applicability and combination of GIS- Game Theory- Water Resources Management. It is concluded that the game theory is used relatively in limited studies of water management fields such as cost/benefit allocation among users, water allocation among trans-boundary users in water resources, water quality management, groundwater management, analysis of water policies, fair allocation of water resources development cost and some other narrow fields. Also, Decision-making in environmental projects requires consideration of trade-offs between socio-political, environmental, and economic impacts and is often complicated by various stakeholder views. Most of the literature on water allocation and conflict problems uses traditional optimization models to identify the most efficient scheme while the Game Theory, as an optimization method, combined GIS are beneficial platforms for agent based models to be used in solving Water Resources Management problems in the further studies.

  3. Sustainable Water Systems for the City of Tomorrow—A Conceptual Framework

    Science.gov (United States)

    Urban water systems are an example of complex, dynamic human-environment coupled systems, which exhibit emergent behaviors that transcends individual scientific disciplines. While previous siloed approaches to water services (i.e., water resources, drinking water, wastewater, and...

  4. Higher Resolution for Water Resources Studies

    Science.gov (United States)

    Dumenil-Gates, L.

    2009-12-01

    The Earth system science community is providing an increasing range of science results for the benefit of achieving the Millennium Development Goals. In addressing questions such as reducing poverty and hunger, achieving sustainable global development, or by defining adaptation strategies for climate change, one of the key issues will be the quantitative description and understanding of the global water cycle, which will allow useful projections of available future water resources for several decades ahead. The quantities of global water cycle elements that we observe today - and deal with in hydrologic and atmospheric modeling - are already very different from the natural flows as human influence on the water cycle by storage, consumption and edifice has been going on for millennia, and climate change is expected to add more uncertainty. In this case Tony Blair’s comment that perhaps the most worrying problem is climate change does not cover the full story. We shall also have to quantify how the human demand for water resources and alterations of the various elements of the water cycle may proceed in the future: will there be enough of the precious water resource to sustain current and future demands by the various sectors involved? The topics that stakeholders and decision makers concerned with managing water resources are interested in cover a variety of human uses such as agriculture, energy production, ecological flow requirements to sustain biodiversity and ecosystem services, or human cultural aspects, recreation and human well-being - all typically most relevant at the regional or local scales, this being quite different from the relatively large-scale that the IPCC assessment addresses. Halfway through the Millennium process, the knowledge base of the global water cycle is still limited. The sustainability of regional water resources is best assessed through a research program that combines high-resolution climate and hydrologic models for expected

  5. Water resources in the next millennium

    Science.gov (United States)

    Wood, Warren

    As pressures from an exponentially increasing population and economic expectations rise against a finite water resource, how do we address management? This was the main focus of the Dubai International Conference on Water Resources and Integrated Management in the Third Millennium in Dubai, United Arab Emirates, 2-6 February 2002. The invited forum attracted an eclectic mix of international thinkers from five continents. Presentations and discussions on hydrology policy/property rights, and management strategies focused mainly on problems of water supply, irrigation, and/or ecosystems.

  6. Comparative study of water reactivity with Mo{sub 2}O{sub y}{sup −} and W{sub 2}O{sub y}{sup −} clusters: A combined experimental and theoretical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Manisha; Waller, Sarah E.; Saha, Arjun; Raghavachari, Krishnan; Jarrold, Caroline Chick, E-mail: cjarrold@indiana.edu [Department of Chemistry, Indiana University, Bloomington, Indiana 47405 (United States)

    2014-09-14

    A computational investigation of the Mo{sub 2}O{sub y}{sup −} + H{sub 2}O (y = 4, 5) reactions as well as a photoelectron spectroscopic probe of the deuterated Mo{sub 2}O{sub 6}D{sub 2}{sup −} product have been carried out to understand a puzzling question from a previous study: Why is the rate constant determined for the Mo{sub 2}O{sub 5}{sup −} + H{sub 2}O/D{sub 2}O reaction, the terminal reaction in the sequential oxidation of Mo{sub 2}O{sub y}{sup −} by water, higher than the W{sub 2}O{sub 5}{sup −} + H{sub 2}O/D{sub 2}O reaction? This disparity was intriguing because W{sub 3}O{sub y}{sup −} clusters were found to be more reactive toward water than their Mo{sub 3}O{sub y}{sup −} analogs. A comparison of molecular structures reveals that the lowest energy structure of Mo{sub 2}O{sub 5}{sup −} provides a less hindered water addition site than the W{sub 2}O{sub 5}{sup −} ground state structure. Several modes of water addition to the most stable molecular and electronic structures of Mo{sub 2}O{sub 4}{sup −} and Mo{sub 2}O{sub 5}{sup −} were explored computationally. The various modes are discussed and compared with previous computational studies on W{sub 2}O{sub y}{sup −} + H{sub 2}O reactions. Calculated free energy reaction profiles show lower barriers for the initial Mo{sub 2}O{sub y}{sup −} + H{sub 2}O addition, consistent with the higher observed rate constant. The terminal Mo{sub 2}O{sub y}{sup −} sequential oxidation product predicted computationally was verified by the anion photoelectron spectrum of Mo{sub 2}O{sub 6}D{sub 2}{sup −}. Based on the computational results, this anion is a trapped dihydroxide intermediate in the Mo{sub 2}O{sub 5}{sup −} + H{sub 2}O/D{sub 2}O → Mo{sub 2}O{sub 6}{sup −} + H{sub 2}/D{sub 2} reaction.

  7. Advances in water resources engineering

    CERN Document Server

    Wang, Lawrence

    2015-01-01

    The Handbook of Environmental Engineering is a collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. A sister volume to Volume 15: Modern Water Resources Engineering, this volume focuses on the theory and analysis of various water resources systems including watershed sediment dynamics and modeling, integrated simulation of interactive surface water and groundwater systems, river channel stabilization with submerged vanes, non-equilibrium sediment transport, reservoir sedimentation, and fluvial processes, minimum energy dissipation rate theory and applications, hydraulic modeling development and application, geophysical methods for assessment of earthen dams, soil erosion on upland areas by rainfall and overland flow, geofluvial modeling methodologies and applications, and an environmental water engineering glossary. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of...

  8. Focus on CSIR research in water resources: ECO2 – sharing benefits from water resources

    CSIR Research Space (South Africa)

    Claassen, Marius

    2007-08-01

    Full Text Available benefits from water resources Socio-economic development de- pends on the reliable supply of water for industrial, mining, agricultural, potable and recreational purposes. These activities also generate waste products that are often discharged...

  9. Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, Jens; Apps, John; Zheng, Liange; Zhang, Yingqi; Xu, Tianfu; Tsang, Chin-Fu

    2008-10-01

    One promising approach to reduce greenhouse gas emissions is injecting CO{sub 2} into suitable geologic formations, typically depleted oil/gas reservoirs or saline formations at depth larger than 800 m. Proper site selection and management of CO{sub 2} storage projects will ensure that the risks to human health and the environment are low. However, a risk remains that CO{sub 2} could migrate from a deep storage formation, e.g. via local high-permeability pathways such as permeable faults or degraded wells, and arrive in shallow groundwater resources. The ingress of CO{sub 2} is by itself not typically a concern to the water quality of an underground source of drinking water (USDW), but it will change the geochemical conditions in the aquifer and will cause secondary effects mainly induced by changes in pH, in particular the mobilization of hazardous inorganic constituents present in the aquifer minerals. Identification and assessment of these potential effects is necessary to analyze risks associated with geologic sequestration of CO{sub 2}. This report describes a systematic evaluation of the possible water quality changes in response to CO{sub 2} intrusion into aquifers currently used as sources of potable water in the United States. Our goal was to develop a general understanding of the potential vulnerability of United States potable groundwater resources in the event of CO{sub 2} leakage. This goal was achieved in two main tasks, the first to develop a comprehensive geochemical model representing typical conditions in many freshwater aquifers (Section 3), the second to conduct a systematic reactive-transport modeling study to quantify the effect of CO{sub 2} intrusion into shallow aquifers (Section 4). Via reactive-transport modeling, the amount of hazardous constituents potentially mobilized by the ingress of CO{sub 2} was determined, the fate and migration of these constituents in the groundwater was predicted, and the likelihood that drinking water

  10. Water Assisted Growth of C<sub>60sub> Rods and Tubes by Liquid–Liquid Interfacial Precipitation Method

    Directory of Open Access Journals (Sweden)

    Cheuk-Wai Tai

    2012-06-01

    Full Text Available C<sub>60sub> nanorods with hexagonal cross sections are grown using a static liquid–liquid interfacial precipitation method in a system of C<sub>60sub>/m-dichlorobenzene solution and ethanol. Adding water to the ethanol phase leads instead to C<sub>60sub> tubes where both length and diameter of the C<sub>60sub> tubes can be controlled by the water content in the ethanol. Based on our observations we find that the diameter of the rods/tubes strongly depends on the nucleation step. We propose a liquid-liquid interface growth model of C<sub>60sub> rods and tubes based on the diffusion rate of the good C<sub>60sub> containing solvent into the poor solvent as well as on the size of the crystal seeds formed at the interface between the two solvents. The grown rods and tubes exhibit a hexagonal solvate crystal structure with m-dichlorobenzene solvent molecules incorporated into the crystal structure, independent of the water content. An annealing step at 200 °C at a pressure < 1 kPa transforms the grown structures into a solvent-free face centered cubic structure. Both the hexagonal and the face centered cubic structures are very stable and neither morphology nor structure shows any signs of degradation after three months of storage.

  11. Water resources activities in Kentucky, 1986

    Science.gov (United States)

    Faust, R. J.

    1986-01-01

    The U.S. Geological Survey, Water Resources Division, conducts three major types of activities in Kentucky in order to provide hydrologic information and understanding needed for the best management of Kentucky 's and the Nation 's water resources. These activities are: (1) Data collection and dissemination; (2) Water-resources appraisals (interpretive studies); and (3) Research. Activities described in some detail following: (1) collection of surface - and groundwater data; (2) operation of stations to collect data on water quality, atmospheric deposition, and sedimentation; (3) flood investigations; (4) water use; (5) small area flood hydrology; (6) feasibility of disposal of radioactive disposal in deep crystalline rocks; (7) development of a groundwater model for the Louisville area; (8) travel times for streams in the Kentucky River Basin; (9) the impact of sinkholes and streams on groundwater flow in a carbonate aquifer system; (10) sedimentation and erosion rates at the Maxey Flats Radioactive Waste Burial site; and (11) evaluation of techniques for evaluating the cumulative impacts of mining as applied to coal fields in Kentucky. (Lantz-PTT)

  12. Challenges in Incorporating Climate Change Adaptation into Integrated Water Resources Management

    Science.gov (United States)

    Kirshen, P. H.; Cardwell, H.; Kartez, J.; Merrill, S.

    2011-12-01

    Over the last few decades, integrated water resources management (IWRM), under various names, has become the accepted philosophy for water management in the USA. While much is still to be learned about how to actually carry it out, implementation is slowly moving forward - spurred by both legislation and the demands of stakeholders. New challenges to IWRM have arisen because of climate change. Climate change has placed increased demands on the creativities of planners and engineers because they now must design systems that will function over decades of hydrologic uncertainties that dwarf any previous hydrologic or other uncertainties. Climate and socio-economic monitoring systems must also now be established to determine when the future climate has changed sufficiently to warrant undertaking adaptation. The requirements for taking some actions now and preserving options for future actions as well as the increased risk of social inequities in climate change impacts and adaptation are challenging experts in stakeholder participation. To meet these challenges, an integrated methodology is essential that builds upon scenario analysis, risk assessment, statistical decision theory, participatory planning, and consensus building. This integration will create cross-disciplinary boundaries for these disciplines to overcome.

  13. Modeling resource basis for social and economic development strategies: Water resource case

    Science.gov (United States)

    Kosolapova, Natalia A.; Matveeva, Ludmila G.; Nikitaeva, Anastasia Y.; Molapisi, Lesego

    2017-10-01

    The article substantiates that the effectiveness of implementing socio-economic development strategies is to a large extent determined by the adequate provision of basic resources. The key role of water resources in economic strategic development is empirically illustrated. The article demonstrates the practicability of strategic management of water resources based on the principle of a combination of river basin management approaches and the consideration of regional development strategies. The Game Theory technique was used to develop economic and mathematical tools for supporting decision-making in meeting the needs of regional consumers under water balance deficit conditions. The choice of methods was determined from two positions: the methods should allow for the possibility of multi-variant solutions for the selection of optimal options for the distribution of limited water resources between different consumers; the methods should be orientated on the maximum possible harmonization of multidirectional and multi-scale interests of the subjects in the water management system of the different regions (including the state) in order to achieve a balance. The approbation of developing a toolkit for the example of the regions located in the Don and Kuban river basins resulted in the appropriate selection of priority regions for the allocation of water resources in terms of strategic management as well as the determination of measures of ensuring the sustainable use of the river basins under consideration. The proposed tools can be used for coordinating decisions on the water supply of regional economic systems with actual and projected indicators of socio-economic development of the respective regions for a strategic perspective.

  14. Towards understanding the thermoanalysis of water sorption on lithium orthosilicate (Li{sub 4}SiO{sub 4})

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Landeros, J. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, CP 04510, Del. Coyoacan, Mexico DF (Mexico); Departamento de Ingenieria en Metalurgia y Materiales, ESIQIE, Instituto Politecnico Nacional, UPALM, Av. Instituto Politecnico Nacional s/n, CP 07738, Mexico DF (Mexico); Martinez-dlCruz, L. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, CP 04510, Del. Coyoacan, Mexico DF (Mexico); Gomez-Yanez, C. [Departamento de Ingenieria en Metalurgia y Materiales, ESIQIE, Instituto Politecnico Nacional, UPALM, Av. Instituto Politecnico Nacional s/n, CP 07738, Mexico DF (Mexico); Pfeiffer, H., E-mail: pfeiffer@iim.unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, CP 04510, Del. Coyoacan, Mexico DF (Mexico)

    2011-03-10

    A systematic thermogravimetric study of hygroscopic and reactivity behaviors, at low temperatures of lithium orthosilicate (Li{sub 4}SiO{sub 4}), are presented. Li{sub 4}SiO{sub 4} sample was prepared by solid-state reaction and then treated at different temperature-humidity conditions. Li{sub 4}SiO{sub 4} samples previously treated under different temperature-humidity conditions were characterized by Fourier transform infrared spectroscopy and thermogravimetric analyses. Different processes, adsorption and absorption, take place between the Li{sub 4}SiO{sub 4} and water vapor. Absorbed water produces superficial hydroxylated species such as Si-OH and Li-OH. In addition, a kinetic analysis was performed, and the different water absorption activation enthalpies were calculated. It was found that activation enthalpy ({Delta}H) values decrease when the relative humidity is incremented, from 5528.6 J/mol to 2074.2 J/mol at relative humidity levels of 60% and 75% respectively. These results show the impact of different humidity and temperature conditions on the stability and/or chemical reactivity of Li{sub 4}SiO{sub 4}, if this ceramic is used in different application fields, such as carbon dioxide captor or as a breeder ceramic into the fusion reactors.

  15. Evaluating participation in water resource management: A review

    Science.gov (United States)

    Carr, G.; BlöSchl, G.; Loucks, D. P.

    2012-11-01

    Key documents such as the European Water Framework Directive and the U.S. Clean Water Act state that public and stakeholder participation in water resource management is required. Participation aims to enhance resource management and involve individuals and groups in a democratic way. Evaluation of participatory programs and projects is necessary to assess whether these objectives are being achieved and to identify how participatory programs and projects can be improved. The different methods of evaluation can be classified into three groups: (i) process evaluation assesses the quality of participation process, for example, whether it is legitimate and promotes equal power between participants, (ii) intermediary outcome evaluation assesses the achievement of mainly nontangible outcomes, such as trust and communication, as well as short- to medium-term tangible outcomes, such as agreements and institutional change, and (iii) resource management outcome evaluation assesses the achievement of changes in resource management, such as water quality improvements. Process evaluation forms a major component of the literature but can rarely indicate whether a participation program improves water resource management. Resource management outcome evaluation is challenging because resource changes often emerge beyond the typical period covered by the evaluation and because changes cannot always be clearly related to participation activities. Intermediary outcome evaluation has been given less attention than process evaluation but can identify some real achievements and side benefits that emerge through participation. This review suggests that intermediary outcome evaluation should play a more important role in evaluating participation in water resource management.

  16. Water-resources activities, North Dakota District, Fiscal Year 1992

    Science.gov (United States)

    Martin, Cathy R.

    1993-01-01

    The mission of the U.S. Geological Survey, Water Resources Division, is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation's water resources for the overall benefit of the people of the United States. This report describes water-resources activities of the Water Resources Division in North Dakota in fiscal year 1992. Information on each project includes objectives, approach, progress, plans for fiscal year 1993, and completed and planned report products.

  17. Research on Water Resources Design Carrying Capacity

    Directory of Open Access Journals (Sweden)

    Guanghua Qin

    2016-04-01

    Full Text Available Water resources carrying capacity (WRCC is a recently proposed management concept, which aims to support sustainable socio-economic development in a region or basin. However, the calculation of future WRCC is not well considered in most studies, because water resources and the socio-economic development mode for one area or city in the future are quite uncertain. This paper focused on the limits of traditional methods of WRCC and proposed a new concept, water resources design carrying capacity (WRDCC, which incorporated the concept of design. In WRDCC, the population size that the local water resources can support is calculated based on the balance of water supply and water consumption, under the design water supply and design socio-economic development mode. The WRDCC of Chengdu city in China is calculated. Results show that the WRDCC (population size of Chengdu city in development modeI (II, III will be 997 ×104 (770 × 104, 504 × 104 in 2020, and 934 × 104 (759 × 104, 462 × 104 in 2030. Comparing the actual population to the carrying population (WRDCC in 2020 and 2030, a bigger gap will appear, which means there will be more and more pressure on the society-economic sustainable development.

  18. Sustainability assessment of regional water resources under the DPSIR framework

    Science.gov (United States)

    Sun, Shikun; Wang, Yubao; Liu, Jing; Cai, Huanjie; Wu, Pute; Geng, Qingling; Xu, Lijun

    2016-01-01

    Fresh water is a scarce and critical resource in both natural and socioeconomic systems. Increasing populations combined with an increasing demand for water resources have led to water shortages worldwide. Current water management strategies may not be sustainable, and comprehensive action should be taken to minimize the water budget deficit. Sustainable water resources management is essential because it ensures the integration of social, economic, and environmental issues into all stages of water resources management. This paper establishes the indicators to evaluate the sustainability of water utilization based on the Drive-Pressure-Status-Impact-Response (DPSIR) model. Based on the analytic hierarchy process (AHP) method, a comprehensive assessment of changes to the sustainability of the water resource system in the city of Bayannur was conducted using these indicators. The results indicate that there is an increase in the driving force of local water consumption due to changes in society, economic development, and the consumption structure of residents. The pressure on the water system increased, whereas the status of the water resources continued to decrease over the study period due to the increasing drive indicators. The local government adopted a series of response measures to relieve the decreasing water resources and alleviate the negative effects of the increasing driver in demand. The response measures improved the efficiency of water usage to a large extent, but the large-scale expansion in demands brought a rebounding effect, known as ;Jevons paradox; At the same time, the increasing emissions of industrial and agriculture pollutants brought huge pressures to the regional water resources environment, which caused a decrease in the sustainability of regional water resources. Changing medium and short-term factors, such as regional economic pattern, technological levels, and water utilization practices, can contribute to the sustainable utilization of

  19. How Much Will It Cost To Monitor Microbial Drinking Water Quality in Sub-Saharan Africa?

    Science.gov (United States)

    Delaire, Caroline; Peletz, Rachel; Kumpel, Emily; Kisiangani, Joyce; Bain, Robert; Khush, Ranjiv

    2017-06-06

    Microbial water quality monitoring is crucial for managing water resources and protecting public health. However, institutional testing activities in sub-Saharan Africa are currently limited. Because the economics of water quality testing are poorly understood, the extent to which cost may be a barrier to monitoring in different settings is unclear. This study used cost data from 18 African monitoring institutions (piped water suppliers and health surveillance agencies in six countries) and estimates of water supply type coverage from 15 countries to assess the annual financial requirements for microbial water testing at both national and regional levels, using World Health Organization recommendations for sampling frequency. We found that a microbial water quality test costs 21.0 ± 11.3 USD, on average, including consumables, equipment, labor, and logistics, which is higher than previously calculated. Our annual cost estimates for microbial monitoring of piped supplies and improved point sources ranged between 8 000 USD for Equatorial Guinea and 1.9 million USD for Ethiopia, depending primarily on the population served but also on the distribution of piped water system sizes. A comparison with current national water and sanitation budgets showed that the cost of implementing prescribed testing levels represents a relatively modest proportion of existing budgets (water sources in sub-Saharan Africa would cost 16.0 million USD per year, which is minimal in comparison to the projected annual capital costs of achieving Sustainable Development Goal 6.1 of safe water for all (14.8 billion USD).

  20. Subsidiarity in Principle: Decentralization of Water Resources Management

    Directory of Open Access Journals (Sweden)

    Ryan Stoa

    2014-05-01

    Full Text Available The subsidiarity principle of water resources management suggests that water management and service delivery should take place at the lowest appropriate governance level. The principle is attractive for several reasons, primarily because: 1 the governance level can be reduced to reflect environmental characteristics, such as the hydrological borders of a watershed that would otherwise cross administrative boundaries; 2 decentralization promotes community and stakeholder engagement when decision-making is localized; 3 inefficiencies are reduced by eliminating reliance on central government bureaucracies and budgetary constraints; and 4 laws and institutions can be adapted to reflect localized conditions at a scale where integrated natural resources management and climate change adaptation is more focused. Accordingly, the principle of subsidiarity has been welcomed by many states committed to decentralized governance, integrated water resources management, and/or civic participation. However, applications of decentralization have not been uniform, and in some cases have produced frustrating outcomes for states and water resources. Successful decentralization strategies are heavily dependent on dedicated financial resources and human resource capacity. This article explores the nexus between the principle of subsidiarity and the enabling environment, in the hope of articulating factors likely to contribute to, or detract from, the success of decentralized water resources management. Case studies from Haiti, Rwanda, and the United States’ Florida Water Management Districts provide examples of the varied stages of decentralization.

  1. Protonation and structural/chemical stability of Ln{sub 2}NiO{sub 4+δ} ceramics vs. H{sub 2}O/CO{sub 2}: High temperature/water pressure ageing tests

    Energy Technology Data Exchange (ETDEWEB)

    Upasen, S. [Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, 75005 Paris (France); CNRS-IP2CT, UMR 8233, MONARIS, F-75005 Paris (France); Batocchi, P.; Mauvy, F. [ICMCB, ICMCB-CNRS-IUT-Université de Bordeaux, 33608 Pessac Cedex (France); Slodczyk, A. [Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, 75005 Paris (France); CNRS-IP2CT, UMR 8233, MONARIS, F-75005 Paris (France); Colomban, Ph., E-mail: philippe.colomban@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, 75005 Paris (France); CNRS-IP2CT, UMR 8233, MONARIS, F-75005 Paris (France)

    2015-02-15

    Highlights: • High temperature/water pressure autoclave is used to study the reaction/corrosion at SOFC/HTSE electrode. • High stability of Pr{sub 2}NiO{sub 4+δ} (PNO) and Nd{sub 2}NiO{sub 4+δ} (NNO) dense ceramics vs. water pressure is demonstrated. • Protonated rare-earth nickelates retain the perovskite-type structure and their H-content is determined. • Very low laser illumination power is required to avoid RE nickelate phase transition. • Nickelates show increasing stability from La to Pr/Nd vs. CO{sub 2}-rich high temperature water vapor. - Abstract: Mixed ionic-electronic conductors (MIEC) such as rare-earth nickelates with a general formula Ln{sub 2}NiO{sub 4+δ} (Ln = La, Pr, Nd) appear as potential for energy production and storage systems: fuel cells, electrolysers and CO{sub 2} converters. Since a good electrode material should exhibit important stability in operating conditions, the structural and chemical stability of different nickelate-based, well-densified ceramics have been studied using various techniques: TGA, dilatometry, XRD, Raman scattering and IR spectroscopy. Consequently, La{sub 2}NiO{sub 4+δ} (LNO), Pr{sub 2}NiO{sub 4+δ} (PNO) and Nd{sub 2}NiO{sub 4+δ} (NNO) have been exposed during 5 days to high water vapor pressure (40 bar) at intermediate temperature (550 °C) in an autoclave device, the used water being almost free or saturated with CO{sub 2}. Such protonation process offers an accelerating stability test and allows the choice of the most pertinent composition for industrial applications requiring a selected material with important life-time. In order to understand any eventual change of crystal structure, the ceramics were investigated in as-prepared, pristine state as well as after protonation and deprotonation (due to thermal treatment till 1000 °C under dry atmosphere). The results show the presence of traces or second phases originating from undesirable hydroxylation and carbonation, detected in the near

  2. Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources.

    Science.gov (United States)

    Hybel, A-M; Godskesen, B; Rygaard, M

    2015-09-01

    Indicators of the impact on freshwater resources are becoming increasingly important in the evaluation of urban water systems. To reveal the importance of spatial resolution, we investigated how the choice of catchment scale influenced the freshwater impact assessment. Two different indicators were used in this study: the Withdrawal-To-Availability ratio (WTA) and the Water Stress Index (WSI). Results were calculated for three groundwater based Danish urban water supplies (Esbjerg, Aarhus, and Copenhagen). The assessment was carried out at three spatial levels: (1) the groundwater body level, (2) the river basin level, and (3) the regional level. The assessments showed that Copenhagen's water supply had the highest impact on the freshwater resource per cubic meter of water abstracted, with a WSI of 1.75 at Level 1. The WSI values were 1.64 for Aarhus's and 0.81 for Esbjerg's water supply. Spatial resolution was identified as a major factor determining the outcome of the impact assessment. For the three case studies, WTA and WSI were 27%-583% higher at Level 1 than impacts calculated for the regional scale. The results highlight that freshwater impact assessments based on regional data, rather than sub-river basin data, may dramatically underestimate the actual impact on the water resource. Furthermore, this study discusses the strengths and shortcomings of the applied indicator approaches. A sensitivity analysis demonstrates that although WSI has the highest environmental relevance, it also has the highest uncertainty, as it requires estimations of non-measurable environmental water requirements. Hence, the development of a methodology to obtain more site-specific and relevant estimations of environmental water requirements should be prioritized. Finally, the demarcation of the groundwater resource in aquifers remains a challenge for establishing a consistent method for benchmarking freshwater impacts caused by groundwater abstraction. Copyright © 2015 Elsevier

  3. Water resources management in Tanzania: identifying research ...

    African Journals Online (AJOL)

    This paper aims at identifying research gaps and needs and recommendations for a research agenda on water resources management in Tanzania. We reviewed published literature on water resources management in Tanzania in order to highlight what is currently known, and to identify knowledge gaps, and suggest ...

  4. Groundwater resource-directed measures software | Dennis | Water ...

    African Journals Online (AJOL)

    Sustainability, equity and efficiency are identified as central guiding principles in the protection, use, development, conservation, management and control of water resources. These principles recognise the basic human needs of present and future generations, the need to protect water resources, the need to share some ...

  5. Water loss from terrestrial planets with CO{sub 2}-rich atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wordsworth, R. D.; Pierrehumbert, R. T., E-mail: rwordsworth@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, 60637 IL (United States)

    2013-12-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO{sub 2} can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO{sub 2} atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO{sub 2}-rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ∼270 W m{sup –2} (global mean) unlikely to lose more than one Earth ocean of H{sub 2}O over their lifetimes unless they lose all their atmospheric N{sub 2}/CO{sub 2} early on. Because of the variability of H{sub 2}O delivery during accretion, our results suggest that many 'Earth-like' exoplanets in the habitable zone may have ocean-covered surfaces, stable CO{sub 2}/H{sub 2}O-rich atmospheres, and high mean surface temperatures.

  6. Rangeland and water resources

    African Journals Online (AJOL)

    Session B3 Management for sustainable use — Rangeland and water resources. ... The theme of optimsing integrated catchment management will be treated ... land system, catchment, basin), with a focus on law, policy and implementation.

  7. Handling Uncertain Gross Margin and Water Demand in Agricultural Water Resources Management using Robust Optimization

    Science.gov (United States)

    Chaerani, D.; Lesmana, E.; Tressiana, N.

    2018-03-01

    In this paper, an application of Robust Optimization in agricultural water resource management problem under gross margin and water demand uncertainty is presented. Water resource management is a series of activities that includes planning, developing, distributing and managing the use of water resource optimally. Water resource management for agriculture can be one of the efforts to optimize the benefits of agricultural output. The objective function of agricultural water resource management problem is to maximizing total benefits by water allocation to agricultural areas covered by the irrigation network in planning horizon. Due to gross margin and water demand uncertainty, we assume that the uncertain data lies within ellipsoidal uncertainty set. We employ robust counterpart methodology to get the robust optimal solution.

  8. Water resource management model for a river basin

    OpenAIRE

    Jelisejevienė, Emilija

    2005-01-01

    The objective is to develop river basin management model that ensures integrated analysis of existing water resource problems and promotes implementation of sustainable development principles in water resources management.

  9. Impact of Climate Change on Water Resources in Taiwan

    Directory of Open Access Journals (Sweden)

    An-Yuan Tsai Wen-Cheng Huang

    2011-01-01

    Full Text Available This paper establishes a comprehensive assessment model to measure the regional impact of climate change on Taiwan¡¦s water resources. Working from future rainfall data simulated by Japan¡¦s high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future water needs, regional reservoir effective capacity and renewable water resource volume. This paper uses three water resource assessment indicators: the annual water utilization ratio indicator, the water shortage indicator and the extreme event occurrence indicator. Through fuzzy comprehensive assessment, we divide the evaluation set into five levels: very good (L1, good (L2, fair (L3, poor (L4 and very poor (L5. Results indicate that, given the effects of future climate change (2080 - 2099 and the increase in water demand, future water resources conditions in northern and eastern Taiwan will not be significantly different from historical levels (1979 - 1998 and will maintain a ¡§good¡¨ level (L2, while the conditions in southern Taiwan will visibly deteriorate from its historical ¡§fair¡¨ level (L3 to ¡§poor¡¨ (L4; and the future conditions for central Taiwan will be ¡§poor¡¨ (L4. The initiation of adaptation options for water management in southern and central Taiwan would be needed by increasing reservoir capacity and reducing overall water use.

  10. Growth behavior of LiMn{sub 2}O{sub 4} particles formed by solid-state reactions in air and water vapor

    Energy Technology Data Exchange (ETDEWEB)

    Kozawa, Takahiro, E-mail: t-kozawa@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11–1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Yanagisawa, Kazumichi [Research Laboratory of Hydrothermal Chemistry, Faculty of Science, Kochi University, 2–5-1 Akebono-cho, Kochi 780-8520 (Japan); Murakami, Takeshi; Naito, Makio [Joining and Welding Research Institute, Osaka University, 11–1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2016-11-15

    Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn{sub 2}O{sub 4} particles in air and water vapor atmospheres as model reactions; LiMn{sub 2}O{sub 4} is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO{sub 3} precursor impregnated with LiOH, LiMn{sub 2}O{sub 4} spheres with a hollow structure were obtained in air, while angulated particles with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn{sub 2}O{sub 4} particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.

  11. Water advisory demand evaluation and resource toolkit

    OpenAIRE

    Paluszczyszyn, D.; Illya, S.; Goodyer, E.; Kubrycht, T.; Ambler, M.

    2016-01-01

    Cities are living organisms, 24h / 7day, with demands on resources and outputs. Water is a key resource whose management has not kept pace with modern urban life. Demand for clean water and loads on waste water no longer fit diurnal patterns; and they are impacted by events that are outside the normal range of parameters that are taken account of in water management. This feasibility study will determine how the application of computational intelligence can be used to analyse a mix of dat...

  12. promoting integrated water resources management in south west

    African Journals Online (AJOL)

    eobe

    1, 2 SOUTH WEST REGIONAL CENTRE FOR NATIONAL WATER RESOURCES CAPACITY BUILDING NETWORK,. FEDERAL UNIVERSITY OF ... that an integrated approach to water resource development and management offers the best ...

  13. Impact of Climate Change on Water Resources in Taiwan

    OpenAIRE

    An-Yuan Tsai Wen-Cheng Huang

    2011-01-01

    This paper establishes a comprehensive assessment model to measure the regional impact of climate change on Taiwan¡¦s water resources. Working from future rainfall data simulated by Japan¡¦s high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future wat...

  14. Thoughts on access to water in Peru within the new Water Resources Law framework

    Directory of Open Access Journals (Sweden)

    Lucía Ruiz Ostoic

    2013-12-01

    Full Text Available The difficulty involved addressing issues related with water management in Peru is the article’s starting point. Therefore, the water issue approach is introduced explaining its administrative procedures, the rights involved and making a critical analysis of 2008 Water Resources Law. Finally, the need for an integrated management analysis of the water resource is highlighted by integrally understanding the General Water Law as well as the current Water Resources Law, and encouraging dialogue among social actors involved in order to avoid future conflicts.

  15. NASA's Applied Sciences for Water Resources

    Science.gov (United States)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  16. Effect of Rh oxide as a cocatalyst over Bi{sub 0.5}Y{sub 0.5}VO{sub 4} on photocatalytic overall water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei, E-mail: chanwee@henu.edu.cn [College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan (China); Yang, Bingbing; Yu, Qingtao; Mao, Liqun [College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan (China); Fan, Zeyun [Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Qizhao [College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Shangguan, Wenfeng, E-mail: shangguan@sjtu.edu.cn [Research Center for Combustion and Environmental Technology, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-15

    Graphical abstract: - Highlights: • The effect of cocatalysts as active sites for water splitting was investigated. • Rh{sub 2}O{sub 3} was found to give the highest photocatalytic activity. • Compared to Pt, NiO, Rh{sub 2}O{sub 3} can reduce more overpotential of O{sub 2} evolution. • Rh{sub 2}O{sub 3} also promote the separation of electrons and holes apparently. - Abstract: Pt, Rh{sub 2}O{sub 3}, NiO nanoparticles as cocatalysts were loaded on BYV solid solution photocatalysts by an impregnation method to promote photocatalytic activity for overall water splitting. The cocatalysts loading could enhance the photocatalytic activity significantly. The (photo)electrochemical measurements and HR-TEM, PL analyses revealed that the effect of cocatalysts acted as active sites depended on the efficient separation of photoinduced charge carriers as well as the reduction of the overpotential of O{sub 2} evolution. Among the cocatalysts in this study, Rh{sub 2}O{sub 3} was found to give the highest photocatalytic activity. This is because, compared to Pt and NiO, Rh{sub 2}O{sub 3} nanoparticles are able to not only reduce more overpotential of O{sub 2} evolution, but also extremely promote the separation of electrons and holes. 0.5 wt% Rh{sub 2}O{sub 3}/BYV exhibited the highest photocatalytic activity for H{sub 2} and O{sub 2} evolution, reaching 104.4 μmol/h and 50.9 μmol/h, respectively. The present work will be useful to instruct cocatalyst loading for obtaining the photocatalysts with high photocatalytic activity for overall water splitting.

  17. A new book : 'light-water reactor materials'

    International Nuclear Information System (INIS)

    Olander, Donald R.; Motta, Arthur T.

    2005-01-01

    The contents of a new book currently in preparation are described. The dearth of books in the field of nuclear materials has left both students in nuclear materials classes and professionals in the same field without a resource for the broad fundamentals of this important sub-discipline of nuclear engineering. The new book is devoted entirely to materials problems in the core of light-water reactors, from the pressure vessel into the fuel. Key topics deal with the UO 2 fuel, zircaloy cladding, stainless steel, and of course, water. The restriction to LWR materials does not mean a short monograph; the enormous quantity of experimental and theoretical work over the past 50 years on these materials presents a challenge of culling the most important features and explaining them in the simplest quantitative fashion. Moreover, LWRs will probably be the sole instrument of the return of nuclear energy in electric power production for the next decade or so. By that time, a new book will be needed

  18. Water Intensity of Electricity from Geothermal Resources

    Science.gov (United States)

    Mishra, G. S.; Glassley, W. E.

    2010-12-01

    BACKGROUND Electricity from geothermal resources could play a significant role in the United States over the next few decades; a 2006 study by MIT expects a capacity of 100GWe by 2050 as feasible; approximately 10% of total electricity generating capacity up from less than 1% today. However, there is limited research on the water requirements and impacts of generating electricity from geothermal resources - conventional as well as enhanced. To the best of our knowledge, there is no baseline exists for water requirements of geothermal electricity. Water is primarily required for cooling and dissipation of waste heat in the power plants, and to account for fluid losses during heat mining of enhanced geothermal resources. MODEL DESCRIPTION We have developed a model to assess and characterize water requirements of electricity from hydrothermal resources and enhanced geothermal resources (EGS). Our model also considers a host of factors that influence cooling water requirements ; these include the temperature and chemical composition of geothermal resource; installed power generation technology - flash, organic rankine cycle and the various configurations of these technologies; cooling technologies including air cooled condensers, wet recirculating cooling, and hybrid cooling; and finally water treatment and recycling installations. We expect to identify critical factors and technologies. Requirements for freshwater, degraded water and geothermal fluid are separately estimated. METHODOLOGY We have adopted a lifecycle analysis perspective that estimates water consumption at the goethermal field and power plant, and accounts for transmission and distribution losses before reaching the end user. Our model depends upon an extensive literature review to determine various relationships necessary to determine water usage - for example relationship between thermal efficiency and temperature of a binary power plant, or differences in efficiency between various ORC configurations

  19. Alumina nanowire growth by water decomposition and the peritectic reaction of decagonal Al{sub 65}Cu{sub 15}Co{sub 20} quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Téllez-Vázquez, J.O., E-mail: oswald.tellez@gmail.com [Instituto de Investigaciones en Metalurgia y Materiales, UMSNH, Edificio U, Ciudad Universitaria, CP 58060 Morelia Michoacán, México (Mexico); Patiño-Carachure, C., E-mail: cpatino@pampano.unacar.mx [Facultad de Ingeniería, Universidad Autónoma del Carmen, Campus III, Avenida Central S/N, Esq. Con Fracc. Mundo Maya, C.P. 24115 Ciudad del Carmen, Campeche, México (Mexico); Rosas, G., E-mail: grtrejo@yahoo07.com.mx [Instituto de Investigaciones en Metalurgia y Materiales, UMSNH, Edificio U, Ciudad Universitaria, CP 58060 Morelia Michoacán, México (Mexico)

    2016-02-15

    In this paper, the results of the Al{sub 2}O{sub 3} nanowires' growth through a chemical reaction between Al and water vapor at 1050 °C are presented. Our approach is based on two primary considerations. First, at room temperature, the Al{sub 65}Cu{sub 15}Co{sub 20} alloy is affected by the following mechanism: 2Al (s) + 3H{sub 2}O (g) → Al{sub 2}O{sub 3} (s) + H{sub 2} (g). In this reaction, the released hydrogen induces cleavage fracture of the material to form small particles. Second, the Al{sub 65}Cu{sub 15}Co{sub 20} quasicrystalline phase is transformed on heating to liquid + Al (Cu, Co) cubic phase through a peritectic reaction at 1050 °C. The Al-rich liquid then reacts with water vapor, forming Al{sub 2}O{sub 3} nanowires. X-ray diffraction (XRD) analysis shows that the formed nanowires have a hexagonal structure, and infrared analysis further confirms the presence of α-Al{sub 2}O{sub 3} phase in the final products. Transmission electron microscopy observations show that nanoparticles are present at the end of nanowires, suggesting the VLS growth mechanism. Elemental analysis by energy dispersive spectroscopy (EDS) indicates that the particles at the tip of the nanowires are mainly formed by Co and Cu alloying elements and small amounts of Al. Electron microscopy observations showed nanowires with diameters ranging from 20 to 70 nm; the average diameter was 37 nm and the nanowire lengths were up to several micrometers. - Highlights: • Hexagonal alumina nanowires are grown at 1050 °C through the VLS process. • Alumina nanowires are obtained by the decomposition of decagonal quasicrystalline phase. • The decagonal phase decomposition follows a peritectic reaction at 1030 °C. • Nanoparticles are obtained by hydrogen embrittlement mechanism. • The nanoparticles catalyze the water decomposition to form wires.

  20. Concept and Connotation of Water Resources Carrying Capacity in Water Ecological Civilization Construction

    Science.gov (United States)

    Chao, Zhilong; Song, Xiaoyu; Feng, Xianghua

    2018-01-01

    Water ecological civilization construction is based on the water resources carrying capacity, guided by the sustainable development concept, adhered to the human-water harmony thoughts. This paper has comprehensive analyzed the concept and characteristics of the carrying capacity of water resources in the water ecological civilization construction, and discussed the research methods and evaluation index system of water carrying capacity in the water ecological civilization construction, finally pointed out that the problems and solutions of water carrying capacity in the water ecological civilization construction and put forward the future research prospect.

  1. Human health improvement in Sub-Saharan Africa through integrated management of arthropod transmitted diseases and natural resources

    Directory of Open Access Journals (Sweden)

    Baumgärtner Johann

    2001-01-01

    Full Text Available A concept of an ecosystem approach to human health improvement in Sub-Saharan Africa is presented here. Three factors mainly affect the physical condition of the human body: the abiotic environment, vector-transmitted diseases, and natural resources. Our concept relies on ecological principles embedded in a social context and identifies three sets of subsystems for study and management: human disease subsystems, natural resource subsystems, and decision-support subsystems. To control human diseases and to secure food from resource subsystems including livestock or crops, integrated preventive approaches are preferred over exclusively curative and sectorial approaches. Environmental sustainability - the basis for managing matter and water flows - contributes to a healthy human environment and constitutes the basis for social sustainability. For planning and implementation of the human health improvement scheme, participatory decision-support subsystems adapted to the local conditions need to be designed through institutional arrangements. The applicability of this scheme is demonstrated in urban and rural Ethiopia.

  2. Human health improvement in Sub-Saharan Africa through integrated management of arthropod transmitted diseases and natural resources

    Directory of Open Access Journals (Sweden)

    Johann Baumgärtner

    Full Text Available A concept of an ecosystem approach to human health improvement in Sub-Saharan Africa is presented here. Three factors mainly affect the physical condition of the human body: the abiotic environment, vector-transmitted diseases, and natural resources. Our concept relies on ecological principles embedded in a social context and identifies three sets of subsystems for study and management: human disease subsystems, natural resource subsystems, and decision-support subsystems. To control human diseases and to secure food from resource subsystems including livestock or crops, integrated preventive approaches are preferred over exclusively curative and sectorial approaches. Environmental sustainability - the basis for managing matter and water flows - contributes to a healthy human environment and constitutes the basis for social sustainability. For planning and implementation of the human health improvement scheme, participatory decision-support subsystems adapted to the local conditions need to be designed through institutional arrangements. The applicability of this scheme is demonstrated in urban and rural Ethiopia.

  3. Human health improvement in Sub-Saharan Africa through integrated management of arthropod transmitted diseases and natural resources.

    Science.gov (United States)

    Baumgärtner, J; Bieri, M; Buffoni, G; Gilioli, G; Gopalan, H; Greiling, J; Tikubet, G; Van Schayk, I

    2001-01-01

    A concept of an ecosystem approach to human health improvement in Sub-Saharan Africa is presented here. Three factors mainly affect the physical condition of the human body: the abiotic environment, vector-transmitted diseases, and natural resources. Our concept relies on ecological principles embedded in a social context and identifies three sets of subsystems for study and management: human disease subsystems, natural resource subsystems, and decision-support subsystems. To control human diseases and to secure food from resource subsystems including livestock or crops, integrated preventive approaches are preferred over exclusively curative and sectorial approaches. Environmental sustainability - the basis for managing matter and water flows - contributes to a healthy human environment and constitutes the basis for social sustainability. For planning and implementation of the human health improvement scheme, participatory decision-support subsystems adapted to the local conditions need to be designed through institutional arrangements. The applicability of this scheme is demonstrated in urban and rural Ethiopia.

  4. Climate proofing water and sanitation services and applying integrated water resource management in slums

    OpenAIRE

    Heath, Thomas

    2011-01-01

    This thesis assesses how climate change impacts water resources and communities and reviews how the resource can be managed in an integrated manner for small water and sanitation providers. This thesis was based upon a 10 month Knowledge Transfer Partnership (KTP) between Cranfield University and Water and Sanitation for the Urban Poor (WSUP). The aim of the project was to assess the opportunities and vulnerabilities presented by climate change and how Integrated Water Resource ...

  5. Water resources management and European integration of Serbia

    Directory of Open Access Journals (Sweden)

    Todić Dragoljub

    2015-01-01

    Full Text Available The paper points to the main elements important for understanding the obligations arising from the process of accession of the Republic of Serbia (RS to the European Union (EU as related to water resources management. The general framework is determined by the importance of water resources for contemporary international relations as well as the rules governing the process of harmonizing the national legislation with the EU legislation. This paper provides an overview of the most important regulations of the RS and the EU in the field of water resources management, including its status in international treaties. Drawing upon the rules governing the harmonization process, the paper provides indicators of the achieved level of compliance of national legislation with key EU regulations in the field of water resources management. The provided analysis is based on the premise that the process of joining the EU is the main factor that determines the current position and policy of RS in the field of water resources management. In that context, management of water resources falls into the group of EU regulations which are, within the framework of Chapter 27, most difficult to transpose and apply in the internal legal system. Although the process of harmonizing the national legislation with the EU legislation has been underway as regards a vast number of regulations, the process of reaching full compliance is likely to take a couple of years. Concurrently, it has been estimated that the full implementation of legislation harmonized with the EU legislation will take at least two decades, primarily due to the substantial financial resources to be invested in the development of water infrastructure. In terms of participation in the activities undertaken within the framework of international agreements in the field of water resources management and the state's membership in relevant international treaties, it is noted that in the last decade the RS has

  6. Water Resources Research supports water economics submissions

    Science.gov (United States)

    Griffin, Ronald C.

    2012-09-01

    AGU's international interdisciplinary journal Water Resources Research (WRR) publishes original contributions in hydrology; the physical, chemical, and biological sciences; and the social and policy sciences, including economics, systems analysis, sociology, and law. With the rising relevance of water economics and related social sciences, the editors of WRR continue to encourage submissions on economics and policy. WRR was originally founded in the mid 1960s by Walter Langbein and economist Allen Kneese. Several former WRR editors have been economists—including David Brookshire, Ron Cummings, and Chuck Howe—and many landmark articles in water economics have been published in WRR.

  7. Water resources data, Kentucky. Water year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  8. 78 FR 16706 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2013-03-18

    ... Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a discount rate for Federal water resources planning. The discount rate for Federal water resources planning...

  9. 75 FR 8106 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2010-02-23

    ... Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a discount rate for Federal water resources planning. The discount rate for Federal water resources planning...

  10. 78 FR 67393 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2013-11-12

    ... Discount Rate for Water Resources Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a discount rate for Federal water resources planning. The discount rate...

  11. 75 FR 82066 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2010-12-29

    ... Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a discount rate for Federal water resources planning. The discount rate for Federal water resources planning...

  12. 76 FR 73674 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2011-11-29

    ... Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a discount rate for Federal water resources planning. The discount rate for Federal water resources planning...

  13. Application and Prospect of Big Data in Water Resources

    Science.gov (United States)

    Xi, Danchi; Xu, Xinyi

    2017-04-01

    Because of developed information technology and affordable data storage, we h ave entered the era of data explosion. The term "Big Data" and technology relate s to it has been created and commonly applied in many fields. However, academic studies just got attention on Big Data application in water resources recently. As a result, water resource Big Data technology has not been fully developed. This paper introduces the concept of Big Data and its key technologies, including the Hadoop system and MapReduce. In addition, this paper focuses on the significance of applying the big data in water resources and summarizing prior researches by others. Most studies in this field only set up theoretical frame, but we define the "Water Big Data" and explain its tridimensional properties which are time dimension, spatial dimension and intelligent dimension. Based on HBase, the classification system of Water Big Data is introduced: hydrology data, ecology data and socio-economic data. Then after analyzing the challenges in water resources management, a series of solutions using Big Data technologies such as data mining and web crawler, are proposed. Finally, the prospect of applying big data in water resources is discussed, it can be predicted that as Big Data technology keeps developing, "3D" (Data Driven Decision) will be utilized more in water resources management in the future.

  14. Water resources planning in a strategic context: Linking the water sector to the national economy

    Science.gov (United States)

    Rogers, Peter; Hurst, Christopher; Harshadeep, Nagaraja

    1993-07-01

    In many parts of the developing world investment in water resources takes a large proportion of the available public investment funds. As the conflicts for funds between the water and other sectors become more severe, the traditional ways of analyzing and planning water investments has to move away from project-by-project (or even a river basin-by-river basin) approaches to include the relationships of water investments to other sectors and to overall national development policies. Current approaches to water resources investments are too narrow. There is a need for ways to expand the strategic thinking of water sector managers. This paper develops a water resources planning methodology with the primary objective of giving insights into the linking of water sector investments and macroeconomic policies. The model optimizes the present value of investments for water resources development, while embedding a macroeconomic model into the framework to allow for an examination of the interactions between water investments, the growth in the agricultural sector, and the performance of the overall economy. A case study of Bangladesh is presented which shows how strategic thinking could lead to widely differing implications for water investments than would conventional water resources systems planning models.

  15. Sub-seasonal predictability of water scarcity at global and local scale

    Science.gov (United States)

    Wanders, N.; Wada, Y.; Wood, E. F.

    2016-12-01

    Forecasting the water demand and availability for agriculture and energy production has been neglected in previous research, partly due to the fact that most large-scale hydrological models lack the skill to forecast human water demands at sub-seasonal time scale. We study the potential of a sub-seasonal water scarcity forecasting system for improved water management decision making and improved estimates of water demand and availability. We have generated 32 years of global sub-seasonal multi-model water availability, demand and scarcity forecasts. The quality of the forecasts is compared to a reference forecast derived from resampling historic weather observations. The newly developed system has been evaluated for both the global scale and in a real-time local application in the Sacramento valley for the Trinity, Shasta and Oroville reservoirs, where the water demand for agriculture and hydropower is high. On the global scale we find that the reference forecast shows high initial forecast skill (up to 8 months) for water scarcity in the eastern US, Central Asia and Sub-Saharan Africa. Adding dynamical sub-seasonal forecasts results in a clear improvement for most regions in the world, increasing the forecasts' lead time by 2 or more months on average. The strongest improvements are found in the US, Brazil, Central Asia and Australia. For the Sacramento valley we can accurately predict anomalies in the reservoir inflow, hydropower potential and the downstream irrigation water demand 6 months in advance. This allow us to forecast potential water scarcity in the Sacramento valley and adjust the reservoir management to prevent deficits in energy or irrigation water availability. The newly developed forecast system shows that it is possible to reduce the vulnerability to upcoming water scarcity events and allows optimization of the distribution of the available water between the agricultural and energy sector half a year in advance.

  16. Water-resources activities, North Dakota District, fiscal year 1994-95

    Science.gov (United States)

    Martin, Cathy R.

    1995-01-01

    The mission of the U.S. Geological Survey, Water Resources Division, is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation's water resources for the overall benefit of the people of the United States. This report describes water-resources activities of the Water Resources Division in North Dakota in fiscal year 1994. Information on each project includes objectives, approach, progress, plans for fiscal year 1995, and completed and planned report products.

  17. Method for generating O.sub.2-rich gas from air using water

    Science.gov (United States)

    Nakano, Anna; Nakano, Jinichiro; Bennett, James P.

    2018-01-30

    The present disclosure is directed to a method for enriching an inlet air stream utilizing a number of enrichment sub-units connected in series, where each enrichment sub-unit conducts both a dissolution and degasification cycle. Each enrichment sub-unit comprises a compressor, an aeration unit, a deaeration unit, and a pump for the recirculation of water between the aeration and deaeration units. The methodology provides a manner in which the relationship between the respective Henry's coefficients of the oxygen and nitrogen in water may be exploited to enrich the O.sub.2 volume percent and diminish the N.sub.2 volume percent over repeated dissolution and degasification cycles. By utilizing a number of enrichment sub-units connected in series, the water contained in each enrichment sub-unit acts to progressively increase the O.sub.2 volume percent. Additional enrichment sub-units may be added and utilized until the O.sub.2 volume percent equals or exceeds a target O.sub.2 volume percent. In a particular embodiment, air having a general composition of about 78 vol. % N.sub.2 and 21 vol. % O.sub.2 is progressively enriched to provide a final mixture of about 92% vol. % O.sub.2 and 8% vol. % N.sub.2.

  18. Method for generating O.sub.2-rich gas from air using water

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Anna; Nakano, Jinichiro; Bennett, James P.

    2018-01-30

    The present disclosure is directed to a method for enriching an inlet air stream utilizing a number of enrichment sub-units connected in series, where each enrichment sub-unit conducts both a dissolution and degasification cycle. Each enrichment sub-unit comprises a compressor, an aeration unit, a deaeration unit, and a pump for the recirculation of water between the aeration and deaeration units. The methodology provides a manner in which the relationship between the respective Henry's coefficients of the oxygen and nitrogen in water may be exploited to enrich the O.sub.2 volume percent and diminish the N.sub.2 volume percent over repeated dissolution and degasification cycles. By utilizing a number of enrichment sub-units connected in series, the water contained in each enrichment sub-unit acts to progressively increase the O.sub.2 volume percent. Additional enrichment sub-units may be added and utilized until the O.sub.2 volume percent equals or exceeds a target O.sub.2 volume percent. In a particular embodiment, air having a general composition of about 78 vol. % N.sub.2 and 21 vol. % O.sub.2 is progressively enriched to provide a final mixture of about 92% vol. % O.sub.2 and 8% vol. % N.sub.2.

  19. Household-level heterogeneity of water resources within common-pool resource systems

    NARCIS (Netherlands)

    McCord, Paul; Dell'angelo, Jampel; Gower, Drew; Caylor, Kelly K.; Evans, Tom

    2017-01-01

    Prior work has demonstrated the ability of common property systems to sustain institutional arrangements governing natural resources over long periods of time. Much of this work has focused on irrigation systems where upstream users agree to management arrangements that distribute water resources

  20. MULTIPLE-PURPOSE DEVELOPMENT OF WATER RESOURCES

    African Journals Online (AJOL)

    practices of cost allocations to various functions of .... approach of water resources development the most attractive and benefitial .... project plus a share of the "joint cost" which are the ... Pricing and Repayments American Water Re- sources ...

  1. Integrated water assessment and modelling: A bibliometric analysis of trends in the water resource sector

    Science.gov (United States)

    Zare, Fateme; Elsawah, Sondoss; Iwanaga, Takuya; Jakeman, Anthony J.; Pierce, Suzanne A.

    2017-09-01

    There are substantial challenges facing humanity in the water and related sectors and purposeful integration of the disciplines, connected sectors and interest groups is now perceived as essential to address them. This article describes and uses bibliometric analysis techniques to provide quantitative insights into the general landscape of Integrated Water Resource Assessment and Modelling (IWAM) research over the last 45 years. Keywords, terms in titles, abstracts and the full texts are used to distinguish the 13,239 IWAM articles in journals and other non-grey literature. We identify the major journals publishing IWAM research, influential authors through citation counts, as well as the distribution and strength of source countries. Fruitfully, we find that the growth in numbers of such publications has continued to accelerate, and attention to both the biophysical and socioeconomic aspects has also been growing. On the other hand, our analysis strongly indicates that the former continue to dominate, partly by embracing integration with other biophysical sectors related to water - environment, groundwater, ecology, climate change and agriculture. In the social sciences the integration is occurring predominantly through economics, with the others, including law, policy and stakeholder participation, much diminished in comparison. We find there has been increasing attention to management and decision support systems, but a much weaker focus on uncertainty, a pervasive concern whose criticalities must be identified and managed for improving decision making. It would seem that interdisciplinary science still has a long way to go before crucial integration with the non-economic social sciences and uncertainty considerations are achieved more routinely.

  2. Dissolved nitrogen in drinking water resources of farming ...

    African Journals Online (AJOL)

    Dissolved nitrogen in drinking water resources of farming communities in Ghana. ... African Journal of Environmental Science and Technology ... Concentrations of these potentially toxic substances were below WHO acceptable limits for surface and groundwaters, indicating these water resources appear safe for drinking ...

  3. Impacts of CO/sub 2/-induced climatic change on water resources in the Great Lakes Basin

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S J

    1986-01-01

    Scenarios of CO/sub 2/-induced climatic change, based on models produced by the Goddard Institute for Space Studies (GISS) and the Geophysical Fluid Dynamics Lab (GFDL), were used to estimate future changes in water supply in the Great Lakes Basin. The major components of annual Net Basin Supply, surface runoff and lake evaporation, were estimated using the Thornthwaite water balance model and the mass transfer approach, respectively. Two scenarios were derived from each climatic change model, one based on present normal winds, the other assuming reduced wind speeds. A third scenario was derived from GFDL, using wind speeds generated by the GFDL model. Results varied from a decrease in Net Basin Supply of 28.9% for GISS-normal winds, to a decrease of 11.7% for GFDL-reduced wind speeds. All five scenarios projected decreases. These differences in projection will have to be considered when performing climate impact studies, since economic activities affected by lake levels would probably experience different impacts under these scenarios.

  4. Global climate change and California's water resources

    International Nuclear Information System (INIS)

    Vaux, H.J. Jr.

    1991-01-01

    This chapter records the deliberations of a group of California water experts about answers to these and other questions related to the impact of global warming on California's water resources. For the most part, those participating in the deliberations believe that the current state of scientific knowledge about global warming and its impacts on water resources is insufficient to permit hard distinctions to be made between short- and long-term changes. consequently, the ideas discussed here are based on a number of assumptions about specific climatic manifestations of global warming in California, as described earlier in this volume. Ultimately, however, effective public responses to forestall the potentially costly impacts of global climate change will probably depend upon the credible validation of the prospects of global climate warming. This chapter contains several sections. First, the likely effects of global warming on California's water resources and water-supply systems are identified and analyzed. Second, possible responses to mitigate these effects are enumerated and discussed. Third, the major policy issues are identified. A final section lists recommendations for action and major needs for information

  5. Water footprints as an indicator for the equitable utilization of shared water resources. (Case study: Egypt and Ethiopia shared water resources in Nile Basin)

    Science.gov (United States)

    Sallam, Osama M.

    2014-12-01

    The question of "equity." is a vague and relative term in any event, criteria for equity are particularly difficult to determine in water conflicts, where international water law is ambiguous and often contradictory, and no mechanism exists to enforce principles which are agreed-upon. The aim of this study is using the water footprints as a concept to be an indicator or a measuring tool for the Equitable Utilization of shared water resources. Herein Egypt and Ethiopia water resources conflicts in Nile River Basin were selected as a case study. To achieve this study; water footprints, international virtual water flows and water footprint of national consumption of Egypt and Ethiopia has been analyzed. In this study, some indictors of equitable utilization has been gained for example; Egypt water footprint per capita is 1385 CM/yr/cap while in Ethiopia is 1167 CM/yr/cap, Egypt water footprint related to the national consumption is 95.15 BCM/yr, while in Ethiopia is 77.63 BCM/yr, and the external water footprints of Egypt is 28.5%, while in Ethiopia is 2.3% of the national consumption water footprint. The most important conclusion of this study is; natural, social, environmental and economical aspects should be taken into account when considering the water footprints as an effective measurable tool to assess the equable utilization of shared water resources, moreover the water footprints should be calculated using a real data and there is a necessity to establishing a global water footprints benchmarks for commodities as a reference.

  6. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2002

    Science.gov (United States)

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2004-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2002.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 28 streamflow stations, 27 partial-record or miscellaneous streamflow stations, stage records for 17 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 102 observation wells.

  7. Water Resources Data, Puerto Rico and the U.S. Virgin Islands, Water Year 2001

    Science.gov (United States)

    Diaz, Pedro L.; Aquino, Zaida; Figueroa-Alamo, Carlos; Garcia, Rene; Sanchez, Ana V.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with local and Federal agencies obtains a large amount of data pertaining to the water resources of the Commonwealth of Puerto Rico and the Territory of the U.S. Virgin Islands each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the area. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data for Puerto Rico and the U.S. Virgin Islands, 2001.' This report includes records on both surface and ground water. Specifically, it contains: (1) discharge records for 95 streamflow gaging stations, daily sediment records for 23 streamflow stations, 20 partial-record or miscellaneous streamflow stations, stage records for 18 reservoirs, and (2) water-quality records for 17 streamflow-gaging stations, and for 42 ungaged stream sites, 11 lake sites, 2 lagoons, and 1 bay, and (3) water-level records for 103 observation wells.

  8. Assessing Drinking Water Quality and Water Safety Management in Sub-Saharan Africa Using Regulated Monitoring Data.

    Science.gov (United States)

    Kumpel, Emily; Peletz, Rachel; Bonham, Mateyo; Khush, Ranjiv

    2016-10-18

    Universal access to safe drinking water is prioritized in the post-2015 Sustainable Development Goals. Collecting reliable and actionable water quality information in low-resource settings, however, is challenging, and little is known about the correspondence between water quality data collected by local monitoring agencies and global frameworks for water safety. Using 42 926 microbial water quality test results from 32 surveillance agencies and water suppliers in seven sub-Saharan African countries, we determined the degree to which water sources were monitored, how water quality varied by source type, and institutional responses to results. Sixty-four percent of the water samples were collected from piped supplies, although the majority of Africans rely on nonpiped sources. Piped supplies had the lowest levels of fecal indicator bacteria (FIB) compared to any other source type: only 4% of samples of water piped to plots and 2% of samples from water piped to public taps/standpipes were positive for FIB (n = 14 948 and n = 12 278, respectively). Among other types of improved sources, samples from harvested rainwater and boreholes were less often positive for FIB (22%, n = 167 and 31%, n = 3329, respectively) than protected springs or protected dug wells (39%, n = 472 and 65%, n = 505). When data from different settings were aggregated, the FIB levels in different source types broadly reflected the source-type water safety framework used by the Joint Monitoring Programme. However, the insufficient testing of nonpiped sources relative to their use indicates important gaps in current assessments. Our results emphasize the importance of local data collection for water safety management and measurement of progress toward universal safe drinking water access.

  9. Medical licensing board characteristics and physician discipline: an empirical analysis.

    Science.gov (United States)

    Law, Marc T; Hansen, Zeynep K

    2010-02-01

    This article investigates the relationship between the characteristics of medical licensing boards and the frequency with which boards discipline physicians. Specifically, we take advantage of variation in the structure of medical licensing boards between 1993 and 2003 to determine the effect of organizational and budgetary independence, public oversight, and resource constraints on rates of physician discipline. We find that larger licensing boards, boards with more staff, and boards that are organizationally independent from state government discipline doctors more frequently. Public oversight and political control over board budgets do not appear to influence the extent to which medical licensing boards discipline doctors. These findings are broadly consistent with theories of regulatory behavior that emphasize the importance of bureaucratic autonomy for effective regulatory enforcement.

  10. Fuzzy pricing for urban water resources: model construction and application.

    Science.gov (United States)

    Zhao, Ranhang; Chen, Shouyu

    2008-08-01

    A rational water price system plays a crucial role in the optimal allocation of water resources. In this paper, a fuzzy pricing model for urban water resources is presented, which consists of a multi-criteria fuzzy evaluation model and a water resources price (WRP) computation model. Various factors affecting WRP are comprehensively evaluated with multiple levels and objectives in the multi-criteria fuzzy evaluation model, while the price vectors of water resources are constructed in the WRP computation model according to the definition of the bearing water price index, and then WRP is calculated. With the incorporation of an operator's knowledge, it considers iterative weights and subjective preference of operators for weight-assessment. The weights determined are more rational and the evaluation results are more realistic. Particularly, dual water supply is considered in the study. Different prices being fixed for water resources with different qualities conforms to the law of water resources value (WRV) itself. A high-quality groundwater price computation model is also proposed to provide optimal water allocation and to meet higher living standards. The developed model is applied in Jinan for evaluating its validity. The method presented in this paper offers some new directions in the research of WRP.

  11. Water Resource Management Mechanisms for Intrastate Violent Conflict Resolution: the Capacity Gap and What To Do About It.

    Science.gov (United States)

    Workman, M.; Veilleux, J. C.

    2014-12-01

    Violent conflict and issues surrounding available water resources are both global problems and are connected. Violent conflict is increasingly intrastate in nature and coupled with increased hydrological variability as a function of climate change, there will be increased pressures on water resource use. The majority of mechanisms designed to secure water resources are often based on the presence of a governance framework or another type of institutional capacity, such as offered through a supra- or sub-national organization like the United Nations or a river basin organization. However, institutional frameworks are not present or loose functionality during violent conflict. Therefore, it will likely be extremely difficult to secure water resources for a significant proportion of populations in Fragile and Conflict Affected States. However, the capacity in Organisation for Economic Co-operation and Development nations for the appropriate interventions to address this problem is reduced by an increasing reluctance to participate in interventionist operations following a decade of expeditionary warfighting mainly in Iraq and Afghanistan, and related defence cuts. Therefore, future interventions in violent conflict and securing water resources may be more indirect in nature. This paper assesses the state of understanding key areas in the present literature and highlights the gap of securing water resources during violent conflict in the absence of institutional capacity. There is a need to close this gap as a matter of urgency by formulating frameworks to assess the lack of institutional oversight / framework for water resources in areas where violent conflict is prevalent; developing inclusive resource management platforms through transparency and reconciliation mechanisms; and developing endogenous confidence-building measures and evaluate how these may be encouraged by exogenous initiatives including those facilitated by the international community. This effort

  12. The use of an integrated variable fuzzy sets in water resources management

    Science.gov (United States)

    Qiu, Qingtai; Liu, Jia; Li, Chuanzhe; Yu, Xinzhe; Wang, Yang

    2018-06-01

    Based on the evaluation of the present situation of water resources and the development of water conservancy projects and social economy, optimal allocation of regional water resources presents an increasing need in the water resources management. Meanwhile it is also the most effective way to promote the harmonic relationship between human and water. In view of the own limitations of the traditional evaluations of which always choose a single index model using in optimal allocation of regional water resources, on the basis of the theory of variable fuzzy sets (VFS) and system dynamics (SD), an integrated variable fuzzy sets model (IVFS) is proposed to address dynamically complex problems in regional water resources management in this paper. The model is applied to evaluate the level of the optimal allocation of regional water resources of Zoucheng in China. Results show that the level of allocation schemes of water resources ranging from 2.5 to 3.5, generally showing a trend of lower level. To achieve optimal regional management of water resources, this model conveys a certain degree of accessing water resources management, which prominently improve the authentic assessment of water resources management by using the eigenvector of level H.

  13. International symposium on isotope hydrology and integrated water resources management. Unedited proceedings

    International Nuclear Information System (INIS)

    2004-01-01

    Global effects to overcome the growing challenge of freshwater availability have been at the forefront of the world development agenda for nearly three decades. For developing policies towards sustainable management of freshwater resources, an improved understanding of the Earth's water cycle bas been widely recognized as one of the key elements of scientific information. The IAEA has played a crucial role in promoting and expanding the field of isotope hydrology. Starting in 1963, the IAEA's quadrennial symposia on isotope hydrology have played a central role in developing this scientific discipline. This publication contains 174 extended abstracts of papers and posters presented during 11 technical sessions of the 11th symposium in the series that was convened during 19-23 May 2003 in Vienna. Nearly 275 participants from 69 countries participated in the symposium to discuss the past, present and future of isotope applications in hydrology and climate research. Each of the papers and poster presentations have been analysed and indexed separately

  14. Managing Forest Resources in Sub-Saharan Africa : Issues and Challenges

    OpenAIRE

    Narenda P. Sharma; Simon Reitbergen; Claude R. Heimo; Joti Patel

    1994-01-01

    The note summarizes the findings of the Africa Forest Strategy Paper, which responded to the problems confronting forest resources in the Sub-Saharan Africa (SSA), providing a comprehensive overview, and analysis of the forest sector, and mapping a set of actions for consideration by African countries. The diagnosis highlights the nexus between rapid population growth, environmental degrad...

  15. "Sub-Surf Rocks"! An A-Level Resource Developed through an Industry-Education Collaboration

    Science.gov (United States)

    Mather, Hazel

    2012-01-01

    A free internet resource called "Sub-Surf Rocks"! was launched in 2010. Its aim is to use seismic data obtained by the oil industry for enhancing the teaching of structural and economic geology at A-level (ages 16-18) in the UK. Seismic data gives a unique insight into the sub-surface and the many high-quality images coupled with…

  16. Highly active GaN-stabilized Ta{sub 3}N{sub 5} thin-film photoanode for solar water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Miao; Hisatomi, Takashi; Sasaki, Yutaka; Nakabayashi, Mamiko; Shibata, Naoya; Nishiyama, Hiroshi; Katayama, Masao; Yamada, Taro; Domen, Kazunari [School of Engineering, the University of Tokyo (Japan); Japan Technological Research Association of Artificial Photosynthetic Chemical Process, Tokyo (Japan); Suzuki, Sayaka; Teshima, Katsuya [Faculty of Engineering, Shinshu University, Nagano (Japan)

    2017-04-18

    Ta{sub 3}N{sub 5} is a very promising photocatalyst for solar water splitting because of its wide spectrum solar energy utilization up to 600 nm and suitable energy band position straddling the water splitting redox reactions. However, its development has long been impeded by poor compatibility with electrolytes. Herein, we demonstrate a simple sputtering-nitridation process to fabricate high-performance Ta{sub 3}N{sub 5} film photoanodes owing to successful synthesis of the vital TaO{sub δ} precursors. An effective GaN coating strategy is developed to remarkably stabilize Ta{sub 3}N{sub 5} by forming a crystalline nitride-on-nitride structure with an improved nitride/electrolyte interface. A stable, high photocurrent density of 8 mA cm{sup -2} was obtained with a CoPi/GaN/Ta{sub 3}N{sub 5} photoanode at 1.2 V{sub RHE} under simulated sunlight, with O{sub 2} and H{sub 2} generated at a Faraday efficiency of unity over 12 h. Our vapor-phase deposition method can be used to fabricate high-performance (oxy)nitrides for practical photoelectrochemical applications. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Groundwater resources in Southern and Eastern Africa

    International Nuclear Information System (INIS)

    2003-01-01

    Water shortage, water quality, and the protection of investments in water supply, are of continuing concern to countries in Africa. As more countries join those already short of water, sound management of groundwater resources becomes more critical. Isotope techniques provide information that is unobtainable by other means and help to achieve a better understanding of mechanisms and processes through which water resources can be managed. The International Atomic Energy Agency is sponsoring a regional technical co-operation project addressing practical issues related to water resources assessment and development in Kenya, Madagascar, Namibia, South Africa, Tanzania, Uganda and Zimbabwe. The project also seeks to strengthen isotope hydrology capacity in the sub-region. (IAEA)

  18. Journal Articles are the Most Widely Used Information Resource for Research and Teaching in all Academic Disciplines

    Directory of Open Access Journals (Sweden)

    Dominique Daniel

    2016-09-01

    Full Text Available A Review of: Borrego, Á., & Anglada, L. (2016. Faculty information behaviour in the electronic environment: Attitudes towards searching, publishing and libraries. New Library World, 117(3/4: 173-185. doi:10.1108/NLW-11-2015-0089 Objective – To determine faculty’s information behaviour and their perception of academic libraries in the current transition between print and electronic scholarly communication. Design – Online survey. Setting – A consortium of 12 large universities in Spain. Subjects – More than 17,380 faculty members. Methods – The researchers used a questionnaire based on a subset of the questionnaire used for the Ithaka S+R Faculty Survey, with 20 closed and 2 open-ended questions. The survey was implemented via Google Forms and sent through mailing lists. The number of recipients was not known, but university statistics for 11 of the 12 universities list 17,380 faculty (statistics were not available for one university, located in a different administrative area. The questions aimed to identify the types of documents used by scholars for teaching and research, the search tools used, the strategies used to keep up-to-date in their disciplines, preferences for print or electronic books, the sources used to access documents, their preferred channels to disseminate their own research, and their views regarding library services. Main Results – The response rate was 12.7%. Based on the results, scholarly journals were the most used information resource for research across all academic disciplines, with 94% of respondents rating them as important. For teaching, faculty preferred to use textbooks for undergraduates, and journal articles for Master’s students. To search the literature, faculty chose bibliographic databases and Internet search engines over the library catalog and physical collections, although the catalog was the first choice for known-item searches. Respondents favored print to read entire books or chapters

  19. Integrating water data, models and forecasts - the Australian Water Resources Information System (Invited)

    Science.gov (United States)

    Argent, R.; Sheahan, P.; Plummer, N.

    2010-12-01

    Under the Commonwealth Water Act 2007 the Bureau of Meteorology was given a new national role in water information, encompassing standards, water accounts and assessments, hydrological forecasting, and collecting, enhancing and making freely available Australia’s water information. The Australian Water Resources Information System (AWRIS) is being developed to fulfil part of this role, by providing foundational data, information and model structures and services. Over 250 organisations across Australia are required to provide water data and metadata to the Bureau, including federal, state and local governments, water storage management and hydroelectricity companies, rural and urban water utilities, and catchment management bodies. The data coverage includes the categories needed to assess and account for water resources at a range of scales. These categories are surface, groundwater and meteorological observations, water in storages, water restrictions, urban and irrigation water use and flows, information on rights, allocations and trades, and a limited suite of water quality parameters. These data are currently supplied to the Bureau via a file-based delivery system at various frequencies from annual to daily or finer, and contain observations taken at periods from minutes to monthly or coarser. One of the primary keys to better data access and utilisation is better data organisation, including content and markup standards. As a significant step on the path to standards for water data description, the Bureau has developed a Water Data Transfer Format (WDTF) for transmission of a variety of water data categories, including site metadata. WDTF is adapted from the OGC’s observation and sampling-features standard. The WDTF XML schema is compatible with the OGC's Web Feature Service (WFS) interchange standard, and conforms to GML Simple Features profile (GML-SF) level 1, emphasising the importance of standards in data exchange. In the longer term we are also

  20. Hierarchical Fe{sub 3}O{sub 4}@MoS{sub 2}/Ag{sub 3}PO{sub 4} magnetic nanocomposites: Enhanced and stable photocatalytic performance for water purification under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Na [Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Haiyan; Xu, Xingjian [Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102 (China); Yu, Hongwen, E-mail: yuhw@neigae.ac.cn [Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102 (China)

    2016-12-15

    Highlights: • The FM/A-6% possesses a large specific surface area: 76.56 m{sup 2}/g. • The FM/A-6% displays high photocatalytic stability. • The FM/A-6% can be collected easily from the water by magnetic field. - Abstract: Novel hierarchical Fe{sub 3}O{sub 4}@MoS{sub 2}/Ag{sub 3}PO{sub 4} magnetic nanophotocatalyst with remarkable photocatalytic capability were prepared by simply depositing the Ag{sub 3}PO{sub 4} onto the surface of crumpled Fe{sub 3}O{sub 4}@MoS{sub 2} nanosphere. The nanocomposites were characterized by XRD, TEM, HRTEM, XPS, BET, and UV–vis DRS. The outcome of the photocatalytic experiments demonstrated that Fe{sub 3}O{sub 4}@MoS{sub 2}/Ag{sub 3}PO{sub 4} with 6 wt% content of Ag{sub 3}PO{sub 4} (FM/A-6%) showed the highest photocatalytic activity upon the degradation Congo red (CR) and Rhodamine B (RhB) under both visible light and simulated sunlight irradiation. In addition, FM/A-6% possessed larger specific surface area (76.56 m{sup 2}/g) and excellent optical property. The possible Z-scheme charge carriers transfer mechanism for the enhanced photocatalytic properties of the FM/A-6% was also discussed. The Z-scheme charge carriers transfer mechanism established between MoS{sub 2} and Ag{sub 3}PO{sub 4} facilitate the charge separation efficiency. Moreover, FM/A-6% can be separated and collected easily by external magnetic field and maintain high activity after five times photoreaction cycles. Given the remarkable photocatalytic performance and high stability of FM/A-6% nanocomposite, it is looking forward to exhibit great potential for applications in water purification.

  1. Implementing Integrated Water Resources Management in the Ebro River Basin: From Theory to Facts

    Directory of Open Access Journals (Sweden)

    Jorge Bielsa

    2014-12-01

    Full Text Available In this article, we analyze how successful the implementation of Integrated Water Resource Management (IWRM in the Ebro river catchment (in Spain has been. Our main aim is to show some gaps between theory and practice. This implies analyzing the political dimensions of governance and their change and reflecting on the interface between governance and technical knowledge about water. We highlight problems, such as the lack of institutional coordination, blind spots in technical information and path dependences. Actual water management has led to plans for further irrigation even though water availability is, and is expected to continue, shrinking due to climate change and other local factors. To overcome these mismatches, we propose further synchronization, innovative ways of public participation and knowledge sharing between institutions and researchers. As a showcase, we portray a practical real example of a desirable institutional arrangement in one sub-catchment.

  2. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    Science.gov (United States)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  3. Photocatalytic degradation of TCE in water using TiO{sub 2} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, Muhammad [Pakistan National Accreditation Council, 4th Floor Evacuee Trust Complex, F-5/1 Islamabad (Pakistan); Raja, Iftikhar A.; Pervez, Arshad [Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad (Pakistan)

    2009-09-15

    Wastewater is generally released untreated into the rivers and streams in developing countries. Industrial wastewater usually contains highly toxic pollutants, cyanides, chlorinated compounds such as trichloroethylene (TCE). Ultraviolet (UV) radiation from sunlight also decomposes organic compounds by oxidation process. However, the process is less effective due to large amount of toxic effluent entering the main stream water. The solar radiation can effectively be applied to accelerate the process by using suitable catalyst for economically cleaning the major fresh water sources. This paper describes photocatalytic degradation of trichloroethylene in aqueous solution using TiO{sub 2}. Variable parameters such as initial concentration of TCE, type and concentration of TiO{sub 2} and reaction time are investigated. The powder TiO{sub 2} is found more effective than the sand TiO{sub 2} for decomposing TCE. The effect of sand TiO{sub 2} as photocatalyst is investigated at various water depths. It is observed that up to 45 mm water depth, sand TiO{sub 2} shows photo-degradation of TCE. The degradation rate increases as the concentration of TCE is increased up to 45 {mu}l of TCE per litre of water. Similarly the photocatalytic degradation increases with TiO{sub 2} concentration up to 0.7 g L{sup -1} of solution but then starts decreasing. The optimum values of TiO{sub 2} and TCE concentration obtained are 0.7 g and 35 {mu}l L{sup -1} of the solution, respectively. (author)

  4. Hydroeconomic modeling to support integrated water resources management in China

    DEFF Research Database (Denmark)

    Davidsen, Claus

    resources. In this context, the PhD study focused on development of approaches to inform integrated water resources management to cope with multiple and coupled challenges faced in China. The proposed method is to formulate river water management as a joint hydroeconomic optimization problem that minimizes...... the system and allowed overdraft in dry years in return for increased recharge in wet years. Further, cost-effective recovery of an overdrafted groundwater aquifer was demonstrated. The third implementation assessed interactions of water resources and water quality management. Biochemical oxygen demand (BOD...... problem with a single surface water reservoir state variable. A comparison of different management scenarios was used to evaluate how the South-to-North Water Transfer Project will impact optimal water resources management. Scenarios with unregulated groundwater pumping at realistic pumping costs verified...

  5. Degradation of process water containing polymers UV/H{sub 2}O{sub 2} system; Degradacao de agua de processo contendo polimeros via sistema UV/H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Will, Isabela B.S.; Telemaco, Emmanuelle P.; Chiavone-Filho, Osvaldo; Guardani, Roberto; Nascimento, Claudio A.O. do

    2004-07-01

    The water rationalization has been one of the goals of the petrochemical industry. Such goals in such a way demand technological innovations for new productive processes how much for new techniques of treatment and reuse of water in the production chain. The high industrial water costs in Brazil, particularly in the regions metropolitans, have stimulated the national industries to evaluate the possibilities of reuse. The objective of this work is the application of the process water treatment containing polypropylene using ultraviolet radiation and hydrogen peroxide, that is system UV/H{sub 2}O{sub 2}, aiming at to adjust them for reuses in the proper process, reducing the water capitation daily pay-treated and improving the water exploitation. Photochemical annular reactor with medium pressure mercury vapor lamp was used and the following parameters of process had been evaluated: radiation, temperature of reaction and hydrogen peroxide concentration. The monitoring of the experiments was based on the measurement of contents of dissolved organic carbon, total carbon and inorganic carbon. Additionally, experiments using solar radiation had been evaluated. The experimental results had indicated the viability of application of system UV/H{sub 2}O{sub 2} having used artificial and solar light sources. The quality of the water obtained in the treatment was adequate to reuse it. (author)

  6. Water resources for Africa

    International Nuclear Information System (INIS)

    2003-01-01

    Water scarcity is a matter of urgent, national, regional and international concern. For those people, usually women, who are responsible for the daily task of obtaining sufficient water for household use, water shortages are a perpetual worry. It is a situation which affects many individual families and communities throughout the arid and semi-arid regions of Africa. The isotope studies conducted thus far have proved that the majority of regional groundwater systems in northern Africa and the Sahel zone are paleowaters, replenished thousands of years ago, without the possibility of significant replenishment under present climatic conditions. Therefore, removal from such underground reservoirs will eventually deplete the resource. Mapping these paleowaters, and estimating their reservoir sizes, is a priority. (IAEA)

  7. Risk, Robustness and Water Resources Planning Under Uncertainty

    Science.gov (United States)

    Borgomeo, Edoardo; Mortazavi-Naeini, Mohammad; Hall, Jim W.; Guillod, Benoit P.

    2018-03-01

    Risk-based water resources planning is based on the premise that water managers should invest up to the point where the marginal benefit of risk reduction equals the marginal cost of achieving that benefit. However, this cost-benefit approach may not guarantee robustness under uncertain future conditions, for instance under climatic changes. In this paper, we expand risk-based decision analysis to explore possible ways of enhancing robustness in engineered water resources systems under different risk attitudes. Risk is measured as the expected annual cost of water use restrictions, while robustness is interpreted in the decision-theoretic sense as the ability of a water resource system to maintain performance—expressed as a tolerable risk of water use restrictions—under a wide range of possible future conditions. Linking risk attitudes with robustness allows stakeholders to explicitly trade-off incremental increases in robustness with investment costs for a given level of risk. We illustrate the framework through a case study of London's water supply system using state-of-the -art regional climate simulations to inform the estimation of risk and robustness.

  8. Southwest: a region under stress. [Analysis of environmental, resource-revenues, and water-resources issues

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.; Kneese, A.V.

    1978-05-01

    The southwestern states of New Mexico, Colorado, Utah, and Arizona share some of the nation's richest natural resources and the poorest people. One goal in the development of the area's resources will be to provide a means of raising the economic level of these people. Three major regional issues (environmental preservation, resource revenues, and water resources) must be faced in terms of the conflicting claims of the states involved. A summary of these issues illustrates the emotional and political strains that have developed. Justification for optimism is seen in the adaptability of new water users, the institutional evolution toward more flexibility in the water rights market, and the growing sophistication and assertiveness of interested parties determined to see that all positions are heard. 14 references.

  9. Water Market-scale Agricultural Planning: Promoting Competing Water Resource Use Efficiency Through Agro-Economics

    Science.gov (United States)

    Delorit, J. D.; Block, P. J.

    2017-12-01

    Where strong water rights law and corresponding markets exist as a coupled econo-legal mechanism, water rights holders are permitted to trade allocations to promote economic water resource use efficiency. In locations where hydrologic uncertainty drives the assignment of annual per-water right allocation values by water resource managers, collaborative water resource decision making by water rights holders, specifically those involved in agricultural production, can result in both resource and economic Pareto efficiency. Such is the case in semi-arid North Chile, where interactions between representative farmer groups, treated as competitive bilateral monopolies, and modeled at water market-scale, can provide both price and water right allocation distribution signals for unregulated, temporary water right leasing markets. For the range of feasible per-water right allocation values, a coupled agricultural-economic model is developed to describe the equilibrium distribution of water, the corresponding market price of water rights and the net surplus generated by collaboration between competing agricultural uses. Further, this research describes a per-water right inflection point for allocations where economic efficiency is not possible, and where price negotiation among competing agricultural uses is required. An investigation of the effects of water right supply and demand inequality at the market-scale is completed to characterize optimal market performance under existing water rights law. The broader insights of this research suggest that water rights holders engaged in agriculture can achieve economic benefits from forming crop-type cooperatives and by accurately assessing the economic value of allocation.

  10. Sustainable water services and interaction with water resources in Europe and in Brazil

    Science.gov (United States)

    Barraqué, B.; Formiga Johnsson, R. M.; Britto, A. L.

    2007-09-01

    The increasing interaction between large cities and nature makes "urban water" an issue: water resources and water services - including public water supply, sewage collection and treatment, and in large cities, storm water control -, which had become separate issues thanks to the process of water transport and treatment technologies, are now increasingly interfering with each other. We cannot take nature for granted anymore, and we need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water industry technologies in European and Brazilian metropolitan areas, in their socio-economic and political context, tracing it through three "ages" of water technology and services which developed under civil engineering, sanitary engineering, and environmental engineering perspectives: the "quantity of water" and civil engineering paradigm was developed on the assumption that water should be drawn from natural environments far from the cities; in the "water quality" and chemical/sanitation engineering paradigm, water treatment was invented and allowed cities to take water from rivers closer to them and treat it, but also to reduce sewer discharge impacts; finally, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  11. Assessing Water and Carbon Footprints for Sustainable Water Resource Management

    Science.gov (United States)

    The key points of this presentation are: (1) Water footprint and carbon footprint as two sustainability attributes in adaptations to climate and socioeconomic changes, (2) Necessary to evaluate carbon and water footprints relative to constraints in resource capacity, (3) Critical...

  12. Science to support the understanding of Ohio's water resources

    Science.gov (United States)

    Shaffer, Kimberly; Kula, Stephanie; Bambach, Phil; Runkle, Donna

    2012-01-01

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. The distribution of rainfall can cause floods and droughts, which affects streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie and has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all the rural population obtain drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policymakers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is reliable, impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2012) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  13. Binding water to a PEG-linked flexible bichromophore: IR spectra of diphenoxyethane-(H{sub 2}O){sub n} clusters, n = 2-4

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Patrick S.; Buchanan, Evan G.; Gord, Joseph R.; Zwier, Timothy S., E-mail: zwier@purdue.edu [Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084 (United States)

    2015-04-21

    The single-conformation infrared (IR) and ultraviolet (UV) spectroscopies of neutral 1,2-diphenoxyethane-(H{sub 2}O){sub n} clusters with n = 2-4 (labeled henceforth as 1:n) have been studied in a molecular beam using a combination of resonant two-photon ionization, IR-UV holeburning, and resonant ion-dip infrared (RIDIR) spectroscopies. Ground state RIDIR spectra in the OH and CH stretch regions were used to provide firm assignments for the structures of the clusters by comparing the experimental spectra with the predictions of calculations carried out at the density functional M05-2X/6-31+G(d) level of theory. At all sizes in this range, the water molecules form water clusters in which all water molecules engage in a single H-bonded network. Selective binding to the tgt monomer conformer of 1,2-diphenoxyethane (C{sub 6}H{sub 5}-O-CH{sub 2}-CH{sub 2}-O-C{sub 6}H{sub 5}, DPOE) occurs, since this conformer provides a binding pocket in which the two ether oxygens and two phenyl ring π clouds can be involved in stabilizing the water cluster. The 1:2 cluster incorporates a water dimer “chain” bound to DPOE much as it is in the 1:1 complex [E. G. Buchanan et al., J. Phys. Chem. Lett. 4, 1644 (2013)], with primary attachment via a double-donor water that bridges the ether oxygen of one phenoxy group and the π cloud of the other. Two conformers of the 1:3 cluster are observed and characterized, one that extends the water chain to a third molecule (1:3 chain) and the other incorporating a water trimer cycle (1:3 cycle). A cyclic water structure is also observed for the 1:4 cluster. These structural characterizations provide a necessary foundation for studies of the perturbations imposed on the two close-lying S{sub 1}/S{sub 2} excited states of DPOE considered in the adjoining paper [P. S. Walsh et al., J. Chem. Phys. 142, 154304 (2015)].

  14. Condition, use, and management of water resources among ...

    African Journals Online (AJOL)

    The study found that water supply in Harshin district is 100% surface water ... Besides, 76% of the respondents were not satisfied with the quality of drinking water. ... Key words: Water resources, pastoralists, rainwater, water-harvesting, gender ...

  15. Effect on water resources from upstream water diversion in the Ganges basin.

    Science.gov (United States)

    Adel, M M

    2001-01-01

    Bangladesh faces at least 30 upstream water diversion constructions of which Farakka Barrage is the major one. The effects of Farakka Barrage on water resources, socioeconomy, and culture have been investigated downstream in the basins of the Ganges and its distributaries. A diversion of up to 60% of the Ganges water over 25 yr has caused (i) reduction of water in surface water resources, (ii) increased dependence on ground water, (iii) destruction of the breeding and raising grounds for 109 species of Gangetic fishes and other aquatic species and amphibians, (iv) increased malnutrition, (v) deficiency in soil organic matter content, (vi) change in the agricultural practices, (vii) eradication of inland navigable routes, (viii) outbreak of waterborne diseases, (ix) loss of professions, and (x) obstruction to religious observances and pastimes. Further, arsenopyrites buried in the prebarrage water table have come in contact with air and formed water-soluble compounds of arsenic. Inadequate recharging of ground water hinders the natural cleansing of arsenic, and threatens about 75,000,000 lives who are likely to use water contaminated with up to 2 mg/L of arsenic. Furthermore, the depletion of surface water resources has caused environmental heating and cooling effects. Apart from these effects, sudden releases of water by the barrage during the flood season cause devestating floods. In consideration of such a heavy toll for the areas downstream, strict international rules have to be laid down to preserve the riparian ecosystems.

  16. Transboundary Water Resources in Southern Africa: Conflict or cooperation?

    CSIR Research Space (South Africa)

    Patrick, MJ

    2006-01-01

    Full Text Available Literature suggests a linkage between internationally shared water resources and conflict potential. Anthony R. Turton, Marian J. Patrick and Frederic Julien examine transboundary water resource management in southern Africa, showing that empirical...

  17. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    Science.gov (United States)

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  18. Sustainable water resources management in Pakistan

    International Nuclear Information System (INIS)

    Malik, A.H.

    2005-01-01

    Total river discharge in Pakistan in summer season vary from 3 thousand to 34 thousand cusses (100 thousand Cusses to 1,200 thousand Cusses) and can cause tremendous loss to human lives, crops and property, this causes the loss of most of the flood water in the lower Indus plains to the sea. Due to limited capacity of storage at Tarbela and Mangla Dams on river Indus and Jhelum, with virtually no control on Chenab, Ravi and Sutlej, devastating problems are faced between July and October in the event of excessive rainfall in the catchments. Due to enormous amounts of sediments brought in by the feeding rivers, the three major reservoirs -Tarbela, Mangla and Chashma will lose their storage capacity, by 25 % by the end of the year 2010, which will further aggravate the water-availability situation in Pakistan. The quality of water is also deteriorating due to urbanization and industrialization and agricultural developments. On the Environmental Front the main problems are water-logging and salinity, salt-imbalance, and increasing pollution of water-bodies. World's largest and most integrated system of irrigation was installed almost a hundred years ago and now its efficiency has been reduced to such an extent that more than 50 per cent of the irrigation-water is lost in transit and during application. On the other side, there are still not fully exploited water resources for example groundwater, the alluvial plains of Pakistan are blessed with extensive unconfined aquifer, with a potential of over 50 MAF, which is being exploited to an extent of about 38 MAF by over 562,000 private and 10,000 public tube-wells. In case of Balochistan, out of a total available potential of about 0.9 MAF of groundwater, over 0.5 MAF are already being utilized, but there by leaving a balance of about 0.4 MAF that can still be utilized. Future water resources management strategies should includes starting a mass-awareness campaign on a marshal scale in rural and urban areas to apply water

  19. Water Resources Management and Hydrologic Design Under Uncertain Climate Change Scenarios

    Science.gov (United States)

    Teegavarapu, R. S.

    2008-05-01

    The impact of climate change on hydrologic design and management of water resource systems could be one of the important challenges faced by future practicing hydrologists and water resources managers. Many water resources managers currently rely on the historical hydrological data and adaptive real-time operations without consideration of the impact of climate change on major inputs influencing the behavior of hydrologic systems and the operating rules. Issues such as risk, reliability and robustness of water resources systems under different climate change scenarios were addressed in the past. However, water resources management with the decision maker's preferences attached to climate change has never been dealt with. This presentation discusses issues related to impacts of climate change on water resources management and application of a soft-computing approach, fuzzy set theory, for climate-sensitive management of water resources systems. A real-life case study example is presented to illustrate the applicability of soft-computing approach for handling the decision maker's preferences in accepting or rejecting the magnitude and direction of climate change.

  20. Assessing Climate Change Impacts on Water Resources in the Songhua River Basin

    Directory of Open Access Journals (Sweden)

    Fengping Li

    2016-09-01

    Full Text Available The Songhua River Basin (SRB in Northeast China is one of the areas most sensitive to global climate change because of its high-latitude location. In this study, we conducted a modeling assessment on the potential change of water resources in this region for the coming three decades using the Soil and Water Assessment Tool (SWAT. First, we calibrated and validated the model with historical streamflow records in this basin. Then, we applied the calibrated model for the period from 2020 to 2049 with the projected and downscaled climatic data under two emission scenarios (RCP 4.5 and RCP 8.5. The study results show: (1 The SWAT model performed very well for both the calibration and validation periods in the SRB; (2 The projected temperatures showed a steady, significant increase across the SRB under both scenarios, especially in two sub-basins, the Nenjiang River Basin (NRB and the Lower SRB (LSRB. With regard to precipitation, both scenarios showed a decreasing trend in the NRB and LSRB but an increasing trend in the Upper Songhua River Basin (USRB; and (3, generally, the hydrologic modeling suggested a decreasing trend of streamflow for 2020–2049. Compared to baseline conditions (1980–2009, the streamflow in the NRB and LSRB would decrease by 20.3%–37.8%, while streamflow in the USRB would experience an increase of 9.68%–17.7%. These findings provide relevant insights into future surface water resources, and such information can be helpful for resource managers and policymakers to develop effective eco-environment management plans and strategies in the face of climate change.

  1. Challenges of Integrated Water Resources Management in Indonesia

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Fulazzaky

    2014-07-01

    Full Text Available The increased demands for water and land in Indonesia as a consequence of the population growth and economic development has reportedly have been accelerated from the year to year. The spatial and temporal variability of human induced hydrological changes in a river basin could affect quality and quantity of water. The challenge is that integrated water resources management (IWRM should cope with complex issues of water in order to maximize the resultant economic and social welfare in an equitable manner, without compromising the sustainability of vital ecosystems. Even though the government of Indonesia has adopted new paradigm for water resources management by the enactment of Law No. 7/2004 on water resources, the implementation of IWRM may face the technical and managerial challenges. This paper briefly reviews the implementation of IWRM and related principles and provides an overview of potential water-related issues and progress towards implementation of IWRM in Indonesia. The availability of water and a broader range of water-related issues are identified. The recommended actions for improving the future IWRM are suggested. Challenges to improve the capacity buildings of IWRM related to enabling environment, institutional frameworks and management instruments are verified to contribute to the future directions for efficient problem-solving ability.

  2. Climate change and integrated water resources management

    International Nuclear Information System (INIS)

    Bhuiyan, Nurul Amin

    2007-01-01

    Full text: Full text: In the Bangladesh Poverty Reduction Strategy (PRSP), Millennium Development Goals and other donor driven initiatives, two vital areas linked with poverty and ecosystem survival seem to be either missing or are being neglected: (a) transboundary water use and (b) coastal area poverty and critical ecosystems vulnerable due to climate change. Since the World Summit on Sustainable Development (WSSD) goals and PRSP are integrated, it is necessary that the countrys WSSD goals and PRSP should also be in harmony. All should give the recognition of Ganges Brahmaputra and Meghna as international basins and the approach should be taken for regional sustainable and integrated water resource management involving all co-riparian countries. The principle of low flow in the international rivers during all seasons should be ensured. All stakeholders should have a say and work towards regional cooperation in the water sector as a top priority. The energy sector should be integrated with water. The Indian River Linking project involving international rivers should be seriously discussed at all levels including the parliament so that voice of Bangladesh is concerted and information shared by all concerned. One of the most critical challenges Bangladesh faces is the management of water resources during periods of water excesses and acute scarcity. It is particularly difficult when only 7% of the catchments areas of the very international rivers, the Ganges, the Brahmaputra and the Meghna are in Bangladesh while 97% is outside Bangladesh where unfortunately, Bangladesh has no control on upstream diversion and water use. The UN Conference on Environment and Development in its Agenda 21 emphasizes the importance of Integrated Water Resource Management (IWRM). The core point of IWRM is that is development of all aspects of entire basin in a basin wide approach, that all relevant agencies of the government and water users must be involved in the planning process and

  3. Water adsorption induced in-plane domain switching on BaTiO{sub 3} surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Bai, Y.; Su, Y. J., E-mail: yjsu@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Wang, B. C. [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Multiscale Materials Modelling group, Department of Materials and Engineering, Royal Institute of Technology, SE-10044 Stockholm (Sweden)

    2015-09-07

    In this study, the influences of the adsorption of water molecules on the changes in the atomic and electric structures of BaTiO{sub 3} surface were investigated using ab initio calculation. Water molecules are molecularly and dissociatively adsorbed on the BaTiO{sub 3} surface, which makes electrons transfer from water molecules to the BaTiO{sub 3} surface. The redistribution of electrons in the BaTiO{sub 3} surface layers weakens the Ba-O interactions and strengthens the Ti-O interactions, so that the Ti atom shifts in TiO{sub 2} plane, i.e., an in-plane domain switching. The adsorption of water molecules on BaTiO{sub 3} surfaces also results in a reduction in the surface rumpling.

  4. Research on evaluating water resource resilience based on projection pursuit classification model

    Science.gov (United States)

    Liu, Dong; Zhao, Dan; Liang, Xu; Wu, Qiuchen

    2016-03-01

    Water is a fundamental natural resource while agriculture water guarantees the grain output, which shows that the utilization and management of water resource have a significant practical meaning. Regional agricultural water resource system features with unpredictable, self-organization, and non-linear which lays a certain difficulty on the evaluation of regional agriculture water resource resilience. The current research on water resource resilience remains to focus on qualitative analysis and the quantitative analysis is still in the primary stage, thus, according to the above issues, projection pursuit classification model is brought forward. With the help of artificial fish-swarm algorithm (AFSA), it optimizes the projection index function, seeks for the optimal projection direction, and improves AFSA with the application of self-adaptive artificial fish step and crowding factor. Taking Hongxinglong Administration of Heilongjiang as the research base and on the basis of improving AFSA, it established the evaluation of projection pursuit classification model to agriculture water resource system resilience besides the proceeding analysis of projection pursuit classification model on accelerating genetic algorithm. The research shows that the water resource resilience of Hongxinglong is the best than Raohe Farm, and the last 597 Farm. And the further analysis shows that the key driving factors influencing agricultural water resource resilience are precipitation and agriculture water consumption. The research result reveals the restoring situation of the local water resource system, providing foundation for agriculture water resource management.

  5. Climate change and water resources in Britain

    International Nuclear Information System (INIS)

    Arnell, N.W.

    1998-01-01

    This paper explores the potential implications of climate change for the use and management of water resources in Britain. It is based on a review of simulations of changes in river flows, groundwater recharge and river water quality. These simulations imply, under feasible climate change scenarios, that annual, winter and summer runoff will decrease in southern Britain, groundwater recharge will be reduced and that water quality - as characterised by nitrate concentrations and dissolved oxygen contents - will deteriorate. In northern Britain, river flows are likely to increase throughout the year, particularly in winter. Climate change may lead to increased demands for water, over and above that increase which is forecast for non-climatic reasons, primarily due to increased use for garden watering. These increased pressures on the water resource base will impact not only upon the reliability of water supplies, but also upon navigation, aquatic ecosystems, recreation and power generation, and will have implications for water management. Flood risk is likely to increase, implying a reduction in standards of flood protection. The paper discusses adaptation options. 39 refs., 5 figs

  6. Masteŕ s Programme at Stockholm University: Hydrology, Hydrogeology and Water Resources

    Science.gov (United States)

    Jarsjö, J.; Destouni, G.; Lyon, S. W.; Seibert, J.

    2009-04-01

    Many environmental risks and societal concerns are directly related to the way we manage our land and water environments. The two-year master's programme "Hydrology, Hydrogeology and Water Resources" at Stockholm University, Sweden, is based on a system perspective and provides extended knowledge about water and soil-rock-sediment systems and how these interact with each other and with land use, socio-economic and water resource policy and management systems. This water system perspective includes the spreading of dissolved substances and pollutants in various water systems and associated risks for society. Questions related to water resources are also covered: the management of water resources and conflicts as well as collaborations caused by shared water resources on local, regional and global scales. A common learning objective for the courses in the programme is to be able to identify, extract and combine relevant information from databases and scientific publications, and use the resulting dataset in hydrological, hydrogeological and water resources analyses, on local, regional or global levels. Traditional classroom teaching is to large extent complemented by case study analyses, performed as project assignments. The importance of water resources for both the society and the environment is emphasized through applications to practical water resources management challenges in society. The courses in this program include the following topics: · Hydrological and hydrogeological processes, main components of the water cycle (e.g., precipitation, evapotranspiration, discharge) and the spreading of dissolved substances and pollutants in various water systems. · Water resources and water quality, pollution spreading through surface, ground and coastal water systems, as well as vulnerability and resilience of water resources. · Regional analyses related to global water resource vulnerability and resilience. · Models and information systems as important tools for

  7. Discipline methods

    OpenAIRE

    Maria Kikila; Ioannis Koutelekos

    2012-01-01

    Child discipline is one of the most important elements of successful parenting. As discipline is defined the process that help children to learn appropriate behaviors and make good choices. Aim: The aim of the present study was to review the literature about the discipline methods. The method οf this study included bibliography research from both the review and the research literature, mainly in the pubmed data base which referred to the discipline methods. Results: In the literature it is ci...

  8. Water resources by orbital remote sensing: Examples of applications

    Science.gov (United States)

    Martini, P. R. (Principal Investigator)

    1984-01-01

    Selected applications of orbital remote sensing to water resources undertaken by INPE are described. General specifications of Earth application satellites and technical characteristics of LANDSAT 1, 2, 3, and 4 subsystems are described. Spatial, temporal and spectral image attributes of water as well as methods of image analysis for applications to water resources are discussed. Selected examples are referred to flood monitoring, analysis of water suspended sediments, spatial distribution of pollutants, inventory of surface water bodies and mapping of alluvial aquifers.

  9. Technologies for water resources management: an integrated approach to manage global and regional water resources

    Energy Technology Data Exchange (ETDEWEB)

    Tao, W. C., LLNL

    1998-03-23

    Recent droughts in California have highlighted and refocused attention on the problem of providing reliable sources of water to sustain the State`s future economic development. Specific elements of concern include not only the stability and availability of future water supplies in the State, but also how current surface and groundwater storage and distribution systems may be more effectively managed and upgraded, how treated wastewater may be more widely recycled, and how legislative and regulatory processes may be used or modified to address conflicts between advocates of urban growth, industrial, agricultural, and environmental concerns. California is not alone with respect to these issues. They are clearly relevant throughout the West, and are becoming more so in other parts of the US. They have become increasingly important in developing and highly populated nations such as China, India, and Mexico. They are critically important in the Middle East and Southeast Asia, especially as they relate to regional stability and security issues. Indeed, in almost all cases, there are underlying themes of `reliability` and `sustainability` that pertain to the assurance of current and future water supplies, as well as a broader set of `stability` and `security` issues that relate to these assurances--or lack thereof--to the political and economic future of various countries and regions. In this latter sense, and with respect to regions such as China, the Middle East, and Southeast Asia, water resource issues may take on a very serious strategic nature, one that is most illustrative and central to the emerging notion of `environmental security.` In this report, we have identified a suite of technical tools that, when developed and integrated together, may prove effective in providing regional governments the ability to manage their water resources. Our goal is to formulate a framework for an Integrated Systems Analysis (ISA): As a strategic planning tool for managing

  10. Water-resources activities, North Dakota District, fiscal year 1990

    Science.gov (United States)

    Martin, Cathy R.

    1991-01-01

    The mission of the U.S. Geological Survey, Water Resources Division, is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation's water resources for the overall benefit of the people of the United States. This report describes waterresources activities of the Water Resources Division in North Dakota in fiscal year 1990. Information on each project includes objectives, approach, progress in fiscal year 1990, plans for fiscal year 1991, completed and planned report products, and the name of the project chief.

  11. Isotopes in water resources management. V.2. Proceedings of a symposium

    International Nuclear Information System (INIS)

    1996-01-01

    At present, the thrusts of the IAEA involvement are towards improved management of water resources in regions suffering from water scarcity, assessment of human impact on water resources, e.g. water pollution, and exploration and management of geothermal resources. Lately, novel isotope based techniques have been evolving from specialized laboratories. These trends and challenges are reflected by the scientific contributions to the International Symposium on Isotopes in Water Resources Management, held from 20 to 24 March 1995 in Vienna. The main themes of the symposium were groundwater resources management, with about two thirds of the contributions addressing origin and recharge of groundwater, groundwater dynamics and pollution, modelling approaches, and geothermal and paleowater resources. The remaining third of the contributions were concerned with surface water sediments, unsaturated zones and methodological aspects. These proceedings contain the 43 papers presented and the extended synopses of over 100 poster presentations. Refs, figs, tabs

  12. Urban groundwater quality in sub-Saharan Africa: current status and implications for water security and public health

    Science.gov (United States)

    Lapworth, D. J.; Nkhuwa, D. C. W.; Okotto-Okotto, J.; Pedley, S.; Stuart, M. E.; Tijani, M. N.; Wright, J.

    2017-06-01

    Groundwater resources are important sources of drinking water in Africa, and they are hugely important in sustaining urban livelihoods and supporting a diverse range of commercial and agricultural activities. Groundwater has an important role in improving health in sub-Saharan Africa (SSA). An estimated 250 million people (40% of the total) live in urban centres across SSA. SSA has experienced a rapid expansion in urban populations since the 1950s, with increased population densities as well as expanding geographical coverage. Estimates suggest that the urban population in SSA will double between 2000 and 2030. The quality status of shallow urban groundwater resources is often very poor due to inadequate waste management and source protection, and poses a significant health risk to users, while deeper borehole sources often provide an important source of good quality drinking water. Given the growth in future demand from this finite resource, as well as potential changes in future climate in this region, a detailed understanding of both water quantity and quality is required to use this resource sustainably. This paper provides a comprehensive assessment of the water quality status, both microbial and chemical, of urban groundwater in SSA across a range of hydrogeological terrains and different groundwater point types. Lower storage basement terrains, which underlie a significant proportion of urban centres in SSA, are particularly vulnerable to contamination. The relationship between mean nitrate concentration and intrinsic aquifer pollution risk is assessed for urban centres across SSA. Current knowledge gaps are identified and future research needs highlighted.

  13. Modeling and analysis of collective management of water resources

    Directory of Open Access Journals (Sweden)

    A. Tilmant

    2007-01-01

    Full Text Available Integrated Water Resources Management (IWRM recommends, among other things, that the management of water resources systems be carried out at the lowest appropriate level in order to increase the transparency, acceptability and efficiency of the decision-making process. Empowering water users and stakeholders transforms the decision-making process by enlarging the number of point of views that must be considered as well as the set of rules through which decisions are taken. This paper investigates the impact of different group decision-making approaches on the operating policies of a water resource. To achieve this, the water resource allocation problem is formulated as an optimization problem which seeks to maximize the aggregated satisfaction of various water users corresponding to different approaches to collective choice, namely the utilitarian and the egalitarian ones. The optimal operating policies are then used in simulation and compared. The concepts are illustrated with a multipurpose reservoir in Chile. The analysis of simulation results reveals that if this reservoir were to be managed by its water users, both approaches to collective choice would yield significantly different operating policies. The paper concludes that the transfer of management to water users must be carefully implemented if a reasonable trade-off between equity and efficiency is to be achieved.

  14. Water resources (Chapter 12)

    Science.gov (United States)

    Thomas C. Brown; Romano Foti; Jorge Ramirez

    2012-01-01

    In this chapter, we focus on the vulnerability of U.S. freshwater supplies considering all lands, not just forest and rangelands. We do not assess the condition of those lands or report on how much of our water supply originates on lands of different land covers or ownerships, because earlier Resources Planning Act (RPA) Assessment work addressed these topics....

  15. Water resources data, Ohio: Water year 1991. Volume 2, St. Lawrence River Basin: Statewide project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Ohio each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for 131 streamflow-gaging stations, 95 miscellaneous sites; (2) stage and content records for 5 streams, lakes, and reservoirs; (3) water-quality for 40 streamflow-gaging stations, 378 wells, and 74 partial-record sites; and (4) water levels for 431 observation wells.

  16. Raman study of the effect of water vapor during low-temperature annealing on the structure and electrophysical properties of YBa{sub 2}Cu{sub 3}O{sub y}

    Energy Technology Data Exchange (ETDEWEB)

    Bobylev, I.B., E-mail: bobylev@imp.uran.ru; Ponosov, Yu.S.; Zyuzeva, N.A.

    2015-11-01

    The effects of an interaction of YBa{sub 2}Cu{sub 3}O{sub y} (123) with water vapors at a temperature 200 °C on the structure and electrophysical properties of the compound have been examined by Raman spectroscopy. It has been found that the penetration of water into the 123-type causes the transition of the compound from an oxide to a hydride-oxide-hydroxide, which is accompanied with transformation to the 124 pseudotype phase. Direct evidence has been obtained for the incorporation of OH{sup −}-groups in the 123-structure. After the interaction with water, the materials with high oxygen content (y ≥ 6.5) retain their superconductivity and exhibit two-magnon scattering in Raman spectra, which is not typical for them. Short-term recovery annealing followed by oxidation removes the water from the compound structure, which leads to the disappearance of the spin fluctuation spectra. At the same time, the structural defects are partially preserved. These manifest themselves through some peculiarities in the Raman spectra and are apparently pinning centers of magnetic vortices. A model of a splitting of the Cu–O chains and a formation of the 124-like phase in water-intercalated 123-structure has been proposed. This mechanism supposes the dissociation of the OH{sup −}-groups and the filling in the copper vacancies by protons. - Highlights: • Absorbing water at 200 °C, the Y-123 ceramics transforms to H{sub x}YBa{sub 2}Cu{sub 3}O{sub y}(OH){sub z}. • The incorporation of water in the Y-123 (y ≥ 6.5) leads to the well magnetic peak. • For the Y-123 with y < 6.5 the OH{sup −}-groups occupy the vacancies of several types. • The OH{sup −}-groups are oriented along the c-axis.

  17. Estimating the Ground Water Resources of Atoll Islands

    Directory of Open Access Journals (Sweden)

    Arne E. Olsen

    2010-01-01

    Full Text Available Ground water resources of atolls, already minimal due to the small surface area and low elevation of the islands, are also subject to recurring, and sometimes devastating, droughts. As ground water resources become the sole fresh water source when rain catchment supplies are exhausted, it is critical to assess current groundwater resources and predict their depletion during drought conditions. Several published models, both analytical and empirical, are available to estimate the steady-state freshwater lens thickness of small oceanic islands. None fully incorporates unique shallow geologic characteristics of atoll islands, and none incorporates time-dependent processes. In this paper, we provide a review of these models, and then present a simple algebraic model, derived from results of a comprehensive numerical modeling study of steady-state atoll island aquifer dynamics, to predict the ground water response to changes in recharge on atoll islands. The model provides an estimate thickness of the freshwater lens as a function of annual rainfall rate, island width, Thurber Discontinuity depth, upper aquifer hydraulic conductivity, presence or absence of a confining reef flat plate, and in the case of drought, time. Results compare favorably with published atoll island lens thickness observations. The algebraic model is incorporated into a spreadsheet interface for use by island water resources managers.

  18. Water resources of the Lake Erie shore region in Pennsylvania

    Science.gov (United States)

    Mangan, John William; Van Tuyl, Donald W.; White, Walter F.

    1952-01-01

    An abundant supply of water is available to the Lake Erie Shore region in Pennsylvania. Lake i£rie furnishes an almost inexhaustible supply of water of satisfactory chemical quality. Small quantities of water are available from small streams in the area and from the ground. A satisfactory water supply is one of the factors that affect the economic growth of a region. Cities and towns must have adequate amounts of pure water for human consumption. Industries must have suitable water ih sufficient quantities for all purposes. In order to assure. success and economy, the development of water resources should be based on adequate knowledge of the quantity and quality of the water. As a nation, we can not afford to run the risk of dissipating our resources, especially in times of national emergency, by building projects that are not founded on sound engineering and adequate water-resources information. The purpose of this report is to summarize and interpret all available water-resources information for the Lake Erie Shore region in Pennsylvania. The report will be useful for initial guidance in the location or expansion of water facilities for defense and nondefense industries and the municipalities upon which they are dependent. It will also be useful in evaluating the adequacy of the Geological Survey's part of the basic research necessary to plan the orderly development of the water resources of the Lake Erie Shore region. Most of the data contained inthis report have been obtained'by the U. S. Geological Survey in cooperation with the Pennsylvania Department of Forests and Waters, the Pennsylvania Department of Internal Affairs, and the Pennsylvania State Planning Board, Department of Commerce. The Pennsylv~nia Department of Health furnished information on water pollution. The report was prepared in the Water Resources Division of the U. S. Geological Survey b:y John W. Mangan (Surface Water). Donald W. VanTuyl (Ground Water). and Walter F. White, Jr. (Quality of

  19. Isotopes in water resources management. V.1. Proceedings of a symposium

    International Nuclear Information System (INIS)

    1996-01-01

    In recent years isotope applications in hydrology and water resources assessment have reached a level of maturity. Adequate investigations have been carried out to provide sufficient examples for practical applications in combination with other hydrological methods. The IAEA contributed to this development through field projects implemented in Member States within the framework of the Agency's Technical Co-operation programme. At present, the thrusts of the IAEA involvement are towards improved management of water resources in regions suffering from water scarcity, assessment of human impact on water resources, e.g. water pollution, and exploration and management of geothermal resources. Lately, novel isotope based techniques have been evolving from specialized laboratories. While the techniques have emerged, efforts need to be concentrated on more practical work to accomplish a visible impact on water resources management. These trends and challenges are reflected by the scientific contributions to the International Symposium on Isotopes in Water Resources Management. The main themes of the symposium were groundwater resources management, with about two thirds of the contributions addressing origin and recharge of groundwater, groundwater dynamics and pollution, modelling approaches, and geothermal and palaeowater resources. The remaining third of the contributions were concerned with surface water and sediments, unsaturated zones and methodological aspects. These proceedings contain the 43 papers presented and the extended synopses of over 100 poster presentations. Refs, figs and tabs

  20. Resources and Intimate Partner Violence in Sub-Saharan Africa

    OpenAIRE

    Cools, Sara; Kotsadam, Andreas

    2017-01-01

    Combining DHS data for 580,000 women from 30 different countries in Sub-Saharan Africa, we analyze how both the incidence and the acceptance of intimate partner violence vary across time and space, in a region with record high levels of violence against women. We review the existing literature regarding the impact of resources on intimate partner violence, extracting testable and often conflicting hypotheses at the micro and macro level, and on the interaction across levels. We propose to ext...

  1. University of Idaho Water of the West Initiative: Development of a sustainable, interdisciplinary water resources program

    Science.gov (United States)

    Boll, J.; Cosens, B.; Fiedler, F.; Link, T.; Wilson, P.; Harris, C.; Tuller, M.; Johnson, G.; Kennedy, B.

    2006-12-01

    Recently, an interdisciplinary group of faculty from the University of Idaho was awarded a major internal grant for their project "Water of the West (WoW)" to launch an interdisciplinary Water Resources Graduate Education Program. This Water Resources program will facilitate research and education to influence both the scientific understanding of the resource and how it is managed, and advance the decision-making processes that are the means to address competing societal values. By educating students to integrate environmental sciences, socio-economic, and political issues, the WoW project advances the University's land grant mission to promote economic and social development in the state of Idaho. This will be accomplished through novel experiential interdisciplinary education activities; creation of interdisciplinary research efforts among water resources faculty; and focusing on urgent regional problems with an approach that will involve and provide information to local communities. The Water Resources Program will integrate physical and biological sciences, social science, law, policy and engineering to address problems associated with stewardship of our scarce water resources. As part of the WoW project, faculty will: (1) develop an integrative problem-solving framework; (2) develop activities to broaden WR education; (3) collaborate with the College of Law to offer a concurrent J.D. degree, (4) develop a virtual system of watersheds for teaching and research, and (5) attract graduate students for team-based education. The new program involves 50 faculty from six colleges and thirteen departments across the university. This university-wide initiative is strengthened by collaboration with the Idaho Water Resources Research Institute, and participation from off-campus Centers in Idaho Falls, Boise, Twin Falls, and Coeur d'Alene. We hope this presentation will attract university faculty, water resources professionals, and others for stimulating discussions on

  2. Wind Resource Variations Over Selected Sites in the West African Sub-Region

    International Nuclear Information System (INIS)

    Iheonu, E. E.; Akingbade, F.O A.; Ocholi, M.

    2002-01-01

    The analysis of wind characteristics and wind resource potentials at 4 locations in the West African sub-region is presented, applying data obtained at the Ibadan central station of the International Institute of Tropical Agriculture (IITA-Ibadan, Nigeria). The study has shown that the annual variations of wind speed have coefficient of variability between 10 and 15% but the available wind power at the studied locations is generally poor with values ranging between 2 and 10 Wm2 at the standard meteorological height of 10 m. Cotonou (Lat. 6.4 0 N, Long. 2.3 0 E) Benin Republic has however been distinguished from the other three locations in Nigeria, as the most promising site for wind resource development and utilization in the sub-region. With appropriate choice of wind turbine characteristics and design efficiency, establishing wind farms at the Cotonou location for electrical energy production could be feasible

  3. An analytic-geospatial approach for sustainable water resource management: a case study in the province of Perugia

    Directory of Open Access Journals (Sweden)

    Stefano Casadei

    2013-09-01

    Full Text Available Water is a strategic, but also highly vulnerable, natural resource. This because the increasing demand from multiple uses, in many cases competing amongst them, seems to influence the concepts of sustainability of the exploitation. From the operational point of view, the studied system is an integrated decision support system. It is not only a platform to exchange information and assessments, but also a tool for conflict resolution, in the management of water resources, to obtain the consensus among all participants in the decisional processes. So the canonical “top-down” approach has been replaced with a “bottom-up” approach where all stakeholders become decision makers themselves. The application of the aforementioned approach was studied for the Tiber River basin and has been applied to the Province of Perugia area. The study focused to the building of a spatial database of hydrological data and multipurpose water withdrawals, together with the setting of the evaluation model for the surface water resources. This model bases its algorithms on regionalization procedures of flow parameters. For the definition of the river condition, hydrological indices calculated from the hydrological database have been used, while for the existing withdrawals, an analysis procedure has been developed, that from the point of interest directly selected on the map, finds out the upstream basin and, by means of overlay procedures, identifies the upstream water uses and the total flow that could be extracted. The potential of the system and the technologies used are contained in a WEB platform that allows the analysis of the database of water uses/withdrawals on the cartography, and the comparison with the hydrogeological characteristics of the sub-basin examined. The purpose of this study is to provide software tools that can be used as a support in water resource evaluation and management policies at the basin scale.

  4. MULTIPLE-PURPOSE DEVELOPMENT OF WATER RESOURCES

    African Journals Online (AJOL)

    practices of cost allocations to various functions of the multiple-purpose development and calls for giving ... An appraisal of water resource must consider surface as well as ground water supplies in terms of location, .... as such a very satisfactory method of cost allocation that would be equally applicable to all projects and.

  5. A framework for unravelling the complexities of unsustainable water resource use

    Science.gov (United States)

    Dermody, Brian; Bierkens, Marc; Wassen, Martin; Dekker, Stefan

    2016-04-01

    The majority of unsustainable water resource use is associated with food production, with the agricultural sector accounting for up to 70% of total freshwater use by humans. Water resource use in food production emerges as a result of dynamic interactions between humans and their environment in importing and exporting regions as well as the physical and socioeconomic trade infrastructure linking the two. Thus in order to understand unsustainable water resource use, it is essential to understand the complex socioecological food production and trade system. We present a modelling framework of the food production and trade system that facilitates an understanding of complex socioenvironmental processes that lead to unsustainable water resource use. Our framework is based on a coupling of the global hydrological model PC Raster Global Water Balance (PCR-GLOBWB) with a multi-agent socioeconomic food production and trade network. In our framework, agents perceive environmental conditions. They make food supply decisions based upon those perceptions and the heterogeneous socioeconomic conditions in which they exist. Agent decisions modify land and water resources. Those environmental changes feedback to influence decision making further. The framework presented has the potential to go beyond a diagnosis of the causes of unsustainable water resource and provide pathways towards a sustainable food system in terms of water resources.

  6. Isotopic hydrology, nuclear tool for sustainable management of water resources

    International Nuclear Information System (INIS)

    Peralta Vita, Jose Luis; Gil Castillo, Reinaldo; Dapenna Dapenna, Cristina

    2015-01-01

    Management and protection of the ground water requires a planned use of the aquifer, considering the social and economic factors of the environment without causing damages in quality and quantity. The karstic aquifer of the sub-basin Artemisa-Quivican, which supports food production for Artemisa and Havana counties, has been characterised through the nuclear techniques application (isotopic hydrology). Three investigation stages were developed: the design and definition of the optimized network for the isotopic and physicochemical monitoring of ground and surface waters; the isotopic characterization (tritium, dissolved oxygen, deuterium) and physicochemical characterization (chemical macro-components, physical and quality parameters) of the sub-basin water and of registered precipitations in the region; and finally the identification of the possible contamination sources in the sub-basin

  7. Visible-light CO{sub 2} photocatalytic reduction performance of ball-flower-like Bi{sub 2}WO{sub 6} synthesized without organic precursor: Effect of post-calcination and water vapor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhuxing; Yang, Zhenmei; Liu, Hongfeng [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler and Furnace Flue Gas Pollution Control, Hangzhou 311202 (China); Wang, Haiqiang, E-mail: wanghaiqiang2008@126.com [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler and Furnace Flue Gas Pollution Control, Hangzhou 311202 (China); Wu, Zhongbiao, E-mail: zbwu@zju.edu.cn [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler and Furnace Flue Gas Pollution Control, Hangzhou 311202 (China)

    2014-10-01

    Graphical abstract: - Highlights: • Photocatalytic CO{sub 2} reduction on non-organic synthesized PB-Bi{sub 2}WO{sub 6} was investigated. • CO was detected as the major product. • Increased amount of CO was yielded in the condition with little water vapor. • Photocatalytic performance was enhanced with Bi{sub 2}WO{sub 6} after 550 °C post-annealing. • Renewing the catalysts used in CO{sub 2} photoreduction by water washing was achieved. - Abstract: Nanoplates-composed ball-flower-like Bi{sub 2}WO{sub 6} (PB-Bi{sub 2}WO{sub 6}) was synthesized by a hydrothermal method without any organic precursor and its performance in photocatalytic reduction of CO{sub 2} was investigated in a continuous-flow reaction system under visible light irradiation (420 nm < λ < 620 nm). CO was detected as the main product of this photocatalytic process and H{sub 2}O was found to suppress the conversion of CO{sub 2} to CO due to its competitive absorption with CO{sub 2} on the medium strength basic sites of Bi{sub 2}WO{sub 6}. PB-Bi{sub 2}WO{sub 6} annealed at 550 °C showed superior CO yield in the condition with little water vapor. It might be attributed to the enhanced crystallinity, significantly decreased recombination rate of photo-generated electrons and holes and more stable basic sites for strengthened CO{sub 2} adsorption, according to characterization results by XRD, SEM, UV–vis SRS, PL and CO{sub 2}-TPD. However, comparing with PB-Bi{sub 2}WO{sub 6}, the negative effect of H{sub 2}O was even more prominent on the annealed sample because of the reduced surface area. Yield decrease was observed during the irradiation time due to the adsorption of intermediates generated but fortunately washing with deionized water was found to be an effective way to renew the catalyst.

  8. SnO{sub 2}, IrO{sub 2}, Ta{sub 2}O{sub 5}, Bi{sub 2}O{sub 3}, and TiO{sub 2} nanoparticle anodes: electrochemical oxidation coupled with the cathodic reduction of water to yield molecular H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jina [KRICT, Korea Research Institute of Chemical Technology (Korea, Republic of); Qu Yan; Hoffmann, Michael R., E-mail: mrh@caltech.edu [California Institute of Technology, Linde-Robinson Laboratories (United States)

    2012-08-15

    In recent years, the search for environmentally friendly alternative energy sources with reduced carbon footprints has increased. The coupling of photovoltaic power sources with advanced electrolysis systems for hydrogen production via water splitting using organic contaminants as sacrificial electron donors has been considered to a be viable alternative. In this report, we demonstrated the feasibility of a scaled-up rooftop prototype of the proposed hybrid photovoltaic-electrolysis system, which utilizes semiconductor nanoparticles coated on to metal substrates as electrodes for the generation of hydrogen coupled with the oxidation of wastewater. Application of an anodic bias of >2.0 V to bismuth-doped TiO{sub 2} (BiO{sub x}-TiO{sub 2}) on Ti metal anodes with a sequential under-coatings of nanoparticulate SnO{sub 2}, IrO{sub 2}, Ta{sub 2}O{sub 5}, and Bi{sub 2}O{sub 3} results in the electrochemical degradation of a variety of organic chemical contaminants in water (i.e., rhodamine B (Rh.B), methylene blue (MB), salicylic acid, triclosan, and phenol) and actual wastewater from a chemical manufacturing plant, while at the same time, molecular hydrogen is produced at stainless steel (SS) cathodes. The kinetics of the anodic substrates oxidation is investigated as a function of the cell current (I{sub cell}), substrate concentration, and background electrolyte composition (e.g., NaCl, Na{sub 2}SO{sub 4}, or seawater). Average current efficiencies were found to be in the range of 4-22 %, while the cathodic current and energy efficiencies for hydrogen production were found to be in the range of 50-70 % and 20-40 %, respectively.

  9. Review of Ghana's water resources: the quality and management with particular focus on freshwater resources

    Science.gov (United States)

    Yeleliere, E.; Cobbina, S. J.; Duwiejuah, A. B.

    2018-06-01

    Freshwater resources are continually decreasing in quality and quantity. Approximately, 1% of this freshwater is accessible in lakes, river channels and underground for domestic use. The study reviewed literature on water resources with focus on freshwater, the quality of our freshwater in terms of physical, chemical and biological variables, the main mechanisms of management, and the challenges associated with these mechanisms as well as blending integrated water management with the indigenous or traditional management of water resources for sustainable development and peaceful co-existence. Also the review offered potent recommendations for policy makers to consider sustainable management of freshwater resources. A total of 95 articles were downloaded from Google scholar in water-related issues. The search took place from June to September 2017, and research articles from 1998 to 2018 were reviewed. Basically Ghana is made up of three discharge or outlet systems, namely the Coastal River Systems which is the least and Volta constituting the largest and with the South-Western been the intermediate. Also, freshwater resources usage can be put into two main categories, namely ex situ (withdrawal use) and in situ or in-stream use, and could also be referred to as the consumptive and non-consumptive use, respectively. With the exception of localised pollution engineered by illegal mining and other nuisance perpetuated by indigenes, the quality of water (surface and groundwater) in Ghana is generally better. The review outlined high microbial contamination of water as almost all surface waters are contaminated with either E. coli, faecal coliforms or total coliforms or all. However, these contaminations were more prevalent in surface water than groundwater.

  10. Nuclear contamination of water resources

    International Nuclear Information System (INIS)

    1990-01-01

    The impact of the Chernobyl accident throughout Europe has been highly variable and wide-ranging, and has demonstrated the need to evaluate potential risk to drinking water supplies, soil water and the food chain. This book provides information on radiological standards as they exist at present, methods of monitoring, and concepts in design to minimize risk and to highlight possible consequences of a nuclear event. With contributions from engineers and scientists from eight countries, this book includes comprehensive coverage of the effects on water resources of, and deals with the development of management strategies designed to cope with, a nuclear event. (author)

  11. Integrated water resources management and infrastructure planning for water security in Southern Africa

    Science.gov (United States)

    Mapani, Benjamin; Magole, Lapologang; Makurira, Hodson; Meck, Maideyi; Mkandawire, Theresa; Mul, Marloes; Ngongondo, Cosmo

    2017-08-01

    This volume has brought together papers that are peer reviewed emanating from the WaterNet/WARFSA/GWP-SA 16th Symposium. The papers cover the following themes: Hydrology, Water and Environment, Water and Land, Water and Society, Water Supply and Sanitation and Water Resources Management.

  12. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    Science.gov (United States)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  13. INFLUENCE OF CLIMATE CHANGES ON WATER RESOURCES IN MOLDOVA

    Directory of Open Access Journals (Sweden)

    Violeta Ivanov

    2012-06-01

    Full Text Available The paper aims to analyze the current state of affairs with water resources in Moldova, the challenges it faces for its national human and economic development, having in mind that the water resources are quite limited in Moldova, which encounters pollution, degradation influenced by climate change and unwise human activity to their biodiversity and ecosystems, availability and accessibility. It also attempts to highlight the relationship between climate change and water resources in Moldova, which has adverse effects on both environment and people’s health, and raise significant hurdles to the international, regional and sectoral development.

  14. The Modular Modeling System (MMS): A modeling framework for water- and environmental-resources management

    Science.gov (United States)

    Leavesley, G.H.; Markstrom, S.L.; Viger, R.J.

    2004-01-01

    The interdisciplinary nature and increasing complexity of water- and environmental-resource problems require the use of modeling approaches that can incorporate knowledge from a broad range of scientific disciplines. The large number of distributed hydrological and ecosystem models currently available are composed of a variety of different conceptualizations of the associated processes they simulate. Assessment of the capabilities of these distributed models requires evaluation of the conceptualizations of the individual processes, and the identification of which conceptualizations are most appropriate for various combinations of criteria, such as problem objectives, data constraints, and spatial and temporal scales of application. With this knowledge, "optimal" models for specific sets of criteria can be created and applied. The U.S. Geological Survey (USGS) Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide these model development and application capabilities. MMS supports the integration of models and tools at a variety of levels of modular design. These include individual process models, tightly coupled models, loosely coupled models, and fully-integrated decision support systems. A variety of visualization and statistical tools are also provided. MMS has been coupled with the Bureau of Reclamation (BOR) object-oriented reservoir and river-system modeling framework, RiverWare, under a joint USGS-BOR program called the Watershed and River System Management Program. MMS and RiverWare are linked using a shared relational database. The resulting database-centered decision support system provides tools for evaluating and applying optimal resource-allocation and management strategies to complex, operational decisions on multipurpose reservoir systems and watersheds. Management issues being addressed include efficiency of water-resources management, environmental concerns such as meeting flow needs for

  15. Balancing water resource conservation and food security in China.

    Science.gov (United States)

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2015-04-14

    China's economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China's future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities' virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km(3)/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%.

  16. Comprehensive benefit analysis of regional water resources based on multi-objective evaluation

    Science.gov (United States)

    Chi, Yixia; Xue, Lianqing; Zhang, Hui

    2018-01-01

    The purpose of the water resources comprehensive benefits analysis is to maximize the comprehensive benefits on the aspects of social, economic and ecological environment. Aiming at the defects of the traditional analytic hierarchy process in the evaluation of water resources, it proposed a comprehensive benefit evaluation of social, economic and environmental benefits index from the perspective of water resources comprehensive benefit in the social system, economic system and environmental system; determined the index weight by the improved fuzzy analytic hierarchy process (AHP), calculated the relative index of water resources comprehensive benefit and analyzed the comprehensive benefit of water resources in Xiangshui County by the multi-objective evaluation model. Based on the water resources data in Xiangshui County, 20 main comprehensive benefit assessment factors of 5 districts belonged to Xiangshui County were evaluated. The results showed that the comprehensive benefit of Xiangshui County was 0.7317, meanwhile the social economy has a further development space in the current situation of water resources.

  17. Senegal - Irrigation and Water Resource Management

    Data.gov (United States)

    Millennium Challenge Corporation — IMPAQ: This evaluation report presents findings from the baseline data collected for the Irrigation and Water Resources Management (IWRM) project, which serves as...

  18. Comparative Medicine: An Inclusive Crossover Discipline.

    Science.gov (United States)

    Macy, James; Horvath, Tamas L

    2017-09-01

    Comparative Medicine is typically defined as a discipline which relates and leverages the biological similarities and differences among animal species to better understand the mechanism of human and animal disease. It has also been defined as a field of study concentrating on similarities and differences between human and veterinary medicine and is increasingly associated with animal models of human disease, including the critical role veterinarians, animal resource centers, and Institutional Animal Care and Use Committees play in facilitating and ensuring humane and reproducible laboratory animal care and use. To this end, comparative medicine plays a pivotal role in reduction, refinement, and replacement in animals in biomedical research. On many levels, comparative medicine facilitates the translation of basic science knowledge into clinical applications; applying comparative medicine concepts throughout the translation process is critical for success. In addition to the supportive role of comparative medicine in the research enterprise, its role as a distinct and independent scientific discipline should not be lost. Although comparative medicine's research "niche" is not one particular discipline or disease process, rather, it is the investigative mindset that seeks to reveal common threads that weave different pathophysiologic processes into translatable approaches and outcomes using various models.

  19. Overview of water resource assessment in South Africa: Current ...

    African Journals Online (AJOL)

    Overview of water resource assessment in South Africa: Current state and future challenges. ... These studies illustrate how the exponential growth in computer power and the concomitant development of highly sophisticated tools have changed the manner in which our water resources have been appraised, allowing us to ...

  20. NASA'S Water Resources Element Within the Applied Sciences Program

    Science.gov (United States)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2010-01-01

    The NASA Applied Sciences Program works within NASA Earth sciences to leverage investment of satellite and information systems to increase the benefits to society through the widest practical use of NASA research results. Such observations provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of numerous water resources management activities. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities. Water resources is one of eight elements in the Applied Sciences Program and it addresses concerns and decision making related to water quantity and water quality. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. Mitigating these conflicts and meeting water demands requires using existing resources more efficiently. The potential crises and conflicts arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. but also in many parts of the world. In addition to water availability issues, water quality related

  1. The Basin Water Resources Management System and Its Innovation in China

    Institute of Scientific and Technical Information of China (English)

    Xun; Pomponio

    2008-01-01

    Water provides the origin of human survival and prosperity,and the basic resource for the maintenance of terrestrial eco-systems,their biodiversity,productivity and ecological services.With China’s recent,rapid growth both in population and economic development,the water shortage has become one of the most constraints on its ecological restoration and socio-economic development,especially in the arid inland regions of northwest China.At first glance,this water shortage in China appears to be a resource crisis.But second,an in-depth analysis reveals that the water shortage crisis arises mainly resulting from the poor water management system and operating mechanism that cannot facilitate fair allocation and efficient utilization of water resources both regionally and nationally and thus is viewed as a crisis of water manage-ment.The solution of China’s water shortage and low-efficient utilization problem will,in particular,require a fundamen-tal and substantial reform or innovation of the existing water management system and operating mechanism.In this paper,we address explicitly the problems existed in the current water management system,explore the basic theory of water re-sources management and provide some insights into the way how to establish a river basin based integrated water re-sources management system in China.

  2. Recovery of uranium resources from sea water

    International Nuclear Information System (INIS)

    Kurushima, Morihiro

    1980-01-01

    After the oil crisis in 1973, the development of atomic energy has become important as substitute energy, and the stable acquisition of uranium resources is indispensable, in order to promote smoothly the use of atomic energy. The Ministry of International Trade and Industry has engaged actively in the project ''The survey on the technical development of the system for recovering uranium and others from sea water'' since 1974. 80% of the uranium resources in the world is distributed in USA, Canada, South Africa, Australia and Niger, and in near future, the price of uranium ores may be raised. Japan must promote powerfully the development of foreign uranium resources, but also it is very important to get domestic uranium by efficiently recovering the uranium dissolved in sea water, the amount of which was estimated at 4 billion tons, and its practical use is expected in 1990s. The uranium concentration in sea water is about 3 g in 1000 t sea water. The processes of separation and recovery are as follows: (1) adsorption of uranium to titanic acid powder adsorbent by bringing sea water in contact with it, (2) dissolving the collected uranium with ammonium carbonate, the desorption agent, (3) concentration of uranium solution by ion exchange method or ion flotation method to 2800 ppm. The outline of the model plant is explained. (Kako, I.)

  3. Dynamic Coupling Analysis of Urbanization and Water Resource Utilization Systems in China

    Directory of Open Access Journals (Sweden)

    Hailiang Ma

    2016-11-01

    Full Text Available While urbanization brings economic and social benefits, it also causes water pollution and other environmental ecological problems. This paper provides a theoretical framework to quantitatively analyze the dynamic relationship between water resource utilization and the process of urbanization. Using data from Jiangsu province, we first construct indices to evaluate urbanization and water resource utilization. We then adopt an entropy model to examine the correlation between urbanization and water resource utilization. In addition, we introduce a dynamic coupling model to analyze and predict the coupling degree between urbanization and water resource utilization. Our analyses show that pairing with rising urbanization during 2002–2014, the overall index of water resource utilization in Jiangsu province has experienced a “decline -rise-decline” trend. Specifically, after the index of water resource utilization reached its lowest point in 2004, it gradually began to rise. Water resource utilization reached its highest value in 2010. The coupling degree between urbanization and water resource utilization was relatively low in 2002 and 2003 varying between −90° and 0°. It has been rising since then. Out-of-sample forecasts indicate that the coupling degree will reach its highest value of 74.799° in 2016, then will start to gradually decline. Jiangsu province was chosen as our studied area because it is one of the selected pilot provinces for China’s economic reform and social development. The analysis of the relationship between provincial water resource utilization and urbanization is essential to the understanding of the dynamic relationship between these two systems. It also serves as an important input for developing national policies for sustainable urbanization and water resource management.

  4. Geo-spatial analysis of land-water resource degradation in two economically contrasting agricultural regions adjoining national capital territory (Delhi).

    Science.gov (United States)

    Kaur, Ravinder; Minhas, P S; Jain, P C; Singh, P; Dubey, D S

    2009-07-01

    The present study was aimed at characterizing the soil-water resource degradation in the rural areas of Gurgaon and Mewat districts, the two economically contrasting areas in policy zones-II and III of the National Capital Region (NCR), and assessing the impact of the study area's local conditions on the type and extent of resource degradation. This involved generation of detailed spatial information on the land use, cropping pattern, farming practices, soils and surface/ground waters of Gurgaon and Mewat districts through actual resource surveys, standard laboratory methods and GIS/remote sensing techniques. The study showed that in contrast to just 2.54% (in rabi season) to 4.87% (in kharif season) of agricultural lands in Gurgaon district, about 11.77% (in rabi season) to 24.23% (in kharif season) of agricultural lands in Mewat district were irrigated with saline to marginally saline canal water. Further, about 10.69% of agricultural lands in the Gurgaon district and 42.15% of agricultural lands in the Mewat district were drain water irrigated. A large part of this surface water irrigated area, particularly in Nuh (48.7%), Nagina (33.5%), and Punhana (24.1%) blocks of Mewat district, was either waterlogged (7.4% area with water depth) or at risk of being waterlogged (17.1% area with 2-3 m ground water depth). Local resource inventory showed prevalence of several illegal private channels in Mewat district. These private channels divert degraded canal waters into the nearby intersecting drains and thereby increase extent of surface irrigated agricultural lands in the Mewat district. Geo-spatial analysis showed that due to seepage of these degraded waters from unlined drains and canals, ground waters of about 39.6% of Mewat district were salt affected (EC(m)ean = 7.05 dS/m and SAR(m)ean = 7.71). Besides, sub-surface drinking waters of almost the entire Mewat district were contaminated with undesirable concentrations of chromium (Cr 2.0-3.23 ppm), manganese (Mn: 0

  5. Assessing the effects of adaptation measures on optimal water resources allocation under varied water availability conditions

    Science.gov (United States)

    Liu, Dedi; Guo, Shenglian; Shao, Quanxi; Liu, Pan; Xiong, Lihua; Wang, Le; Hong, Xingjun; Xu, Yao; Wang, Zhaoli

    2018-01-01

    Human activities and climate change have altered the spatial and temporal distribution of water availability which is a principal prerequisite for allocation of different water resources. In order to quantify the impacts of climate change and human activities on water availability and optimal allocation of water resources, hydrological models and optimal water resource allocation models should be integrated. Given that increasing human water demand and varying water availability conditions necessitate adaptation measures, we propose a framework to assess the effects of these measures on optimal allocation of water resources. The proposed model and framework were applied to a case study of the middle and lower reaches of the Hanjiang River Basin in China. Two representative concentration pathway (RCP) scenarios (RCP2.6 and RCP4.5) were employed to project future climate, and the Variable Infiltration Capacity (VIC) hydrological model was used to simulate the variability of flows under historical (1956-2011) and future (2012-2099) conditions. The water availability determined by simulating flow with the VIC hydrological model was used to establish the optimal water resources allocation model. The allocation results were derived under an extremely dry year (with an annual average water flow frequency of 95%), a very dry year (with an annual average water flow frequency of 90%), a dry year (with an annual average water flow frequency of 75%), and a normal year (with an annual average water flow frequency of 50%) during historical and future periods. The results show that the total available water resources in the study area and the inflow of the Danjiangkou Reservoir will increase in the future. However, the uneven distribution of water availability will cause water shortage problems, especially in the boundary areas. The effects of adaptation measures, including water saving, and dynamic control of flood limiting water levels (FLWLs) for reservoir operation, were

  6. Synthesis and characterization of Li{sub 4}SiO{sub 4} nano-powders by a water-based sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Wu Xiangwei [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Wen Zhaoyin, E-mail: zywen@mail.sic.ac.c [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Xu Xiaogang; Wang Xiuyan; Lin Jiu [Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2009-08-01

    The water-based sol-gel process for the synthesis of Li{sub 4}SiO{sub 4} nano-powders was reported for the first time. LiOH.H{sub 2}O and aerosil SiO{sub 2} were used as the starting materials with citric acid (C{sub 6}H{sub 8}O{sub 7}.H{sub 2}O) as the chelating agent. Li{sub 4}SiO{sub 4} powders with particle size as small as 100 nm were successfully synthesized at the temperature as low as 675 deg. C. Phase analysis, morphology, sintering behavior of the powders and ionic conductivity of the sintered bodies were investigated systematically. The experimental results showed that the powders obtained by the water-based sol-gel process (SG) possessed excellent sinterability, exhibiting a linear shrinkage of 5.2% while sintered to 900 deg. C, more than 3 times that of the powders obtained by solid state reaction (SSR). The bulk conductivity of the SG sintered bodies was much higher than that of the SSR samples at the same testing temperature.

  7. Relationships demand-supply of water and the rate of water shortage as tools for evaluating water resources in Colombia

    International Nuclear Information System (INIS)

    Dominguez Calle, Efrain Antonio; Gonzalo Rivera, Hebert; Vanegas, Sarmiento Raquel; Moreno, Pedro

    2008-01-01

    This paper shows updated results about Colombian water resources and their requirements by the economic sectors. Water demand water availability relationship is used as a pressure index on water resources. This relationship is expressed through the water scarcity index, which applies constraints over water availability; due to the runoff temporal variability and to the low levels of water during the dry season each year and for each geographic region to characterize average and low runoff years. Different water availability scenarios were building. One for modal runoff values and another for 95 percents for 2025 also were prepared. To the results call our attention to problems caused by the concentration of high density settlements and the presence of economics sectors in regions with low water availability. The infrastructure lag for management of a scarce high variable and over pressured resources emerges as a key factor to avoid a looming crisis in the process of water management

  8. High Efficiency Water Heating Technology Development Final Report, Part II: CO<sub>2sub> and Absorption-Based Residential Heat Pump Water Heater Development

    Energy Technology Data Exchange (ETDEWEB)

    Gluesenkamp, Kyle R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patel, Viral K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mandel, Bracha T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO<sub>2sub> refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.

  9. Innovative solutions for intractable water problems in the face of climate change in southern and East African sub regions

    Science.gov (United States)

    Mapani, Benjamin; Makurira, Hodson; Magole, Lapologang; Meck, Maideyi; Mkandawire, Theresa; Mul, Marloes; Ngongondo, Cosmo

    2018-06-01

    This issue has a total of thirty-two (32) papers; and covers the IWRM sub themes of Hydrology, Land and People, Water Resources Management, Water and Environment and Wastewater and Sanitation. Water issues have become more and more complex as the supply side is affected by issues of quantity, availability and vulnerability due to natural factors such as climate change and urbanization. These challenges call for new management strategies and governance styles. Access to clean freshwater is a basic requirement for enhanced quality of life and development by all. However, this access has three main components that must be met adequately as this issue illustrates. These components are firstly, the quantity of water available; secondly, the quality and thirdly supply and appropriate delivery of this precious resource to domestic, commercial and industrial users. The demand side has also become more challenging, especially in urban areas as more and more people move from the rural areas to the cities. It has become a daily challenge in many African cities to supply water to these new urban dwellers and more so in unplanned settlements. These issues require a way and manner of delivering solutions and new innovative ideas. The topics in this issue vary from climate variability and how we are to improve our management strategies to mitigation, through to vulnerability of water resources and how to strengthen governance issues that plague some institutions in our region.

  10. Water, Politics and Development: Framing a Political Sociology of Water Resources Management

    NARCIS (Netherlands)

    Mollinga, P.P.; Bhat, A.; Cleaver, F.; Meinzen-Dick, R.; Molle, F.; Neef, A.; Subramanian, S.; Wester, P.

    2008-01-01

    EDITORIAL PREAMBLE: The first issue of Water Alternatives presents a set of papers that investigates the inherently political nature of water resources management. A Water, Politics and Development initiative was started at ZEF (Center for Development Research, Bonn, Germany) in 2004/2005 in the

  11. Urban stormwater - greywater management system for sustainable urban water management at sub-watershed level

    Science.gov (United States)

    Singh Arora, Amarpreet

    2017-11-01

    Urban water management involves urban water supply (import, treatment and distribution of water), urban wastewater management (collection, treatment and disposal of urban sewage) and urban storm water management. Declining groundwater tables, polluted and declining sources of water, water scarcity in urban areas, unsatisfactory urban water supply and sanitation situation, pollution of receiving water bodies (including the ground water), and urban floods have become the concerns and issues of sustainable urban water management. This paper proposes a model for urban stormwater and sewage management which addresses these concerns and issues of sustainable urban water management. This model proposes segregation of the sewage into black water and greywater, and urban sub-watershed level stormwater-greywater management systems. During dry weather this system will be handling only the greywater and making the latter available as reclaimed water for reuse in place of the fresh water supply. During wet weather, the system will be taking care of (collection and treatment) both the storm water and the greywater, and the excess of the treated water will be disposed off through groundwater recharging. Application of this model in the Patiala city, Punjab, INDIA for selected urban sub-watersheds has been tried. Information and background data required for the conceptualization and design of the sub-watershed level urban stormwater-greywater management system was collected and the system has been designed for one of the sub-watersheds in the Patiala city. In this paper, the model for sustainable urban water management and the design of the Sub-watershed level Urban Stormwater-Greywater Management System are described.

  12. Managing Climate Risk to Agriculture and Water Resources in South ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Managing Climate Risk to Agriculture and Water Resources in South Africa ... to better integrate information on climate change and climate variability into water resources policy, planning and management. ... University of the Free State.

  13. Development of water resources management in Iraq and its obstacles

    International Nuclear Information System (INIS)

    Jawad, A. M.

    2011-01-01

    Iraq witnessed recently a considerable development in the field of water resources management to go along with developed countries. Latest technology has been introduced in hydrology monitoring. Many stations for water measuring and monitoring have been constructed beside many irrigation and drainage canals in order to reach an optimum irrigation system. A special emphasis has been put on the role of nuclear techniques in enhancing the water resources management development. These techniques will provide the perfect opportunity for investing water and drained quantities and determining pollution resources to insure the sustainability of the agricultural sector without threatening the development processes. This development encounters the lack of knowledge of technology applied in the field of the use of peaceful atomic energy and nuclear technologies, which are essential in sustaining the momentum in the management of water resources, despite the entry of the latest developed devices and technologies in measurements and monitoring. (author)

  14. Modeling water resources as a constraint in electricity capacity expansion models

    Science.gov (United States)

    Newmark, R. L.; Macknick, J.; Cohen, S.; Tidwell, V. C.; Woldeyesus, T.; Martinez, A.

    2013-12-01

    In the United States, the electric power sector is the largest withdrawer of freshwater in the nation. The primary demand for water from the electricity sector is for thermoelectric power plant cooling. Areas likely to see the largest near-term growth in population and energy usage, the Southwest and the Southeast, are also facing freshwater scarcity and have experienced water-related power reliability issues in the past decade. Lack of water may become a barrier for new conventionally-cooled power plants, and alternative cooling systems will impact technology cost and performance. Although water is integral to electricity generation, it has long been neglected as a constraint in future electricity system projections. Assessing the impact of water resource scarcity on energy infrastructure development is critical, both for conventional and renewable energy technologies. Efficiently utilizing all water types, including wastewater and brackish sources, or utilizing dry-cooling technologies, will be essential for transitioning to a low-carbon electricity system. This work provides the first demonstration of a national electric system capacity expansion model that incorporates water resources as a constraint on the current and future U.S. electricity system. The Regional Electricity Deployment System (ReEDS) model was enhanced to represent multiple cooling technology types and limited water resource availability in its optimization of electricity sector capacity expansion to 2050. The ReEDS model has high geographic and temporal resolution, making it a suitable model for incorporating water resources, which are inherently seasonal and watershed-specific. Cooling system technologies were assigned varying costs (capital, operations and maintenance), and performance parameters, reflecting inherent tradeoffs in water impacts and operating characteristics. Water rights supply curves were developed for each of the power balancing regions in ReEDS. Supply curves include costs

  15. Conversion of Blue Water into Green Water for Improving Utilization Ratio of Water Resources in Degraded Karst Areas

    Directory of Open Access Journals (Sweden)

    Ke Chen

    2016-12-01

    Full Text Available Vegetation deterioration and soil loss are the main causes of more precipitation leakages and surface water shortages in degraded karst areas. In order to improve the utilization of water resources in such regions, water storage engineering has been considered; however, site selection and cost associated with the special karstic geological structure have made this difficult. According to the principle of the Soil Plant Atmosphere Continuum, increasing both vegetation cover and soil thickness would change water cycle process, resulting in a transformation from leaked blue water (liquid form into green water (gas or saturated water form for terrestrial plant ecosystems, thereby improving the utilization of water resources. Using the Soil Vegetation Atmosphere Transfer model and the geographical distributed approach, this study simulated the conversion from leaked blue water (leakage into green water in the environs of Guiyang, a typical degraded karst area. The primary results were as follows: (1 Green water in the area accounted for <50% of precipitation, well below the world average of 65%; (2 Vegetation growth played an important role in converting leakage into green water; however, once it increased to 56%, its contribution to reducing leakage decreased sharply; (3 Increasing soil thickness by 20 cm converted the leakage considerably. The order of leakage reduction under different precipitation scenarios was dry year > normal year > rainy year. Thus, increased soil thickness was shown effective in improving the utilization ratio of water resources and in raising the amount of plant ecological water use; (4 The transformation of blue water into green water, which avoids constructions of hydraulic engineering, could provide an alternative solution for the improvement of the utilization of water resources in degraded karst area. Although there are inevitable uncertainties in simulation process, it has important significance for overcoming similar

  16. Isotope techniques in water resources development and management. Proceedings

    International Nuclear Information System (INIS)

    1999-01-01

    The 10th International Symposium on Isotope Techniques in Water Resources Development and Management was organized by the International Atomic Energy Agency in co-operation with UNESCO, WMO and International Association of Hydrological Sciences and was held at IAEA Headquarters, Vienna, during 10-14 May 1999. The symposium provided an international forum for assessing the status and recent advances in isotope applications to water resources and an exchange of information on the following main themes: processes at the interface between the atmosphere and hydrosphere; investigations in surface waters and groundwaters: their origin, dynamics, interrelations; problems and techniques for investigating sedimentation; water resources issues: pollution, source and transport of contaminants, salinization, water-rock interaction and processes in geothermal systems; isotope data interpretation and evaluation methodologies: modelling approaches. The proceedings contain the 46 papers presented and extended synopses of poster presentations; each of them was indexed individually

  17. Conflicts Over Water as a Resource

    National Research Council Canada - National Science Library

    Cooksey, James

    2008-01-01

    .... A specific element that operational planners must consider when assessing political and military objectives of belligerents, and how those objectives may shape military operations, is water as a natural resource...

  18. Integrated Water Resource Management and Energy Requirements for Water Supply in the Copiapó River Basin, Chile

    Directory of Open Access Journals (Sweden)

    Francisco Suárez

    2014-08-01

    Full Text Available Population and industry growth in dry climates are fully tied to significant increase in water and energy demands. Because water affects many economic, social and environmental aspects, an interdisciplinary approach is needed to solve current and future water scarcity problems, and to minimize energy requirements in water production. Such a task requires integrated water modeling tools able to couple surface water and groundwater, which allow for managing complex basins where multiple stakeholders and water users face an intense competition for limited freshwater resources. This work develops an integrated water resource management model to investigate the water-energy nexus in reducing water stress in the Copiapó River basin, an arid, highly vulnerable basin in northern Chile. The model was utilized to characterize groundwater and surface water resources, and water demand and uses. Different management scenarios were evaluated to estimate future resource availability, and compared in terms of energy requirements and costs for desalinating seawater to eliminate the corresponding water deficit. Results show a basin facing a very complex future unless measures are adopted. When a 30% uniform reduction of water consumption is achieved, 70 GWh over the next 30 years are required to provide the energy needed to increase the available water through seawater desalination. In arid basins, this energy could be supplied by solar energy, thus addressing water shortage problems through integrated water resource management combined with new technologies of water production driven by renewable energy sources.

  19. Army Corps of Engineers: Water Resource Authorizations, Appropriations, and Activities

    Science.gov (United States)

    2017-02-27

    eight divisions that are further divided into 38 districts.2 This report provides an overview of the Corps water resource activities , including...rules associated with authorization and appropriation earmarks, individual Members often brought attention to similar activities for congressional...Army Corps of Engineers: Water Resource Authorizations, Appropriations, and Activities Nicole T. Carter Specialist in Natural Resources Policy

  20. Esterification of industrial-grade palm fatty acid distillate over modified ZrO{sub 2} (with WO{sub 3}-, SO{sub 4} -and TiO{sub 2}-): Effects of co-solvent adding and water removal

    Energy Technology Data Exchange (ETDEWEB)

    Mongkolbovornkij, P.; Laosiripojana, N. [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi (Thailand); Champreda, V. [National Center for Genetic Enginnering and Biotechnology (BIOTEC), Pathumthani (Thailand); Sutthisripok, W. [Department of Mining and Materials Engineering, Prince of Songkla University, Songkhla (Thailand)

    2010-11-15

    The esterification of palm fatty acid distillate (PFAD), a by-product from palm oil industry, in the presence of three modified zirconia-based catalysts i.e. SO{sub 4}-ZrO{sub 2}, WO{sub 3}-ZrO{sub 2} and TiO{sub 2}-ZrO{sub 2} (with several sulfur- and tungsten-loading contents, Ti/Zr molar ratios, and calcination temperatures) was studied. It was found that, among all synthesized catalysts, the reaction in the presence of SO{sub 4}-ZrO{sub 2} and WO{sub 3}-ZrO{sub 2} (with 1.8%SO{sub 4} calcined at 500 C and/or 20%WO{sub 3} calcined at 800 C) enhances relatively high fatty acid methyl ester (FAME) yield (84.9-93.7%), which was proven to relate with the high acid site density and specific surface area as well as the formation of tetragonal phase over these catalysts. The greater benefit of WO{sub 3}-ZrO{sub 2} over SO{sub 4}-ZrO{sub 2} was its high stability after several reaction cycles, whereas significant deactivation was detected over SO{sub 4}-ZrO{sub 2} due to the leaching of sulfur from catalyst. For further improvement, the addition of toluene as co-solvent was found to increase the FAME yield along with reduce the requirement of methanol to PFAD molar ratio (while maintains the FAME yield above 90%). Furthermore, it was observed that the presence of water in the feed considerably lower the FAME yield due to the catalyst surface interfering by water and the further hydrolysis of FAME back to fatty acids. We proposed here that the negative effect can be considerably minimized by adding molecular sieve to remove water from the feed and/or during the reaction. (author)

  1. 30 CFR 402.6 - Water-Resources Research Program.

    Science.gov (United States)

    2010-07-01

    ... productivity of water when used for agricultural, municipal, and commercial purposes; and (8) The economic, legal, engineering, social, recreational, biological, geographic, ecological, and other aspects of water... interpreting the results of scientific and engineering research on water-resources problems. (10) Providing...

  2. Reservoirs operation and water resources utilization coordination in Hongshuihe basin

    Science.gov (United States)

    Li, Chonghao; Chi, Kaige; Pang, Bo; Tang, Hongbin

    2018-06-01

    In the recent decade, the demand for water resources has been increasing with the economic development. The reservoirs of cascade hydropower stations in Hongshuihe basin, which are constructed with a main purpose of power generation, are facing more integrated water resources utilization problem. The conflict between power generation of cascade reservoirs and flood control, shipping, environmental protection and water supply has become increasingly prominent. This paper introduces the general situation and integrated water demand of cascade reservoirs in Hongshuihe basin, and it analyses the impact of various types of integrated water demand on power generation and supply. It establishes mathematic models, constrained by various types of integrated water demand, to guide the operation and water resources utilization management of cascade reservoirs in Hongshuihe basin. Integrated water coordination mechanism of Hongshuihe basin is also introduced. It provides a technical and management guide and demonstration for cascade reservoirs operation and integrated water management at home and abroad.

  3. Temporal and spatial characteristics of water resources in the Yeerqiang River Basin based on remote sensing

    Science.gov (United States)

    Y Ran, Q.; Y Bai, L.; Feng, J. Z.; Yang, Y. M.; Guo, M. Q.; Li, H. L.; Zhang, Q.; Zhang, P.; Cao, D.

    2017-07-01

    Surface water resources play an important role in the economic and social developments as well as the protection of natural ecological environment in the Yeerqiang River Basin. Based upon the six stages of land use data from 1990 to 2015, the temporal and spatial variation of surface water resources in the Yerqiang River Basin have been explored and analyzed. The results show that: (1) From 1990 to 2015, the area of natural landscape initially increased and then decreased, while the area of artificial landscape increased, which caused a slight increase in the land use degree in the study area. (2) The dynamic changes of water and glacier areas are somewhat consistent over the past 25 years, with a sharp decline between 2005-2010 and a small increase in the remaining years. The dynamic changes in areas of non-glacial water were moderate, with decrease in area of 9 km2 from 1990 to 2015. The beach area decreased, and the other water sub-classes initially increased and then decreased. (3) Over the past 25 years, the proportion of unchanged water area is 73.22%, the transfer-out proportion is 19.19%, and the transfer-in proportion is 7.59%. Generally, water types transferred to grassland and unused land. Additionally, significant transfers were observed for the conversions between glaciers and woodland, conversions between canal, lake, reservoir and beach, and conversions between beach and farmland.

  4. Energy-water-food nexus under financial constraint environment: good, the bad, and the ugly sustainability reforms in sub-Saharan African countries.

    Science.gov (United States)

    Zaman, Khalid; Shamsuddin, Sadaf; Ahmad, Mehboob

    2017-05-01

    Environmental sustainability agenda are generally compromised by energy, water, and food production resources, while in the recent waves of global financial crisis, it mediates to increase the intensity of air pollutants, which largely affected the less developing countries due to their ease of environmental regulation policies and lack of optimal utilization of economic resources. Sub-Saharan African (SSA) countries are no exception that majorly hit by the recent global financial crisis, which affected the country's natural environment through the channel of unsustainable energy-water-food production. The study employed panel random effect model that addresses the country-specific time-invariant shocks to examine the non-linear relationship between water-energy-food resources and air pollutants in a panel of 19 selected SSA countries, for a period of 2000-2014. The results confirmed the carbon-fossil-methane environmental Kuznets curve (EKC) that turned into inverted U-shaped relationships in a panel of selected SSA countries. Food resources largely affected greenhouse gas (GHG), methane (CH 4 ), and nitrous oxide (N 2 O) emissions while water resource decreases carbon dioxide (CO 2 ), fossil fuel, and CH 4 emissions in a region. Energy efficiency improves air quality indicators while industry value added increases CO 2 emissions, fossil fuel energy, and GHG emissions. Global financial crisis increases the risk of climate change across countries. The study concludes that although SSA countries strive hard to take some "good" initiatives to reduce environmental degradation in a form of improved water and energy sources, however, due to lack of optimal utilization of food resources and global financial constraints, it leads to "the bad" and "the ugly" sustainability reforms in a region.

  5. Climate change: Implications for water and ecological resources

    International Nuclear Information System (INIS)

    Wall, G.; Sanderson, M.

    1990-01-01

    A conference was held to discuss the implications of climate change on water and ecological resources. The meeting consisted of a number of plenary sessions, luncheon speeches, an open forum, and five workshops. Presentations concerned regional and global issues, climate modelling, international aspects of climate change, water resources supply and demand, wetlands, wildlife and fisheries, agriculture and forests, and conservation strategies. Separate abstracts have been prepared for 32 presentations from the conference

  6. Analysis of Water Resources Supply and Demand and Security of Water Resources Development in Irrigation Regions of the Middle Reaches of the Heihe River Basin, Northwest China

    Institute of Scientific and Technical Information of China (English)

    JI Xi-bin; KANG Er-si; CHEN Ren-sheng; ZHAO Wen-zhi; XIAO Sheng-chun; JIN Bo-wen

    2006-01-01

    Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance of water supply and demand in the region was established, and the security of water resource was assessed, from which the results that the effects of unified management of water resources in the Heihe River basin between Gansu Province and Inner Mongolia on regional hydrology are significant with a decrease in water supply diverted from Heihe River and an increase in groundwater extracted. In addition, it was found that the groundwater level has been steadily decreasing due to over pumping and decrease in recharges. In present year (2003), the volume of potential groundwater in the irrigation districts is far small because of the groundwater overdraft; even in the particular regions, there is no availability of groundwater resources for use. By 2003, water supply is not sufficient to meet the water demand in the different irrigation districts, the sustainable development and utilization of water resources are not secured, and the water supply crisis occurs in Pingchuan irrigation district. Achieving water security for the sustainable development of society, agriculture, economy, industry, and livelihoods while maintaining or improving the abilities of the management and planning of water resources, determining of the reasonable percentage between water supply and groundwater utilization and water saving in agricultural irrigation are taken into account. If this does not occur, it is feared that the present performance of water development and planning may further aggravate the problem of scarcities of water resources and further damage the fragile ecological system.

  7. Zero photoelastic and water durable ZnO–SnO–P{sub 2}O{sub 5}–B{sub 2}O{sub 3} glasses

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Akira; Nakata, Kohei; Yamamoto, Naoki; Takebe, Hiromichi [Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama 790-8577 (Japan); Tricot, Grégory; Chen, Yuanyuan [LASIR UMR-CNRS 8516, Université de Lille 1, Villeneuve d’Ascq F-59655 (France)

    2015-04-01

    We report properties of zero birefringent xZnO–(67–x)SnO–(33–y)P{sub 2}O{sub 5}–y B{sub 2}O{sub 3} glasses, within 18.5 ≤ x ≤ 22 and y = 0, 3, and 10 mol. %. These compositions of boro-phosphate glasses provide both zero photoelastic constant (PEC) and improved water durability. x = 19 and y = 3 compositions show minimum PEC of −0.002 × 10{sup −12} Pa{sup −1}, which can contribute to candidate material for fiber current sensor devise without lead. The structures of zero photoelastic glasses were investigated by Raman scattering and nuclear magnetic resonance spectroscopies. Compositions of zero PEC glasses are explained by the empirical model proposed by Zwanziger et al. [Chem. Mater. 19, 286-290 (2007)].

  8. Climatic changes and water resources in the Middle East and North Africa

    Energy Technology Data Exchange (ETDEWEB)

    Zereini, Fathi [Frankfurt Univ. (Germany). Inst. for Atmospheric and Environmental Sciences; Hoetzl, Heinz (eds.) [Karlsruhe Univ. (Germany). Inst. Geologie

    2008-07-01

    ''Climatic Change and Water Resources in the Middle East and North Africa'' is dedicated to high-priority topics related to the impact of climate change on water resources in a water scarce region. The subject is described and discussed in three main chapters and different case studies. The three main chapters are (1) Climatic changes - sources and effects on the water cycle, (2) Impact of climate change on water resources, (3) Water resources and water management. These chapters are split up into further 26 sections. A total of 64 individuals from many countries have made contributions to this book. All topics in this book are complimentary and contribute to a comprehensive understanding of the interactions between global climate change, world water cycle and water resources. A valuable and meaningful interdisciplinary mixture of topics is combined in this book which will be of great interest to many scientists. (orig.)

  9. The perceptions of research values and priorities in water resource ...

    African Journals Online (AJOL)

    2011-06-29

    Jun 29, 2011 ... clear strengths in water resource management in southern Africa were identified, we found that ... and cross-sector collaboration in integrated water resource .... the 2 views that topped the list were the 'implementation and.

  10. The Water-Energy-Food Nexus in a Rapidly Developing Resource Sector

    Science.gov (United States)

    Allen, D. M.; Kirste, D. M.

    2014-12-01

    Technological advances and access to global markets have changed the rate at which resource exploitation takes place. The environmental impact of the rapid development and distribution of resources such as minerals and hydrocarbons has led to a greater potential for significant stress on water resources both in terms of quality and quantity. How and where those impacts manifest is crucial to determining appropriate risk management strategies. North East British Columbia has an abundance of shale gas reserves that are anticipated to be exploited at a large scale in coming years, primarily for export as liquefied natural gas (LNG). However, there is growing concern that fracking and other activities related to shale gas development pose risks to water quality and quantity in the region. Water lies at the center of the water-energy-food nexus, with an accelerating water demand for fracking and industrial operations as well as for domestic, environmental and agricultural uses. Climate change is also anticipated to alter the hydrologic regime, posing added stress to the water resource. This case study examines the water-energy-food nexus in the context of a region that is impacted by a rapidly developing resource sector, encompassing water demand/supply, climate change, interaction between deep aquifers and shallow aquifers/surface waters, water quality concerns related to fracking, land use disturbance, and community impacts. Due to the rapid rate of development, there are significant knowledge gaps in our understanding of the water resource. Currently agencies are undertaking water resource assessments and establishing monitoring sites. This research aims to assess water security in North East British Columbia in a coordinated fashion through various partnerships. In addition to collecting baseline knowledge and data, the study will evaluate risk and resilience indicators in relation to water security. A risk assessment framework specific to the shale gas development

  11. Near real time water resources data for river basin management

    Science.gov (United States)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  12. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  13. Assessment of surface water resources availability using catchment modelling and the results of tracer studies in the mesoscale Migina Catchment, Rwanda

    Science.gov (United States)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Uhlenbrook, S.; Wenninger, J.

    2014-12-01

    In the present study, we developed a catchment hydrological model which can be used to inform water resources planning and decision making for better management of the Migina Catchment (257.4 km2). The semi-distributed hydrological model HEC-HMS (Hydrologic Engineering Center - the Hydrologic Modelling System) (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for baseflow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of 2 years (May 2009 and June 2011). The catchment was divided into five sub-catchments. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe model efficiency index (NS) of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation was not undertaken. However, we used results from tracer-based hydrograph separation from a previous study to compare our model results in terms of the runoff components. The model performed reasonably well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and baseflow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, which provided insights into the different hydrological processes on a sub-catchment scale. We conclude that such disparities justify the need to consider catchment subdivisions if such parameters and components of the water cycle are to form the base for decision making in water resources planning in the catchment.

  14. How important are peatlands globally in providing drinking water resources?

    Science.gov (United States)

    Xu, Jiren; Morris, Paul; Holden, Joseph

    2017-04-01

    The potential role of peatlands as water stores and sources of downstream water resources for human use is often cited in publications setting the context for the importance of peatlands, but is rarely backed up with substantive evidence. We sought to determine the global role of peatlands in water resource provision. We developed the Peat Population Index (PPI) that combines the coverage of peat and the local population density to show focused (hotspot) areas where there is a combination of both large areas of peat and large populations who would potentially use water sourced from those peatlands. We also developed a method for estimating the proportion of river water that interacted with contributing peatlands before draining into rivers and reservoirs used as a drinking water resource. The Peat Reservoir Index (PRI) estimates the contribution of peatlands to domestic water use to be 1.64 km3 per year which is 0.35 % of the global total. The results suggest that although peatlands are widespread, the spatial distribution of the high PPI and PRI river basins is concentrated in European middle latitudes particularly around major conurbations in The Netherlands, northern England, Scotland (Glasgow) and Ireland (Dublin), although there were also some important systems in Florida, the Niger Delta and Malaysia. More detailed research into water resource provision in high PPI areas showed that they were not always also high PRI areas as often water resources were delivered to urban centres from non-peat areas, despite a large area of peat within the catchment. However, particularly in the UK and Ireland, there are some high PRI systems where peatlands directly supply water to nearby urban centres. Thus both indices are useful and can be used at a global level while more local refinement enables enhanced use which supports global and local peatland protection measures. We now intend to study the impacts of peatland degradation and climate change on water resource

  15. Photocatalytic degradation trichloroethylene: influence of type of TiO/sub 2/ and water depth

    International Nuclear Information System (INIS)

    Farooq, M.; Raja, I.A.

    2005-01-01

    Wastewater is frequently released untreated into the rivers and streams in developing countries, contaminating the major sources of freshwater. There is a need to find an economical solution to clean these essential water supplies. This paper describes the photo catalytic degradation of trichloroethylene (TCE) using three types of TiO/sub 2/. The performance of scientific grade (P25) and commercial grade TiO/sub 2/ was compared. The powder TiO/sub 2/ was found more effective than the sand TiO/sub 2/ for decomposing TCE. The effect of sand TiO/sub 2/ as photo catalyst was investigated at various water depths. It was observed that up to 45 mm water depth, sand TiO/sub 2/ showed photodegradation of TCE. The degradation rates of sand decreased. (author)

  16. Struggles over Access and Authority in the Governance of new water resources

    DEFF Research Database (Denmark)

    Cold-Ravnkilde, Signe Marie; Funder, Mikkel

    Research on water scarcity in the South has often focused on the impacts of limited water resources for the rural poor, prompted most recently by the climate change debate. Less attention has been drawn to the social and institutional processes surrounding the emergence of new collective water...... of the way we understand the development of new water resources in the current context of inequality, water scarcity and climate change....... resources, and how this affects authority, access rights and social exclusion in local water governance. The paper addresses this issue through a study of local competition over access to new common-pool water resources in isolated rural areas of Zambia and Mali. In Mali, climate change has led...

  17. Vaccination for typhoid fever in sub-Saharan Africa.

    Science.gov (United States)

    Slayton, Rachel B; Date, Kashmira A; Mintz, Eric D

    2013-04-01

    Emerging data on the epidemiologic, clinical and microbiologic aspects of typhoid fever in sub-Saharan Africa call for new strategies and new resources to bring the regional epidemic under control. Areas with endemic disease at rates approaching those in south Asia have been identified; large, prolonged and severe outbreaks are occurring more frequently; and resistance to antimicrobial agents, including fluoroquinolones is increasing. Surveillance for typhoid fever is hampered by the lack of laboratory resources for rapid diagnosis, culture confirmation and antimicrobial susceptibility testing. Nonetheless, in 2010, typhoid fever was estimated to cause 725 incident cases and 7 deaths per 100,000 person years in sub-Saharan Africa. Efforts for prevention and outbreak control are challenged by limited access to safe drinking water and sanitation and by a lack of resources to initiate typhoid immunization. A comprehensive approach to typhoid fever prevention including laboratory and epidemiologic capacity building, investments in water, sanitation and hygiene and reconsideration of the role of currently available vaccines could significantly reduce the disease burden. Targeted vaccination using currently available typhoid vaccines should be considered as a short- to intermediate-term risk reduction strategy for high-risk groups across sub-Saharan Africa.

  18. Integrating Research and Extension for the Nsf-Reu Program in Water Resources

    Science.gov (United States)

    Judge, J.; Migliaccio, K.; Gao, B.; Shukla, S.; Ehsani, R.; McLamore, E.

    2011-12-01

    degree offering institutions and a variety of majors such as Geology, Meteorology, Environmental Sciences & Engineering, Civil Engineering, Water Resources, Agricultural Engineering, Physics, Geography, Chemical Engineering, to name a few. This model of providing integrated research and extension opportunities in hydrology where not all the REU participants are physically co-located, is unique and can be extended to other disciplines.

  19. An ontology for component-based models of water resource systems

    Science.gov (United States)

    Elag, Mostafa; Goodall, Jonathan L.

    2013-08-01

    Component-based modeling is an approach for simulating water resource systems where a model is composed of a set of components, each with a defined modeling objective, interlinked through data exchanges. Component-based modeling frameworks are used within the hydrologic, atmospheric, and earth surface dynamics modeling communities. While these efforts have been advancing, it has become clear that the water resources modeling community in particular, and arguably the larger earth science modeling community as well, faces a challenge of fully and precisely defining the metadata for model components. The lack of a unified framework for model component metadata limits interoperability between modeling communities and the reuse of models across modeling frameworks due to ambiguity about the model and its capabilities. To address this need, we propose an ontology for water resources model components that describes core concepts and relationships using the Web Ontology Language (OWL). The ontology that we present, which is termed the Water Resources Component (WRC) ontology, is meant to serve as a starting point that can be refined over time through engagement by the larger community until a robust knowledge framework for water resource model components is achieved. This paper presents the methodology used to arrive at the WRC ontology, the WRC ontology itself, and examples of how the ontology can aid in component-based water resources modeling by (i) assisting in identifying relevant models, (ii) encouraging proper model coupling, and (iii) facilitating interoperability across earth science modeling frameworks.

  20. Remote sensing and water resources

    CERN Document Server

    Champollion, N; Benveniste, J; Chen, J

    2016-01-01

    This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives. Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of th...

  1. Syntheses, crystal structures, and properties of the isotypic pair [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O and [In(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Van, Nguyen-Duc; Kleeberg, Fabian M.; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2015-11-15

    Single crystals of [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O and [In(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O were obtained by reactions of aqueous solutions of the acid (H{sub 3}O){sub 2}[B{sub 12}H{sub 12}] with chromium(III) hydroxide and indium metal shot, respectively. The title compounds crystallize isotypically in the trigonal system with space group R anti 3c (a = 1157.62(3), c = 6730.48(9) pm for the chromium, a = 1171.71(3), c = 6740.04(9) pm for the indium compound, Z = 6). The arrangement of the quasi-icosahedral [B{sub 12}H{sub 12}]{sup 2-} dianions can be considered as stacking of two times nine layers with the sequence..ABCCABBCA.. and the metal trications arrange in a cubic closest packed..abc.. stacking sequence. The metal trications are octahedrally coordinated by six water molecules of hydration, while another fifteen H{sub 2}O molecules fill up the structures as zeolitic crystal water or second-sphere hydrating species. Between these free and the metal-bonded water molecules, bridging hydrogen bonds are found. Furthermore, there is also evidence of hydrogen bonding between the anionic [B{sub 12}H{sub 12}]{sup 2-} clusters and the free zeolitic water molecules according to B-H{sup δ-}..{sup δ+}H-O interactions. Vibrational spectroscopy studies prove the presence of these hydrogen bonds and also show slight distortions of the dodecahydro-closo-dodecaborate anions from their ideal icosahedral symmetry (I{sub h}). Thermal decomposition studies for the example of [Cr(H{sub 2}O){sub 6}]{sub 2}[B{sub 12}H{sub 12}]{sub 3}.15H{sub 2}O gave no hints for just a simple multi-stepwise dehydration process. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Sustainable development of water resources, water supply and environmental sanitation.

    CSIR Research Space (South Africa)

    Austin, LM

    2006-01-01

    Full Text Available and be capable of destroying or isolating pathogens. A need exists for documentary evidence to support various claims about different storage periods for ensuring pathogen die-off and safe handling of biosolids (Peasy 2000). Handling of faecal material... in Water and Environmental Health, Task no. 324. [Online] http://www/lboro.ac.uk/well/resources/well-studies/full-reports-pdf/task0324.pdf WHO (2001). Water quality, guidelines, standards and health: Assessment of risk and risk management for water...

  3. Key issues for determining the exploitable water resources in a Mediterranean river basin.

    Science.gov (United States)

    Pedro-Monzonís, María; Ferrer, Javier; Solera, Abel; Estrela, Teodoro; Paredes-Arquiola, Javier

    2015-01-15

    One of the major difficulties in water planning is to determine the water availability in a water resource system in order to distribute water sustainably. In this paper, we analyze the key issues for determining the exploitable water resources as an indicator of water availability in a Mediterranean river basin. Historically, these territories are characterized by heavily regulated water resources and the extensive use of unconventional resources (desalination and wastewater reuse); hence, emulating the hydrological cycle is not enough. This analysis considers the Jucar River Basin as a case study. We have analyzed the different possible combinations between the streamflow time series, the length of the simulation period and the reliability criteria. As expected, the results show a wide dispersion, proving the great influence of the reliability criteria used for the quantification and localization of the exploitable water resources in the system. Therefore, it is considered risky to provide a single value to represent the water availability in the Jucar water resource system. In this sense, it is necessary that policymakers and stakeholders make a decision about the methodology used to determine the exploitable water resources in a river basin. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The Potential of in situ Rain Water Harvesting for Water Resources ...

    African Journals Online (AJOL)

    The role of in situ rain water harvesting (RWH) in water resources conservation is well recognized in semiarid areas, such as the highlands of northern Ethiopia. However, in fringe areas of malaria endemicity, the potential impact of such schemes on vector populations and malaria transmission is not well documented.

  5. Groundwater–surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China – a synthesis

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2013-07-01

    Full Text Available During the last decades, large-scale land use changes took place in the Hailiutu River catchment, a semi-arid area in northwest China. These changes had significant impacts on the water resources in the area. Insights into groundwater and surface water interactions and vegetation-water dependencies help to understand these impacts and formulate sustainable water resources management policies. In this study, groundwater and surface water interactions were identified using the baseflow index at the catchment scale, and hydraulic and water temperature methods as well as event hydrograph separation techniques at the sub-catchment scale. The results show that almost 90% of the river discharge consists of groundwater. Vegetation dependencies on groundwater were analysed from the relationship between the Normalized Difference Vegetation Index (NDVI and groundwater depth at the catchment scale and along an ecohydrogeological cross-section, and by measuring the sap flow of different plants, soil water contents and groundwater levels at different research sites. The results show that all vegetation types, i.e. trees (willow (Salix matsudana and poplar (Populus simonii, bushes (salix – Salix psammophila, and agricultural crops (maize – Zea mays, depend largely on groundwater as the source for transpiration. The comparative analysis indicates that maize crops use the largest amount of water, followed by poplar trees, salix bushes, and willow trees. For sustainable water use with the objective of satisfying the water demand for socio-economical development and to prevent desertification and ecological impacts on streams, more water-use-efficient crops such as sorghum, barley or millet should be promoted to reduce the consumptive water use. Willow trees should be used as wind-breaks in croplands and along roads, and drought-resistant and less water-use intensive plants (for instance native bushes should be used to vegetate sand dunes.

  6. Evaluation of Water Resources Carrying Capacity in Shandong Province Based on Fuzzy Comprehensive Evaluation

    Directory of Open Access Journals (Sweden)

    Zhao Qiang

    2018-01-01

    Full Text Available Water resources carrying capacity is the maximum available water resources supporting by the social and economic development. Based on investigating and statisticing on the current situation of water resources in Shandong Province, this paper selects 13 factors including per capita water resources, water resources utilization, water supply modulus, rainfall, per capita GDP, population density, per capita water consumption, water consumption per million yuan, The water consumption of industrial output value, the agricultural output value of farmland, the irrigation rate of cultivated land, the water consumption rate of ecological environment and the forest coverage rate were used as the evaluation factors. Then,the fuzzy comprehensive evaluation model was used to analyze the water resources carrying capacity Force status evaluation. The results showed : The comprehensive evaluation results of water resources in Shandong Province were lower than 0.6 in 2001-2009 and higher than 0.6 in 2010-2015, which indicating that the water resources carrying capacity of Shandong Province has been improved.; In addition, most of the years a value of less than 0.6, individual years below 0.4, the interannual changes are relatively large, from that we can see the level of water resources is generally weak, the greater the interannual changes in Shandong Province.

  7. Barriers to sustainable water resources management : Case study in Omnogovi province, Mongolia

    OpenAIRE

    Enkhtsetseg, Mandukhai

    2017-01-01

    This study examines the barriers to sustainable water resources management in water vulnerable, yet a mining booming area. The case study is conducted in Omnogovi province of Mongolia in Nov-Dec 2016. This study presents how the Omnogovi province manages its water with increased mining and examines what hinders the province from practicing sustainable water resources management and examines the involvement of residents in the water resources management of Omnogovi province. Qualitative approa...

  8. Water resources and water pollution studies

    International Nuclear Information System (INIS)

    Airey, P.

    2001-01-01

    Nuclear techniques are widely used in the investigation of the dynamics of the water cycle. This paper focusses on their contributions to the development of strategies for the sustainability of environmental resources. Emphasis has been placed on the role of environmental isotopes and radiotracers in evaluating models of complex environmental systems. Specific reference is made to 1) the construction of a marine radioactivity database for Asia and the Pacific, 2) the sustainability of groundwater in regions challenged by climate change, and 3) the applications of radiotracers to off-shore transport of sediments and contaminants

  9. Wettability and friction of water on a MoS{sub 2} nanosheet

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Binquan, E-mail: bluan@us.ibm.com, E-mail: ruhongz@us.ibm.com; Zhou, Ruhong, E-mail: bluan@us.ibm.com, E-mail: ruhongz@us.ibm.com [IBM T J Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States)

    2016-03-28

    The molybdenum disulfide (MoS{sub 2}) nanosheet is a promising two-dimensional (2D) material and has recently been used in biological sensing. While the electronic structure of 2D MoS{sub 2} sheet has been actively studied, the role of its atomic structure and thus the interfacial interactions with bio-fluids are still elusive. Using Molecular dynamics simulations, we developed MoS{sub 2} force field parameters to reproduce the experimentally determined water contact angle of the MoS{sub 2} nanosheet and then predicted the slip-length of water that has not been measured in experiment yet. Simulation results suggest that the MoS{sub 2} nanosheet is a hydrophobic and low-friction surface, despite its seemingly significant charges of surface atoms and relatively strong strength of van der Waals potentials. We expect that the developed force fields for depicting surface atoms of MoS{sub 2} will facilitate future research in understanding biomolecule-MoS{sub 2} interactions in MoS{sub 2}-based biosensors.

  10. Western Water Resources: Coming Problems and the Policy Alternatives

    Science.gov (United States)

    Wahl, Richard

    This quote from the book leads one to speculate as to what will happen to water policy in these times of increased concern for reducing federal spending, for more reliance on state and local governments as opposed to the federal government, and for more reliance on the private sector as opposed to any level of governmental control. Remembering that a wrenching debate preceded deregulation of oil and other energy prices, what are the opportunities for deregulation in the water resources field?Western Water Resources consists of the proceedings of a symposium held in Denver in September 1979 and Hosted by the Federal Reserve Bank of Kansas City. As in any conference, there is, in addition to the organized substantive content of the papers, a mixture of the clever and the banal, peppered with some humor and chit-chat. Among the contributors are economists, including Charles Howe, Allen Kneese, Emery Castle, and Kenneth Boulding; legal scholars, such as George Radosevich and Frank Trelease; and political figures, such as Scott Matheson, Governor of Utah, Guy Martin, former Assistant Secretary for Land and Water Resources of the Department of the Interior, and Leo Eisel, former Director of the Water Resources Council. Some papers are followed by a discussion from commentors.

  11. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China.

    Science.gov (United States)

    Ye, Quanliang; Li, Yi; Zhuo, La; Zhang, Wenlong; Xiong, Wei; Wang, Chao; Wang, Peifang

    2018-02-01

    This study provides an innovative application of virtual water trade in the traditional allocation of physical water resources in water scarce regions. A multi-objective optimization model was developed to optimize the allocation of physical water and virtual water resources to different water users in Beijing, China, considering the trade-offs between economic benefit and environmental impacts of water consumption. Surface water, groundwater, transferred water and reclaimed water constituted the physical resource of water supply side, while virtual water flow associated with the trade of five major crops (barley, corn, rice, soy and wheat) and three livestock products (beef, pork and poultry) in agricultural sector (calculated by the trade quantities of products and their virtual water contents). Urban (daily activities and public facilities), industry, environment and agriculture (products growing) were considered in water demand side. As for the traditional allocation of physical water resources, the results showed that agriculture and urban were the two predominant water users (accounting 54% and 28%, respectively), while groundwater and surface water satisfied around 70% water demands of different users (accounting 36% and 34%, respectively). When considered the virtual water trade of eight agricultural products in water allocation procedure, the proportion of agricultural consumption decreased to 45% in total water demand, while the groundwater consumption decreased to 24% in total water supply. Virtual water trade overturned the traditional components of water supplied from different sources for agricultural consumption, and became the largest water source in Beijing. Additionally, it was also found that environmental demand took a similar percentage of water consumption in each water source. Reclaimed water was the main water source for industrial and environmental users. The results suggest that physical water resources would mainly satisfy the consumption

  12. Environmental sustainability control by water resources carrying capacity concept: application significance in Indonesia

    Science.gov (United States)

    Djuwansyah, M. R.

    2018-02-01

    This paper reviews the use of Water Resources carrying capacity concept to control environmental sustainability with the particular note for the case in Indonesia. Carrying capacity is a capability measure of an environment or an area to support human and the other lives as well as their activities in a sustainable manner. Recurrently water-related hazards and environmental problems indicate that the environments are exploited over its carrying capacity. Environmental carrying capacity (ECC) assessment includes Land and Water Carrying Capacity analysis of an area, suggested to always refer to the dimension of the related watershed as an incorporated hydrologic unit on the basis of resources availability estimation. Many countries use this measure to forecast the future sustainability of regional development based on water availability. Direct water Resource Carrying Capacity (WRCC) assessment involves population number determination together with their activities could be supported by available water, whereas indirect WRCC assessment comprises the analysis of supply-demand balance status of water. Water resource limits primarily environmental carrying capacity rather than the land resource since land capability constraints are easier. WRCC is a crucial factor known to control land and water resource utilization, particularly in a growing densely populated area. Even though capability of water resources is relatively perpetual, the utilization pattern of these resources may change by socio-economic and cultural technology level of the users, because of which WRCC should be evaluated periodically to maintain usage sustainability of water resource and environment.

  13. Water-resources programs and hydrologic-information needs, Marion County, Indiana, 1987

    Science.gov (United States)

    Duwelius, R.F.

    1990-01-01

    Water resources are abundant in Marion County, Indiana, and have been developed for public and industrial supply, energy generation, irrigation, and recreation. The largest water withdrawals are from surface water, and the two largest water uses are public supply and cooling water for electrical-generating plants. Water-resources programs in the county are carried out by Federal, State and local agencies to address issues of surface and groundwater availability and quality. The programs of each agency are related to the functions and goals of the agency. Although each agency has specific information needs to fulfill its functions, sometimes these needs overlap, and there are times when the same hydrologic information benefits all. Overlapping information needs and activities create opportunities for interagency coordination and cooperation. Such cooperation could lead to a savings of dollars spent on water-resources programs and could assure an improved understanding of the water resources of the county. Representatives from four agencies-- the Indiana Department of Environmental Management, the Indiana Department of Natural Resources, the Indianapolis Department of Public Works, and the U.S. Geological Survey--met four times in 1987 to describe their own water-resources programs, to identify hydrologic-information needs, and to contact other agencies with related programs. This report presents the interagency findings and is intended to further communication among water resource agencies by identifying current programs and common needs for hydrologic information. Hydrologic information needs identified by the agency representatives include more precise methods for determining the volume of water withdrawals and for determining the volume of industrial and municipal discharges to surface water. Maps of flood-prone areas need to be updated as more of the county is developed. Improved aquifer maps of the inter-till aquifers are needed, and additional observation

  14. Continuous real-time water information: an important Kansas resource

    Science.gov (United States)

    Loving, Brian L.; Putnam, James E.; Turk, Donita M.

    2014-01-01

    Continuous real-time information on streams, lakes, and groundwater is an important Kansas resource that can safeguard lives and property, and ensure adequate water resources for a healthy State economy. The U.S. Geological Survey (USGS) operates approximately 230 water-monitoring stations at Kansas streams, lakes, and groundwater sites. Most of these stations are funded cooperatively in partnerships with local, tribal, State, or other Federal agencies. The USGS real-time water-monitoring network provides long-term, accurate, and objective information that meets the needs of many customers. Whether the customer is a water-management or water-quality agency, an emergency planner, a power or navigational official, a farmer, a canoeist, or a fisherman, all can benefit from the continuous real-time water information gathered by the USGS.

  15. Sustainability in the Food-Water-Ecosystem Nexus: The Role of Land Use and Land Cover Change for Water Resources and Ecosystems in the Kilombero Wetland, Tanzania

    Directory of Open Access Journals (Sweden)

    Constanze Leemhuis

    2017-08-01

    Full Text Available Land Use Land Cover Change (LULCC has a significant impact on water resources and ecosystems in sub-Saharan Africa (SSA. On the basis of three research projects we aim to describe and discuss the potential, uncertainties, synergies and science-policy interfaces of satellite-based integrated research for the Kilombero catchment, comprising one of the major agricultural utilized floodplains in Tanzania. LULCC was quantified at the floodplain and catchment scale analyzing Landsat 5 and Sentinel 2 satellite imagery applying different adapted classification methodologies. LULC maps at the catchment scale serve as spatial input for the distributed, process-based ecohydrological model SWAT (Soil Water Assessment Tool simulating the changes in the spatial and temporal water balance in runoff components caused by LULCC. The results reveal that over the past 26 years LULCC has significantly altered the floodplain and already shows an impact on the ecosystem by degrading the existing wildlife corridors. On the catchment scale the anomalies of the water balance are still marginal, but with the expected structural changes of the catchment there is an urgent need to increase the public awareness and knowledge of decision makers regarding the effect of the relationship between LULCC, water resources and environmental degradation.

  16. Sustainable development of water resources in Pakistan and environmental issues

    International Nuclear Information System (INIS)

    Shakir, A.S.; Bashir, M.A

    2005-01-01

    Irrigation water represents an essential input for sustaining agricultural growth in Pakistan's arid to semi arid climate. While the surface water availability for irrigation has been more or less stagnant for the last three decades, the ground water utilization also appears to have touched the peak in most of the sweet aquifers. In the present state of inaction for the water resources development, the overall water availability is in fact declining due to progressive sedimentation of the existing storages and gradual lowering of water table in fresh ground water areas. The paper discusses major water resources concerns that threaten the sustainability of Pakistan's irrigated agriculture. The paper identifies overall water scarcity, high degree of temporal variability in river flows, lack of balancing storages and declining capacity of existing storages due to natural sedimentation as the serious concerns. Over exploitation of ground water and water quality concerns also seems to be emerging threats for environmentally sustainable irrigated agriculture in this country. The salt-water intrusion and increase in soil and ground water salinity are indicators of over exploitation of ground water for irrigation. The continuous use of poor quality ground water for irrigation is considered as one of the major causes of salinity in the area of irrigated agriculture. Indiscriminate pumping of the marginal and saline ground water can add to the root zone salinity and ultimately reduce the crop yields. The paper presents various management options for development and efficient utilization of water resources for environment friendly sustainable development of irrigated agriculture in Pakistan. These include construction of additional storage, modernization of irrigation system and effective conjunctive use of surface and groundwater resources. The better soil and water management practices, saline agriculture, use of biotechnology and genetic engineering can further increase

  17. Working group report on water resources

    International Nuclear Information System (INIS)

    Baulder, J.

    1991-01-01

    The results and conclusions of a working group held to discuss climate change implications for water resources are presented. The existing water resources and climatological databases necessary to develop models and functional relationships lack integration and coordination. The density and spatial distribution of the existing sampling networks for obtaining necessary climatological data is inadequate, especially in areas of complex terrain, notably higher elevations in the Rocky Mountains. Little information and knowledge is available on potential socio-economic responses that can be anticipated from either increases in climate variability or major change. Recommended research initiatives include the following. Basic functional relationships between climatic events, climatic variability and change, and both surface and groundwater hydrologic processes need to be investigated and improved. Basin-scale and regional-scale climatic models need to be developed, tested, and interfaced with existing global climate models. Public sector attitudes to water management issues and opportunities need to be investigated, and integrated scientific, socio-economic, multidisciplinary, regional databases on climatic change and variability and associated processes need to be developed

  18. Evaluation of the state water-resources research institutes

    Science.gov (United States)

    Ertel, M.O.

    1988-01-01

    Water resources research institutes, as authorized by the Water Resources Research Act of 1984 (Public Law 98-242), are located in each state and in the District of Columbia, Guam, Puerto Rico , and the Virgin Islands. Public Law 98-242 mandated an onsite evaluation of each of these institutes to determine whether ' . . .the quality and relevance of its water resources research and its effectiveness as an institution for planning, conducting, and arranging for research warrant its continued support in the national interest. ' The results of these evaluations, which were conducted between September 1985 and June 1987, are summarized. The evaluation teams found that all 54 institutes are meeting the basic objectives of the authorizing legislation in that they: (1) use the grant funds to support research that addresses water problems of state and regional concern; (2) provide opportunities for training of water scientists through student involvement on research projects; and (3) promote the application of research results through preparation of technical reports and contributions to the technical literature. The differences among institutes relate primarily to degrees of effectiveness, and most often are determined by the financial, political, and geographical contexts in which the institutes function and by the quality of their leadership. (Lantz-PTT)

  19. Differences in Collaboration Patterns across Discipline, Career Stage, and Gender.

    Directory of Open Access Journals (Sweden)

    Xiao Han T Zeng

    2016-11-01

    Full Text Available Collaboration plays an increasingly important role in promoting research productivity and impact. What remains unclear is whether female and male researchers in science, technology, engineering, and mathematical (STEM disciplines differ in their collaboration propensity. Here, we report on an empirical analysis of the complete publication records of 3,980 faculty members in six STEM disciplines at select U.S. research universities. We find that female faculty have significantly fewer distinct co-authors over their careers than males, but that this difference can be fully accounted for by females' lower publication rate and shorter career lengths. Next, we find that female scientists have a lower probability of repeating previous co-authors than males, an intriguing result because prior research shows that teams involving new collaborations produce work with higher impact. Finally, we find evidence for gender segregation in some sub-disciplines in molecular biology, in particular in genomics where we find female faculty to be clearly under-represented.

  20. Simulation of Integrated Qualitative and Quantitative Allocation of Surafce and Underground Water Resources to Drinking Water Demand in Mashhad

    Directory of Open Access Journals (Sweden)

    Mansoureh Atashi

    2015-12-01

    Full Text Available Despite the fact that both surface and groundwater resources inside and outside the city of Mashhad have been already exploited to their maximum capacity and that the large water transfer Doosti Dam Project has been already implemented to transfer a considerable quanity of water to Mashhad, the city will be encountering a daily water shortage of about 1.7 m3/s by 2021. The problem would be even worse if the quality of the water resources are taken into account, in which case, the shortage would start even sooner in 2011 when the water deficit will be about 0.9 m3/s. As a result, it is essential to develop short- and medium-term strategies for secure adequate water supplies for the city's domestic water demand. The present study aims to carry out a qualitative and quantitative modeling of surface and groundwater resources supplying Mashhad domestic water. The qualitative model is based on the quality indices of surface and groundwater resources according to which the resources are classified in the three quality categories of resources with no limitation, those with moderate limitations, and those with high limitations for use as domestic water supplies. The pressure zones are then examined with respect to the potable water demand and supply to be simulated in the MODSIM environment. The model thus developed is verified for the 2012 data based on the measures affecting water resources in the region and various scenarios are finally evaluated for a long-term 30-year period. Results show that the peak hourdaily water shortage in 2042for the zone supplied from no limitation resources will be 38%. However, this value will drop to 28% if limitations due to resource quality are also taken into account. Finally, dilution is suggested as a solution for exploiting the maximum quantitative and qualitative potential of the resources used as domestic water supplies. In this situation, the daily peak hour water shortage will be equal to 31%.

  1. Water resources vulnerability assessment in the Adriatic Sea region: the case of Corfu Island.

    Science.gov (United States)

    Kanakoudis, Vasilis; Tsitsifli, Stavroula; Papadopoulou, Anastasia; Cencur Curk, Barbara; Karleusa, Barbara

    2017-09-01

    Cross-border water resources management and protection is a complicated task to achieve, lacking a common methodological framework. Especially in the Adriatic region, water used for drinking water supply purposes pass from many different countries, turning its management into a hard task to achieve. During the DRINKADRIA project, a common methodological framework has been developed, for efficient and effective cross-border water supply and resources management, taking into consideration different resources types (surface and groundwater) emphasizing in drinking water supply intake. The common methodology for water resources management is based on four pillars: climate characteristics and climate change, water resources availability, quality, and security. The present paper assesses both present and future vulnerability of water resources in the Adriatic region, with special focus on Corfu Island, Greece. The results showed that climate change is expected to impact negatively on water resources availability while at the same time, water demand is expected to increase. Water quality problems will be intensified especially due to land use changes and salt water intrusion. The analysis identified areas where water resources are more vulnerable, allowing decision makers develop management strategies.

  2. Ultimate resources of drinking water in the event of a major pollution crisis: the role of bottled water

    International Nuclear Information System (INIS)

    Collin, J.J.; Comte, J.P.; Daum, J.R.; Lopoukhine, M.; Mesny, M.

    1995-01-01

    In the event of a serious and widespread pollution incident - on the level of the ''Chernobyl cloud'' - most of the drinking water resources in France could be contaminated : surface water immediately, ground water in a few days... or a few months. Therefore on the initiative of the Ministry of the Environment's Director for Defence, a study has been initiated as to what might be qualified as ''final emergency resources''. An inventory and map of protected resources have been prepared. In this context it seems reasonable to show bottled water as a resource meeting the necessary protection criteria. However it seems that these criteria are not all, nor always, relevant for defining a ''ultimate emergency resource'' not contaminated by a major incident. This article outlines a typology of situations and defines the main criteria necessary for bottled water to be able to constitute an ultimate resource

  3. Power-law Growth and Punctuated Equilibrium Dynamics in Water Resources Systems

    Science.gov (United States)

    Parolari, A.; Katul, G. G.; Porporato, A. M.

    2015-12-01

    The global rise in population-driven water scarcity and recent appreciation of strong dynamic coupling between human and natural systems has called for new approaches to predict the future sustainability of regional and global water resources systems. The dynamics of coupled human-water systems are driven by a complex set of social, environmental, and technological factors. Present projections of water resources systems range from a finite carrying capacity regulated by accessible freshwater, or `peak renewable water,' to punctuated evolution with new supplied and improved efficiency gained from technological and social innovation. However, these projections have yet to be quantified from observations or in a comprehensive theoretical framework. Using data on global water withdrawals and storage capacity of regional water supply systems, non-trivial dynamics are identified in water resources systems development over time, including power-law growth and punctuated equilibria. Two models are introduced to explain this behavior: (1) a delay differential equation and (2) a power-law with log-periodic oscillations, both of which rely on past conditions (or system memory) to describe the present rate of growth in the system. In addition, extension of the first model demonstrates how system delays and punctuated equilibria can emerge from coupling between human population growth and associated resource demands. Lastly, anecdotal evidence is used to demonstrate the likelihood of power-law growth in global water use from the agricultural revolution 3000 BC to the present. In a practical sense, the presence of these patterns in models with delayed oscillations suggests that current decision-making related to water resources development results from the historical accumulation of resource use decisions, technological and social changes, and their consequences.

  4. Water, Energy, and Food Nexus: Modeling of Inter-Basin Resources Trading

    Science.gov (United States)

    KIm, T. W.; Kang, D.; Wicaksono, A.; Jeong, G.; Jang, B. J.; Ahn, J.

    2016-12-01

    The water, energy, and food (WEF) nexus is an emerging issue in the concern of fulfilling the human requirements with a lack of available resources. The WEF nexus concept arises to develop a sustainable resources planning and management. In the concept, the three valuable resources (i.e. water, energy, and food) are inevitably interconnected thus it becomes a challenge for researchers to understand the complicated interdependency. A few studies have been committed for interpreting and implementing the WEF nexus using a computer based simulation model. Some of them mentioned that a trade-off is one alternative solution that can be taken to secure the available resources. Taking a concept of inter-basin water transfer, this study attempts to introduce an idea to develop a WEF nexus model for inter-basin resources trading simulation. Using the trading option among regions (e.g., cities, basins, or even countries), the model provides an opportunity to increase overall resources availability without draining local resources. The proposed model adopted the calculation process of an amount of water, energy, and food from a nation-wide model, with additional input and analysis process to simulate the resources trading between regions. The proposed model is applied for a hypothetic test area in South Korea for demonstration purposes. It is anticipated that the developed model can be a decision tool for efficient resources allocation for sustainable resources management. Acknowledgements This study was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of the Korean government.

  5. Enhanced arsenic removal from water by hierarchically porous CeO{sub 2}–ZrO{sub 2} nanospheres: Role of surface- and structure-dependent properties

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weihong; Wang, Jing; Wang, Lei [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Sheng, Guoping [Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China); Liu, Jinhuai [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China); Yu, Hanqing [Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China); Huang, Xing-Jiu, E-mail: xingjiuhuang@iim.ac.cn [Research Center for Biomimetic Functional Materials and Sensing Devices, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031 (China)

    2013-09-15

    Highlights: • The CeO{sub 2}–ZrO{sub 2} hollow nanospheres had strong affinity and selectivity to arsenic. •The adsorbent showed excellent ability to remove arsenic at low concentrations. • The adsorption mechanism was investigated by FTIR and XPS. • The adsorbent showed potential application for drinking water treatment. -- Abstract: Arsenic contaminated natural water is commonly used as drinking water source in some districts of Asia. To meet the increasingly strict drinking water standards, exploration of efficient arsenic removal methods is highly desired. In this study, hierarchically porous CeO{sub 2}–ZrO{sub 2} nanospheres were synthesized, and their suitability as arsenic sorbents was examined. The CeO{sub 2}–ZrO{sub 2} hollow nanospheres showed an adsorption capacity of 27.1 and 9.2 mg g{sup −1} for As(V) and As(III), respectively, at an equilibrium arsenic concentration of 0.01 mg L{sup −1} (the standard for drinking water) under neutral conditions, indicating a high arsenic removal performance of the adsorbent at low arsenic concentrations. Such a great arsenic adsorption capacity was attributed to the high surface hydroxyl density and presence of hierarchically porous network in the hollow nanospheres. The analysis of Fourier transformed infrared spectra and X-ray photoelectron spectroscopy demonstrated that the adsorption of arsenic on the CeO{sub 2}–ZrO{sub 2} nanospheres was completed through the formation of a surface complex by substituting hydroxyl with arsenic species. In addition, the CeO{sub 2}–ZrO{sub 2} nanospheres were able to remove over 97% arsenic in real underground water with initial arsenic concentration of 0.376 mg L{sup −1} to meet the guideline limit of arsenic in drinking water regulated by the World Health Organization without any pre-treatment and/or pH adjustment.

  6. Study on characteristics of water resources in Beijing in recent 15 years

    Science.gov (United States)

    Chuan, L. M.; Zheng, H. G.; Zhao, J. J.; Wang, A. L.; Zhang, X. J.

    2018-02-01

    In order to understand the characteristics of water supply and water usage in Beijing in recent 15 years, a variety of statistical datasets were collected and field investigations were carried out, to analyze the total water resource, the characteristics and trends of water resource supply, utilization and distribution during 2000-2014. The results showed that the total amount of water resources in Beijing is maintained at 1.61~3.95 billion m3, and the surface water accounts for about 1/3, and the groundwater accounts for 2/3. Agricultural water and living water were the dominated consumption in the past 15 years in Beijing, accounted for 35.3% and 38.9% of the total amount, followed by industrial water, which accounting for 17.9% of total water consumption, and water used in environment is relatively small, only accounting for 7.8% of the total amount. This study can provide theoretical support for the establishment and management of water conservation policies and the rational utilization of water resources in Beijing.

  7. Human and climate impacts on global water resources

    NARCIS (Netherlands)

    Wada, Y.|info:eu-repo/dai/nl/341387819

    2013-01-01

    Over past decades, terrestrial water fluxes have been affected by humans at an unprecedented scale and the fingerprints that humans have left on Earth’s water resources are turning up in a diverse range of records. In this thesis, a state-of-the-art global hydrological model (GHM) and global water

  8. Concept for a Wireless Sensor Network to support GIS based water and land resource management in the Aksu-Tarim Basin, Xinjiang, China

    Science.gov (United States)

    Doluschitz, Reiner; Feike, Til

    2013-04-01

    Farmers in the oases along the Aksu-Tarim River suffer from severe seasonal water shortage caused by high fluctuations of river run-off. The uncertainty of water availability makes the planning of crop production and related investments extremely difficult. As a consequence farm management is often sub-optimal, manifesting in low input efficiencies, and the value generated in the agricultural sector being way below its potential. The "Tarim Basin Water Resource Bureau" (TBWRB) was founded in the 1990s. Its major task is to implement a basin wide water resources management plan, which involves fair allocation of water resources among the farmers in the different administrative units along the river. Among others, the lack of reliable and timely information on water quantities and qualities within the major water bodies of the basin hinders the implementation of an effective water management plan. Therefore we introduce the concept of a wireless sensor network (WSN) that provides reliable instantaneous information on the status of all important water resources within the basin. In the first step a GIS including all vital geospatial data, like river courses, channel and reservoir network and capacities, soil and land use map, is built. In the second step a WSN that monitors all important parameters at essential positions throughout the basin needs to be established. Measured parameters comprise meteorological data, river run-off, water levels of reservoirs, groundwater levels, and salinity levels of water resources. All data is centrally collected and processed by the TBWRB. Apart from generating a prompt and complete picture of currently available water resources, the TBWRB can use the system to record actual water allocation, and develop an early warning system for upcoming droughts or floods. Finally an integrated water and land management scheme can be established that allocates resources maximizing the benefits at basin level. Financed by public funding, the data

  9. Payments for Ecosystem Services for watershed water resource allocations

    Science.gov (United States)

    Fu, Yicheng; Zhang, Jian; Zhang, Chunling; Zang, Wenbin; Guo, Wenxian; Qian, Zhan; Liu, Laisheng; Zhao, Jinyong; Feng, Jian

    2018-01-01

    Watershed water resource allocation focuses on concrete aspects of the sustainable management of Ecosystem Services (ES) that are related to water and examines the possibility of implementing Payment for Ecosystem Services (PES) for water ES. PES can be executed to satisfy both economic and environmental objectives and demands. Considering the importance of calculating PES schemes at the social equity and cooperative game (CG) levels, to quantitatively solve multi-objective problems, a water resources allocation model and multi-objective optimization are provided. The model consists of three modules that address the following processes: ① social equity mechanisms used to study water consumer associations, ② an optimal decision-making process based on variable intervals and CG theory, and ③ the use of Shapley values of CGs for profit maximization. The effectiveness of the proposed methodology for realizing sustainable development was examined. First, an optimization model with water allocation objective was developed based on sustainable water resources allocation framework that maximizes the net benefit of water use. Then, to meet water quality requirements, PES cost was estimated using trade-off curves among different pollution emission concentration permissions. Finally, to achieve equity and supply sufficient incentives for water resources protection, CG theory approaches were utilized to reallocate PES benefits. The potential of the developed model was examined by its application to a case study in the Yongding River watershed of China. Approximately 128 Mm3 of water flowed from the upper reach (Shanxi and Hebei Provinces) sections of the Yongding River to the lower reach (Beijing) in 2013. According to the calculated results, Beijing should pay USD6.31 M (¥39.03 M) for water-related ES to Shanxi and Hebei Provinces. The results reveal that the proposed methodology is an available tool that can be used for sustainable development with resolving PES

  10. The nexus between integrated natural resources management and integrated water resources management in southern Africa

    Science.gov (United States)

    Twomlow, Stephen; Love, David; Walker, Sue

    The low productivity of smallholder farming systems and enterprises in the drier areas of the developing world can be attributed mainly to the limited resources of farming households and the application of inappropriate skills and practices that can lead to the degradation of the natural resource base. This lack of development, particularly in southern Africa, is of growing concern from both an agricultural and environmental perspective. To address this lack of progress, two development paradigms that improve land and water productivity have evolved, somewhat independently, from different scientific constituencies. One championed by the International Agricultural Research constituency is Integrated Natural Resource Management (INRM), whilst the second championed predominantly by Environmental and Civil Engineering constituencies is Integrated Water Resources Management (IWRM). As a result of similar objectives of working towards the millennium development goals of improved food security and environmental sustainability, there exists a nexus between the constituencies of the two paradigms, particularly in terms of appreciating the lessons learned. In this paper lessons are drawn from past INRM research that may have particular relevance to IWRM scientists as they re-direct their focus from blue water issues to green water issues, and vice-versa. Case studies are drawn from the management of water quality for irrigation, green water productivity and a convergence of INRM and IWRM in the management of gold panning in southern Zimbabwe. One point that is abundantly clear from both constituencies is that ‘one-size-fits-all’ or silver bullet solutions that are generally applicable for the enhancement of blue water management/formal irrigation simply do not exist for the smallholder rainfed systems.

  11. Emergence of Integrated Water Resources Management : Measuring implementation in Vietnam

    NARCIS (Netherlands)

    Akkerman, M.; Khanh, N.T.; Witter, M.; Rutten, M.M.

    2015-01-01

    Recently, the changes in laws and regulations, such as the revised Law on Water Resources in 2012, have sought to provide a legal framework for the internationally recognized practices of Integrated Water Resources Management (IWRM) in Vietnam. With IWRM being a novel approach for Vietnam, it would

  12. A Diagnostic Assessment of Evolutionary Multiobjective Optimization for Water Resources Systems

    Science.gov (United States)

    Reed, P.; Hadka, D.; Herman, J.; Kasprzyk, J.; Kollat, J.

    2012-04-01

    This study contributes a rigorous diagnostic assessment of state-of-the-art multiobjective evolutionary algorithms (MOEAs) and highlights key advances that the water resources field can exploit to better discover the critical tradeoffs constraining our systems. This study provides the most comprehensive diagnostic assessment of MOEAs for water resources to date, exploiting more than 100,000 MOEA runs and trillions of design evaluations. The diagnostic assessment measures the effectiveness, efficiency, reliability, and controllability of ten benchmark MOEAs for a representative suite of water resources applications addressing rainfall-runoff calibration, long-term groundwater monitoring (LTM), and risk-based water supply portfolio planning. The suite of problems encompasses a range of challenging problem properties including (1) many-objective formulations with 4 or more objectives, (2) multi-modality (or false optima), (3) nonlinearity, (4) discreteness, (5) severe constraints, (6) stochastic objectives, and (7) non-separability (also called epistasis). The applications are representative of the dominant problem classes that have shaped the history of MOEAs in water resources and that will be dominant foci in the future. Recommendations are provided for which modern MOEAs should serve as tools and benchmarks in the future water resources literature.

  13. Oil for health in sub-Saharan Africa: health systems in a 'resource curse' environment.

    Science.gov (United States)

    Calain, Philippe

    2008-10-21

    In a restricted sense, the resource curse is a theory that explains the inverse relationship classically seen between dependence on natural resources and economic growth. It defines a peculiar economic and political environment, epitomized by oil extraction in sub-Saharan Africa. Based on secondary research and illustrations from four oil-rich geographical areas (the Niger Delta region of Nigeria, Angola, southern Chad, Southern Sudan), I propose a framework for analysing the effects of the resource curse on the structure of health systems at sub-national levels. Qualitative attributes are emphasised. The role of the corporate sector, the influence of conflicts, and the value of classical mitigation measures (such as health impact assessments) are further examined. Health systems in a resource curse environment are classically fractured into tripartite components, including governmental health agencies, non-profit non-governmental organisations, and the corporate extractive sector. The three components entertain a range of contractual relationships generally based on operational considerations which are withdrawn from social or community values. Characterisation of agencies in this system should also include: values, operating principles, legitimacy and operational spaces. From this approach, it appears that community health is at the same time marginalized and instrumentalized toward economic and corporate interests in resource curse settings. From a public health point of view, the resource curse represents a fundamental failure of dominant development theories, rather than a delay in creating the proper economy and governance environment for social progress. The scope of research on the resource curse should be broadened to include more accurate or comprehensive indicators of destitution (including health components) and more open perspectives on causal mechanisms.

  14. Oil for health in sub-Saharan Africa: health systems in a 'resource curse' environment

    Directory of Open Access Journals (Sweden)

    Calain Philippe

    2008-10-01

    Full Text Available Abstract Background In a restricted sense, the resource curse is a theory that explains the inverse relationship classically seen between dependence on natural resources and economic growth. It defines a peculiar economic and political environment, epitomised by oil extraction in sub-Saharan Africa. Methods Based on secondary research and illustrations from four oil-rich geographical areas (the Niger Delta region of Nigeria, Angola, southern Chad, Southern Sudan, I propose a framework for analysing the effects of the resource curse on the structure of health systems at sub-national levels. Qualitative attributes are emphasised. The role of the corporate sector, the influence of conflicts, and the value of classical mitigation measures (such as health impact assessments are further examined. Results Health systems in a resource curse environment are classically fractured into tripartite components, including governmental health agencies, non-profit non-governmental organisations, and the corporate extractive sector. The three components entertain a range of contractual relationships generally based on operational considerations which are withdrawn from social or community values. Characterisation of agencies in this system should also include: values, operating principles, legitimacy and operational spaces. From this approach, it appears that community health is at the same time marginalised and instrumentalised toward economic and corporate interests in resource curse settings. Conclusion From a public health point of view, the resource curse represents a fundamental failure of dominant development theories, rather than a delay in creating the proper economy and governance environment for social progress. The scope of research on the resource curse should be broadened to include more accurate or comprehensive indicators of destitution (including health components and more open perspectives on causal mechanisms.

  15. Addressing water resources risk in England and Wales: Long term infrastructure planning in a private, regulated industry

    Science.gov (United States)

    Turner, Sean

    2015-04-01

    Water resources planning is a complex and challenging discipline in which decision makers must deal with conflicting objectives, contested socio-economic values and vast uncertainties, including long term hydrological variability. The task is arguably more demanding in England and Wales, where private water companies must adhere to a rigid set of regulatory planning guidelines in order to justify new infrastructural investments. These guidelines prescribe a "capacity expansion" approach to planning: ensure that a deterministic measure of supply, known as "Deployable Output," meets projected demand over a 25-year planning horizon. Deployable Output is derived using a method akin to yield analysis and is commensurate with the maximum rate of supply that a water resources system can sustain without incurring failure under a simulation of historical recorded hydrological conditions. This study examines whether Deployable Output analysis is fit to serve an industry in which: water companies are seeking to invest in cross-company water transfer schemes to deal with loss of water availability brought about by European environmental legislation and an increase in demand driven by population growth; water companies are expected address potential climate change impacts through their planning activities; and regulators wish to benchmark water resource system performance across the separate companies. Of particular interest, then, is the adequacy of Deployable Output analysis as a means to measuring current and future water shortage risk and comparing across supply systems. Data from the UK National River Flow Archive are used to develop a series of hypothetical reservoir systems in two hydrologically contrasting regions -- northwest England/north Wales and Southeast England. The systems are varied by adjusting the draft ratio (ratio of target annual demand to mean annual inflow), the inflow diversity (covariance of streamflow sequences supplying the system), the strength of

  16. The development of water services and their interaction with water resources in European and Brazilian cities

    Science.gov (United States)

    Barraqué, B.; Formiga Johnsson, R. M.; Nogueira de Paiva Britto, A. L.

    2008-08-01

    The extension and complexity of large cities creates "urban water" and a related issue: public water services, including public water supply, sewage collection and treatment, and storm water control, had previously become a policy sector separate from water resource allocation issues thanks to water transport and treatment technologies. Large metropolitan areas today cannot take nature for granted anymore, and they need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water services in European and Brazilian metropolitan areas, placing the technological developments in their geographic, socio-economic and political contexts. Our frame is to follow the successive contributions of civil engineering, sanitary engineering, and environmental engineering: the "quantity of water" and civil engineering paradigm allowed to mobilise water in and out of the city, and up the hills or the floors; in the "water quality" and chemical/sanitary engineering paradigm, water treatment gave more freedom to cities to take water from rivers closer to them, but also to reduce sewer discharge impacts; lastly, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  17. Advances and limitations of the integrated water resources management in Panama

    International Nuclear Information System (INIS)

    Escalante Henriquez, Luis Carlos; Charpentier, Claudia; Diez Hernandez, Juan Manuel

    2011-01-01

    Panama competitiveness depends largely on quality and abundance of natural resources, which are being progressively degraded by a disordered urban and economic development. The availability of water in adequate quantity and quality poses serious problems in some areas of the country. This affects both the quality of life of the population and key sectors such as agriculture, industry, hydro and tourism; and stimulates social conflicts related to access, use and disposal of used water. To prevent the degradation of water resources has been promoted a holistic, known as integrated in water resources management (IWRM) strategy. From the Summit of Mar del Plata, Argentina (1977) until the 5th Forum world of the water in Istanbul in Turkey (2009), international meetings that have contributed to defining the principles and recommendations for the IWRM have been held. This work presents a methodological model of IWRM designed for Panama. Essentially consists of a perfected in how to manage water, requiring changes in the political, social, economic and administrative systems of water resource management approach

  18. Integrated water resources management (IWRM) approach in water governance in Lao PDR. Cases of hydropower and irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Jusi, S.

    2013-06-01

    Water resources are essential for socio-economic development, enabling, for example, hydropower and irrigation. Water resources management and development are expected to become more complex and challenging and to involve new uncertainties as water development increases and accelerates in different water use sectors and is coupled with increasing population, urbanisation, and climate change. Hence, water resources need to be managed in more integrated and sustainable way, both in Lao PDR and in the whole Mekong Basin area. Integrated Water Resources Management (IWRM) has become a universal paradigm of enhancing and promoting sustainable and equal water resources management and use. However, integrating water functions is a very complex task as it involves many actors with different interests. This research analyses the application of the IWRM approach and the related principles of integration, decentralisation, and participation in the development and management of water resources in Laotian water regime at the water use sectors of hydropower and irrigation. A case study approach was used for the research and for the four appended articles in order to examine hydropower and irrigation sectors, institutional structures, and processes of institutional change - Integrated Water Resources Management (IWRM) at constitutional, organisational, and operational levels. The constitutional level refers to water policy and law, organisational to water resource management, and operational to water use. The Management and Transition Framework (MTF) and one of its components, Institutional Analysis and Development (IAD) framework, have been used for the research to explore processes, institutions, and actors related to water governance reforms including the adoption of the IWRM paradigm, and to increase understanding of the strengths and weaknesses related to different institutional contexts and levels in Laotian water management. Through Action Situations, IAD and MTF have

  19. Generation of SEEAW asset accounts based on water resources management models

    Science.gov (United States)

    Pedro-Monzonís, María; Solera, Abel; Andreu, Joaquín

    2015-04-01

    One of the main challenges in the XXI century is related with the sustainable use of water. This is due to the fact that water is an essential element for the life of all who inhabit our planet. In many cases, the lack of economic valuation of water resources causes an inefficient water use. In this regard, society expects of policymakers and stakeholders maximise the profit produced per unit of natural resources. Water planning and the Integrated Water Resources Management (IWRM) represent the best way to achieve this goal. The System of Environmental-Economic Accounting for Water (SEEAW) is displayed as a tool for water allocation which enables the building of water balances in a river basin. The main concern of the SEEAW is to provide a standard approach which allows the policymakers to compare results between different territories. But building water accounts is a complex task due to the difficulty of the collection of the required data. Due to the difficulty of gauging the components of the hydrological cycle, the use of simulation models has become an essential tool extensively employed in last decades. The target of this paper is to present the building up of a database that enables the combined use of hydrological models and water resources models developed with AQUATOOL DSSS to fill in the SEEAW tables. This research is framed within the Water Accounting in a Multi-Catchment District (WAMCD) project, financed by the European Union. Its main goal is the development of water accounts in the Mediterranean Andalusian River Basin District, in Spain. This research pretends to contribute to the objectives of the "Blueprint to safeguard Europe's water resources". It is noteworthy that, in Spain, a large part of these methodological decisions are included in the Spanish Guideline of Water Planning with normative status guaranteeing consistency and comparability of the results.

  20. Philippines -- country wide water development projects and funds needed. Water crisis in Manila coincide with parliamentarians seminar on water resources and population.

    Science.gov (United States)

    1997-01-01

    The Philippines' Clean Water Act was developed to protect the country's remaining water resources by institutionalizing mechanisms to monitor, regulate, and control human and industrial activities which contribute to the ongoing environmental degradation of marine and freshwater resources. Approximately 70 participants attended the Philippine Parliamentarians' Conference on Water Resources, Population and Development held December 3-4, 1997, at the Sulo Hotel in Quezon City. Participants included the legislative staff of the members of the House of Representatives and the Senate, Committee Secretaries of the House and Senate, and government and nongovernmental organization officials. Following the opening programs, panel discussions were held on the role of nongovernmental organizations as legitimate monitors of governments' activities; the need to evaluate water sector assessment methods, water policy and strategy, and water legislation standards; and waste water treatment and sewerage systems used in households and industries. The following issues were raised during the conference's open forum: the need to implement new methods in water resource management; the handling of water for both economic and social purposes; the need to implement guidelines, policies, and pricing mechanisms on bottled water; regulating the construction of recreational facilities such as golf courses; and transferring watershed rehabilitation from the Department of Environment and Natural Resources to local water districts. A declaration was prepared and signed by the participants at the close of the conference.

  1. Dissolved nitrogen in drinking water resources of farming ...

    African Journals Online (AJOL)

    Administrator

    of the total drinking water needs. Dry season vegetable farmers also prepare their nur- sery beds close to streams and use surface water for irri- gation. The proximity of nurseries to streams results in clearing of stream bank vegetation to accommodate nur- series. Pollution of stream water and depletion of their resources ...

  2. Managing Senegalese water resources: Definition and relative importance of information needs

    Energy Technology Data Exchange (ETDEWEB)

    Engi, D.

    1998-09-01

    This report provides an overview of the results of the Vital Issues process as implemented for the Senegal Water Resources Management Initiative, a collaborative effort between the Senegalese Ministry of Water Resources and Sandia National Laboratories. This Initiative is being developed to assist in the development of an efficient and sustainable water resources management system for Senegal. The Vital Issues process was used to provide information for the development of a proposal that will recommend actions to address the key management issues and establish a state-of-the-art decision support system (DSS) for managing Senegal`s water resources. Three Vital Issues panel meetings were convened to (1) develop a goal statement and criteria for identifying and ranking the issues vital to water resources management in Senegal; (2) define and rank the issues, and (3) identify and prioritize a preliminary list of information needed to address the vital issues. The selection of panelists from the four basic institutional perspectives (government, industry, academe, and citizens` interest groups) ensured a high level of stakeholder representation on the panels.

  3. Interventions and Interactions: Understanding Coupled Human-Water Dynamics for Improved Water Resources Management in the Himalayas

    Science.gov (United States)

    Crootof, A.

    2017-12-01

    Understanding coupled human-water dynamics offers valuable insights to address fundamental water resources challenges posed by environmental change. With hydropower reshaping human-water interactions in mountain river basins, there is a need for a socio-hydrology framework—which examines two-way feedback loops between human and water systems—to more effectively manage water resources. This paper explores the cross-scalar interactions and feedback loops between human and water systems in river basins affected by run-of-the-river hydropower and highlights the utility of a socio-hydrology perspectives to enhance water management in the face of environmental change. In the Himalayas, the rapid expansion of run-of-the-river hydropower—which diverts streamflow for energy generation—is reconfiguring the availability, location, and timing of water resources. This technological intervention in the river basin not only alters hydrologic dyanmics but also shapes social outcomes. Using hydropower development in the highlands of Uttarakhand, India as a case study, I first illustrate how run-of-the-river projects transform human-water dynamics by reshaping the social and physical landscape of a river basin. Second, I emphasize how examining cross-scalar feedbacks among structural dynamics, social outcomes, and values and norms in this coupled human-water system can inform water management. Third, I present hydrological and social literature, raised separately, to indicate collaborative research needs and knowledge gaps for coupled human-water systems affected by run-of-the-river hydropower. The results underscore the need to understand coupled human-water dynamics to improve water resources management in the face of environmental change.

  4. Assessing water resources vulnerability and resilience of southern Taiwan to climate change

    Directory of Open Access Journals (Sweden)

    Ming-Hsu Li

    2017-01-01

    Full Text Available Water resources management has become more challenging in Taiwan due to rapid socio-economic development and the complications of climate change. This study developed a systematic procedure for assessing water resources vulnerability and resilience with an integrated tool, TaiWAP, including climate change scenarios, a weather generator, a hydrological model, and system dynamic models. Five assessment indicators, including two for vulnerability, two for resilience, and one for availability were used to quantify changes in water resources and improvements after implementing adaption measures. Each indicator was presented with 3 grades, namely low, medium, and high. Water resources vulnerability and resilience for Tainan City in southern Taiwan were evaluated. Insufficient water supply facilities capacity is the major weakness causing low resilience. Water resources allocation flexibility is limited by substantial agricultural water demands. A total of 9 adaption measures and combinations of measures were assessed. Desalination plant implementation can steadily supply public water to lessen system failure duration. Although agricultural water conservation and fallow land can greatly reduce water demand, fallow compensation is a potential cost. When food security is considered, reducing irrigation leakage will be a better adaption measure to both water and agriculture stakeholders. Both agriculture water conservation and cropping systems adjustment have cross-spatial flexibilities. The combination of desalination, reservoirs and public water conservation provide the most beneficial effects in reducing climate change impact.

  5. Advanced Water Purification System for In Situ Resource Utilization

    Science.gov (United States)

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.

    2013-01-01

    One of NASA's goals is to enable longterm human presence in space, without the need for continuous replenishment of consumables from Earth. In situ resource utilization (ISRU) is the use of extraterrestrial resources to support activities such as human life-support, material fabrication and repair, and radiation shielding. Potential sources of ISRU resources include lunar and Martian regolith, and Martian atmosphere. Water and byproducts (including hydrochloric and hydrofluoric acids) can be produced from lunar regolith via a high-temperature hydrogen reduction reaction and passing the produced gas through a condenser. center dot Due to the high solubility of HCI and HF in water, these byproducts are expected to be present in the product stream (up to 20,000 ppm) and must be removed (less than 10 ppm) prior to water consumption or electrolysis.

  6. Development of a method for the study of H{sub 2} gas emission in sealed compartments containing canister copper immersed in O{sub 2}-free water

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, Andreas; Chukharkina, Alexandra; Eriksson, Lena; Hallbeck, Bjoern; Hallbeck, Lotta; Johansson, Jessica; Johansson, Linda; Pedersen, Karsten [Microbial Analytics Sweden AB, Moelnlycke (Sweden)

    2013-06-15

    Current models of copper corrosion indicate that copper is not subject to corrosion by water in itself, but that additional components, such as O{sub 2}, chloride or sulphide are needed to initiate a corrosive process. Of late however, a number of reports have suggested that copper may be susceptible to water-induced corrosion in the absence of external constituents affecting the process. The process has been proposed to rely the auto-ionization driven presence of the hydroxide ions in pure water, and to result in the development of atomic hydrogen (H), with subsequent release of H{sub 2} gas. A suggested equilibrium is reached at a partial pressure of H{sub 2} of about 1 mbar (0.1 kPa) in 73 deg C, and the corrosion reaction is proposed to be rate-limited by the supply of hydroxide ions from the water, a process being slower than proposed formation of water from a H{sub 2}-O{sub 2} reaction. In consequence, the presence of O{sub 2} in the system would result in no detectable release of H{sub 2} until all O{sub 2} was consumed, while the absence of O{sub 2} would lead to water-driven corrosion of copper proceeding until the H{sub 2} equilibrium is reached, at a partial H{sub 2} pressure of about 1 mbar. The proposed mechanism presents a novel aspect on copper corrosion processes. By extension, the suggested corrosion process may have implications for proposed strategies for long-term storage of spent nuclear fuel waste (SNF), which in part rely on the long-term (>105 years) integrity of copper canisters stored in anoxic water inundated environments (SKB 2010)

  7. Water Resources of Israel: Trackrecord of the Development

    Directory of Open Access Journals (Sweden)

    Nicolai S. Orlovsky

    2018-01-01

    Full Text Available Israel is a country in the Near East consisting for 95% of the arid regions in which 60% of the territory are covered by the Negev Desert. Therefore, the water resources are scant here and formed mostly by atmospheric precipitations. In the period from 1989 to 2005 the average precipitations were 6 billion cu. m, of which 60–70% were evaporated soon after rainfalls, at least 5% run down by rivers into the sea (mostly in winter and the remaining 25% of precipitations infiltrated into soil from where the greater part of water got into the sea with ground waters. In Israel there are two groups of water resources: surface and underground. Israel is not rich in surface waters. The natural reservoir of surface fresh water is the Kinneret Lake in the northeast of the country. It gets water from the Jordan River and its tributaries. The average annual amount of available water of this lake is around 370 million cu. m, which accounts for one-third of the country’s water needs and still higher share of the drinking water needs. The greater part of fresh waters (37% of water supply of Israel as of 2011 in this country is supplied from ground water sources. Owing to insufficiency of available natural resources, unevenness of precipitations by years and seasons and with the growth of the population and economic development the issues of provision with the quality drinking water of the population as well as agriculture and industry, rehabilitation of natural environment cause permanently growing concern. In view of the water shortage untiring efforts have been taken to improve the irrigation efficiency and to reduce water use by improving the efficacy of irrigation techniques and application of advanced system management approaches. Among the water saving technologies applied in Israel there are: drop irrigation, advanced filtration, up to date methods of water leak detection from networks, rainwater collection and processing systems. At the same time

  8. NH{sub 4}-doped anodic WO{sub 3} prepared through anodization and subsequent NH{sub 4}OH treatment for water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-Wook; Kim, Sunkyu; Seong, Mijeong; Yoo, Hyeonseok; Choi, Jinsub, E-mail: jinsub@inha.ac.kr

    2015-01-01

    Highlights: • NN{sub 4}-doped WO{sub 3} was successfully fabricated by a wet-based method using ammonium hydroxide (NH{sub 4}OH). • (NH{sub 4}){sub 10}W{sub 12}O{sub 41} phase was formed during the NH{sub 4}OH treatment. • Over-doped NH{sub 4} in WO{sub 3} led to reduced photo-electrochemical performance for OER. • The optimized surface was achieved by thermal treatment of anodic WO{sub 3} with 2 g of NH{sub 4}OH solution. - Abstract: Tungsten trioxide (WO{sub 3}) prepared by anodization of a W foil was doped with NH{sub 4} through NH{sub 4}OH treatment at 450 °C. Since aqueous NH{sub 4}OH was used during doping instead of NH{sub 3} gas, the treatment step does not require complicated annealing facilities. Moreover, the state of doped N is a form of NH{sub 3}-W instead of W{sub 2}N, which lowers the bandgap but increases photocorrosion. We found that incorporation of NH{sub 4} into WO{sub 3} leads to reduction of the bandgap from 2.9 eV to 2.2 eV, regardless of the amount of NH{sub 4}OH treatment, lowering the onset potential and increasing the current density at fixed potential for oxygen evolution reaction under illumination. Scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy were employed to investigate the surface morphologies, crystallinities of tungsten oxides and existence of NH{sub 4} doping, respectively. The bandgap energy was determined by UV–Vis spectroscopy to measure the transmittance and refraction. The water splitting performance of each sample was measured by electrochemical linear sweep voltammetry in a 3-electrode configuration under illumination.

  9. System dynamics model of Suzhou water resources carrying capacity and its application

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2010-06-01

    Full Text Available A model of Suzhou water resources carrying capacity (WRCC was set up using the method of system dynamics (SD. In the model, three different water resources utilization programs were adopted: (1 continuity of existing water utilization, (2 water conservation/saving, and (3 water exploitation. The dynamic variation of the Suzhou WRCC was simulated with the supply-decided principle for the time period of 2001 to 2030, and the results were characterized based on socio-economic factors. The corresponding Suzhou WRCC values for several target years were calculated by the model. Based on these results, proper ways to improve the Suzhou WRCC are proposed. The model also produced an optimized plan, which can provide a scientific basis for the sustainable utilization of Suzhou water resources and for the coordinated development of the society, economy, and water resources.

  10. Managing Nicaraguan Water Resources Definition and Relative Importance of Information Needs

    Energy Technology Data Exchange (ETDEWEB)

    Engi, D.; Guillen, S.M.; Vammen, K.

    1999-01-01

    This report provides an overview of the results of the Vital the Nicaraguan Water Resources Management Initiative, Issues process as implemented for a collaborative effort between the Nicaraguan Ministry of Environment and Natural Resources and Sandia National Laboratories. This initiative is being developed to assist in the development of an efficient and sustainable water resources management system for Nicamgua. The Vital Issues process was used to provide information for developing a project that will develop and implement an advanced information system for managing Nicaragua's water resources. Three Vital Issues panel meetings were convened to 1) develop a mission statement and evaluation criteria for identifying and ranking the issues vital to water resources management in Nicaragua 2) define and rank the vital issues; and 3) identify a preliminary list of information needed to address the vital issues. The selection of panelists from the four basic institutional perspectives- government, industiy, academe, and citizens' groups (through nongovernmental organizations (NGOs))-ensured a high level of stakeholder representation on the panels. The already existing need for a water resource management information system has been magnified in the aftemnath of Hurricane Mitch. This information system would be beneficial for an early warning system in emergencies, and the modeling and simulation capabilities of the system would allow for advanced planning. Additionally, the outreach program will provide education to help Nicaraguan improve their water hygiene practices.

  11. The effect of O{sub 2} content on the corrosion behaviour of X65 and 5Cr in water-containing supercritical CO{sub 2} environments

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Yong, E-mail: leo.huayong@gmail.com; Barker, Richard; Neville, Anne

    2015-11-30

    Highlights: • Corrosion behaviour was evaluated in water-containing SC-CO{sub 2} with different O{sub 2} levels. • Corrosion was observed when no free water was present. • Localized corrosion was a fundamental consideration in water-containing CO{sub 2} systems. • O{sub 2} content plays a key role in influencing the critical water content. - Abstract: The general and localized corrosion behaviour of X65 carbon steel and 5Cr low alloy steel were evaluated in a water-saturated supercritical CO{sub 2} environment in the presence of varying concentrations of O{sub 2}. Experiments were performed at a temperature of 35 °C and a pressure of 80 bar to simulate the conditions encountered during CO{sub 2} transport and injection. Results indicated that increasing O{sub 2} concentration from 0 to 1000 ppm caused a progressive reduction in the general corrosion rate, but served to increase the extent of localized corrosion observed on both materials. Pitting (or localized attack) rates for X65 ranged between 0.9 and 1.7 mm/year, while for 5Cr rose from 0.3 to 1.4 mm/year as O{sub 2} concentration was increased from 0 to 1000 ppm. General corrosion rates were over an order of magnitude lower than the pitting rates measured. Increasing O{sub 2} content in the presence of X65 and 5Cr suppressed the growth of iron carbonate (FeCO{sub 3}) on the steel surface and resulted in the formation of a corrosion product consisting mainly of iron oxide (Fe{sub 2}O{sub 3}). 5Cr was shown to offer more resistance to pitting corrosion in comparison to X65 steel over the conditions tested. At concentrations of O{sub 2} above 500 ppm 5Cr produced general corrosion rates less than 0.04 mm/year, which were half that recorded for X65. The improved corrosion resistance of 5Cr was believed to be at least partially attributed to the formation of a Cr-rich film on the steel surface which was shown using X-ray photoelectron spectroscopy to contain chromium oxide (Cr{sub 2}O{sub 3}) and chromium

  12. Resources for National Water Savings for Outdoor Water Use

    Energy Technology Data Exchange (ETDEWEB)

    Melody, Moya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Hannah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dunham, Camilla [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-05-01

    In support of efforts by the U.S. Environmental Agency's (EPA's) WaterSense program to develop a spreadsheet model for calculating the national water and financial savings attributable to WaterSense certification and labeling of weather-based irrigation controllers, Lawrence Berkeley National Laboratory reviewed reports, technical data, and other information related to outdoor water use and irrigation controllers. In this document we categorize and describe the reviewed references, highlighting pertinent data. We relied on these references when developing model parameters and calculating controller savings. We grouped resources into three major categories: landscapes (section 1); irrigation devices (section 2); and analytical and modeling efforts (section 3). Each category is subdivided further as described in its section. References are listed in order of date of publication, most recent first.

  13. Understanding and managing the food-energy-water nexus - opportunities for water resources research

    Science.gov (United States)

    Cai, Ximing; Wallington, Kevin; Shafiee-Jood, Majid; Marston, Landon

    2018-01-01

    Studies on the food, energy, and water (FEW) nexus lay a shared foundation for researchers, policy makers, practitioners, and stakeholders to understand and manage linked production, utilization, and security of FEW systems. The FEW nexus paradigm provides the water community specific channels to move forward in interdisciplinary research where integrated water resources management (IWRM) has fallen short. Here, we help water researchers identify, articulate, utilize, and extend our disciplinary strengths within the broader FEW communities, while informing scientists in the food and energy domains about our unique skillset. This paper explores the relevance of existing and ongoing scholarship within the water community, as well as current research needs, for understanding FEW processes and systems and implementing FEW solutions through innovations in technologies, infrastructures, and policies. Following the historical efforts in IWRM, hydrologists, water resources engineers, economists, and policy analysts are provided opportunities for interdisciplinary studies among themselves and in collaboration with energy and food communities, united by a common path to achieve sustainability development goals.

  14. Effects of virtual water flow on regional water resources stress: A case study of grain in China.

    Science.gov (United States)

    Sun, Shikun; Wang, Yubao; Engel, Bernie A; Wu, Pute

    2016-04-15

    Scarcity of water resources is one of the major challenges in the world, particularly for the main water consumer, agriculture. Virtual water flow (VWF) promotes water redistribution geographically and provides a new solution for resolving regional water shortage and improving water use efficiency in the world. Virtual water transfer among regions will have a significant influence on the water systems in both grain export and import regions. In order to assess the impacts of VWF related grain transfer on regional water resources conditions, the study takes mainland China as study area for a comprehensive evaluation of virtual water flow on regional water resources stress. Results show that Northeast China and Huang-Huai-Hai region are the major grain production regions as well as the major virtual water export regions. National water savings related to grain VWF was about 58Gm(3), with 48Gm(3) blue water and 10Gm(3) green water. VWF changes the original water distribution and has a significant effect on water resources in both virtual water import and export regions. Grain VWF significantly increased water stress in grain export regions and alleviated water stress in grain import regions. Water stress index (WSI) of Heilongjiang and Inner Mongolia has been increased by 138% and 129% due to grain export. Stress from water shortages is generally severe in export regions, and issues with the sustainability of grain production and VWF pattern are worthy of further exploration. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Research of water resources allocation of South-to-North Water Diversion East Route Project in Jiangsu Province ,Eastern China

    Science.gov (United States)

    Zeng, C.

    2015-12-01

    Optimized allocation of water resources is the important means of solving regional water shortage and can improve the utilization of water resources. Water resources allocation in the large-scale water diversion project area is the current research focus. This research takes the east route of the South-to-North Water Transfer Project in Jiangsu province as the research area, based on the hydrological model, agricultural irrigation quota model, and water project scheduling model, a water resources allocation model was constructed. The research carried on generalized regional water supply network, simulated the water supply, water demand and water deficit in agriculture, industry, life, ecology and lock under the status quo and planning engineering conditions. According to the results, the east route of the South-to-North Water Transfer Project is helpful to improve regional water shortage situation. The results showed that pump output increase by 2.8 billion cubic meters of water. On the conditions of P = 95%, 75% and 50%, compared with the benchmark year, water demand increases slightly due to the need of social and economic development in planning years, and water supply increased significantly because of new diversion ability. Water deficit are greatly reduced by 74.9% especially in the commonly drought condition because of the new project operation and optimized allocation of water resources.

  16. Water on Mars - Volatile history and resource availability

    Science.gov (United States)

    Jakosky, Bruce M.

    1990-01-01

    An attempt is made to define the available deposits of water in the near-surface region of Mars which will be available to human exploration missions. The Martian seasonal water cycle is reviewed, and geochemical and geological constraints on the availability of water are examined. It is concluded that the only sure source of water in amounts significant as a resource are in the polar ice deposits.

  17. Is alpha-V<sub>2sub>O>5sub> a cathode material for Mg insertion batteries?

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Niya; Wang, Hao; Proffit, Danielle L.; Lipson, Albert L.; Key, Baris; Liu, Miao; Feng, Zhenxing; Fister, Timothy T.; Ren, Yang; Sun, Cheng-Jun; Vaughey, John T.; Fenter, Paul A.; Persson, Kristin A.; Burrell, Anthony K.

    2016-08-01

    When designing a high energy density battery, one of the critical features is a high voltage, high capacity cathode material. In the development of Mg batteries, oxide cathodes that can reversibly intercalate Mg, while at the same time being compatible with an electrolyte that can deposit Mg reversibly are rare. Herein, we report the compatibility of Mg anodes with a-V<sub>2sub>O>5sub> by employing magnesium bis(trifluoromethane sulfonyl)imide in diglyme electrolytes at very low water levels. Electrolytes that contain a high water level do not reversibly deposit Mg, but interestingly these electrolytes appear to enable much higher capacities for an a-V<sub>2sub>O>5sub> cathode. Solid state NMR indicates that the major source of the higher capacity in high water content electrolytes originates from reversible proton insertion. In contrast, we found that lowering the water level of the magnesium bis(trifluoromethane sulfonyl)imide in diglyme electrolyte is critical to achieve reversible Mg deposition and direct evidence for reversible Mg intercalation is shown. Findings we report here elucidate the role of proton intercalation in water-containing electrolytes and clarify numerous conflicting reports of Mg insertion into a-V<sub>2sub>O>5sub>.

  18. Sediment, water pollution indicators for heavy metals

    International Nuclear Information System (INIS)

    Cabaleiro, S.; Horn, A.

    2010-01-01

    The complexity of an aquatic system requires consideration of its dynamics: spatial and temporal variations of physical, chemical and biological. Heavy metals have peculiar behavior in the aquatic system and may not be available in the waters, but on sediments.The sub-basin of the Sarandi stream is responsible for the contamination of Pampulha Lake. The Instituto Mineiro das Águas – IGAM - uses tool for monitoring the quality of surface water for developing strategies for conservation, restoration and rational use of water resources. So through the indices: IQA ( Indice de qualidade de águas) Index of water quality, and TC- toxic contamination, reduces conflicts, implements the disciplining of the environmental economy.This study determined the monitoring of sediment and water of Sarandi Stream, so in the samples collected during dry and rainy seasons (2007- 2008) were analyzed heavy metals (Cu, Cd, Cr, Co, Ni, Zn, Pb) and physical-chemical factors (conductivity, solids dissolved, temperature, turbidity). This allowed the determination of Hackanson factors of contamination and Muller Index geoaccumulation, indicating very high contamination in sediments regarding the elements Cr, Cu, and Cd, and high contamination for Pb, Zn, and Mn. The comparison with the indices of water quality- IQA (IGAM - 2006, 2007 and 2008), combined with exploratory data analysis and graphs of correlation between the variables indicated favorable conditions for metals contamination on water and sediment for these metals, besides allowing the identification of its source

  19. Smart Markets for Water Resources

    Science.gov (United States)

    Raffensperger, John

    2017-04-01

    Commercial water users often want to trade water, but their trades can hurt other users and the environment. So government has to check every transaction. This checking process is slow and expensive. That's why "free market" water trading doesn't work, especially with trading between a single buyer and a single seller. This talk will describe a water trading mechanism designed to solve these problems. The trading mechanism is called a "smart market". A smart market allows simultaneous many-to-many trades. It can reduce the transaction costs of water trading, while improving environmental outcomes. The smart market depends on a combination of recent technologies: hydrology simulation, computer power, and the Internet. Our smart market design uses standard hydrological models, user bids from a web page, and computer optimization to maximize the economic value of water while meeting all environmental constraints. Before the smart market can be implemented, however, users and the water agency must meet six critical prerequisites. These prerequisites may be viewed as simply good water management that should be done anyway. I will describe these prerequisites, and I will briefly discuss common arguments against water markets. This talk will be an abstract of a forthcoming book, "Smart Markets for Water Resources: A Manual for Implementation," by John F. Raffensperger and Mark W. Milke, from Springer Publishing.

  20. Discipline in the Schools.

    Science.gov (United States)

    Eggleton, Travis

    Discipline is a necessary ingredient for any successful school. Every teacher and school has a particular style and technique of discipline. This paper examines effective discipline strategies that help maintain school discipline. Classroom management, in school and out of school suspensions, alternative schooling, corporal punishment, and…

  1. Population Dynamics and Natural Resources in the Volta in the ...

    African Journals Online (AJOL)

    Also, population growth is causing shortfalls in agricultural land, deforestation and high demand on water resources in some of the sub-basins of the Volta River Keywords: Population, Natural resources, Volta River Basin, Human Settlement Land Use/Coverage Change Ghana Journal of Development Studies Vol.

  2. Synthesis and characterization of K{sub 2}Ln{sub 2/3}Ta{sub 2}O{sub 7}·nH{sub 2}O (Ln= La, Pr, Nd), layered tantalates photo catalysts for water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Valencia S, H.; Tavizon, G. [UNAM, Instituto de Quimica, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Pfeiffer, H. [UNAM, Instituto de Investigaciones en Materiales, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Acosta, D. [UNAM, Instituto de Fisica, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Negron M, A., E-mail: hvalencia@utp.edu.co [UNAM, Instituto de Ciencias Nucleares, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico)

    2015-07-01

    Three compounds of the K{sub 2}Ln{sub 2/3}Ta{sub 2}O{sub 7} (Ln = La, Nd, Pr) cation-deficient Ruddlesden-Popper series were prepared by the Pechini (polymeric complex) method. The crystal structures of the hydrated form of these compounds were determined by Rietveld analysis of the X-ray power diffraction data and High Resolution Transmission Electron Microscopy (HRTEM). The samples were also analyzed to determine specific area (Bet), degree of hydration (Thermogravimetric analysis), and photo catalytic activity for hydrogen evolution from water and aqueous methanol solution. (Author)

  3. Estimation of sub-pixel water area on Tibet plateau using multiple endmembers spectral mixture spectral analysis from MODIS data

    Science.gov (United States)

    Cui, Qian; Shi, Jiancheng; Xu, Yuanliu

    2011-12-01

    Water is the basic needs for human society, and the determining factor of stability of ecosystem as well. There are lots of lakes on Tibet Plateau, which will lead to flood and mudslide when the water expands sharply. At present, water area is extracted from TM or SPOT data for their high spatial resolution; however, their temporal resolution is insufficient. MODIS data have high temporal resolution and broad coverage. So it is valuable resource for detecting the change of water area. Because of its low spatial resolution, mixed-pixels are common. In this paper, four spectral libraries are built using MOD09A1 product, based on that, water body is extracted in sub-pixels utilizing Multiple Endmembers Spectral Mixture Analysis (MESMA) using MODIS daily reflectance data MOD09GA. The unmixed result is comparing with contemporaneous TM data and it is proved that this method has high accuracy.

  4. Department of Water Resources and Environm

    African Journals Online (AJOL)

    USER

    2015-05-01

    May 1, 2015 ... tolerable gauge network density of 1 gauge per 3000km. 2 ... for Nigeria. In the Sahelian region of West. Africa ... number of functional stations in the area is far less than this ..... Water Resources Development, 9(4):. 411 – 424.

  5. Towards the assessment of climate change and human activities impacts on the water resources of the Ebro catchment (Spain)

    Science.gov (United States)

    Milano, M.; Ruelland, D.; Dezetter, A.; Ardoin-Bardin, S.; Thivet, G.; Servat, E.

    2012-04-01

    module has also been implemented in the model. The ability of water resources to satisfy the water demands is assessed by computing a water allocation index which depends on site priorities and supply preferences. This modelling framework was applied to eight sub-catchments, each one representative of typical climatic or water use conditions within the basin, over the 1971-1990 period. The results show the interest of integrated modelling to address water resources vulnerability. The hydrological response to climatic and anthropogenic variations witnesses the influence of both these pressures on water resources availability. Moreover, the water allocation index makes it possible to highlight the growing competition among users, especially during the summer season. The developed methodology hence provides us a more complete analysis to support decision-making compared to uncoupled analysis. This study is a first step towards evaluating future water resources availability and ability to satisfy water demands under climatic and anthropogenic pressures scenarios.

  6. Public participation in water resources management: Restructuring model of upstream Musi watershed

    Science.gov (United States)

    Andriani, Yuli; Zagloel, T. Yuri M.; Koestoer, R. H.; Suparmoko, M.

    2017-11-01

    Water is the source of life needed by living things. Human as one of living most in needs of water. Because the population growth follows the geometrical progression, while the natural resource increases calculates the arithmetic. Humans besides needing water also need land for shelter and for their livelihood needs, such as gardening or rice farmers. If the water absorption area is reduced, water availability will decrease. Therefore it is necessary to conduct an in-depth study of water resources management involving the community. The purpose of this study is to analyze community participation in water resources management, so that its availability can still meet the needs of living and sustainable. The method that used the level of community participation according to Arstein theory. The results obtained that community participation is at the level of partnership and power delegation. This level of participation is at the level of participation that determines the sustainability of water resources for present and future generations.

  7. Research on monitoring system of water resources in irrigation region based on multi-agent

    International Nuclear Information System (INIS)

    Zhao, T H; Wang, D S

    2012-01-01

    Irrigation agriculture is the basis of agriculture and rural economic development in China. Realizing the water resource information of irrigated area will make full use of existing water resource and increase benefit of irrigation agriculture greatly. However, the water resource information system of many irrigated areas in our country is not still very sound at present, it lead to the wasting of a lot of water resources. This paper has analyzed the existing water resource monitoring system of irrigated areas, introduced the Multi-Agent theories, and set up a water resource monitoring system of irrigated area based on multi-Agent. This system is composed of monitoring multi-Agent federal, telemetry multi-Agent federal, and the Communication Network GSM between them. It can make full use of good intelligence and communication coordination in the multi-Agent federation interior, improve the dynamic monitoring and controlling timeliness of water resource of irrigated area greatly, provide information service for the sustainable development of irrigated area, and lay a foundation for realizing high information of water resource of irrigated area.

  8. Global Ocean Surface Water Partial Pressure of CO<sub>2sub> Database: Measurements Performed During 1968-2007 (Version 2007)

    Energy Technology Data Exchange (ETDEWEB)

    Kozyr, Alex [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Carbon Dioxide Information Analysis Center

    2008-09-30

    More than 4.1 million measurements of surface water partial pressure of CO<sub>2sub> obtained over the global oceans during 1968-2007 are listed in the Lamont-Doherty Earth Observatory (LDEO) database, which includes open ocean and coastal water measurements. The data assembled include only those measured by equilibrator-CO<sub>2sub> analyzer systems and have been quality-controlled based on the stability of the system performance, the reliability of calibrations for CO<sub>2sub> analysis, and the internal consistency of data. To allow re-examination of the data in the future, a number of measured parameters relevant to pCO<sub>2sub> measurements are listed. The overall uncertainty for the pCO<sub>2sub> values listed is estimated to be ± 2.5 µatm on the average. For simplicity and for ease of reference, this version is referred to as 2007, meaning that data collected through 31 December 2007 has been included. It is our intention to update this database annually. There are 37 new cruise/ship files in this update. In addition, some editing has been performed on existing files so this should be considered a V2007 file. Also we have added a column reporting the partial pressure of CO<sub>2sub> in seawater in units of Pascals. The data presented in this database include the analyses of partial pressure of CO<sub>2sub> (pCO<sub>2sub>), sea surface temperature (SST), sea surface salinity (SSS), pressure of the equilibration, and barometric pressure in the outside air from the ship’s observation system. The global pCO<sub>2sub> data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center (CDIAC). The NDP consists of the oceanographic data files and this printed documentation, which describes the procedures and methods used to obtain the data.

  9. Scenario Development for Water Resources Planning and Management

    Science.gov (United States)

    Stewart, S.; Mahmoud, M.; Liu, Y.; Hartman, H.; Wagener, T.; Gupta, H.

    2006-12-01

    The main objective of scenario development for water resources is to inform policy-makers about the implications of various policies to inform decision-making. Although there have been a number of studies conducted in the relatively-new and recent field of scenario analysis and development, very few of those have been explicitly applied to water resource issues. More evident is the absence of an established formal approach to develop and apply scenarios. Scenario development is a process that evaluates possible future states of the world by examining several feasible scenarios. A scenario is a projection of various physical and socioeconomic conditions that describe change from the current state to a future state. In this paper, a general framework for scenario development with special emphasis on applications to water resources is considered. The process comprises several progressive and reiterative phases: scenario definition, scenario construction, scenario analysis, scenario assessment, and risk management. Several characteristics of scenarios that are important in describing scenarios are also taken into account; these include scenario types, scenario themes, scenario likelihoods and scenario categories. A hindrance to the adoption of a unified framework for scenario development is inconsistency in the terminology used by scenario developers. To address this problem, we propose a consistent terminology of basic and frequent terms. Outreach for this formal approach is partially maintained through an interactive community website that seeks to educate potential scenario developers about the scenario development process, share and exchange information and resources on scenarios to foster a multidisciplinary community of scenario developers, and establish a unified framework for scenario development with regards to terminology and guidelines. The website provides information on scenario development, current scenario-related activities, key water resources scenario

  10. A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana.

    Science.gov (United States)

    Kotir, Julius H; Smith, Carl; Brown, Greg; Marshall, Nadine; Johnstone, Ron

    2016-12-15

    In a rapidly changing water resources system, dynamic models based on the notion of systems thinking can serve as useful analytical tools for scientists and policy-makers to study changes in key system variables over time. In this paper, an integrated system dynamics simulation model was developed using a system dynamics modelling approach to examine the feedback processes and interaction between the population, the water resource, and the agricultural production sub-sectors of the Volta River Basin in West Africa. The objective of the model is to provide a learning tool for policy-makers to improve their understanding of the long-term dynamic behaviour of the basin, and as a decision support tool for exploring plausible policy scenarios necessary for sustainable water resource management and agricultural development. Structural and behavioural pattern tests, and statistical test were used to evaluate and validate the performance of the model. The results showed that the simulated outputs agreed well with the observed reality of the system. A sensitivity analysis also indicated that the model is reliable and robust to uncertainties in the major parameters. Results of the business as usual scenario showed that total population, agricultural, domestic, and industrial water demands will continue to increase over the simulated period. Besides business as usual, three additional policy scenarios were simulated to assess their impact on water demands, crop yield, and net-farm income. These were the development of the water infrastructure (scenario 1), cropland expansion (scenario 2) and dry conditions (scenario 3). The results showed that scenario 1 would provide the maximum benefit to people living in the basin. Overall, the model results could help inform planning and investment decisions within the basin to enhance food security, livelihoods development, socio-economic growth, and sustainable management of natural resources. Copyright © 2016 Elsevier B.V. All

  11. Participatory Water Resources Modeling in a Water-Scarce Basin (Rio Sonora, Mexico) Reveals Uncertainty in Decision-Making

    Science.gov (United States)

    Mayer, A. S.; Vivoni, E. R.; Halvorsen, K. E.; Kossak, D.

    2014-12-01

    The Rio Sonora Basin (RSB) in northwest Mexico has a semi-arid and highly variable climate along with urban and agricultural pressures on water resources. Three participatory modeling workshops were held in the RSB in spring 2013. A model of the water resources system, consisting of a watershed hydrology model, a model of the water infrastructure, and groundwater models, was developed deliberatively in the workshops, along with scenarios of future climate and development. Participants were asked to design water resources management strategies by choosing from a range of supply augmentation and demand reduction measures associated with water conservation. Participants assessed water supply reliability, measured as the average daily supply divided by daily demand for historical and future periods, by probing with the climate and development scenarios. Pre- and post-workshop-surveys were developed and administered, based on conceptual models of workshop participants' beliefs regarding modeling and local water resources. The survey results indicate that participants believed their modeling abilities increased and beliefs in the utility of models increased as a result of the workshops. The selected water resources strategies varied widely among participants. Wastewater reuse for industry and aquifer recharge were popular options, but significant numbers of participants thought that inter-basin transfers and desalination were viable. The majority of participants indicated that substantial increases in agricultural water efficiency could be achieved. On average, participants chose strategies that produce reliabilities over the historical and future periods of 95%, but more than 20% of participants were apparently satisfied with reliabilities lower than 80%. The wide range of strategies chosen and associated reliabilities indicate that there is a substantial degree of uncertainty in how future water resources decisions could be made in the region.

  12. Analyses of impacts of China's international trade on its water resources and uses

    Science.gov (United States)

    Zhang, Z. Y.; Yang, H.; Shi, M. J.; Zehnder, A. J. B.; Abbaspour, K. C.

    2011-04-01

    This study provides an insight into the impact of China's international trade of goods and services on its water resources and uses. Virtual water flows associated with China's international trade are quantified in an input-output framework. The analysis is scaled down to the sectoral and provincial levels to trace the origins and destinations of virtual water flows associated with the international trade. The results reveal that China is a net virtual water exporter of 4.7 × 1010 m3 year-1, accounting for 2.1% of its total water resources and 8.9% of the total water use. Water scarce regions tend to have higher percentages of virtual water export relative to their water resources and water uses. In the water scarce Huang-Huai-Hai region, the net virtual water export accounts for 7.9% of the region's water resources and 11.2% of its water uses. For individual sectors, major net virtual water exporters are those where agriculture provides raw materials in the initial process of the production chain and/or pollution intensity is high. The results suggest that China's economic gains from being a world "manufacture factory" have come at a high cost to its water resources and through pollution to its environment.

  13. The development of water services and their interaction with water resources in European and Brazilian cities

    Directory of Open Access Journals (Sweden)

    B. Barraqué

    2008-08-01

    Full Text Available The extension and complexity of large cities creates "urban water" and a related issue: public water services, including public water supply, sewage collection and treatment, and storm water control, had previously become a policy sector separate from water resource allocation issues thanks to water transport and treatment technologies. Large metropolitan areas today cannot take nature for granted anymore, and they need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water services in European and Brazilian metropolitan areas, placing the technological developments in their geographic, socio-economic and political contexts. Our frame is to follow the successive contributions of civil engineering, sanitary engineering, and environmental engineering: the "quantity of water" and civil engineering paradigm allowed to mobilise water in and out of the city, and up the hills or the floors; in the "water quality" and chemical/sanitary engineering paradigm, water treatment gave more freedom to cities to take water from rivers closer to them, but also to reduce sewer discharge impacts; lastly, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  14. Science to support the understanding of Ohio's water resources, 2016-17

    Science.gov (United States)

    Shaffer, Kimberly; Kula, Stephanie P.; Shaffer, Kimberly; Kula, Stephanie P.

    2016-12-19

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. Although rainfall in normal years can support these activities and needs, occasional floods and droughts can disrupt streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie; it has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all of the rural population obtains drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policy makers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of the use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2016) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  15. Guide to North Dakota's ground-water resources

    Science.gov (United States)

    Paulson, Q.F.

    1983-01-01

    Ground water, the water we pump from the Earth through wells or that which flows naturally from springs, is one of North Dakota's most valuable resources. More than 60 percent of the people living in the State use ground water for one purpose of another. It is the only source of water for thousands of farm families and their livestock. Almost all smaller cities and villages depend solely on groudn water as a source of supply. Increasingly, ground water is being used to irrigate crops and grasslands (fig. 1) during protracted dry spells so common in North Dakota. During recent years there has been a rapid development of rural water ditribution systems in which thousands of farms and rurals residences are connected via underground pipeline to a single water source, usually wells pumping ground water.

  16. A review on water pricing problem for sustainable water resource

    Science.gov (United States)

    Hek, Tan Kim; Ramli, Mohammad Fadzli; Iryanto

    2017-05-01

    A report that presented at the World Forum II at The Hague in March 2000, said that it would be water crisis around the world and some countries will be lack of water in 2025, as a result of global studies. Inefficient using of water and considering water as free goods which means it can be used as much as we want without any lost. Thus, it causes wasteful consumption and low public awareness in using water without effort to preserve and conserve the water resources. In addition, the excessive exploitation of ground water for industrial facilities also leads to declining of available freshwater. Therefore, this paper reviews some problems arise all over the world regarding to improper and improving management, policies and methods to determine the optimum model of freshwater price in order to avoid its wasteful thus ensuring its sustainability. In this paper, we also proposed a preliminary model of water pricing represents a case of Medan, North Sumatera, Indonesia.

  17. Managing water resources in Malaysia: the use of isotope technique and its potential

    International Nuclear Information System (INIS)

    Keizrul Abdullah

    2006-01-01

    This keynote address discusses the following subjects; state of Malaysia water resources, water related problem i.e floods, water shortage (droughts), water quality, river sedimentation, water resources management and the ongoing and potential application of isotope techniques in river management

  18. Integrating policy, disintegrating practice: water resources management in Botswana

    Science.gov (United States)

    Swatuk, Larry A.; Rahm, Dianne

    Botswana is generally regarded as an African ‘success story’. Nearly four decades of unabated economic growth, multi-party democracy, conservative decision-making and low-levels of corruption have made Botswana the darling of the international donor community. One consequence of rapid and sustained economic development is that water resources use and demands have risen dramatically in a primarily arid/semi-arid environment. Policy makers recognize that supply is limited and that deliberate steps must be taken to manage demand. To this end, and in line with other members of the Southern African Development Community (SADC), Botswana devised a National Water Master Plan (NWMP) and undertook a series of institutional and legal reforms throughout the 1990s so as to make water resources use more equitable, efficient and sustainable. In other words, the stated goal is to work toward Integrated Water Resources Management (IWRM) in both policy and practice. However, policy measures have had limited impact on de facto practice. This paper reflects our efforts to understand the disjuncture between policy and practice. The information presented here combines a review of primary and secondary literatures with key informant interviews. It is our view that a number of constraints-cultural, power political, managerial-combine to hinder efforts toward sustainable forms of water resources use. If IWRM is to be realized in the country, these constraints must be overcome. This, however, is no small task.

  19. The role of the municipality in water resources management

    Directory of Open Access Journals (Sweden)

    Gustavo Carneiro de Noronha

    2013-04-01

    Full Text Available This article analyzes decentralization of the water resources management within the watershed, where the municipality problems are delimited. The analysis of the water management development in Brazil indicates that the legal framework is embedded in a process of decentralization. The Constitution of 1988 establishes that the superficial waters are goods of the Union and the States. Later, the National Water Resources Policy establishes the watershed as the territorial unit of management. However, the supervision and management of basins remain centralized and without providing an interconnection between water use and other environmental goods. Among the attributions of the municipality are the environmental enforcement, agricultural policy, definition of conservation units and management of the urban territory. The incorporation of these policies in an environmental zoning based in the water management allows better utilization of water availability and local participation in administrative decisions watershed through the municipality.

  20. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [Colorado School of Mines, Golden, CO (United States); Minnick, Matthew [Colorado School of Mines, Golden, CO (United States); Geza, Mengistu [Colorado School of Mines, Golden, CO (United States); Murray, Kyle [Colorado School of Mines, Golden, CO (United States); Mattson, Earl [Colorado School of Mines, Golden, CO (United States)

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and

  1. Science center capabilities to monitor and investigate Michigan’s water resources, 2016

    Science.gov (United States)

    Giesen, Julia A.; Givens, Carrie E.

    2016-09-06

    Michigan faces many challenges related to water resources, including flooding, drought, water-quality degradation and impairment, varying water availability, watershed-management issues, stormwater management, aquatic-ecosystem impairment, and invasive species. Michigan’s water resources include approximately 36,000 miles of streams, over 11,000 inland lakes, 3,000 miles of shoreline along the Great Lakes (MDEQ, 2016), and groundwater aquifers throughout the State.The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as tribes and universities, to provide scientific information used to manage the water resources of Michigan. To effectively assess water resources, the USGS uses standardized methods to operate streamgages, water-quality stations, and groundwater stations. The USGS also monitors water quality in lakes and reservoirs, makes periodic measurements along rivers and streams, and maintains all monitoring data in a national, quality-assured, hydrologic database.The USGS in Michigan investigates the occurrence, distribution, quantity, movement, and chemical and biological quality of surface water and groundwater statewide. Water-resource monitoring and scientific investigations are conducted statewide by USGS hydrologists, hydrologic technicians, biologists, and microbiologists who have expertise in data collection as well as various scientific specialties. A support staff consisting of computer-operations and administrative personnel provides the USGS the functionality to move science forward. Funding for USGS activities in Michigan comes from local and State agencies, other Federal agencies, direct Federal appropriations, and through the USGS Cooperative Matching Funds, which allows the USGS to partially match funding provided by local and State partners.This fact sheet provides an overview of the USGS current (2016) capabilities to monitor and study Michigan’s vast water resources. More

  2. Bridging the Gap Between Climate Science and Water-resource Applications

    Science.gov (United States)

    Arnold, J. R.; Clark, M. P.; Wood, A.; Gutmann, E. D.; Nijssen, B.; Brekke, L. D.

    2015-12-01

    Since 2010, the US Army Corps of Engineers (USACE) Climate Preparedness and Resilience Program has supported development of a coordinated system of products and tools to improve use of climate information in water-resource planning and management. The key products include: 1) a new understanding of the limitations of methods used to quantify impacts of climate change on water resources; 2) development and evaluation of national-domain climate downscaling and hydrologic simulation capabilities to provide information from climate model output relevant to the multiple scales of water resources decision-making with a spatially consistent assessment of the impacts of climate change on hydrologic conditions; and 3) development and evaluation of advanced streamflow forecasting methods. This will support USACE Districts and their stakeholders and partners with new data, new and newly evaluated model output, and specific tools in a framework to help with routine applications for managing water resources throughout the U.S., and to enhance considerations of climate preparedness and resilience in that work. This presentation will summarize the collaborative development of some of those products; describe current and planned future USACE capabilities for incorporating advanced climate information at multiple scales of analysis and decision; discuss uses of climate information in water-resources planning and management; and outline key unanswered science questions being addressed to increase utility and use of information in short- and longer-term planning. Specifically, we will describe the current suite and planned trajectory of new products, moving from capability development through to testing in limited pilot domains, on to product applications throughout the U.S., and, ultimately, into actual implementation at the level of USACE Districts to address climate change issues. Two key foci of this talk will be: 1) where climatological and hydrologic science is currently

  3. A combined experimental and computational study of water-gas shift reaction over rod-shaped Ce<sub>0.75sub> M<sub>0.25sub>O>2sub> (M=Ti, Zr, and Mn) supported Cu catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhibo; Peng, Fei; Chen, Biaohua; Mei, Donghai; Li, Jianwei

    2017-11-02

    Water-gas shift (WGS) reaction over a series of ceria-based mixed oxides supported Cu catalysts was investigated using a combined experimental and theoretical method. The mixed rod-shaped Ce<sub>0.75sub>M>0.25sub>O>2sub> (M = Ti4+, Zr4+, Mn4+) solid solutions, which majorly expose the (110) and (100) facets, are synthesized by hydrothermal method and used to prepare supported Cu catalysts. We found that the Cu/Ce0.75Ti<sub>0.25sub>O>2sub> (Cu-CT) exhibits the highest CO conversion in the temperature range of 150-250 °C among all supported Cu catalysts. This is mainly attributed to (i) good dispersion of Cu; (ii) largest amount of moderate copper oxide; and (iii) strongest Cu-support interaction of Cu-CT. And compared to other mixed metals, periodic density functional theory calculations performed, this work further suggest that the introduction of Ti into CeO<sub>2sub> not only promotes oxygen vacancy formation and CO adsorption, but also facilitates the carboxyl (COOH) formation at the interface of the Cu cluster and the support, which leads to the enhanced catalytic activity of the Cu-CT toward WGS reaction.

  4. Water, Politics and Development: Framing a Political Sociology of Water Resources Management

    Directory of Open Access Journals (Sweden)

    Peter P. Mollinga

    2008-06-01

    Full Text Available The first issue of Water Alternatives presents a set of papers that investigates the inherently political nature of water resources management. A Water, Politics and Development initiative was started at ZEF (Center for Development Research, Bonn, Germany in 2004/2005 in the context of a national-level discussion on the role of social science in global (environmental change research. In April 2005 a roundtable workshop with this title was held at ZEF, sponsored by the DFG (Deutsche Forschungsgemeinschaft/German Research Foundation and supported by the NKGCF (Nationales Komitee für Global Change Forschung/German National Committee on Global Change Research, aiming to design a research programme in the German context. In 2006 it was decided to design a publication project on a broader, European and international basis. The Irrigation and Water Engineering Group at Wageningen University, the Netherlands joined as a co-organiser and co-sponsor. The collection of papers published in this issue of Water Alternatives is one of the products of the publication project. As part of the initiative a session on Water, Politics and Development was organised at the Stockholm World Water Week in August 2007, where most of the papers in this collection were presented and discussed. Through this publication, the Water, Politics and Development initiative links up with other initiatives simultaneously ongoing, for instance the 'Water governance – challenging the consensus' project of the Bradford Centre for International Development at Bradford University, UK. At this point in time, the initiative has formulated its thrust as 'framing a political sociology of water resources management'. This, no doubt, is an ambitious project, methodologically, theoretically as well as practically. Through the compilation of this collection we have started to explore whether and how such an endeavour might make sense. The participants in the initiative think it does, are quite

  5. Entropy, recycling and macroeconomics of water resources

    Science.gov (United States)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris

    2014-05-01

    We propose a macroeconomic model for water quantity and quality supply multipliers derived by water recycling (Karakatsanis et al. 2013). Macroeconomic models that incorporate natural resource conservation have become increasingly important (European Commission et al. 2012). In addition, as an estimated 80% of globally used freshwater is not reused (United Nations 2012), under increasing population trends, water recycling becomes a solution of high priority. Recycling of water resources creates two major conservation effects: (1) conservation of water in reservoirs and aquifers and (2) conservation of ecosystem carrying capacity due to wastewater flux reduction. Statistical distribution properties of the recycling efficiencies -on both water quantity and quality- for each sector are of vital economic importance. Uncertainty and complexity of water reuse in sectors are statistically quantified by entropy. High entropy of recycling efficiency values signifies greater efficiency dispersion; which -in turn- may indicate the need for additional infrastructure for the statistical distribution's both shifting and concentration towards higher efficiencies that lead to higher supply multipliers. Keywords: Entropy, water recycling, water supply multipliers, conservation, recycling efficiencies, macroeconomics References 1. European Commission (EC), Food and Agriculture Organization (FAO), International Monetary Fund (IMF), Organization of Economic Cooperation and Development (OECD), United Nations (UN) and World Bank (2012), System of Environmental and Economic Accounting (SEEA) Central Framework (White cover publication), United Nations Statistics Division 2. Karakatsanis, G., N. Mamassis, D. Koutsoyiannis and A. Efstratiades (2013), Entropy and reliability of water use via a statistical approach of scarcity, 5th EGU Leonardo Conference - Hydrofractals 2013 - STAHY '13, Kos Island, Greece, European Geosciences Union, International Association of Hydrological Sciences

  6. Sub-specialization in plastic surgery in Sub-saharan Africa: capacities, gaps and opportunities

    Science.gov (United States)

    Ibrahim, Abdulrasheed

    2014-01-01

    The skill set of a plastic surgeon, which addresses a broad range of soft tissue conditions that are prevalent in sub-Saharan Africa, remains relevant in the unmet need for surgical care. Recently, there has being a major paradigm shift from discipline-based to disease-based care, resulting in an emerging component of patient-centered care; adequate access to subspecialty care in plastic and reconstructive surgery. Given the need for an evolution in sub-specialization, this article focuses on the benefits and future role of differentiation of plastic surgeons into sub-specialty training pathways in sub-Saharan Africa. PMID:25584125

  7. Solvothermal synthesis of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanophosphor in water/diethylene glycol system

    Energy Technology Data Exchange (ETDEWEB)

    Takeshita, Satoru; Honda, Joji [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Isobe, Tetsuhiko, E-mail: isobe@applc.keio.ac.jp [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Sawayama, Tomohiro; Niikura, Seiji [SINLOIHI Company, Limited, 2-19-12 Dai, Kamakura 247-8550 (Japan)

    2012-05-15

    The influence of aging of the suspension containing the amorphous precusors on structural, compositional and photoluminescent properties is studied to understand the mechanism on the formation of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanoparticles during the solvothermal reaction in the water/diethylene glycol mixed solvent. Aging at 200 Degree-Sign C for 20 min forms the crystalline Zn{sub 2}GeO{sub 4} nanorods and then they grow up to {approx} 50 nm in mean length after aging for 240 min. Their interplanar spacing of (410) increases with increasing the aging time. The photoluminescence intensity corresponding to the d-d transition of Mn{sup 2+} increases with increasing the aging time up to 120 min, and then decreases after aging for 240 min. The photoluminescence lifetime decreases with increasing the aging time, indicating the locally concentrated Mn{sup 2+} ions. These results reveal that Mn{sup 2+} ions gradually replace Zn{sup 2+} ions near surface through repeating dissolusion and precipitation processes during prolonged aging after the complete crystallization of Zn{sub 2}GeO{sub 4}. - Graphical abstract: TEM images of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanoparticles aged at 200 Degree-Sign C for different aging times in the mixed solvent of water and diethylene glycol. Highlights: Black-Right-Pointing-Pointer Mechanism on formation of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanophosphor under solvothermal condition. Black-Right-Pointing-Pointer Zn{sub 2}GeO{sub 4} nanorods crystallize via amorphous precursors. Black-Right-Pointing-Pointer Gradual substitution of Mn{sup 2+} during prolonged aging. Black-Right-Pointing-Pointer Such an inhomogeneous Mn{sup 2+} doping process results in concentration quenching.

  8. Chemiluminescence of the Ce{sup 3+}* ions, and the {sup 1}ГђЕѕ{sub 2} and ({sup 1}ГђЕѕ{sub 2}){sub 2} molecular species of oxygen induced by active surface of the (NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 6} crystals at reduction of Ce{sup 4+} to Ce{sup 3+} by water in heterogeneous system «(NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 6}-C{sub 6}H{sub 6}-H{sub 2}O»

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakov, Ramil G., E-mail: profbulgakov@yandex.ru [Laboratory of Negative Ions Mass Spectrometry, Institute of Molecule and Crystal Physics, Ufa Research Centre of the Russian Academy of Sciences, 71, Oktyabrya Prosp., 450054 Ufa (Russian Federation); Gazeeva, Dilara R., E-mail: galimovdi@mail.ru [Laboratory of High Energy Chemistry and Catalysis, Institute of Petrochemistry and Catalysis Russian Academy of Sciences, 141 Prosp. Oktyabrya, 450075 Ufa (Russian Federation); Galimov, Dim I. [Laboratory of High Energy Chemistry and Catalysis, Institute of Petrochemistry and Catalysis Russian Academy of Sciences, 141 Prosp. Oktyabrya, 450075 Ufa (Russian Federation)

    2017-03-15

    We have discovered an unusual new chemiluminescence (CL) in the title system, which is different from other known CL by unusual combination of various in nature emitters, namely, electronically excited state of the Ce{sup 3+}* ion (λ{sub max}=335 nm), singlet oxygen {sup 1}ГђЕѕ{sub 2} (emission near 1270 nm) and its dimer ({sup 1}ГђЕѕ{sub 2}){sub 2} (λ{sub max}=490, 645, 715 nm). The Ce{sup 3+}* ions and oxygen emitters {sup 1}O{sub 2} and ({sup 1}O{sub 2}){sub 2} are generated in the reaction of Ce{sup 4+} with water and hydrogen peroxide, respectively. CL is generated only in a heterogeneous system «(NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 6}-C{sub 6}H{sub 6}-H{sub 2}O» and completely absent in a homogeneous solution (NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 6} in water containing benzene. This is due to the fact that the redox processes and CL in the «(NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 6}-C{sub 6}H{sub 6}-H{sub 2}O» system are induced by active surface of the (NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 6} crystals. It is through the action of the active surface of the (NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 6} crystals is carried out population of such a high energy level of 5d{sup 1} excited state of Ce{sup 3+}* ion (λ{sub max}=353 nm, 3.7 eV). Discovered CL is the first example of an experimental registration of the Ce{sup 3+}* ion emission in a chemical reaction, because formation of Ce{sup 3+}* ion previously assumed to be in a great many works on the study of CL in reactions of Ce{sup 4+} compounds with various reducing agents, including the reaction with water, initiated by light or catalysts. Possible mechanism generation of new CL in the system under study has been proposed in the paper. - Highlights: • A new chemiluminescence (CL) in the (NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 2}-C{sub 6}H{sub 6}-H{sub 2}O system was discovered. • The emission of the Ce{sup 3+}* ion as a CL emitter has been registered for the first time. • Other emitters of this CL are

  9. Investigation of Fungi in Drinking Water Resources as a Source of Contamination Tap Water in Sari, Iran

    Directory of Open Access Journals (Sweden)

    Z Yousefi

    2013-06-01

    Full Text Available Background and purpose: One of the most prominent concerns for the water consumers is pathogenic microorganism contamination. Wells and underground water resources are the main resources of drinking water in Sari city, Iran. The main objectives of the research project were to explore the distribution and frequency of mycoflora in wells and underground water resources of the city and their contamination effects on humans. Materials and methods: Three reservoirs and 18 wells or underground water resources were analyzed. Water samples were then filtered and analyzed according to the World Health Organization guidelines. Each filter and 0.2 ml of suspension inoculated on SDA+CG media. For fungal growth, plates were incubated at 27’C for 7-10 days. The fungi were identified by standard mycological techniques. Results: Fungal colonies were isolated from all samples. From total of 160 fungal colonies isolated from wells water, 14 species of fungi were distinguished. Rhodotorula (54.4%, Monilinia (13.7%, Alternaria (6.9% were the most commonly isolated. Drechslera, Rhizopus, and Exserohilum (0.6% had the lowest frequency. There was no significant difference between fungal elements isolated from three major reservoirs (P>0.05. Conclusion: This study revealed that resources of drinking water from an area have to monitored and if its fungal CFU be greater than a certain value, medical and health preventive measures should be taken before the water is used by human. In this context, public and private awareness should also be provided through the media, broadcasting, teachers and scholars.

  10. Facilitating collaboration among academic generalist disciplines: a call to action.

    Science.gov (United States)

    Kutner, Jean S; Westfall, John M; Morrison, Elizabeth H; Beach, Mary Catherine; Jacobs, Elizabeth A; Rosenblatt, Roger A

    2006-01-01

    To meet its population's health needs, the United States must have a coherent system to train and support primary care physicians. This goal can be achieved only though genuine collaboration between academic generalist disciplines. Academic general pediatrics, general internal medicine, and family medicine may be hampering this effort and their own futures by lack of collaboration. This essay addresses the necessity of collaboration among generalist physicians in research, medical education, clinical care, and advocacy. Academic generalists should collaborate by (1) making a clear decision to collaborate, (2) proactively discussing the flow of money, (3) rewarding collaboration, (4) initiating regular generalist meetings, (5) refusing to tolerate denigration of other generalist disciplines, (6) facilitating strategic planning for collaboration among generalist disciplines, and (7) learning from previous collaborative successes and failures. Collaboration among academic generalists will enhance opportunities for trainees, primary care research, and advocacy; conserve resources; and improve patient care.

  11. Effects of meteorological droughts on agricultural water resources in southern China

    Science.gov (United States)

    Lu, Houquan; Wu, Yihua; Li, Yijun; Liu, Yongqiang

    2017-05-01

    With the global warming, frequencies of drought are rising in the humid area of southern China. In this study, the effects of meteorological drought on the agricultural water resource based on the agricultural water resource carrying capacity (AWRCC) in southern China were investigated. The entire study area was divided into three regions based on the distributions of climate and agriculture. The concept of the maximum available water resources for crops was used to calculate AWRCC. Meanwhile, an agricultural drought intensity index (ADI), which was suitable for rice planting areas, was proposed based on the difference between crop water requirements and precipitation. The actual drought area and crop yield in drought years from 1961 to 2010 were analyzed. The results showed that ADI and AWRCC were significantly correlated with the actual drought occurrence area and food yield in the study area, which indicated ADI and AWRCC could be used in drought-related studies. The effects of seasonal droughts on AWRCC strongly depended on both the crop growth season and planting structure. The influence of meteorological drought on agricultural water resources was pronounced in regions with abundant water resources, especially in Southwest China, which was the most vulnerable to droughts. In Southwest China, which has dry and wet seasons, reducing the planting area of dry season crops and rice could improve AWRCC during drought years. Likewise, reducing the planting area of double-season rice could improve AWRCC during drought years in regions with a double-season rice cropping system. Our findings highlight the importance of adjusting the proportions of crop planting to improve the utilization efficiency of agricultural water resources and alleviate drought hazards in some humid areas.

  12. WATER RESOURCES IN THE ROMANIAN CARPATHIANS – GENESIS, TERRITORIAL DISTRIBUTION, MANAGEMENT

    Directory of Open Access Journals (Sweden)

    P. GÂȘTESCU

    2014-05-01

    Full Text Available Water resources in Romanian Carpathians-genesis, territorial distribution, management. Discussing water resources in Romania implies a twofold approach: water as a sine qua non of life itself and water as an important factor for the development of the contemporary society. Lying in a temperate zone, Romania’s water resources are rather modest compared with other countries in Europe. Inland rivers span 78,905 km (referred only to the 4,864 codified watercourses at an average density: 0.38 km/km2 and an annual volume: 40.6 billion m3, which means 1,765 m3/capita. To knowledge ground waters are put at 9.62 billion m3/year, of which 6 billion can be used in optimal technological and economic conditions. According to a recent UN statistical report, Romania lists at position 21 among the 34 European. Natural lakes are replenished from precipitation and springs water every year and the reserves are estimated at around 1 billion m3/year and are of local importance for water management schemes. The Black Sea (in the Romanian sector could become a major source if sea water desalting could be economical.The water resources of the drainage network were calculated on the basis of the mean liquid flow map (scale 1: 500,000 releves picture of river-water resources in the major relief units: the Carpathian, which occupies only 27.9% of the Romanian territory, 65.3% (26.48 billion mc from a total of 40.61 billion m3 of the water is formed and regenerated every year; the hill unit, which includes the Subcarpathians, the tablelands and the piedmont hills, and occupies 42.4% of Romania’s territory, only 28.0% of the water volume is formed (11.38 billion m3, of which 8.7% (3.51 billion m3 in the Subcarpathians and 19.4% (7.87 billion m3 in the other two units; the plain unit, which covers 29.7% of the country’s territory, the water volume formed there is small (6.7%

  13. Application of Water Evaluation and Planning Model for Integrated Water Resources Management: Case Study of Langat River Basin, Malaysia

    Science.gov (United States)

    Leong, W. K.; Lai, S. H.

    2017-06-01

    Due to the effects of climate change and the increasing demand on water, sustainable development in term of water resources management has become a major challenge. In this context, the application of simulation models is useful to duel with the uncertainty and complexity of water system by providing stakeholders with the best solution. This paper outlines an integrated management planning network is developed based on Water Evaluation and Planning (WEAP) to evaluate current and future water management system of Langat River Basin, Malaysia under various scenarios. The WEAP model is known as an integrated decision support system investigate major stresses on demand and supply in terms of water availability in catchment scale. In fact, WEAP is applicable to simulate complex systems including various sectors within a single catchment or transboundary river system. To construct the model, by taking account of the Langat catchment and the corresponding demand points, we defined the hydrological model into 10 sub-hydrological catchments and 17 demand points included the export of treated water to the major cities outside the catchment. The model is calibrated and verified by several quantitative statistics (coefficient of determination, R2; Nash-Sutcliffe efficiency, NSE and Percent bias, PBIAS). The trend of supply and demand in the catchment is evaluated under three scenarios to 2050, 1: Population growth rate, 2: Demand side management (DSM) and 3: Combination of DSM and reduce non-revenue water (NRW). Results show that by reducing NRW and proper DSM, unmet demand able to reduce significantly.

  14. Groundwater systems of the Indian Sub-Continent

    Directory of Open Access Journals (Sweden)

    Abhijit Mukherjee

    2015-09-01

    Full Text Available The Indian Sub-Continent is one of the most densely populated regions of the world, hosting ∼23% of the global population within only ∼3% of the world's land area. It encompasses some of the world's largest fluvial systems in the world (River Brahmaputra, Ganges and Indus Basins, which hosts some of the highest yielding aquifers in the world. The distribution of usable groundwater in the region varies considerably and the continued availability of safe water from many of these aquifers (e.g. Bengal Basin is constrained by the presence of natural contaminants. Further, the trans-boundary nature of the aquifers in the Indian Sub-Continent makes groundwater resource a potentially politically sensitive issue, particularly since this region is the largest user of groundwater resources in the world. Indeed, there is considerable concern regarding dwindling well yield and declining groundwater levels, even for the highly productive aquifers. Though irrigation already accounts for >85% of the total ground water extraction of the region, there is a mounting pressure on aquifers for food security of the region. Highly variable precipitation, hydrogeological conditions and predicted, impending climate change effects provide substantial challenges to groundwater management. The observed presence of natural groundwater contaminants together with the growing demand for irrigated food production and predicted climate change further complicate the development of strategies for using groundwater resources sustainably. We provide an introduction and overview of 11 articles, collated in this special issue, which describe the current condition of vulnerable groundwater resources across the Indian Sub-Continent.

  15. Installation of deep water sub-sea equipment

    Energy Technology Data Exchange (ETDEWEB)

    Pollack, Jack; Demian, Nabil [SBM-IMODCO Inc., Houston, TX (UNited States)

    2004-07-01

    Offshore oil developments are being planned in water depths exceeding 2000 m. Lowering and positioning large, heavy sub sea hardware, using conventional methods, presents new technical challenges in these ultra deep waters. In 3000 m a safe lift using conventional steel cables will require more capacity to support the cable self weight than the static payload. Adding dynamic loads caused by the motions of the surface vessel can quickly cause the safe capacity of the wire to be exceeded. Synthetic ropes now exist to greatly reduce the lowering line weight. The lower stiffness of these synthetic ropes aggravate the dynamic line tensions due to vessel motions and relatively little is known about the interaction of these ropes on the winches and sheaves required for pay-out and haul-in of these lines under dynamic load. Usage of conventional winches would damage the synthetic rope and risk the hardware being deployed. Reliable and economic installation systems that can operate from existing installation vessels are considered vital for ultra deep-water oil development. The paper describes a Deep Water Sub-Sea Hardware Deployment system consisting of a buoy with variable, pressure-balanced buoyancy, which is used to offset most of the payload weight as it is lowered. The buoyant capacity is controlled by air pumped into the tank from the surface vessel through a reinforced hose. The buoy and payload motion are isolated from the deployment line surface dynamics using a simple passive heave compensator mounted between the buoy and the bottom of the deployment rope. The system components, functionality and dynamic behavior are presented in the paper. (author)

  16. Managed groundwater development for water-supply security in Sub ...

    African Journals Online (AJOL)

    security in Sub-Saharan Africa: Investment priorities ... 2010, together with a review of some developments in western Africa and insights from parts of Asia and Latin America. ...... and the Global Water Partnership (Ania Grobicki and Aurelie.

  17. A Study of the Connection Among Basin-Fill Aquifers, Carbonate-Rock Aquifers, and Surface-Water Resources in Southern Snake Valley, Nevada

    Science.gov (United States)

    ,

    2008-01-01

    The Secretary of the Interior through the Southern Nevada Public Lands Management Act approved funding for research to improve understanding of hydrologic systems that sustain numerous water-dependent ecosystems on Federal lands in Snake Valley, Nevada. Some of the streams and spring-discharge areas in and adjacent to Great Basin National Park have been identified as susceptible to ground-water withdrawals (Elliott and others, 2006) and research has shown a high potential for ground-water flow from southern Spring Valley into southern Snake Valley through carbonate rocks that outcrop along a low topographic divide known as the Limestone Hills (Welch and others, 2007). Comprehensive geologic, hydrologic, and chemical information will be collected and analyzed to assess the hydraulic connection between basin-fill aquifers and surface-water resources, water-dependent ecological features, and the regional carbonate-rock aquifer, the known source of many high-discharge springs. Understanding these connections is important because proposed projects to pump and export ground water from Spring and Snake Valleys in Nevada may result in unintended capture of water currently supplying springs, streams, wetlands, limestone caves, and other biologically sensitive areas (fig. 1). The methods that will be used in this study may be transferable to other areas in the Great Basin. The National Park Service, Bureau of Land Management, U.S. Fish and Wildlife Service, and U.S. Forest Service submitted the proposal for funding this research to facilitate science-based land management. Scientists from the U.S. Geological Survey (USGS) Water Resources and Geologic Disciplines, and the University of Nevada, Reno, will accomplish four research elements through comprehensive data collection and analysis that are concentrated in two distinct areas on the eastern and southern flanks of the Snake Range (fig. 2). The projected time line for this research is from July 2008 through September 2011.

  18. Resilience-based performance metrics for water resources management under uncertainty

    Science.gov (United States)

    Roach, Tom; Kapelan, Zoran; Ledbetter, Ralph

    2018-06-01

    This paper aims to develop new, resilience type metrics for long-term water resources management under uncertain climate change and population growth. Resilience is defined here as the ability of a water resources management system to 'bounce back', i.e. absorb and then recover from a water deficit event, restoring the normal system operation. Ten alternative metrics are proposed and analysed addressing a range of different resilience aspects including duration, magnitude, frequency and volume of related water deficit events. The metrics were analysed on a real-world case study of the Bristol Water supply system in the UK and compared with current practice. The analyses included an examination of metrics' sensitivity and correlation, as well as a detailed examination into the behaviour of metrics during water deficit periods. The results obtained suggest that multiple metrics which cover different aspects of resilience should be used simultaneously when assessing the resilience of a water resources management system, leading to a more complete understanding of resilience compared with current practice approaches. It was also observed that calculating the total duration of a water deficit period provided a clearer and more consistent indication of system performance compared to splitting the deficit periods into the time to reach and time to recover from the worst deficit events.

  19. Bridging Water Resources Policy and Environmental Engineering in the Classroom at Cornell University

    Science.gov (United States)

    Walter, M. T.; Shaw, S. B.; Seifert, S.; Schwarz, T.

    2006-12-01

    Current university undergraduate students in environmental sciences and engineering are the next generation of environmental protection practitioners. Recognizing this, Cornell's Biological and Environmental Engineering department has developed a popular class, Watershed Engineering (BEE 473), specifically designed to bridge the too-common gap between water resources policy and state-of-art science and technology. Weekly homework assignments are to design real-life solutions to actual water resources problems, often with the objective of applying storm water policies to local situations. Where appropriate, usually in conjunction with recent amendments to the Federal Clean Water Act, this course introduces water resource protection tools and concepts developed in the Cornell Soil and Water Lab. Here we present several examples of how we build bridges between university classrooms and the complex world of water resources policy.

  20. Water Resources Management for Shale Energy Development

    Science.gov (United States)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  1. Challenges of communicating integrated water resource management in Zimbabwe

    NARCIS (Netherlands)

    Marimbe, S.; Manzungu, E.

    2003-01-01

    With the promulgation of the 1998 Water Act the Government of Zimbabwe took a decisive step to reform the country's water sector, to bring it in line with contemporary socio-political realities obtaining in the country, and in tune with the philosophy of integrated water resources management.

  2. Water resources transfers through Chinese interprovincial and foreign food trade.

    Science.gov (United States)

    Dalin, Carole; Hanasaki, Naota; Qiu, Huanguang; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2014-07-08

    China's water resources are under increasing pressure from socioeconomic development, diet shifts, and climate change. Agriculture still concentrates most of the national water withdrawal. Moreover, a spatial mismatch in water and arable land availability--with abundant agricultural land and little water resources in the north--increases water scarcity and results in virtual water transfers from drier to wetter regions through agricultural trade. We use a general equilibrium welfare model and linear programming optimization to model interprovincial food trade in China. We combine these trade flows with province-level estimates of commodities' virtual water content to build China's domestic and foreign virtual water trade network. We observe large variations in agricultural water-use efficiency among provinces. In addition, some provinces particularly rely on irrigation vs. rainwater. We analyze the virtual water flow patterns and the corresponding water savings. We find that this interprovincial network is highly connected and the flow distribution is relatively homogeneous. A significant share of water flows is from international imports (20%), which are dominated by soy (93%). We find that China's domestic food trade is efficient in terms of rainwater but inefficient regarding irrigation, meaning that dry, irrigation-intensive provinces tend to export to wetter, less irrigation-intensive ones. Importantly, when incorporating foreign imports, China's soy trade switches from an inefficient system to a particularly efficient one for saving water resources (20 km(3)/y irrigation water savings, 41 km(3)/y total). Finally, we identify specific provinces (e.g., Inner Mongolia) and products (e.g., corn) that show high potential for irrigation productivity improvements.

  3. Adjusting water resources management to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Riebsame, W E

    1988-01-01

    The nature of climate impacts and adjustment in water supply and flood management is discussed, and a case study of water manager response to climate fluctuation in California's Sacramento Basin is presented. The case illuminates the effect on climate impact and response of traditional management approaches, the dynamic qualities of maturing water systems, socially imposed constraints, and climate extremes. A dual pattern of crisis-response and gradual adjustment emerges, and specific mechanisms for effecting adjustment of water management systems are identified. The case study, and broader trends in US water development, suggest that oversized structural capacity, the traditional adjustment to climate variability in water resources, may prove less feasible in the future as projects become smaller and new facilities are delayed by economic and environmental concerns.

  4. The current state of water resources of Transcarpathia

    Directory of Open Access Journals (Sweden)

    V. І. Nikolaichuk

    2015-07-01

    Full Text Available Throughout their existence, humans use the water of rivers, lakes and underground sources not only for water supply but also for dumping of polluted waters and wastes into it. Significant development of urbanization, concentration of urban industrial enterprises, transport, increase in mining, expansion of drainage and irrigation reclamation, plowing of the river channels, creating a large number of landfills resulted in significant, and in some regions critical, depletion and contamination of the surface and ground waters. Because of this disastrous situation, the society is getting more and more concerned about the state of the environment. The public became increasingly interested in the state of the soil cover, air, water resources, and biotic diversity. Transcarpathian region (Zakarpattya is situated in the heart of Europe, bordered by four Central European countries (Poland, Slovakia, Hungary and Romania and two regions of Ukraine (Lviv and Ivano-Frankivsk regions. Transcarpathian region (Zakarpattya is one of the richest regions of Ukraine in terms of water resources. The territory is permeated by the dense network of rivers. There are in total 9,429 rivers of 19,866 kmlength flowing in the region. Among them, the rivers Tysa, Borzhava, Latoryca, Uzh have the length of over 100 kmeach. 25 cities and urban settlements of the area are substantially provided with the centralized water intake of underground drinking water. The rural areas have virtually no centralized water supply; mainly, it is carried out due to domestic wells or water boreholes. Predicted resources of underground drinking waters in the region are equal to 1,109,300 m3/day. The use of fresh water in 2014 per capita amounted to 23,769 m3, 15% less than in 2009. The main pollutants of surface water bodies are the facilities of utility companies in the region. Analysis of studies of surface water quality in Transcarpathian region in 2014 shows that water quality meets the

  5. Evaluation of Water Resource Security Based on an MIV-BP Model in a Karst Area

    Directory of Open Access Journals (Sweden)

    Liying Liu

    2018-06-01

    Full Text Available Evaluation of water resource security deserves particular attention in water resource planning and management. A typical karst area in Guizhou Province, China, was used as the research area in this paper. First, based on data from Guizhou Province for the past 10 years, the mean impact value–back propagation (MIV-BP model was used to analyze the factors influencing water resource security in the karst area. Second, 18 indices involving five aspects, water environment subsystem, social subsystem, economic subsystem, ecological subsystem, and human subsystem, were selected to establish an evaluation index of water resource security. Finally, a BP artificial neural network model was constructed to evaluate the water resource security of Guizhou Province from 2005 to 2014. The results show that water resource security in Guizhou, which was at a moderate warning level from 2005 to 2009 and a critical safety level from 2010 to 2014, has generally improved. Groundwater supply ratio, industrial water utilization rate, water use efficiency, per capita grain production, and water yield modulus were the obstacles to water resource security. Driving factors were comprehensive utilization rate of industrial solid waste, qualifying rate of industrial wastewater, above moderate rocky desertification area ratio, water requirement per unit gross domestic product (GDP, and degree of development and utilization of groundwater. Our results provide useful suggestions on the management of water resource security in Guizhou Province and a valuable reference for water resource research.

  6. An imminent human resource crisis in ground water hydrology?

    Science.gov (United States)

    Stephens, Daniel B

    2009-01-01

    Anecdotal evidence, mostly from the United States, suggests that it has become increasingly difficult to find well-trained, entry-level ground water hydrologists to fill open positions in consulting firms and regulatory agencies. The future prospects for filling positions that require training in ground water hydrology are assessed by considering three factors: the market, the numbers of qualified students entering colleges and universities, and the aging of the existing workforce. The environmental and water resources consulting industry has seen continuous albeit variable growth, and demand for environmental scientists and hydrologists is expected to increase significantly. Conversely, students' interest and their enrollment in hydrology and water resources programs have waned in recent years, and the interests of students within these departments have shifted away from ground water hydrology in some schools. This decrease in the numbers of U.S. students graduating in hydrology or emphasizing ground water hydrology is coinciding with the aging of and pending retirement of ground water scientists and engineers in the baby boomer generation. We need to both trigger the imagination of students at the elementary school level so that they later want to apply science and math and communicate the career opportunities in ground water hydrology to those high school and college graduates who have acquired the appropriate technical background. Because the success of a consulting firm, research organization, or regulatory agency is derived from the skills and judgment of the employees, human resources will be an increasingly more critical strategic issue for many years.

  7. Water resources of the Apostle Islands National Lakeshore, northern Wisconsin

    Science.gov (United States)

    Rose, W.J.

    1988-01-01

    The Apostle Islands National Lakeshore consists of 21 islands, part of the Bayfield Peninsula, and the adjacent waters of Lake Superior. Selected water resources of the Apostle Islands National Lakeshore were assessed to aid the National Park Service in developing and managing the Lakeshore and to provide a data base against which future changes can be compared. This summary of water-resources data, collected by the U.S. Geological Survey during 1979-84, provides a qualitative description of selected hydrologic components of the Lakeshore.

  8. Toward best practice framing of uncertainty in scientific publications: A review of Water Resources Research abstracts

    Science.gov (United States)

    Guillaume, Joseph H. A.; Helgeson, Casey; Elsawah, Sondoss; Jakeman, Anthony J.; Kummu, Matti

    2017-08-01

    Uncertainty is recognized as a key issue in water resources research, among other sciences. Discussions of uncertainty typically focus on tools and techniques applied within an analysis, e.g., uncertainty quantification and model validation. But uncertainty is also addressed outside the analysis, in writing scientific publications. The language that authors use conveys their perspective of the role of uncertainty when interpreting a claim—what we call here "framing" the uncertainty. This article promotes awareness of uncertainty framing in four ways. (1) It proposes a typology of eighteen uncertainty frames, addressing five questions about uncertainty. (2) It describes the context in which uncertainty framing occurs. This is an interdisciplinary topic, involving philosophy of science, science studies, linguistics, rhetoric, and argumentation. (3) We analyze the use of uncertainty frames in a sample of 177 abstracts from the Water Resources Research journal in 2015. This helped develop and tentatively verify the typology, and provides a snapshot of current practice. (4) We make provocative recommendations to achieve a more influential, dynamic science. Current practice in uncertainty framing might be described as carefully considered incremental science. In addition to uncertainty quantification and degree of belief (present in ˜5% of abstracts), uncertainty is addressed by a combination of limiting scope, deferring to further work (˜25%) and indicating evidence is sufficient (˜40%)—or uncertainty is completely ignored (˜8%). There is a need for public debate within our discipline to decide in what context different uncertainty frames are appropriate. Uncertainty framing cannot remain a hidden practice evaluated only by lone reviewers.

  9. Sound data management as a foundation for natural resources management and science

    Science.gov (United States)

    Burley, Thomas E.

    2012-01-01

    Effective decision making is closely related to the quality and completeness of available data and information. Data management helps to ensure data quality in any discipline and supports decision making. Managing data as a long-term scientific asset helps to ensure that data will be usable beyond the original intended application. Emerging issues in water-resources management and climate variability require the ability to analyze change in the conditions of natural resources over time. The availability of quality, well-managed, and documented data from the past and present helps support this requirement.

  10. Land-Water-Food Nexus and indications of crop adjustment for water shortage solution.

    Science.gov (United States)

    Ren, Dandan; Yang, Yonghui; Yang, Yanmin; Richards, Keith; Zhou, Xinyao

    2018-06-01

    While agriculture places the greatest demand on water resources, increasing agricultural production is worsening a global water shortage. Reducing the cultivation of water-consuming crops may be the most effective way to reduce agricultural water use. However, when also taking food demand into consideration, sustaining the balance between regional water and food securities is a growing challenge. This paper addresses this task for regions where water is unsustainable for food production (Beijing-Tianjin-Hebei Region for example) by: (i) assessing the different effects of wheat and maize on water use; (ii) analyzing virtual water and virtual land flows associated with food imports and exports between Beijing-Tianjin-Hebei and elsewhere in China; (iii) identifying sub-regions where grain is produced using scarce water resources but exported to other regions; and (iv) analyzing the potentiality for mitigating water shortage via Land-Water-Food Nexus. In the Beijing-Tianjin-Hebei Region, the study reveals that 29.76 bn m 3 of virtual water (10.81 bn m 3 of blue virtual water) are used by wheat and maize production and 8.77 bn m 3 of virtual water used in nearly 2 million ha of cropland to overproduce 12 million ton of maize for external food consumption. As an importing-based sub-region with high population density, Beijing & Tianjin imported mostly grain (wheat and maize) from Shandong Province. Then, Hebei Province, as an exporting-based sub-region with severe water shortage, overproduced too much grain for other regions, which aggravated the water crisis. To achieve an integrated and sustainable development of the Beijing-Tianjin-Hebei Region, Hebei Province should stop undertaking the breadbasket role for Beijing & Tianjin and pay more attention to groundwater depletion. The analysis of the Land-Water-Food Nexus indicates how shifts in cultivated crops can potentially solve the overuse of water resources without adverse effects on food supply

  11. Land-Water-Food Nexus and Indications of Crop Adjustment for Water Shortage Solution

    Science.gov (United States)

    Yang, Y.; Ren, D.; Zhou, X.

    2017-12-01

    Agriculture places the greatest demand on water resources, and increasing agricultural production is worsening a global water shortage. Reducing the cultivation of water-consuming crops may be the most effective way to reduce agricultural water use. However, when also taking food demand into consideration, sustaining the balance between regional water and food securities is a growing challenge. This paper addresses this task for regions where water is unsustainable for food production (Beijing-Tianjin-Hebei Region for example), by (i) assessing the different effects of wheat and maize on water use; (ii) analyzing virtual water and virtual land flows associated with food imports and exports between Beijing-Tianjin-Hebei and elsewhere in China; (iii) identifying sub-regions where grain are produced using scarce water resources but exported to other regions. (iv) analyzing the potentiality for mitigating water shortage via Land-Water-Food Nexus. In the Beijing-Tianjin-Hebei Region, the study reveals that 29.76 bn m3 of virtual water (10.81 bn m3 of blue virtual water) are used by wheat and maize production and nearly 2 million ha of cropland using 8.77 bn m3 of virtual water overproduced 12 million ton of maize for external food consumption. As an importing-based sub-region with high population density, Beijing and Tianjin (BT) imported mostly grain (wheat and maize) from Shandong (SD). Whereas, Hebei (HB), as an exporting-based sub-region with sever water shortage, overproduced too much grain for other regions (like Central area), which aggravated water crisis. To achieve Beijing-Tianjin-Hebei's integrated and sustainable development, HB should not undertake the breadbasket role for BT but pay more attention to groundwater depletion. The analysis of the Land-Water-Food Nexus indicates how shifts in the cultivated crops can potentially solve the overuse of water resources without adverse effect on food supply, and provides meaningful information to support policy

  12. Water resource taxation with full-cost water pricing: lessons from Europe

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou; Pizzol, Massimo

    Green fiscal reform involves removal of environmentally harmful subsidies, introduction of taxes on pollution and resource depletion as well as full-cost pricing for environmental services. One sector which traditionally has been shielded against Green Fiscal Reform is the water sector, where...... social and distributional concerns have had priority over charging policies. This may seem a paradox, as the water sector is of major financial significance and traditionally accounts for 1-2 per cent of GDP in developed nations. Moreover, in the European Union the Water Framework Directive prescribes...

  13. Long-term climatic change and sustainable ground water resources management

    International Nuclear Information System (INIS)

    Loaiciga, Hugo A

    2009-01-01

    Atmospheric concentrations of greenhouse gases (GHGs), prominently carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), and halocarbons, have risen from fossil-fuel combustion, deforestation, agriculture, and industry. There is currently heated national and international debate about the consequences of such increasing concentrations of GHGs on the Earth's climate, and, ultimately, on life and society in the world as we know it. This paper reviews (i) long-term patterns of climate change, secular climatic variability, and predicted population growth and their relation to water resources management, and, specifically, to ground water resources management, (ii) means available for mitigating and adapting to trends of climatic change and climatic variability and their impacts on ground water resources. Long-term (that is, over hundreds of millions of years), global-scale, climatic fluctuations are compared with more recent (in the Holocene) patterns of the global and regional climates to shed light on the meaning of rising mean surface temperature over the last century or so, especially in regions whose historical hydroclimatic records exhibit large inter-annual variability. One example of regional ground water resources response to global warming and population growth is presented.

  14. Water resources of the Black Sea Basin at high spatial and temporal resolution

    Science.gov (United States)

    Rouholahnejad, Elham; Abbaspour, Karim C.; Srinivasan, Raghvan; Bacu, Victor; Lehmann, Anthony

    2014-07-01

    The pressure on water resources, deteriorating water quality, and uncertainties associated with the climate change create an environment of conflict in large and complex river system. The Black Sea Basin (BSB), in particular, suffers from ecological unsustainability and inadequate resource management leading to severe environmental, social, and economical problems. To better tackle the future challenges, we used the Soil and Water Assessment Tool (SWAT) to model the hydrology of the BSB coupling water quantity, water quality, and crop yield components. The hydrological model of the BSB was calibrated and validated considering sensitivity and uncertainty analysis. River discharges, nitrate loads, and crop yields were used to calibrate the model. Employing grid technology improved calibration computation time by more than an order of magnitude. We calculated components of water resources such as river discharge, infiltration, aquifer recharge, soil moisture, and actual and potential evapotranspiration. Furthermore, available water resources were calculated at subbasin spatial and monthly temporal levels. Within this framework, a comprehensive database of the BSB was created to fill the existing gaps in water resources data in the region. In this paper, we discuss the challenges of building a large-scale model in fine spatial and temporal detail. This study provides the basis for further research on the impacts of climate and land use change on water resources in the BSB.

  15. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  16. Using Water Footprints to Identify Alternatives for Conserving Local Water Resources in California

    Directory of Open Access Journals (Sweden)

    D. L. Marrin

    2016-11-01

    Full Text Available As a management tool for addressing water consumption issues, footprints have become increasingly utilized on scales ranging from global to personal. A question posed by this paper is whether water footprint data that are routinely compiled for particular regions may be used to assess the effectiveness of actions taken by local residents to conserve local water resources. The current California drought has affected an agriculturally productive region with large population centers that consume a portion of the locally produced food, and the state’s arid climate demands a large volume of blue water as irrigation from its dwindling surface and ground water resources. Although California exports most of its food products, enough is consumed within the state so that residents shifting their food choices and/or habits could save as much or more local blue water as their reduction of household or office water use. One of those shifts is reducing the intake of animal-based products that require the most water of any food group on both a gravimetric and caloric basis. Another shift is reducing food waste, which represents a shared responsibility among consumers and retailers, however, consumer preferences ultimately drive much of this waste.

  17. Water: A critical resource in the thermoelectric power industry

    International Nuclear Information System (INIS)

    Feeley, Thomas J. III.; McNemar, Andrea; Skone, Timothy J.; Stiegel, Gary J. Jr.; Nemeth, Michael; Schimmoller, Brian; Murphy, James T.; Manfredo, Lynn

    2008-01-01

    Water availability represents a growing concern for meeting future power generation needs. In the United States, projected population growth rates, energy consumption patterns, and demand from competing water use sectors will increase pressure on power generators to reduce water use. Water availability and use also exhibit strong regional variations, complicating the nature of public policy and technological response. The US Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is engaged in a research and development (R and D) program to reduce freshwater withdrawal (total quantity of water utilized) and consumption (portion of withdrawal not returned to the source) from existing and future thermoelectric power generating facilities. The Innovations for Existing Plants (IEP) Program is currently developing technologies in 5 categories of water management projects to reduce water use while minimizing the impacts of plant operations on water quality. This paper outlines the freshwater withdrawal and consumption rates for various thermoelectric power generating types and then estimates the potential benefits of IEP program technologies at both the national and regional levels in the year 2030. NETL is working to protect and conserve water resources while leveraging domestic fossil fuel resources, such as coal, to increase national energy security. (author)

  18. A Connection Entropy Approach to Water Resources Vulnerability Analysis in a Changing Environment

    Directory of Open Access Journals (Sweden)

    Zhengwei Pan

    2017-11-01

    Full Text Available This paper establishes a water resources vulnerability framework based on sensitivity, natural resilience and artificial adaptation, through the analyses of the four states of the water system and its accompanying transformation processes. Furthermore, it proposes an analysis method for water resources vulnerability based on connection entropy, which extends the concept of contact entropy. An example is given of the water resources vulnerability in Anhui Province of China, which analysis illustrates that, overall, vulnerability levels fluctuated and showed apparent improvement trends from 2001 to 2015. Some suggestions are also provided for the improvement of the level of water resources vulnerability in Anhui Province, considering the viewpoint of the vulnerability index.

  19. Resolving and Prevention of Shared Water Resources Conflicts ...

    African Journals Online (AJOL)

    Learning from experiences from other parts of the world, it was recommended to incorporate game theory technique in water resources conflicts and cooperation in the African river basins for equitable and fair utilization and management of shared water. Journal of Civil Engineering Research and Practice Vol.1(1) 2004: 51- ...

  20. Water resources management in a homogenizing world: Averting the Growth and Underinvestment trajectory

    Science.gov (United States)

    Mirchi, Ali; Watkins, David W.; Huckins, Casey J.; Madani, Kaveh; Hjorth, Peder

    2014-09-01

    Biotic homogenization, a de facto symptom of a global biodiversity crisis, underscores the urgency of reforming water resources management to focus on the health and viability of ecosystems. Global population and economic growth, coupled with inadequate investment in maintenance of ecological systems, threaten to degrade environmental integrity and ecosystem services that support the global socioeconomic system, indicative of a system governed by the Growth and Underinvestment (G&U) archetype. Water resources management is linked to biotic homogenization and degradation of system integrity through alteration of water systems, ecosystem dynamics, and composition of the biota. Consistent with the G&U archetype, water resources planning primarily treats ecological considerations as exogenous constraints rather than integral, dynamic, and responsive parts of the system. It is essential that the ecological considerations be made objectives of water resources development plans to facilitate the analysis of feedbacks and potential trade-offs between socioeconomic gains and ecological losses. We call for expediting a shift to ecosystem-based management of water resources, which requires a better understanding of the dynamics and links between water resources management actions, ecological side-effects, and associated long-term ramifications for sustainability. To address existing knowledge gaps, models that include dynamics and estimated thresholds for regime shifts or ecosystem degradation need to be developed. Policy levers for implementation of ecosystem-based water resources management include shifting away from growth-oriented supply management, better demand management, increased public awareness, and institutional reform that promotes adaptive and transdisciplinary management approaches.

  1. Water use efficiency and integrated water resource management for river basin

    Science.gov (United States)

    Deng, Xiangzheng; Singh, R. B.; Liu, Junguo; Güneralp, Burak

    Water use efficiency and management have attracted increasing attention as water has become scare to challenge the world's sustainable development. Water use efficiency is correlated to the land use and cover changes (LUCC), population distribution, industrial structure, economic development, climate changes, and environmental governance. These factors significantly alter water productivity for water balance through the changes in natural environment and socio-economic system (Wang et al., 2015b). Consequently, dynamics of water inefficiency lower the social welfare of water allocation (Wang et al., 2015b), and induce water management alternation interactively and financially (Wang et al., 2015a). This triggers on actual water price changes through both natural resource and socioeconomic system (Zhou et al., 2015). Therefore, it is very important to figure out a mechanism of water allocation in the course of LUCC (Jin et al., 2015) at a global perspective (Zhao et al., 2015), climate and economic changes of ecosystem service at various spatial and temporal scales (Li et al., 2015).

  2. Water Resources Management in Tanzania: Identifying Research ...

    African Journals Online (AJOL)

    many factors affecting water resources decision making, it is ubiquitous in that it permeates the planning, policy-making .... estimated that in many farming systems, more than 70% of the rain ..... Using correlation techniques, the relationship ...

  3. Analysis of the Water Resources on Baseflow River Basin in Jeju Island, Korea

    Science.gov (United States)

    Yang, S.-K.; Jung, W.-Y.; Kang, M.-S.

    2012-04-01

    Jeju Island is a volcanic island located at the southernmost of Korea, and is the heaviest raining area in Korea, but due to its hydrological / geological characteristics different from those of inland areas, most streams are of the dry form, and it relies on groundwater for water resources. As for some streams, however, springwater is discharged at a point near the downstream of the final discharge to maintain the flow of the stream; this has been developed as the source for water supply since the past, but the studies on detail observations and analysis are yet inadequate. This study utilizes the ADCP (Acoustic Doppler Current Profiler) hydrometer to regularly observe the flow amount of base run-off stream, and the water resources of base discharge basin of Jeju Island were analyzed using the SWAT (Soil & Water Assessment Tool) model. The detail water resource analysis study using modeling and site observation with high precision for Jeju Island water resources is expected to become the foundation for efficient usage and security of water resources against future climate changes.

  4. Serious-game for water resources management adaptation training to climatic changes

    Science.gov (United States)

    Leroy, Eve; Saulnier, Georges-Marie

    2013-04-01

    Water resources access is a main issue for territorial development to ensure environmental and human well-being. Indeed, sustainable development is vulnerable to water availability and climate change may affect the quantity and temporality of available water resources for anthropogenic water uses. How then to adapt, how to change water management rules and practices and how to involve stakeholders is such process? To prevent water scarcity situations, which may generate conflicts and impacts on ecosystems, it is important to think about a sustainable development where anthropogenic water uses are in good balance with forecasted water resources availability. This implies to raise awareness and involve stakeholders for a sustainable water management. Stakeholders have to think about future territorial development taking into account climate change impacts on water resources. Collaboration between scientists and stakeholders is essential to insure consistent climate change knowledge, well identification of anthropogenic uses, tensions and stakes of the territory. However sharing information on complex questions such as climate change, hydro-meteorological modeling and practical constraints may be a difficult task. Therefore to contribute to an easier debate and to the global training of all the interested actors, a serious game about water management was built. The serious game uses scientist complex models with real data but via a simple and playful web-game interface. The advantage of this interface is that it may help stakeholders, citizen or the target group to raise their understandings of impacts of climate change on water resources and to raise their awareness to the need for a sustainable water management while using state-of-the-art knowledge. The principle of the game is simple. The gamer is a mayor of a city and has to manage the water withdrawals from hydro systems, water distribution and consumption, water retreatment etc. In the same time, a clock is

  5. optimization of water resources allocation in semi-arid region

    African Journals Online (AJOL)

    Eng Obi Ibeje

    This study is aimed at achieving optimal water resources allocation .... (2005) points out, in his discussions of non- cooperative games model ... the linear and dynamic programming model which many ... e.g. Institute of Water and Hydropower.

  6. Impact of CO/sub 2/ on cooling of snow and water surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, B [Computer Sciences Corp., Silver Spring, MD; Kukla, G

    1979-08-23

    The levels of CO/sub 2/ in the atmosphere are being increased by the burning of fossil fuels and reduction of biomass. It has been calculated that the increase in CO/sub 2/ levels should lead to global warming because of increased absorption by the atmosphere of terrestrial longwave radiation in the far IR (> 5 ..mu..m). From model computations, CO/sub 2/ is expected to produce the largest climatic effect in high latitudes by reducing the size of ice and snow fields. We present here computations of spectral radiative transfer and scattering within a snow pack and water. The results suggest that CO/sub 2/ significantly reduces the shortwave energy absorbed by the surface of snow and water. The energy deficit, when not compensated by downward atmospheric radiation, may delay the recrystallisation of snow and dissipation of packice and result in a cooling rather than a warming effect.

  7. Streambeds Merit Recognition as a Scientific Discipline

    Science.gov (United States)

    Constantz, J. E.

    2016-12-01

    Streambeds are generally viewed as simply sediments beneath streams, sediments topping alluvial aquifers, or sediments housing aquatic life, rather than as distinct geographic features comparable to soils and surficial geologic formations within watersheds. Streambeds should be viewed as distinct elements within watersheds, e.g., as akin to soils. In this presentation, streambeds are described as central features in watersheds, cycling water between the surface and underlying portions of the watershed. Regarding their kinship to soils, soils are often described as surficial sediments largely created by atmospheric weathering of underlying geologic parent material, and similarly, streambeds should be described as submerged sediments largely created by streamflow modification of underlying geologic parent material. Thus, streambeds are clearly overdue for recognition as their own scientific discipline along side other well-recognized disciplines within watersheds; however, slowing progress in this direction, the point is often made that hyporheic zones should be considered comparable to streambeds, but this is as misguided as equating unsaturated zones to soils. Streambeds and soils are physical geographic features of relatively constant volume, while hyporheic and unsaturated zones are hydrologic features of varying volume. Expanded upon in this presentation, 'Streambed Science' is proposed for this discipline, which will require both a well-designed protocol to physically characterize streambeds as well as development of streambed taxonomy, for suitable recognition as an independent discipline within watersheds.

  8. Synthesis and structure of heptaaqua(nitrilotris(methylenephosphonato))(dibarium)sodium monohydrate [Na(H{sub 2}O){sub 3}(μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3})(μ-H{sub 2}O){sub 3}Ba{sub 2}(H{sub 2}O)] · H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Somov, N. V., E-mail: somov@phys.unn.ru [Lobachevsky State University of Nizhny Novgorod (Russian Federation); Chausov, F. F., E-mail: xps@ftiudm.ru [Russian Academy of Sciences, Physical–Technical Institute, Ural Branch (Russian Federation); Zakirova, R. M., E-mail: ftt@udsu.ru [Udmurt State University (Russian Federation)

    2017-03-15

    Crystals of the monohydrate form of heptaaqua(nitrilotris(methylenephosphonato))(dibarium) sodium [Na(H{sub 2}O{sub )3}(µ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3})(µ-H{sub 2}O){sub 3}Ba{sub 2}(H{sub 2}O)] · H{sub 2}O are obtained; space group P2{sub 1}/c, Z = 4; a = 13.9117(10) Å, b = 11.54030(10) Å, and c = 24.1784(17) Å, ß = 148.785(18)°. The Na atom is coordinated octahedrally by one oxygen atom of a phosphonate group and five water molecules, including two bridging molecules. Ba atoms occupy two inequivalent crystallographic positions with coordination number eight and nine. The coordination spheres of both Ba atoms include two water molecules. Each ligand is bound to one Na atom and five Ba atoms forming three Ba–O–P–O and five Ba–O–P–C–N–C–P–O chelate cycles. In addition to the coordination bonds, molecules, including the solvate water molecule, are involved in hydrogen bonds in the crystal packing.

  9. Effects of climate change on evapotranspiration over the Okavango Delta water resources

    Science.gov (United States)

    Moses, Oliver; Hambira, Wame L.

    2018-06-01

    In semi-arid developing countries, most poor people depend on contaminated surface or groundwater resources since they do not have access to safe and centrally supplied water. These water resources are threatened by several factors that include high evapotranspiration rates. In the Okavango Delta region in the north-western Botswana, communities facing insufficient centrally supplied water rely mainly on the surface water resources of the Delta. The Delta loses about 98% of its water through evapotranspiration. However, the 2% remaining water rescues the communities facing insufficient water from the main stream water supply. To understand the effects of climate change on evapotranspiration over the Okavango Delta water resources, this study analysed trends in the main climatic parameters needed as input variables in evapotranspiration models. The Mann Kendall test was used in the analysis. Trend analysis is crucial since it reveals the direction of trends in the climatic parameters, which is helpful in determining the effects of climate change on evapotranspiration. The main climatic parameters required as input variables in evapotranspiration models that were of interest in this study were wind speeds, solar radiation and relative humidity. Very little research has been conducted on these climatic parameters in the Okavango Delta region. The conducted trend analysis was more on wind speeds, which had relatively longer data records than the other two climatic parameters of interest. Generally, statistically significant increasing trends have been found, which suggests that climate change is likely to further increase evapotranspiration over the Okavango Delta water resources.

  10. Electrosprayed heterojunction WO{sub 3}/BiVO{sub 4} films with nanotextured pillar structure for enhanced photoelectrochemical water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Mali, Mukund G.; Yoon, Hyun; Yoon, Sam S., E-mail: skyoon@korea.ac.kr [School of Mechanical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Min-woo [School of Mechanical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Green School, Korea University, Seoul 136-713 (Korea, Republic of); Swihart, Mark T. [Department of Chemistry and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260 (United States); Al-Deyab, Salem S. [Department of Chemistry, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

    2015-04-13

    We demonstrate that the addition of a tungsten oxide (WO{sub 3}) layer beneath a bismuth vanadate (BiVO{sub 4}) photocatalyst layer with a nanotextured pillar morphology significantly increases the photocurrent density in photoelectrochemical water splitting. The WO{sub 3}-BiVO{sub 4} bilayer films produced a photocurrent of up to 3.3 mA/cm{sup 2} under illumination at 100 mW/cm{sup 2} (AM1.5 spectrum). The bilayer film was characterized by scanning electron microscopy, X-ray diffraction, and photoelectrochemical methods, which confirmed the superiority of the bilayer film in terms of its morphology and charge separation and transport ability. Both WO{sub 3} and BiVO{sub 4} were deposited by electrostatic spraying under open-air conditions, which resulted in nanotextured pillars of BiVO{sub 4} atop a smooth WO{sub 3} film. The optimal coating conditions are also reported.

  11. Waters Without Borders: Scarcity and the Future of State Interactions over Shared Water Resources

    Science.gov (United States)

    2010-04-01

    earth’s water is fresh water , stored in rivers, lakes, reservoirs, glaciers, permanent snow, groundwater aquifers, and the atmosphere. 10 This... freshwater resources between and within countries. 13 There is significant media attention given to intra-state water sharing issues. One...intrusion into coastal ground freshwater sources, among other effects. Consequently, water scarcity brought about by climate change could drive

  12. Water resources management: traditional technology and communities as part of the solution

    Science.gov (United States)

    Hussain, J.; Husain, I.; Arif, M.

    2014-09-01

    Rajasthan, the largest State in India, has one of the most critical water statuses. Rajasthan, with more than 10.4 % of the country's geographical area, supports more than 5.5 % of the human population and 18.70 % of the livestock, but only has 1.16 % of the total surface water available in the country. More than 60 % of the state is a part of the Great Thar Desert, and of the total 142 desert blocks in the country, 85 blocks are in the state of Rajasthan. The per capita annual water availability in the state is about 780 m3, compared with the minimum requirement of 1000 m3. It is feared that the availability would fall below 450 m3 by the year 2050. Thus, increasing population coupled with erratic rainfall further aggravates the water crisis. It is possible to harvest and augment water resources through the construction of small water harvesting structures called johads and the implementation of local water governance. This has been amply demonstrated by the successful experience of local communities in Alwar District in Rajasthan. Since 1985, 8600 johads have been built in 1086 villages. This has resulted in the rise in water levels in the shallow aquifer, increase in the area under single and double crops, increase in forest cover and drinking water supply security. The water collected in a johad during the monsoon penetrates into the sub-soil. This recharges the groundwater and improves the soil moisture in vast areas. The water in the johad can be used directly for irrigation, drinking water by animals, and other domestic purposes. The other advantage of this structure is that it checks soil erosion, mitigates floods, and ensures water availability in wells or boreholes used for drinking water supply, even for several successive drought years. Also, during the dry season when the water gradually recedes in the johad, the land inside the johad itself becomes available for cultivation.

  13. Water resources management: traditional technology and communities as part of the solution

    Directory of Open Access Journals (Sweden)

    J. Hussain

    2014-09-01

    Full Text Available Rajasthan, the largest State in India, has one of the most critical water statuses. Rajasthan, with more than 10.4 % of the country’s geographical area, supports more than 5.5 % of the human population and 18.70 % of the livestock, but only has 1.16 % of the total surface water available in the country. More than 60 % of the state is a part of the Great Thar Desert, and of the total 142 desert blocks in the country, 85 blocks are in the state of Rajasthan. The per capita annual water availability in the state is about 780 m3, compared with the minimum requirement of 1000 m3. It is feared that the availability would fall below 450 m3 by the year 2050. Thus, increasing population coupled with erratic rainfall further aggravates the water crisis. It is possible to harvest and augment water resources through the construction of small water harvesting structures called johads and the implementation of local water governance. This has been amply demonstrated by the successful experience of local communities in Alwar District in Rajasthan. Since 1985, 8600 johads have been built in 1086 villages. This has resulted in the rise in water levels in the shallow aquifer, increase in the area under single and double crops, increase in forest cover and drinking water supply security. The water collected in a johad during the monsoon penetrates into the sub-soil. This recharges the groundwater and improves the soil moisture in vast areas. The water in the johad can be used directly for irrigation, drinking water by animals, and other domestic purposes. The other advantage of this structure is that it checks soil erosion, mitigates floods, and ensures water availability in wells or boreholes used for drinking water supply, even for several successive drought years. Also, during the dry season when the water gradually recedes in the johad, the land inside the johad itself becomes available for cultivation.

  14. Bioregional Assessments: Determining the Impacts of Coal Resource Development on Water Resources in Australia through Groundwater, Surface Water and Ecological Modelling

    Science.gov (United States)

    Peeters, L. J.; Post, D. A.; Crosbie, R.; Holland, K.

    2017-12-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States, in Australia extraction of methane from coal bed methane deposits (termed `coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction on surface and groundwater resources may be of even greater concern. The Australian Federal Government commissioned a multi-disciplinary programme of bioregional assessments to improve understanding of the potential impacts of coal seam gas and large coal mining activities on water resources and water-dependent assets across six bioregions Australia. A bioregional assessment is a transparent scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. The first step in the analysis is to establish the most likely scenario for coal development in each region and establish a causal pathway linking coal development to impacts to the social, economic and ecological functioning of water resources. This forms the basis for a sequence of probabilistic geological, hydrogeological, hydrological and ecological models to quantify the probability of potential impacts. This suite of models is developed independent of the proponents and regulators of coal resource developments and so can provide unbiased information to all stakeholders. To demonstrate transparency of the modelling, all inputs, outputs and executables will be available from http://www.bioregionalassessments.gov.au. The analysis delineated a zone of potential hydrological change for each region, outside of which impacts

  15. Analysis of the conceptions and expectations of students in the courses of pedagogy, administration and human resources about the discipline of science, technology and society

    Science.gov (United States)

    de Souza, Alexandre; de Oliveira Neves, Jobert; Ferreira, Orlando Rodrigues; Lúcia Costa Amaral, Carmem; Delourdes Maciel, Maria; Voelzke, Marcos Rincon; Nascimento, Rômulo Pereira

    2012-10-01

    Provided for the education curricula since 1960, the focus on Science, Technology and Society (STS) has been poorly implemented even until today. Set as a goal to be achieved at all levels of education by 2014, in Brazil it is necessary to undertake specific actions in pursuit of putting into practice what has been stalled over the years in Education. As a result of joint efforts of teachers and students of the Masters in Teaching Science and Mathematics at the Universidade Cruzeiro do Sul comes the challenge of providing a specific discipline dealing with the concepts of STS, offered as a optional special, initially for students of Pedagogy and later, due to the interest of some students, for the course of Administration and Human Resources of this institution. The survey of previous conceptions of students enrolled in the Special Discipline Elective Science, Technology and Society (CTS DOP) on the triad of STS showed a great ignorance on the same theme. The reports reveal conceptions of students who approach the linear model of development. As to the generated expectations in terms of discipline, there stand out the desires of expansion of knowledge for possible applications in personal and professional life. This research aims to evaluate the current course, while identifying ways to improve and strengthen the STS movement in education.

  16. Dynamical Models of Interactions between Herds Forage and Water Resources in Sahelian Region

    Directory of Open Access Journals (Sweden)

    Jean Jules Tewa

    2014-01-01

    Full Text Available Optimal foraging is one of the capital topics nowadays in Sahelian region. The vast majority of feed consumed by ruminants in Sahelian region is still formed by natural pastures. Pastoral constraints are the high variability of available forage and drinking water in space and especially in time (highly seasonal, interannual variability and the scarcity of water resources. The mobility is the main functional and opportunistic adaptation to these constraints. Our goal in this paper is to formalize two dynamical models for interactions between a herd of domesticate animals, forage resources, and water resources inside a given Sahelian area, in order to confirm, explain, and predict by mathematical models some observations about pastoralism in Sahelian region. These models in some contexts can be similar to predator-prey models as forage and water resources can be considered as preys and herd’s animals as predators. These models exhibit very rich dynamics, since it predicts abrupt changes in consumer behaviour and disponibility of forage or water resources. The dynamics exhibits a possible coexistence between herd, resources, and water with alternative peaks in their trajectories.

  17. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O

    Energy Technology Data Exchange (ETDEWEB)

    Kharlamov, Alexey [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine); Bondarenko, Marina, E-mail: mebondarenko@ukr.net [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine); Kharlamova, Ganna [Taras Shevchenko National University of Kiev, Volodymyrs' ka St. 64, 01601 Kiev (Ukraine); Fomenko, Veniamin [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine)

    2016-09-15

    For the first time at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O reduced carbon nitride (or reduced multi-layer azagraphene) is obtained. It is differed from usually synthesized carbon nitride by a significantly large (on 0.09 nm) interplanar distance is. At the same time, the chemical bonds between atoms in a heteroatomic plane of reduced carbon nitride correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. The samples of water-soluble carbon nitride oxide were synthesized under the special reactionary conditions of a pyrolysis of melamine and urea. We believe that reduced carbon nitride consists of weakly connected carbon-nitrogen monosheets (azagraphene sheets) as well as reduced (from graphene oxide) graphene contains weakly connected graphene sheets. - Graphical abstract: XRD pattern and schematic atomic model of one layer of reduced carbon nitride, carbon nitride oxide and synthesized carbon nitride. For the first time at the reduction by hydroquinone of the water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O is obtained the reduced carbon nitride (or reduced multi-layer azagraphene). Display Omitted - Highlights: • First the reduced carbon nitride (RCN) at the reduction of the carbon nitride oxide was obtained. • Water-soluble carbon nitride oxide was reduced by hydroquinone. • The chemical bonds in a heteroatomic plane of RCN correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. • Reduced carbon nitride consists of poorly connected heteroatomic azagraphene layers.

  18. Study on the Flexibility in Cross-Border Water Resources Cooperation Governance

    Science.gov (United States)

    Liu, Zongrui; Wang, Teng; Zhou, Li

    2018-02-01

    Flexible strategy is very important to cross-border cooperation in international rivers water resources, which may be employed to reconcile contradictions and ease conflicts. Flexible characters of cross-border cooperation in international rivers water resources could be analyzed and revealed, using flexible strategic management framework, by taking international cooperation protocols related to water from Transboundary Freshwater Disputes Database (TFDD) as samples from the number of cooperation issues, the amount of management layers and regulator agencies in cooperation organization and the categories of income (cost) distribution (allocation) mode. The research demonstrates that there are some flexible features of cross-border cooperation in international rivers water resources: Riparian countries would select relative diversification strategies related to water, tend to construct a flexible cooperation organization featured with moderate hierarchies from vertical perspective and simplified administrations from horizontal perspective, and adopt selective inducement modes to respect ‘joint and several liability’.

  19. SALINE WATER RESOURCES IN CLUJ-NAPOCA SURROUNDINGS

    Directory of Open Access Journals (Sweden)

    B. CZELLECZ

    2016-03-01

    Full Text Available Saline waters are usually researched in those places where it is used for balneotherapy or other industrial purposes. The aim of this study is to describe the saline water sources from less known areas, as they are an important natural mineral water resource. Twenty nine water samples were analyzed from Cojocna-Pata-Sopor region, thirteen of them can be considered saline waters. The visited locations are 21, 15 and 3 km far from Cluj-Napoca. Highly concentrated springs are to be found in the old mine area from Pata village and in the slough from Cojocna. Beside the well known saline lakes from Cojocna, five other saline lakes were identified; most of them are having artificial origin.

  20. Assessment of the Vulnerability of Water Resources to Seasonal Fires Across the Northern Sub-Saharan African Region

    Science.gov (United States)

    Ichoku, Charles M.

    2010-01-01

    The northern sub-Saharan African (NSSA) region, extending from the southern fringes of the Sahara to the Equator, and stretching west to east from the Atlantic to the Indian ocean coasts, plays a prominent role in the distribution of Saharan dust and other airborne matter around the region and to other parts of the world, the genesis of global atmospheric circulation, and the birth of such major (and often catastrophic) events as hurricanes. Therefore, this NSSA region represents a critical variable in the global climate change equation. Recent satellite-based studies have revealed that the NSSA region has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be a major driver of the regional carbon, energy, and water cycles. We acknowledge that the rainy season in the NSSA region is from April to September while biomass burning occurs mainly during the dry season (October to March). Nevertheless, these two phenomena are indirectly coupled to each other through a chain of complex processes and conditions, including land-cover and surface-albedo changes, the carbon cycle, evapotranspiration, drought, desertification, surface water runoff, ground water recharge, and variability in atmospheric composition, heating rates, and circulation. In this presentation, we will examine the theoretical linkages between these processes, discuss the preliminary results based on satellite data analysis, and provide an overview of plans for more integrated research to be conducted over the next few years.

  1. World water resources and water use: Modern assessment and outlook for the 21st century

    International Nuclear Information System (INIS)

    Shiklomanov, I.A.

    1999-01-01

    A quantitative assessment of the world water resources, water use, and water availability has been made during 1991-1996. The assessment has been made in retrospective for the period 1921-1985, for 1995, and for the future (2000, 2010 and 2025)

  2. The potential impacts of biomass feedstock production on water resource availability.

    Science.gov (United States)

    Stone, K C; Hunt, P G; Cantrell, K B; Ro, K S

    2010-03-01

    Biofuels are a major topic of global interest and technology development. Whereas bioenergy crop production is highly dependent on water, bioenergy development requires effective allocation and management of water. The objectives of this investigation were to assess the bioenergy production relative to the impacts on water resource related factors: (1) climate and weather impact on water supplies for biomass production; (2) water use for major bioenergy crop production; and (3) potential alternatives to improve water supplies for bioenergy. Shifts to alternative bioenergy crops with greater water demand may produce unintended consequences for both water resources and energy feedstocks. Sugarcane and corn require 458 and 2036 m(3) water/m(3) ethanol produced, respectively. The water requirements for corn grain production to meet the US-DOE Billion-Ton Vision may increase approximately 6-fold from 8.6 to 50.1 km(3). Furthermore, climate change is impacting water resources throughout the world. In the western US, runoff from snowmelt is occurring earlier altering the timing of water availability. Weather extremes, both drought and flooding, have occurred more frequently over the last 30 years than the previous 100 years. All of these weather events impact bioenergy crop production. These events may be partially mitigated by alternative water management systems that offer potential for more effective water use and conservation. A few potential alternatives include controlled drainage and new next-generation livestock waste treatment systems. Controlled drainage can increase water available to plants and simultaneously improve water quality. New livestock waste treatments systems offer the potential to utilize treated wastewater to produce bioenergy crops. New technologies for cellulosic biomass conversion via thermochemical conversion offer the potential for using more diverse feedstocks with dramatically reduced water requirements. The development of bioenergy

  3. Resource capture by single leaves

    Energy Technology Data Exchange (ETDEWEB)

    Long, S.P.

    1992-05-01

    Leaves show a variety of strategies for maximizing CO{sub 2} and light capture. These are more meaningfully explained if they are considered in the context of maximizing capture relative to the utilization of water, nutrients and carbohydrates reserves. There is considerable variation between crops in their efficiency of CO{sub 2} and light capture at the leaf level. Understanding of these mechanisms indicate some ways in which efficiency of resource capture could be level cannot be meaningfully considered without simultaneous understanding of implications at the canopy level. 36 refs., 5 figs., 1 tab.

  4. Integrated system dynamics toolbox for water resources planning.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don (University of Chicago, Chicago, IL); Hanson, Jason (University of New Mexico, Albuquerque, NM); Grimsrud, Kristine (University of New Mexico, Albuquerque, NM); Thacher, Jennifer (University of New Mexico, Albuquerque, NM); Broadbent, Craig (University of New Mexico, Albuquerque, NM); Brookshire, David (University of New Mexico, Albuquerque, NM); Chemak, Janie (University of New Mexico, Albuquerque, NM); Cockerill, Kristan (Cockeril Consulting, Boone, NC); Aragon, Carlos (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Hallett, Heather (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Vivoni, Enrique (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Roach, Jesse

    2006-12-01

    Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward

  5. Missouri StreamStats—A water-resources web application

    Science.gov (United States)

    Ellis, Jarrett T.

    2018-01-31

    The U.S. Geological Survey (USGS) maintains and operates more than 8,200 continuous streamgages nationwide. Types of data that may be collected, computed, and stored for streamgages include streamgage height (water-surface elevation), streamflow, and water quality. The streamflow data allow scientists and engineers to calculate streamflow statistics, such as the 1-percent annual exceedance probability flood (also known as the 100-year flood), the mean flow, and the 7-day, 10-year low flow, which are used by managers to make informed water resource management decisions, at each streamgage location. Researchers, regulators, and managers also commonly need physical characteristics (basin characteristics) that describe the unique properties of a basin. Common uses for streamflow statistics and basin characteristics include hydraulic design, water-supply management, water-use appropriations, and flood-plain mapping for establishing flood-insurance rates and land-use zones. The USGS periodically publishes reports that update the values of basin characteristics and streamflow statistics at selected gaged locations (locations with streamgages), but these studies usually only update a subset of streamgages, making data retrieval difficult. Additionally, streamflow statistics and basin characteristics are most often needed at ungaged locations (locations without streamgages) for which published streamflow statistics and basin characteristics do not exist. Missouri StreamStats is a web-based geographic information system that was created by the USGS in cooperation with the Missouri Department of Natural Resources to provide users with access to an assortment of tools that are useful for water-resources planning and management. StreamStats allows users to easily obtain the most recent published streamflow statistics and basin characteristics for streamgage locations and to automatically calculate selected basin characteristics and estimate streamflow statistics at ungaged

  6. CONSTRUCTED WETLAND TECHNOLOGY TO PREVENT WATER RESOURCES POLLUTION

    OpenAIRE

    Zeki Gökalp; Sedat Karaman; Ismail Taş; Halil Kirnak

    2016-01-01

    Discharge of untreated waste waters into surface waters creates significant pollution in these resources. Wastewaters are most of the time discharged into seas, rivers and other water bodies without any treatments due to high treatment costs both in Turkey and throughout the world. Constructed wetlands, also called as natural treatment systems, are used as an alternative treatment system to conventional high-cost treatment systems because of their low construction, operation and maintenance c...

  7. Photoelectrochemical water splitting using CuIn{sub 1-x}Ga{sub x}S{sub 2}/CdS thin-film solar cells for hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Jahagirdar, Anant H.; Dhere, Neelkanth G. [Florida Solar Energy Center, 1679 Clearlake Road, Cocoa, FL 32922 (United States)

    2007-09-22

    Photoelectrochemical (PEC) efficiency of a PEC cell constructed by series connecting two {proportional_to}0.43 cm{sup 2} size, 5.95% (AM1.5) efficient CuIn{sub 1-x}Ga{sub x}S{sub 2} (CIGS2) thin-film photovoltaic (PV) cells having transparent and conducting back contacts, outside the electrolyte, to RuS{sub 2} photoanode and platinum cathode, in the electrolyte, for oxygen and hydrogen generation by water splitting was 2.99%. PV electrolysis efficiency of a similar setup prepared using two CIGS2 PV cells having opaque Mo back contacts and highest achieved efficiency of 11.99% (AM1.5) connected to RuS{sub 2} and Pt electrodes was 8.78%. This significant result points a way toward attaining higher PEC efficiencies. (author)

  8. Can iron oxides remove Cr(VI) from drinking water at sub-ppb levels?

    Science.gov (United States)

    Kaprara, Efthymia; Simeonidis, Konstantinos; Samaras, Petros; Zouboulis, Anastasios; Mitrakas, Manassis

    2013-04-01

    Hexavalent chromium [Cr(VI)] has long been recognized as a potential carcinogen via inhalation, in contrast to trivalent chromium [Cr(III)] which is 100 times less toxic and also a necessary nutrient, essential to human glucidic metabolism. Nowadays there is an increasing concern that Cr(VI) is also carcinogenic by the oral route of exposure, while an increased number of publications indicate that Cr(VI) is a common natural pollutant. Hexavalent chromium formation is attributed to natural oxidation of Cr(III) in ultramafic derived soils and ophiolithic rocks. To verify this theory, drinking water samples were collected from targeted areas of Greece e.g. areas in which the geological background is predominated by ultramafic minerals and the water supply depends mainly on groundwater resources. Valuable guide for the samples collection was the geological map of Greece and emphasis was given to regions where the natural occurrence of Cr(VI) is thought to be more possible. A wide range of Cr concentrations (2-100 μg/L) were detected in the areas studied, with most of them ranging below the current limit of 50 μg/L, and the Cr(VI) concentration being more than 90% of the total. Since the Cr(VI) affects significant part of population worldwide, a debate was established concerning the enforcement of stringent regulation, which also demands the drinking water treatment processes re-evaluation in view of Cr(VI) removal at sub-ppb level. In this regard, adsorption has evolved as the front line of defense for chromium removal. The motivation of this work was to investigate the efficiency of iron oxides for the adsorption of Cr(VI) from drinking water and its removal at sub-ppb levels. The adsorbents examined included iron oxy-hydroxides and magnetite prepared using common low cost iron salts. Their effectiveness as Cr(VI) adsorbents was evaluated through the decrease of a Cr(VI) concentration of 100μg/L prepared in NSF water at pH 7. Preliminary batch experiments did not

  9. Preparation and characterization of highly water-soluble magnetic Fe{sub 3}O{sub 4} nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Honghong; Qin, Li [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Feng, Ying [Department of Bridge Engineering, Shanxi Railway Institute, Weinan 714000 (China); Hu, Lihua [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Zhou, Chunhua, E-mail: chm_zhouch@ujn.edu.cn [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2015-06-15

    A kind of double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe{sub 3}O{sub 4} magnetic nanoparticles (Fe{sub 3}O{sub 4}-AOS-MN) with highly water-solubility was prepared by a wet co-precipitation method with a pH of 4.8. The resulting Fe{sub 3}O{sub 4}-AOS-MN could be dispersed into water to form stable magnetic fluid without other treatments. The result of X-ray diffraction (XRD) indicated that the Fe{sub 3}O{sub 4}-AOS-MN maintained original crystalline structure and exhibited a diameter of about 7.5 nm. The iron oxide phase of nanoparticles determined by Raman spectroscopy is Fe{sub 3}O{sub 4}. Transmission electron microscopy (TEM) analysis confirmed that the Fe{sub 3}O{sub 4}-AOS-MN with spherical morphology were uniformly dispersed in water. FT-IR spectroscopy (FT-IR) and thermo-gravimetric analysis (TGA) verified the successful preparation of Fe{sub 3}O{sub 4}-AOS-MN capped with double-layered self-assembled AOS. The corresponding capacities of monolayer chemical absorption and the second-layer self-assembly absorption were respectively 4.07 and 14.71 wt% of Fe{sub 3}O{sub 4}-MN, which were much lower than those of other surfactants. Vibrating sample magnetometer (VSM) test result showed Fe{sub 3}O{sub 4}-AOS-MN possessed superparamagnetic behavior with the saturation magnetization value of about 44.45 emu/g. The blocking temperature T{sub B} of Fe{sub 3}O{sub 4}-AOS-MN capped with double-layered AOS is 170 K. - Highlights: • Double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe{sub 3}O{sub 4} magnetic nanoparticles are prepared by a wet co-precipitation method. • Double-layered Fe{sub 3}O{sub 4}-AOS-MN exhibits highly water-solubility. • The iron oxide phase is determined by Raman spectroscopy. • Fe{sub 3}O{sub 4}-AOS-MN capped with double-layered AOS possesses super-paramagnetic behavior. • The blocking temperature T{sub B} of Fe{sub 3}O{sub 4}-AOS-MN capped with double-layered AOS is 170 K.

  10. Evaluating Impacts of Land Use/Land Cover Change on Water Resources in Semiarid Regions

    Science.gov (United States)

    Scanlon, B. R.; Faunt, C. C.; Pool, D. R.; Reedy, R. C.

    2017-12-01

    Land use/land cover (LU/LC) changes play an integral role in water resources by controlling the partitioning of water at the land surface. Here we evaluate impacts of changing LU/LC on water resources in response to climate variation and change and land use change related to agriculture using data from semiarid regions in the southwestern U.S. Land cover changes in response to climate can amplify or dampen climate impacts on water resources. Changes from wet Pleistocene to much drier Holocene climate resulted in expansion of perennial vegetation, amplifying climate change impacts on water resources by reducing groundwater recharge as shown in soil profiles in the southwestern U.S.. In contrast, vegetation response to climate extremes, including droughts and floods, dampen impacts of these extremes on water resources, as shown by water budget monitoring in the Mojave Desert. Agriculture often involves changes from native perennial vegetation to annual crops increasing groundwater recharge in many semiarid regions. Irrigation based on conjunctive use of surface water and groundwater increases water resource availability, as shown in the Central Valley of California and in southern Arizona. Surface water irrigation in these regions is enhanced by water transported from more humid settings through extensive pipelines. These projects have reversed long-term declining groundwater trends in some regions. While irrigation design has often focused on increased efficiency, "more crop per drop", optimal water resource management may benefit more from inefficient (e.g. flood irrigation) surface-water irrigation combined with efficient (e.g. subsurface drip) irrigation to maximize groundwater recharge, as seen in parts of the Central Valley. Flood irrigation of perennial crops, such as almonds and vineyards, during winter is being considered in the Central Valley to enhance groundwater recharge. Managed aquifer recharge can be considered a special case of conjunctive use of

  11. Chemistry of fluids from a natural analogue for a geological CO{sub 2} storage site (Montmiral, France): Lessons for CO{sub 2}-water-rock interaction assessment and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Pauwels, Helene [BRGM - Water Division, 3, av Claude Guillemin, 45060 Orleans Cedex (France)], E-mail: h.pauwels@brgm.fr; Gaus, Irina; Le Nindre, Yves Michel [BRGM - Water Division, 3, av Claude Guillemin, 45060 Orleans Cedex (France); Pearce, Jonathan [British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG125GG (United Kingdom); Czernichowski-Lauriol, Isabelle [BRGM - Water Division, 3, av Claude Guillemin, 45060 Orleans Cedex (France)

    2007-12-15

    Chemical and isotope studies of natural CO{sub 2} accumulations aid in assessing the chemical effects of CO{sub 2} on rock and thus provide a potential for understanding the long-term geochemical processes involved in CO{sub 2} geological storage. Several natural CO{sub 2} accumulations were discovered during gas and oil exploration in France's carbogaseous peri-Alpine province (south-eastern France) in the 1960s. One of these, the Montmiral accumulation at a depth of more than 2400 m, is currently being exploited. The chemical composition of the water collected at the wellhead has changed in time and the final salinity exceeds 75 g/L. These changes in time can be explained by assuming that the fraction of the reservoir brine in the recovered brine-CO{sub 2}-H{sub 2}O mixture varies, resulting in variable proportions of H{sub 2}O and brine in the sampled water. The proportions can be estimated in selected samples due to the availability of gas and water flowrate data. These data enabled the reconstruction of the chemical and isotope composition of the brine. The proportions of H{sub 2}O and brine can also be estimated from isotope ({delta}{sup 2}H, {delta}{sup 18}O) composition of collected water and {delta}{sup 18}O of the sulfates or CO{sub 2}. The reconstituted brine has a salinity of more than 85 g/L and, according to its Br{sup -} content and isotope ({delta}{sup 2}H, {delta}{sup 18}O, {delta}{sup 34}S) composition, originates from an evaporated Triassic seawater that underwent dilution by meteoric water. The reconstitution of the brine's chemical composition enabled an evaluation of the CO{sub 2}-water-rock interactions based on: (1) mineral saturation indices; and (2) comparison with initial evaporated Triassic seawater. Dissolution of K- and SO{sub 4}-containing minerals such as K-feldspar and anhydrite, and precipitation of Ca and Mg containing minerals that are able to trap CO{sub 2} (carbonates) are highlighted. The changes in concentration of

  12. Water quality monitoring in sub-Saharan African lakes: a review of ...

    African Journals Online (AJOL)

    This paper reviews the literature on various remote sensing platforms and techniques used for assessing and monitoring water quality in sub-Saharan Africa, and highlights their strengths and weaknesses. The use of remote sensing technology could enhance water quality monitoring, since remotely sensed data offer ...

  13. Integrated Water Resources Management: A Global Review

    Science.gov (United States)

    Srinivasan, V.; Cohen, M.; Akudago, J.; Keith, D.; Palaniappan, M.

    2011-12-01

    The diversity of water resources endowments and the societal arrangements to use, manage, and govern water makes defining a single paradigm or lens through which to define, prioritize and evaluate interventions in the water sector particularly challenging. Integrated Water Resources Management (IWRM) emerged as the dominant intervention paradigm for water sector interventions in the early 1990s. Since then, while many successful implementations of IWRM have been demonstrated at the local, basin, national and trans-national scales, IWRM has also been severely criticized by the global water community as "having a dubious record that has never been comprehensively analyzed", "curiously ambiguous", and "ineffective at best and counterproductive at worst". Does IWRM hold together as a coherent paradigm or is it a convenient buzzword to describe a diverse collection of water sector interventions? We analyzed 184 case study summaries of IWRM interventions on the Global Water Partnership (GWP) website. The case studies were assessed to find the nature, scale, objectives and outcomes of IWRM. The analysis does not suggest any coherence in IWRM as a paradigm - but does indicate distinct regional trends in IWRM. First, IWRM was done at very different scales in different regions. In Africa two-thirds of the IWRM interventions involved creating national or transnational organizations. In contrast, in Asia and South America, almost two-thirds were watershed, basin, or local body initiatives. Second, IWRM interventions involved very different types of activities in different regions. In Africa and Europe, IWRM entailed creation of policy documents, basin plans and institution building. In contrast, in Asia and Latin America the interventions were much more likely to entail new technology, infrastructure or watershed measures. In Australia, economic measures, new laws and enforcement mechanisms were more commonly used than anywhere else.

  14. Luminescent Ag-doped In{sub 2}S{sub 3} nanoparticles stabilized by mercaptoacetate in water and glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Raevskaya, Alexandra E.; Ivanchenko, Maria V.; Stroyuk, Oleksandr L., E-mail: alstroyuk@ukr.net, E-mail: stroyuk@inphyschem-nas.kiev.ua; Kuchmiy, Stepan Ya. [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, Department of Photochemistry (Ukraine); Plyusnin, Victor F. [Institute of Chemical Kinetics and Combustion of Siberian Branch of Russian Academy of Sciences (Russian Federation)

    2015-03-15

    Colloidal nanoparticles (NPs) of tetragonal β-In{sub 2}S{sub 3} were stabilized in water and glycerol by mercaptoacetate anions. Doping of In{sub 2}S{sub 3} NPs with Ag{sup I} cations at the time of the synthesis imparts the NPs with the photoluminescence (PL) in the visible part of the spectrum. The doping results also in a shift of the absorption threshold and the PL band maximum to longer wavelengths proportional to the Ag{sup I} content. The PL band maximum of Ag{sup I}-doped In{sub 2}S{sub 3} NPs can be varied from 575–580 to 760–765 nm by augmenting the silver(I) amount and the duration and temperature of the post-synthesis aging. The average radiative life-time of Ag{sup I}-doped In{sub 2}S{sub 3} NPs also depends on the silver(I) content and reaches the maximal value, 960 ns, at a molar Ag:In ratio of 1:4. The maximal quantum yield of stationary PL, 12 %, is observed at this Ag:In ratio as well. Deposition of a ZnS “shell” on the surface of Ag{sup I}-doped In{sub 2}S{sub 3} NPs results in an increase of the PL quantum yield to ∼30 %.

  15. Governance of water resources in Colombia: Between progress and challenges

    International Nuclear Information System (INIS)

    Zamudio Rodriguez, Carmen

    2012-01-01

    This work is an overview of water management in Colombia, emphasizing governance as a key element in this type of process. Therefore, from the collection and analysis of secondary data, identifies the evolution of water management in the country and, to that extent, aspects that reveal a crisis of governance in this area. In this sense, initially some relevant issues are raised in order to analyze the integrated water resource management and water governance. Later, it addresses factors that show that, despite significant progress in water management in the country, it is still to emerge a comprehensive approach that considers multiple criteria to provide governance on water resources. Thus, we propose that there is a crisis of governance on water expressed in terms of lack of experience and international context, lack of coordination and dispersion of water policy, ignorance of the various forms of local government, a wrong perception on the water abundance and richness of the country, and dissimulation or disinterest ignoring the many pressures that threaten water.

  16. Conceptual model of water resources in the Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Akbari, M. Amin; Ashoor, M. Hanif; Chornack, Michael P.; Coplen, Tyler B.; Emerson, Douglas G.; Hubbard, Bernard E.; Litke, David W.; Michel, Robert L.; Plummer, Niel; Rezai, M. Taher; Senay, Gabriel B.; Verdin, James P.; Verstraeten, Ingrid M.

    2010-01-01

    The United States (U.S.) Geological Survey has been working with the Afghanistan Geological Survey and the Afghanistan Ministry of Energy and Water on water-resources investigations in the Kabul Basin under an agreement supported by the United States Agency for International Development. This collaborative investigation compiled, to the extent possible in a war-stricken country, a varied hydrogeologic data set and developed limited data-collection networks to assist with the management of water resources in the Kabul Basin. This report presents the results of a multidisciplinary water-resources assessment conducted between 2005 and 2007 to address questions of future water availability for a growing population and of the potential effects of climate change. Most hydrologic and climatic data-collection activities in Afghanistan were interrupted in the early 1980s as a consequence of war and civil strife and did not resume until 2003 or later. Because of the gap of more than 20 years in the record of hydrologic and climatic observations, this investigation has made considerable use of remotely sensed data and, where available, historical records to investigate the water resources of the Kabul Basin. Specifically, this investigation integrated recently acquired remotely sensed data and satellite imagery, including glacier and climatic data; recent climate-change analyses; recent geologic investigations; analysis of streamflow data; groundwater-level analysis; surface-water- and groundwater-quality data, including data on chemical and isotopic environmental tracers; and estimates of public-supply and agricultural water uses. The data and analyses were integrated by using a simplified groundwater-flow model to test the conceptual model of the hydrologic system and to assess current (2007) and future (2057) water availability. Recharge in the basin is spatially and temporally variable and generally occurs near streams and irrigated areas in the late winter and early

  17. Embedding nano-Li{sub 4}Ti{sub 5}O{sub 12} in hierarchical porous carbon matrixes derived from water soluble polymers for ultra-fast lithium ion batteries anodic materials

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Chun-Kai; Bao, Qi; Huang, Yao-Hui; Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw

    2016-07-15

    Li{sub 4}Ti{sub 5}O{sub 12}/hierarchical porous carbon matrixes composites are successfully prepared by a facile and fast polymers assisted sol–gel method, aiming to promote both electronic and ionic conductivity. As indicated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis, three less expensive cost and available water soluble polymers (e.g. PAA, CMC, and SA) can homogeneously react with Li–Ti–O precursor to incorporate into interior of nano-scale lithium titanate and provide a continues conductive network after pyrolysis. In addition, the results of scanning electron microscopy and transmission electron microscopy also prove that the Li{sub 4}Ti{sub 5}O{sub 12} nanoparticles are firmly embedded in porous carbon matrix with no obvious agglomeration. EIS measurement and cyclic voltammetry further reveal that the facilitated electrode kinetics and better ionic transport of Li{sub 4}Ti{sub 5}O{sub 12}/hierarchical porous carbon matrixes composites than that of Li{sub 4}Ti{sub 5}O{sub 12}. The c-CMC-LTO exhibits a superior capacity of 92 mAh g{sup −1} and retains its initial value with no obviously capacity decay over 200 cycles under an ultra-high C rate (50 C). - Graphical abstract: Schematic illustrations of the formation process of embedding LTO into Carbon matrixes derived from water soluable polymers (upper) and the electrochemical reaction paths in LTO/Carbon composites during charging/discharging processes (lower). - Highlights: • Hierarchical porous carbon matrixes were used to improve the Li{sub 4}Ti{sub 5}O{sub 12} anodes. • Carbon matrixes could suppress the agglomeration of Li{sub 4}Ti{sub 5}O{sub 12} nanoparticles. • meso-nanoporous carbon structure was beneficial for filtration of electrolyte. • The c-CMC-LTO exhibited superior high rate capability and cycling durability.

  18. Watered down : overcoming federal inaction on the impact of oil sands development to water resources

    International Nuclear Information System (INIS)

    Droitsch, D.

    2009-11-01

    The oil sands industry is having a negative impact on Canada's fresh water resources and aquatic ecosystems. Members of the Government of the Northwest Territories (NT) and experts from scientific, non-governmental, and First Nations groups have stated at federal hearings that the federal government must involve itself in the protection of Canada's water resources. This report discussed compelling testimony from recent federal hearings by the House of Commons Standing Committee on Environment and Sustainable Development.The federal government must establish enforceable standards for key toxic substances created by oil sands activity. A water-sharing agreement must be established between Alberta, NT, Saskatchewan, and First Nations governments. Other recommendations included the establishment of a peer-reviewed assessment of the health impacts of industrial oil sands development on First Nations communities; the establishment of cumulative effects assessment procedures; the identification and protection of listed species at risk; and the establishment of proactive measures designed to ensure that oil sands operators pay for the environmental damage caused to water resources. 94 refs., 4 figs.

  19. Assessment of the sustainability of a water resource system expansion

    DEFF Research Database (Denmark)

    Kjeldsen, Thomas Rødding; Rosbjerg, Dan

    2001-01-01

    A sustainability assessment method involving risk criteria related to reliability, resilience and vulnerability, has been applied to quantify the relative sustainability of possible expansions of a water resources system in the KwaZulu-Natal province South Africa. A river basin model has been setup....... Based on initial experience the method was modified leading to more credible results. A problem with assessing sustainability using risk criteria is a favouring of supply-oriented solutions, in particular when aspects not directly related to demand and availability of water are excluded....... for the water resources system, comprising all important water users within the catchment. Measures to meet the growing water demand in the catchment are discussed. Six scenarios including both supply and demand oriented solutions are identified, modelled and compared in tenus of the sustainability criteria...

  20. Salt concentrations during water production resulting from CO<sub>2sub> storage

    DEFF Research Database (Denmark)

    Walter, Lena; Class, Holger; Binning, Philip John

    2014-01-01

    present in the saline aquifer. The brine can be displaced over large areas and can reach shallower groundwater resources. High salt concentrations could lead to a degradation of groundwater quality. For water suppliers the most important information is whether and how much salt is produced at a water...... displacement and infiltration could result in hazards for human health and the environment and therefore have to be investigated in detail. In this work numerical simulations are performed to estimate the risk related to the displacement of brine. The injected CO2 will displace the brine that is initially...