WorldWideScience

Sample records for su3-symmetric dual model

  1. Dual formulation of covariant nonlinear duality-symmetric action of kappa-symmetric D3-brane

    Science.gov (United States)

    Vanichchapongjaroen, Pichet

    2018-02-01

    We study the construction of covariant nonlinear duality-symmetric actions in dual formulation. Essentially, the construction is the PST-covariantisation and nonlinearisation of Zwanziger action. The covariantisation made use of three auxiliary scalar fields. Apart from these, the construction proceed in a similar way to that of the standard formulation. For example, the theories can be extended to include interactions with external fields, and that the theories possess two local PST symmetries. We then explicitly demonstrate the construction of covariant nonlinear duality-symmetric actions in dual formulation of DBI theory, and D3-brane. For each of these theories, the twisted selfduality condition obtained from duality-symmetric actions are explicitly shown to match with the duality relation between field strength and its dual from the one-potential actions. Their on-shell actions between the duality-symmetric and the one-potential versions are also shown to match. We also explicitly prove kappa-symmetry of the covariant nonlinear duality-symmetric D3-brane action in dual formulation.

  2. Minimal Regge model for meson--baryon scattering: duality, SU(3) and phase-modified absorptive cuts

    International Nuclear Information System (INIS)

    Egli, S.E.

    1975-10-01

    A model is presented which incorporates economically all of the modifications to simple SU(3)-symmetric dual Regge pole theory which are required by existing data on 0 -1 / 2 + → -1 / 2 + processes. The basic assumptions are no-exotics duality, minimally broken SU(3) symmetry, and absorptive Regge cuts phase-modified by the Ringland prescription. First it is described qualitatively how these assumptions suffice for the description of all measured reactions, and then the results of a detailed fit to 1987 data points are presented for 18 different reactions. (auth)

  3. An SU(2) x SU(2) symmetric Higgs-Fermion model with staggered fermions

    International Nuclear Information System (INIS)

    Berlin, J.; Heller, U.M.

    1991-01-01

    We have simulated on SU(2)xSU(2) symmetric Higgs-Fermion model with a four component scalar field coupled with a Yukawa type coupling to two flavours of staggered fermions. The results show two qualitatively different behaviours in the broken phase. One for weak coupling where the fermion masses obey the perturbative tree level relation M F =y , and one for strong coupling where the behaviour agrees with a 1/d expansion. (orig.)

  4. Phase-structure of SU(3) lattice gauge-higgs model

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Mitrjushkin, V.K.; Zadorozhny, A.M.

    1985-01-01

    Phase structure is investigated of SU(3) symmetric gauge-Higgs theory with a defrost radial mode. The Higgs fields are considered in the fundamental representation of SU(3) group. It is shown that the phase structures of SU(3) and SU(2) symmetric coincide qualitatively

  5. Static properties of baryons in the SU(3) Skyrme model

    International Nuclear Information System (INIS)

    Sriram, M.S.; Mani, H.S.; Ramachandran, R.

    1984-01-01

    We study the SU(3) x SU(3) Skyrme model with explicit chiral- and flavor-symmetry-breaking terms. We evaluate the SU(3)-symmetric meson-baryon coupling-constant ratio α, SU(3) mass breaking in the octet and decuplet, and the ΔI = 1 part of the electromagnetic mass splitting in baryons. The theoretical numbers are in reasonable agreement with the experimental values

  6. Three-Index Symmetric Matter Representations of SU(2) in F-Theory from Non-Tate Form Weierstrass Models

    CERN Document Server

    Klevers, Denis

    2016-01-01

    We give an explicit construction of a class of F-theory models with matter in the three-index symmetric (4) representation of SU(2). This matter is realized at codimension two loci in the F-theory base where the divisor carrying the gauge group is singular; the associated Weierstrass model does not have the form associated with a generic SU(2) Tate model. For 6D theories, the matter is localized at a triple point singularity of arithmetic genus g=3 in the curve supporting the SU(2) group. This is the first explicit realization of matter in F-theory in a representation corresponding to a genus contribution greater than one. The construction is realized by "unHiggsing" a model with a U(1) gauge factor under which there is matter with charge q=3. The resulting SU(2) models can be further unHiggsed to realize non-Abelian G_2xSU(2) models with more conventional matter content or SU(2)^3 models with trifundamental matter. The U(1) models used as the basis for this construction do not seem to have a Weierstrass real...

  7. SP(6) X SU(2) and SO(8) X SU(2) - symmetric fermion-dynamic model of multinucleon systems

    International Nuclear Information System (INIS)

    Baktybaev, K.

    2007-01-01

    In last years a new approach describing collective states of multinucleon system on the base of their fermion dynamic symmetry was developed. Such fermion model is broad and logical one in comparison with the phenomenological model of interacting bosons. In cut fermion S- and D- pair spaces complicated nucleons interactions are approximating in that way so multinucleon system Hamiltonian becomes a simple function of fermion generators forming corresponding Lie algebra. Correlation fermion pairs are structured in such form so its operators of birth and destruction together with a set multiband operators are formed Sp(6) and SO(8) algebra of these pairs and SU(2)-algebra for so named anomalous pairs. For convenience at the model practical application to concrete systems the dynamical-symmetric Hamiltonian is writing by means of independent Casimir operators of subgroup are reductions of a large group. It is revealed, that observed Hamiltonians besides the known SU 3 , and SO 6 asymptotic borders have also more complicated 'vibration-like' borders SO 7 , SO 5 XSU 2 and SU 2 XSO 3 . In the paper both advantages and disadvantages of these borders and some its applications to specific nuclear systems are discussing

  8. Three-index symmetric matter representations of SU(2) in F-theory from non-Tate form Weierstrass models

    Energy Technology Data Exchange (ETDEWEB)

    Klevers, Denis [Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Taylor, Washington [Center for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue Cambridge, MA 02139 (United States)

    2016-06-29

    We give an explicit construction of a class of F-theory models with matter in the three-index symmetric (4) representation of SU(2). This matter is realized at codimension two loci in the F-theory base where the divisor carrying the gauge group is singular; the associated Weierstrass model does not have the form associated with a generic SU(2) Tate model. For 6D theories, the matter is localized at a triple point singularity of arithmetic genus g=3 in the curve supporting the SU(2) group. This is the first explicit realization of matter in F-theory in a representation corresponding to a genus contribution greater than one. The construction is realized by “unHiggsing” a model with a U(1) gauge factor under which there is matter with charge q=3. The resulting SU(2) models can be further unHiggsed to realize non-Abelian G{sub 2}×SU(2) models with more conventional matter content or SU(2){sup 3} models with trifundamental matter. The U(1) models used as the basis for this construction do not seem to have a Weierstrass realization in the general form found by Morrison-Park, suggesting that a generalization of that form may be needed to incorporate models with arbitrary matter representations and gauge groups localized on singular divisors.

  9. Nucleon spin-flavor structure in the SU(3)-breaking chiral quark model

    International Nuclear Information System (INIS)

    Song, X.; McCarthy, J.S.; Weber, H.J.

    1997-01-01

    The SU(3) symmetric chiral quark model, which describes interactions between quarks, gluons, and the Goldstone bosons, explains reasonably well many aspects of the flavor and spin structure of the proton, except for the values of f 3 /f 8 and Δ 3 /Δ 8 . Introducing the SU(3)-breaking effect suggested by the mass difference between the strange and nonstrange quarks, we find that this discrepancy can be removed and better overall agreement obtained. copyright 1997 The American Physical Society

  10. Exotic fermions in the left-right symmetric model

    International Nuclear Information System (INIS)

    Choi, J.; Volkas, R.R.

    1992-01-01

    A systematic study is made of non-standard fermion multiplets in left-right symmetric models with gauge group SU(3) x SU(2) L x SU(2) R x U(1) BL . Constraints from gauge anomaly cancellation and invariance of Yukawa coupling terms are used to define interesting classes of exotic fermions. The standard quark lepton spectrum of left-right symmetric models was identified as the simplest member of an infinite class. Phenomenological implications of the next simplest member of this class are then studied. Classes of exotic fermions which may couple to the standard fermions through doublet Higgs bosons were also considered, then shown that some of these exotics may be used to induce a generalised universal see-saw mechanism. 12 refs., 1 tab

  11. Decoupling of parity- and SU(2)/sub R/-breaking scales: A new approach to left-right symmetric models

    International Nuclear Information System (INIS)

    Chang, D.; Mohapatra, R.N.; Parida, M.K.

    1984-01-01

    A new approach to left-right symmetric models is proposed, where the left-right discrete-symmetry- and SU(2)/sub R/-breaking scales are decoupled from each other. This changes the spectrum of physical Higgs bosons which leads to different patterns for gauge hierarchies in SU(2)/sub L/xSU(2)/sub R/xSU(4)/sub C/ and SO(10) models. Most interesting are two SO(10) symmetry-breaking chains with an intermediate U(1)/sub R/ symmetry. These are such as to provide new motivation to search for ΔB = 2 and right-handed current effects at low energies

  12. Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback

    Science.gov (United States)

    Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.

    2018-02-01

    We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.

  13. Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions

    Science.gov (United States)

    Scazza, F.; Hofrichter, C.; Höfer, M.; de Groot, P. C.; Bloch, I.; Fölling, S.

    2014-10-01

    Spin-exchanging interactions govern the properties of strongly correlated electron systems such as many magnetic materials. When orbital degrees of freedom are present, spin exchange between different orbitals often dominates, leading to the Kondo effect, heavy fermion behaviour or magnetic ordering. Ultracold ytterbium or alkaline-earth ensembles have attracted much recent interest as model systems for these effects, with two (meta-) stable electronic configurations representing independent orbitals. We report the observation of spin-exchanging contact interactions in a two-orbital SU(N)-symmetric quantum gas realized with fermionic 173Yb. We find strong inter-orbital spin exchange by spectroscopic characterization of all interaction channels and demonstrate SU(N = 6) symmetry within our measurement precision. The spin-exchange process is also directly observed through the dynamic equilibration of spin imbalances between ensembles in separate orbitals. The realization of an SU(N)-symmetric two-orbital Hubbard Hamiltonian opens the route to quantum simulations with extended symmetries and with orbital magnetic interactions, such as the Kondo lattice model.

  14. Duality relations between SU(N)k and SU(k)NWZW models and their braid matrices

    International Nuclear Information System (INIS)

    Naculich, S.G.; Schnitzer, H.J.

    1990-01-01

    Dual relations are found between the primary fields, correlators, and conformal blocks of SU(N) k and SU(k) N WZW models, which in turn imply dual relations between the braid matrices of the two theories. These results are a consequence of the fact that the spaces of conformal blocks of SU(N) k and SU(k) N correlation functions are dual. (orig.)

  15. Static, self-dual, finite action SU(3) gauge fields in the de Sitter space

    International Nuclear Information System (INIS)

    Chakrabarti, A.; Comtet, A.; Viswanathan, K.S.; Simon Fraser Univ., Burnaby, British Columbia

    1980-01-01

    Static, self-dual, finite action SU(3) gauge fields are constructed on the euclidean section of the positive curvature de Sitter metric with periodic time. Their relation to known time dependent flat space solutions is pointed out. Their significances and possible applications are indicated. (orig.)

  16. Dark revelations of the [SU(3)]3 and [SU(3)]4 gauge extensions of the standard model

    Science.gov (United States)

    Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza

    2018-02-01

    Two theoretically well-motivated gauge extensions of the standard model are SU(3)C × SU(3)L × SU(3)R and SU(3)q × SU(3)L × SU(3)l × SU(3)R, where SU(3)q is the same as SU(3)C and SU(3)l is its color leptonic counterpart. Each has three variations, according to how SU(3)R is broken. It is shown here for the first time that a built-in dark U(1)D gauge symmetry exists in all six versions. However, the corresponding symmetry breaking pattern does not reduce properly to that of the standard model, unless an additional Z2‧ symmetry is defined, so that U(1)D ×Z2‧ is broken to Z2 dark parity. The available dark matter candidates in each case include fermions, scalars, as well as vector gauge bosons. This work points to the possible unity of matter with dark matter, the origin of which may not be ad hoc.

  17. Dark revelations of the [SU(3]3 and [SU(3]4 gauge extensions of the standard model

    Directory of Open Access Journals (Sweden)

    Corey Kownacki

    2018-02-01

    Full Text Available Two theoretically well-motivated gauge extensions of the standard model are SU(3SU(3SU(3R and SU(3SU(3SU(3SU(3R, where SU(3q is the same as SU(3C and SU(3l is its color leptonic counterpart. Each has three variations, according to how SU(3R is broken. It is shown here for the first time that a built-in dark U(1D gauge symmetry exists in all six versions. However, the corresponding symmetry breaking pattern does not reduce properly to that of the standard model, unless an additional Z2′ symmetry is defined, so that U(1D×Z2′ is broken to Z2 dark parity. The available dark matter candidates in each case include fermions, scalars, as well as vector gauge bosons. This work points to the possible unity of matter with dark matter, the origin of which may not be ad hoc.

  18. Strangeness production in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions in the dual parton model

    International Nuclear Information System (INIS)

    Moehring, H.; Ranft, J.; Capella, A.; Tran Thanh Van, J.

    1993-01-01

    Λ, bar Λ, and K S 0 production is studied in a Monte Carlo dual parton model for hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions with an SU(3) symmetric sea for chain formation (chain ends) but strangeness suppression in the chain fragmentation process. Additionally, (qq)-(bar q bar q) production from the sea was introduced into the chain formation process with the same probability as for the q→qq branching within the chain decay process. With these assumptions, multiplicity ratios and Feynman-x distributions for strange particles in h-h and multiplicity ratios in heavy ion collisions are reasonably well reproduced

  19. Quantum critical spin-2 chain with emergent SU(3) symmetry.

    Science.gov (United States)

    Chen, Pochung; Xue, Zhi-Long; McCulloch, I P; Chung, Ming-Chiang; Huang, Chao-Chun; Yip, S-K

    2015-04-10

    We study the quantum critical phase of an SU(2) symmetric spin-2 chain obtained from spin-2 bosons in a one-dimensional lattice. We obtain the scaling of the finite-size energies and entanglement entropy by exact diagonalization and density-matrix renormalization group methods. From the numerical results of the energy spectra, central charge, and scaling dimension we identify the conformal field theory describing the whole critical phase to be the SU(3)_{1} Wess-Zumino-Witten model. We find that, while the Hamiltonian is only SU(2) invariant, in this critical phase there is an emergent SU(3) symmetry in the thermodynamic limit.

  20. Model independent approach to studies of the confining dual Abrikosov vortex in SU(2) lattice gauge theory

    International Nuclear Information System (INIS)

    Haymaker, Richard W.; Matsuki, Takayuki

    2007-01-01

    We address the problem of determining the type I, type II or borderline dual superconductor behavior in maximal Abelian gauge SU(2) through the study of the dual Abrikosov vortex. We find that significant electric currents in the simulation data call into question the use of the dual Ginzburg-Landau Higgs model in interpreting the data. Further, two definitions of the penetration depth parameter take two different values. The splitting of this parameter into two is intricately connected to the existence of electric currents. It is important in our approach that we employ definitions of flux and electric and magnetic currents that respect Maxwell equations exactly for lattice averages independent of lattice spacings. Applied to specific Wilson loop sizes, our conclusions differ from those that use the dual GLH model

  1. Coupled SU(3) models of rotational states in nuclei and quasi-dynamical symmetry

    International Nuclear Information System (INIS)

    Thiamova, G.; Rowe, D. J.

    2007-01-01

    This contribution reports a first step towards the development of a model of low-lying nuclear collective states based on the progression from weak to strong coupling of a combination of systems in multiple SU(3) irreps. The motivation for such a model comes partly from the remarkable persistence of rotational structure observed experimentally and in many model calculations. This work considers the spectra obtainable by coupling just two SU(3) irreps by means of a quadrupole-quadrupole interaction. For a particular value of this interaction, the two irreps combine to form strongly-coupled irreps while for zero interaction the weakly-coupled results are mixtures of many such strongly-coupled irreps. A notable result is the persistence of the rotor character of the low-energy states for a wide range of the interaction strength. Also notable is the fact that, for very weak interaction strengths, the energy levels of the yrast band resemble those of a vibrational sequence while the B(E2) transition strengths remain close to those of an axially symmetric rotor, as observed in many nuclei. (Author)

  2. Z(3)-symmetric effective theory for pure gauge QCD at high temperature

    International Nuclear Information System (INIS)

    Vuorinen, A.

    2007-01-01

    We review the construction and basic properties of a three-dimensional effective field theory for high-temperature SU(3) Yang-Mills theory, which respects its center symmetry and was introduced in Ref. [A. Vuorinen, L.G. Yaffe, Z(3)-symmetric effective theory for SU(3) Yang-Mills theory at high, Phys. Rev. D 74 (2006) 025011, hep-ph/0604100]. We explain why the phase diagram of the new theory is expected to closely resemble the one of the full theory and argue that this implies that it is applicable down to considerably lower temperatures than the usual non-Z(3)-symmetric 3d effective theory EQCD

  3. Relations between the SU(2|4) symmetric theories and the gauge gravity correspondence

    International Nuclear Information System (INIS)

    Tsuchiya, Asato

    2008-01-01

    We study theories with SU(2|4) symmetry, which include N=4 SYM on R x S 3 /Z k , 2+1 SYM on R x S 2 and the plane wave matrix model. All these theories possess many vacua. From Lin-Maldacena's method which gives the gravity dual of each vacuum, it is suggested that the theory around each vacuum of N=4 SYM on R x S 3 /Z k and 2+1 SYM on R x S 2 is equivalent to the theory around a certain vacuum of the plane wave matrix model. We show this directly on the gauge theory side. We realize theories around multi-monopole backgrounds in matrix model, and extend Taylor's matrix T-duality to that on spheres. (author)

  4. Strangeness production in hadronic and nuclear collisions in the dual parton model

    International Nuclear Information System (INIS)

    Capella, A.; Tran Thanh Van, J.; Ranft, J.

    1993-01-01

    Λ, antiΛ and K s 0 production is studied in a Monte Carlo Dual Parton model for hadron-hadron, hadron-nucleus and nucleus-nucleus collisions with a SU(3) symmetric sea for chain formation (chain ends) but strangeness suppression in the chain fragmentation. Additionally, (qq)-(antiqantiq) production from the sea was introduced into the chain formation process with the same probability as for the q → qq branching within the chain decay process. This together with the popcorn mechanism of diquark fragmentation result in a new central component of hyperon production, which was not present in previous versions of the model. With these assumptions rapidity distributions and multiplicity ratios for strange particles in hadron-hadron, hadron-nucleus and nucleus-nucleus collisions are compared to a comprehensive collection of experimental data. 5 figs., 2 tabs., 15 refs

  5. Three particle Poincare states and SU(6) x SU(3) as a classification group for baryons

    International Nuclear Information System (INIS)

    Buccella, F.; Sciarrino, A.; Sorba, P.

    1975-05-01

    A complete set of democratic quantum numbers is introduced to classify the states of an irreducible unitary representation (IUR) of the Poincare group obtained from the decomposition of the direct products of three I.U.R. Such states are identified with the baryon states constituted of three free relativistic quarks. The transformation from current to constituent quarks is then easily reobtained. Moreover, the group SU(6) x SU(3) appears naturally as a collinear classification group for baryons. Results similar to those of the symmetric harmonic oscillator quark model are obtained [fr

  6. The SU(3) structure of rotational states in heavy deformed nuclei

    International Nuclear Information System (INIS)

    Jarrio, M.; Wood, J.L.; Rowe, D.J.

    1991-01-01

    The SU(3) coupling scheme provides an informative basis for the expansion of shell-model wave functions and their interpretation in collective-model terms. We show in this paper that it is possible, using the coupled-rotor-vibrator model, to infer averages of the distributions of SU(3) representation labels in heavy rotational nuclei by direct interpretation of physically observed E2 transition rates and quadrupole moments. We find that the distributions of SU(3) representation labels have nearly constant average values for states belonging to some well-defined rotational bands. These are bands of states having B(E2) values and quadrupole moments that follow the predictions of the rotor model. Such bands are interpreted as soft SU(3) bands in parallel with the concept of a soft rotor band with vibrational-shape fluctuations. The concept of a soft SU(3) band and its implications for beta-vibrational excited bands is developed. The average SU(3) representation labels inferred from experiment are interpreted by calculating those implied by the Nilsson model. An analysis of the SU(3) content of Nilsson wave functions also leads to two remarkable predictions. The first is that, in the asymptotic limit, the Nilsson model implies intrinsic states for a rotor band that are beta rigid. The second is that, although the intrinsic Nilsson state is axially symmetric, it generates a sequence of K=0, 2, 4,...bands. (orig.)

  7. Superlinear convergence of a symmetric primal-dual path following algorithm for semidefinite programming

    NARCIS (Netherlands)

    Z-Q. Luo; J.F. Sturm; S. Zhang (Shuzhong)

    1996-01-01

    textabstractThis paper establishes the superlinear convergence of a symmetric primal-dual path following algorithm for semidefinite programming under the assumptions that the semidefinite program has a strictly complementary primal-dual optimal solution and that the size of the central path

  8. SU(3) chiral symmetry for baryons

    International Nuclear Information System (INIS)

    Dmitrasinovic, V.

    2011-01-01

    Three-quark nucleon interpolating fields in QCD have well-defined SU L (3)xSU R (3) and U A (1) chiral transformation properties, viz. [(6,3)+(3,6)], [(3,3-bar)+(3-bar,3)], [(8,1)+(1,8)] and their 'mirror' images. It has been shown (phenomenologically) in Ref. [2] that mixing of the [(6,3)+(3,6)] chiral multiplet with one ordinary ('naive') and one 'mirror' field belonging to the [(3,3-bar)+(3-bar,3)], [(8,1)+(1,8)] multiplets can be used to fit the values of the isovector (g A (3) ) and the flavor-singlet (isoscalar) axial coupling (g A (0) ) of the nucleon and then predict the axial F and D coefficients, or vice versa, in reasonable agreement with experiment. In an attempt to derive such mixing from an effective Lagrangian, we construct all SU L (3)xSU R (3) chirally invariant non-derivative one-meson-baryon interactions and then calculate the mixing angles in terms of baryons' masses. It turns out that there are (strong) selection rules: for example, there is only one non-derivative chirally symmetric interaction between J 1/2 fields belonging to the [(6,3)+(3,6)] and the [(3,3-bar)+(3-bar,3)] chiral multiplets, that is also U A (1) symmetric. We also study the chiral interactions of the [(3,3-bar)+(3-bar,3)] and [(8,1)+(1,8)] nucleon fields. Again, there are selection rules that allow only one off-diagonal non-derivative chiral SU L (3)xSU R (3) interaction of this type, that also explicitly breaks the U A (1) symmetry. We use this interaction to calculate the corresponding mixing angles in terms of baryon masses and fit two lowest lying observed nucleon (resonance) masses, thus predicting the third (J = 1/2, I = 3/2)Δ resonance, as well as one or two flavor-singlet Λ hyperon(s), depending on the type of mixing. The effective chiral Lagrangians derived here may be applied to high density matter calculations.

  9. Neutrino masses in the SU(5) x (lower case x) SU(5)' mirror symmetric model

    International Nuclear Information System (INIS)

    Collie, M.; Foot, R.

    1998-02-01

    Motivated by the atmospheric and solar neutrino anomalies, we study neutrino masses in a parity invariant SU(5) x SU(5)' grand unified model. Two distinct ways of incorporating neutrino masses into this model are envisaged. One way involves adding a gauge singlet fermion to each generation. The other way, is to extend the scalar sector. This possibility suggests that photon - mirror photon kinetic mixing is non-zero since is generated radiatively. It is argued that the kinetic mixing is such models may well be close to the experimental limit

  10. Weak mixing angle and the SU(3)CxSU(3) model on M4xS1/(Z2xZ'2)

    International Nuclear Information System (INIS)

    Li Tianjun; Wei Liao

    2002-05-01

    We show that the desirable weak mixing angle sin 2 θ W =0.2312 at m Z scale can be generated naturally in the SU(3) C xSU(3) model on M 4 xS 1 /(Z 2 x Z 2 ') where the gauge symmetry SU(3) is broken down to SU(2) L xU(1) Y by orbifold projection. For a supersymmetric model with a TeV scale extra dimension, the SU(3) unification scale is about hundreds of TeVs at which the gauge couplings for SU(3) C and SU(3) can also be equal in the mean time. For the non-supersymmetric model, SU(2) L xU(1) Y are unified at order of 10 TeV. These models may serve as good candidates for physics beyond the SM or MSSM. (author)

  11. Critical endline of the finite temperature phase transition for 2+1 flavor QCD away from the SU(3-flavor symmetric point

    Directory of Open Access Journals (Sweden)

    Nakamura Yoshifumi

    2018-01-01

    Full Text Available We investigate the critical end line of the finite temperature phase transition of QCD away from the SU(3-flavor symmetric point at zero chemical potential. We employ the renormalization-group improved Iwasaki gauge action and non-perturbatively O(a- improved Wilson-clover fermion action. The critical end line is determined by using the intersection point of kurtosis, employing the multi-parameter, multi-ensemble reweighting method at the temporal size NT = 6 and lattice spacing as low as a ≈0.19 fm.

  12. SU(2) X SU(2) X U(1) basis for symmetric SO(6) representations: matrix elements of the generators

    International Nuclear Information System (INIS)

    Piepenbring, R.; Silvestre-Brac, B.; Szymanski, Z.

    1987-01-01

    Matrix elements of the group generators for the symmetric irreducible representations of SO(6) are explicitly calculated in a closed form employing thedecomposition chain SO(6) is contained in SU(2) X SU(2) X U(1) (which is different from the well known Wigner supermultiplet scheme). The relation to the Gel'fand Tsetlin method using SO(6) contained in SO(5) up to ... SO(2) is indicated. An example of a physical application is given

  13. Hyperon resonances in SU(3) soliton models

    International Nuclear Information System (INIS)

    Scoccola, N.N.

    1990-01-01

    Hyperon resonances excited in kaon-nucleon scattering are investigated in the framework of an SU(3) soliton model in which kaon degrees of freedom are treated as small fluctuations around an SU(2) soliton. For partial waves l≥2 the model predicts correctly the quantum numbers and average excitation energies of most of the experimentally observed Λ and Σ resonances. Some disagreements are found for lower partial waves. (orig.)

  14. Vacuum transitions in dual models

    International Nuclear Information System (INIS)

    Pashnev, A.I.; Volkov, D.V.; Zheltukhin, A.A.

    1976-01-01

    The investigation is continued of the spontaneous vacuum transition problem in the Neview-Schwartz dual model (NSDM). It is shown that vacuum transitions allow disclosing of supplementary degeneration in the resonance state spectrum. The dual amplitudes possess an internal structure corresponding to the presence of an infinite number of quarks with increasing masses and retained charges. The Adler principle holds. Analytic continuation on the constant of induced vacuum transitions makes it possible to establish the existence of spontaneous vacuum transitions in the NSDM. The consequence of this fact is the exact SU(2) symmetry of π, rho meson trajectories and the Higgs mechanism in the model. In this case the ratios of masses of particles leading trajectories are analogous to those obtained in the current algebra. It is shown that in the NSDM there arises chiral SU(2) x SU(2) x U(1) x U(1) x ... symmetry resulting from spontaneous vacuum transitions

  15. Probing SU(N)-symmetric orbital interactions with ytterbium Fermi gases in optical lattices

    International Nuclear Information System (INIS)

    Scazza, Francesco

    2015-01-01

    This thesis reports on the creation and investigation of interacting two-orbital quantum gases of ytterbium in optical lattices. Degenerate fermionic gases of ytterbium or other alkaline-earth-like atoms have been recently proposed as model systems for orbital phenomena in condensed matter, such as Kondo screening, heavy-Fermi behaviour and colossal magnetoresistance. Such gases are moreover expected to obey a high SU(N) symmetry, owing to their highly decoupled nuclear spin, for which the emergence of novel, exotic phases of matter has been predicted. With the two lowest (meta-) stable electronic states mimicking electrons in distinct orbitals of solid materials, the two-orbital SU(N) Hubbard model and its spin-exchange inter-orbital interactions are realised. The interactions in two-orbital degenerate mixtures of different nuclear spin states of 173 Yb are probed by addressing the transition to the metastable state in a state-independent optical lattice. The complete characterisation of the two-orbital scattering channels and the demonstration of the SU(N=6) symmetry within the experimental uncertainty are presented. Most importantly, a strong spin- exchange coupling between the two orbitals is identified and the associated exchange process is observed through the dynamic equilibration of spin imbalances between ensembles in different orbitals. These findings are enabled by the implementation of high precision spectroscopic techniques and of full coherent control of the metastable state population. The realisation of SU(N)-symmetric gases with spin-exchange interactions, the elementary building block of orbital quantum magnetism, represents an important step towards the simulation of paradigmatic many-body models, such as the Kondo lattice model.

  16. sdg boson model in the SU(3) scheme

    Science.gov (United States)

    Akiyama, Yoshimi

    1985-02-01

    Basic properties of the interacting boson model with s-, d- and g-bosons are investigated in rotational nuclei. An SU(3)-seniority scheme is found for the classification of physically important states according to a group reduction chain U(15) ⊃ SU(3). The capability of describing rotational bands increases enormously in comparison with the ordinary sd interacting boson model. The sdg boson model is shown to be able to describe the so-called anharmonicity effect recently observed in the 168Er nucleus.

  17. Vacuum structure of the SU(3) gauge field theory in the Coulomb gauge

    International Nuclear Information System (INIS)

    Yee, J.H.; Viswanathan, K.S.

    1978-01-01

    The SU(3) gauge field is studied in the Coulomb gauge. The Gribov ambiguities arising in the Coulomb gauge are analysed. Restricting to a class of spherically symmetric vacua it is shown that there exist non-trivial vacua characterized by a topological number eta=0, +-1/2, and +-2. This must be contrasted with the spherically symmetric SU(2) vacua which are characterized by eta=0, +-1/2. (Auth.)

  18. Sdg boson model in the SU(3) scheme

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Y.

    1985-02-11

    Basic properties of the interacting boson model with s-, d- and g-bosons are investigated in rotational nuclei. An SU(3)-seniority scheme is found for the classification of physically important states according to a group reduction chain U(15)containsSU(3). The capability of describing rotational bands increases enormously in comparison with the ordinary sd interacting boson model. The sdg boson model is shown to be able to describe the so-called anharmonicity effect recently observed in the /sup 168/Er nucleus.

  19. sdg boson model in the SU(3) scheme

    International Nuclear Information System (INIS)

    Akiyama, Y.

    1985-01-01

    Basic properties of the interacting boson model with s-, d- and g-bosons are investigated in rotational nuclei. An SU(3)-seniority scheme is found for the classification of physically important states according to a group reduction chain U(15)containsSU(3). The capability of describing rotational bands increases enormously in comparison with the ordinary sd interacting boson model. The sdg boson model is shown to be able to describe the so-called anharmonicity effect recently observed in the 168 Er nucleus. (orig.)

  20. Pion condensation in symmetric nuclear matter

    Science.gov (United States)

    Kabir, K.; Saha, S.; Nath, L. M.

    1988-01-01

    Using a model which is based essentially on the chiral SU(2)×SU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenom is expected to be seen in the pion-nucleus interaction.

  1. Developing and testing the density of states FFA method in the SU(3) spin model

    Energy Technology Data Exchange (ETDEWEB)

    Giuliani, Mario; Gattringer, Christof, E-mail: christof.gattringer@uni-graz.at; Törek, Pascal

    2016-12-15

    The Density of States Functional Fit Approach (DoS FFA) is a recently proposed modern density of states technique suitable for calculations in lattice field theories with a complex action problem. In this article we present an exploratory implementation of DoS FFA for the SU(3) spin system at finite chemical potential μ – an effective theory for the Polyakov loop. This model has a complex action problem similar to the one of QCD but also allows for a dual simulation in terms of worldlines where the complex action problem is solved. Thus we can compare the DoS FFA results to the reference data from the dual simulation and assess the performance of the new approach. We find that the method reproduces the observables from the dual simulation for a large range of μ values, including also phase transitions, illustrating that DoS FFA is an interesting approach for exploring phase diagrams of lattice field theories with a complex action problem.

  2. Pion condensation in symmetric nuclear matter

    International Nuclear Information System (INIS)

    Kabir, K.; Saha, S.; Nath, L.M.

    1987-09-01

    Using a model which is based essentially on the chiral SU(2)xSU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenon is expected to be seen in the pion-nucleus interaction. (author). 20 refs

  3. On Goldstone particles and the Adler principle in dual models

    International Nuclear Information System (INIS)

    Volkov, D.V.; Zheltukhin, A.A.; Pashnev, A.I.

    1975-01-01

    The results that have been obtained on the basis of considering the spontaneous vacuum transitions for the cases of Veneziano dual model and dual M-model are generalized to model containing internal quantum numbers of SU(N)-group. This generalization allows to consider how in dual models the spontaneous violation of symmetry occurs, which Goldstone particles appear in this process, how Adler's principle is realized for dual amplitudes and their topics related of spontaneous violation of symmetry

  4. Strong coupling and quasispinor representations of the SU(3) rotor model

    International Nuclear Information System (INIS)

    Rowe, D.J.; De Guise, H.

    1992-01-01

    We define a coupling scheme, in close parallel to the coupling scheme of Elliott and Wilsdon, in which nucleonic intrinsic spins are strongly coupled to SU(3) spatial wave functions. The scheme is proposed for shell-model calculations in strongly deformed nuclei and for semimicroscopic analyses of rotations in odd-mass nuclei and other nuclei for which the spin-orbit interaction is believed to play an important role. The coupling scheme extends the domain of utility of the SU(3) model, and the symplectic model, to heavy nuclei and odd-mass nuclei. It is based on the observation that the low angular-momentum states of an SU(3) irrep have properties that mimic those of a corresponding irrep of the rotor algebra. Thus, we show that strongly coupled spin-SU(3) bands behave like strongly coupled rotor bands with properties that approach those of irreducible representations of the rigid-rotor algebra in the limit of large SU(3) quantum numbers. Moreover, we determine that the low angular-momentum states of a strongly coupled band of states of half-odd integer angular momentum behave to a high degree of accuracy as if they belonged to an SU(3) irrep. These are the quasispinor SU(3) irreps referred to in the title. (orig.)

  5. Alternative [SU(3]4 model of leptonic color and dark matter

    Directory of Open Access Journals (Sweden)

    Corey Kownacki

    2018-03-01

    Full Text Available The alternative [SU(3]4 model of leptonic color and dark matter is discussed. It unifies at MU∼1014 GeV and has the low-energy subgroup SU(3SU(2l×SU(2L×SU(2R×U(1X with (u,hR instead of (u,dR as doublets under SU(2R. It has the built-in global U(1 dark symmetry which is generalized B–L. In analogy to SU(3q quark triplets, it has SU(2l hemion doublets which have half-integral charges and are confined by SU(2l gauge bosons (stickons. In analogy to quarkonia, their vector bound states (hemionia are uniquely suited for exploration at a future e−e+ collider.

  6. Alternative [SU(3)]4 model of leptonic color and dark matter

    Science.gov (United States)

    Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza

    2018-03-01

    The alternative [ SU (3) ] 4 model of leptonic color and dark matter is discussed. It unifies at MU ∼1014 GeV and has the low-energy subgroup SU(3)q × SU(2)l × SU(2)L × SU(2)R × U(1)X with (u , h) R instead of (u , d) R as doublets under SU(2)R. It has the built-in global U (1) dark symmetry which is generalized B- L. In analogy to SU(3)q quark triplets, it has SU(2)l hemion doublets which have half-integral charges and are confined by SU(2)l gauge bosons (stickons). In analogy to quarkonia, their vector bound states (hemionia) are uniquely suited for exploration at a future e-e+ collider.

  7. Hilbert Space Inner Products for PJ-symmetric Su-Schrieffer-Heeger Models

    Czech Academy of Sciences Publication Activity Database

    Růžička, František

    2015-01-01

    Roč. 54, č. 11 (2015), s. 4154-4163 ISSN 0020-7748 Institutional support: RVO:61389005 Keywords : Su-Schrieffer-Heeger model * physical inner products * complete set of pseudometrics * exceptional points Subject RIV: BE - Theoretical Physics Impact factor: 1.041, year: 2015

  8. Universal seesaw and 0νββ in new 3331 left-right symmetric model

    Directory of Open Access Journals (Sweden)

    Debasish Borah

    2017-08-01

    Full Text Available We consider a class of left-right symmetric model with enlarged gauge group SU(3SU(3SU(3R×U(1X without having scalar bitriplet. In the absence of scalar bitriplet, there is no Dirac mass term for fermions including usual quarks and leptons. We introduce new isosinglet vector-like fermions so that all the fermions get their masses through a universal seesaw mechanism. We extend our discussion to neutrino mass and its implications in neutrinoless double beta decay (0νββ. We show that for TeV scale SU(3R gauge bosons, the heavy-light neutrino mixing contributes dominantly to 0νββ that can be observed at ongoing experiments. The new physics contributions arising from purely left-handed currents via exchange of keV scale right-handed neutrinos and the so called mixed helicity λ-diagram can saturate the KamLANDZen bound. We show that the right handed neutrinos in this model can have mass in the sub keV range and can be long lived compared to the age of the Universe. The contributions of these right handed neutrinos to flavour physics observables like μ→eγ and muon g−2 is also discussed. Towards the end we also comment on different possible symmetry breaking patterns of this enlarged gauge symmetry to that of the standard model.

  9. SU(6) quadrupole phonon model for even and odd nuclei and the SU(3) limit

    Energy Technology Data Exchange (ETDEWEB)

    Paar, V; Brant, S [Zagreb Univ. (Yugoslavia). Prirodoslovno Matematicki Fakultet; Canto, L F [Rio de Janeiro Univ. (Brazil). Inst. de Fisica; Leander, G [Lund Inst. of Tech. (Sweden). Dept. of Mathematical Physics; Oak Ridge National Lab., TN (USA)); Vouk, M [Zagreb Univ. (Yugoslavia). Computing Centre SRCE

    1982-04-05

    Analogous to the equivalence between the SU(6) quadrupole-phonon model (TQM) and the interacting boson model (IBM), the equivalence is pointed out for odd systems between the SU(6) particle quadrupole-phonon coupling model (PTQM) and the interacting boson-fermion model (IBFM). PTQM is formulated starting from the Dyson representation for the odd system. Different aspects of the SU(3) limit of TQM and PTQM are studied; the quadrupole-phonon block structure of rotational bands in even and odd nuclei and analytic expressions based on the coherent state; signature effects generated in PTQM; electromagnetic properties and correction factors for PTQM; overlaps of the PTQM analogs of Nilsson states with Coriolis-coupled Nilsson states and the relation to the rotational model representation.

  10. Primordial two-component maximally symmetric inflation

    Science.gov (United States)

    Enqvist, K.; Nanopoulos, D. V.; Quirós, M.; Kounnas, C.

    1985-12-01

    We propose a two-component inflation model, based on maximally symmetric supergravity, where the scales of reheating and the inflation potential at the origin are decoupled. This is possible because of the second-order phase transition from SU(5) to SU(3SU(2)×U(1) that takes place when φ≅φcinflation at the global minimum, and leads to a reheating temperature TR≅(1015-1016) GeV. This makes it possible to generate baryon asymmetry in the conventional way without any conflict with experimental data on proton lifetime. The mass of the gravitinos is m3/2≅1012 GeV, thus avoiding the gravitino problem. Monopoles are diluted by residual inflation in the broken phase below the cosmological bounds if φcUSA.

  11. W algebra in the SU(3) parafermion model

    International Nuclear Information System (INIS)

    Ding, X.; Fan, H.; Shi, K.; Wang, P.; Zhu, C.

    1993-01-01

    A construction of W 3 algebra for the SU(3) parafermion model is proposed, in which a Z algebra technique is used instead of the popular free-field realization. The central charge of the underlying algebra is different from known W algebras

  12. Theoretical approach for plasma series resonance effect in geometrically symmetric dual radio frequency plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.

    2012-01-01

    Plasma series resonance (PSR) effect is well known in geometrically asymmetric capacitively couple radio frequency plasma. However, plasma series resonance effect in geometrically symmetric plasma has not been properly investigated. In this work, a theoretical approach is made to investigate the plasma series resonance effect and its influence on Ohmic and stochastic heating in geometrically symmetric discharge. Electrical asymmetry effect by means of dual frequency voltage waveform is applied to excite the plasma series resonance. The results show considerable variation in heating with phase difference between the voltage waveforms, which may be applicable in controlling the plasma parameters in such plasma.

  13. Phenomenology of the SU(3)cxSU(3)LxU(1)X model with exotic charged leptons

    International Nuclear Information System (INIS)

    Salazar, Juan C.; Ponce, William A.; Gutierrez, Diego A.

    2007-01-01

    A phenomenological analysis of the three-family model based on the local gauge group SU(3) c xSU(3) L xU(1) X with exotic charged leptons, is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produce quark and charged lepton mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions to achieve a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model

  14. MSSM-like from SU5×D4 models

    Directory of Open Access Journals (Sweden)

    R. Ahl Laamara

    2016-05-01

    Full Text Available Using finite discrete group characters and symmetry breaking by hyperflux as well as constraints on top-quark family, we study minimal low energy effective theory following from SU5×D4 models embedded in F-theory with non-abelian flux. Matter curves spectrum of the models is obtained from SU5×S5 theory with monodromy S5 by performing two breakings: first from symmetric group S5 to S4 subsymmetry, and next to dihedral D4 subgroup. As a consequence, and depending on the ways of decomposing triplets of S4, we end with three types of D4-models. Explicit constructions of these theories are given and a MSSM-like spectrum is derived.

  15. Lattice simulation of a center symmetric three dimensional effective theory for SU(2) Yang-Mills

    International Nuclear Information System (INIS)

    Smith, Dominik

    2010-01-01

    We present lattice simulations of a center symmetric dimensionally reduced effective field theory for SU(2) Yang Mills which employ thermal Wilson lines and three-dimensional magnetic fields as fundamental degrees of freedom. The action is composed of a gauge invariant kinetic term, spatial gauge fields and a potential for theWilson line which includes a ''fuzzy'' bag term to generate non-perturbative fluctuations between Z(2) degenerate ground states. The model is studied in the limit where the gauge fields are set to zero as well as the full model with gauge fields. We confirm that, at moderately weak coupling, the ''fuzzy'' bag term leads to eigenvalue repulsion in a finite region above the deconfining phase transition which shrinks in the extreme weak-coupling limit. A non-trivial Z(N) symmetric vacuum arises in the confined phase. The effective potential for the Polyakov loop in the theory with gauge fields is extracted from the simulations including all modes of the loop as well as for cooled configurations where the hard modes have been averaged out. The former is found to exhibit a non-analytic contribution while the latter can be described by a mean-field like ansatz with quadratic and quartic terms, plus a Vandermonde potential which depends upon the location within the phase diagram. Other results include the exact location of the phase boundary in the plane spanned by the coupling parameters, correlation lengths of several operators in the magnetic and electric sectors and the spatial string tension. We also present results from simulations of the full 4D Yang-Mills theory and attempt to make a qualitative comparison to the 3D effective theory. (orig.)

  16. Skyrmions and vector mesons: a symmetric approach

    International Nuclear Information System (INIS)

    Caldi, D.G.

    1984-01-01

    We propose an extension of the effective, low-energy chiral Lagrangian known as the Skyrme model, to one formulated by a non-linear sigma model generalized to include vector mesons in a symmetric way. The model is based on chiral SU(6) x SU(6) symmetry spontaneously broken to static SU(6). The rho and other vector mesons are dormant Goldstone bosons since they are in the same SU(6) multiplet as the pion and other pseudoscalars. Hence the manifold of our generalized non-linear sigma model is the coset space (SU(6) x SU(6))/Su(6). Relativistic effects, via a spin-dependent mass term, break the static SU(6) and give the vectors a mass. The model can then be fully relativistic and covariant. The lowest-lying Skyrmion in this model is the whole baryonic 56-plet, which splits into the octet and decuplet in the presence of relativistic SU(6)-breaking. Due to the built-in SU(6) and the presence of vector mesons, the model is expected to have better phenomenological results, as well as providing a conceptually more unified picture of mesons and baryons. 29 references

  17. On the shell model connection of the cluster model

    International Nuclear Information System (INIS)

    Cseh, J.; Levai, G.; Kato, K.

    2000-01-01

    Complete text of publication follows. The interrelation of basic nuclear structure models is a longstanding problem. The connection between the spherical shell model and the quadrupole collective model has been studied extensively, and symmetry considerations proved to be especially useful in this respect. A collective band was interpreted in the shell model language long ago as a set of states (of the valence nucleons) with a specific SU(3) symmetry. Furthermore, the energies of these rotational states are obtained to a good approximation as eigenvalues of an SU(3) dynamically symmetric shell model Hamiltonian. On the other hand the relation of the shell model and cluster model is less well explored. The connection of the harmonic oscillator (i.e. SU(3)) bases of the two approaches is known, but it was established only for the unrealistic harmonic oscillator interactions. Here we investigate the question: Can an SU(3) dynamically symmetric interaction provide a similar connection between the spherical shell model and the cluster model, like the one between the shell and collective models? In other words: whether or not the energy of the states of the cluster bands, defined by a specific SU(3) symmetries, can be obtained from a shell model Hamiltonian (with SU(3) dynamical symmetry). We carried out calculations within the framework of the semimicroscopic algebraic cluster model, in which not only the cluster model space is obtained from the full shell model space by an SU(3) symmetry-dictated truncation, but SU(3) dynamically symmetric interactions are also applied. Actually, Hamiltonians of this kind proved to be successful in describing the gross features of cluster states in a wide energy range. The novel feature of the present work is that we apply exclusively shell model interactions. The energies obtained from such a Hamiltonian for several bands of the ( 12 C, 14 C, 16 O, 20 Ne, 40 Ca) + α systems turn out to be in good agreement with the experimental

  18. Nontopological bare solutions in the relativistic self-dual Maxwell-Chern-Simons-Higgs model

    International Nuclear Information System (INIS)

    Han, Jongmin; Jang, Jaeduk

    2005-01-01

    In this paper we prove the existence of the radially symmetric nontopological bare solutions in the relativistic self-dual Maxwell-Chern-Simons-Higgs model. We also verify the Chern-Simons limit for those solutions

  19. Phenomenology of the SU(3)c x SU(3)L x U(1)X model with right-handed neutrinos

    International Nuclear Information System (INIS)

    Gutierrez, D.A.; Ponce, W.A.; Sanchez, L.A.

    2006-01-01

    A phenomenological analysis of the three-family model based on the local gauge group SU(3) c x SU(3) L x U(1) X with right-handed neutrinos is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produces a quark mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions for achieving a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model. (orig.)

  20. Creation and annihilation operators for SU(3) in an SO(6,2) model

    International Nuclear Information System (INIS)

    Bracken, A.J.; MacGibbon, J.H.

    1984-01-01

    Creation and annihilation operators are defined which are Wigner operators (tensor shift operators) for SU(3). While the annihilation operators are simply boson operators, the creation operators are cubic polynomials in boson operators. Together they generate under commutation the Lie algebra of SO(6,2). A model for SU(3) is defined. The different SU(3) irreducible representations appear explicitly as manifestly covariant, irreducible tensors, whose orthogonality and normalisation properties are examined. Other Wigner operators for SU(3) can be constructed simply as products of the new creation and annihilation operators, or sums of such products. (author)

  1. Mass generation for Abelian spin-1 particles via a symmetric tensor

    International Nuclear Information System (INIS)

    Dalmazi, D.; Mendonça, E.L.

    2012-01-01

    In the topologically massive BF model (TMBF) the photon becomes massive via coupling to an antisymmetric tensor, without breaking the U(1) gauge symmetry. There is no need of a Higgs field. The TMBF model is dual to a first-order (in derivatives) formulation of the Maxwell-Proca theory where the antisymmetric field plays the role of an auxiliary field. Since the Maxwell-Proca theory also admits a first-order version which makes use of an auxiliary symmetric tensor, we investigate here a possible generalization of the TMBF model where the photon acquires mass via coupling to a symmetric tensor. We show that it is indeed possible to build up dual models to the Maxwell-Proca theory where the U(1) gauge symmetry is manifest without Higgs field, but after a local field redefinition the vector field eats up the trace of the symmetric tensor and becomes massive. So the explicit U(1) symmetry can be removed unlike the TMBF model.

  2. An AdS3 dual for minimal model CFTs

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R.; Gopakumar, Rajesh

    2011-01-01

    We propose a duality between the 2d W N minimal models in the large N't Hooft limit, and a family of higher spin theories on AdS 3 . The 2d conformal field theories (CFTs) can be described as Wess-Zumino-Witten coset models, and include, for N=2, the usual Virasoro unitary series. The dual bulk theory contains, in addition to the massless higher spin fields, two complex scalars (of equal mass). The mass is directly related to the 't Hooft coupling constant of the dual CFT. We give convincing evidence that the spectra of the two theories match precisely for all values of the 't Hooft coupling. We also show that the renormalization group flows in the 2d CFT agree exactly with the usual AdS/CFT prediction of the gravity theory. Our proposal is in many ways analogous to the Klebanov-Polyakov conjecture for an AdS 4 dual for the singlet sector of large N vector models.

  3. Lattice simulation of a center symmetric three dimensional effective theory for SU(2) Yang-Mills

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Dominik

    2010-11-17

    We present lattice simulations of a center symmetric dimensionally reduced effective field theory for SU(2) Yang Mills which employ thermal Wilson lines and three-dimensional magnetic fields as fundamental degrees of freedom. The action is composed of a gauge invariant kinetic term, spatial gauge fields and a potential for theWilson line which includes a ''fuzzy'' bag term to generate non-perturbative fluctuations between Z(2) degenerate ground states. The model is studied in the limit where the gauge fields are set to zero as well as the full model with gauge fields. We confirm that, at moderately weak coupling, the ''fuzzy'' bag term leads to eigenvalue repulsion in a finite region above the deconfining phase transition which shrinks in the extreme weak-coupling limit. A non-trivial Z(N) symmetric vacuum arises in the confined phase. The effective potential for the Polyakov loop in the theory with gauge fields is extracted from the simulations including all modes of the loop as well as for cooled configurations where the hard modes have been averaged out. The former is found to exhibit a non-analytic contribution while the latter can be described by a mean-field like ansatz with quadratic and quartic terms, plus a Vandermonde potential which depends upon the location within the phase diagram. Other results include the exact location of the phase boundary in the plane spanned by the coupling parameters, correlation lengths of several operators in the magnetic and electric sectors and the spatial string tension. We also present results from simulations of the full 4D Yang-Mills theory and attempt to make a qualitative comparison to the 3D effective theory. (orig.)

  4. Symmetry breaking and asymptotic freedom in colour SU(3) gauge models

    International Nuclear Information System (INIS)

    Ma, E.

    1976-01-01

    A class of quark models based on the colour gauge group SU(3) is shown to be asymptotically free despite the complete breakdown of local symmetry to guarantee infrared stability. The symmetry breakdown is achieved by the presence of elementary scalar fields either through the Higgs mechanism or dynamically as first proposed by Coleman and Weinberg. Asymptotic freedom is preserved by imposing eigenvalue conditions on the coupling constants as first proposed by Chang. New quark species must be present, but below their production threshold, colour can still be a global symmetry which is approximate under SU(3), but exact under SU(2). Among the many implications of this class of models is the possibility of producing isolated quarks and gluons of non-zero mass without altering the short-distance behaviour of the superstrong interaction which binds them. (Auth.)

  5. Self-interacting dark matter and Higgs bosons in the SU(3)C x SU(3)L x U(1)N model with right-handed neutrinos

    International Nuclear Information System (INIS)

    Hoang Ngoc Long; Nguyen Quynh Lan

    2003-05-01

    We show that the SU(3) C x SU(3) L x U(1) N (3-3-1) model with right-handed neutrinos can provide candidates for self-interacting dark matter, namely they are the CP-even and odd Higgs bosons. These dark matters are stable without imposing of new symmetry and should be weak-interacting. (author)

  6. 3D modeling of dual-gate FinFET.

    Science.gov (United States)

    Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John

    2012-11-13

    The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at Vg1 >Vg2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device.

  7. sdg interacting-boson model in the SU(3) scheme and its application to 168Er

    Science.gov (United States)

    Yoshinaga, N.; Akiyama, Y.; Arima, A.

    1988-07-01

    The sdg interacting-boson model is presented in the SU(3) tensor formalism. The interactions are decomposed according to their SU(3) tensor character. The existence of the SU(3)-seniority preserving operator is found to be important. The model is applied to 168Er. Energy levels and electromagnetic transitions are calculated. This model is shown to solve the problem of anharmonicity regarding the excitation energy of the first Kπ=4+ band relative to that of the first Kπ=2+ one. E4 transitions are calculated to give different predictions from those by the quasiparticle-phonon nuclear model.

  8. Vacuum expectation values of Higgs scalars in a SU(2)/sub L/ X SU(2)/sub R/ X U(1) gauge model

    International Nuclear Information System (INIS)

    Kitazoe, T.; Mainland, G.B.; Tanaka, K.

    1978-01-01

    The vacuum expectation values of the Higgs scalars are determined within the framework of a six quark SU(2)/sub L/ x SU(2)/sub R/ x U(1) gauge model after the imposition of discrete symmetrics that are necessary in order to express the Cabibbo angle in terms of quark mass ratios and phases of the vacuum expectation values. Both real and complex solutions are found for the vacuum expectation values depending on the relative values of the parameters in the Higgs potential

  9. Hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, S.; Kaiser, N. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Haidenbauer, J. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Villa Tambosi, ECT, Villazzano (Trento) (Italy)

    2016-01-15

    Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. (orig.)

  10. Pion condensation in symmetric nuclear matter

    International Nuclear Information System (INIS)

    Shamsunnahar, T.; Saha, S.; Kabir, K.; Nath, L.M.

    1991-01-01

    We have investigated the possibility of pion condensation in symmetric nuclear matter using a model of pion-nucleon interaction based essentially on chiral SU(2) x SU(2) symmetry. We have found that pion condensation is not possible for any finite value of the density. Consequently, no critical opalescence phenomenon is likely to be seen in pion-nucleus scattering nor is it likely to be possible to explain the EMC effect in terms of an increased number of pions in the nucleus. (author)

  11. On the shell-model-connection of the cluster model

    International Nuclear Information System (INIS)

    Cseh, J.

    2000-01-01

    Complete text of publication follows. The interrelation of basic nuclear structure models is a longstanding problem. The connection between the spherical shell model and the quadrupole collective model has been studied extensively, and symmetry considerations proved to be especially useful in this respect. A collective band was interpreted in the shell model language long ago [1] as a set of states (of the valence nucleons) with a specific SU(3) symmetry. Furthermore, the energies of these rotational states are obtained to a good approximation as eigenvalues of an SU(3) dynamically symmetric shell model Hamiltonian. On the other hand the relation of the shell model and cluster model is less well explored. The connection of the harmonic oscillator (i.e. SU(3)) bases of the two approaches is known [2] but it was established only for the unrealistic harmonic oscillator interactions. Here we investigate the question: Can an SU(3) dynamically symmetric interaction provide a similar connection between the spherical shell model and the cluster model, like the one between the shell and collective models? In other words: whether or not the energy of the states of the cluster bands, defined by a specific SU(3) symmetries, can be obtained from a shell model Hamiltonian (with SU(3) dynamical symmetry). We carried out calculations within the framework of the semimicroscopic algebraic cluster model [3,4] in order to find an answer to this question, which seems to be affirmative. In particular, the energies obtained from such a Hamiltonian for several bands of the ( 12 C, 14 C, 16 O, 20 Ne, 40 Ca) + α systems turn out to be in good agreement with the experimental values. The present results show that the simple and transparent SU(3) connection between the spherical shell model and the cluster model is valid not only for the harmonic oscillator interactions, but for much more general (SU(3) dynamically symmetric) Hamiltonians as well, which result in realistic energy spectra. Via

  12. Dual-Extrusion 3D Printing of Anatomical Models for Education

    Science.gov (United States)

    Smith, Michelle L.; Jones, James F. X.

    2018-01-01

    Two material 3D printing is becoming increasingly popular, inexpensive and accessible. In this paper, freely available printable files and dual extrusion fused deposition modelling were combined to create a number of functional anatomical models. To represent muscle and bone FilaFlex[superscript 3D] flexible filament and polylactic acid (PLA)…

  13. A SU(3) x U(1) model for electroweak interactions

    International Nuclear Information System (INIS)

    Pisano, F.; Pleitez, V.

    1992-01-01

    We consider a gauge model based on a SU(3) vector U(1) symmetry in which the lepton number is violated explicitly by charged scalar and gauge boson, including a vector field with double electric charge. (author)

  14. Pros and cons of symmetrical dual-k spacer technology in hybrid FinFETs

    Science.gov (United States)

    Pradhan, K. P.; Andrade, M. G. C.; Sahu, P. K.

    2016-12-01

    The symmetrical dual-k spacer technology in hybrid FinFETs has been widely explored for better electrostatic control of the fin-based devices in nanoscale region. Since, high-k tangible spacer materials are broadly became a matter of study due to their better immunity to the short channel effects (SCEs) in nano devices. However, the only cause that restricts the circuit designers from using high-k spacer is the unreasonable increasing fringing capacitances. This work quantitatively analyzed the benefits and drawbacks of considering two different dielectric spacer materials symmetrically in either sides of the channel for the hybrid device. From the demonstrated results, the inclusion of high-k spacer predicts an effective reduction in off-state leakage along with an improvement in drive current. However, these devices have paid the cost in terms of a high total gate-to-gate capacitance (Cgg) that consequently results poor cutoff frequency (fT) and delay.

  15. SU(3)xSU(2) color symmetry and Usub(B)(1)xSUsub(f)(4) quark model of hadrons

    International Nuclear Information System (INIS)

    Khrushchov, V.V.

    1982-01-01

    A quark model with a generalized color group SUsub(c)(3)xSU'sub(c)(2) is treated in the framework of the SUsub(f)(4)xUsub(B)(1) symnetry of strong interactions. The model contains twelve standard u, d, s, c quarks and new quarks belonging to representation 6 of the SU(4) group. The properties of new quarks are considered with respect to the color group and some properties of the exotic states, predicted by the model are presented

  16. Notes on TQFT wire models and coherence equations for SU(3) triangular cells

    CERN Document Server

    Coquereaux, R.; Schieber, G.

    2010-01-01

    After a summary of the TQFT wire model formalism we bridge the gap from Kuperberg equations for SU(3) spiders to Ocneanu coherence equations for systems of triangular cells on fusion graphs that describe modules associated with the fusion category of SU(3) at level k. We show how to solve these equations in a number of examples.

  17. PT symmetric Aubry–Andre model

    International Nuclear Information System (INIS)

    Yuce, C.

    2014-01-01

    PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists

  18. PT symmetric Aubry–Andre model

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, C., E-mail: cyuce@anadolu.edu.tr

    2014-06-13

    PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists.

  19. Identity of the SU(3) model phenomenological hamiltonian and the hamiltonian of nonaxial rotator

    International Nuclear Information System (INIS)

    Filippov, G.F.; Avramenko, V.I.; Sokolov, A.M.

    1984-01-01

    Interpretation of nonspheric atomic nuclei spectra on the basis of phenomenological hamiltonians of SU(3) model showed satisfactory agreement of simulation calculations with experimental data. Meanwhile physical sense of phenomenological hamiltonians was not yet discussed. It is shown that phenomenological hamiltonians of SU(3) model are reduced to hamiltonian of nonaxial rotator but with additional items of the third and fourth powers angular momentum operator of rotator

  20. Sdg interacting-boson model in the SU(3) scheme and its application to /sup 168/Er

    International Nuclear Information System (INIS)

    Yoshinaga, N.; Akiyama, Y.; Arima, A.

    1988-01-01

    The sdg interacting-boson model is presented in the SU(3) tensor formalism. The interactions are decomposed according to their SU(3) tensor character. The existence of the SU(3)-seniority preserving operator is found to be important. The model is applied to /sup 168/Er. Energy levels and electromagnetic transitions are calculated. This model is shown to solve the problem of anharmonicity regarding the excitation energy of the first K/sup π/ = 4 + band relative to that of the first K/sup π/ = 2 + one. E4 transitions are calculated to give different predictions from those by the quasiparticle-phonon nuclear model

  1. Left-right symmetric superstring supergravitation

    International Nuclear Information System (INIS)

    Burova, M.V.; Ter-Martirosyan, K.E.

    1988-01-01

    A left-right (L-R) symmetric model of four-dimensional supergravitation with a SO(10) gauge group obtained as the low-energy limit is superstring theory is considered. The spectrum of the gauge fields and their interactions are in agreement with the Weinberg-Salam theory. In addition, the model includes heavy W R ± and Z μ ' bosons. Beside the N g =3 generations of the 16-plets the SO(10) model includes the fragments of such generations which play the role of Higgs particles and also scalar chiral filds, the number of which exceeds by one the number of generations. As a result the neutrinos of each generation obtain a stable small Majorana mass. It is shown that the scalar field potential leads to spontaneous violation of the SU(2) R group and L-R symmetry and at low energies the standard Weinberg-Salam theory appears. However, reasonable values of X bosons masses M x and sun 2 Θ W (Θ W is the Weinberg angle) can be obtained in the model only in the case of high mass scale M R ∼10 10 -10 12 GeV of the right group SU(2) R violation

  2. Symmetric normalisation for intuitionistic logic

    DEFF Research Database (Denmark)

    Guenot, Nicolas; Straßburger, Lutz

    2014-01-01

    We present two proof systems for implication-only intuitionistic logic in the calculus of structures. The first is a direct adaptation of the standard sequent calculus to the deep inference setting, and we describe a procedure for cut elimination, similar to the one from the sequent calculus......, but using a non-local rewriting. The second system is the symmetric completion of the first, as normally given in deep inference for logics with a DeMorgan duality: all inference rules have duals, as cut is dual to the identity axiom. We prove a generalisation of cut elimination, that we call symmetric...

  3. Analysis of a Multilevel Dual Active Bridge (ML-DAB DC-DC Converter Using Symmetric Modulation

    Directory of Open Access Journals (Sweden)

    M. A. Moonem

    2015-04-01

    Full Text Available Dual active bridge (DAB converters have been popular in high voltage, low and medium power DC-DC applications, as well as an intermediate high frequency link in solid state transformers. In this paper, a multilevel DAB (ML-DAB has been proposed in which two active bridges produce two-level (2L-5L, 5L-2L and 3L-5L voltage waveforms across the high frequency transformer. The proposed ML-DAB has the advantage of being used in high step-up/down converters, which deal with higher voltages, as compared to conventional two-level DABs. A three-level neutral point diode clamped (NPC topology has been used in the high voltage bridge, which enables the semiconductor switches to be operated within a higher voltage range without the need for cascaded bridges or multiple two-level DAB converters. A symmetric modulation scheme, based on the least number of angular parameters rather than the duty-ratio, has been proposed for a different combination of bridge voltages. This ML-DAB is also suitable for maximum power point tracking (MPPT control in photovoltaic applications. Steady-state analysis of the converter with symmetric phase-shift modulation is presented and verified using simulation and hardware experiments.

  4. Magnetic monopoles and the dual London equation in SU(3) lattice gauge theory

    International Nuclear Information System (INIS)

    Skala, P.; Faber, M.; Zach, M.

    1996-01-01

    The dual superconductor model of confinement in non-Abelian gauge theories is studied in a gauge invariant formulation. We propose a method for the determination of magnetic monopole currents in non-Abelian gauge theories which does not need a projection to Abelian degrees of freedom. With this definition we are able to determine the distribution of magnetic currents and electric fields for the gluonic flux tube between a pair of static charges. Further we check the validity of the dual London equation in a gauge invariant formulation. (orig.)

  5. Kink-induced symmetry breaking patterns in brane-world SU(3)3 trinification models

    International Nuclear Information System (INIS)

    Demaria, Alison; Volkas, Raymond R.

    2005-01-01

    The trinification grand unified theory (GUT) has gauge group SU(3) 3 and a discrete symmetry permuting the SU(3) factors. In common with other GUTs, the attractive nature of the fermionic multiplet assignments is obviated by the complicated multiparameter Higgs potential apparently needed for phenomenological reasons, and also by vacuum expectation value (VEV) hierarchies within a given multiplet. This motivates the rigorous consideration of Higgs potentials, symmetry breaking patterns, and alternative symmetry breaking mechanisms in models with this gauge group. Specifically, we study the recently proposed 'clash of symmetries' brane-world mechanism to see if it can help with the symmetry breaking conundrum. This requires a detailed analysis of Higgs potential global minima and kink or domain wall solutions interpolating between the disconnected global minima created through spontaneous discrete symmetry breaking. Sufficiently long-lived metastable kinks can also be considered. We develop what we think is an interesting, albeit speculative, brane-world scheme whereby the hierarchical symmetry breaking cascade, trinification to left-right symmetry to the standard model to color cross electromagnetism, may be induced without an initial hierarchy in vacuum expectation values. Another motivation for this paper is simply to continue the exploration of the rich class of kinks arising in models that are invariant under both discrete and continuous symmetries

  6. Signature effect in the SU(3) limit of SU(6) particle-quadrupole phonon coupling model (PTQM)

    International Nuclear Information System (INIS)

    Paar, V.; Brant, S.

    1981-09-01

    Systematic deviations from the J(J + 1) energy rule in the SU(3) limit of PTQM are studied and interpreted in terms of signature from the rotational model. The signature effect, which is in the rotational mode introduced via the Coriolis force, is generated here by the correlation of PTQM. (author)

  7. Electromagnetic mass differences in the SU(3) x U(1) gauge model

    International Nuclear Information System (INIS)

    Maharana, K.; Sastry, C.V.

    1975-01-01

    In this note we point out that the electromagnetic mass differences of the pion and kaon in the SU(3) times U(1) model are the same as in Weinberg's model except for the differences in the masses of the gauge bosons

  8. Coherent states related with SU(N) and SU(N,1) groups

    International Nuclear Information System (INIS)

    Gitman, D.M.; Shelepin, A.L.

    1990-01-01

    The basis of coherent state (CS) for symmetric presentations of groups SU(N) and SU(N,1) is plotted, its properties being investigated. Evolution of CS is considered. Relation between CS of groups SU(N) and Glauber is ascertained

  9. Minimal Left-Right Symmetric Dark Matter.

    Science.gov (United States)

    Heeck, Julian; Patra, Sudhanwa

    2015-09-18

    We show that left-right symmetric models can easily accommodate stable TeV-scale dark matter particles without the need for an ad hoc stabilizing symmetry. The stability of a newly introduced multiplet either arises accidentally as in the minimal dark matter framework or comes courtesy of the remaining unbroken Z_{2} subgroup of B-L. Only one new parameter is introduced: the mass of the new multiplet. As minimal examples, we study left-right fermion triplets and quintuplets and show that they can form viable two-component dark matter. This approach is, in particular, valid for SU(2)×SU(2)×U(1) models that explain the recent diboson excess at ATLAS in terms of a new charged gauge boson of mass 2 TeV.

  10. Constant self-dual Abelian gauge fields and fermions in SU(2) gauge theory

    International Nuclear Information System (INIS)

    Kay, D.; Parthasarathy, R.; Viswanathan, K.S.

    1983-01-01

    Fermion one-loop corrections to the effective action in a self-dual Abelian background field are calculated for an SU(2) gauge theory. It is found that these corrections for massless fermions tend to destabilize the vacuum. The quantitative and qualitative features of such corrections for the case of massive fermions are discussed

  11. Non self-dual Yang-Mills fields

    International Nuclear Information System (INIS)

    Bor, G.

    1991-01-01

    The purpose of the thesis is to prove the existence of a new family of non self-dual finite-energy solutions to the Yang-Mills equations on Euclidean four-space, with SU(2) as a gauge group. The approach is that of equivalent geometry: attention is restricted to a special class of fields, those that satisfy a certain kind of rotational symmetry which it is proved that (1) a solution to the Yang-Mills equations exists for among them, and (2) no solution to the self-duality equations exists among them. The first assertion is proved by an application of the direct method of the calculus of variations (existence and regularity of minimizers), and the second assertion by showing that the self-duality equations, linearized at a symmetric self-dual solution, cannot possess the required symmetry

  12. Characteristic function-based semiparametric inference for skew-symmetric models

    KAUST Repository

    Potgieter, Cornelis J.

    2012-12-26

    Skew-symmetric models offer a very flexible class of distributions for modelling data. These distributions can also be viewed as selection models for the symmetric component of the specified skew-symmetric distribution. The estimation of the location and scale parameters corresponding to the symmetric component is considered here, with the symmetric component known. Emphasis is placed on using the empirical characteristic function to estimate these parameters. This is made possible by an invariance property of the skew-symmetric family of distributions, namely that even transformations of random variables that are skew-symmetric have a distribution only depending on the symmetric density. A distance metric between the real components of the empirical and true characteristic functions is minimized to obtain the estimators. The method is semiparametric, in that the symmetric component is specified, but the skewing function is assumed unknown. Furthermore, the methodology is extended to hypothesis testing. Two tests for a hypothesis of specific parameter values are considered, as well as a test for the hypothesis that the symmetric component has a specific parametric form. A resampling algorithm is described for practical implementation of these tests. The outcomes of various numerical experiments are presented. © 2012 Board of the Foundation of the Scandinavian Journal of Statistics.

  13. String completion of an SU(3c⊗SU(3L⊗U(1X electroweak model

    Directory of Open Access Journals (Sweden)

    Andrea Addazi

    2016-08-01

    Full Text Available The extended electroweak SU(3c⊗SU(3L⊗U(1X symmetry framework “explaining” the number of fermion families is revisited. While 331-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (unoriented open strings, on Calabi–Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron–antineutron oscillations, with proton decay and other dangerous R-parity violating processes strictly forbidden.

  14. Hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan; Kaiser, Norbert [Technische Universitaet Muenchen (Germany); Haidenbauer, Johann [Forschungszentrum Juelich (Germany); Meissner, Ulf G. [Forschungszentrum Juelich (Germany); Universitaet Bonn (Germany); Weise, Wolfram [Technische Universitaet Muenchen (Germany); ECT, Trento (Italy)

    2016-07-01

    Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. The splittings among the Σ{sup +}, Σ{sup 0} and Σ{sup -} potentials have a non-linear dependence on the isospin asymmetry which goes beyond the usual parametrization in terms of an isovector Lane potential.

  15. 3D gauged supergravity from SU(2) reduction of $N=1$ 6D supergravity

    CERN Document Server

    Gava, Edi; Narain, K S

    2010-01-01

    We obtain Yang-Mills $SU(2)\\times G$ gauged supergravity in three dimensions from $SU(2)$ group manifold reduction of (1,0) six dimensional supergravity coupled to an anti-symmetric tensor multiplet and gauge vector multiplets in the adjoint of $G$. The reduced theory is consistently truncated to $N=4$ 3D supergravity coupled to $4(1+\\textrm{dim}\\, G)$ bosonic and $4(1+\\textrm{dim}\\, G)$ fermionic propagating degrees of freedom. This is in contrast to the reduction in which there are also massive vector fields. The scalar manifold is $\\mathbf{R}\\times \\frac{SO(3,\\, \\textrm{dim}\\, G)}{SO(3)\\times SO(\\textrm{dim}\\, G)}$, and there is a $SU(2)\\times G$ gauge group. We then construct $N=4$ Chern-Simons $(SO(3)\\ltimes \\mathbf{R}^3)\\times (G\\ltimes \\mathbf{R}^{\\textrm{dim}G})$ three dimensional gauged supergravity with scalar manifold $\\frac{SO(4,\\,1+\\textrm{dim}G)}{SO(4)\\times SO(1+\\textrm{dim}G)}$ and explicitly show that this theory is on-shell equivalent to the Yang-Mills $SO(3)\\times G$ gauged supergravity the...

  16. On large N fixed points of a U(N) symmetric (phisup(*)xphi)3sub(D=3) model coupled to fermions

    International Nuclear Information System (INIS)

    Nissimov, E.R.; Pacheva, S.J.

    1984-01-01

    The three-dimensional U(N) symmetric eta(phisup(*) x phi) 3 model coupled to N component fermions is considered within the 1/N expansion. In contrast to the purely bosonic case, here we find in the large N limit only a (nonperturbative) ultraviolet fixed point at eta=etasup(*) approx.= 179, whereas infrared fixed points are absent. (orig.)

  17. A K-theory anomaly free supersymmetric flipped SU(5) model from intersecting branes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-M. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: cchen@physics.tamu.edu; Kraniotis, G.V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: kraniotis@physics.tamu.edu; Mayes, V.E. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: eric@physics.tamu.edu; Nanopoulos, D.V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States) and Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States) and Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece)]. E-mail: dimitri@physics.tamu.edu; Walker, J.W. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: jwalker@physics.tamu.edu

    2005-10-06

    We construct an N=1 supersymmetric three-family flipped SU(5) model from type IIA orientifolds on T{sup 6}/(Z{sub 2}xZ{sub 2}) with D6-branes intersecting at general angles. The model is constrained by the requirement that Ramond-Ramond tadpoles cancel, the supersymmetry conditions, and that the gauge boson coupled to the U(1){sub X} factor does not get a string-scale mass via a generalised Green-Schwarz mechanism. The model is further constrained by requiring cancellation of K-theory charges. The spectrum contains a complete grand unified and electroweak Higgs sector, however the latter in a non-minimal number of copies. In addition, it contains extra matter both in bi-fundamental and vector-like representations as well as two copies of matter in the symmetric representation of SU(5)

  18. Classification of three-family grand unification in string theory. II. The SU(5) and SU(6) models

    International Nuclear Information System (INIS)

    Kakushadze, Z.; Tye, S.H.

    1997-01-01

    Requiring that supersymmetric SU(5) and SU(6) grand unifications in the heterotic string theory must have three chiral families, adjoint (or higher representation) Higgs fields in the grand unified gauge group, and a non-Abelian hidden sector, we construct such string models within the framework of free conformal field theory and asymmetric orbifolds. Within this framework, we construct all such string models via Z 6 asymmetric orbifolds that include a Z 3 outerautomorphism, the latter yielding a level-three current algebra for the grand unification gauge group SU(5) or SU(6). We then classify all such Z 6 asymmetric orbifolds that result in models with a non-Abelian hidden sector. All models classified in this paper have only one adjoint (but no other higher representation) Higgs field in the grand unified gauge group. This Higgs field is neutral under all other gauge symmetries. The list of hidden sectors for three-family SU(6) string models are SU(2), SU(3), and SU(2)circle-times SU(2). In addition to these, three-family SU(5) string models can also have an SU(4) hidden sector. Some of the models have an apparent anomalous U(1) gauge symmetry. copyright 1997 The American Physical Society

  19. Ultraviolet excitation of remote phosphor with symmetrical illumination used in dual-sided liquid-crystal display.

    Science.gov (United States)

    Huang, Hsin-Tao; Tsai, Chuang-Chuang; Huang, Yi-Pai

    2010-08-01

    The UV-excited flat lighting (UFL) technique differs from conventional fluorescent lamp or LED illumination. It involves using a remote phosphor film to convert the wavelength of UV light to visible light, achieving high brightness and planar and uniform illumination. In particular, UFL can accomplish compact size, low power consumption, and symmetrical dual-sided illumination. Additionally, UFL utilizes a thermal radiation mechanism to release the large amount of heat that is generated upon illumination without thermal accumulation. These characteristics of the UFL technique can motivate a wide range of lighting applications in thin-film transistor LCD backlighting or general lighting.

  20. The SU(2 vertical stroke 3) spin chain sigma model

    International Nuclear Information System (INIS)

    Hernandez, R.; Lopez, E.

    2005-01-01

    The one-loop planar dilatation operator of N = 4 supersymmetric Yang-Mills is isomorphic to the hamiltonian of an integrable PSU(2,2 vertical stroke 4) spin chain. We construct the non-linear sigma model describing the continuum limit of the SU(2 vertical stroke 3) subsector of the N = 4 chain. We explicitly identify the spin chain sigma model with the one for a superstring moving in AdS 5 x S 5 with large angular momentum along the five-sphere. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  1. Thermal evolution of massive strange compact objects in a SU(3) chiral Quark Meson model

    Energy Technology Data Exchange (ETDEWEB)

    Zacchi, Andreas

    2017-07-04

    In this work, thermodynamical properties of strongly interacting matter within a chiral SU(2)- and SU(3) chiral Quark Meson model have been analysed. Both effective models describe the development of the quark masses in media via the corresponding fields through chiral symmetry, which is expected to be restored at high temperatures and/or high densities, and spontaneously broken at low temperatures and/or densities. Spontaneous and explicit chiral symmetry breaking patterns give rise to massive Goldstone bosons, which are associated with the pions. Their chiral partners, the sigma mesons, are expected to be degenerate in mass, which was what we studied and observed at large temperatures/densities. The derivation and computation of thermodynamical quantities and properties in both cases can for instance be used to study relativistic and hydrodynamic Heavy Ion Collisions and the early universe for vanishing baryon number (SU(2)-case). They are also interesting for extreme astrophysical scenarios, such as Supernova explosions and the thermal evolution of their remnants, which has been among the topics of this thesis (SU(3)-case). Inclusion of the zero point energy in the SU(2) model has been carried out separately for the meson sector and for the quark sector as well as in a combined approach, where we learned, that the quark sector is quite dominant and that the vacuum fluctuations of the meson fields have little influence on the order parameter, but affect the relativistic degrees of freedom. In the SU(3) case, the inclusion of the zero point energy in the quark sector is much more computationally complex, but, as in the SU(2) case, is also not negliable, as its influence also changes the thermodynamical quantities at finite temperatures in a nontrivial manner. Here some features of the Supernova equation of state have been studied, which look promising for further investigations for Supernovae (proto neutron stars) and also for compact star mergers. The final

  2. Chains of N=2, D=4 heterotic type II duals

    CERN Document Server

    Aldazabal, G; Font, A; Quevedo, Fernando

    1996-01-01

    We report on a search for N=2 heterotic strings that are dual candidates of type II compactifications on Calabi-Yau threefolds described as K3 fibrations. We find many new heterotic duals by using standard orbifold techniques. The associated type II compactifications fall into chains in which the proposed duals are heterotic compactifications related one another by a sequential Higgs mechanism. This breaking in the heterotic side typically involves the sequence SU(4)\\rightarrow SU(3)\\rightarrow SU(2)\\rightarrow 0, while in the type II side the weights of the complex hypersurfaces and the structure of the K3 quotient singularities also follow specific patterns.

  3. Quark Yukawa pattern from spontaneous breaking of flavour SU(3) 3

    Science.gov (United States)

    Nardi, Enrico

    2015-10-01

    A SU(3)Q × SU(3)u × SU(3)d invariant scalar potential breaking spontaneously the quark flavour symmetry can explain the Standard Model flavour puzzle. The approximate alignment in flavour space of the vacuum expectation values of the up and down 'Yukawa fields' results as a dynamical effect. The observed quark mixing angles, the weak CP violating phase, and hierarchical quark masses can be all reproduced at the cost of introducing additional (auxiliary) scalar multiplets, but without the need of introducing hierarchical parameters.

  4. How supersymmetry naturally suppresses Higgs-boson-mediated baryon-number violation in SU/sub c/(4) x SU/sub L/(2) x SU/sub R/(2) and SO(10)

    International Nuclear Information System (INIS)

    Gipson, J.M.; Marshak, R.E.

    1984-01-01

    The supersymmetric versions of the left-right-symmetric SU/sub C/(4) x SU/sub L/(2) x SU/sub R/(2) Pati-Salam theory and the grand unified SO(10) theory are studied. In the minimal versions of these models the requirement of soft or spontaneous breaking of supersymmetry, together with renormalizibility, leads to an accidental global U(1) symmetry which leads to baryon-number conservation. A necessary condition for this symmetry to be broken is the existence of fields which are antisymmetric in at least two SU/sub C/(4) indices. The introduction of such fields may allow for observable neutron oscillation

  5. Development of 3D out-of-plane SU-8 microlenses using modified micromolding in capillaries (MIMIC) technology

    Science.gov (United States)

    Llobera, A.; Wilke, R.; Johnson, D. W.; Büttgenbach, S.

    2006-04-01

    This paper describes a modification of the standard MIMIC technology, solving its main drawbacks, to define arrays of spherical or ellipsoidal microlenses. Perfectly symmetrical meniscuses have been obtained by using a XP SU-8 NO-2 layer beneath the PDMS mold. Moreover, the photostructurable properties of this polymer allow obtaining self-alignment structures for adequate fiber optics positioning. Microchannels ended with these meniscuses have been filled with standard SU-8 to obtain 3D microlenses. Agreement between theory and experimental results allows confirming the validity of the proposed technology.

  6. Bosonization of the generalized SU(3) Nambu-Jona-Lasinio model in the 1/N expansion

    International Nuclear Information System (INIS)

    Campos, Francisco Antonio Pena

    1995-01-01

    The present work consists in a 1/N expansion of extended version of the SU(3) Nambu-Jona-Lasinio model in the context of the Functional Integral. The gap equations, meson propagators, triangle diagram, etc, appear quite naturally as different orders in the expansion. The new features of this approach is the inclusion of high order corrections in the 1/N leading orders, which have never included in the previous one. The method also allows for the construction of a chiral Lagrangian of interacting mesons based on the SU(3) NJL model, here obtained for the first time. (author)

  7. Kink-induced symmetry breaking patterns in brane-world SU(3)^3 trinification models

    OpenAIRE

    Demaria, Alison; Volkas, Raymond R.

    2005-01-01

    The trinification grand unified theory (GUT) has gauge group SU(3)^3 and a discrete symmetry permuting the SU(3) factors. In common with other GUTs, the attractive nature of the fermionic multiplet assignments is obviated by the complicated multi-parameter Higgs potential apparently needed for phenomenological reasons, and also by vacuum expectation value (VEV) hierarchies within a given multiplet. This motivates the rigorous consideration of Higgs potentials, symmetry breaking patterns and a...

  8. Conical Refraction: new observations and a dual cone model.

    Science.gov (United States)

    Sokolovskii, G S; Carnegie, D J; Kalkandjiev, T K; Rafailov, E U

    2013-05-06

    We propose a paraxial dual-cone model of conical refraction involving the interference of two cones of light behind the exit face of the crystal. The supporting experiment is based on beam selecting elements breaking down the conically refracted beam into two separate hollow cones which are symmetrical with one another. The shape of these cones of light is a product of a 'competition' between the divergence caused by the conical refraction and the convergence due to the focusing by the lens. The developed mathematical description of the conical refraction demonstrates an excellent agreement with experiment.

  9. Phenomenology of a left-right-symmetric model inspired by the trinification model

    Energy Technology Data Exchange (ETDEWEB)

    Hetzel, Jamil

    2015-02-04

    The trinification model is an interesting extension of the Standard Model based on the gauge group SU(3){sub C} x SU(3){sub L} x SU(3){sub R}. It naturally explains parity violation as a result of spontaneous symmetry breaking, and the observed fermion masses and mixings can be reproduced using only a few parameters. We study the low-energy phenomenology of the trinification model in order to compare its predictions to experiment. To this end, we construct a low-energy effective field theory, thereby reducing the number of particles and free parameters that need to be studied. We constrain the model parameters using limits from new-particle searches as well as precision measurements. The scalar sector of the model allows for various phenomenological scenarios, such as the presence of a light fermiophobic scalar in addition to a Standard-Model-like Higgs, or a degenerate (twin) Higgs state at 126 GeV. We show how a measurement of the Higgs couplings can be used to distinguish such scenarios from the Standard Model. We find that the trinification model predicts that several new scalar particles have masses in the O(100 GeV) range. Moreover, large regions of the parameter space lead to measurable deviations from Standard-Model predictions of the Higgs couplings. Hence the trinification model awaits crucial tests at the Large Hadron Collider in the coming years.

  10. The hidden symmetries and their algebraic structure of the static axially symmetric SDYM fields

    International Nuclear Information System (INIS)

    Hao Sanru

    1993-01-01

    A new explicit transformation about the static axially symmetric self-dual Yang-Mills (SDYM) fields is presented. The theory has proved that the new transformation is a symmetric one. For the two kinds of the Lie algebraic generators of the Lie group SL (N. R) /SO (N), the corresponding transformations are given. By making use of the Yang-Baxter equality and their square brackets, the loop and conformal algebraic structures of the symmetric transformations for the basic fields have been obtained. All the results obtained can be directly generalized to the other models

  11. Diversity of off-shell twisted (4,4) multiplets in SU(2)xSU(2) harmonic superspace

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Sutulin, A.O.

    2004-01-01

    We elaborate on four different types of twisted N=(4,4) supermultiplets in the SU(2)xSU(2), 2D harmonic superspace. In the conventional N=(4,4), 2D superspace they are described by the superfields q ia , q Ia , q IA , subjected to proper differential constraints, (i, I, a, A) being the doublet indices of four groups SU(2) which form the full R-symmetry group SO(4) L xSO(4) R of N=(4,4) supersymmetry. We construct the torsionful off-shell sigma-model actions for each type of these multiplets, as well as the corresponding invariant mass terms, in an analytic subspace of the SU(2)xSU(2) harmonic superspace. As an instructive example, N=(4,4) superconformal extension of the SU(2)xU(1) WZNW sigma-model action and its massive deformation are presented for the multiplet q iA . We prove that N=(4,4) supersymmetry requires the general sigma-model action of pair of different multiplets to split into a sum of sigma-model actions of each multiplet. This phenomenon also persists if a larger number of non-equivalent multiplets are simultaneously included. We show that different multiplets may interact with each other only through mixed mass terms which can be set up for multiplets belonging to 'self-dual' pairs (q ia , q IA ) and (q Ia , q iA ). The multiplets from different pairs cannot interact at all. For a 'self-dual' pair of the twisted multiplets we give the most general form of the on-shell scalar potential

  12. On a relation between massive Yang-Mills theories and dual string models

    International Nuclear Information System (INIS)

    Mickelsson, J.

    1983-01-01

    The relations between mass terms in Yang-Mills theories, projective representations of the group of gauge transformations, boundary conditions on vector potentials and Schwinger terms in local charge algebra commutation relations are discussed. The commutation relations (with Schwinger terms) are similar to the current algebra commutation relations of the SU(N) extended dual string model. (orig.)

  13. Introduction to left-right symmetric models

    International Nuclear Information System (INIS)

    Grimus, W.

    1993-01-01

    We motivate left-right symmetric models by the possibility of spontaneous parity breaking. Then we describe the multiplets and the Lagrangian of such models. Finally we discuss lower bounds on the right-handed scale. (author)

  14. Evidence for SU(3) symmetry breaking from hyperon production

    International Nuclear Information System (INIS)

    Yang Jianjun

    2002-01-01

    We examine the SU(3) symmetry breaking in hyperon semileptonic decays (HSD) by considering two typical sets of quark contributions to the spin content of the octet baryons: set 1 with SU(3) flavor symmetry and set 2 with SU(3) flavor symmetry breaking in the HSD. The quark distributions of the octet baryons are calculated with a successful statistical model. Using an approximate relation between the quark fragmentation functions and the quark distributions, we predict the polarizations of the octet baryons produced in e + e - annihilation and semi-inclusive deep lepton-nucleon scattering in order to reveal the SU(3) symmetry breaking effect on the spin structure of the octet baryons. We find that the SU(3) symmetry breaking significantly affects the hyperon polarization. The available experimental data on the Λ polarization seem to favor the theoretical predictions with SU(3) symmetry breaking. We conclude that there is a possibility to get collateral evidence for SU(3) symmetry breaking from hyperon production. The theoretical errors for our predictions are discussed

  15. Bosonization of the generalized SU(3) Nambu-Jona-Lasinio model in the 1/N expansion; Bosonizacao do modelo de Nambu-Jona-Lasinio SU(3) generalizado na expansao 1/N

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Francisco Antonio Pena

    1995-12-31

    The present work consists in a 1/N expansion of extended version of the SU(3) Nambu-Jona-Lasinio model in the context of the Functional Integral. The gap equations, meson propagators, triangle diagram, etc, appear quite naturally as different orders in the expansion. The new features of this approach is the inclusion of high order corrections in the 1/N leading orders, which have never included in the previous one. The method also allows for the construction of a chiral Lagrangian of interacting mesons based on the SU(3) NJL model, here obtained for the first time. (author) 32 refs., 11 figs., 5 tabs.

  16. Deep-inelastic lepton scattering in an SU(3) x U(1) gauge model

    International Nuclear Information System (INIS)

    Maharana, K.; Sastry, C.V.

    1976-01-01

    Linear relations and sum rules for deep-inelastic lepton scattering are derived in the light-cone algebra approach from a set of weak, neutral, and electromagnetic currents based on an SU(3) x U(1) gauge model proposed by Schechter and Ueda

  17. Fermion unification model based on the intrinsic SU(8 symmetry of a generalized Dirac equation

    Directory of Open Access Journals (Sweden)

    Eckart eMarsch

    2015-10-01

    Full Text Available A natural generalization of the original Dirac spinor into a multi-component spinor is achieved, which corresponds to the single lepton and the three quarks of the first family of the standard model of elementary particle physics. Different fermions result from similarity transformations of the Dirac equation, but apparently there can be no more fermions according to the maximal multiplicity revealed in this study. Rotations in the fermion state space are achieved by the unitary generators of the U(1 and the SU(3 groups, corresponding to quantum electrodynamics (QED based on electric charge and chromodynamics (QCD based on colour charge. In addition to hypercharge the dual degree of freedom of hyperspin emerges, which occurs due to the duplicity implied by the two related (Weyl and Dirac representations of the Dirac equation. This yields the SU(2 symmetry of the weak interaction, which can be married to U(1 to generate the unified electroweak interaction as in the standard model. Therefore, the symmetry group encompassing all the three groups mentioned above is SU(8, which can accommodate and unify the observed eight basic stable fermions.

  18. A massive quasi-particle model of the SU(3) gluon plasma

    International Nuclear Information System (INIS)

    Peshier, A.; Technische Univ. Dresden; Kaempfer, B.; Technische Univ. Dresden; Pavlenko, O.P.; AN Ukrainskoj SSR, Kiev; Soff, G.

    1995-09-01

    Recent SU(3) gauge field lattice data for the equation of state are interpreted by a quasi-particle model with effective thermal gluon masses. The model is motivated by lowest-order perturbative QCD and describes very well the data. The proposed quasi-particle approach can be applied to study color excitations in the non-perturbative regime. As an example we estimate the temperature dependence of the Debye screening mass and find that it declines sharply when approaching the confinement temperature from above, while the thermal mass continuously rises. (orig.)

  19. [SU(2)]3 dark matter

    Science.gov (United States)

    Ma, Ernest

    2018-05-01

    An extra SU(2)D gauge factor is added to the well-known left-right extension of the standard model (SM) of quarks and leptons. Under SU(2)L × SU(2)R × SU(2)D, two fermion bidoublets (2 , 1 , 2) and (1 , 2 , 2) are assumed. The resulting model has an automatic dark U (1) symmetry, in the same way that the SM has automatic baryon and lepton U (1) symmetries. Phenomenological implications are discussed, as well as the possible theoretical origins of this proposal.

  20. The dual of the Carroll-Field-Jackiw model

    International Nuclear Information System (INIS)

    Guimaraes, M.S.; Grigorio, L.; Wotzasek, C.

    2006-01-01

    In this work we apply different duality techniques, both the dual projection, based on the soldering formalism and the master action, in order to obtain and study the dual description of the Carroll- Field-Jackiw model [1], a theory with a Chern-Simons-like explicitly Lorentz and CPT violating term, including the interaction with external charges. This Maxwell-Chern-Simons-like model may be rewritten in terms of the interacting modes of a massless scalar model and a topologically massive model [2], that are mapped, through duality, into interacting massless Maxwell and massive self-dual modes [3]. It is also shown that these dual modes might be represented into an unified rank-two self-dual model that represents the direct dual of the vector Maxwell-Chern-Simons-like model

  1. On isotropic cylindrically symmetric stellar models

    International Nuclear Information System (INIS)

    Nolan, Brien C; Nolan, Louise V

    2004-01-01

    We attempt to match the most general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model

  2. A see-saw scenario of an $A_4$ flavour symmetric standard model

    CERN Document Server

    Dinh, Dinh Nguyen; Văn, Phi Quang; Vân, Nguyen Thi Hông

    2016-01-01

    A see-saw scenario for an $A_4$ flavour symmetric standard model is presented. As before, the see-saw mechanism can be realized in several models of different types depending on different ways of neutrino mass generation corresponding to the introduction of new fields with different symmetry structures. In the present paper, a general desription of all these see-saw types is made with a more detailed investigation on type-I models. As within the original see-saw mechanism, the symmetry structure of the standard model fields decides the number and the symmetry structure of the new fields. In a model considered here, the scalar sector consists of three standard-model-Higgs-like iso-doublets ($SU_L(2)$-doublets) forming an $A_4$ triplet. The latter is a superposition of three mass-eigen states, one of which could be identified with the recently discovered Higgs boson. A possible relation to the still-deliberated 750 GeV diphoton resonance at the 13 TeV LHC collisions is also discussed. In the lepton sector, the ...

  3. Particle-hole excitations in the interacting boson model; 4, the U(5)-SU(3) coupling

    CERN Document Server

    De Coster, C; Heyde, Kris L G; Jolie, J; Lehmann, H; Wood, J L

    1999-01-01

    In the extended interacting boson model (EIBM) both particle- and hole-like bosons are incorporated to encompass multi-particle-multi-hole excitations at and near to closed shells.We apply the group theoretical concepts of the EIBM to the particular case of two coexisting systems in the same nucleus exhibiting a U(5) (for the regular configurations) and an SU(3) symmetry (for the intruder configurations).Besides the description of ``global'' symmetry aspects in terms of I-spin , also the very specific local mixing effects characteristic for the U(5)-SU(3) symmetry coupling are studied.The model is applied to the Po isotopes and a comparison with a morerealistic calculation is made.

  4. Unconstrained SU(2) and SU(3) Yang-Mills classical mechanics

    International Nuclear Information System (INIS)

    Dahmen, B.; Raabe, B.

    1992-01-01

    A systematic study of contraints in SU(2) and SU(3) Yang-Mills classical mechanics is performed. Expect for the SU(2) case with spatial angular momenta they turn out to be nonholonomic. The complete elimination of the unphysical gauge and rotatinal degrees of freedom is achieved using Dirac's constraint formalism. We present an effective unconstrained formulation of the general SU(2) Yang-Mills classical mechanics as well as for SU(3) in the subspace of vanishing spatial angular momenta that is well suited for further explicit dynamical investigations. (orig.)

  5. Flipped and unflipped SU(5) as type IIA flux vacua

    Energy Technology Data Exchange (ETDEWEB)

    Chen Chingming [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States); Li Tianjun [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States) and Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080 (China)]. E-mail: tjli@physics.rutgers.edu; Nanopoulos, Dimitri V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States); Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States); Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece)

    2006-09-04

    On type IIA orientifolds with flux compactifications in supersymmetric AdS vacua, we for the first time construct SU(5) models with three anti-symmetric 10 representations and without symmetric 15 representations. We show that all the pairs of the anti-fundamental 5-bar and fundamental 5 representations can obtain GUT/string-scale vector-like masses after the additional gauge symmetry breaking via supersymmetry preserving Higgs mechanism. Then we have exact three 5-bar , and no other chiral exotic particles that are charged under SU(5) due to the non-Abelian anomaly free condition. Moreover, we can break the SU(5) gauge symmetry down to the SM gauge symmetry via D6-brane splitting, and solve the doublet-triplet splitting problem. Assuming that the extra one (or several) pair(s) of Higgs doublets and adjoint particles obtain GUT/string-scale masses via high-dimensional operators, we only have the MSSM in the observable sector below the GUT scale. Then the observed low energy gauge couplings can be generated via RGE running if we choose the suitable grand unified gauge coupling by adjusting the string scale. Furthermore, we construct the first flipped SU(5) model with exact three 10, and the first flipped SU(5) model in which all the Yukawa couplings are allowed by the global U(1) symmetries.

  6. A supersymmetric flipped SU(5) intersecting brane world

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-M. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: cchen@physics.tamu.edu; Kraniotis, G.V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: kraniotis@physics.tamu.edu; Mayes, V.E. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: eric@physics.tamu.edu (and others)

    2005-03-31

    We construct an N=1 supersymmetric three-family flipped SU(5) model from type IIA orientifolds on T{sup 6}/(Z{sub 2}xZ{sub 2}) with D6-branes intersecting at general angles. The spectrum contains a complete grand unified and electroweak Higgs sector. In addition, it contains extra exotic matter both in bi-fundamental and vector-like representations as well as two copies of matter in the symmetric representation of SU(5)

  7. Study of Λ parameters and crossover phenomena in SU(N) x SU(N) sigma models in two dimensions

    International Nuclear Information System (INIS)

    Shigemitsu, J.; Kogut, J.B.

    1981-01-01

    The spin system analogues of recent studies of the string tension and Λ parameters of SU(N) gauge theories in 4 dimensions are carried out for the SU(N) x SU(N) and O(N) models in 2 dimensions. The relations between the Λ parameters of both the Euclidean and Hamiltonian formulation of the lattice models and the Λ parameter of the continuum models are obtained. The one loop finite renormalization of the speed of light in the lattice Hamiltonian formulations of the O(N) and SU(N) x SU(N) models is calculated. Strong coupling calculations of the mass gaps of these spin models are done for all N and the constants of proportionality between the gap and the Λ parameter of the continuum models are obtained. These results are contrasted with similar calculations for the SU(N) gauge models in 3+1 dimensions. Identifying suitable coupling constants for discussing the N → infinity limits, the numerical results suggest that the crossover from weak to strong coupling in the lattice O(N) models becomes less abrupt as N increases while the crossover for the SU(N) x SU(N) models becomes more abrupt. The crossover in SU(N) gauge theories also becomes more abrupt with increasing N, however, at an even greater rate than in the SU(N) x SU(N) spin models

  8. Broken SU(5) x SU(5) chiral symmetry and the classification of B mesons

    International Nuclear Information System (INIS)

    Hatzis, M.

    1984-01-01

    We consider broken SU(5) x SU(5) chiral summetry and we assume that the vacuum is SU(5)-symmetric. Using the observed mass spectrum of pseudoscalar mesons, and setting the bu mass in the range 5.2 +- 0.06 GeV, we predict the masses of bs, bc, and etasub(b) states as well as axial current couplings fsub(i)/fsub(π). SU(5) x SU(5) is found to be consistent with SU(4) x SU(4) breaking. The problem of eta - eta' - eta sub(c) - eta sub(b) mixing is also discussed

  9. Unconstrained SU(2) and SU(3) Yang-Mills clasical mechanics

    International Nuclear Information System (INIS)

    Dahmen, B.; Raabe, B.

    1992-01-01

    A systematic study of constraints in SU(2) and SU(3) Yang-Mills classical mechanics is performed. Expect for the SU(2) case with vanishing spatial angular momenta they turn out to be non-holonomic. Using Dirac's constraint formalism we achieve a complete elimination of the unphysical gauge and rotational degrees of freedom. This leads to an effective unconstrained formulation both for the full SU(2) Yang-Mills classical mechanics and for the SU(3) case in the subspace of vanishing spatial angular momenta. We believe that our results are well suited for further explicit dynamical investigations. (orig.)

  10. Experimental consequences of SU(3) symmetry in an sdg boson model

    International Nuclear Information System (INIS)

    Akiyama, Y.; Brentano, P. von; Gelberg, A.

    1987-01-01

    Energies of collective levels in 178 Hf and 234 U are compared wth predictions of the SU(3) limiz of the sdg interacting boson model. All known positive parity states of 178 Hf below 1.8 MeV (with the expection of a 0 + band) have been satisfactorily reproduced. Most of the bands in 234 U are also described by the model. However, a few predicted states have no experimental counterpart. The introduction of the g-basons strongly reduces the previously observed discrepancies between experimental B(E2)'s in 238 U and the sd-IBM calculation. (orig.)

  11. Baryonic forces and hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan Karl

    2016-02-12

    In this work the baryon-baryon interaction is studied at next-to-leading order in SU(3) chiral effective field theory and applied to hyperon-nucleon scattering. The properties of hyperons in isospin-symmetric as well as asymmetric nuclear matter are calculated within the Bruecker-Hartree-Fock formalism. Moreover, the leading three-baryon interaction is derived and its low-energy constants are estimated from decuplet intermediate states. We conclude, that chiral effective field theory is a well-suited tool to describe the baryonic forces.

  12. More flipped SU(5) x U(1) baryosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.; Hagelin, J.S.; Nanopoulos, D.V.; Olive, K.A.

    1988-06-30

    We supplement a previous discussion of baryosynthesis in flipped SU(5)xU(1) GUTs by including (1) the large incoherent field energy density which is likely when SU(5) is broken, and (2) the possibility of additional Higgs triplet fields suggested by four-dimensional string model-building. We consider strong (weak) reheating scenarios in which the Universe is (is not) SU(5) symmetric after inflation. We find an adequate baryon asymmetry subsequent to strong reheating, whatever the number of Higgs triplets (although beware of possible difficulties with quasi-stable relic particles), whereas weak reheating requires at least two Higgs triplets.

  13. Heavy charged leptons in an SU(3)L x U(1)N model

    International Nuclear Information System (INIS)

    Pleitez, V.; Tonasse, M.D.

    1992-12-01

    An SU(3) L x U(1) N model for the electroweak interactions which includes additional heavy charged leptons is considered. These leptons have not strong constraints on their masses since they do not couple in the same way as the lightest leptons to the neutral-currents and also because new contributions to the muon g-2 factor already suppressed because of the massive new vector boson present in this model. (author)

  14. Classically integrable boundary conditions for symmetric-space sigma models

    International Nuclear Information System (INIS)

    MacKay, N.J.; Young, C.A.S.

    2004-01-01

    We investigate boundary conditions for the non-linear sigma model on the compact symmetric space G/H. The Poisson brackets and the classical local conserved charges necessary for integrability are preserved by boundary conditions which correspond to involutions which commute with the involution defining H. Applied to SO(3)/SO(2), the non-linear sigma model on S 2 , these yield the great circles as boundary submanifolds. Applied to GxG/G, they reproduce known results for the principal chiral model

  15. Experimental consequences of SU(3) symmetry in an sdg boson model

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Y.; Brentano, P. von; Gelberg, A.

    1987-05-01

    Energies of collective levels in /sup 178/Hf and /sup 234/U are compared wth predictions of the SU(3) limiz of the sdg interacting boson model. All known positive parity states of /sup 178/Hf below 1.8 MeV (with the expection of a 0/sup +/ band) have been satisfactorily reproduced. Most of the bands in /sup 234/U are also described by the model. However, a few predicted states have no experimental counterpart. The introduction of the g-basons strongly reduces the previously observed discrepancies between experimental B(E2)'s in /sup 238/U and the sd-IBM calculation.

  16. Self-dual configurations in Abelian Higgs models with k-generalized gauge field dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Casana, R.; Cavalcante, A. [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Hora, E. da [Departamento de Física, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil); Coordenadoria Interdisciplinar de Ciência e Tecnologia, Universidade Federal do Maranhão,65080-805, São Luís, Maranhão (Brazil)

    2016-12-14

    We have shown the existence of self-dual solutions in new Maxwell-Higgs scenarios where the gauge field possesses a k-generalized dynamic, i.e., the kinetic term of gauge field is a highly nonlinear function of F{sub μν}F{sup μν}. We have implemented our proposal by means of a k-generalized model displaying the spontaneous symmetry breaking phenomenon. We implement consistently the Bogomol’nyi-Prasad-Sommerfield formalism providing highly nonlinear self-dual equations whose solutions are electrically neutral possessing total energy proportional to the magnetic flux. Among the infinite set of possible configurations, we have found families of k-generalized models whose self-dual equations have a form mathematically similar to the ones arising in the Maxwell-Higgs or Chern-Simons-Higgs models. Furthermore, we have verified that our proposal also supports infinite twinlike models with |ϕ|{sup 4}-potential or |ϕ|{sup 6}-potential. With the aim to show explicitly that the BPS equations are able to provide well-behaved configurations, we have considered a test model in order to study axially symmetric vortices. By depending of the self-dual potential, we have shown that the k-generalized model is able to produce solutions that for long distances have a exponential decay (as Abrikosov-Nielsen-Olesen vortices) or have a power-law decay (characterizing delocalized vortices). In all cases, we observe that the generalization modifies the vortex core size, the magnetic field amplitude and the bosonic masses but the total energy remains proportional to the quantized magnetic flux.

  17. Spherical aberration correction with an in-lens N-fold symmetric line currents model.

    Science.gov (United States)

    Hoque, Shahedul; Ito, Hiroyuki; Nishi, Ryuji

    2018-04-01

    In our previous works, we have proposed N-SYLC (N-fold symmetric line currents) models for aberration correction. In this paper, we propose "in-lens N-SYLC" model, where N-SYLC overlaps rotationally symmetric lens. Such overlap is possible because N-SYLC is free of magnetic materials. We analytically prove that, if certain parameters of the model are optimized, an in-lens 3-SYLC (N = 3) doublet can correct 3rd order spherical aberration. By computer simulation, we show that the required excitation current for correction is less than 0.25 AT for beam energy 5 keV, and the beam size after correction is smaller than 1 nm at the corrector image plane for initial slope less than 4 mrad. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Exact boson mappings for nuclear neutron (proton) shell-model algebras having SU(3) subalgebras

    International Nuclear Information System (INIS)

    Bonatsos, D.; Klein, A.

    1986-01-01

    In this paper the commutation relations of the fermion pair operators of identical nucleons coupled to spin zero are given for the general nuclear major shell in LST coupling. The associated Lie algebras are the unitary symplectic algebras Sp(2M). The corresponding multipole subalgebras are the unitary algebras U(M), which possess SU(3) subalgebras. Number conserving exact boson mappings of both the Dyson and hermitian form are given for the nuclear neutron (proton) s--d, p--f, s--d--g, and p--f--h shells, and their group theoretical structure is emphasized. The results are directly applicable in the case of the s--d shell, while in higher shells the experimentally plausible pseudo-SU(3) symmetry makes them applicable. The final purpose of this work is to provide a link between the shell model and the Interacting Boson Model (IBM) in the deformed limit. As already implied in the work of Draayer and Hecht, it is difficult to associate the boson model developed here with the conventional IBM model. The differences between the two approaches (due mainly to the effects of the Pauli principle) as well as their physical implications are extensively discussed

  19. The Axially Symmetric One-Monopole

    International Nuclear Information System (INIS)

    Wong, K.-M.; Teh, Rosy

    2009-01-01

    We present new classical generalized one-monopole solution of the SU(2) Yang-Mills-Higgs theory with the Higgs field in the adjoint representation. We show that this solution with θ-winding number m = 1 and φ-winding number n = 1 is an axially symmetric generalization of the 't Hooft-Polyakov one-monopole. We construct this axially symmetric one-monopole solution by generalizing the large distance asymptotic solutions of the 't Hooft-Polyakov one-monopole to the Jacobi elliptic functions and solving the second order equations of motion numerically when the Higgs potential is vanishing. This solution is a non-BPS solution.

  20. 3D modeling of dual wind-up extensional rheometers

    DEFF Research Database (Denmark)

    Yu, Kaijia; Román Marín, José Manuel; Rasmussen, Henrik K.

    2010-01-01

    Fully three-dimensional numerical simulations of a dual wind-up drum rheometer of the Sentmanat Extensional Rheometer (SER; Sentmanat, 2004 [1]) or the Extensional Viscosity Fixture (EVF; Garritano and Berting, 2006 [2]) type have been performed. In the SER and EVF a strip of rectangular shape...... is attached onto two drums, followed by a rotation of both drums in opposite direction. The numerical modeling is based on integral constitutive equations of the K-BKZ type. Generally, to ensure a proper uni-axial extensional deformation in dual wind-up drum rheometers the simulations show that a very small...

  1. Gravitational waves from the first order electroweak phase transition in the Z3 symmetric singlet scalar model*

    Directory of Open Access Journals (Sweden)

    Matsui Toshinori

    2018-01-01

    Full Text Available Among various scenarios of baryon asymmetry of the Universe, electroweak baryogenesis is directly connected with physics of the Higgs sector. We discuss spectra of gravitational waves which are originated by the strongly first order phase transition at the electroweak symmetry breaking, which is required for a successful scenario of electroweak baryogenesis. In the Z3 symmetric singlet scalar model, the significant gravitational waves are caused by the multi-step phase transition. We show that the model can be tested by measuring the characteristic spectra of the gravitational waves at future interferometers such as LISA and DECIGO.

  2. Maximally Symmetric Composite Higgs Models.

    Science.gov (United States)

    Csáki, Csaba; Ma, Teng; Shu, Jing

    2017-09-29

    Maximal symmetry is a novel tool for composite pseudo Goldstone boson Higgs models: it is a remnant of an enhanced global symmetry of the composite fermion sector involving a twisting with the Higgs field. Maximal symmetry has far-reaching consequences: it ensures that the Higgs potential is finite and fully calculable, and also minimizes the tuning. We present a detailed analysis of the maximally symmetric SO(5)/SO(4) model and comment on its observational consequences.

  3. Ligand-based modeling of Akt3 lead to potent dual Akt1/Akt3 inhibitor.

    Science.gov (United States)

    Al-Sha'er, Mahmoud A; Taha, Mutasem O

    2018-02-13

    Akt1 and Akt3 are important serine/threonine-specific protein kinases involved in G2 phase required by cancer cells to maintain cell cycle and to prevent cell death. Accordingly, inhibitors of these kinases should have potent anti-cancer properties. This prompted us to use pharmacophore/QSAR modeling to identify optimal binding models and physicochemical descriptors that explain bioactivity variation within a set of 74 diverse Akt3 inhibitors. Two successful orthogonal pharmacophores were identified and further validated using receiver operating characteristic (ROC) curve analyses. The pharmacophoric models and associated QSAR equation were applied to screen the national cancer institute (NCI) list of compounds for new Akt3 inhibitors. Six hits showed significant experimental anti-Akt3 IC 50 values, out of which one compound exhibited dual low micromolar anti-Akt1 and anti-Akt3 inhibitory profiles. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Pseudo SU(3) shell model: Normal parity bands in odd-mass nuclei

    International Nuclear Information System (INIS)

    Vargas, C.E.; Hirsch, J.G.; Draayer, J.P.

    2000-01-01

    A pseudo shell SU(3) model description of normal parity bands in 159 Tb is presented. The Hamiltonian includes spherical Nilsson single-particle energies, the quadrupole-quadrupole and pairing interactions, as well as three rotor terms. A systematic parametrization is introduced, accompanied by a detailed discussion of the effect each term in the Hamiltonian has on the energy spectrum. Yrast and excited band wavefunctions are analyzed together with their B(E2) values

  5. Transport coefficients from SU(3) Polyakov linear-σ model

    International Nuclear Information System (INIS)

    Tawfik, A.; Diab, A.

    2015-01-01

    In the mean field approximation, the grand potential of SU(3) Polyakov linear-σ model (PLSM) is analyzed for the order parameter of the light and strange chiral phase-transitions, σ l and σ s , respectively, and for the deconfinement order parameters φ and φ*. Furthermore, the subtracted condensate Δ l,s and the chiral order-parameters M b are compared with lattice QCD calculations. By using the dynamical quasiparticle model (DQPM), which can be considered as a system of noninteracting massive quasiparticles, we have evaluated the decay width and the relaxation time of quarks and gluons. In the framework of LSM and with Polyakov loop corrections included, the interaction measure Δ/T 4 , the specific heat c v and speed of sound squared c s 2 have been determined, as well as the temperature dependence of the normalized quark number density n q /T 3 and the quark number susceptibilities χ q /T 2 at various values of the baryon chemical potential. The electric and heat conductivity, σ e and κ, and the bulk and shear viscosities normalized to the thermal entropy, ζ/s and η/s, are compared with available results of lattice QCD calculations.

  6. Semidirect product gauge group [SU(3)cxSU(2)L]xU(1)Y and quantization of hypercharge

    International Nuclear Information System (INIS)

    Hattori, Chuichiro; Matsunaga, Mamoru; Matsuoka, Takeo

    2011-01-01

    In the standard model the hypercharges of quarks and leptons are not determined by the gauge group SU(3) c xSU(2) L xU(1) Y alone. We show that, if we choose the semidirect product group [SU(3) c xSU(2) L ]xU(1) Y as its gauge group, the hyperchages are settled to be n/6 mod Z(n=0,1,3,4). In addition, the conditions for gauge-anomaly cancellation give strong constraints. As a result, the ratios of the hypercharges are uniquely determined and the gravitational anomaly is automatically canceled. The standard charge assignment to quarks and leptons can be properly reproduced. For exotic matter fields their hypercharges are also discussed.

  7. Baryon axial-vector couplings and SU(3)-symmetry breaking in chiral quark models

    International Nuclear Information System (INIS)

    Horvat, D.; Ilakovac, A.; Tadic, D.

    1986-01-01

    SU(3)-symmetry breaking is studied in the framework of the chiral bag models. Comparisons are also made with the MIT bag model and the harmonic-oscillator quark model. An important clue for the nature of the symmetry breaking comes from the isoscalar axial-vector coupling constant g/sub A//sup S/ which can be indirectly estimated from the Bjorken sum rules for deep-inelastic scattering. The chiral bag model with two radii reasonably well accounts for the empirical values of g/sub A//sup S/ and of the axial-vector coupling constants measured in hyperon semileptonic decays

  8. Matter in transition

    International Nuclear Information System (INIS)

    Anderson, Lara B.; Gray, James; Raghuram, Nikhil; Taylor, Washington

    2016-01-01

    We explore a novel type of transition in certain 6D and 4D quantum field theories, in which the matter content of the theory changes while the gauge group and other parts of the spectrum remain invariant. Such transitions can occur, for example, for SU(6) and SU(7) gauge groups, where matter fields in a three-index antisymmetric representation and the fundamental representation are exchanged in the transition for matter in the two-index antisymmetric representation. These matter transitions are realized by passing through superconformal theories at the transition point. We explore these transitions in dual F-theory and heterotic descriptions, where a number of novel features arise. For example, in the heterotic description the relevant 6D SU(7) theories are described by bundles on K3 surfaces where the geometry of the K3 is constrained in addition to the bundle structure. On the F-theory side, non-standard representations such as the three-index antisymmetric representation of SU(N) require Weierstrass models that cannot be realized from the standard SU(N) Tate form. We also briefly describe some other situations, with groups such as Sp(3), SO(12), and SU(3), where analogous matter transitions can occur between different representations. For SU(3), in particular, we find a matter transition between adjoint matter and matter in the symmetric representation, giving an explicit Weierstrass model for the F-theory description of the symmetric representation that complements another recent analogous construction.

  9. Two- and four-quasiparticle states in the interacting boson model: Strong-coupling and decoupled band patterns in the SU(3) limit

    International Nuclear Information System (INIS)

    Vretenar, D.; Paar, V.; Bonsignori, G.; Savoia, M.

    1990-01-01

    An extension of the interacting boson approximation model is proposed by allowing for two- and four-quasiparticle excitations out of the boson space. The formation of band patterns based on two- and four-quasiparticle states is investigated in the SU(3) limit of the model. For hole-type (particle-type) fermions coupled to the SU(3) prolate (oblate) core, it is shown that the algebraic K-representation basis, which is the analog of the strong-coupling basis of the geometrical model, provides an appropriate description of the low-lying two-quasiparticle bands. In the case of particle-type (hole-type) fermions coupled to the SU(3) prolate (oblate) core, a new algebraic decoupling basis is derived that is equivalent in the geometrical limit to Stephens' rotation-aligned basis. Comparing the wave functions that are obtained by diagonalization of the model Hamiltonian to the decoupling basis, several low-lying two-quasiparticle bands are identified. The effects of an interaction that conserves only the total nucleon number, mixing states with different number of fermions, are investigated in both the strong-coupling and decoupling limits. All calculations are performed for an SU(3) boson core and the h11/2 fermion orbital

  10. The q-deformed SU(2) Heisenberg model in 3-dimensions

    International Nuclear Information System (INIS)

    Lu Zhongyi; Yan Hong.

    1991-07-01

    A q-deformed SU(2) Heisenberg (3-dimensional) spin model is set up, and the q-deformed spin-wave solution is obtained through the q-analogous Holstein-Primakoff transformation. The result is given for small γ = ln q, which is the quantity characterizing the nonlinearity of the Hamiltonian. A mean-field treatment is arranged to preserved (at least some of) the nonlinearity, and the ordinary ferromagnet ground state is shown as the exact ground state of the new system. Interesting results are obtained for this nonlinear model: (i) There is an energy gap between the ground state and the first excited one, thus the ground state is stable under small perturbation of the background; (ii) the specific heat per volume is modified by a small term proportional to the 1/2-th power of temperature and the square of γ, which is qualitatively different from the conventional model, and (iii) the magnetization M(T) is modified by a factor that depends on γ. (author). 16 refs

  11. Phase structure and phase transition of the SU(2) Higgs model in three dimensions

    International Nuclear Information System (INIS)

    Buchmueller, W.; Philipsen, O.

    1994-11-01

    We derive a set of gauge independent gap equations for Higgs boson and vector boson masses for the SU(2) Higgs model in three dimensions. The solutions can be associated with the Higgs phase and the symmetric phase, respectively. In the Higgs phase the calculated masses are in agreement with results from perturbation theory. In the symmetric phase a non-perturbative vector boson mass is generated by the non-abelian gauge interactions, whose value is rather independent of the scalar self-coupling λ. For small values of λ the phase transition is first-order. Its strength decreases with increasing λ, and at a critical value λ c the first-order transition changes to a crossover. Based on a perturbative matching the three-dimensional theory is related to the four-dimensional theory at high temperatures. The critical Higgs mass m H c , corresponding to the critical coupling λ c , is estimated to be below 100 GeV. The ''symmetric phase'' of the theory can be interpreted as a Higgs phase whose parameters are determined non-perturbatively. The obtained Higgs boson and vector boson masses are compared with recent results from lattice Monte Carlo simulations. (orig.)

  12. Color symmetrical superconductivity in a schematic nuclear quark model

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, C.; da Providencia, J.

    2010-01-01

    In this letter, a novel BCS-type formalism is constructed in the framework of a schematic QCD inspired quark model, having in mind the description of color symmetrical superconducting states. In the usual approach to color superconductivity, the pairing correlations affect only the quasi-particle...... states of two colors, the single-particle states of the third color remaining unaffected by the pairing correlations. In the theory of color symmetrical superconductivity here proposed, the pairing correlations affect symmetrically the quasi-particle states of the three colors and vanishing net color...

  13. Analytic study of SU(3) lattice gauge theory

    International Nuclear Information System (INIS)

    Zheng Xite; Xu Yong

    1989-01-01

    The variational-cumulant expansion method has been extended to the case of lattice SU(3) Wilson model. The plaquette energy as an order paramenter has been calculated to the 2nd order expansion. No 1st order phase transition in the D = 4 case is found which is in agreement with the monte Carlo results, and the 1st order phase transition in the d = 5 case is clearly seen. The method can be used in the study of problems in LGT with SU(3) gauge group

  14. First step of the project for implementation of two non-symmetric cooling loops modeled by the ALMOD3 code

    International Nuclear Information System (INIS)

    Dominguez, L.; Camargo, C.T.M.

    1984-09-01

    The first step of the project for implementation of two non-symmetric cooling loops modeled by the ALMOD3 computer code is presented. This step consists of the introduction of a simplified model for simulating the steam generator. This model is the GEVAP computer code, integrant part of LOOP code, which simulates the primary coolant circuit of PWR nuclear power plants during transients. The ALMOD3 computer code has a model for the steam generator, called UTSG, which is very detailed. This model has spatial dependence, correlations for 2-phase flow, distinguished correlations for different heat transfer process. The GEVAP model has thermal equilibrium between phases (gaseous and liquid homogeneous mixture), no spatial dependence and uses only one generalized correlation to treat several heat transfer processes. (Author) [pt

  15. SU(n)c x SU(m)L x U(1)N generalizations of the standard model

    International Nuclear Information System (INIS)

    Pleitez, V.

    1993-01-01

    Generalizations of the Standard Model which are based on the gauge symmetry SU(n) c x SU(m) L x U(1) N are considered. Although the most interesting possibility occurs when n = 3, it will be considered also the cases n = 4,5, both with m = 3,4. It will also be given possible grand unification scenarios. (author). 18 refs

  16. SU(3)_C× SU(2)_L× U(1)_Y( × U(1)_X ) as a symmetry of division algebraic ladder operators

    Science.gov (United States)

    Furey, C.

    2018-05-01

    We demonstrate a model which captures certain attractive features of SU(5) theory, while providing a possible escape from proton decay. In this paper we show how ladder operators arise from the division algebras R, C, H, and O. From the SU( n) symmetry of these ladder operators, we then demonstrate a model which has much structural similarity to Georgi and Glashow's SU(5) grand unified theory. However, in this case, the transitions leading to proton decay are expected to be blocked, given that they coincide with presumably forbidden transformations which would incorrectly mix distinct algebraic actions. As a result, we find that we are left with G_{sm} = SU(3)_C× SU(2)_L× U(1)_Y / Z_6. Finally, we point out that if U( n) ladder symmetries are used in place of SU( n), it may then be possible to find this same G_{sm}=SU(3)_C× SU(2)_L× U(1)_Y / Z_6, together with an extra U(1)_X symmetry, related to B-L.

  17. Nuclear collective rotation in the SU3 model, 2

    International Nuclear Information System (INIS)

    Kinouchi, Shin-ichi; Kishimoto, Teruo; Kammuri, Tetsuo.

    1989-05-01

    The collective rotation of a nuclear system with the SU 3 Hamiltonian is described by the quantal dynamical nuclear field theory. An angular frequency in the Coriolis interaction of the driving Hamiltonian is replaced by a total angular momentum operator divided by the corresponding moment of inertia. We consider here the low spin states for a triaxial intrinsic configuration. The rotational effect is taken into account by using the effective quadrupole and angular momentum operators, whose expressions are different depending on whether they refer to the laboratory frame or the body-fixed one. Effective forms of the total Hamiltonian and the particle angular momentum are compared with the exact SU 3 energy and the rotor's angular momentum, respectively. In order to dissolve the disagreement for the effective operators, the perturbing interaction should be supplemented by a residual part of the quadrupole-quadrupole interaction, which restores the rotational invariance of the intrinsic Hamiltonian. (author)

  18. Finite subgroups of SU(3)

    International Nuclear Information System (INIS)

    Bovier, A.; Lueling, M.; Wyler, D.

    1980-12-01

    We present a new class of finite subgroups of SU(3) of the form Zsub(m) s zsub(n) (semidirect product). We also apply the methods used to investigate semidirect products to the known SU(3) subgroups Δ(3n 2 ) and Δ(6n 2 ) and give analytic formulae for representations (characters) and Clebsch-Gordan coefficients. (orig.)

  19. Closing the SU(3)LxU(1)X symmetry at the electroweak scale

    International Nuclear Information System (INIS)

    Dias, Alex G.; Montero, J. C.; Pleitez, V.

    2006-01-01

    We show that some models with SU(3) C xSU(3) L xU(1) X gauge symmetry can be realized at the electroweak scale and that this is a consequence of an approximate global SU(2) L+R symmetry. This symmetry implies a condition among the vacuum expectation value of one of the neutral Higgs scalars, the U(1) X 's coupling constant, g X , the sine of the weak mixing angle sinθ W , and the mass of the W boson, M W . In the limit in which this symmetry is valid it avoids the tree level mixing of the Z boson of the standard model with the extra Z ' boson. We have verified that the oblique T parameter is within the allowed range indicating that the radiative corrections that induce such a mixing at the 1-loop level are small. We also show that a SU(3) L+R custodial symmetry implies that in some of the models we have to include sterile (singlets of the 3-3-1 symmetry) right-handed neutrinos with Majorana masses, since the seesaw mechanism is mandatory to obtain light active neutrinos. Moreover, the approximate SU(2) L+R subset of SU(3) L+R symmetry implies that the extra nonstandard particles of these 3-3-1 models can be considerably lighter than it had been thought before so that new physics can be really just around the corner

  20. Duality between SU(N)k and SU(k)N WZW models

    International Nuclear Information System (INIS)

    Naculich, S.G.; Schnitzer, H.J.

    1990-01-01

    We exhibit a duality of the SU(N) k WZW model under interchange of the group parameter N and the level k. The primary fields of SU(N) k and SU(k) N are related by transposition of their associated Young tableaux. The holomorphic blocks of the four-point functions of the primary fields are in one-to-one correspondence, and satisfy orthogonality and completeness relations with respect to one another. We derive these relations through a path integral realization of the SU(N) k WZW model in terms of a theory of constrained Dirac fermions. (orig.)

  1. Regression models for predicting peak and continuous three-dimensional spinal loads during symmetric and asymmetric lifting tasks.

    Science.gov (United States)

    Fathallah, F A; Marras, W S; Parnianpour, M

    1999-09-01

    Most biomechanical assessments of spinal loading during industrial work have focused on estimating peak spinal compressive forces under static and sagittally symmetric conditions. The main objective of this study was to explore the potential of feasibly predicting three-dimensional (3D) spinal loading in industry from various combinations of trunk kinematics, kinetics, and subject-load characteristics. The study used spinal loading, predicted by a validated electromyography-assisted model, from 11 male participants who performed a series of symmetric and asymmetric lifts. Three classes of models were developed: (a) models using workplace, subject, and trunk motion parameters as independent variables (kinematic models); (b) models using workplace, subject, and measured moments variables (kinetic models); and (c) models incorporating workplace, subject, trunk motion, and measured moments variables (combined models). The results showed that peak 3D spinal loading during symmetric and asymmetric lifting were predicted equally well using all three types of regression models. Continuous 3D loading was predicted best using the combined models. When the use of such models is infeasible, the kinematic models can provide adequate predictions. Finally, lateral shear forces (peak and continuous) were consistently underestimated using all three types of models. The study demonstrated the feasibility of predicting 3D loads on the spine under specific symmetric and asymmetric lifting tasks without the need for collecting EMG information. However, further validation and development of the models should be conducted to assess and extend their applicability to lifting conditions other than those presented in this study. Actual or potential applications of this research include exposure assessment in epidemiological studies, ergonomic intervention, and laboratory task assessment.

  2. La formación dual y su fundamentación curricular

    Directory of Open Access Journals (Sweden)

    Isabel Araya Muñoz

    2008-01-01

    Full Text Available La educación dual es una modalidad de enseñanza y de aprendizaje que se realiza en dos luga-res distintos; la institución educativa y la empresa, que se complementan mediante actividades coordina-das. El principio fundamental de este modelo peda-gógico corresponde a la relación educación-trabajo en la formación profesional, que se cimienta en los enfoques tecnológico y humanista y debe ser abordado desde perspectivas filosóficas para determinar el tipo de ciudadano que se desea formar, sus valores univer-sales como individuo y a partir de su convivencia con otros, desde el fundamento epistemológico define el saber y las diversas modalidades de conocimiento, su fundamento psicopedagógico comprende un proceso de enseñanza y de aprendizaje que interrelaciona la psicología y la pedagogía para orientar esa activi-dad en dos lugares distintos, la escuela y la empre-sa, mediante un enlace cooperativo, el fundamento socioeconómico que establece la visión de formación del recurso humano para la productividad y que se apega al desarrollo económico y social del individuo y de la sociedad en la que está inmersa.

  3. SU(5)c color model constraints from UA2

    International Nuclear Information System (INIS)

    Foot, R.; Hernandez, O.F.; Rizzo, T.G.; Ames Lab., IA; Iowa State Univ. of Science and Technology, Ames

    1991-01-01

    We investigate the possibility that the color gauge group SU(3) may arise as a consequence of the spontaneous symmetry breaking of SU(5) c . In an earlier paper we examine the constraints imposed on the SU(5) c color model by recent measurements of the dijet mass distribution at CDF. We found that the CDF data did not exclude any region of parameter space in the model. Here we consider similar data from UA2 and find that it leads to the constraint Msub(Z') > or approx. 280 GeV. (orig.)

  4. SU/sub 3/ and color properties of the psi constituents

    Energy Technology Data Exchange (ETDEWEB)

    Wolfenstein, L [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1976-06-19

    It is suggested that the psi constituents form a (3,1) representation of SU/sub 3/xSU/sub 3/c rather than (1,3) as in the charm scheme. Within the framework of confined color this allows the psi constituents to be produced above some threshold and decay weakly, as suggested in recent models. Some general consequences of this classification are discussed and a specific scheme which may help to resolve some problems in psi spectroscopy is presented.

  5. From bosonic topological transition to symmetric fermion mass generation

    Science.gov (United States)

    You, Yi-Zhuang; He, Yin-Chen; Vishwanath, Ashvin; Xu, Cenke

    2018-03-01

    A bosonic topological transition (BTT) is a quantum critical point between the bosonic symmetry-protected topological phase and the trivial phase. In this work, we investigate such a transition in a (2+1)-dimensional lattice model with the maximal microscopic symmetry: an internal SO (4 ) symmetry. We derive a description for this transition in terms of compact quantum electrodynamics (QED) with four fermion flavors (Nf=4 ). Within a systematic renormalization group analysis, we identify the critical point with the desired O (4 ) emergent symmetry and all expected deformations. By lowering the microscopic symmetry, we recover the previous Nf=2 noncompact QED description of the BTT. Finally, by merging two BTTs we recover a previously discussed theory of symmetric mass generation, as an SU (2 ) quantum chromodynamics-Higgs theory with Nf=4 flavors of SU (2 ) fundamental fermions and one SU (2 ) fundamental Higgs boson. This provides a consistency check on both theories.

  6. Quasi-SU(3) truncation scheme for even-even sd-shell nuclei

    International Nuclear Information System (INIS)

    Vargas, C.E.; Hirsch, J.G.; Draayer, J.P.

    2001-01-01

    The quasi-SU(3) symmetry was uncovered in full pf and sdg shell-model calculations for both even-even and odd-even nuclei. It manifests itself through a dominance of single-particle and quadrupole-quadrupole terms in a Hamiltonian used to describe well-deformed nuclei. A practical consequence of the quasi-SU(3) symmetry is an efficient basis truncation scheme. In [C.E. Vargas et al., Phys. Rev. C 58 (1998) 1488] it is shown that when this type of Hamiltonian is diagonalized in an SU(3) basis, only a few irreducible representations (irreps) of SU(3) are needed to describe the yrast band, the leading S=0 irrep augmented with the leading S=1 irreps in the proton and neutron subspaces. In the present article the quasi-SU(3) truncation scheme is used, in conjunction with a 'realistic but schematic' Hamiltonian that includes the most important multipole terms, to describe the energy spectra and B(E2) transition strengths of 20,22 Ne, 24 Mg and 28 Si. The effect of the size of the Hilbert space on both sets of observables is discussed, as well as the structure of the yrast band and the importance of the various terms in the Hamiltonian. The limitations of the model are explicitly discussed

  7. Sextet Model with Wilson Fermions

    DEFF Research Database (Denmark)

    Hansen, Martin; Pica, Claudio

    2017-01-01

    We present new results from our ongoing study of the SU(3) sextet model with two flavors in the two-index symmetric representation of the gauge group. In the simulations use unimproved Wilson fermions to investigate the infrared properties of the model. We have previously presented results...

  8. Systematic construction of spin liquids on the square lattice from tensor networks with SU(2) symmetry

    Science.gov (United States)

    Mambrini, Matthieu; Orús, Román; Poilblanc, Didier

    2016-11-01

    We elaborate a simple classification scheme of all rank-5 SU(2) spin rotational symmetric tensors according to (i) the onsite physical spin S , (ii) the local Hilbert space V⊗4 of the four virtual (composite) spins attached to each site, and (iii) the irreducible representations of the C4 v point group of the square lattice. We apply our scheme to draw a complete list of all SU(2)-symmetric translationally and rotationally invariant projected entangled pair states (PEPS) with bond dimension D ≤6 . All known SU(2)-symmetric PEPS on the square lattice are recovered and simple generalizations are provided in some cases. More generally, to each of our symmetry class can be associated a (D -1 )-dimensional manifold of spin liquids (potentially) preserving lattice symmetries and defined in terms of D -independent tensors of a given bond dimension D . In addition, generic (low-dimensional) families of PEPS explicitly breaking either (i) particular point-group lattice symmetries (lattice nematics) or (ii) time-reversal symmetry (chiral spin liquids) or (iii) SU(2) spin rotation symmetry down to U(1 ) (spin nematics or Néel antiferromagnets) can also be constructed. We apply this framework to search for new topological chiral spin liquids characterized by well-defined chiral edge modes, as revealed by their entanglement spectrum. In particular, we show how the symmetrization of a double-layer PEPS leads to a chiral topological state with a gapless edge described by a SU (2) 2 Wess-Zumino-Witten model.

  9. Non-minimal flavored S{sub 3} x Z{sub 2} left-right symmetric model

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Izquierdo, Juan Carlos [Tecnologico de Monterrey, Campus Estado de Mexico, Estado de Mexico, Estado de Mexico (Mexico); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2017-08-15

    We propose a non-minimal left-right symmetric model with parity symmetry where the fermion mixings arise as a result of imposing an S{sub 3} x Z{sub 2} flavor symmetry, and an extra Z{sup e}{sub 2} symmetry is considered in the lepton sector. Then the neutrino mass matrix possesses approximately the μ-τ symmetry. The breaking of the μ-τ symmetry induces sizable non-zero θ{sub 13}, and the deviation of θ{sub 23} from 45 {sup circle} is strongly controlled by an ε free parameter and the neutrino masses. So, an analytic study of the CP parities in the neutrino masses is carried out to constrain the ε parameter and the lightest neutrino mass that accommodate the mixing angles. The results are: (a) the normal hierarchy is ruled out for any values of the Majorana phases; (b) for the inverted hierarchy the values of the reactor and atmospheric angles are compatible up to 2, 3 σ C.L.; (c) the degenerate ordering is the most favorable such that the reactor and atmospheric angle are compatible with the experimental data for a large set of values of the free parameters. The model predicts defined regions for the effective neutrino mass, the neutrino mass scale and the sum of the neutrino masses for the favored cases. Therefore, this model may be testable by the future experiments. (orig.)

  10. Consistency Analysis of Ultrasound Echoes within a Dual Symmetric Path Inspection Framework

    Directory of Open Access Journals (Sweden)

    VASILE, C.

    2015-05-01

    Full Text Available Non-destructive ultrasound inspection of metallic structures is a perpetual high-interest area of research because of its well-known benefits in industrial applications, especially from an economic point of view, where detection and localisation of defects in their most initial stages can help maintain high production capabilities for any enterprise. This paper is aimed at providing further validation regarding a new technique for detecting and localising defects in metals, the Matched Filter-based Dual Symmetric Path Inspection (MF-DSPI. This validation consists in demonstrating the consistency of the useful ultrasound echoes, within the framework of the MF-DSPI. A description of the MF-DSPI method and the related work of the authors with it are presented in this paper, along with an experimental setup used to obtain the data with which the useful echo consistency was studied. The four proposed methods are: signal envelope analysis, L2-norm criterion, correlation coefficient criterion and sliding bounding rectangle analysis. The aim of this paper is to verify the useful echo consistency (with the help of these four approaches, as the MF-DSPI method strongly relies on this feature. The results and their implications are discussed in the latter portion of this study.

  11. Dual-Schemata Model

    Science.gov (United States)

    Taniguchi, Tadahiro; Sawaragi, Tetsuo

    In this paper, a new machine-learning method, called Dual-Schemata model, is presented. Dual-Schemata model is a kind of self-organizational machine learning methods for an autonomous robot interacting with an unknown dynamical environment. This is based on Piaget's Schema model, that is a classical psychological model to explain memory and cognitive development of human beings. Our Dual-Schemata model is developed as a computational model of Piaget's Schema model, especially focusing on sensori-motor developing period. This developmental process is characterized by a couple of two mutually-interacting dynamics; one is a dynamics formed by assimilation and accommodation, and the other dynamics is formed by equilibration and differentiation. By these dynamics schema system enables an agent to act well in a real world. This schema's differentiation process corresponds to a symbol formation process occurring within an autonomous agent when it interacts with an unknown, dynamically changing environment. Experiment results obtained from an autonomous facial robot in which our model is embedded are presented; an autonomous facial robot becomes able to chase a ball moving in various ways without any rewards nor teaching signals from outside. Moreover, emergence of concepts on the target movements within a robot is shown and discussed in terms of fuzzy logics on set-subset inclusive relationships.

  12. A dual resonance model for high energy electroweak reactions

    International Nuclear Information System (INIS)

    Picard, Jean-Francois

    1995-01-01

    The aim of this work is to propose an original model for the weak interaction at high energy (about 1 TeV) that is inspired from resonance dual models established for hadron physics. The first chapter details the basis and assumptions of the standard model. The second chapter deals with various scenarios that go beyond the standard model and that involve a strong interaction and a perturbative approach to assess coupling. The third chapter is dedicated to the main teachings of hadron physics concerning resonances, the model of Regge poles and the concept of duality. We present our new model in the fourth chapter, we build a scenario in which standard fermions and the 3 massive gauge bosons would have a sub-structure alike that of hadrons. In order to give non-null values to the width of resonances we use the K matrix method, we describe this method in the last chapter and we apply it for the computation of the width of the Z 0 boson. Our model predicts a large spectra of states particularly with the 143-up-lets of ff-bar states. The K matrix method has allowed us to compute amplitudes for helicity, then to collapse them in amplitudes invariant with SU(2) and to project these amplitudes in partial waves of helicity. For most resonances partial widths are very low compared to their mass

  13. A summary view of the symmetric cosmological model

    International Nuclear Information System (INIS)

    Aldrovandi, R.

    1975-01-01

    A brief analysis of cosmological models is done, beginning with the standard model and following with the symmetric model of Omnes. Some attempts have been made for the phase transition in thermal radiation at high temperatures, to the annihilation period and to coalescence. One model with equal amounts of matter and antimatter seems to be reasonable [pt

  14. The 1/ N Expansion of Tensor Models with Two Symmetric Tensors

    Science.gov (United States)

    Gurau, Razvan

    2018-06-01

    It is well known that tensor models for a tensor with no symmetry admit a 1/ N expansion dominated by melonic graphs. This result relies crucially on identifying jackets, which are globally defined ribbon graphs embedded in the tensor graph. In contrast, no result of this kind has so far been established for symmetric tensors because global jackets do not exist. In this paper we introduce a new approach to the 1/ N expansion in tensor models adapted to symmetric tensors. In particular we do not use any global structure like the jackets. We prove that, for any rank D, a tensor model with two symmetric tensors and interactions the complete graph K D+1 admits a 1/ N expansion dominated by melonic graphs.

  15. Quasi-SU(3) truncation scheme for even-even sd-shell nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, C.E. E-mail: cvargas@fis.cinvestav.mx; Hirsch, J.G. E-mail: hirsch@nuclecu.unam.mx; Draayer, J.P. E-mail: draayer@lsu.edu

    2001-07-30

    The quasi-SU(3) symmetry was uncovered in full pf and sdg shell-model calculations for both even-even and odd-even nuclei. It manifests itself through a dominance of single-particle and quadrupole-quadrupole terms in a Hamiltonian used to describe well-deformed nuclei. A practical consequence of the quasi-SU(3) symmetry is an efficient basis truncation scheme. In [C.E. Vargas et al., Phys. Rev. C 58 (1998) 1488] it is shown that when this type of Hamiltonian is diagonalized in an SU(3) basis, only a few irreducible representations (irreps) of SU(3) are needed to describe the yrast band, the leading S=0 irrep augmented with the leading S=1 irreps in the proton and neutron subspaces. In the present article the quasi-SU(3) truncation scheme is used, in conjunction with a 'realistic but schematic' Hamiltonian that includes the most important multipole terms, to describe the energy spectra and B(E2) transition strengths of {sup 20,22}Ne, {sup 24}Mg and {sup 28}Si. The effect of the size of the Hilbert space on both sets of observables is discussed, as well as the structure of the yrast band and the importance of the various terms in the Hamiltonian. The limitations of the model are explicitly discussed.

  16. Global regularity for a family of 3D models of the axi-symmetric Navier–Stokes equations

    Science.gov (United States)

    Hou, Thomas Y.; Liu, Pengfei; Wang, Fei

    2018-05-01

    We consider a family of three-dimensional models for the axi-symmetric incompressible Navier–Stokes equations. The models are derived by changing the strength of the convection terms in the axisymmetric Navier–Stokes equations written using a set of transformed variables. We prove the global regularity of the family of models in the case that the strength of convection is slightly stronger than that of the original Navier–Stokes equations, which demonstrates the potential stabilizing effect of convection.

  17. Quantum effects in non-maximally symmetric spaces

    International Nuclear Information System (INIS)

    Shen, T.C.

    1985-01-01

    Non-Maximally symmetric spaces provide a more general background to explore the relation between the geometry of the manifold and the quantum fields defined in the manifold than those with maximally symmetric spaces. A static Taub universe is used to study the effect of curvature anisotropy on the spontaneous symmetry breaking of a self-interacting scalar field. The one-loop effective potential on a λphi 4 field with arbitrary coupling xi is computed by zeta function regularization. For massless minimal coupled scalar fields, first order phase transitions can occur. Keeping the shape invariant but decreasing the curvature radius of the universe induces symmetry breaking. If the curvature radius is held constant, increasing deformation can restore the symmetry. Studies on the higher-dimensional Kaluza-Klein theories are also focused on the deformation effect. Using the dimensional regularization, the effective potential of the free scalar fields in M 4 x T/sup N/ and M 4 x (Taub) 3 spaces are obtained. The stability criterions for the static solutions of the self-consistent Einstein equations are derived. Stable solutions of the M 4 x S/sup N/ topology do not exist. With the Taub space as the internal space, the gauge coupling constants of SU(2), and U(1) can be determined geometrically. The weak angle is therefore predicted by geometry in this model

  18. Isospin Mass Splittings and the $\\ms$ Corrections in the Semibosonized SU(3)-NJL-Model

    OpenAIRE

    Blotz, Andree; Goeke, K.; Praszalowicz, M.

    1994-01-01

    The mass splittings of hyperons including the isospin splittings are calculated with $O(\\ms^2)$ and $O(\\ms \\dm)$ accuracy respectively within the semibosonized SU(3)-NJL model. The pattern of the isospin splittings is not spoiled by the terms of the order $O(\\ms \\dm)$, and both splittings between the different isospin multiplets and within the same multiplet are well reproduced for acceptable values of $\\ms$ and $\\dm$.

  19. Qq(Q-bar)(q-bar)' states in chiral SU(3) quark model

    International Nuclear Information System (INIS)

    Zhang Haixia; Zhang Min; Zhang Zongye

    2007-01-01

    We study the masses of Qq(Q-bar)(q-bar)' states with J PC =0 ++ , 1 ++ , 1 +- and 2 ++ in the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q(q') is the light quark (u,d or s). According to our numerical results, it is improbable to make the interpretation of [cn(c-bar)(n-bar)] 1 ++ and [cn(c-bar)(n-bar)] 2 ++ (n=u,d) states as X(3872) and Y(3940), respectively. However, it is interesting to find the tetraquarks in the bq(b-bar)(q-bar)' system. (authors)

  20. Neutrinoless double-beta decay in left-right symmetric models

    International Nuclear Information System (INIS)

    Picciotto, C.E.; Zahir, M.S.

    1982-06-01

    Neutrinoless double-beta decay is calculated via doubly charged Higgs, which occur naturally in left-right symmetric models. We find that the comparison with known half-lives yields values of phenomenological parameters which are compatible with earlier analyses of neutral current data. In particular, we obtain a right-handed gauge-boson mass lower bound of the order of 240 GeV. Using this result and expressions for neutrino masses derived in a parity non-conserving left-right symmetric model, we obtain msub(νsub(e)) < 1.5 eV, msub(νsub(μ)) < 0.05 MeV and msub(νsub(tau)) < 18 MeV

  1. Symmetrization of mathematical model of charge transport in semiconductors

    Directory of Open Access Journals (Sweden)

    Alexander M. Blokhin

    2002-11-01

    Full Text Available A mathematical model of charge transport in semiconductors is considered. The model is a quasilinear system of differential equations. A problem of finding an additional entropy conservation law and system symmetrization are solved.

  2. Hyperon interaction in free space and nuclear matter within a SU(3) based meson exchange model

    Energy Technology Data Exchange (ETDEWEB)

    Dhar, Madhumita

    2016-06-15

    To establish the connection between free space and in-medium hyperon-nucleon interactions is the central issue of this thesis. The guiding principle is flavor SU(3) symmetry which is exploited at various levels. In first step hyperon-nucleon and hyperon- hyperon interaction boson exchange potential in free space are introduced. A new parameter set applicable for the complete baryon octet has been derived leading to an updated one-boson- exchange model, utilizing SU(3) flavor symmetry, optimizing the number of free parameters involved, and revising the set of mesons included. The scalar, pseudoscalar, and vector SU(3) meson octets are taken into account. T-matrices are calculated by solving numerically coupled linear systems of Lippmann-Schwinger equations obtained from a 3-D reduced Bethe-Salpeter equation. Coupling constants were determined by χ{sup 2} fits to the world set of scattering data. A good description of the few available data is achieved within the imposed SU(3) constraints. Having at hand a consistently derived vacuum interaction we extend the approach next to investigations of the in-medium properties of hyperon interaction, avoiding any further adjustments. Medium effect in infinite nuclear matter are treated microscopically by recalculating T-matrices by an medium-modified system of Lippmann-Schwinger equations. A particular important role is played by the Pauli projector accounting for the exclusion principle. The presence of a background medium induces a weakening of the vacuum interaction amplitudes. Especially coupled channel mixing is found to be affected sensitively by medium. Investigation on scattering lengths and effective range parameters are revealing the density dependence of the interaction on a quantitative level.

  3. Almost commuting self-adjoint matrices: The real and self-dual cases

    Science.gov (United States)

    Loring, Terry A.; Sørensen, Adam P. W.

    2016-08-01

    We show that a pair of almost commuting self-adjoint, symmetric matrices is close to a pair of commuting self-adjoint, symmetric matrices (in a uniform way). Moreover, we prove that the same holds with self-dual in place of symmetric and also for paths of self-adjoint matrices. Since a symmetric, self-adjoint matrix is real, we get a real version of Huaxin Lin’s famous theorem on almost commuting matrices. Similarly, the self-dual case gives a version for matrices over the quaternions. To prove these results, we develop a theory of semiprojectivity for real C*-algebras and also examine various definitions of low-rank for real C*-algebras.

  4. Z flux-line lattices and self-dual equations in the standard model

    International Nuclear Information System (INIS)

    Bimonte, G.; Lozano, G.

    1994-04-01

    We derive gauge covariant self-dual equations for the SU(2) x U(1) y theory of electroweak interactions and show that they admit solutions describing a periodic lattice of Z-strings. (author). 14 refs

  5. Pushing the pseudo-SU(3) model towards its limits: Excited bands in even-even Dy isotopes

    International Nuclear Information System (INIS)

    Vargas, Carlos E.; Hirsch, Jorge G.

    2004-01-01

    The energetics of states belonging to normal parity bands in even-even dysprosium isotopes, and their B(E2) transition strengths, are studied using an extended pseudo-SU(3) shell model. States with pseudospin 1 are added to the standard pseudospin 0 space, allowing for a proper description of known excited normal parity bands. A realistic Hamiltonian is employed. Both the success of model and its limitations are discussed

  6. Dual symmetry in Born-Infeld theory

    International Nuclear Information System (INIS)

    Khademi, S; Ayoubi, A

    2008-01-01

    Born-Infeld theory is a non-linear formalism which has many applications in string and electromagnetic theories. Although, the existence of magnetic monopoles and dyons are suggested by Born-Infeld theory, but this theory is not invariant under the dual transformations. In this theory electric fields for point charged particles are not singular at origin (r = 0), but magnetic fields and vector potentials are still singular. In this paper we show that the vanishing of dual symmetry is responsible for these singularities. Furthermore, we present the dual symmetric Born-Infeld theory, by a symmetric definition of electromagnetic fields in terms of new scalar and vector potentials, as well as the ordinary ones. All singularities of vector potential and magnetic field are removed as an immediate consequence of this symmetry.

  7. The algebra and geometry of SU(3) matrices

    International Nuclear Information System (INIS)

    Mallesh, K.S.; Mukunda, N.

    1997-01-01

    We give an elementary treatment of the defining representation and Lie algebra of the three-dimensional unitary unimodular group SU(3). The geometrical properties of the Lie algebra, which is an eight dimensional real linear vector space, are developed in an SU(3) covariant manner. The f and d symbols of SU(3) lead to two ways of multiplying two vectors to produce a third, and several useful geometric and algebraic identities are derived. The axis-angle parametrization of SU(3) is developed as a generalization of that for SU(2), and the specifically new features are brought out. Application to the dynamics of three-level system is outlined. (author)

  8. The algebra and geometry of SU(3) matrices

    OpenAIRE

    Mallesh, KS; Mukunda, N

    1997-01-01

    We give an elementary treatment of the defining representation and Lie algebra of the three-dimensional unitary unimodular group SU(3). The geometrical properties of the Lie algebra, which is an eight dimensional real Linear vector space, are developed in an SU(3) covariant manner. The f and d symbols of SU(3) lead to two ways of 'multiplying' two vectors to produce a third, and several useful geometric and algebraic identities are derived. The axis-angle parametrization of SU(3) is developed...

  9. Broken SU(3) antidecuplet for Θ+ and Ξ3/2

    International Nuclear Information System (INIS)

    Pakvasa, Sandip; Suzuki, Mahiko

    2004-01-01

    If the narrow exotic baryon resonances Θ + (1540) and Ξ 3/2 are members of the J P = 1/2 + antidecuplet with N*(1710), the octet-antidecuplet mixing is required not only by the mass spectrum but also by the decay pattern of N*(1710). This casts doubt on validity of the Θ + mass prediction by the chiral soliton model. While all pieces of the existing experimental information point to a small octet-decuplet mixing, the magnitude of mixing required by the mass spectrum is not consistent with the value needed to account for the hadronic decay rates. The discrepancy is not resolved even after the large experimental uncertainty is taken into consideration. We fail to find an alternative SU(3) assignment even with different spin-parity assignment. When we extend the analysis to mixing with a higher SU(3) multiplet, we find one experimentally testable scenario in the case of mixing with a 27-plet

  10. Spherically symmetric Einstein-aether perfect fluid models

    Energy Technology Data Exchange (ETDEWEB)

    Coley, Alan A.; Latta, Joey [Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, B3H 3J5 (Canada); Leon, Genly [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4950, Valparaíso (Chile); Sandin, Patrik, E-mail: aac@mathstat.dal.ca, E-mail: genly.leon@ucv.cl, E-mail: patrik.sandin@aei.mpg.de, E-mail: lattaj@mathstat.dal.ca [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Am Mühlenberg 1, D-14476 Potsdam (Germany)

    2015-12-01

    We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysical objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in (β−) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs models using appropriate bounded normalized variables. We then analyse these models, with special emphasis on the future asymptotic behaviour for different values of the parameters. Finally, we investigate static models for a mixture of a (necessarily non-tilted) perfect fluid with a barotropic equations of state and a scalar field.

  11. Dual-porosity Mn2O3 cubes for highly efficient dye adsorption.

    Science.gov (United States)

    Shao, Yongjiu; Ren, Bin; Jiang, Hanmei; Zhou, Bingjie; Lv, Liping; Ren, Jingzheng; Dong, Lichun; Li, Jing; Liu, Zhenfa

    2017-07-05

    Dual-porosity materials containing both macropores and mesopores are highly desired in many fields. In this work, we prepared dual-porosity Mn 2 O 3 cube materials with large-pore mesopores, in which, macropores are made by using carbon spheres as the hard templates, while the mesopores are produced via a template-free route. The attained dual-porosity Mn 2 O 3 materials have 24nm of large-pore mesopores and 700nm of macropores. Besides, the achieved materials own cubic morphologies with particle sizes as large as 6.0μm, making them separable in the solution by a facile natural sedimentation. Dye adsorption measurements reveal that the dual-porosity materials possess a very high maximum adsorption capacity of 125.6mg/g, much larger than many reported materials. Particularly, the adsorbents can be recycled and the dye removal efficiency can be well maintained at 98% after four cycles. Adsorption isotherm and kinetics show that the Langmuir model and the pseudo-second-order kinetics model can well describe the adsorption process of Congo Red on the dual-porosity Mn 2 O 3 cube materials. In brief, the reported dual-porosity Mn 2 O 3 demonstrates a good example for controlled preparation of dual-porosity materials with large-pore mesopores, and the macropore-mesopore dual-porosity distribution is good for mass transfer in dye adsorption application. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Neutrinoless double beta decay in an SU(3)L x U(1)N model

    International Nuclear Information System (INIS)

    Pleitez, V.; Tonasse, M.D.

    1993-01-01

    A model for the electroweak interactions with SU (3) L x U(1) N gauge symmetry is considered. It is shown that, it is the conservation of F = L + B which forbids massive neutrinos and the neutrinoless double beta decay, (β β) On u. Explicit and spontaneous breaking of F imply that the neutrinos have an arbitrary mass and (β β) On u proceeds also with some contributions that do not depend explicitly on the neutrino mass. (author)

  13. Dynamics of a Bose-Einstein condensate in a symmetric triple-well trap

    Energy Technology Data Exchange (ETDEWEB)

    Viscondi, Thiago F; Furuya, K, E-mail: viscondi@ifi.unicamp.br [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas (UNICAMP), 13083-859 Campinas, SP (Brazil)

    2011-04-29

    We present a complete analysis of the dynamics of a Bose-Einstein condensate trapped in a symmetric triple-well potential. Our classical analogue treatment, based on a time-dependent variational method using SU(3) coherent states, includes the parameter dependence analysis of the equilibrium points and their local stability, which is closely related to the condensate collective behaviour. We also consider the effects of off-site interactions, and how these 'cross-collisions' may become relevant for a large number of trapped bosons. Even in the presence of cross-collisional terms, the model still features an integrable sub-regime, known as the twin-condensate dynamics, which corresponds to invariant surfaces in the classical phase space. However, the quantum dynamics preserves the twin-condensate defining characteristics only partially, thus breaking the invariance of the associated quantum subspace. Moreover, the periodic geometry of the trapping potential allowed us to investigate the dynamics of finite angular momentum collective excitations, which can be suppressed by the emergence of chaos. Finally, using the generalized purity associated with the su(3) algebra, we were able to quantify the dynamical classicality of a quantum evolved system, as compared to the corresponding classical trajectory.

  14. 3He/4He production ratios by tetrahedral symmetric condensation

    International Nuclear Information System (INIS)

    Takahashi, Akito

    2006-01-01

    The present paper treats application of the Electronic Quasi-Particle Expansion Theory (EQPET) model for Tetrahedral Symmetric Condensate (TSC) of H/D mixed systems for Pd host metal. Production ratios of 3 He/ 4 He for multi-body fusion reactions in H/D mixed TSC systems are calculated as a function of H/D mixing ratio. The model is further extended to treat direct nuclear interactions between host-metal nucleus and TSC of pure four protons (or four deuterons), since TSC can become very small (far less than 1 pm radius) charge-neutral pseudo-particle. Results for the case of Ni + 4p/TSC are discussed with Ni + p capture reactions and Ni + 4p fission reactions. (authors)

  15. Establishment of animal model of dual liver transplantation in rat.

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    Full Text Available The animal model of the whole-size and reduced-size liver transplantation in both rat and mouse has been successfully established. Because of the difficulties and complexities in microsurgical technology, the animal model of dual liver transplantation was still not established for twelve years since the first human dual liver transplantation has been made a success. There is an essential need to establish this animal model to lay a basic foundation for clinical practice. To study the physiological and histopathological changes of dual liver transplantation, "Y" type vein from the cross part between vena cava and two iliac of donor and "Y' type prosthesis were employed to recanalize portal vein and the bile duct between dual liver grafts and recipient. The dual right upper lobes about 45-50% of the recipient liver volume were taken as donor, one was orthotopically implanted at its original position, the other was rotated 180° sagitally and heterotopically positioned in the left upper quadrant. Microcirculation parameters, liver function, immunohistochemistry and survival were analyzed to evaluate the function of dual liver grafts. No significant difference in the hepatic microcirculatory flow was found between two grafts in the first 90 minutes after reperfusion. Light and electronic microscope showed the liver architecture was maintained without obvious features of cellular destruction and the continuity of the endothelium was preserved. Only 3 heterotopically positioned graft appeared patchy desquamation of endothelial cell, mitochondrial swelling and hepatocytes cytoplasmic vacuolization. Immunohistochemistry revealed there is no difference in hepatocyte activity and the ability of endothelia to contract and relax after reperfusion between dual grafts. Dual grafts made a rapid amelioration of liver function after reperfusion. 7 rats survived more than 7 days with survival rate of 58.3.%. Using "Y" type vein and bile duct prosthesis, we

  16. Nonword Reading: Comparing Dual-Route Cascaded and Connectionist Dual-Process Models with Human Data

    Science.gov (United States)

    Pritchard, Stephen C.; Coltheart, Max; Palethorpe, Sallyanne; Castles, Anne

    2012-01-01

    Two prominent dual-route computational models of reading aloud are the dual-route cascaded (DRC) model, and the connectionist dual-process plus (CDP+) model. While sharing similarly designed lexical routes, the two models differ greatly in their respective nonlexical route architecture, such that they often differ on nonword pronunciation. Neither…

  17. Meson-baryon four-body reaction amplitudes in exact SU(4)

    International Nuclear Information System (INIS)

    Liede, I.; Maalampi, J.; Roos, M.

    1976-01-01

    Fully SU(4) symmetric meson-baryon four body reaction amplitudes are presented in terms of SU(4) eigenamplitudes. The mesons and baryons considered belong to the SU(4) representations 15 and 20, respectively. Using these reletions, the cross-sections for the production of charmed particles can be predicted from known uncharmed reactions. (author)

  18. Electromagnetic properties in {sup 160-170}Dy nuclei. A microscopic description by the pseudo-SU(3) shell model

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Carlos E.; Bagatella-Flores, Norma [Universidad Veracruzana, Facultad de Fisica, Veracruz (Mexico); Velazquez, Victor [Universidad Nacional Autonoma de Mexico, Facultad de Ciencias, Mexico D.F. (Mexico); Lerma-Hernandez, Sergio [Universidad Veracruzana, Facultad de Fisica, Veracruz (Mexico); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico D.F. (Mexico)

    2017-04-15

    The large collectivity observed in the rare-earth region of the nuclear landscape is well known. The microscopic studies are difficult to perform in this region due to the enormous size of the valence spaces, a problem that can be avoided by means of the use of symmetry-based models. Here we present calculations for electromagnetic properties of {sup 160-170}Dy nuclei within the pseudo-SU(3) scheme. The model Hamiltonian includes the preserving symmetry Q.Q term and the symmetry-breaking Nilsson and pairing terms, systematically parametrized for all members of the chain. The model is used to calculate B(E2) and B(M1) inter-band transition strengths between the ground state, γ and β-bands. In addition, we present results for quadrupole moments and g factors in these rotational bands. The results show that the pseudo-SU(3) shell model is a powerful microscopic theory for a description of electromagnetic properties of states in the normal parity sector in heavy deformed nuclei. (orig.)

  19. The phase transition in the SU(5) model at high temperatures

    International Nuclear Information System (INIS)

    Daniel, M.; Vayonakis, C.E.

    1981-01-01

    Within the minimum GUT model we have studied the nature of the fluctuation-induced transition between the SU(5) and the SU(3)sub(c) x SU(2) x U(1) phase which occurs at high temperatures. Our analysis is limited to the case when the phase transition occurs outside the critical (fluctuation-dominated) region. For this to happen the SU(5) model has to be in a mode analogous to the type I superconductor. This corresponds to having the scalar quartic couplings in the Higgs sector less than the squared gauge coupling. For generic values of the coupling constants the phase transition is found to be weakly first order. As we approach the boundaries for the region of the SU(3)sub(c) x SU(2) x U(1) phase, however, a strong first-order transition occurs. The SU(5) mode (analogous to the type II superconductor) when the phase transition occurs inside the fluctuation-dominated region has been recently studied by Ginsparg. His results together with ours show that there is a continuous merging of the type I mode into the type II mode. Finally our analysis elucidates some aspects of the monopole problem in grand unified theories. (orig.)

  20. Covariant, chirally symmetric, confining model of mesons

    International Nuclear Information System (INIS)

    Gross, F.; Milana, J.

    1991-01-01

    We introduce a new model of mesons as quark-antiquark bound states. The model is covariant, confining, and chirally symmetric. Our equations give an analytic solution for a zero-mass pseudoscalar bound state in the case of exact chiral symmetry, and also reduce to the familiar, highly successful nonrelativistic linear potential models in the limit of heavy-quark mass and lightly bound systems. In this fashion we are constructing a unified description of all the mesons from the π through the Υ. Numerical solutions for other cases are also presented

  1. Permutation-symmetric three-particle hyper-spherical harmonics based on the S3⊗SO(3rot⊂O(2⊗SO(3rot⊂U(3⋊S2⊂O(6 subgroup chain

    Directory of Open Access Journals (Sweden)

    Igor Salom

    2017-07-01

    Full Text Available We construct the three-body permutation symmetric hyperspherical harmonics to be used in the non-relativistic three-body Schrödinger equation in three spatial dimensions (3D. We label the state vectors according to the S3⊗SO(3rot⊂O(2⊗SO(3rot⊂U(3⋊S2⊂O(6 subgroup chain, where S3 is the three-body permutation group and S2 is its two element subgroup containing transposition of first two particles, O(2 is the “democracy transformation”, or “kinematic rotation” group for three particles; SO(3rot is the 3D rotation group, and U(3,O(6 are the usual Lie groups. We discuss the good quantum numbers implied by the above chain of algebras, as well as their relation to the S3 permutation properties of the harmonics, particularly in view of the SO(3rot⊂SU(3 degeneracy. We provide a definite, practically implementable algorithm for the calculation of harmonics with arbitrary finite integer values of the hyper angular momentum K, and show an explicit example of this construction in a specific case with degeneracy, as well as tables of K≤6 harmonics. All harmonics are expressed as homogeneous polynomials in the Jacobi vectors (λ,ρ with coefficients given as algebraic numbers unless the “operator method” is chosen for the lifting of the SO(3rot⊂SU(3 multiplicity and the dimension of the degenerate subspace is greater than four – in which case one must resort to numerical diagonalization; the latter condition is not met by any K≤15 harmonic, or by any L≤7 harmonic with arbitrary K. We also calculate a certain type of matrix elements (the Gaunt integrals of products of three harmonics in two ways: 1 by explicit evaluation of integrals and 2 by reduction to known SU(3 Clebsch–Gordan coefficients. In this way we complete the calculation of the ingredients sufficient for the solution to the quantum-mechanical three-body bound state problem.

  2. A Typology of Work-Family Arrangements among Dual-Earner Couples in Norway

    Science.gov (United States)

    Kitterod, Ragni Hege; Lappegard, Trude

    2012-01-01

    A symmetrical family model of two workers or caregivers is a political goal in many western European countries. We explore how common this family type is in Norway, a country with high gender-equality ambitions, by using a multinomial latent class model to develop a typology of dual-earner couples with children based on the partners' allocations…

  3. A dynamic dual process model of risky decision making.

    Science.gov (United States)

    Diederich, Adele; Trueblood, Jennifer S

    2018-03-01

    Many phenomena in judgment and decision making are often attributed to the interaction of 2 systems of reasoning. Although these so-called dual process theories can explain many types of behavior, they are rarely formalized as mathematical or computational models. Rather, dual process models are typically verbal theories, which are difficult to conclusively evaluate or test. In the cases in which formal (i.e., mathematical) dual process models have been proposed, they have not been quantitatively fit to experimental data and are often silent when it comes to the timing of the 2 systems. In the current article, we present a dynamic dual process model framework of risky decision making that provides an account of the timing and interaction of the 2 systems and can explain both choice and response-time data. We outline several predictions of the model, including how changes in the timing of the 2 systems as well as time pressure can influence behavior. The framework also allows us to explore different assumptions about how preferences are constructed by the 2 systems as well as the dynamic interaction of the 2 systems. In particular, we examine 3 different possible functional forms of the 2 systems and 2 possible ways the systems can interact (simultaneously or serially). We compare these dual process models with 2 single process models using risky decision making data from Guo, Trueblood, and Diederich (2017). Using this data, we find that 1 of the dual process models significantly outperforms the other models in accounting for both choices and response times. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. 3.0 V High Energy Density Symmetric Sodium-Ion Battery: Na4V2(PO4)3∥Na3V2(PO4)3.

    Science.gov (United States)

    Yao, Xuhui; Zhu, Zixuan; Li, Qi; Wang, Xuanpeng; Xu, Xiaoming; Meng, Jiashen; Ren, Wenhao; Zhang, Xinhe; Huang, Yunhui; Mai, Liqiang

    2018-03-28

    Symmetric sodium-ion batteries (SIBs) are considered as promising candidates for large-scale energy storage owing to the simplified manufacture and wide abundance of sodium resources. However, most symmetric SIBs suffer from suppressed energy density. Here, a superior congeneric Na 4 V 2 (PO 4 ) 3 anode is synthesized via electrochemical preintercalation, and a high energy density symmetric SIB (Na 3 V 2 (PO 4 ) 3 as a cathode and Na 4 V 2 (PO 4 ) 3 as an anode) based on the deepened redox couple of V 4+ /V 2+ is built for the first time. When measured in half cell, both electrodes show stabilized electrochemical performance (over 3000 cycles). The symmetric SIBs exhibit an output voltage of 3.0 V and a cell-level energy density of 138 W h kg -1 . Furthermore, the sodium storage mechanism under the expanded measurement range of 0.01-3.9 V is disclosed through an in situ X-ray diffraction technique.

  5. Asymptotically free SU(5) models

    International Nuclear Information System (INIS)

    Kogan, Ya.I.; Ter-Martirosyan, K.A.; Zhelonkin, A.V.

    1981-01-01

    The behaviour of Yukawa and Higgs effective charges of the minimal SU(5) unification model is investigated. The model includes ν=3 (or more, up to ν=7) generations of quarks and leptons and, in addition, the 24-plet of heavy fermions. A number of solutions of the renorm-group equations are found, which reproduce the known data about quarks and leptons and, due to a special choice of the coupling constants at the unification point are asymptotically free in all charges. The requirement of the asymptotical freedom leads to some restrictions on the masses of particles and on their mixing angles [ru

  6. A Necessary Condition for the Spectrum of Nonnegative Symmetric $ 5 \\times 5 $ Matrices

    OpenAIRE

    Loewy, Raphael; Spector, Oren

    2016-01-01

    Let $A$ be a nonnegative symmetric $ 5 \\times 5 $ matrix with eigenvalues $ \\lambda_1 \\geq \\lambda_2 \\geq \\lambda_3 \\geq \\lambda_4 \\geq \\lambda_5 $. We show that if $ \\sum_{i=1}^{5} \\lambda_{i} \\geq \\frac{1}{2} \\lambda_1 $ then $ \\lambda_3 \\leq \\sum_{i=1}^{5} \\lambda_{i} $. McDonald and Neumann showed that $ \\lambda_1 + \\lambda_3 + \\lambda_4 \\geq 0 $. Let $ \\sigma = \\left( \\lambda_1, \\lambda_2, \\lambda_3, \\lambda_4, \\lambda_5 \\right) $ be a list of decreasing real numbers satisfying: 1. $ \\su...

  7. Light-flavor sea-quark distributions in the nucleon in the SU(3) chiral quark soliton model. I. Phenomenological predictions

    International Nuclear Information System (INIS)

    Wakamatsu, M.

    2003-01-01

    Theoretical predictions are given for the light-flavor sea-quark distributions in the nucleon including the strange quark ones on the basis of the flavor SU(3) version of the chiral quark soliton model. Careful account is taken of the SU(3) symmetry breaking effects due to the mass difference Δm s between the strange and nonstrange quarks, which is the only one parameter necessary for the flavor SU(3) generalization of the model. A particular emphasis of study is put on the light-flavor sea-quark asymmetry as exemplified by the observables d-bar(x)-u-bar(x),d-bar(x)/u-bar(x),Δu-bar(x)-Δd-bar(x) as well as on the particle-antiparticle asymmetry of the strange quark distributions represented by s(x)-s-bar(x),s(x)/s-bar(x),Δs(x)-Δs-bar(x) etc. As for the unpolarized sea-quark distributions, the predictions of the model seem qualitatively consistent with the available phenomenological information provided by the NMC data for d-bar(x)-u-bar(x), the E866 data for d-bar(x)/u-bar(x), the CCFR data and the fit of Barone et al. for s(x)/s-bar(x), etc. The model is shown to give several unique predictions also for the spin-dependent sea-quark distribution, such that Δs(x)<<Δs-bar(x) < or approx. 0 and Δd-bar(x)<0<Δu-bar(x), although the verification of these predictions must await more elaborate experimental investigations in the near future

  8. Neutrino masses in the flipped SU(5) x U(1) and the SU(4) x O(4) GUT models

    Energy Technology Data Exchange (ETDEWEB)

    Ranfone, S.; Papageorgiu, E.

    1992-03-01

    We classify the different neutrino-mass pattern arising in string-inspired Grand Universal Theory (GUT) and supersymmetric GUT models based on the flipped SU(5)xU(1) and the SU(4)xO(4) gauge groups. Phenomenologically interesting spectra are obtained through the interplay of the two seesaw mechanisms present, with typical neutrino masses {approx}10{sup -3} eV in the supersymmetric GUT models and of order 0.1 - 10 KeV in the ordinary GUTs. (author).

  9. Neutrino masses in the flipped SU(5)xU(1) and the SU(4)xO(4) GUT models

    Energy Technology Data Exchange (ETDEWEB)

    Papageorgiu, E.; Ranfone, S. (Rutherford Appleton Lab., Chilton (United Kingdom))

    1992-05-21

    We classify the different neutrino-mass patterns arising in string-inspired GUT and supersymmetric GUT models based on the flipped SU(5)xU(1) and the SU(4)xO(4) gauge groups. Phenomenologically interesting spectra are obtained through the interplay of the two seesaw mechanisms present, with typical neutrino masses {proportional to}10{sup -3} eV in the supersymmetric GUT models and of order 0.1-10 keV in the ordinary GUTs. (orig.).

  10. Model for extended Pati-Salam gauge symmetry

    International Nuclear Information System (INIS)

    Foot, R.; Lew, H.; Volkas, R.R.

    1990-11-01

    The possibility of constructing non-minimal models of the Pati-Salam type is investigated. The most interesting examples are found to have an SU(6) x SU(2) L x SU(2) R guage invariance. Two interesting symmetry breaking patterns are analysed: one leading to the theory of SU(5) colour at an intermediate scale, the other to the quark-lepton symmetric model. 15 refs

  11. Resistor Networks based on Symmetrical Polytopes

    Directory of Open Access Journals (Sweden)

    Jeremy Moody

    2015-03-01

    Full Text Available This paper shows how a method developed by Van Steenwijk can be generalized to calculate the resistance between any two vertices of a symmetrical polytope all of whose edges are identical resistors. The method is applied to a number of cases that have not been studied earlier such as the Archimedean polyhedra and their duals in three dimensions, the regular polytopes in four dimensions and the hypercube in any number of dimensions.

  12. Maclaurin symmetric mean operators of linguistic intuitionistic fuzzy numbers and their application to multiple-attribute decision-making

    Science.gov (United States)

    Liu, Peide; Qin, Xiyou

    2017-11-01

    Linguistic intuitionistic fuzzy number (LIFN) is a special intuitionistic fuzzy number which can more easily describe the vagueness existing in the real decision-making. Maclaurin symmetric mean (MSM) operator has the characteristic of considering the interrelationships among any number of input parameters. In this paper, we extended the MSM operator to the LIFNs and some extended MSM operators for LIFNs were proposed, some new decision-making methods were developed. Firstly, we introduced the definition, score function, properties and operational rules of the LIFNs. Then, we proposed some linguistic intuitionistic fuzzy MSM operators, such as linguistic intuitionistic fuzzy Maclaurin symmetric mean operator, weighted linguistic intuitionistic fuzzy Maclaurin symmetric mean (WLIFMSM) operator, linguistic intuitionistic fuzzy dual Maclaurin symmetric mean operator, weighted linguistic intuitionistic fuzzy dual Maclaurin symmetric mean (WLIFDMSM) operator. In the meantime, we studied some important properties of these operators, and developed some methods based on WLIFMSM operator and WLIFDMSM operator for multi-attribute decision-making. Finally, we use an example to demonstrate the effectiveness of the proposed methods.

  13. Abelian color cycles: A new approach to strong coupling expansion and dual representations for non-abelian lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Gattringer, Christof, E-mail: christof.gattringer@uni-graz.at; Marchis, Carlotta, E-mail: carla.marchis@uni-graz.at

    2017-03-15

    We propose a new approach to strong coupling series and dual representations for non-abelian lattice gauge theories using the SU(2) case as an example. The Wilson gauge action is written as a sum over “abelian color cycles” (ACC) which correspond to loops in color space around plaquettes. The ACCs are complex numbers which can be commuted freely such that the strong coupling series and the dual representation can be obtained as in the abelian case. Using a suitable representation of the SU(2) gauge variables we integrate out all original gauge links and identify the constraints for the dual variables in the SU(2) case. We show that the construction can be generalized to the case of SU(2) gauge fields with staggered fermions. The result is a strong coupling series where all gauge integrals are known in closed form and we discuss its applicability for possible dual simulations. The abelian color cycle concept can be generalized to other non-abelian gauge groups such as SU(3).

  14. Separation of variables in anisotropic models and non-skew-symmetric elliptic r-matrix

    Science.gov (United States)

    Skrypnyk, Taras

    2017-05-01

    We solve a problem of separation of variables for the classical integrable hamiltonian systems possessing Lax matrices satisfying linear Poisson brackets with the non-skew-symmetric, non-dynamical elliptic so(3)⊗ so(3)-valued classical r-matrix. Using the corresponding Lax matrices, we present a general form of the "separating functions" B( u) and A( u) that generate the coordinates and the momenta of separation for the associated models. We consider several examples and perform the separation of variables for the classical anisotropic Euler's top, Steklov-Lyapunov model of the motion of anisotropic rigid body in the liquid, two-spin generalized Gaudin model and "spin" generalization of Steklov-Lyapunov model.

  15. Regular behaviors in SU(2) Yang-Mills classical mechanics

    International Nuclear Information System (INIS)

    Xu Xiaoming

    1997-01-01

    In order to study regular behaviors in high-energy nucleon-nucleon collisions, a representation of the vector potential A i a is defined with respect to the (a,i)-dependence in the SU(2) Yang-Mills classical mechanics. Equations of the classical infrared field as well as effective potentials are derived for the elastic or inelastic collision of two plane wave in a three-mode model and the decay of an excited spherically-symmetric field

  16. Reconstructing ATLAS SU3 in the CMSSM and relaxed phenomenological supersymmetry models

    CERN Document Server

    Fowlie, Andrew

    2011-01-01

    Assuming that the LHC makes a positive end-point measurement indicative of low-energy supersymmetry, we examine the prospects of reconstructing the parameter values of a typical low-mass point in the framework of the Constrained MSSM and in several other supersymmetry models that have more free parameters and fewer assumptions than the CMSSM. As a case study, we consider the ATLAS SU3 benchmark point with a Bayesian approach and with a Gaussian approximation to the likelihood for the measured masses and mass differences. First we investigate the impact of the hypothetical ATLAS measurement alone and show that it significantly narrows the confidence intervals of relevant, otherwise fairly unrestricted, model parameters. Next we add information about the relic density of neutralino dark matter to the likelihood and show that this further narrows the confidence intervals. We confirm that the CMSSM has the best prospects for parameter reconstruction; its results had little dependence on our choice of prior, in co...

  17. SU(3) limit of the IBM as a 1/N expansion

    International Nuclear Information System (INIS)

    Kuyucak, S.; Morrison, I.

    1990-01-01

    The SU(3) limit of the interacting boson model is considered from the perspective of the 1/N expansion. It is shown that truncation of the E2 matrix elements in the spirit of the 1/N expansion and the Mikhailov plots greatly simplifies the complicated exact results and leads to some new insights. A list of E2 transitions among the ground, β and γ bands, both in the SU(3) limit and in more general cases, is given, and some errors in the previous literature are pointed out. 13 refs

  18. Continuons left-right symmetrical model of electroweak interactions

    International Nuclear Information System (INIS)

    Boyarkin, O.M.

    1993-01-01

    The left-right model (LR) is suggested which is characterized by the orientation angle of the SU(2) R generator in the group space. This model reproduces all the known LR models. The production processes of gauge bosons at electron-positron and hardon colliders are investigated

  19. Mixed dark matter in left-right symmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, Asher [Department of Physics, University of Chicago,Chicago, Illinois 60637 (United States); Fox, Patrick J. [Theoretical Physics Department, Fermilab,Batavia, Illinois 60510 (United States); Hooper, Dan [Center for Particle Astrophysics, Fermi National Accelerator Laboratory,Batavia, Illinois 60510 (United States); Department of Astronomy and Astrophysics, University of Chicago,Chicago, Illinois 60637 (United States); Mohlabeng, Gopolang [Center for Particle Astrophysics, Fermi National Accelerator Laboratory,Batavia, Illinois 60510 (United States); Department of Physics and Astronomy, University of Kansas,Lawrence, Kansas 66045 (United States)

    2016-06-08

    Motivated by the recently reported diboson and dijet excesses in Run 1 data at ATLAS and CMS, we explore models of mixed dark matter in left-right symmetric theories. In this study, we calculate the relic abundance and the elastic scattering cross section with nuclei for a number of dark matter candidates that appear within the fermionic multiplets of left-right symmetric models. In contrast to the case of pure multiplets, WIMP-nucleon scattering proceeds at tree-level, and hence the projected reach of future direct detection experiments such as LUX-ZEPLIN and XENON1T will cover large regions of parameter space for TeV-scale thermal dark matter. Decays of the heavy charged W{sup ′} boson to particles in the dark sector can potentially shift the right-handed gauge coupling to larger values when fixed to the rate of the Run 1 excesses, moving towards the theoretically attractive scenario, g{sub R}=g{sub L}. This region of parameter space may be probed by future collider searches for new Higgs bosons or electroweak fermions.

  20. Baryon number generation in a flipped SU(5) x U(1) model

    International Nuclear Information System (INIS)

    Campbell, B.; Hagelin, J.; Nanopoulos, D.V.; Olive, K.A.

    1988-01-01

    We consider the possibilities for generating a baryon asymmetry in the early universe in a flipped SU(5) x U(1) model inspired by the superstring. Depending on the temperature of the radiation background after inflation we can distinguish between two scenarios for baryogenesis: (1) After reheating the original SU(5) x U(1) symmetry is restored, or there was no inflation at all; (2) reheating after inflation is rather weak and SU(5) x U(1) is broken. In either case the asymmetry is generated by the out-of-equilibrium decays of a massive SU(3) x SU(2) x U(1) singlet field φ m . In the flipped SU(5) x U(1) model, gauge symmetry breaking is triggered by strong coupling phenomena, and is in general accompanied by the production of entropy. We examine constraints on the reheating temperature and the strong coupling scale in each of the scenarios. (orig.)

  1. Precision electroweak tests of the minimal and flipped SU(5) supergravity models

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.L.; Nanopoulos, D.V.; Park, G.T.; Pois, H.; Yuan, K. (Center for Theoretical Physics, Department of Physics, Texas A M University, College Station, Texas 77843-4242 (United States) Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Woodlands, Texas 77381 (United States))

    1993-10-01

    We explore the one-loop electroweak radiative corrections in the minimal SU(5) and the no-scale flipped SU(5) supergravity models via explicit calculation of vacuum polarization contributions to the [epsilon][sub 1,2,3] parameters. Experimentally, [epsilon][sub 1,2,3] are obtained from a global fit to the CERN LEP observables, and [ital M][sub [ital W

  2. The winding number of three complexes in SU(3)

    International Nuclear Information System (INIS)

    Lasher, G.

    1989-01-01

    The Phillip-Stone algorithm for the topological charge of a lattice gauge field requires the computation of the winding number of certain 3-complexes in the space of the group. The extension of the computational procedure for the SU(2) gauge group to SU(3) requires an understanding of the SU(3) geometry. An important issue is the behavior of a 3-cell in SU(3) as it approaches a critical configuration, i.e., one at which the cell is a discontinuous function of its vertices. A measure of the proximity of a cell to criticality is found and a method for computing its contribution to the winding number is recommended. (orig.)

  3. Valence bond solids for SU(n) spin chains: Exact models, spinon confinement, and the Haldane gap

    International Nuclear Information System (INIS)

    Greiter, Martin; Rachel, Stephan

    2007-01-01

    To begin with, we introduce several exact models for SU(3) spin chains: First is a translationally invariant parent Hamiltonian involving four-site interactions for the trimer chain, with a threefold degenerate ground state. We provide numerical evidence that the elementary excitations of this model transform under representation 3 of SU(3) if the original spins of the model transform under representation 3. Second is a family of parent Hamiltonians for valence bond solids of SU(3) chains with spin representations 6, 10, and 8 on each lattice site. We argue that of these three models, only the latter two exhibit spinon confinement and, hence, a Haldane gap in the excitation spectrum. We generalize some of our models to SU(n). Finally, we use the emerging rules for the construction of valence bond solid states to argue that models of antiferromagnetic chains of SU(n) spins, in general, possess a Haldane gap if the spins transform under a representation corresponding to a Young tableau consisting of a number of boxes λ which is divisible by n. If λ and n have no common divisor, the spin chain will support deconfined spinons and not exhibit a Haldane gap. If λ and n have a common divisor different from n, it will depend on the specifics of the model including the range of the interaction

  4. Phenomenology of the spontaneous C P violation in SU(3)L x U(1)Y electroweak models

    International Nuclear Information System (INIS)

    Epele, Luis N.; Gomez Dumm, Daniel A.

    1994-01-01

    This work studies the phenomenological consequence of the spontaneous C P violation in a SU(3) L x U(1) Y model with three Higgs triplets and one sextuplet, which has been recently proposed. Since this C P-violating effects are due to the presence of complex vacuum expectation values in the Higgs sector, our analysis requires a detailed study of the enlarged potential

  5. Factored Facade Acquisition using Symmetric Line Arrangements

    KAUST Repository

    Ceylan, Duygu

    2012-05-01

    We introduce a novel framework for image-based 3D reconstruction of urban buildings based on symmetry priors. Starting from image-level edges, we generate a sparse and approximate set of consistent 3D lines. These lines are then used to simultaneously detect symmetric line arrangements while refining the estimated 3D model. Operating both on 2D image data and intermediate 3D feature representations, we perform iterative feature consolidation and effective outlier pruning, thus eliminating reconstruction artifacts arising from ambiguous or wrong stereo matches. We exploit non-local coherence of symmetric elements to generate precise model reconstructions, even in the presence of a significant amount of outlier image-edges arising from reflections, shadows, outlier objects, etc. We evaluate our algorithm on several challenging test scenarios, both synthetic and real. Beyond reconstruction, the extracted symmetry patterns are useful towards interactive and intuitive model manipulations.

  6. On SU(8)sub(L)xSU(8)sub(R) grand unified model

    International Nuclear Information System (INIS)

    Pirogov, Yu.F.

    1981-01-01

    A set of general propositions is considered which ground the choice of the SU(8)sub(L)xSU(8)sub(R) group as a unified symmetry group. According to these propositions the group SU(8)sub(L)xSU(8)sub(R) is the most natural unified group, it is the maximal symmetry group of the kinetic term of the lagrangian single family which conserves the fermion number. A new principle is introduced. According to this principle, the mirror doubling of the fermion spectrum, necessary for renormalizability of the given unified model is, on the other hand, a manifestation of the extended conformal invariance at short distances [ru

  7. Structural properties of the self-conjugate SU(3) tensor operators

    International Nuclear Information System (INIS)

    Lohe, M.A.; Biedenharn, L.C.; Louck, J.D.

    1977-01-01

    Denominator functions for the set of self-conjugate SU(3) tensor operators are explicitly obtained and shown to be uniquely related to SU(3) -invariant structural properties. This relationship becomes manifest through the appearance of zeroes of the denominator functions which thereby express the fundamental null space properties of SU(3) tensor operators. It is demonstrated that there exist characteristic denominator functions whose zeroes, in position and multiplicity, possess the interesting, and unexpected, property of forming SU(3) weight space patterns

  8. El anillo de los números duales

    OpenAIRE

    Jiménez, Haydee; Luque, Carlos Julio

    2007-01-01

    Se inicia con una presentación de la estructura de * - Álgebra de los números duales; se muestran diferentes representaciones que permiten la definición de potencias racionales de números duales, lo que exige una extensión de su estructura a un anillo de números duales con coeficientes complejos. Seguidamente se estudian la función exponencial dual y la función logaritmo dual que permiten la definición de potencias duales de un número dual; luego se estudian ecuaciones en los números duales h...

  9. Electroweak phase transition in the economical 3-3-1 model

    Energy Technology Data Exchange (ETDEWEB)

    Phong, Vo Quoc; Van, Vo Thanh; Minh, Le Hoang [Ho Chi Minh City University of Science, Department of Theoretical Physics, Ho Chi Minh City (Viet Nam); Long, Hoang Ngoc [Vietnamese Academy of Science and Technology, Institute of Physics, Hanoi (Viet Nam)

    2015-07-15

    We consider the EWPT in the economical 3-3-1 (E331) model. Our analysis shows that the EWPT in the model is a sequence of two first-order phase transitions, SU(3) → SU(2) at the TeV scale and SU(2) → U(1) at the 100 GeV scale. The EWPT SU(3) → SU(2) is triggered by the new bosons and the exotic quarks; its strength is about 1-13 if the mass ranges of these new particles are 10{sup 2}-10{sup 3} GeV. The EWPT SU(2) → U(1) is strengthened by only the new bosons; its strength is about 1-1.15 if the mass parts of H{sub 1}{sup 0}, H{sub 2}{sup ±} and Y{sup ±} are in the ranges 10-10{sup 2} GeV. The contributions of H{sub 1}{sup 0} and H{sub 2}{sup ±} to the strengths of both EWPTs may make them sufficiently strong to provide large deviations from thermal equilibrium and B violation necessary for baryogenesis. (orig.)

  10. SU (N) lattice integrable models and modular invariance

    International Nuclear Information System (INIS)

    Zuber, J.B.; Di Francesco, P.

    1989-01-01

    We first review some recent work on the construction of RSOS SU (N) critical integrable models. The models may be regarded as associated with a graph, extending from SU (2) to SU (N) an idea of Pasquier, or alternatively, with a representation of the fusion algebra over non-negative integer valued matrices. Some consistency conditions that the Boltzmann weights of these models must satisfy are then pointed out. Finally, the algebraic connections between (a subclass of) the admissible graphs and (a subclass of) modular invariants are discussed, based on the theory of C-algebras. The case of G 2 is also treated

  11. Complex {PT}-symmetric extensions of the nonlinear ultra-short light pulse model

    Science.gov (United States)

    Yan, Zhenya

    2012-11-01

    The short pulse equation u_{xt}=u+\\frac{1}{2}(u^2u_x)_x is PT symmetric, which arises in nonlinear optics for the ultra-short pulse case. We present a family of new complex PT-symmetric extensions of the short pulse equation, i[(iu_x)^{\\sigma }]_t=au+bu^m+ic[u^n(iu_x)^{\\epsilon }]_x \\,\\, (\\sigma ,\\, \\epsilon ,\\,a,\\,b,\\,c,\\,m,\\,n \\in {R}), based on the complex PT-symmetric extension principle. Some properties of these equations with some chosen parameters are studied including the Hamiltonian structures and exact solutions such as solitary wave solutions, doubly periodic wave solutions and compacton solutions. Our results may be useful to understand complex PT-symmetric nonlinear physical models. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.

  12. D3-brane shells to black branes on the Coulomb branch

    International Nuclear Information System (INIS)

    Giddings, Steven B.; Ross, Simon F.

    2000-01-01

    We use the AdS-CFT duality to study the special point on the Coulomb branch of N=4 SU(N) gauge theory which corresponds to a spherically symmetric shell of D3-branes. This point is of interest both because the spacetime region inside the shell is flat, and because this configuration gives a very simple example of the transition between D-branes in the perturbative string regime and the nonperturbative regime of black holes. We discuss how this geometry is described in the dual gauge theory, through its effect on the two-point functions and Wilson loops. In the calculation of the two-point function, we stress the importance of absorption by the branes. (c) 1999 The American Physical Society

  13. SU-C-BRB-02: Symmetric and Asymmetric MLC Based Lung Shielding and Dose Optimization During Translating Bed TBI

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, S; Kakakhel, MB [Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad (Pakistan); Ahmed, SBS; Hussain, A [Aga Khan University Hospital (AKUH), Karachi (Pakistan)

    2015-06-15

    Purpose: The primary aim was to introduce a dose optimization method for translating bed total body irradiation technique that ensures lung shielding dynamically. Symmetric and asymmetric dynamic MLC apertures were employed for this purpose. Methods: The MLC aperture sizes were defined based on the radiological depth values along the divergent ray lines passing through the individual CT slices. Based on these RD values, asymmetrically shaped MLC apertures were defined every 9 mm of the phantom in superior-inferior direction. Individual MLC files were created with MATLAB™ and were imported into Eclipse™ treatment planning system for dose calculations. Lungs can be shielded to an optimum level by reducing the MLC aperture width over the lungs. The process was repeated with symmetrically shaped apertures. Results: Dose-volume histogram (DVH) analysis shows that the asymmetric MLC based technique provides better dose coverage to the body and optimum shielding of the lungs compared to symmetrically shaped beam apertures. Midline dose homogeneity is within ±3% with asymmetric MLC apertures whereas it remains within ±4.5% with symmetric ones (except head region where it drops down to −7%). The substantial over and under dosage of ±5% at tissue interfaces has been reduced to ±2% with asymmetric MLC technique. Lungs dose can be reduced to any desired limit. In this experiment lungs dose was reduced to 80% of the prescribed dose, as was desired. Conclusion: The novel asymmetric MLC based technique assures optimum shielding of OARs (e.g. lungs) and better 3-D dose homogeneity and body-dose coverage in comparison with the symmetric MLC aperture optimization. The authors acknowledge the financial and infrastructural support provided by Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad and Aga Khan University Hospital (AKUH), Karachi during the course of this research project. Authors have no conflict of interest with any national / international

  14. Dual projection and self duality in three dimensions

    International Nuclear Information System (INIS)

    Banerjee, Rabin; Wotzasek, Clovis

    2000-01-01

    Full text follows: We discuss the notion of duality and self duality in the context of the dual projection operation that creates an internal space of potentials. This technique is applicable to both even and odd dimensions. We derive the appropriate invariant actions, discuss the symmetry groups and their proper generators. In particular, the novel concept of duality symmetry and self duality in Maxwell theory in (2+1) dimensions is analysed in details. The corresponding action is a 3D version of the familiar duality symmetric electromagnetic theory in 4D. Finally, the duality symmetric actions in the different dimensions constructed here manifest both the SO(2) and Z 2 symmetries, contrary to conventional results. (author)

  15. Dual electromagnetism: helicity, spin, momentum and angular momentum

    International Nuclear Information System (INIS)

    Bliokh, Konstantin Y; Nori, Franco; Bekshaev, Aleksandr Y

    2013-01-01

    The dual symmetry between electric and magnetic fields is an important intrinsic property of Maxwell equations in free space. This symmetry underlies the conservation of optical helicity and, as we show here, is closely related to the separation of spin and orbital degrees of freedom of light (the helicity flux coincides with the spin angular momentum). However, in the standard field-theory formulation of electromagnetism, the field Lagrangian is not dual symmetric. This leads to problematic dual-asymmetric forms of the canonical energy–momentum, spin and orbital angular-momentum tensors. Moreover, we show that the components of these tensors conflict with the helicity and energy conservation laws. To resolve this discrepancy between the symmetries of the Lagrangian and Maxwell equations, we put forward a dual-symmetric Lagrangian formulation of classical electromagnetism. This dual electromagnetism preserves the form of Maxwell equations, yields meaningful canonical energy–momentum and angular-momentum tensors, and ensures a self-consistent separation of the spin and orbital degrees of freedom. This provides a rigorous derivation of the results suggested in other recent approaches. We make the Noether analysis of the dual symmetry and all the Poincaré symmetries, examine both local and integral conserved quantities and show that only the dual electromagnetism naturally produces a complete self-consistent set of conservation laws. We also discuss the observability of physical quantities distinguishing the standard and dual theories, as well as relations to quantum weak measurements and various optical experiments. (paper)

  16. Symmetric vectors and algebraic classification

    International Nuclear Information System (INIS)

    Leibowitz, E.

    1980-01-01

    The concept of symmetric vector field in Riemannian manifolds, which arises in the study of relativistic cosmological models, is analyzed. Symmetric vectors are tied up with the algebraic properties of the manifold curvature. A procedure for generating a congruence of symmetric fields out of a given pair is outlined. The case of a three-dimensional manifold of constant curvature (''isotropic universe'') is studied in detail, with all its symmetric vector fields being explicitly constructed

  17. Minimal unitary representation of D(2,1;λ) and its SU(2) deformations and d=1, N=4 superconformal models

    International Nuclear Information System (INIS)

    Govil, Karan; Gunaydin, Murat

    2013-01-01

    Quantization of the geometric quasiconformal realizations of noncompact groups and supergroups leads directly to their minimal unitary representations (minreps). Using quasiconformal methods massless unitary supermultiplets of superconformal groups SU(2,2|N) and OSp(8 ⁎ |2n) in four and six dimensions were constructed as minreps and their U(1) and SU(2) deformations, respectively. In this paper we extend these results to SU(2) deformations of the minrep of N=4 superconformal algebra D(2,1;λ) in one dimension. We find that SU(2) deformations can be achieved using n pair of bosons and m pairs of fermions simultaneously. The generators of deformed minimal representations of D(2,1;λ) commute with the generators of a dual superalgebra OSp(2n ⁎ |2m) realized in terms of these bosons and fermions. We show that there exists a precise mapping between symmetry generators of N=4 superconformal models in harmonic superspace studied recently and minimal unitary supermultiplets of D(2,1;λ) deformed by a pair of bosons. This can be understood as a particular case of a general mapping between the spectra of quantum mechanical quaternionic Kähler sigma models with eight super symmetries and minreps of their isometry groups that descends from the precise mapping established between the 4d, N=2 sigma models coupled to supergravity and minreps of their isometry groups.

  18. Embeddings of SU/sup c/3 in unifying gauge groups

    International Nuclear Information System (INIS)

    Slansky, R.

    1978-01-01

    Hypothetical models that attempt to unify electromagnetic, weak, and strong interactions into a simple, compact gauge group G are discussed. The problem of embedding the strong group SU 3 /sup c/ in any larger simple group is solved, and a complete classification of theories where the color in some representation is restricted to 1/sup c/, 3/sup c/, and anti 3/sup c/ is given

  19. Symmetry breaking in a five-dimensional SU(5) model

    International Nuclear Information System (INIS)

    Svetovoi, V.B.; Khariton, N.G.

    1986-01-01

    Two-state symmetry breaking in a SU(5) model in a space with M 4 x S 1 topology is discussed. The scalar 24-plet is a component of a five-vector and acquires a nonzero vacuum expectation value at the quantum level. The vacuum differs substantially from that of the standard SU(5) model. Its orientation in the SU(5) space and absolute magnitude are fixed uniquely. The second stage of the symmetry breaking occurs on account of a five-scalar in the fundamental representation of SU(5) by means of the Weinberg mechanism. The small mass of the scalar SU(2) doublet is not explained

  20. Laws of trigonometry on SU(3)

    International Nuclear Information System (INIS)

    Aslaksen, H.

    1988-01-01

    In this paper we will study triangles in SU(3). The orbit space of congruence classes of triangles in SU(3) has dimension 8. Each corner is made up of a pair of tangent vectors (X,Y), and we consider the 8 functions trX 2 , i trX 3 , trY 2 , i trY 3 , trXY, i trY 2 Y, i trXY 2 , trX 2 Y 2 which are invariant under the full isometry group of SU(3). We show that these 8 corner invariants determine the isometry class of the triangle. We give relations (laws of trigonometry) between the invariants at the different corners, enabling us to determine the invariants at the remaining corners, including the values of the remaining side and angles, if we know one set of corner invariants. The invariants that only depend on one tangent vector we will call side invariants, while those that depend on two tangent vectors will be called angular invariants. For each triangle we then have 6 side invariants and 12 angular invariants. Hence we need 18 - 8 = 10 laws of trigonometry. The basic tool for deriving these laws is a formula expressing tr(exp X exp Y) in terms of the corner invariants

  1. Denominator function for canonical SU(3) tensor operators

    International Nuclear Information System (INIS)

    Biedenharn, L.C.; Lohe, M.A.; Louck, J.D.

    1985-01-01

    The definition of a canonical unit SU(3) tensor operator is given in terms of its characteristic null space as determined by group-theoretic properties of the intertwining number. This definition is shown to imply the canonical splitting conditions used in earlier work for the explicit and unique (up to +- phases) construction of all SU(3) WCG coefficients (Wigner--Clebsch--Gordan). Using this construction, an explicit SU(3)-invariant denominator function characterizing completely the canonically defined WCG coefficients is obtained. It is shown that this denominator function (squared) is a product of linear factors which may be obtained explicitly from the characteristic null space times a ratio of polynomials. These polynomials, denoted G/sup t//sub q/, are defined over three (shift) parameters and three barycentric coordinates. The properties of these polynomials (hence, of the corresponding invariant denominator function) are developed in detail: These include a derivation of their degree, symmetries, and zeros. The symmetries are those induced on the shift parameters and barycentric coordinates by the transformations of a 3 x 3 array under row interchange, column interchange, and transposition (the group of 72 operations leaving a 3 x 3 determinant invariant). Remarkably, the zeros of the general G/sup t//sub q/ polynomial are in position and multiplicity exactly those of the SU(3) weight space associated with irreducible representation [q-1,t-1,0]. The results obtained are an essential step in the derivation of a fully explicit and comprehensible algebraic expression for all SU(3) WCG coefficients

  2. Symmetry breaking patterns of the 3-3-1 model at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J.S. [Universidade do Estado do Rio de Janeiro, Departamento de Fisica de Altas Energias, Rio de Janeiro, RJ (Brazil); Ramos, Rudnei O. [Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro, RJ (Brazil)

    2016-06-15

    We consider the minimal version of an extension of the standard electroweak model based on the SU(3){sub c} x SU(3){sub L} x U(1){sub X} gauge symmetry (the 3-3-1 model). We analyze the most general potential constructed from three scalars in the triplet representation of SU(3){sub L}, whose neutral components develop nonzero vacuum expectation values, giving mass for all the model's massive particles. For different choices of parameters, we obtain the particle spectrum for the two symmetry breaking scales: one where the SU(3){sub L} x U(1){sub X} group is broken down to SU(2){sub L} x U(1){sub Y} and a lower scale similar to the standard model one. Within the considerations used, we show that the model encodes two first-order phase transitions, respecting the pattern of symmetry restoration. The last transition, corresponding to the standard electroweak one, is found to be very weak first-order, most likely turning second-order or a crossover in practice. However, the first transition in this model can be strongly first-order, which might happen at a temperature not too high above the second one. We determine the respective critical temperatures for symmetry restoration for the model. (orig.)

  3. On grand unified SU(8)sub(L)xSU(8)sub(R) model

    International Nuclear Information System (INIS)

    Pirogov, Yu.F.

    1980-01-01

    A set of general prjnciples justifying the choice of the group SU(N)sub(L)xSU(N)sub(R) with N=8 as the grand unified symmetry group is considered. Accordjng to these principles the group SU(N)sub(L)xSU(N)sub(R) is one of the most natural unified groups. Namely this group is maximum symmetry group of kinetic term of the Lagrangian of one family, which conserves fermion number. A new principle has been introduced according to which one of the manifestations of extended conformal invariance at small distances is mirror doubling of set of fermions, which is necessary on the other hand for renormalizability of the given unified model

  4. Vertically-Integrated Dual-Continuum Models for CO2 Injection in Fractured Aquifers

    Science.gov (United States)

    Tao, Y.; Guo, B.; Bandilla, K.; Celia, M. A.

    2017-12-01

    Injection of CO2 into a saline aquifer leads to a two-phase flow system, with supercritical CO2 and brine being the two fluid phases. Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the system. Almost all of that work has focused on unfractured formations. 3D models solve the governing equations in three dimensions and are applicable to generic geological formations. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally more efficient, but the associated assumptions restrict the applicability of VE model to formations with moderate to high permeability. In this presentation, we extend the VE and 3D models for CO2 injection in fractured aquifers. This is done in the context of dual-continuum modeling, where the fractured formation is modeled as an overlap of two continuous domains, one representing the fractures and the other representing the rock matrix. Both domains are treated as porous media continua and can be modeled by either a VE or a 3D formulation. The transfer of fluid mass between rock matrix and fractures is represented by a mass transfer function connecting the two domains. We have developed a computational model that combines the VE and 3D models, where we use the VE model in the fractures, which typically have high permeability, and the 3D model in the less permeable rock matrix. A new mass transfer function is derived, which couples the VE and 3D models. The coupled VE-3D model can simulate CO2 injection and migration in fractured aquifers. Results from this model compare well with a full-3D model in which both the fractures and rock matrix are modeled with 3D models, with the hybrid VE-3D model having significantly reduced computational cost. In

  5. The SU(3)-Nambu-Jona-Lasinio soliton in the collective quantization formulation

    International Nuclear Information System (INIS)

    Blotz, A.; Goeke, K.; Diakonov, D.; Petrov, V.; Pobylitsa, P.V.; Park, N.W.

    1992-01-01

    On grounds of a semibosonized Nambu-Jona-Lasinio model, which has SU(3) R circle-times SU(3) L -symmetry in the chiral limit, mass splittings for spin 1/2 and spin 3/2 baryons are studied in the presence of an explicit chiral symmetry breaking strange quark mass. To this aim these strangeness carrying baryons are understood as SU(3)-rotational excitations of an SU(2)-embedded soliton solution. Therefore, within the framework of collective quantization, the fermion determinant with the strange quark mass is expanded up to the second order in the flavor rotation velocity and up to the first order in this quark mass. Besides the strange and non-strange moments of inertia, which have some counterparts within the Skyrme model, some so-called anomalous moments of inertia are obtained. These call be related to the imaginary part of the effective Euclidian action and contain among others the anomalous baryon current. This is shown in a gradient expansion up to the first non-vanishing order. Together with the Σ-commutator these are the solitonic ingredients of the collective hamiltonian, which is then diagonalized by means of strict perturbation theory in the strange quark mass and by the Yabu-Audo method. Both methods yield very good results for the masses of the spin 1/2 and 3/2 baryons. The former one reproduces some interesting mass formulas of Gell-Mann Okubo and Guadagnini and the latter one is able to describe the mass splittings up to a few MeV

  6. Double suppression of FCNCs in a supersymmetric model

    International Nuclear Information System (INIS)

    Kajiyama, Yuji

    2004-01-01

    A concrete model which can suppress FCNCs and CP violating phenomena is suggested. It is S 3 symmetric extension of MSSM in extra dimensions where only SU(2) and SU(3) gauge multiplet are assumed to propagate in the bulk. They are suppressed due to S 3 flavor symmetry at M SUSY , and the infrared attractive force of gauge interaction in extra dimensions are used to suppress them at the compactification scale. We find that O(1) disorders of the soft parameters are allowed at the cut-off scale to suppress FCNCs and CP violating phenomena. (author)

  7. Double suppression of FCNCs in a supersymmetric model

    Energy Technology Data Exchange (ETDEWEB)

    Kajiyama, Yuji [Kanazawa Univ., Dept. of Physics, Kanazawa, Ishikawa (Japan)

    2004-12-01

    A concrete model which can suppress FCNCs and CP violating phenomena is suggested. It is S{sub 3} symmetric extension of MSSM in extra dimensions where only SU(2) and SU(3) gauge multiplet are assumed to propagate in the bulk. They are suppressed due to S{sub 3} flavor symmetry at M{sub SUSY}, and the infrared attractive force of gauge interaction in extra dimensions are used to suppress them at the compactification scale. We find that O(1) disorders of the soft parameters are allowed at the cut-off scale to suppress FCNCs and CP violating phenomena. (author)

  8. Flipped SU(5) from D-branes with type IIB fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Chingming [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: cchen@physics.tamu.edu; Mayes, V.E. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: eric@physics.tamu.edu; Nanopoulos, D.V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States) and Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States) and Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece)]. E-mail: dimitri@physics.tamu.edu

    2006-02-16

    We construct flipped SU(5) GUT models as type IIB flux vacua on Z{sub 2}xZ{sub 2} orientifolds. Turning on supergravity self-dual NSNS and RR three-form fluxes fixes the toroidal complex structure moduli and the dilaton. We give a specific example of a three-generation flipped SU(5) model with a complete Higgs sector where supersymmetry is softly broken by the supergravity fluxes in the closed string sector. All of the required Yukawa couplings are present if global U(1) factors resulting from a generalized Green-Schwarz mechanism are broken spontaneously or by world-sheet instantons. In addition, the model contains extra chiral and vector-like matter, potentially of mass O(M{sub string}) via trilinear superpotential couplings.

  9. Multiple multi-orbit fermionic and bosonic pairing and rotational SU(3) algebras

    International Nuclear Information System (INIS)

    Kota, V.K.B.

    2017-01-01

    In nuclei with valence nucleons that are identical nucleons and occupy r number of j-orbits, there will be 2 r-1 number of multiple pairing (quasi-spin) SU(2) algebras with the generalized pair creation operator S + being a sum of single-j pair creation operators with arbitrary phases. Also, for each set of phases there will be a corresponding Sp(2Ω) algebra in U(2Ω) ⊃ Sp(2Ω); Ω = ∑ (2j+1)/2. Using this correspondence, derived is the condition for a general one-body operator of angular momentum rank k to be a quasi-spin scalar or a vector vis-a-vis the phases in S + . These will give special seniority selection rules for electromagnetic transitions. We found that the phase choice advocated by Arvieu and Moszkowski gives pairing Hamiltonians having maximum correlation with well known effective interactions. All the results derived for identical fermion systems are shown to extend to identical boson systems such as sd, sp, sdg and sdpf interacting boson models (IBM's) with SU(2) → SU(1,1) and Sp(2/Omega) → SO(2Ω). Going beyond pairing, for a given set of oscillator orbits, there are multiple rotational SU(3) algebras both in shell model and IBM's. Different SU(3) algebras in IBM's are shown, using sdg IBM as an example, to give different geometric shapes.

  10. A representation basis for the quantum integrable spin chain associated with the su(3) algebra

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Kun [Institute of Modern Physics, Northwest University, Xian 710069 (China); Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Li, Guang-Liang [Department of Applied Physics, Xian Jiaotong University, Xian 710049 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2016-05-20

    An orthogonal basis of the Hilbert space for the quantum spin chain associated with the su(3) algebra is introduced. Such kind of basis could be treated as a nested generalization of separation of variables (SoV) basis for high-rank quantum integrable models. It is found that all the monodromy-matrix elements acting on a basis vector take simple forms. With the help of the basis, we construct eigenstates of the su(3) inhomogeneous spin torus (the trigonometric su(3) spin chain with antiperiodic boundary condition) from its spectrum obtained via the off-diagonal Bethe Ansatz (ODBA). Based on small sites (i.e. N=2) check, it is conjectured that the homogeneous limit of the eigenstates exists, which gives rise to the corresponding eigenstates of the homogenous model.

  11. On the SU(2)× SU(2) symmetry in the Hubbard model

    Science.gov (United States)

    Jakubczyk, Dorota; Jakubczyk, Paweł

    2012-08-01

    We discuss the one-dimensional Hubbard model, on finite sites spin chain, in context of the action of the direct product of two unitary groups SU(2)× SU(2). The symmetry revealed by this group is applicable in the procedure of exact diagonalization of the Hubbard Hamiltonian. This result combined with the translational symmetry, given as the basis of wavelets of the appropriate Fourier transforms, provides, besides the energy, additional conserved quantities, which are presented in the case of a half-filled, four sites spin chain. Since we are dealing with four elementary excitations, two quasiparticles called "spinons", which carry spin, and two other called "holon" and "antyholon", which carry charge, the usual spin- SU(2) algebra for spinons and the so called pseudospin-SU(2) algebra for holons and antiholons, provide four additional quantum numbers.

  12. Baryon exchange in dual unitarisation - the f and ω-trajectories

    International Nuclear Information System (INIS)

    Hansson, T.H.

    1978-11-01

    Intercepts and quark content of the f and ω-trajectories are calculated by considering the effects of baryon exchange and SU(3)-breaking within the dual unitarisation scheme. The coupling of the ω-trajectory to external particles is discussed. (author)

  13. Theoretical modelling of dual-wavelength pumped Yb3+–Tm3+ co-doped silica fibre laser

    International Nuclear Information System (INIS)

    Fu, Yuqing; Chen, Jianguo

    2010-01-01

    Numerical simulations have, for the first time to our knowledge, been carried out to characterize the Yb 3+ –Tm 3+ co-doped silica fibre laser (YTFL), defined by a fibre grating and an end mirror, by using the rate equations, which take into consideration both the energy transfer processes from Yb 3+ to Tm 3+ ions and the cross-relaxation processes among different Tm 3+ ions. A dual-wavelength pumping scheme with one at 805 nm and the other at 975 nm is used to pump the YTFL. We have investigated the wavelength-dependent output power of the YTFL, from 1750 to 2200 nm, which takes its maximum output power at ∼ 1800 nm. The effect of the cross-relaxation processes in the Tm 3+ -doped silica fibre laser has been studied. The results indicate that these processes are beneficial to the laser and should be considered in the theoretical modelling. The influence of the Yb 3+ concentration on the characteristics of the YTFL has also been analysed and the results show that Yb 3+ dopants can improve the output power and slope efficiency of the laser

  14. Poincare group, SU(3) and V-A in leptonic decay

    International Nuclear Information System (INIS)

    Boehm, A.

    1975-07-01

    From as few assumptions as possible about the relations between the Poincare group, the particle classifying SU(3) and V-A we derive properties of the K/sub l 3 / and K/sub L 2 / decays. From the assumed relation between SU(3) and the Poincare group and the first class condition it follows that the formfactor ratio Xi of K/sub l 3 / decay is Xi = --0.57, and that a value of Xi = 0 is in disagreement with very general and well accepted theoretical assumptions. Assuming universality of V-A, the Cabibbo suppression is derived from the relations between SU(3) and V-A as a consequence of the brokenness of SU(3). (U.S.)

  15. Neutralino constraints on the flipped SU(5) model

    Energy Technology Data Exchange (ETDEWEB)

    Abel, S.A.; Cottingham, W.N. (Bristol Univ. (UK). H.H. Wills Physics Lab.); Whittingham, I. (James Cook Univ. of North Queensland, Townsville (Australia). Dept. of Physics)

    1990-07-19

    We examine the decay width of Z{yields}neutral invisibles in the supersymmetric flipped SU(5) model. It is found that these processes would give contributions to the Z width leading to the inference of a non-integer number of generations between close to three and {approx equal} 3.5, and we argue that an accurate determination of this quantity could lead to significant restrictions on the allowable parameter space in this model. (orig.).

  16. Time-symmetric universe model and its observational implication

    Energy Technology Data Exchange (ETDEWEB)

    Futamase, T.; Matsuda, T.

    1987-08-01

    A time-symmetric closed-universe model is discussed in terms of the radiation arrow of time. The time symmetry requires the occurrence of advanced waves in the recontracting phase of the Universe. We consider the observational consequences of such advanced waves, and it is shown that a test observer in the expanding phase can observe a time-reversed image of a source of radiation in the future recontracting phase.

  17. A dual-trace model for visual sensory memory.

    Science.gov (United States)

    Cappiello, Marcus; Zhang, Weiwei

    2016-11-01

    Visual sensory memory refers to a transient memory lingering briefly after the stimulus offset. Although previous literature suggests that visual sensory memory is supported by a fine-grained trace for continuous representation and a coarse-grained trace of categorical information, simultaneous separation and assessment of these traces can be difficult without a quantitative model. The present study used a continuous estimation procedure to test a novel mathematical model of the dual-trace hypothesis of visual sensory memory according to which visual sensory memory could be modeled as a mixture of 2 von Mises (2VM) distributions differing in standard deviation. When visual sensory memory and working memory (WM) for colors were distinguished using different experimental manipulations in the first 3 experiments, the 2VM model outperformed Zhang and Luck (2008) standard mixture model (SM) representing a mixture of a single memory trace and random guesses, even though SM outperformed 2VM for WM. Experiment 4 generalized 2VM's advantages of fitting visual sensory memory data over SM from color to orientation. Furthermore, a single trace model and 4 other alternative models were ruled out, suggesting the necessity and sufficiency of dual traces for visual sensory memory. Together these results support the dual-trace model of visual sensory memory and provide a preliminary inquiry into the nature of information loss from visual sensory memory to WM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Magnetic Monopoles and the Dual London Equation in SU(3) Lattice Gauge Theory

    OpenAIRE

    Skala, Peter; Faber, Manfried; Zach, Martin

    1996-01-01

    We propose a method for the determination of magnetic monopole currents in non-Abelian gauge theories which does not need a projection to Abelian degrees of freedom. With this definition we are able to determine the distribution of magnetic currents and electric fields for the gluonic flux tube between a pair of static charges. Further we check the validity of the Gauss law and the dual London equation in a gauge invariant formulation.

  19. Non-trivial self-dual gluon configurations in lattice QCD

    International Nuclear Information System (INIS)

    Bilson-Thompson, S.; Bowman, P.; Bonnet, F.; Leinweber, D.; Williams, A.; Dunne, G.

    2000-01-01

    Full text: We have investigated the smoothing of gauge fields in SU(3) using a variety of cooling algorithms. A topic of particular interest to such investigations is the behaviour of self-dual field configurations over a large number of cooling sweeps. It is well known that cooling based upon the standard Wilson action is affected by excessively large discretisation errors, leading in the long-term to trivial configurations. This has shifted the research emphasis onto improved actions, which are designed to minimise the discretisation errors that arise on the lattice. The cooling schemes we have investigated have been designed to eliminate O(a 2 ) and O(a 4 ) discretization errors producing an action accurate to order O(a 6 ). An analogously defined improved topological charge operator is used to investigate vacuum instanton dynamics. We used these operators to construct self-dual gluon configurations by cooling until the duality condition S/S 0 |Q| (where S 0 is the single instanton action and Q is the topological charge) is reached. As it is expected from theoretical grounds that Q is always an integer, a range of different actions and topological charge operators are assessed to determine which combination produced a result closest to what we would expect in the continuum. As our lattices have (untwisted) periodic boundary conditions we are particularly interested in investigating the relevance of the Nahm transformation to our results. This is a duality transformation which maps a self-dual SU(N) configuration with topological charge Q on the 4-torus to a self-dual SU(Q) configuration with topological charge N on the dual 4-torus. As there are no instanton solutions in SU(1), the Nahm transformation appears to preclude the existence of a |Q| = 1 self-dual solution on the 4-torus. We have investigated this on the lattice by finding |Q| = 1 configurations and assessing the behaviour of the action and the stability of the topological charge as they cool towards

  20. Dual peripheral model up to Serpukhov energies

    CERN Document Server

    Schrempp, Barbara

    1974-01-01

    The high energy behaviour of the s-channel Regge residues is inferred from three plausible requirements. The resulting s-channel helicity amplitudes allow-in a dual sense-the following t-channel interpretation: for -t>or=0.25 GeV/sup 2/ the flip amplitude has the form of a t-channel Regge pole, while the non-flip amplitude looks like a Regge cut. Finally, a quantitative comparison of the predictions with the data available for the set of SU(3) related processes pi N CEX, KN, KN CEX and pi /sup -/p to eta n is performed, covering the energy range 2

  1. Hyperon decays and spectrum generating SU(3)

    International Nuclear Information System (INIS)

    Teese, R.B.; Boehm, A.

    1976-02-01

    The research program described in this review is aimed at describing the properties of relativistic one-hadron systems by an algebra of observables, in analogy to the nonrelativistic description of atoms. This formalism has recently been applied to the leptonic and semi-leptonic decays of pseudoscalar mesons, and was shown to be capable of predicting both the suppression of strangeness changing decays and the value of the form factor ratio xi in K/sub l 3 / decay. A preliminary description of the leptonic decays of hyperons indicates that second class matrix elements are predicted as a consequence of a precise formulation of SU(3) symmetry breaking. A chi 2 -fit to the experimental data indicates that this preliminary model is an improvement over the usual Cabibbo model, and points the way for further theoretical work. It is hoped that this program will lead to a model for the leptonic decays of hadrons which improves upon the results of the Cabibbo model and which explains some of the assumptions of that model

  2. Radiative breaking of the minimal supersymmetric left–right model

    Directory of Open Access Journals (Sweden)

    Nobuchika Okada

    2016-05-01

    Full Text Available We study a variation to the SUSY Left–Right symmetric model based on the gauge group SU(3SU(2L×SU(2R×U(1BL. Beyond the quark and lepton superfields we only introduce a second Higgs bidoublet to produce realistic fermion mass matrices. This model does not include any SU(2R triplets. We calculate renormalization group evolutions of soft SUSY parameters at the one-loop level down to low energy. We find that an SU(2R slepton doublet acquires a negative mass squared at low energies, so that the breaking of SU(2R×U(1BL→U(1Y is realized by a non-zero vacuum expectation value of a right-handed sneutrino. Small neutrino masses are produced through neutrino mixings with gauginos. Mass limits on the SU(2R×U(1BL sector are obtained by direct search results at the LHC as well as lepton-gaugino mixing bounds from the LEP precision data.

  3. GPM GROUND VALIDATION DUAL-FREQUENCY DUAL-POLARIZED DOPPLER RADAR (D3R) IFLOODS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Dual-frequency Dual-polarized Doppler Radar (D3R) IFloodS data set contain radar reflectivity and doppler velocity measurements. The D3R...

  4. UV completions of partial compositeness: the case for a SU(4) gauge group

    International Nuclear Information System (INIS)

    Ferretti, Gabriele

    2014-01-01

    We present a model of partial compositeness arising as the IR limit of a SU(4) gauge theory with only fermionic matter. This group is one of the most promising ones among a handful of possible choices allowing a symmetry breaking pattern incorporating custodial symmetry and a top partner candidate, while retaining asymptotic freedom. It is favored for not giving rise to lepto-quarks or Landau poles in the SM gauge couplings. The minimal UV theory consists of five hyperfermions in the anti-symmetric representation and three in the fundamental and anti-fundamental. The IR theory is centered around the coset SU(5)/SO(5), with top partners in the fundamental of SO(5), giving rise to one composite fermion of electric charge 5/3, three of charge 2/3 and one of charge −1/3. Electro-Weak symmetry breaking occurs via top-quark-driven vacuum misalignment. The top quark mass is generated via the mechanism of partial compositeness, while the remaining fermions acquire a mass via a standard quadratic coupling to the Higgs. We compute the top and bottom quark mass matrix and the Electro-Weak currents of the composite fermions. The model does not give rise to unacceptably large deviations from the SM Z→bb-bar decay width.

  5. SU(3) versus deformed Hartree-Fock state

    International Nuclear Information System (INIS)

    Johnson, Calvin W.; Stetcu, Ionel; Draayer, J.P.

    2002-01-01

    Deformation is fundamental to understanding nuclear structure. We compare two ways to efficiently realize deformation for many-fermion wave functions, the leading SU(3) irreducible representation and the angular-momentum-projected Hartree-Fock state. In the absence of single-particle spin-orbit splitting the two are nearly identical. With realistic forces, however, the difference between the two is nontrivial, with the angular-momentum-projected Hartree-Fock state better approximating an 'exact' wave function calculated in the fully interacting shell model. The difference is driven almost entirely by the single-particle spin-orbit splitting

  6. Modeling the drain current and its equation parameters for lightly doped symmetrical double-gate MOSFETs

    International Nuclear Information System (INIS)

    Bhartia, Mini; Chatterjee, Arun Kumar

    2015-01-01

    A 2D model for the potential distribution in silicon film is derived for a symmetrical double gate MOSFET in weak inversion. This 2D potential distribution model is used to analytically derive an expression for the subthreshold slope and threshold voltage. A drain current model for lightly doped symmetrical DG MOSFETs is then presented by considering weak and strong inversion regions including short channel effects, series source to drain resistance and channel length modulation parameters. These derived models are compared with the simulation results of the SILVACO (Atlas) tool for different channel lengths and silicon film thicknesses. Lastly, the effect of the fixed oxide charge on the drain current model has been studied through simulation. It is observed that the obtained analytical models of symmetrical double gate MOSFETs are in good agreement with the simulated results for a channel length to silicon film thickness ratio greater than or equal to 2. (paper)

  7. Modeling the drain current and its equation parameters for lightly doped symmetrical double-gate MOSFETs

    Science.gov (United States)

    Bhartia, Mini; Chatterjee, Arun Kumar

    2015-04-01

    A 2D model for the potential distribution in silicon film is derived for a symmetrical double gate MOSFET in weak inversion. This 2D potential distribution model is used to analytically derive an expression for the subthreshold slope and threshold voltage. A drain current model for lightly doped symmetrical DG MOSFETs is then presented by considering weak and strong inversion regions including short channel effects, series source to drain resistance and channel length modulation parameters. These derived models are compared with the simulation results of the SILVACO (Atlas) tool for different channel lengths and silicon film thicknesses. Lastly, the effect of the fixed oxide charge on the drain current model has been studied through simulation. It is observed that the obtained analytical models of symmetrical double gate MOSFETs are in good agreement with the simulated results for a channel length to silicon film thickness ratio greater than or equal to 2.

  8. Model with a gauged lepton flavor SU(2) symmetry

    Science.gov (United States)

    Chiang, Cheng-Wei; Tsumura, Koji

    2018-05-01

    We propose a model having a gauged SU(2) symmetry associated with the second and third generations of leptons, dubbed SU(2) μτ , of which U{(1)}_{L_{μ }-L_{τ }} is an Abelian subgroup. In addition to the Standard Model fields, we introduce two types of scalar fields. One exotic scalar field is an SU(2) μτ doublet and SM singlet that develops a nonzero vacuum expectation value at presumably multi-TeV scale to completely break the SU(2) μτ symmetry, rendering three massive gauge bosons. At the same time, the other exotic scalar field, carrying electroweak as well as SU(2) μτ charges, is induced to have a nonzero vacuum expectation value as well and breaks mass degeneracy between the muon and tau. We examine how the new particles in the model contribute to the muon anomalous magnetic moment in the parameter space compliant with the Michel decays of tau.

  9. The Dual Half-Edge—A Topological Primal/Dual Data Structure and Construction Operators for Modelling and Manipulating Cell Complexes

    Directory of Open Access Journals (Sweden)

    Pawel Boguslawski

    2016-02-01

    Full Text Available There is an increasing need for building models that permit interior navigation, e.g., for escape route analysis. This paper presents a non-manifold Computer-Aided Design (CAD data structure, the dual half-edge based on the Poincaré duality that expresses both the geometric representations of individual rooms and their topological relationships. Volumes and faces are expressed as vertices and edges respectively in the dual space, permitting a model just based on the storage of primal and dual vertices and edges. Attributes may be attached to all of these entities permitting, for example, shortest path queries between specified rooms, or to the exterior. Storage costs are shown to be comparable to other non-manifold models, and construction with local Euler-type operators is demonstrated with two large university buildings. This is intended to enhance current developments in 3D Geographic Information Systems for interior and exterior city modelling.

  10. Scale-invariant inclusive spectra in a dual model

    International Nuclear Information System (INIS)

    Chikovani, Z.E.; Jenkovsky, L.L.; Martynov, E.S.

    1979-01-01

    One-particle inclusive distributions at large transverse momentum phisub(tr) are shown to scale, Edσ/d 3 phi approximately phisub(tr)sup(-N)(1-Xsub(tr))sup(1+N/2)lnphisub(tr), in a dual model with Mandelstam analyticity if the Regge trajectories are logarithmic asymptotically

  11. Charge distribution in an two-chain dual model

    International Nuclear Information System (INIS)

    Fialkowski, K.; Kotanski, A.

    1983-01-01

    Charge distributions in the multiple production processes are analysed using the dual chain model. A parametrisation of charge distributions for single dual chains based on the νp and anti vp data is proposed. The rapidity charge distributions are then calculated for pp and anti pp collisions and compared with the previous calculations based on the recursive cascade model of single chains. The results differ at the SPS collider energies and in the energy dependence of the net forward charge supplying the useful tests of the dual chain model. (orig.)

  12. Time-invariant PT product and phase locking in PT -symmetric lattice models

    Science.gov (United States)

    Joglekar, Yogesh N.; Onanga, Franck Assogba; Harter, Andrew K.

    2018-01-01

    Over the past decade, non-Hermitian, PT -symmetric Hamiltonians have been investigated as candidates for both a fundamental, unitary, quantum theory and open systems with a nonunitary time evolution. In this paper, we investigate the implications of the former approach in the context of the latter. Motivated by the invariance of the PT (inner) product under time evolution, we discuss the dynamics of wave-function phases in a wide range of PT -symmetric lattice models. In particular, we numerically show that, starting with a random initial state, a universal, gain-site location dependent locking between wave-function phases at adjacent sites occurs in the PT -symmetry-broken region. Our results pave the way towards understanding the physically observable implications of time invariants in the nonunitary dynamics produced by PT -symmetric Hamiltonians.

  13. On some properties of SU(3 fusion coefficients

    Directory of Open Access Journals (Sweden)

    Robert Coquereaux

    2016-11-01

    Full Text Available Three aspects of the SU(3 fusion coefficients are revisited: the generating polynomials of fusion coefficients are written explicitly; some curious identities generalizing the classical Freudenthal–de Vries formula are derived; and the properties of the fusion coefficients under conjugation of one of the factors, previously analyzed in the classical case, are extended to the affine algebra suˆ(3 at finite level.

  14. Spherically symmetric models with pressure: separating expansion from contraction and generalizing TOV condition

    CERN Document Server

    Mimoso, José Pedro; Mena, Filipe C

    2010-01-01

    We investigate spherically symmetric perfect fluid spacetimes and discuss the existence and stability of a dividing shell separating expanding and collapsing regions. We perform a 3+1 splitting and obtain gauge invariant conditions relating the intrinsic spatial curvature of the shells to the ADM mass and to a function of the pressure which we introduce and that generalises the Tolman-Oppenheimer-Volkoff equilibrium condition. We analyse the particular cases of the Lema\\^itre-Tolman-Bondi dust models with a cosmological constant as an example of a $\\Lambda$-CDM model and its generalization to contain a central perfect fluid core. These models provide simple, but physically interesting illustrations of our results.

  15. Compatibility between dental adhesive systems and dual-polymerizing composite resins.

    Science.gov (United States)

    Michaud, Pierre-Luc; MacKenzie, Alexandra

    2016-10-01

    Information is lacking about incompatibilities between certain types of adhesive systems and dual-polymerizing composite resins, and universal adhesives have yet to be tested with these resins. The purpose of this in vitro study was to investigate the bonding outcome of dual-polymerizing foundation composite resins by using different categories of adhesive solutions and to determine whether incompatibilities were present. One hundred and eighty caries-free, extracted third molar teeth were allocated to 9 groups (n=20), in which 3 different bonding agents (Single Bond Plus [SB]), Scotchbond Multi-purpose [MP], and Scotchbond Universal [SU]) were used to bond 3 different composite resins (CompCore AF [CC], Core Paste XP [CP], and Filtek Supreme Ultra [FS]). After restorations had been fabricated using an Ultradent device, the specimens were stored in water at 37°C for 24 hours. The specimens were tested under shear force at a rate of 0.5 mm/min. The data were analyzed with Kruskal-Wallis tests and post hoc pairwise comparisons (α=.05). All 3 composite resins produced comparable shear bond strengths when used with MP (P=.076). However, when either SB or SU was used, the light-polymerized composite resin (FS) and 1 dual-polymerized foundation composite resin (CC) bonded significantly better than the other dual-polymerized foundation composite resin (CP) (Pincompatibilities exist between different products. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. Flipped SU(5)xU(1){sub X} models from F-theory

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jing [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Li Tianjun, E-mail: tjli@physics.rutgers.ed [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States); Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Nanopoulos, Dimitri V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States); Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States); Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece); Xie Dan [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)

    2010-05-01

    We systematically construct flipped SU(5)xU(1){sub X} models without and with bulk vector-like particles from F-theory. To realize the decoupling scenario, we introduce sets of vector-like particles in complete SU(5)xU(1) multiplets at the TeV scale, or at the intermediate scale, or at the TeV scale and high scale. To avoid the Landau pole problem for the gauge couplings, we can only introduce five sets of vector-like particles around the TeV scale. These vector-like particles can couple to the Standard Model singlet fields, and obtain suitable masses by Higgs mechanism. We study gauge coupling unification in detail. We show that the U(1){sub X} flux contributions to the gauge couplings preserve the SU(5)xU(1){sub X} gauge coupling unification. We calculate the SU(3){sub C}xSU(2){sub L} unification scales, and the SU(5)xU(1){sub X} unification scales and unified couplings. In most of our models, the high-scale or bulk vector-like particles can be considered as string-scale threshold corrections since their masses are close to the string scale. Furthermore, we discuss the phenomenological consequences of our models. In particular, in the models with TeV-scale vector-like particles, the vector-like particles can be observed at the Large Hadron Collider, the proton decay is within the reach of the future Hyper-Kamiokande experiment, the lightest CP-even Higgs boson mass can be increased, the hybrid inflation can be naturally realized, and the correct cosmic primordial density fluctuations can be generated.

  17. Dual superconductor models of color confinement

    CERN Document Server

    Ripka, Georges

    2004-01-01

    The lectures, delivered at ECT (European Centre for Theoretical Studies in Nuclear Physics and Related Areas) in Trento (Italy) in 2002 and 2003, are addressed to physicists who wish to acquire a minimal background to understand present day attempts to model the confinement of quantum chromo-dynamics (QCD) in terms of dual superconductors. The lectures focus more on the models than on attempts to derive them from QCD. They discuss the Dirac theory of magnetic monopoles, the world sheet swept out by Dirac strings, deformations of Dirac strings and charge quantization, gauge fields associated to the field tensor and to the dual field tensor, the Landau-Ginzburg (Abelian Higgs) model of a dual superconductor, the flux tube joining two equal and opposite color-electric charges, the Abrikosov-Nielsen-Olesen vortex, the divergencies of the London limit, the comparison of the calculated flux tube and string tension with lattice data, duality transformations and the use of Kalb-Ramond fields, the two-potential Zwanzi...

  18. SU-G-IeP2-15: Virtual Insertion of Digital Kidney Stones Into Dual-Source, Dual- Energy CT Projection Data

    International Nuclear Information System (INIS)

    Ferrero, A; Chen, B; Huang, A; Montoya, J; Yu, L; McCollough, C

    2016-01-01

    Purpose: In order to investigate novel methods to more accurately estimate the mineral composition of kidney stones using dual energy CT, it is desirable to be able to combine digital stones of known composition with actual phantom and patient scan data. In this work, we developed and validated a method to insert digital kidney stones into projection data acquired on a dual-source, dual-energy CT system. Methods: Attenuation properties of stones of different mineral composition were computed using tabulated mass attenuation coefficients, the chemical formula for each stone type, and the effective beam energy at each evaluated tube potential. A previously developed method to insert lesions into x-ray CT projection data was extended to include simultaneous dual-energy CT projections acquired on a dual-source gantry (Siemens Somatom Flash). Digital stones were forward projected onto both detectors and the resulting projections added to the physically acquired sinogram data. To validate the accuracy of the technique, digital stones were inserted into different locations in the ACR CT accreditation phantom; low and high contrast resolution, CT number accuracy and noise properties were compared before and after stone insertion. The procedure was repeated for two dual-energy tube potential pairs in clinical use on the scanner, 80/Sn140 kV and 100/Sn140 kV, respectively. Results: The images reconstructed after the insertion of digital kidney stones were consistent with the images reconstructed from the scanner. The largest average CT number difference for the 4 insert in the CT number accuracy module of the phantom was 3 HU. Conclusion: A framework was developed and validated for the creation of digital kidney stones of known mineral composition, and their projection-domain insertion into commercial dual-source, dual-energy CT projection data. This will allow a systematic investigation of the impact of scan and reconstruction parameters on stone attenuation and dual

  19. M-estimator for the 3D symmetric Helmert coordinate transformation

    Science.gov (United States)

    Chang, Guobin; Xu, Tianhe; Wang, Qianxin

    2018-01-01

    The M-estimator for the 3D symmetric Helmert coordinate transformation problem is developed. Small-angle rotation assumption is abandoned. The direction cosine matrix or the quaternion is used to represent the rotation. The 3 × 1 multiplicative error vector is defined to represent the rotation estimation error. An analytical solution can be employed to provide the initial approximate for iteration, if the outliers are not large. The iteration is carried out using the iterative reweighted least-squares scheme. In each iteration after the first one, the measurement equation is linearized using the available parameter estimates, the reweighting matrix is constructed using the residuals obtained in the previous iteration, and then the parameter estimates with their variance-covariance matrix are calculated. The influence functions of a single pseudo-measurement on the least-squares estimator and on the M-estimator are derived to theoretically show the robustness. In the solution process, the parameter is rescaled in order to improve the numerical stability. Monte Carlo experiments are conducted to check the developed method. Different cases to investigate whether the assumed stochastic model is correct are considered. The results with the simulated data slightly deviating from the true model are used to show the developed method's statistical efficacy at the assumed stochastic model, its robustness against the deviations from the assumed stochastic model, and the validity of the estimated variance-covariance matrix no matter whether the assumed stochastic model is correct or not.

  20. Complex quantum group, dual algebra and bicovariant differential calculus

    International Nuclear Information System (INIS)

    Carow-Watamura, U.; Watamura, Satoshi

    1993-01-01

    The method used to construct the bicovariant bimodule in ref. [CSWW] is applied to examine the structure of the dual algebra and the bicovariant differential calculus of the complex quantum group. The complex quantum group Fun q (SL(N, C)) is defined by requiring that it contains Fun q (SU(N)) as a subalgebra analogously to the quantum Lorentz group. Analyzing the properties of the fundamental bimodule, we show that the dual algebra has the structure of the twisted product Fun q (SU(N))x tilde Fun q (SU(N)) reg *. Then the bicovariant differential calculi on the complex quantum group are constructed. (orig.)

  1. Dual computations of non-Abelian Yang-Mills theories on the lattice

    International Nuclear Information System (INIS)

    Cherrington, J. Wade; Khavkine, Igor; Christensen, J. Daniel

    2007-01-01

    In the past several decades there have been a number of proposals for computing with dual forms of non-Abelian Yang-Mills theories on the lattice. Motivated by the gauge-invariant, geometric picture offered by dual models and successful applications of duality in the U(1) case, we revisit the question of whether it is practical to perform numerical computation using non-Abelian dual models. Specifically, we consider three-dimensional SU(2) pure Yang-Mills as an accessible yet nontrivial case in which the gauge group is non-Abelian. Using methods developed recently in the context of spin foam quantum gravity, we derive an algorithm for efficiently computing the dual amplitude and describe Metropolis moves for sampling the dual ensemble. We relate our algorithms to prior work in non-Abelian dual computations of Hari Dass and his collaborators, addressing several problems that have been left open. We report results of spin expectation value computations over a range of lattice sizes and couplings that are in agreement with our conventional lattice computations. We conclude with an outlook on further development of dual methods and their application to problems of current interest

  2. Resource Symmetric Dispatch Model for Internet of Things on Advanced Logistics

    Directory of Open Access Journals (Sweden)

    Guofeng Qin

    2016-04-01

    Full Text Available Business applications in advanced logistics service are highly concurrent. In this paper, we propose a resource symmetric dispatch model for the concurrent and cooperative tasks of the Internet of Things. In the model, the terminals receive and deliver commands, data, and information with mobile networks, wireless networks, and sensor networks. The data and information are classified and processed by the clustering servers in the cloud service platform. The cluster service, resource dispatch, and load balance are cooperative for management and monitoring of every application case during the logistics service lifecycle. In order to support the high performance of cloud service, resource symmetric dispatch algorithm among clustering servers and load balancing method among multi-cores in one server, including NIO (Non-blocking Input/Output and RMI (Remote Method Invocation are utilized to dispatch the cooperation of computation and service resources.

  3. Naturally light Dirac neutrino in Left-Right Symmetric Model

    Energy Technology Data Exchange (ETDEWEB)

    Borah, Debasish [Department of Physics, Indian Institute of Technology Guwahati, Assam-781039 (India); Dasgupta, Arnab, E-mail: dborah@iitg.ernet.in, E-mail: arnab.d@iopb.res.in [Institute of Physics, HBNI, Sachivalaya Marg, Bhubaneshwar-751005 (India)

    2017-06-01

    We study the possibility of generating tiny Dirac masses of neutrinos in Left-Right Symmetric Model (LRSM) without requiring the existence of any additional symmetries. The charged fermions acquire masses through a universal seesaw mechanism due to the presence of additional vector like fermions. The neutrinos acquire a one-loop Dirac mass from the same additional vector like charged leptons without requiring any additional discrete symmetries. The model can also be extended by an additional Z {sub 2} symmetry in order to have a scotogenic version of this scenario predicting a stable dark matter candidate. We show that the latest Planck upper bound on the effective number of relativistic degrees of freedom N {sub eff}=3.15 ± 0.23 tightly constrains the right sector gauge boson masses to be heavier than 3.548 TeV . This bound on gauge boson mass also affects the allowed values of right scalar doublet dark matter mass from the requirement of satisfying the Planck bound on dark matter relic abundance. We also discuss the possible implications of such a scenario in charged lepton flavour violation and generating observable electric dipole moment of leptons.

  4. Modelling of parameters for asymmetric halo and symmetric DHDMG n-MOSFETs

    Science.gov (United States)

    De, Swapnadip; Sarkar, Angsuman; Sarkar, Chandan Kumar

    2011-10-01

    This article presents an analytical surface potential, threshold voltage and drain current model for asymmetric pocket-implanted, single-halo dual material gate and double-halo dual material gate (DHDMG) n-MOSFET (MOSFET, metal-oxide-semiconductor field-effect transistor) operating up to 40 nm regime. The model is derived by applying Gauss's law to a rectangular box, covering the entire depletion region. The asymmetric pocket-implanted model takes into account the effective doping concentration of the two linear pocket profiles at the source and the drain ends along with the inner fringing capacitances at both the source and the drain ends and the subthreshold drain and the substrate bias effect. Using the surface potential model, the threshold voltage and drain currents are estimated. The same model is used to find the characteristic parameters for dual-material gate (DMG) with halo implantations and double gate. The characteristic improvement is investigated. It is concluded that the DHDMG device structure exhibits better suppression of the short-channel effect (SCE) and the threshold voltage roll-off than DMG and double-gate MOSFET. The adequacy of the model is verified by comparing with two-dimensional device simulator DESSIS. A very good agreement of our model with DESSIS is obtained proving the validity of our model used in suppressing the SCEs.

  5. Dual Numbers Approach in Multiaxis Machines Error Modeling

    Directory of Open Access Journals (Sweden)

    Jaroslav Hrdina

    2014-01-01

    Full Text Available Multiaxis machines error modeling is set in the context of modern differential geometry and linear algebra. We apply special classes of matrices over dual numbers and propose a generalization of such concept by means of general Weil algebras. We show that the classification of the geometric errors follows directly from the algebraic properties of the matrices over dual numbers and thus the calculus over the dual numbers is the proper tool for the methodology of multiaxis machines error modeling.

  6. SIMPLE MODELS OF THREE COUPLED PT -SYMMETRIC WAVE GUIDES ALLOWING FOR THIRD-ORDER EXCEPTIONAL POINTS

    Directory of Open Access Journals (Sweden)

    Jan Schnabel

    2017-12-01

    Full Text Available We study theoretical models of three coupled wave guides with a PT-symmetric distribution of gain and loss. A realistic matrix model is developed in terms of a three-mode expansion. By comparing with a previously postulated matrix model it is shown how parameter ranges with good prospects of finding a third-order exceptional point (EP3 in an experimentally feasible arrangement of semiconductors can be determined. In addition it is demonstrated that continuous distributions of exceptional points, which render the discovery of the EP3 difficult, are not only a feature of extended wave guides but appear also in an idealised model of infinitely thin guides shaped by delta functions.

  7. Dual resonance models and their currents

    International Nuclear Information System (INIS)

    Johnson, E.A.

    1978-01-01

    It is shown how dual resonance models were rederived from the concept of a string tracing out a surface in space-time. Thus, interacting strings reproduce the dual amplitudes. A scheme for tackling the unitarity problem began to develop. As a consistent theory of hadronic processes began to be built, workers at the same time were naturally led to expect that leptons could be included with hadrons in a unified dual theory. Thus, there is a search for dual amplitudes which would describe interactions between hadrons and currents (for example, electrons), as well as interactions involving only hadrons. Such amplitudes, it is believed, will be the correct ones, describing the real world. Such amplitudes will provide valuable information concerning such things as hadronic form factors. The great difficulties in building current-amplitudes with the required properties of proper factorization on a good spectrum, duality, current algebra, and proper asymptotic behavior are described. Dual models at the present time require for consistency, an intercept value of α 0 = 1 and a dimension value of d = 26 (or d = 10). There have been speculations that the unphysical dimension may be made physical by associating the ''extra dimensions'' with certain internal degrees of freedom. However, it is desired that the theory itself, force the dimension d = 4. It is quite possible that the dimension problem and the intercept problem are tied together and that resolving either problem will resolve the other. Order by order, a new dual current is constructed that is manifestly factorizable and which appears to be valid for arbitrary space-time dimension. The fact that this current is not bound at d = 26, leads to interesting speculations on the nature of dual currents

  8. Particular transcendent solution of the Ernst system generalized on n fields

    International Nuclear Information System (INIS)

    Leaute, B.; Marcilhacy, G.

    1986-01-01

    A particular solution, a function of a particular form of the fifth Painleve transcendent, of the Ernst system generalized to n fields is determined, which characterizes both the stationary axially symmetric fields, the solution of the Einstein (n-1) Maxwell equations, and one class of axially symmetric static self-dual SU(n+1) Yang--Mills fields

  9. Is neutralino dark matter compatible with flipped SU(5) models

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J.

    1989-07-13

    We consider the possibility that the lightest supersymmetric particle in flipped SUSY SU(5)xU(1) models is cosmologically stable and corresponds to a neutralino. Previous studies of dark matter in flipped SUSY SU(5) models have suggested that the decay of the oscillations of the SU(5) breaking scalar field would result in too many neutralinos, if they are stable. We show that it is possible for an acceptable density of neutralinos to occur in the case where the neutralino corresponds to a light photino, if the temperature at the end of the oscillation dominated period is SU(5) models. Direct detection of dark matter in forthcoming experiments will therefore not eliminate this class of models. (orig.).

  10. N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals

    International Nuclear Information System (INIS)

    Aharony, Ofer; Bergman, Oren; Maldacena, Juan; Jafferis, Daniel Louis

    2008-01-01

    We construct three dimensional Chern-Simons-matter theories with gauge groups U(N) x U(N) and SU(N) x SU(N) which have explicit N = 6 superconformal symmetry. Using brane constructions we argue that the U(N) x U(N) theory at level k describes the low energy limit of N M2-branes probing a C 4 /Z k singularity. At large N the theory is then dual to M-theory on AdS 4 x S 7 /Z k . The theory also has a 't Hooft limit (of large N with a fixed ratio N/k) which is dual to type IIA string theory on AdS 4 x CP 3 . For k = 1 the theory is conjectured to describe N M2-branes in flat space, although our construction realizes explicitly only six of the eight supersymmetries. We give some evidence for this conjecture, which is similar to the evidence for mirror symmetry in d = 3 gauge theories. When the gauge group is SU(2) x SU(2) our theory has extra symmetries and becomes identical to the Bagger-Lambert theory.

  11. Phosphorylation of SU(VAR3-9 by the chromosomal kinase JIL-1.

    Directory of Open Access Journals (Sweden)

    Joern Boeke

    2010-04-01

    Full Text Available The histone methyltransferase SU(VAR3-9 plays an important role in the formation of heterochromatin within the eukaryotic nucleus. Several studies have shown that the formation of condensed chromatin is highly regulated during development, suggesting that SU(VAR3-9's activity is regulated as well. However, no mechanism by which this may be achieved has been reported so far. As we and others had shown previously that the N-terminus of SU(VAR3-9 plays an important role for its activity, we purified interaction partners from Drosophila embryo nuclear extract using as bait a GST fusion protein containing the SU(VAR3-9 N-terminus. Among several other proteins known to bind Su(VAR3-9 we isolated the chromosomal kinase JIL-1 as a strong interactor. We show that SU(VAR3-9 is a substrate for JIL-1 in vitro as well as in vivo and map the site of phosphorylation. These findings may provide a molecular explanation for the observed genetic interaction between SU(VAR3-9 and JIL-1.

  12. Gauge fixing conditions for the SU(3) gauge theory

    International Nuclear Information System (INIS)

    Ragiadakos, Ch.; Viswanathan, K.S.

    1979-01-01

    SU(3) gauge theory is quantized in the temporal gauge A 0 =0. Gauge fixing conditions are imposed completely on the electric field components, conjugate to the vector potential Ssub(i) that belongs to the subalgebra SO(3) of SU(3). The generating functional in terms of the independent variables is derived. It is ghost-free and may be regarded as a theory of (non-relativistic) spin-0, 1, 2, and 3 fields. (Auth.)

  13. Isomorphism and the #betta#-function of the non-linear sigma model in symmetric spaces

    International Nuclear Information System (INIS)

    Hikami, S.

    1983-01-01

    The renormalization group #betta#-function of the non-linear sigma model in symmetric spaces is discussed via the isomorphic relation and the reciprocal relation about a parameter α. The four-loop term is investigated and the symmetric properties of the #betta#-function are studied. The four-loop term in the #betta#-function is shown to be vanishing for the orthogonal Anderson localization problem. (orig.)

  14. All-optical symmetric ternary logic gate

    Science.gov (United States)

    Chattopadhyay, Tanay

    2010-09-01

    Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.

  15. A time-symmetric Universe model and its observational implication

    International Nuclear Information System (INIS)

    Futamase, T.; Matsuda, T.

    1987-01-01

    A time-symmetric closed-universe model is discussed in terms of the radiation arrow of time. The time symmetry requires the occurrence of advanced waves in the recontracting phase of the Universe. The observational consequences of such advanced waves are considered, and it is shown that a test observer in the expanding phase can observe a time-reversed image of a source of radiation in the future recontracting phase

  16. Two-photon anisotropy: Analytical description and molecular modeling for symmetrical and asymmetrical organic dyes

    International Nuclear Information System (INIS)

    Fu Jie; Przhonska, Olga V.; Padilha, Lazaro A.; Hagan, David J.; Van Stryland, Eric W.; Belfield, Kevin D.; Bondar, Mikhail V.; Slominsky, Yuriy L.; Kachkovski, Alexei D.

    2006-01-01

    One- and two-photon anisotropy spectra of a series of symmetrical and asymmetrical polymethine (PD) and fluorene molecules were measured experimentally and discussed theoretically within the framework of three-state and four-state models. For all the molecules discussed in this paper, the experimental two-photon anisotropy values, r 2PA , lie in the relatively narrow range from 0.47 to 0.57 and remain almost independent of wavelength over at least two electronic transitions. This is in contrast with their one-photon anisotropy, which shows strong wavelength dependence, typically varying from ∼0 to 0.38 over the same transitions. A detailed analysis of the two-photon absorption (2PA) processes allows us to conclude that a three-state model can explain the 2PA anisotropy spectra of most asymmetrical PDs and fluorenes. However, this model is inadequate for all the symmetrical molecules. Experimental values of r 2PA for symmetrical polymethines and fluorenes can be explained by symmetry breaking leading to the deviation of the orientation of the participating transition dipole moments from their 'classical' orientations

  17. N = (2,0) self-dual non-Abelian tensor multiplet in D = 3 + 3 generates N = (1,1) self-dual systems in D = 2 + 2

    Science.gov (United States)

    Nishino, Hitoshi; Rajpoot, Subhash

    2018-03-01

    We formulate an N = (2 , 0) system in D = 3 + 3 dimensions consisting of a Yang-Mills (YM)-multiplet (ˆ μ ˆ IA, λˆI), a self-dual non-Abelian tensor multiplet (ˆ μ ˆ ν ˆ IB, χˆI ,φˆI), and an extra vector multiplet (C ˆ μ ˆ IC, ρˆI). We next perform the dimensional reductions of this system into D = 2 + 2, and obtain N = (1 , 1) systems with a self-dual YM-multiplet (AIμ ,λI), a self-dual tensor multiplet (BIμν , χI , φI), and an extra vector multiplet (CIμ , ρI). In D = 2 + 2, we reach two distinct theories: 'Theory-I' and 'Theory-II'. The former has the self-dual field-strength Hμν(+)I of CIμ already presented in our recent paper, while the latter has anti-self-dual field strength Hμν(-)I. As an application, we show that Theory-II actually generates supersymmetric-KdV equations in D = 1 + 1. Our result leads to a new conclusion that the D = 3 + 3 theory with non-Abelian tensor multiplet can be a 'Grand Master Theory' for self-dual multiplet and self-dual YM-multiplet in D = 2 + 2, that in turn has been conjectured to be the 'Master Theory' for all supersymmetric integrable theories in D ≤ 3.

  18. Flipped SU(5) times U(1) in superconformal models

    Energy Technology Data Exchange (ETDEWEB)

    Bailin, D.; Katechou, E.K. (Sussex Univ., Brighton (United Kingdom). School of Mathematical and Physical Sciences); Love, A. (London Univ. (United Kingdom))

    1992-01-10

    This paper reports that flipped SU(5) {times} U(1) models are constructed in the framework of tensoring of N = 2 superconformal minimal models quotiented by discrete symmetries. Spontaneous breaking of flipped SU(5) {times} U(1) and extra U(1) factors in the gauge group along F-flat directions of the effective potential is studied.

  19. Dual processing model of medical decision-making

    OpenAIRE

    Djulbegovic, Benjamin; Hozo, Iztok; Beckstead, Jason; Tsalatsanis, Athanasios; Pauker, Stephen G

    2012-01-01

    Abstract Background Dual processing theory of human cognition postulates that reasoning and decision-making can be described as a function of both an intuitive, experiential, affective system (system I) and/or an analytical, deliberative (system II) processing system. To date no formal descriptive model of medical decision-making based on dual processing theory has been developed. Here we postulate such a model and apply it to a common clinical situation: whether treatment should be administe...

  20. Colour magnetic currents and the dual London equation in SU(3) lattice gauge theory

    International Nuclear Information System (INIS)

    Skala, P.; Faber, M.; Zach, M.

    1997-01-01

    We propose a method for the determination of magnetic currents in non-Abelian gauge theories which does not need a projection to Abelian degrees of freedom. With this definition we are able to determine the distribution of magnetic currents and electric fields for the gluonic flux tube between a pair of static charges. Further we check the validity of the Gauss law and the dual London equation in a gauge-invariant formulation. (orig.)

  1. Plane symmetric cosmological model with thick domain walls in Brans-Dicke theory of gravitation

    International Nuclear Information System (INIS)

    Pawar, D.; Bayaskar, S.; Patil, V.

    2009-01-01

    We have investigated plane symmetric cosmological model in presence of thick domain walls in Brans-Dicke theory of gravitation, some geometrical and physical behavior of the model are discussed. (authors)

  2. Neutrino masses and leptogenesis in left-right symmetric models: a review from a model building perspective

    Science.gov (United States)

    Hati, Chandan; Patra, Sudhanwa; Pritimita, Prativa; Sarkar, Utpal

    2018-03-01

    In this review, we present several variants of left-right symmetric models in the context of neutrino masses and leptogenesis. In particular, we discuss various low scale seesaw mechanisms like linear seesaw, inverse seesaw, extended seesaw and their implications to lepton number violating process like neutrinoless double beta decay. We also visit an alternative framework of left-right models with the inclusion of vector-like fermions to analyze the aspects of universal seesaw. The symmetry breaking of left-right symmetric model around few TeV scale predicts the existence of massive right-handed gauge bosons W_R and Z_R which might be detected at the LHC in near future. If such signals are detected at the LHC that can have severe implications for leptogenesis, a mechanism to explain the observed baryon asymmetry of the Universe. We review the implications of TeV scale left-right symmetry breaking for leptogenesis.

  3. Analytical prediction model for non-symmetric fatigue crack growth in Fibre Metal Laminates

    NARCIS (Netherlands)

    Wang, W.; Rans, C.D.; Benedictus, R.

    2017-01-01

    This paper proposes an analytical model for predicting the non-symmetric crack growth and accompanying delamination growth in FMLs. The general approach of this model applies Linear Elastic Fracture Mechanics, the principle of superposition, and displacement compatibility based on the

  4. Modular invariants for affine SU(3) theories at prime heights

    International Nuclear Information System (INIS)

    Ruelle, P.; Thiran, E.; Weyers, J.

    1990-01-01

    A proof is given for the existence of two and only two modular invariant partition functions in affine SU(3) k theories at heights n=k+3 which are prime numbers. Arithmetic properties of the ring of algabraic integers Z(ω) which is related to SU(3) weights are extensively used. (orig.)

  5. Triplet leptogenesis in left–right symmetric seesaw models

    International Nuclear Information System (INIS)

    Hällgren, Tomas; Konstandin, Thomas; Ohlsson, Tommy

    2008-01-01

    We discuss scalar triplet leptogenesis in a specific left–right symmetric seesaw model. We show that the Majorana phases that are present in the model can be effectively used to saturate the existing upper limit on the CP-asymmetry of the triplets. We solve the relevant Boltzmann equations and analyze the viability of triplet leptogenesis. It is known for this kind of scenario that the efficiency of leptogenesis is maximal if there exists a hierarchy between the branching ratios of the triplet decays into leptons and Higgs particles. We show that triplet leptogenesis typically favors branching ratios with not too strong hierarchies, since maximal efficiency can only be obtained at the expense of suppressed CP-asymmetries

  6. New Bessel-type function associated with SU(3) representation

    International Nuclear Information System (INIS)

    Tanimura, N.; Tanimura, O.

    1990-01-01

    A new set of functions that are given by the coefficients of the character expansion of the single-link action in the SU(3) lattice-gauge theory is studied. The function is specified by the indices λ and μ of the SU(3) representation of the Young tableau. From the Schwinger-Dyson variational method the recursion relations among the functions are derived. By combining the recursion relation and the relation of the differentiation, the linear differential equation of the sixth order for the function is derived. The properties of the function are discussed in detail in comparison with the functions in the SU(2) group

  7. Heterotic free fermionic and symmetric toroidal orbifold models

    Energy Technology Data Exchange (ETDEWEB)

    Athanasopoulos, P.; Faraggi, A.E. [Department of Mathematical Sciences, University of Liverpool,Liverpool L69 7ZL (United Kingdom); Nibbelink, S. Groot [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München,80333 München (Germany); Mehta, V.M. [Institute for Theoretical Physics, University of Heidelberg,69120 Heidelberg (Germany)

    2016-04-07

    Free fermionic models and symmetric heterotic toroidal orbifolds both constitute exact backgrounds that can be used effectively for phenomenological explorations within string theory. Even though it is widely believed that for ℤ{sub 2}×ℤ{sub 2} orbifolds the two descriptions should be equivalent, a detailed dictionary between both formulations is still lacking. This paper aims to fill this gap: we give a detailed account of how the input data of both descriptions can be related to each other. In particular, we show that the generalized GSO phases of the free fermionic model correspond to generalized torsion phases used in orbifold model building. We illustrate our translation methods by providing free fermionic realizations for all ℤ{sub 2}×ℤ{sub 2} orbifold geometries in six dimensions.

  8. Holographic duals of 3d S-fold CFTs

    Science.gov (United States)

    Assel, Benjamin; Tomasiello, Alessandro

    2018-06-01

    We construct non-geometric AdS4 solutions of IIB string theory where the fields in overlapping patches are glued by elements of the S-duality group. We obtain them by suitable quotients of compact and non-compact geometric solutions. The quotient procedure suggests CFT duals as quiver theories with links involving the so-called T [U( N)] theory. We test the validity of the non-geometric solutions (and of our proposed holographic duality) by computing the three-sphere partition function Z of the CFTs. A first class of solutions is obtained by an S-duality quotient of Janus-type non-compact solutions and is dual to 3d N=4 SCFTs; for these we manage to compute Z of the dual CFT at finite N, and it agrees perfectly with the supergravity result in the large N limit. A second class has five-branes, it is obtained by a Möbius-like S-quotient of ordinary compact solutions and is dual to 3d N=3 SCFTs. For these, Z agrees with the supergravity result if one chooses the limit carefully so that the effect of the fivebranes does not backreact on the entire geometry. Other limits suggest the existence of IIA duals.

  9. SU-G-206-07: Dual-Energy CT Inter- and Intra-Scanner Variability Within One Make and Model

    International Nuclear Information System (INIS)

    Jacobsen, M; Wood, C; Cody, D

    2016-01-01

    Purpose: It can be logistically quite difficult to scan patients on the same exact device for their repeat visits in multi-scanner facilities. The reliability between dual-energy CT scanners’ quantitative results is not known, nor is their individual repeatability. Therefore, we evaluated inter- and intra-scanner variability with respect to several key clinical quantitative metrics specific to dual-energy CT. Methods: Eleven identical GE HD-750 CT scanners in a busy clinical environment were used to perform dual-energy (DE) CT scans of a large elliptical quality control (QC) phantom (Gammex, Inc.; Middleton, WI) which contains many standard insert materials. The DE-QC phantom was scanned bi-weekly during 2016; 3 to 4 scans were obtained from each scanner (a total of 35 data sets were used for analysis). Iodine accuracy for the 2mg/ml, 5mg/ml and 15mg/ml rods (from the Iodine(Water) image set) and soft tissue HU (40 HU based on NIST constants) from the 50keV data set were used to assess inter- and intra-scanner variability (standard deviation). Results: Intra-scanner variability average for 2mg/ml Iodine was 0.10 mg/ml (range 0.05–0.15 mg/ml), for 5mg/ml Iodine was 0.12 mg/ml (range 0.07–0.16 mg/ml), for 15 mg/ml Iodine was 0.25 mg/ml (range 0.16–0.37 mg/ml), and for the soft tissue inserts was 2.1 HU (range 1.8–2.6 HU). Inter-scanner variability average for 2mg/ml Iodine was 0.16 mg/ml (range 0.11–0.19 mg/ml), for 5mg/ml Iodine was 0.18 mg/ml (range 0.11–0.22 mg/ml), for 15 mg/ml Iodine was 0.35 mg/ml (range 0.23–0.44 mg/ml), and for the soft tissue inserts was 3.8 HU (range 3.1–4.5 HU). Conclusion: Intra-scanner variability for the iodine and soft tissue inserts averaged 3.1% and 5.2% respectively, and inter-scanner variability for these regions analyzed averaged 5.0% and 9.5%, respectively. Future work will include determination of smallest measurable change and acceptable limits for DE-CT scanner variability over longer time intervals. This

  10. Finite size giant magnons in the SU(2) x SU(2) sector of AdS4 x CP3

    International Nuclear Information System (INIS)

    Lukowski, Tomasz; Sax, Olof Ohlsson

    2008-01-01

    We use the algebraic curve and Luescher's μ-term to calculate the leading order finite size corrections to the dispersion relation of giant magnons in the SU(2) x SU(2) sector of AdS 4 x CP 3 . We consider a single magnon as well as one magnon in each SU(2). In addition the algebraic curve computation is generalized to give the leading order correction for an arbitrary multi-magnon state in the SU(2) x SU(2) sector.

  11. Screening masses in the SU(3) pure gauge theory and universality

    International Nuclear Information System (INIS)

    Falcone, R.; Fiore, R.; Gravina, M.; Papa, A.

    2007-01-01

    We determine from Polyakov loop correlators the screening masses in the deconfined phase of the (3+1)d SU(3) pure gauge theory at finite temperature near the transition, for two different channels of angular momentum and parity. Their ratio is compared with that of the massive excitations with the same quantum numbers in the 3d 3-state Potts model in the broken phase near the transition point at zero magnetic field. Moreover we study the inverse decay length of the correlation between the real parts and between the imaginary parts of the Polyakov loop and compare the results with expectations from perturbation theory and mean-field Polyakov loop models

  12. SU(3) techniques for angular momentum projected matrix elements in multi-cluster problems

    International Nuclear Information System (INIS)

    Hecht, K.T.; Zahn, W.

    1978-01-01

    In the theory of integral transforms for the evaluation of the resonating group kernels needed for cluster model calculations, the evaluation of matrix elements in an angular momentum coupled basis has proved to be difficult for cluster problems involving more than two fragments. For multi-cluster wave functions SU(3) coupling and recoupling techniques can furnish a tool for the practical evaluation matrix elements in an angular momentum coupled basis if the several relative motion harmonic oscillator functions in Bargmann space have simple SU(3) coupling properties. The method is illustrated by a three-cluster problem, such as 12 C = α + α + α, involving three 1 S clusters. 2 references

  13. Cotangent bundles over all the Hermitian symmetric spaces

    International Nuclear Information System (INIS)

    Arai, Masato; Baba, Kurando

    2016-01-01

    We construct the N = 2 supersymmetric nonlinear sigma models on the cotangent bundles over all the compact and non-compact Hermitian symmetric spaces. In order to construct them we use the projective superspace formalism which is an N = 2 off-shell superfield formulation in four-dimensional space-time. This formalism allows us to obtain the explicit expression of N = 2 supersymmetric nonlinear sigma models on the cotangent bundles over any Hermitian symmetric spaces in terms of the N =1 superfields, once the Kähler potentials of the base manifolds are obtained. Starting with N = 1 supersymmetric Kähler nonlinear sigma models on the Hermitian symmetric spaces, we extend them into the N = 2 supersymmetric models by using the projective superspace formalism and derive the general formula for the cotangent bundles over all the compact and non-compact Hermitian symmetric spaces. We apply to the formula for the non-compact Hermitian symmetric space E 7 /E 6 × U(1) 1 . (paper)

  14. Rings of continuous functions, symmetric products, and Frobenius algebras

    International Nuclear Information System (INIS)

    Buchstaber, Viktor M; Rees, E G

    2004-01-01

    A constructive proof is given for the classical theorem of Gel'fand and Kolmogorov (1939) characterising the image of the evaluation map from a compact Hausdorff space X into the linear space C(X)* dual to the ring C(X) of continuous functions on X. Our approach to the proof enabled us to obtain a more general result characterising the image of the evaluation map from the symmetric products Sym n (X) into C(X)*. A similar result holds if X=C m and leads to explicit equations for symmetric products of affine algebraic varieties as algebraic subvarieties in the linear space dual to the polynomial ring. This leads to a better understanding of the algebra of multisymmetric polynomials. The proof of all these results is based on a formula used by Frobenius in 1896 in defining higher characters of finite groups. This formula had no further applications for a long time; however, it has appeared in several independent contexts during the last fifteen years. It was used by A. Wiles and R.L. Taylor in studying representations and by H.-J. Hoehnke and K.W. Johnson and later by J. McKay in studying finite groups. It plays an important role in our work concerning multivalued groups. Several properties of this remarkable formula are described. It is also used to prove a theorem on the structure constants of Frobenius algebras, which have recently attracted attention due to constructions taken from topological field theory and singularity theory. This theorem develops a result of Hoehnke published in 1958. As a corollary, a direct self-contained proof is obtained for the fact that the 1-, 2-, and 3-characters of the regular representation determine a finite group up to isomorphism. This result was first published by Hoehnke and Johnson in 1992

  15. SU-F-T-407: Artifact Reduction with Dual Energy Or IMAR: Who’s Winning?

    International Nuclear Information System (INIS)

    Elder, E; Schreibmann, E; Dhabaan, A

    2016-01-01

    Purpose: The purpose of this abstract was to evaluate the performance of commercial strategies for artifact reduction in radiation oncology settings. The iterative metal artifact reduction (Siemens iMAR) algorithm and monoenergetic virtual datasets reconstructed from dual energy scans are compared side-by-side in their ability to image in the presence of metal inserts. Methods: A CIRS ATOM Dosimetry Verification Phantom was scanned with and without a metal insert on a SOMATOM Definition AS dual energy scanner. Images with the metal insert were reconstructed with (a) a tradition single energy CT scan with the iMAR option implemented, using different artifact reduction settings and (b) a monoenergetic scan calculated from dual energy scans by recovering differences in the energy-dependence of the attenuation coefficients of different materials and then creating a virtual monoenergetic scan from these coefficients. The iMAR and monoenergetic scans were then compared with the metal-free scan to assess changes in HU numbers and noise within a region around the metal insert. Results: Both the iMAR and dual energy scans reduced artifacts produced by the metal insert. However the iMAR results are dependent of the selected algorithm settings, with a mean HU difference ranging from 0.65 to 90.40 for different options. The mean differences without the iMAR correction were 38.74. When using the dual energy scan, the mean differences were 4.53, that is however attributed to increased noise and not artifacts, as the dual energy scan had the lowest skewness (2.52) compared to the iMAR scans (ranging from 3.90 to 4.88) and the lowest kurtosis (5.72 for dual energy, range of 18.19 to 27.36 for iMAR). Conclusion: Both approaches accurately recovered HU numbers, however the dual energy method provided smaller residual artifacts.

  16. SU-F-T-407: Artifact Reduction with Dual Energy Or IMAR: Who’s Winning?

    Energy Technology Data Exchange (ETDEWEB)

    Elder, E; Schreibmann, E; Dhabaan, A [Department of Radiation Oncology and Winship Cancer Institute of Emory University Atlanta, GA (United States)

    2016-06-15

    Purpose: The purpose of this abstract was to evaluate the performance of commercial strategies for artifact reduction in radiation oncology settings. The iterative metal artifact reduction (Siemens iMAR) algorithm and monoenergetic virtual datasets reconstructed from dual energy scans are compared side-by-side in their ability to image in the presence of metal inserts. Methods: A CIRS ATOM Dosimetry Verification Phantom was scanned with and without a metal insert on a SOMATOM Definition AS dual energy scanner. Images with the metal insert were reconstructed with (a) a tradition single energy CT scan with the iMAR option implemented, using different artifact reduction settings and (b) a monoenergetic scan calculated from dual energy scans by recovering differences in the energy-dependence of the attenuation coefficients of different materials and then creating a virtual monoenergetic scan from these coefficients. The iMAR and monoenergetic scans were then compared with the metal-free scan to assess changes in HU numbers and noise within a region around the metal insert. Results: Both the iMAR and dual energy scans reduced artifacts produced by the metal insert. However the iMAR results are dependent of the selected algorithm settings, with a mean HU difference ranging from 0.65 to 90.40 for different options. The mean differences without the iMAR correction were 38.74. When using the dual energy scan, the mean differences were 4.53, that is however attributed to increased noise and not artifacts, as the dual energy scan had the lowest skewness (2.52) compared to the iMAR scans (ranging from 3.90 to 4.88) and the lowest kurtosis (5.72 for dual energy, range of 18.19 to 27.36 for iMAR). Conclusion: Both approaches accurately recovered HU numbers, however the dual energy method provided smaller residual artifacts.

  17. On the Decay of Correlations in Non-Analytic SO(n)-Symmetric Models

    Science.gov (United States)

    Naddaf, Ali

    We extend the method of complex translations which was originally employed by McBryan-Spencer [2] to obtain a decay rate for the two point function in two-dimensional SO(n)-symmetric models with non-analytic Hamiltonians for $.

  18. Simulating plasma instabilities in SU(3) gauge theory

    International Nuclear Information System (INIS)

    Berges, Juergen; Gelfand, Daniil; Scheffler, Sebastian; Sexty, Denes

    2009-01-01

    We compute nonequilibrium dynamics of plasma instabilities in classical-statistical lattice gauge theory in 3+1 dimensions. The simulations are done for the first time for the SU(3) gauge group relevant for quantum chromodynamics. We find a qualitatively similar behavior as compared to earlier investigations in SU(2) gauge theory. The characteristic growth rates are about 25% lower for given energy density, such that the isotropization process is slower. Measured in units of the characteristic screening mass, the primary growth rate is independent of the number of colors.

  19. DUAL TIMELIKE NORMAL AND DUAL TIMELIKE SPHERICAL CURVES IN DUAL MINKOWSKI SPACE

    OpenAIRE

    ÖNDER, Mehmet

    2009-01-01

    Abstract: In this paper, we give characterizations of dual timelike normal and dual timelike spherical curves in the dual Minkowski 3-space and we show that every dual timelike normal curve is also a dual timelike spherical curve. Keywords: Normal curves, Dual Minkowski 3-Space, Dual Timelike curves. Mathematics Subject Classifications (2000): 53C50, 53C40. DUAL MINKOWSKI UZAYINDA DUAL TIMELIKE NORMAL VE DUAL TIMELIKE KÜRESEL EĞRİLER Özet: Bu çalışmada, dual Minkowski 3-...

  20. The dual model of perfectionism and depression among Chinese ...

    African Journals Online (AJOL)

    The dual model of perfectionism was adopted to explore the influence of adaptive and maladaptive perfectionism on depression in college students. The results support the dual process model of perfectionism in Chinese undergraduates. A sample of 206 Chinese undergraduates completed measures of perfectionism, ...

  1. Automorphisms of the affine SU(3) fusion rules

    International Nuclear Information System (INIS)

    Ruelle, P.

    1994-01-01

    We classify the automorphisms of the (chiral) level-k affine SU(3) fusion rules, for any value of k, by looking for all permutations that commute with the modular matrices S and T. This can be done by using the arithmetic of the cyclotomic extensions where the problem is naturally posed. When k is divisible by 3, the automorphism group ( similar Z 2 ) is generated by the charge conjugation C. If k is not divisible by 3, the automorphism group ( similar Z 2 xZ 2 ) is generated by C and the Altschueler-Lacki-Zaugg automorphism. Although the combinatorial analysis can become more involved, the techniques used here for SU(3) can be applied to other algebras. (orig.)

  2. On the SU(2 vertical stroke 1) WZNW model and its statistical mechanics applications

    Energy Technology Data Exchange (ETDEWEB)

    Saleur, H [CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique; [University of Southern California, Los Angeles, CA (United States). Dept. of Physics; Schomerus, V [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2006-11-15

    Motivated by a careful analysis of the Laplacian on the supergroup SU(2 vertical stroke 1) we formulate a proposal for the state space of the SU(2 vertical stroke 1) WZNW model. We then use properties of sl(2 vertical stroke 1) characters to compute the partition function of the theory. In the special case of level k=1 the latter is found to agree with the properly regularized partition function for the continuum limit of the integrable sl(2 vertical stroke 1)3- anti 3 super-spin chain. Some general conclusions applicable to other WZNW models (in particular the case k=-1/2) are also drawn. (orig.)

  3. Classification of compactified su( N c ) gauge theories with fermions in all representations

    Science.gov (United States)

    Anber, Mohamed M.; Vincent-Genod, Loïc

    2017-12-01

    We classify su( N c ) gauge theories on R^3× S^1 with massless fermions in higher representations obeying periodic boundary conditions along S^1 . In particular, we single out the class of theories that is asymptotically free and weakly coupled in the infrared, and therefore, is amenable to semi-classical treatment. Our study is conducted by carefully identifying the vacua inside the affine Weyl chamber using Verma bases and Frobenius formula techniques. Theories with fermions in pure representations are generally strongly coupled. The only exceptions are the four-index symmetric representation of su(2) and adjoint representation of su( N c ). However, we find a plethora of admissible theories with fermions in mixed representations. A sub-class of these theories have degenerate perturbative vacua separated by domain walls. In particular, su( N c ) theories with fermions in the mixed representations adjoint⊕fundamental and adjoint⊕two-index symmetric admit degenerate vacua that spontaneously break the parity P , charge conjugation C , and time reversal T symmetries. These are the first examples of strictly weakly coupled gauge theories on R^3× S^1 with spontaneously broken C , P , and T symmetries. We also compute the fermion zero modes in the background of monopole-instantons. The monopoles and their composites (topological molecules) proliferate in the vacuum leading to the confinement of electric charges. Interestingly enough, some theories have also accidental degenerate vacua, which are not related by any symmetry. These vacua admit different numbers of fermionic zero modes, and hence, different kinds of topological molecules. The lack of symmetry, however, indicates that such degeneracy might be lifted by higher order corrections. Finally, we study the general phase structure of adjoint⊕fundamental theories in the small circle and decompactification limits.

  4. A Differentially Driven Dual-Polarized Dual-Wideband Complementary Antenna for 2G/3G/LTE Applications

    Directory of Open Access Journals (Sweden)

    Botao Feng

    2014-01-01

    Full Text Available A novel differentially driven dual-polarized dual-wideband complementary patch antenna with high isolation is proposed for 2G/3G/LTE applications. In order to generate dual-polarization and dual-wideband properties, a pair of biorthogonal dual-layer η-shaped tapered line feeding structures is utilized to feed two pairs of dual-layer U-shaped patches, respectively. The upper-layer U-shaped patches mainly serve the upper frequency band, while the lower-layer ones chiefly work for the lower frequency band. Besides, a horned reflector is introduced to improve radiation patterns and provide stable gain. The prototype antenna can achieve a bandwidth of 25.7% (0.78 GHz–1.01 GHz with a stable gain of 7.8±0.7 dBi for the lower band, and a bandwidth of 45.7% (1.69 GHz–2.69 GHz with a gain of 9.5±1.1 dBi for the upper band. Input isolation exceeding 30 dB has been obtained in the wide bandwidth. Thus, it can be potentially used as a base station antenna for 2G/3G/LTE networks.

  5. Simplified boson realization of the SOq(3) subalgebra of Uq(3) and matrix elements of SO(3) quadrupole operators

    International Nuclear Information System (INIS)

    Bonatsos, D.; Lo Liduce, N.; Raychev, P.; Roussev, R.; Terziev, P.

    1996-01-01

    Quantum algebras (also called quantum groups) are nonlinear generalization of the usual Lie algebras, to which the reduce in the limiting case when the deformed parameters are set equal to unity. From mathematical point of view they have the structure of Holf algebras. The interest for applications of quantum algebras in physics was triggered in 1989 by the introduction of the q-deformed harmonic oscillator. In this connection the quantum algebra su q (2) has been used for description of superdeformed bands of even-even nuclei and rotational nuclear and molecular spectra. The construction of chains of subalgebras of a given q-algebra is a non trivial problem, since the existence of a chain of subalgebras of the corresponding Lie algebra does not guarantee the existence of the q-analogue of this chain. In particular, the so q (3) subalgebra of u q (3) has attracted much attention, since its classical analogue is a basic ingredient of several nuclear models, as the Elliot model and the su(3) limit of the Interacting Boson Model (IBM), the Fermion Dynamical Symmetry Model (FDSM), the Interacting Vector Boson Model (IVBM), the nuclear vibron model for clustering, as well as of the su(3) limit of the vibron model for molecules. In the present report we compute the reduced matrix elements of a special second-rank tensor operator (quadrupole operator) in the so q (3) subgroup of u q (3) basis (for the most symmetric u q (3)-representations) and investigate some of their properties. Also we construct a simplified boson realization of the so q (3) subalgebra of u q (3) and the corresponding so q (3) basis states. It should be noted that the obtained results are valid only for real values of the deformation parameter q. On the other hand the comparison of the experimental data with the predictions of a number of physical models, based on the q deformed su q (2) algebra, shows that one can achieve a good agreement between theory and experiment only if q is a pure phase (q

  6. Spin dependence of intra-ground-state-band E2 transitions in the SU(3) limit of the sdg interacting boson model

    Science.gov (United States)

    Long, G. L.; Ji, H. Y.

    1998-04-01

    B(E2, L+2-->L) transitions in the sdg interacting boson model SU(3) limit are studied with a general E2 transition operator. Analytical expressions are obtained using a group theoretic method. It is found that when using transition operators of the form (d†g~+g†d~)2 or (g†g~)2, the B(E2, L+2-->L) values in the ground-state band have an L(L+3) dependent term. As L increases, the B(E2) values can be larger than the rigid rotor model value. Application to 236,238U is discussed.

  7. Causal symmetric spaces

    CERN Document Server

    Olafsson, Gestur; Helgason, Sigurdur

    1996-01-01

    This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces

  8. Resource Symmetric Dispatch Model for Internet of Things on Advanced Logistics

    OpenAIRE

    Guofeng Qin; Lisheng Wang; Qiyan Li

    2016-01-01

    Business applications in advanced logistics service are highly concurrent. In this paper, we propose a resource symmetric dispatch model for the concurrent and cooperative tasks of the Internet of Things. In the model, the terminals receive and deliver commands, data, and information with mobile networks, wireless networks, and sensor networks. The data and information are classified and processed by the clustering servers in the cloud service platform. The cluster service, resource dispatch,...

  9. Flavor and CP invariant composite Higgs models

    International Nuclear Information System (INIS)

    Redi, Michele; Weiler, Andreas

    2011-09-01

    The flavor protection in composite Higgs models with partial compositeness is known to be insufficient. We explore the possibility to alleviate the tension with CP odd observables by assuming that flavor or CP are symmetries of the composite sector, broken by the coupling to Standard Model fields. One realization is that the composite sector has a flavor symmetry SU(3) or SU(3) U x SU(3) D which allows us to realize Minimal Flavor Violation. We show how to avoid the previously problematic tension between a flavor symmetric composite sector and electro-weak precision tests. Some of the light quarks are substantially or even fully composite with striking signals at the LHC. We discuss the constraints from recent dijet mass measurements and give an outlook on the discovery potential. We also present a different protection mechanism where we separate the generation of flavor hierarchies and the origin of CP violation. This can eliminate or safely reduce unwanted CP violating effects, realizing effectively ''Minimal CP Violation'' and is compatible with a dynamical generation of flavor at low scales. (orig.)

  10. Extended charge banking model of dual path shocks for implantable cardioverter defibrillators.

    Science.gov (United States)

    Dosdall, Derek J; Sweeney, James D

    2008-08-01

    Single path defibrillation shock methods have been improved through the use of the Charge Banking Model of defibrillation, which predicts the response of the heart to shocks as a simple resistor-capacitor (RC) circuit. While dual path defibrillation configurations have significantly reduced defibrillation thresholds, improvements to dual path defibrillation techniques have been limited to experimental observations without a practical model to aid in improving dual path defibrillation techniques. The Charge Banking Model has been extended into a new Extended Charge Banking Model of defibrillation that represents small sections of the heart as separate RC circuits, uses a weighting factor based on published defibrillation shock field gradient measures, and implements a critical mass criteria to predict the relative efficacy of single and dual path defibrillation shocks. The new model reproduced the results from several published experimental protocols that demonstrated the relative efficacy of dual path defibrillation shocks. The model predicts that time between phases or pulses of dual path defibrillation shock configurations should be minimized to maximize shock efficacy. Through this approach the Extended Charge Banking Model predictions may be used to improve dual path and multi-pulse defibrillation techniques, which have been shown experimentally to lower defibrillation thresholds substantially. The new model may be a useful tool to help in further improving dual path and multiple pulse defibrillation techniques by predicting optimal pulse durations and shock timing parameters.

  11. Mathematical Model of Induction Heating Processes in Axial Symmetric Inductor-Detail Systems

    Directory of Open Access Journals (Sweden)

    Maik Streblau

    2014-05-01

    Full Text Available The wide variety of models for analysis of processes in the inductor-detail systems makes it necessary to summarize them. This is a difficult task because of the variety of inductor-detail system configurations. This paper aims to present a multi physics mathematical model for complex analysis of electromagnetic and thermal fields in axial symmetric systems inductor-detail.

  12. Comprehensive asynchronous symmetric rendezvous algorithm in ...

    Indian Academy of Sciences (India)

    Meenu Chawla

    2017-11-10

    Nov 10, 2017 ... Simulation results affirm that CASR algorithm performs better in terms of average time-to-rendezvous as compared ... process; neighbour discovery; symmetric rendezvous algorithm. 1. .... dezvous in finite time under the symmetric model. The CH ..... CASR algorithm in Matlab 7.11 and performed several.

  13. Synthesis and Structure of D3h-Symmetric Triptycene Trimaleimide

    Directory of Open Access Journals (Sweden)

    Anthony Linden

    2010-01-01

    Full Text Available A new D3h symmetric triptycene derivative has been synthesized with the aim of obtaining molecules that are able to assemble into porous structures, and can be used in the development of new ligands. The synthesis involves a Diels-Alder reaction as the key step, followed by an oxidation and the formation of a maleimide ring. Triptycene trimaleimide furnished single crystals which have been analyzed by means of X-ray diffraction.

  14. Genome-wide analysis of SU(VAR)3-9 distribution in chromosomes of Drosophila melanogaster.

    Science.gov (United States)

    Maksimov, Daniil A; Laktionov, Petr P; Posukh, Olga V; Belyakin, Stepan N; Koryakov, Dmitry E

    2018-03-01

    Histone modifications represent one of the key factors contributing to proper genome regulation. One of histone modifications involved in gene silencing is methylation of H3K9 residue. Present in the chromosomes across different eukaryotes, this epigenetic mark is controlled by SU(VAR)3-9 and its orthologs. Despite SU(VAR)3-9 was discovered over two decades ago, little is known about the details of its chromosomal distribution pattern. To fill in this gap, we used DamID-seq approach and obtained high-resolution genome-wide profiles for SU(VAR)3-9 in two somatic (salivary glands and brain ganglia) and two germline (ovarian nurse cells and testes) tissues of Drosophila melanogaster. Analysis of tissue and developmental expression of SU(VAR)3-9-bound genes indicates that in the somatic tissues tested, as well as in the ovarian nurse cells, SU(VAR)3-9 tends to associate with transcriptionally silent genes. In contrast, in the testes, SU(VAR)3-9 shows preferential association with testis-specific genes, and its binding appears dynamic during spermatogenesis. In somatic cells, the mere presence/absence of SU(VAR)3-9 binding correlates with lower/higher expression. No such correlation is found in the male germline. Interestingly, transcription units in piRNA clusters (particularly flanks thereof) are frequently targeted by SU(VAR)3-9, and Su(var)3-9 mutation affects the expression of select piRNA species. Our analyses suggest a context-dependent role of SU(VAR)3-9. In euchromatin, SU(VAR)3-9 may serve to fine-tune the expression of individual genes, whereas in heterochromatin, chromosome 4, and piRNA clusters, it may act more broadly over large chromatin domains.

  15. Synthesis of C3-symmetric tri(alkylamino) guests and their interaction with cyclodextrins

    Czech Academy of Sciences Publication Activity Database

    Bednaříková, T.; Tošner, Z.; Horský, Jiří; Jindřich, J.

    2015-01-01

    Roč. 81, 1-2 (2015), s. 141-152 ISSN 0923-0750 Institutional support: RVO:61389013 Keywords : cyclodextrin * supramolecular interactions * C3-symmetric guests Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.253, year: 2015

  16. Superfield Lax formalism of supersymmetric sigma model on symmetric spaces

    International Nuclear Information System (INIS)

    Saleem, U.; Hassan, M.

    2006-01-01

    We present a superfield Lax formalism of the superspace sigma model based on the target space G/H and show that a one-parameter family of flat superfield connections exists if the target space G/H is a symmetric space. The formalism has been related to the existence of an infinite family of local and non-local superfield conserved quantities. A few examples have been given to illustrate the results. (orig.)

  17. New solutions of euclidean SU(2) gauge theory

    International Nuclear Information System (INIS)

    Khan, I.

    1983-08-01

    New solutions of the Euclidean SU(2) gauge theory having finite field strength everywhere are presented. The solutions are self dual or antidual and constitute a two-parameter family which includes the instantons. (author)

  18. Symmetrical and asymmetrical outcomes of leader anger expression: A qualitative study of army personnel.

    Science.gov (United States)

    Lindebaum, Dirk; Jordan, Peter J; Morris, Lucy

    2016-02-01

    Recent studies have highlighted the utility of anger at work, suggesting that anger can have positive outcomes. Using the Dual Threshold Model, we assess the positive and negative consequences of anger expressions at work and focus on the conditions under which expressions of anger crossing the impropriety threshold are perceived as productive or counterproductive by observers or targets of that anger. To explore this phenomenon, we conducted a phenomenological study ( n = 20) to probe the lived experiences of followers (as observers and targets) associated with anger expressions by military leaders. The nature of task (e.g. the display rules prescribed for combat situations) emerged as one condition under which the crossing of the impropriety threshold leads to positive outcomes of anger expressions. Our data reveal tensions between emotional display rules and emotional display norms in the military, thereby fostering paradoxical attitudes toward anger expression and its consequences among followers. Within this paradoxical space, anger expressions have both positive (asymmetrical) and negative (symmetrical) consequences. We place our findings in the context of the Dual Threshold Model, discuss the practical implications of our research and offer avenues for future studies.

  19. Perfectly invisible PT -symmetric zero-gap systems, conformal field theoretical kinks, and exotic nonlinear supersymmetry

    Science.gov (United States)

    Guilarte, Juan Mateos; Plyushchay, Mikhail S.

    2017-12-01

    We investigate a special class of the PT -symmetric quantum models being perfectly invisible zero-gap systems with a unique bound state at the very edge of continuous spectrum of scattering states. The family includes the PT -regularized two particle Calogero systems (conformal quantum mechanics models of de Alfaro-Fubini-Furlan) and their rational extensions whose potentials satisfy equations of the KdV hierarchy and exhibit, particularly, a behaviour typical for extreme waves. We show that the two simplest Hamiltonians from the Calogero subfamily determine the fluctuation spectra around the PT -regularized kinks arising as traveling waves in the field-theoretical Liouville and SU(3) conformal Toda systems. Peculiar properties of the quantum systems are reflected in the associated exotic nonlinear supersymmetry in the unbroken or partially broken phases. The conventional N=2 supersymmetry is extended here to the N=4 nonlinear supersymmetry that involves two bosonic generators composed from Lax-Novikov integrals of the subsystems, one of which is the central charge of the superalgebra. Jordan states are shown to play an essential role in the construction.

  20. Remitting seronegative symmetrical synovitis with pitting edema (RS3PE syndrome

    Directory of Open Access Journals (Sweden)

    Neslihan Gokcen

    2017-03-01

    Full Text Available Remitting seronegative symmetrical synovitis with pitting edema is a rare rheumatological disorder that presents with symmetrical hand and/or foot edema resembling rheumatoid arthritis. It is generally seen in male patients in older age, but atypical cases in different age groups have been documented. Although no clear mechanism has been described, certain genetic and environmental factors have been suggested for etiopathogenesis. Medical treatment is mainly focused on glucocorticoid therapy. This article aims to discuss the Remitting seronegative symmetrical synovitis with pitting edema syndrome and to review the current literature. [Cukurova Med J 2017; 42(1.000: 147-154

  1. Animal Modeling and Neurocircuitry of Dual Diagnosis

    Science.gov (United States)

    Chambers, R. Andrew

    2010-01-01

    Dual diagnosis is a problem of tremendous depth and scope, spanning many classes of mental disorders and addictive drugs. Animal models of psychiatric disorders studied in addiction paradigms suggest a unitary nature of mental illness and addiction vulnerability both on the neurocircuit and clinical-behavioral levels. These models provide platforms for exploring the interactive roles of biological, environmental and developmental factors on neurocircuits commonly involved in psychiatric and addiction diseases. While suggestive of the artifice of segregated research, training, and clinical cultures between psychiatric and addiction fields, this research may lead to more parsimonious, integrative and preventative treatments for dual diagnosis. PMID:20585464

  2. Neutrino masses, mixings, and FCNC’s in an S3 flavor symmetric extension of the standard model

    International Nuclear Information System (INIS)

    Mondragón, A.; Mondragón, M.; Peinado, E.

    2011-01-01

    By introducing threeHiggs fields that are SU(2) doublets and a flavor permutational symmetry, S 3 , in the theory, we extend the concepts of flavor and generations to the Higgs sector and formulate a Minimal S 3 -Invariant Extension of the Standard Model. The mass matrices of the neutrinos and charged leptons are re-parameterized in terms of their eigenvalues, then the neutrino mixing matrix, V PMNS , is computed and exact, explicit analytical expressions for the neutrino mixing angles as functions of the masses of neutrinos and charged leptons are obtained in excellent agreement with the latest experimental data. We also compute the branching ratios of some selected flavor-changing neutral current (FCNC) processes, as well as the contribution of the exchange of neutral flavor-changing scalars to the anomaly of the magnetic moment of the muon, as functions of the masses of charged leptons and the neutral Higgs bosons. We find that the S 3 × Z 2 flavor symmetry and the strong mass hierarchy of the charged leptons strongly suppress the FCNC processes in the leptonic sector, well below the present experimental bounds by many orders of magnitude. The contribution of FCNC’s to the anomaly of the muon’s magnetic moment is small, but not negligible.

  3. Color-symmetric superconductivity in a phenomenological QCD model

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, C.; Providencia, J. da

    2009-01-01

    In this paper, we construct a theory of the NJL type where superconductivity is present, and yet the superconducting state remains, in the average, color symmetric. This shows that the present approach to color superconductivity is consistent with color singletness. Indeed, quarks are free...... in the deconfined phase, but the deconfined phase itself is believed to be a color singlet. The usual description of the color superconducting state violates color singletness. On the other hand, the color superconducting state here proposed is color symmetric in the sense that an arbitrary color rotation leads...

  4. Three-generation flipped SU(5) string models on orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Burwick, T.T. (Zurich Univ. (Switzerland). Inst. fuer Theoretische Physik); Kaiser, R.K.; Mueller, H.F. (ETH-Hoenggerberg, Zurich (Switzerland). Inst. fuer Theoretische Physik)

    1991-09-16

    We construct four-dimensional twisted string models on non-prime orbifolds which have as gauge group flipped SU(5) with a phenomenologically interesting matter spectrum of k generations plus (k-3) antigenerations. Using generalized selection rules for Yukawa couplings on non-prime orbifolds, we analyse one model in greater detail and obtain the following phenomenologically promising features: We find one pair of H and anti H GUT Higgs fields which break the GUT gauge group into the standard model, and in addition generate large mass terms for the unwanted triplet parts of the standard model Higgs fields, plus one pair of standard model Higgs fields. Moreover, we obtain couplings of the standard model Higgs to quark and lepton fields in all families. (orig.).

  5. Thermodynamics of one-dimensional SU(4) and SU(6) fermions with attractive interactions

    Science.gov (United States)

    Hoffman, M. D.; Loheac, A. C.; Porter, W. J.; Drut, J. E.

    2017-03-01

    Motivated by advances in the manipulation and detection of ultracold atoms with multiple internal degrees of freedom, we present a finite-temperature lattice Monte Carlo calculation of the density and pressure equations of state, as well as Tan's contact, of attractively interacting SU(4)- and SU(6)-symmetric fermion systems in one spatial dimension. We also furnish a nonperturbative proof of a universal relation whereby quantities computable in the SU(2) case completely determine the virial coefficients of the SU(Nf) case. These one-dimensional systems are appealing because they can be experimentally realized in highly constrained traps and because of the dominant role played by correlations. The latter are typically nonperturbative and are crucial for understanding ground states and quantum phase transitions. While quantum fluctuations are typically overpowered by thermal ones in one and two dimensions at any finite temperature, we find that quantum effects do leave their imprint in thermodynamic quantities. Our calculations show that the additional degrees of freedom, relative to the SU(2) case, provide a dramatic enhancement of the density and pressure (in units of their noninteracting counterparts) in a wide region around vanishing β μ , where β is the inverse temperature and μ the chemical potential. As shown recently in experiments, the thermodynamics we explore here can be measured in a controlled and precise fashion in highly constrained traps and optical lattices. Our results are a prediction for such experiments in one dimension with atoms of high nuclear spin.

  6. B(IS4;0GS+→4γ+) systematics in rare-earth nuclei: SU sdg (3) description

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1993-01-01

    The observed variation of B(IS4; 0 GS + →4 γ + ) with mass number A, that gives information about hexadecupole component in γ-vibration, in rare-earth nuclei is studied in the SU sdg (3) limit of sdg interacting boson model empoloying IBM-2 to IBM-1 projected hexadecupole transition operator with effective charges determined using a multi-j shell mapping procedure. The SU sdg (3) limit provides a reasonably good description of the data. (orig.)

  7. Yang-Mills- SU(3) via FORM

    International Nuclear Information System (INIS)

    Costa Jorge, Patricia M. da; Peres, Patricia Duarte; Boldo, J.L.

    1997-06-01

    This work uses FORM software aspects for obtaining a series of formal results in the non-Abelian gauge theory, with SU(3) group. The work also studies field transformation, Lagrangian density invariance, field equations, energy distribution and the theory reparametrization in terms of fields associated to particles which are possible to be detected in accelerators

  8. String derived exophobic SU(6)×SU(2) GUTs

    International Nuclear Information System (INIS)

    Bernard, Laura; Faraggi, Alon E.; Glasser, Ivan; Rizos, John; Sonmez, Hasan

    2013-01-01

    With the apparent discovery of the Higgs boson, the Standard Model has been confirmed as the theory accounting for all sub-atomic phenomena. This observation lends further credence to the perturbative unification in Grand Unified Theories (GUTs) and string theories. The free fermionic formalism yielded fertile ground for the construction of quasi-realistic heterotic-string models, which correspond to toroidal Z 2 ×Z 2 orbifold compactifications. In this paper we study a new class of heterotic-string models in which the GUT group is SU(6)×SU(2) at the string level. We use our recently developed fishing algorithm to extract an example of a three generation SU(6)×SU(2) GUT model. We explore the phenomenology of the model and show that it contains the required symmetry breaking Higgs representations. We show that the model admits flat directions that produce a Yukawa coupling for a single family. The novel feature of the SU(6)×SU(2) string GUT models is that they produce an additional family universal anomaly free U(1) symmetry, and may remain unbroken below the string scale. The massless spectrum of the model is free of exotic states.

  9. 8x8 and 10x10 Hyperspace Representations of SU(3) and 10-fold Point-Symmetry Group of Quasicrystals

    Science.gov (United States)

    Animalu, Alexander

    2012-02-01

    In order to further elucidate the unexpected 10-fold point-symmetry group structure of quasi-crystals for which the 2011 Nobel Prize in chemistry was awarded to Daniel Shechtman, we explore a correspondence principle between the number of (projective) geometric elements (points[vertices] + lines[edges] + planes[faces]) of primitive cells of periodic or quasi-periodic arrangement of hard or deformable spheres in 3-dimensional space of crystallography and elements of quantum field theory of particle physics [points ( particles, lines ( particles, planes ( currents] and hence construct 8x8 =64 = 28+36 = 26 + 38, and 10x10 =100= 64 + 36 = 74 + 26 hyperspace representations of the SU(3) symmetry of elementary particle physics and quasicrystals of condensed matter (solid state) physics respectively, As a result, we predict the Cabibbo-like angles in leptonic decay of hadrons in elementary-particle physics and the observed 10-fold symmetric diffraction pattern of quasi-crystals.

  10. Impact of Ue3 on neutrino models

    International Nuclear Information System (INIS)

    Tanimoto, M.

    2004-01-01

    We have discussed the impact of U e3 on the model of the neutrino mass matrix. In order to get the small U e3 , some flavor symmetry is required. Typical two models are investigated. The first one is the model in which the bi-maximal mixing is realized at the symmetric limit. The second one is the texture zeros of the neutrino mass matrix. (author)

  11. Left--right symmetric gauge theories of weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Sidhu, D.P.

    1978-01-01

    We review the recent progress in spontaneously broken left-right symmetric gauge theories of weak and electromagnetic interactions. Recently gauge theories based on the group SU(2)/Sub L/ x SU(2)/sub R/ x U(1) have been proposed as serious candidates for a unified description of the weak and electromagnetic interactions. Such theories have a number of attractive features which are not shared by the standard SU(2) x U(1) theories. Parity violation as well as CP-violation are spontaneous in origin and, therefore, theories are parity conserving before spontaneous breakdown of the symmetry and also afterwards at asymptotic energies. The asymmetry in low energy charged current weak interaction, i.e., predominance of left-handed charged current interactions over the right-handed ones, is a consequence of the symmetry breaking thus leading to a conceptually different picture of weak interaction at low energies. Another appealing feature of these theories is the beauty and richness of the structure of weak neutral current interactions. One can have a parity conserving structure of the neutral currents (one neutral boson (Z/sub V/) has pure vector and the other (Z/sub A/) pure axial vector coupling to quarks and leptons) which is natural in the technical sense of the word. Models of this type provide the most elegant explanation of the failure to find parity violation in atoms at the level predicted on the basis of the Weinberg-Salam model. In spite of manifestly parity conserving neutral current interactions, ν/sub μ/N and anti ν/sub μ/N (also ν/sub μ/e and anti ν/sub μ/e) neutral current cross-sections have to be unequal in these theories because of the definite parity and charge conjugation of the Z-bosons

  12. Splitting the spectral flow and the SU(3) Casson invariant for spliced sums

    DEFF Research Database (Denmark)

    Boden, Hans U.; Himpel, Benjamin

    2009-01-01

    We show that the SU(3) Casson invariant for spliced sums along certain torus knots equals 16 times the product of their SU(2) Casson knot invariants. The key step is a splitting formula for su(n) spectral flow for closed 3–manifolds split along a torus....

  13. JIL-1 and Su(var)3-7 Interact Genetically and Counteract Each Other's Effect on Position-Effect Variegation in Drosophila

    Science.gov (United States)

    Deng, Huai; Cai, Weili; Wang, Chao; Lerach, Stephanie; Delattre, Marion; Girton, Jack; Johansen, Jørgen; Johansen, Kristen M.

    2010-01-01

    The essential JIL-1 histone H3S10 kinase is a key regulator of chromatin structure that functions to maintain euchromatic domains while counteracting heterochromatization and gene silencing. In the absence of the JIL-1 kinase, two of the major heterochromatin markers H3K9me2 and HP1a spread in tandem to ectopic locations on the chromosome arms. Here we address the role of the third major heterochromatin component, the zinc-finger protein Su(var)3-7. We show that the lethality but not the chromosome morphology defects associated with the null JIL-1 phenotype to a large degree can be rescued by reducing the dose of the Su(var)3-7 gene and that Su(var)3-7 and JIL-1 loss-of-function mutations have an antagonistic and counterbalancing effect on position-effect variegation (PEV). Furthermore, we show that in the absence of JIL-1 kinase activity, Su(var)3-7 gets redistributed and upregulated on the chromosome arms. Reducing the dose of the Su(var)3-7 gene dramatically decreases this redistribution; however, the spreading of H3K9me2 to the chromosome arms was unaffected, strongly indicating that ectopic Su(var)3-9 activity is not a direct cause of lethality. These observations suggest a model where Su(var)3-7 functions as an effector downstream of Su(var)3-9 and H3K9 dimethylation in heterochromatic spreading and gene silencing that is normally counteracted by JIL-1 kinase activity. PMID:20457875

  14. Dual processing model of medical decision-making

    Science.gov (United States)

    2012-01-01

    Background Dual processing theory of human cognition postulates that reasoning and decision-making can be described as a function of both an intuitive, experiential, affective system (system I) and/or an analytical, deliberative (system II) processing system. To date no formal descriptive model of medical decision-making based on dual processing theory has been developed. Here we postulate such a model and apply it to a common clinical situation: whether treatment should be administered to the patient who may or may not have a disease. Methods We developed a mathematical model in which we linked a recently proposed descriptive psychological model of cognition with the threshold model of medical decision-making and show how this approach can be used to better understand decision-making at the bedside and explain the widespread variation in treatments observed in clinical practice. Results We show that physician’s beliefs about whether to treat at higher (lower) probability levels compared to the prescriptive therapeutic thresholds obtained via system II processing is moderated by system I and the ratio of benefit and harms as evaluated by both system I and II. Under some conditions, the system I decision maker’s threshold may dramatically drop below the expected utility threshold derived by system II. This can explain the overtreatment often seen in the contemporary practice. The opposite can also occur as in the situations where empirical evidence is considered unreliable, or when cognitive processes of decision-makers are biased through recent experience: the threshold will increase relative to the normative threshold value derived via system II using expected utility threshold. This inclination for the higher diagnostic certainty may, in turn, explain undertreatment that is also documented in the current medical practice. Conclusions We have developed the first dual processing model of medical decision-making that has potential to enrich the current medical

  15. Dual processing model of medical decision-making.

    Science.gov (United States)

    Djulbegovic, Benjamin; Hozo, Iztok; Beckstead, Jason; Tsalatsanis, Athanasios; Pauker, Stephen G

    2012-09-03

    Dual processing theory of human cognition postulates that reasoning and decision-making can be described as a function of both an intuitive, experiential, affective system (system I) and/or an analytical, deliberative (system II) processing system. To date no formal descriptive model of medical decision-making based on dual processing theory has been developed. Here we postulate such a model and apply it to a common clinical situation: whether treatment should be administered to the patient who may or may not have a disease. We developed a mathematical model in which we linked a recently proposed descriptive psychological model of cognition with the threshold model of medical decision-making and show how this approach can be used to better understand decision-making at the bedside and explain the widespread variation in treatments observed in clinical practice. We show that physician's beliefs about whether to treat at higher (lower) probability levels compared to the prescriptive therapeutic thresholds obtained via system II processing is moderated by system I and the ratio of benefit and harms as evaluated by both system I and II. Under some conditions, the system I decision maker's threshold may dramatically drop below the expected utility threshold derived by system II. This can explain the overtreatment often seen in the contemporary practice. The opposite can also occur as in the situations where empirical evidence is considered unreliable, or when cognitive processes of decision-makers are biased through recent experience: the threshold will increase relative to the normative threshold value derived via system II using expected utility threshold. This inclination for the higher diagnostic certainty may, in turn, explain undertreatment that is also documented in the current medical practice. We have developed the first dual processing model of medical decision-making that has potential to enrich the current medical decision-making field, which is still to the

  16. Brownian motion and thermophoresis effects on Peristaltic slip flow of a MHD nanofluid in a symmetric/asymmetric channel

    Science.gov (United States)

    Sucharitha, G.; Sreenadh, S.; Lakshminarayana, P.; Sushma, K.

    2017-11-01

    The slip and heat transfer effects on MHD peristaltic transport of a nanofluid in a non-uniform symmetric/asymmetric channel have studied under the assumptions of elongated wave length and negligible Reynolds number. From the simplified governing equations, the closed form solutions for velocity, stream function, temperature and concentrations are obtained. Also dual solutions are discussed for symmetric and asymmetric channel cases. The effects of important physical parameters are explained graphically. The slip parameter decreases the fluid velocity in middle of the channel whereas it increases the velocity at the channel walls. Temperature and concentration are decreasing and increasing functions of radiation parameter respectively. Moreover, velocity, temperature and concentrations are high in symmetric channel when compared with asymmetric channel.

  17. Inflation and monopoles in supersymmetric SU(4)c x SU(2)L x SU(2)R

    International Nuclear Information System (INIS)

    Jeannerot, R.; Khalil, S.; Lazarides, G.; Shafi, Q.

    2000-02-01

    We show how hybrid inflation can be successfully realized in a supersymmetric model with gauge group G PS = SU(4) c x SU(2) L x SU(2) R . By including a non-renormalizable superpotential term, we generate an inflationary valley along which G PS is broken to the standard model gauge group. Thus, catastrophic production of the doubly charged magnetic monopoles, which are predicted by the model, cannot occur at the end of inflation. The results of the cosmic background explorer can be reproduced with natural values (of order 10 -3 ) of the relevant coupling constant, and symmetry breaking scale of G PS close to 10 16 GeV. The spectral index of density perturbations lies between unity and 0.94. Moreover, the μ-term is generated via a Peccei-Quinn symmetry and proton is practically stable. Baryogenesis in the universe takes place via leptogenesis. The low deuterium abundance constraint on the baryon asymmetry, the gravitino limit on the reheat temperature and the requirement of almost maximal ν μ - ν τ mixing from SuperKamiokande can be simultaneously met with m νμ , m ντ and heaviest Dirac neutrino mass determined from the large angle MSW resolution of the solar neutrino problem, the SuperKamiokande results and SU(4) c symmetry respectively. (author)

  18. Low energy restrictions for a flipped left-right symmetric model

    Energy Technology Data Exchange (ETDEWEB)

    Eeg, J.O. (Oslo Univ. (Norway). Fysisk Inst.)

    1990-05-01

    I consider some low energy restrictions for a 'flipped' left-right symmetric model containing exotic fermions of E{sub 6} and a right-handed W-boson, all with odd R-parity. The new interactions due to W{sub R}-exchange have no significant impact on rare kaon decays, because the W{sub R} does not couple to d, s, b quarks. On the other hand, W{sub R} exchanges might induce rare processes like D-anti D mixing, D{sup 0}{yields}{mu}anti {mu}, D{sup 0}{yields}{mu}anti e, {mu}{yields}e{gamma}, {mu}{yields}3e, and {mu}N{yields}eN. It turns out that the strongest bound is obtained from D-anti D mixing. With reasonable extra assumptions, it is found that the exotic right-handed W-boson is likely to be heavier than 500 to 1500 GeV. (orig.).

  19. Intersecting Branes Flip SU(5)

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V; Ellis, John

    2002-01-01

    Within a toroidal orbifold framework, we exhibit intersecting brane-world constructions of flipped SU(5) \\times U(1) GUT models with various numbers of generations, other chiral matter representations and Higgs representations. We exhibit orientifold constructions with integer winding numbers that yield 8 or more conventional SU(5) generations, and orbifold constructions with fractional winding numbers that yield flipped SU(5) \\times U(1) models with just 3 conventional generations. Some of these models have candidates for the 5 and {\\bar 5} Higgs representations needed for electroweak symmetry breaking, but not for the 10 and {\\bar 10} representations needed for GUT symmetry breaking, or vice-versa.

  20. A Dual System Model of Preferences under Risk

    Science.gov (United States)

    Mukherjee, Kanchan

    2010-01-01

    This article presents a dual system model (DSM) of decision making under risk and uncertainty according to which the value of a gamble is a combination of the values assigned to it independently by the affective and deliberative systems. On the basis of research on dual process theories and empirical research in Hsee and Rottenstreich (2004) and…

  1. SU(3) breaking and the pseudo-scalar spectrum in multi-taste QCD

    Energy Technology Data Exchange (ETDEWEB)

    Creutz, Michael

    2017-06-18

    Using the Sigma model to explore the lowest order pseudo-scalar spectrum with SU(3) breaking, this talk considers an additional exact "taste" symmetry to mimic species doubling. Rooting replicas of a valid approach such as Wilson fermions reproduces the desired physical spectrum. In contrast, extra symmetries of the rooted staggered approach leave spurious states and a flavor dependent taste multiplicity.

  2. Flavor SU(3) in hadronic B decays

    International Nuclear Information System (INIS)

    Dighe, A.

    1998-11-01

    Here we shall outline a few methods that use the flavor SU(3) symmetry in the decays of B mesons to determine the angles of the unitarity triangle and to identify the decay modes which would display a significant CP violation. (author)

  3. 3-3-1 models at electroweak scale

    International Nuclear Information System (INIS)

    Dias, Alex G.; Montero, J.C.; Pleitez, V.

    2006-01-01

    We show that in 3-3-1 models there exist a natural relation among the SU(3) L coupling constant g, the electroweak mixing angle θ W , the mass of the W, and one of the vacuum expectation values, which implies that those models can be realized at low energy scales and, in particular, even at the electroweak scale. So that, being that symmetries realized in Nature, new physics may be really just around the corner

  4. Phenomenological, symmetrical, field-theoretical aspects and mathematical considerations of the standard model

    International Nuclear Information System (INIS)

    Khodjaev, L.Sh.

    2004-01-01

    Full text: We review the conceptual foundation of Yang-Mills gauge field theories. On these gauge theories the Standard Model (SM) are constructed. The fundamental postulates and their immediate consequence of the SM are formulated. The SM is a Yang-Mills type gauge field theory basically dictated by the Generalized Gauge Principle (GGP). According to this principle all fundamental forces of nature such as strong, electroweak, gravitational are mediated by an exchange of the Yang-Mills gauge fields corresponding gauge group. The SM is constructed by extension of the global non-Abelian SU(3)xSU(2)xU(1) symmetry to the local SU(3)xSU(2)xU(1) symmetry under which the Lagrangian of the SM invariant. This full symmetry has to be broken by Higgs mechanism down to the Electroweak gauge symmetry. The concept of fundamental particles does not exist. To Look for not Fundamental Particles but Fundamental symmetries. By searching of more general theory it is natural to search first of all Global symmetries and then to learn consequences connected with the localization of the global symmetries like wise of SM. The SM is renormalizable and therefor potentially consist at all energy scales. The SM in principle can describe the properties of the Universe beginning at 10 -43 sec. after BIG BANG. A SM of the BIG BANG Particle physics provides one of the few windows of the high energy world beyond SM which is consistent with SM and Cosmology. All the fundamental particles of the SM such as quarks, leptons and weak intermediate vector-gauge Bosons except one Higgs boson H 0 have been discovered and there masses and spins have been determined. The SM is stunning. Until now, no cracks have been found. There is no experiment that contradicts the SM. Moreover there is nothing observed beyond the SM. The SM works better and better. We proposed to construct colour singular nuclear forces theory based on Quantum Chromodynamics (QCD). As well Theological aspects of the BIG BANG

  5. On the composition of an arbitrary collection of SU(2) spins: an enumerative combinatoric approach

    Science.gov (United States)

    Gyamfi, J. A.; Barone, V.

    2018-03-01

    The whole enterprise of spin compositions can be recast as simple enumerative combinatoric problems. We show here that enumerative combinatorics (Stanley 2011 Enumerative Combinatorics (Cambridge Studies in Advanced Mathematics vol 1) (Cambridge: Cambridge University Press)) is a natural setting for spin composition, and easily leads to very general analytic formulae—many of which hitherto not present in the literature. Based on it, we propose three general methods for computing spin multiplicities; namely, (1) the multi-restricted composition, (2) the generalized binomial and (3) the generating function methods. Symmetric and anti-symmetric compositions of SU(2) spins are also discussed, using generating functions. Of particular importance is the observation that while the common Clebsch-Gordan decomposition—which considers the spins as distinguishable—is related to integer compositions, the symmetric and anti-symmetric compositions (where one considers the spins as indistinguishable) are obtained considering integer partitions. The integers in question here are none other than the occupation numbers of the Holstein-Primakoff bosons. The pervasiveness of q-analogues in our approach is a testament to the fundamental role they play in spin compositions. In the appendix, some new results in the power series representation of Gaussian polynomials (or q-binomial coefficients)—relevant to symmetric and antisymmetric compositions—are presented.

  6. On grand unified SU(8)sub(L) x SU(8)sub(R) model

    International Nuclear Information System (INIS)

    Pirogov, Yu.F.

    1980-01-01

    In the model of early chiral grand unification SU(8)sub(L)xSU(8)sub(R) with intermediate symmetry hierarchies the radiation corrections for sinsup(2)thetasub(W)(μ) and α(μ) are calculated and unification mass M 8 is found in the one loop approximation with Higgs fields contribution being neglected. It is shown that there exists a natural hierarchy, leading to the decrease of sinsup(2)thetasub(W)(Msub(W)) down to the value sinsup(2)thetasub(W)=1/5-1/4 and simultaneous decrease of M 8 down to M 8 =(10 6 -10 7 ) GeV as compared with the values when there is no hierarchy [ru

  7. Simplifying numerical ray tracing for two-dimensional non circularly symmetric models of the human eye.

    Science.gov (United States)

    Jesus, Danilo A; Iskander, D Robert

    2015-12-01

    Ray tracing is a powerful technique to understand the light behavior through an intricate optical system such as that of a human eye. The prediction of visual acuity can be achieved through characteristics of an optical system such as the geometrical point spread function. In general, its precision depends on the number of discrete rays and the accurate surface representation of each eye's components. Recently, a method that simplifies calculation of the geometrical point spread function has been proposed for circularly symmetric systems [Appl. Opt.53, 4784 (2014)]. An extension of this method to 2D noncircularly symmetric systems is proposed. In this method, a two-dimensional ray tracing procedure for an arbitrary number of surfaces and arbitrary surface shapes has been developed where surfaces, rays, and refractive indices are all represented in functional forms being approximated by Chebyshev polynomials. The Liou and Brennan anatomically accurate eye model has been adapted and used for evaluating the method. Further, real measurements of the anterior corneal surface of normal, astigmatic, and keratoconic eyes were substituted for the first surface in the model. The results have shown that performing ray tracing, utilizing the two-dimensional Chebyshev function approximation, is possible for noncircularly symmetric models, and that such calculation can be performed with a newly created Chebfun toolbox.

  8. A minimal spontaneous CP violation model with small neutrino mass and SU(2) x U(1) x Z3 symmetry

    International Nuclear Information System (INIS)

    Geng, C.Q.; Ng, J.N.

    1988-04-01

    It is shown that spontaneous CP violation and natural flavor conservation can occur in the SU(2) L x U(1) Y model based on two Higgs doublet and one Higgs singlet fields with a Z 3 discrete symmetry. Physical CP nonconservation is purely due to scalar-pseudoscalar mixings. In order for this to be a major source of CP violation a light spin-O boson of mass less than 10 GeV is required. The see-saw mechanism can be implemented to generate small neutrino masses. The model implies a relatively large electric dipole moment for charged leptons and small value for ε'/ε

  9. Modeling, measurement, and 3-D equilibrium reconstruction of the bootstrap current in the Helically Symmetric Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J. C.; Talmadge, J. N.; Anderson, D. T. [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Hanson, J. D. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)

    2014-09-15

    The bootstrap current for three electron cyclotron resonance heated plasma scenarios in a quasihelically symmetric stellarator (the Helically Symmetric Experiment) are analyzed and compared to a neoclassical transport code PENTA. The three conditions correspond to 50 kW input power with a resonance that is off-axis, 50 kW on-axis heating and 100 kW on-axis heating. When the heating location was moved from off-axis to on-axis with 50 kW heating power, the stored energy and the extrapolated steady-state current were both observed to increase. When the on-axis heating power was increased from 50 kW to 100 kW, the stored energy continued to increase while the bootstrap current slightly decreased. This trend is qualitatively in agreement with the calculations which indicate that a large positive electric field for the 100 kW case was driving the current negative in a small region close to the magnetic axis and accounting for the decrease in the total integrated current. This trend in the calculations is only observed to occur when momentum conservation between particle species is included. Without momentum conservation, the calculated bootstrap current increases monotonically. We show that the magnitude of the bootstrap current as calculated by PENTA agrees better with the experiment when momentum conservation between plasma species is included in the calculation. The total current was observed in all cases to flow in a direction to unwind the transform, unlike in a tokamak in which the bootstrap current adds to the transform. The 3-D inductive response of the plasma is simulated to predict the evolution of the current profile during the discharge. The 3-D equilibrium reconstruction code V3FIT is used to reconstruct profiles of the plasma pressure and current constrained by measurements with a set of magnetic diagnostics. The reconstructed profiles are consistent with the measured plasma pressure profile and the simulated current profile when the

  10. Symmetric Space Cartan Connections and Gravity in Three and Four Dimensions

    Directory of Open Access Journals (Sweden)

    Derek K. Wise

    2009-08-01

    Full Text Available Einstein gravity in both 3 and 4 dimensions, as well as some interesting generalizations, can be written as gauge theories in which the connection is a Cartan connection for geometry modeled on a symmetric space. The relevant models in 3 dimensions include Einstein gravity in Chern-Simons form, as well as a new formulation of topologically massive gravity, with arbitrary cosmological constant, as a single constrained Chern-Simons action. In 4 dimensions the main model of interest is MacDowell-Mansouri gravity, generalized to include the Immirzi parameter in a natural way. I formulate these theories in Cartan geometric language, emphasizing also the role played by the symmetric space structure of the model. I also explain how, from the perspective of these Cartan-geometric formulations, both the topological mass in 3d and the Immirzi parameter in 4d are the result of non-simplicity of the Lorentz Lie algebra so(3,1 and its relatives. Finally, I suggest how the language of Cartan geometry provides a guiding principle for elegantly reformulating any 'gauge theory of geometry'.

  11. An Explicit Formula for Symmetric Polynomials Related to the Eigenfunctions of Calogero-Sutherland Models

    Directory of Open Access Journals (Sweden)

    Martin Hallnäs

    2007-03-01

    Full Text Available We review a recent construction of an explicit analytic series representation for symmetric polynomials which up to a groundstate factor are eigenfunctions of Calogero-Sutherland type models. We also indicate a generalisation of this result to polynomials which give the eigenfunctions of so-called 'deformed' Calogero-Sutherland type models.

  12. An analytical drain current model for symmetric double-gate MOSFETs

    Science.gov (United States)

    Yu, Fei; Huang, Gongyi; Lin, Wei; Xu, Chuanzhong

    2018-04-01

    An analytical surface-potential-based drain current model of symmetric double-gate (sDG) MOSFETs is described as a SPICE compatible model in this paper. The continuous surface and central potentials from the accumulation to the strong inversion regions are solved from the 1-D Poisson's equation in sDG MOSFETs. Furthermore, the drain current is derived from the charge sheet model as a function of the surface potential. Over a wide range of terminal voltages, doping concentrations, and device geometries, the surface potential calculation scheme and drain current model are verified by solving the 1-D Poisson's equation based on the least square method and using the Silvaco Atlas simulation results and experimental data, respectively. Such a model can be adopted as a useful platform to develop the circuit simulator and provide the clear understanding of sDG MOSFET device physics.

  13. Determination of symmetrical index for 3H in river waters

    International Nuclear Information System (INIS)

    Jankovic, M.; Todorovic, D.; Jankovic, B.; Nikolic, J.; Sarap, N.

    2011-01-01

    The paper presents the results of determining the symmetric index, which describes the magnitude of the tritium content changes with time, for samples of Sava and Danube river waters and Mlaka creek water. The results cover the period from 2003 to 2008. It was shown that the value of the symmetric index is the highest for Mlaka samples, which is in accordance with the fact that in these samples the highest concentration of tritium was found in comparison with samples of the Sava and Danube. [sr

  14. Cultural differences of a dual-motivation model on health risk behaviour

    NARCIS (Netherlands)

    Ohtomo, S.; Hirose, Y.; Midden, C.J.H.

    2011-01-01

    This study investigated the cultural differences of a dual-motivation model of unhealthy risk behaviour in the Netherlands and Japan. Our model assumes dual motivations involved in unhealthy eating behaviour, a behavioural willingness that leads behaviour unintentionally or subconsciously and a

  15. Flavor and CP invariant composite Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Redi, Michele [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; INFN, Firenze (Italy); Weiler, Andreas [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-09-15

    The flavor protection in composite Higgs models with partial compositeness is known to be insufficient. We explore the possibility to alleviate the tension with CP odd observables by assuming that flavor or CP are symmetries of the composite sector, broken by the coupling to Standard Model fields. One realization is that the composite sector has a flavor symmetry SU(3) or SU(3){sub U} x SU(3){sub D} which allows us to realize Minimal Flavor Violation. We show how to avoid the previously problematic tension between a flavor symmetric composite sector and electro-weak precision tests. Some of the light quarks are substantially or even fully composite with striking signals at the LHC. We discuss the constraints from recent dijet mass measurements and give an outlook on the discovery potential. We also present a different protection mechanism where we separate the generation of flavor hierarchies and the origin of CP violation. This can eliminate or safely reduce unwanted CP violating effects, realizing effectively ''Minimal CP Violation'' and is compatible with a dynamical generation of flavor at low scales. (orig.)

  16. Modeling and simulation of a dual-junction CIGS solar cell using Silvaco ATLAS

    OpenAIRE

    Fotis, Konstantinos

    2012-01-01

    Approved for public release; distribution is unlimited. The potential of designing a dual-junction Copper Indium Gallium Selenide (CIGS) photovoltaic cell is investigated in this thesis. Research into implementing a dual-junction solar cell, using a CIGS bottom cell and different thin-film designs as a top cell, was conducted in order to increase the current record efficiency of 20.3% for a single CIGS cell. This was accomplished through modeling and simulation using Silvaco ATLASTM, an ad...

  17. Decays of the new and old hadrons. I. On the universality of baryons and mesons. [SU-4 breaking

    Energy Technology Data Exchange (ETDEWEB)

    Bando, M; Toya, M [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, Hiroshi

    1978-03-01

    The decay phenomena of the new and old hadrons are investigated on the basis of the relativistic quark model. It is shown that the quark transition matrix elements in the mesons exactly coincide with those in the baryons. This fact facilitates predict the photo-decays of the L=1 mesons, experiment is now in progress at /ion of/of which the/ Fermilab. Our analysis of the decays of the new mesons suggests the possibility of the simple SU(4) breaking pattern, that is, the SU(4) breaking factors are ascribed to the current-hadron couplings such as ..gamma.. sub(V) or f sub(ps) in addition to the standard mass breaking, keeping the symmetric property of the strong vertices.

  18. Global analysis of general SU(2)xSU(2)xU(1) models with precision data

    International Nuclear Information System (INIS)

    Hsieh, Ken; Yu, Jiang-Hao; Yuan, C.-P.; Schmitz, Kai

    2010-01-01

    We present the results of a global analysis of a class of models with an extended electroweak gauge group of the form SU(2)xSU(2)xU(1), often denoted as G(221) models, which include as examples the left-right, the leptophobic, the hadrophobic, the fermiophobic, the un-unified, and the nonuniversal models. Using an effective Lagrangian approach, we compute the shifts to the coefficients in the electroweak Lagrangian due to the new heavy gauge bosons, and obtain the lower bounds on the masses of the Z ' and W ' bosons. The analysis of the electroweak parameter bounds reveals a consistent pattern of several key observables that are especially sensitive to the effects of new physics and thus dominate the overall shape of the respective parameter contours.

  19. Global analysis of general SU(2) x SU(2) x U(1) models with precision data

    International Nuclear Information System (INIS)

    Hsieh, Ken; Yu, Jiang-Hao; Yuan, C.P.; Schmitz, Kai; Michigan State Univ., East Lansing, MI

    2010-05-01

    We present the results of a global analysis of a class of models with an extended electroweak gauge group of the form SU(2) x SU(2) x U(1), often denoted as G(221) models, which include as examples the left-right, the lepto-phobic, the hadro-phobic, the fermio-phobic, the un-unified, and the non-universal models. Using an effective Lagrangian approach, we compute the shifts to the coeffcients in the electroweak Lagrangian due to the new heavy gauge bosons, and obtain the lower bounds on the masses of the Z' and W' bosons. The analysis of the electroweak parameter bounds reveals a consistent pattern of several key observables that are especially sensitive to the effects of new physics and thus dominate the overall shape of the respective parameter contours. (orig.)

  20. Superoperators in the dual model with coloured quarks

    International Nuclear Information System (INIS)

    Manida, S.N.

    1978-01-01

    The derivation of the dual model with coloured quarks is considered. The model is represented as a superoperator generalization of the Bardakci-Halpern model. It is shown that the three-regeon vertex of the model appears to be more compact and transparent

  1. Numerical renormalization group studies of the partially brogen SU(3) Kondo model

    International Nuclear Information System (INIS)

    Fuh Chuo, Evaristus

    2013-04-01

    The two-channel Kondo (2CK) effect with its exotic ground state properties has remained difficult to realize in physical systems. At low energies, a quantum impurity with orbital degree of freedom, like a proton bound in an interstitial lattice space, comprises a 3-level system with a unique ground state and (at least) doubly degenerate rotational excitations with excitation energy Δ 0 . When immersed in a metal, electronic angular momentum scattering induces transitions between any two of these levels (couplings J), while the electron spin is conserved. We show by extensive numerical renormalization group (NRG) calculations that without fi ne-tuning of parameters this system exhibits a 2CK fixed point, due to Kondo correlations in the excited-state doublet whose degeneracy is stabilized by the host lattice parity, while the channel symmetry (electron spin) is guaranteed by time reversal symmetry. We find a pronounced plateau in the entropy at S(T K 0 )=k B ln 2 between the high-T value, S(T>>Δ 0 )=k B ln 3, and the 2CK ground state value, S(0)=k B ln √(2). This indicates a downward renormalization of the doublet below the non-interacting ground state, thus realizing the 2CK fixed point, in agreement with earlier conjectures. We mapped out the phase diagram of the model in the J-Δ 0 plane. The Kondo temperature T K shows non-monotonic J-dependence, characteristic for 2CK systems. Beside the two-channel Kondo effect of the model, we also study the single-channel version, which is realized by applying a strong magnetic fi eld to the conduction band electrons so that their degeneracy is lifted and consequently having only one kind of electrons scattering off the impurity. This single-channel case is easier to analyze since the Hilbert space is not as large as that of the 2CK. We equally find a downward renormalization of the excited state energy by the Kondo correlations in the SU(2) doublet. In a wide range of parameter values this stabilizes the single

  2. Non-perturbative plaquette in 3d pure SU(3)

    CERN Document Server

    Hietanen, A; Laine, Mikko; Rummukainen, K; Schröder, Y

    2005-01-01

    We present a determination of the elementary plaquette and, after the subsequent ultraviolet subtractions, of the finite part of the gluon condensate, in lattice regularization in three-dimensional pure SU(3) gauge theory. Through a change of regularization scheme to MSbar and a matching back to full four-dimensional QCD, this result determines the first non-perturbative contribution in the weak-coupling expansion of hot QCD pressure.

  3. Dual-Pump CARS Development and Application to Supersonic Combustion

    Science.gov (United States)

    Magnotti, Gaetano; Cutler, Andrew D.

    2012-01-01

    A dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS) instrument has been developed to obtain simultaneous measurements of temperature and absolute mole fractions of N2, O2 and H2 in supersonic combustion and generate databases for validation and development of CFD codes. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. Approximately one million dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.

  4. On the quark structure of resonance states in dual models

    International Nuclear Information System (INIS)

    Volkov, D.V.; Zheltukhin, A.A.; Pashnev, A.I.

    1975-01-01

    It is shown using as an example the Veneziano dual model, that each particular dual model already contains a certain latent quark structure unambiauously determined by internal properties of the dual model. To prove this degeneration of the resonance state spectrum is studied by introducing an additional disturbing interaction into the model being considered. Induced transitions of particles into a vacuum act as such an additional disturbance. This method complements the known factorization method of Fubini, Gordon and Veneziano and turns out to be free from an essential limitation of the latter connected with implicit assumption about the basence of internal additive laws of conservation in the model. By using the method of induced transitions of particles into a vacuum it has been possible to show that the resonance state spectrum is indeed more degenerated than it should be expected from the factorization theorem, and that the supplementary degeneration corresponds to the quark model with an infinite number of quarks of the increasing mass. Structures of some terms of the dual amplitude expansion over the degrees of the constant of the induced transition of particles to vacuum are considered; it is shown that the summation of this expansion may be reduced to a solution of a certain integral equation. On the basis of the integral equation obtained an integral representation ofr dual amplitudes is established. The problems related with degeneration of resonance states and with determination of additive quantum numbers leading to the quark interpretation of the degeneration being considered are discussed

  5. Dual processing model of medical decision-making

    Directory of Open Access Journals (Sweden)

    Djulbegovic Benjamin

    2012-09-01

    Full Text Available Abstract Background Dual processing theory of human cognition postulates that reasoning and decision-making can be described as a function of both an intuitive, experiential, affective system (system I and/or an analytical, deliberative (system II processing system. To date no formal descriptive model of medical decision-making based on dual processing theory has been developed. Here we postulate such a model and apply it to a common clinical situation: whether treatment should be administered to the patient who may or may not have a disease. Methods We developed a mathematical model in which we linked a recently proposed descriptive psychological model of cognition with the threshold model of medical decision-making and show how this approach can be used to better understand decision-making at the bedside and explain the widespread variation in treatments observed in clinical practice. Results We show that physician’s beliefs about whether to treat at higher (lower probability levels compared to the prescriptive therapeutic thresholds obtained via system II processing is moderated by system I and the ratio of benefit and harms as evaluated by both system I and II. Under some conditions, the system I decision maker’s threshold may dramatically drop below the expected utility threshold derived by system II. This can explain the overtreatment often seen in the contemporary practice. The opposite can also occur as in the situations where empirical evidence is considered unreliable, or when cognitive processes of decision-makers are biased through recent experience: the threshold will increase relative to the normative threshold value derived via system II using expected utility threshold. This inclination for the higher diagnostic certainty may, in turn, explain undertreatment that is also documented in the current medical practice. Conclusions We have developed the first dual processing model of medical decision-making that has potential to

  6. The SU(2|3) dynamic two-loop form factors

    International Nuclear Information System (INIS)

    Brandhuber, A.; Kostacińska, M.; Penante, B.; Travaglini, G.; Young, D.

    2016-01-01

    We compute two-loop form factors of operators in the SU(2|3) closed subsector of N = 4 supersymmetric Yang-Mills. In particular, we focus on the non-protected, dimension-three operators Tr(X[Y,Z]) and Tr(ψψ) for which we compute the four possible two-loop form factors, and corresponding remainder functions, with external states 〈X̄ȲZ̄| and 〈ψ̄ψ̄|. Interestingly, the maximally transcendental part of the two-loop remainder of 〈X̄ȲZ̄|Tr(X[Y,Z])|0〉 turns out to be identical to that of the corresponding known quantity for the half-BPS operator Tr(X"3). We also find a surprising connection between the terms subleading in transcendentality and certain a priori unrelated remainder densities introduced in the study of the spin chain Hamiltonian in the SU(2) sector. Next, we use our calculation to resolve the mixing, recovering anomalous dimensions and eigenstates of the dilatation operator in the SU(2|3) sector at two loops. We also speculate on potential connections between our calculations in N = 4 super Yang-Mills and Higgs + multi-gluon amplitudes in QCD in an effective Lagrangian approach.

  7. The SU(2|3) dynamic two-loop form factors

    Energy Technology Data Exchange (ETDEWEB)

    Brandhuber, A.; Kostacińska, M. [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom); Penante, B. [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom); Institut für Physik und IRIS Adlershof, Humboldt Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); Travaglini, G.; Young, D. [Centre for Research in String Theory, School of Physics and Astronomy,Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom)

    2016-08-23

    We compute two-loop form factors of operators in the SU(2|3) closed subsector of N = 4 supersymmetric Yang-Mills. In particular, we focus on the non-protected, dimension-three operators Tr(X[Y,Z]) and Tr(ψψ) for which we compute the four possible two-loop form factors, and corresponding remainder functions, with external states 〈X̄ȲZ̄| and 〈ψ̄ψ̄|. Interestingly, the maximally transcendental part of the two-loop remainder of 〈X̄ȲZ̄|Tr(X[Y,Z])|0〉 turns out to be identical to that of the corresponding known quantity for the half-BPS operator Tr(X{sup 3}). We also find a surprising connection between the terms subleading in transcendentality and certain a priori unrelated remainder densities introduced in the study of the spin chain Hamiltonian in the SU(2) sector. Next, we use our calculation to resolve the mixing, recovering anomalous dimensions and eigenstates of the dilatation operator in the SU(2|3) sector at two loops. We also speculate on potential connections between our calculations in N = 4 super Yang-Mills and Higgs + multi-gluon amplitudes in QCD in an effective Lagrangian approach.

  8. Gauge theory of weak, electromagnetic and dual electromagnetic interactions

    International Nuclear Information System (INIS)

    Soln, J.

    1980-01-01

    An SU 2 x U 1 algebra, in addition to the ordinary electric charge, also establishes the existence of the dual electric charge. This is taken as an indication of the existence of dual electromagnetic interactions in nature. Here, the unification of weak, electromagnetic and dual electromagnetic interactions is performed. The Yang-Mills-type group which contains the electromagnetic, dual electromagnetic and weak currents is SUsub(L,2) x U 1 x U' 1 . The masses of vector mesons are generated through the Higgs-Kibble mechanism. A simple consistency requirement suggests that dual electromagnetism and ordinary electromagnetism have the same strengths, leading the theory to a rather good agreement with experiments. (author)

  9. The Complexity of Developmental Predictions from Dual Process Models

    Science.gov (United States)

    Stanovich, Keith E.; West, Richard F.; Toplak, Maggie E.

    2011-01-01

    Drawing developmental predictions from dual-process theories is more complex than is commonly realized. Overly simplified predictions drawn from such models may lead to premature rejection of the dual process approach as one of many tools for understanding cognitive development. Misleading predictions can be avoided by paying attention to several…

  10. Crossing-symmetric solutions to low equations

    International Nuclear Information System (INIS)

    McLeod, R.J.; Ernst, D.J.

    1985-01-01

    Crossing symmetric models of the pion-nucleon interaction in which crossing symmetry is kept to lowest order in msub(π)/msub(N) are investigated. Two iterative techniques are developed to solve the crossing-symmetric Low equation. The techniques are used to solve the original Chew-Low equations and their generalizations to include the coupling to the pion-production channels. Small changes are found in comparison with earlier results which used an iterative technique proposed by Chew and Low and which did not produce crossing-symmetric results. The iterative technique of Chew and Low is shown to fail because of its inability to produce zeroes in the amplitude at complex energies while physical solutions to the model require such zeroes. We also prove that, within the class of solutions such that phase shifts approach zero for infinite energy, the solution to the Low equation is unique. (orig.)

  11. The Explicit Determinations Of Dual Plane Curves And Dual Helices In Terms Of Its Dual Curvature And Dual Torsion

    OpenAIRE

    Lee Jae Won; Choi Jin Ho; Jin Dae Ho

    2014-01-01

    In this paper, we give the explicit determinations of dual plane curves, general dual helices and dual slant helices in terms of its dual curvature and dual torsion as a fundamental theory of dual curves in a dual 3-space

  12. Symmetric metamaterials based on flower-shaped structure

    International Nuclear Information System (INIS)

    Tuong, P.V.; Park, J.W.; Rhee, J.Y.; Kim, K.W.; Cheong, H.; Jang, W.H.; Lee, Y.P.

    2013-01-01

    We proposed new models of metamaterials (MMs) based on a flower-shaped structure (FSS), whose “meta-atoms” consist of two flower-shaped metallic parts separated by a dielectric layer. Like the non-symmetric MMs based on cut-wire-pairs or electric ring resonators, the symmetrical FSS demonstrates the negative permeability at GHz frequencies. Employing the results, we designed a symmetric negative-refractive-index MM [a symmetric combined structure (SCS)], which is composed of FSSs and cross continuous wires. The MM properties of the FSS and the SCS are presented numerically and experimentally. - Highlights: • A new designed of sub-wavelength metamaterial, flower-shaped structure was proposed. • Flower-shaped meta-atom illustrated effective negative permeability. • Based on the meta-atom, negative refractive index was conventionally gained. • Negative refractive index was demonstrated with symmetric properties for electromagnetic wave. • Dimensional parameters were studied under normal electromagnetic wave

  13. Semileptonic B-meson decays in SU(3)

    International Nuclear Information System (INIS)

    Li Zuohong; Hou Yunzhi

    1994-01-01

    Based on the SU(3) approximate symmetry in the strong interaction three-body and four-body semileptonic B-meson decays are analyzed. Relations between decay rates are derived. Some of these relations may provide information on the nature of various competing dynamical effects that can occur in semileptonic B-meson decays

  14. El "régimen dual" en Israel desde 1967

    Directory of Open Access Journals (Sweden)

    Lev Grinberg

    2008-01-01

    Full Text Available Este artículo aborda el establecimiento del peculiar régimen de dominación dual de Israel desde 1967, argumentando que la estructura de este régimen convierte a las élites militares en un actor político crucial. El régimen dual se basa en la separación geográfi ca entre dos regímenes diferentes de control y legitimación. Argumentaré aquí que la guerra de 1967 fue un parteaguas histórico, ya que acarreó un desdibujamiento de las fronteras israelíes y la llegada de un régimen dual que legitima la división del poder político entre las élites militares y civiles que gobiernan Israel-Palestina. Mi objetivo es mostrar las contradicciones inherentes de este régimen dual de “ocupación democrática” y así arrojar luz sobre la dinámica de los espacios políticos de acuerdo a la población ocupada: su apertura, por reconocimiento y negociación, y su cancelación, por el uso de la violencia.

  15. An analytical drain current model for symmetric double-gate MOSFETs

    Directory of Open Access Journals (Sweden)

    Fei Yu

    2018-04-01

    Full Text Available An analytical surface-potential-based drain current model of symmetric double-gate (sDG MOSFETs is described as a SPICE compatible model in this paper. The continuous surface and central potentials from the accumulation to the strong inversion regions are solved from the 1-D Poisson’s equation in sDG MOSFETs. Furthermore, the drain current is derived from the charge sheet model as a function of the surface potential. Over a wide range of terminal voltages, doping concentrations, and device geometries, the surface potential calculation scheme and drain current model are verified by solving the 1-D Poisson’s equation based on the least square method and using the Silvaco Atlas simulation results and experimental data, respectively. Such a model can be adopted as a useful platform to develop the circuit simulator and provide the clear understanding of sDG MOSFET device physics.

  16. Facade Layout Symmetrization

    KAUST Repository

    Jiang, Haiyong

    2016-04-11

    We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.

  17. Facade Layout Symmetrization

    KAUST Repository

    Jiang, Haiyong; Dong, Weiming; Yan, Dongming; Zhang, Xiaopeng

    2016-01-01

    We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.

  18. Comparing single- and dual-process models of memory development.

    Science.gov (United States)

    Hayes, Brett K; Dunn, John C; Joubert, Amy; Taylor, Robert

    2017-11-01

    This experiment examined single-process and dual-process accounts of the development of visual recognition memory. The participants, 6-7-year-olds, 9-10-year-olds and adults, were presented with a list of pictures which they encoded under shallow or deep conditions. They then made recognition and confidence judgments about a list containing old and new items. We replicated the main trends reported by Ghetti and Angelini () in that recognition hit rates increased from 6 to 9 years of age, with larger age changes following deep than shallow encoding. Formal versions of the dual-process high threshold signal detection model and several single-process models (equal variance signal detection, unequal variance signal detection, mixture signal detection) were fit to the developmental data. The unequal variance and mixture signal detection models gave a better account of the data than either of the other models. A state-trace analysis found evidence for only one underlying memory process across the age range tested. These results suggest that single-process memory models based on memory strength are a viable alternative to dual-process models for explaining memory development. © 2016 John Wiley & Sons Ltd.

  19. Supersymmetric flipped SU(5) revitalized

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, I.; Ellis, J.; Hagelin, J.S.; Nanopoulos, D.V.

    1987-08-06

    We describe a simple N = 1 supersymmetric GUT based on the group SU(5) x U(1) which has the following virtues: the gauge group is broken down to the SU(3)/sub C/ x SU(2)/sub L/ x U(1)/sub y/ of the standard model using just 10, 10 Higgs representations, and the doublet-triplet mass splitting problem is solved naturally by a very simple missing-partner mechanism. The successful supersymmetric GUT prediction for sin/sup 2/theta/sub w/ can be maintained, whilst there are no fermion mass relations. The gauge group and representation structure of the model may be obtainable from the superstring.

  20. Equation of state and viscosities from a gravity dual of the gluon plasma

    Directory of Open Access Journals (Sweden)

    R. Yaresko

    2015-07-01

    Full Text Available Employing new precision data of the equation of state of the SU(3 Yang–Mills theory (gluon plasma the dilaton potential of a gravity-dual model is adjusted in the temperature range (1–10Tc within a bottom-up approach. The ratio of bulk viscosity to shear viscosity follows then as ζ/η≈πΔvs2 for Δvs2<0.2 and achieves a maximum value of 0.94 at Δvs2≈0.3, where Δvs2≡1/3−vs2 is the non-conformality measure and vs2 is the velocity of sound squared, while the ratio of shear viscosity to entropy density is known as (4π−1 for the considered set-up with Hilbert action on the gravity side.

  1. Symmetric cryptographic protocols

    CERN Document Server

    Ramkumar, Mahalingam

    2014-01-01

    This book focuses on protocols and constructions that make good use of symmetric pseudo random functions (PRF) like block ciphers and hash functions - the building blocks for symmetric cryptography. Readers will benefit from detailed discussion of several strategies for utilizing symmetric PRFs. Coverage includes various key distribution strategies for unicast, broadcast and multicast security, and strategies for constructing efficient digests of dynamic databases using binary hash trees.   •        Provides detailed coverage of symmetric key protocols •        Describes various applications of symmetric building blocks •        Includes strategies for constructing compact and efficient digests of dynamic databases

  2. Global analysis of general SU(2) x SU(2) x U(1) models with precision data

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Ken; Yu, Jiang-Hao; Yuan, C.P. [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Schmitz, Kai [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy

    2010-05-15

    We present the results of a global analysis of a class of models with an extended electroweak gauge group of the form SU(2) x SU(2) x U(1), often denoted as G(221) models, which include as examples the left-right, the lepto-phobic, the hadro-phobic, the fermio-phobic, the un-unified, and the non-universal models. Using an effective Lagrangian approach, we compute the shifts to the coeffcients in the electroweak Lagrangian due to the new heavy gauge bosons, and obtain the lower bounds on the masses of the Z' and W' bosons. The analysis of the electroweak parameter bounds reveals a consistent pattern of several key observables that are especially sensitive to the effects of new physics and thus dominate the overall shape of the respective parameter contours. (orig.)

  3. SU-G-IeP3-04: Effective Dose Measurements in Fast Kvp Switch Dual Energy Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raudabaugh, J; Moore, B [Duke Medical Physics, Duke Radiation Dosimetry Laboratory (United States); Nguyen, G; Yoshizumi, T [Duke Radiology, Duke Radiation Dosimetry Laboratory (United States); Lowry, C; Nelson, R [Duke Radiology (United States)

    2016-06-15

    Purpose: The objective of this study was two-fold: (a) to test a new approach to approximating organ dose by using the effective energy of the combined 80kV/140kV beam in dual-energy (DE) computed tomography (CT), and (b) to derive the effective dose (ED) in the abdomen-pelvis protocol in DECT. Methods: A commercial dual energy CT scanner was employed using a fast-kV switch abdomen/pelvis protocol alternating between 80 kV and 140 kV. MOSFET detectors were used for organ dose measurements. First, an experimental validation of the dose equivalency between MOSFET and ion chamber (as a gold standard) was performed using a CTDI phantom. Second, the ED of DECT scans was measured using MOSFET detectors and an anthropomorphic phantom. For ED calculations, an abdomen/pelvis scan was used using ICRP 103 tissue weighting factors; ED was also computed using the AAPM Dose Length Product (DLP) method and compared to the MOSFET value. Results: The effective energy was determined as 42.9 kV under the combined beam from half-value layer (HVL) measurement. ED for the dual-energy scan was calculated as 16.49 ± 0.04 mSv by the MOSFET method and 14.62 mSv by the DLP method. Conclusion: Tissue dose in the center of the CTDI body phantom was 1.71 ± 0.01 cGy (ion chamber) and 1.71 ± 0.06 (MOSFET) respectively; this validated the use of effective energy method for organ dose estimation. ED from the abdomen-pelvis scan was calculated as 16.49 ± 0.04 mSv by MOSFET and 14.62 mSv by the DLP method; this suggests that the DLP method provides a reasonable approximation to the ED.

  4. SU(5) without SU(5): why B-L is conserved and baryon number not in unified models of quarks and leptons

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1980-09-01

    Quark-lepton unification is examined without assuming higher symmetries on more general gauge theories. In particular, properties are sought which are generally attributed to SU(5) models which are already present without the assumption of SU(5)

  5. Dual kinetic curves in reversible electrochemical systems.

    Directory of Open Access Journals (Sweden)

    Michael J Hankins

    Full Text Available We introduce dual kinetic chronoamperometry, in which reciprocal relations are established between the kinetic curves of electrochemical reactions that start from symmetrical initial conditions. We have performed numerical and experimental studies in which the kinetic curves of the electron-transfer processes are analyzed for a reversible first order reaction. Experimental tests were done with the ferrocyanide/ferricyanide system in which the concentrations of each component could be measured separately using the platinum disk/gold ring electrode. It is shown that the proper ratio of the transient kinetic curves obtained from cathodic and anodic mass transfer limited regions give thermodynamic time invariances related to the reaction quotient of the bulk concentrations. Therefore, thermodynamic time invariances can be observed at any time using the dual kinetic curves for reversible reactions. The technique provides a unique possibility to extract the non-steady state trajectory starting from one initial condition based only on the equilibrium constant and the trajectory which starts from the symmetrical initial condition. The results could impact battery technology by predicting the concentrations and currents of the underlying non-steady state processes in a wide domain from thermodynamic principles and limited kinetic information.

  6. An alternative approach for modeling strength differential effect in sheet metals with symmetric yield functions

    Science.gov (United States)

    Kurukuri, Srihari; Worswick, Michael J.

    2013-12-01

    An alternative approach is proposed to utilize symmetric yield functions for modeling the tension-compression asymmetry commonly observed in hcp materials. In this work, the strength differential (SD) effect is modeled by choosing separate symmetric plane stress yield functions (for example, Barlat Yld 2000-2d) for the tension i.e., in the first quadrant of principal stress space, and compression i.e., third quadrant of principal stress space. In the second and fourth quadrants, the yield locus is constructed by adopting interpolating functions between uniaxial tensile and compressive stress states. In this work, different interpolating functions are chosen and the predictive capability of each approach is discussed. The main advantage of this proposed approach is that the yield locus parameters are deterministic and relatively easy to identify when compared to the Cazacu family of yield functions commonly used for modeling SD effect observed in hcp materials.

  7. Plane symmetric cosmological micro model in modified theory of Einstein’s general relativity

    Directory of Open Access Journals (Sweden)

    Panigrahi U.K.

    2003-01-01

    Full Text Available In this paper, we have investigated an anisotropic homogeneous plane symmetric cosmological micro-model in the presence of massless scalar field in modified theory of Einstein's general relativity. Some interesting physical and geometrical aspects of the model together with singularity in the model are discussed. Further, it is shown that this theory is valid and leads to Ein­stein's theory as the coupling parameter λ →>• 0 in micro (i.e. quantum level in general.

  8. More flavor SU(3) tests for new physics in CP violating B decays

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Yuval [Laboratory for Elementary-Particle Physics, Cornell University,Ithaca, N.Y. (United States); Ligeti, Zoltan [Ernest Orlando Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States); Robinson, Dean J. [Laboratory for Elementary-Particle Physics, Cornell University,Ithaca, N.Y. (United States); Ernest Orlando Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States); Department of Physics, University of California,Berkeley, CA 94720 (United States)

    2014-01-15

    The recent LHCb measurements of the B{sub s}→K{sup −}π{sup +} and B{sub s}→K{sup +}K{sup −} rates and CP asymmetries are in agreement with U-spin expectations from B{sub d}→K{sup +}π{sup −} and B{sub d}→π{sup +}π{sup −} results. We derive the complete set of isospin, U-spin, and SU(3) relations among the CP asymmetries in two-body charmless B→PP and B→PV decays, some of which are novel. To go beyond the unbroken SU(3) limit, we present relations which are properly defined and normalized to allow incorporation of SU(3) breaking in the simplest manner. We show that there are no CP relations beyond first order in SU(3) and isospin breaking. We also consider the corresponding relations for charm decays. Comparing parametrizations of the leading order sum rules with data can shed light on the applicability and limitations of both the flavor symmetry and factorization-based descriptions of SU(3) breaking. Two factorization relations can already be tested, and we show they agree with current data.

  9. Patología dual, esquizofrenia-cannabis

    OpenAIRE

    Pujol Domaleteche, Andrea

    2014-01-01

    El presente trabajo se va a abordar el tema de patología dual, es decir, la existencia simultánea en una misma persona de uno o varios trastornos por uso de sustancias (TUS) y de trastornos psiquiátrico . Más concretamente trata sobre la comorbilidad de la esquizofrenia y la dependencia a cannabis. Actualmente la patología dual es un tema que interesa en el ámbito médico ,psicológico,del trabajo social y de la investigación,porque se ha comprobado su eleva...

  10. Topological susceptibility in the SU(3) gauge theory

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Giusti, Leonardo; Pica, Claudio

    2004-01-01

    We compute the topological susceptibility for the SU(3) Yang--Mills theory by employing the expression of the topological charge density operator suggested by Neuberger's fermions. In the continuum limit we find r_0^4 chi = 0.059(3), which corresponds to chi=(191 +/- 5 MeV)^4 if F_K is used to set...

  11. Group theoretical construction of two-dimensional models with infinite sets of conservation laws

    International Nuclear Information System (INIS)

    D'Auria, R.; Regge, T.; Sciuto, S.

    1980-01-01

    We explicitly construct some classes of field theoretical 2-dimensional models associated with symmetric spaces G/H according to a general scheme proposed in an earlier paper. We treat the SO(n + 1)/SO(n) and SU(n + 1)/U(n) case, giving their relationship with the O(n) sigma-models and the CP(n) models. Moreover, we present a new class of models associated to the SU(n)/SO(n) case. All these models are shown to possess an infinite set of local conservation laws. (orig.)

  12. An inverse model for locating skin tumours in 3D using the genetic algorithm with the Dual Reciprocity Boundary Element Method

    Directory of Open Access Journals (Sweden)

    Fabrício Ribeiro Bueno

    Full Text Available Here, the Dual Reciprocity Boundary Element Method is used to solve the 3D Pennes Bioheat Equation, which together with a Genetic Algorithm, produces an inverse model capable of obtaining the location and the size of a tumour, having as data input the temperature distribution measured on the skin surface. Given that the objective function, which is solved inversely, involves the DRBEM (Dual Reciprocity Boundary Element Method the Genetic Algorithm in its usual form becomes slower, in such a way that it was necessary to develop functions based the solution history in order that the process becomes quicker and more accurate. Results for 8 examples are presented including cases with convection and radiation boundary conditions. Cases involving noise in the readings of the equipment are also considered. This technique is intended to assist health workers in the diagnosis of tumours.

  13. Crossing symmetric solution of the Chew-Low equation

    International Nuclear Information System (INIS)

    McLeod, R.J.; Ernst, D.J.

    1982-01-01

    An N/D dispersion theory is developed which solves crossing symmetric Low equations. The method is used to generate crossing symmetric solutions to the Chew-Low model. We show why the technique originally proposed by Chew and Low was incapable of producing solutions. (orig.)

  14. Bethe states of the trigonometric SU(3) spin chain with generic open boundaries

    Science.gov (United States)

    Sun, Pei; Xin, Zhirong; Qiao, Yi; Wen, Fakai; Hao, Kun; Cao, Junpeng; Li, Guang-Liang; Yang, Tao; Yang, Wen-Li; Shi, Kangjie

    2018-06-01

    By combining the algebraic Bethe ansatz and the off-diagonal Bethe ansatz, we investigate the trigonometric SU (3) model with generic open boundaries. The eigenvalues of the transfer matrix are given in terms of an inhomogeneous T - Q relation, and the corresponding eigenstates are expressed in terms of nested Bethe-type eigenstates which have well-defined homogeneous limit. This exact solution provides a basis for further analyzing the thermodynamic properties and correlation functions of the anisotropic models associated with higher rank algebras.

  15. Unified models of interactions with gauge-invariant variables

    International Nuclear Information System (INIS)

    Zet, Gheorghe

    2000-01-01

    A model of gauge theory is formulated in terms of gauge-invariant variables over a 4-dimensional space-time. Namely, we define a metric tensor g μν ( μ , ν = 0,1,2,3) starting with the components F μν a and F μν a tilde of the tensor associated to the Yang-Mills fields and its dual: g μν = 1/(3Δ 1/3 ) (ε abc F μα a F αβ b tilde F βν c ). Here Δ is a scale factor which can be chosen of a convenient form so that the theory may be self-dual or not. The components g μν are interpreted as new gauge-invariant variables. The model is applied to the case when the gauge group is SU(2). For the space-time we choose two different manifolds: (i) the space-time is R x S 3 , where R is the real line and S 3 is the three-dimensional sphere; (ii) the space-time is endowed with axial symmetry. We calculate the components g μν of the new metric for the two cases in terms of SU(2) gauge potentials. Imposing the supplementary condition that the new metric coincides with the initial metric of the space-time, we obtain the field equations (of the first order in derivatives) for the gauge fields. In addition, we determine the scale factor Δ which is introduced in the definition of g μν to ensure the property of self-duality for our SU(2) gauge theory, namely, 1/(2√g)(ε αβστ g μα g νβ F στ a = F μν a , g = det (g μν ). In the case (i) we show that the space-time R x S 3 is not compatible with a self-dual SU(2) gauge theory, but in the case (ii) the condition of self-duality is satisfied. The model developed in our work can be considered as a possible way to unification of general relativity and Yang-Mills theories. This means that the gauge theory can be formulated in the close analogy with the general relativity, i.e. the Yang-Mills equations are equivalent to Einstein equations with the right-hand side of a simple form. (authors)

  16. Three-Dimensional Electromagnetic Mixing Models for Dual-Phase Steel Microstructures

    Directory of Open Access Journals (Sweden)

    Weibin Zhou

    2018-03-01

    Full Text Available Linking the ferrite fraction in a dual-phase (DP steel microstructure and its electromagnetic properties is critical in the effort to develop on-line measurement techniques for phase transformation using electromagnetic (EM sensors. This paper developed a seamlessly integrated method for generating 3D microstructures and evaluating their equivalent permeability values. Both the generation of 3D microstructures and evaluation of equivalent permeability have been achieved through custom modelling packages developed by the authors. Voronoi modelling based on the random close packing of spheres (RCPS-VM was used to precisely control the ferrite fraction in DP steel microstructure, and an equivalent uniform field method for 3D finite element simulation was developed for efficient analysis.

  17. Unified SU(4) color models in ten dimensions

    International Nuclear Information System (INIS)

    Hanlon, B.E.; Joshi, G.C.

    1992-01-01

    Some aspects of constructing unified models with SU(4) as the color group via a unifying group defined in ten dimensions are examined. Four dimensional theories are recovered using the Coset Space Dimensional Reduction scheme. Candidate models are considered in order to highlight some of the difficulties in constructing realistic four dimensional theories. 30 refs

  18. Dual potentials in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Caticha, A.

    1988-01-01

    Motivated by the possibility that confinement and superconductivity are similar phenomena, dual potentials are introduced into Yang-Mills theory in two different ways. Both are extensions of Zwanziger's two-potential formalism for Abelian charges and monopoles to the non-Abelian case. In the first approach the dual potentials carry a color index and there is a rather simple, although nonlocal, dual-variable formulation. In the second approach dual variables are introduced into the so-called Abelian projection of the SU(2) Yang-Mills theory. An interesting feature is that the quartic contact interactions are absent and there is a special gauge choice for which the theory takes on a ''purely electromagnetic'' form. More important, however, is the appearance of an additional Abelian magnetic gauge symmetry the dynamical breaking of which may be associated with confinement

  19. Non Abelian T-duality in Gauged Linear Sigma Models

    Science.gov (United States)

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; Santos-Silva, Roberto

    2018-04-01

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM's as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they depend in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.

  20. Two updating methods for dissipative models with non symmetric matrices

    International Nuclear Information System (INIS)

    Billet, L.; Moine, P.; Aubry, D.

    1997-01-01

    In this paper the feasibility of the extension of two updating methods to rotating machinery models is considered, the particularity of rotating machinery models is to use non-symmetric stiffness and damping matrices. It is shown that the two methods described here, the inverse Eigen-sensitivity method and the error in constitutive relation method can be adapted to such models given some modification.As far as inverse sensitivity method is concerned, an error function based on the difference between right hand calculated and measured Eigen mode shapes and calculated and measured Eigen values is used. Concerning the error in constitutive relation method, the equation which defines the error has to be modified due to the non definite positiveness of the stiffness matrix. The advantage of this modification is that, in some cases, it is possible to focus the updating process on some specific model parameters. Both methods were validated on a simple test model consisting in a two-bearing and disc rotor system. (author)

  1. Computer Code for Interpreting 13C NMR Relaxation Measurements with Specific Models of Molecular Motion: The Rigid Isotropic and Symmetric Top Rotor Models and the Flexible Symmetric Top Rotor Model

    Science.gov (United States)

    2017-01-01

    top rotor superimposes an effective correlation time, τe, onto a symmetric top rotor to account for internal motion. 2. THEORY The purpose...specifically describe how simple 13C relaxation theory is used to describe quantitatively simple molecular 3 motions. More-detailed accounts ...of nuclear magnetic relaxation can be found in a number of basic textbooks (i.e., Farrar and Becker, 1971; Fukushima and Roeder, 1981; Harris, 1986

  2. Physically based model for extracting dual permeability parameters using non-Newtonian fluids

    Science.gov (United States)

    Abou Najm, M. R.; Basset, C.; Stewart, R. D.; Hauswirth, S.

    2017-12-01

    Dual permeability models are effective for the assessment of flow and transport in structured soils with two dominant structures. The major challenge to those models remains in the ability to determine appropriate and unique parameters through affordable, simple, and non-destructive methods. This study investigates the use of water and a non-Newtonian fluid in saturated flow experiments to derive physically-based parameters required for improved flow predictions using dual permeability models. We assess the ability of these two fluids to accurately estimate the representative pore sizes in dual-domain soils, by determining the effective pore sizes of macropores and micropores. We developed two sub-models that solve for the effective macropore size assuming either cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and fissures) pore geometries, with the micropores assumed to be represented by a single effective radius. Furthermore, the model solves for the percent contribution to flow (wi) corresponding to the representative macro and micro pores. A user-friendly solver was developed to numerically solve the system of equations, given that relevant non-Newtonian viscosity models lack forms conducive to analytical integration. The proposed dual-permeability model is a unique attempt to derive physically based parameters capable of measuring dual hydraulic conductivities, and therefore may be useful in reducing parameter uncertainty and improving hydrologic model predictions.

  3. Analytical evidence for the absence of spin glass transition on self-dual lattices

    International Nuclear Information System (INIS)

    Ohzeki, Masayuki; Nishimori, Hidetoshi

    2009-01-01

    We show strong evidence for the absence of a finite-temperature spin glass transition for the random-bond Ising model on self-dual lattices. The analysis is performed by an application of duality relations, which enables us to derive a precise but approximate location of the multicritical point on the Nishimori line. This method can be systematically improved to presumably give the exact result asymptotically. The duality analysis, in conjunction with the relationship between the multicritical point and the spin glass transition point for the symmetric distribution function of randomness, leads to the conclusion of the absence of a finite-temperature spin glass transition for the case of symmetric distribution. The result is applicable to the random-bond Ising model with ±J or Gaussian distribution and the Potts gauge glass on the square, triangular and hexagonal lattices as well as the random three-body Ising model on the triangular and the Union-Jack lattices and the four-dimensional random plaquette gauge model. This conclusion is exact provided that the replica method is valid and the asymptotic limit of the duality analysis yields the exact location of the multicritical point. (fast track communication)

  4. The search for a realistic flipped SU(5) string model

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.L. (Center for Theoretical Physics, Texas A and M Univ., College Station, TX (United States) Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Woodlands, TX (United States)); Nanopoulos, D.V. (Center for Theoretical Physics, Texas A and M Univ., College Station, TX (United States) Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Woodlands, TX (United States)); Yuan, K. (Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL (United States))

    1993-07-05

    We present an extensive search for a class of flipped SU(5) models built within the free fermionic formulation of the heterotic string. We describe a set of algorithms which constitute the basis for a computer program capable of generating systematically the massless spectrum and the superpotential of all possible models within the class we consider. Our search through the huge parameter space to be explored is simplified considerably by the constraint of N=1 spacetime supersymmetry and the need for extra Q, anti Q representations beyond the standard ones in order to possibly achieve string gauge coupling unification at scales of O(10[sup 18] GeV). Our results are remarkably simple and evidence the large degree of redundancy in this kind of constructions. We find one model with gauge group SU(5)xU(1)sub(Y tilde)xSO(10)[sub h]xSU(4)[sub h]xU(1)[sup 5] and fairly acceptable phenomenological properties. We study the D- and F-flatness constraints and the symmetry breaking pattern in this model and conclude that string gauge coupling unification is quite possible. (orig.)

  5. Sigma models in (4,4) harmonic superspace

    International Nuclear Information System (INIS)

    Ivanov, E.; Joint Inst. for Nuclear Research, Dubna; Sutulin, A.

    1994-04-01

    We define basics of (4,4) 2D harmonic superspace with two independent sets of SU(2) harmonic variables and apply it to construct new superfield actions of (4,4) supersymmetric two-dimensional sigma models with torsion and mutually commuting left and right complex structures, as well as of their massive deformations. We show that the generic off-shell sigma model action is the general action of constrained analytic superfields q (1,1) representing twisted N=4 multiplets in (4,4) harmonic superspace. The massive term of q (1,1) is shown to be unique; it generates a scalar potential the form of which is determined by the metric on the target bosonic manifold. We discuss in detail (4,4) supersymmetric group manifold SU(2)xU(1) WZNW sigma model and its Liouville deformation. A deep analogy of the relevant superconformally invariant analytic superfield action to that of the improved tensor N=2 4D multiplet is found. We define (4,4) duality transformation and find new off-shell dual representations of the previously constructed actions via unconstrained analytic (4,4) superfields. The main peculiarities of the (4,4) duality transformation are: (i) It preserves manifest (4,4) supersymmetry; (ii) dual actions reveal a gauge invariance needed for the onshell equivalence to the original description; (iii) in the actions dual to the massive ones 2D supersymmetry is modified off shell by SU(2) tensor central charges. The dual representation suggests some hints of how to describe (4,4) models with non-commuting complex structures in the harmonic superspace. (orig.)

  6. Could a Weak Coupling Massless SU(5) Theory Underly the Standard Model S-Matrix

    Science.gov (United States)

    White, Alan R.

    2011-04-01

    The unitary Critical Pomeron connects to a unique massless left-handed SU(5) theory that, remarkably, might provide an unconventional underlying unification for the Standard Model. Multi-regge theory suggests the existence of a bound-state high-energy S-Matrix that replicates Standard Model states and interactions via massless fermion anomaly dynamics. Configurations of anomalous wee gauge boson reggeons play a vacuum-like role. All particles, including neutrinos, are bound-states with dynamical masses (there is no Higgs field) that are formed (in part) by anomaly poles. The contributing zero-momentum chirality transitions break the SU(5) symmetry to vector SU(3)⊗U(1) in the S-Matrix. The high-energy interactions are vector reggeon exchanges accompanied by wee boson sums (odd-signature for the strong interaction and even-signature for the electroweak interaction) that strongly enhance couplings. The very small SU(5) coupling, αQUD ≲ 1/120, should be reflected in small (Majorana) neutrino masses. A color sextet quark sector, still to be discovered, produces both Dark Matter and Electroweak Symmetry Breaking. Anomaly color factors imply this sector could be produced at the LHC with large cross-sections, and would be definitively identified in double pomeron processes.

  7. Flowering to bloom of PeV scale supersymmetric left–right ...

    Indian Academy of Sciences (India)

    foreseeable future, and hence deserve the name just beyond the Standard Model (JBSM)?. Left–right symmetric model [1,2] needs a supersymmetric extension as an expedient for avoiding the hierarchy problem. The minimal set of Higgs superfields required, with their SU(3) ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L is, i = (1, 2, 2, 0),.

  8. Holographic duals of 3d S-fold CFTs arXiv

    CERN Document Server

    Assel, Benjamin

    We construct non-geometric AdS$_4$ solutions of IIB string theory where the fields in overlapping patches are glued by elements of the S-duality group. We obtain them by suitable quotients of compact and non-compact geometric solutions. The quotient procedure suggests CFT duals as quiver theories with links involving the so-called $T[U(N)]$ theory. We test the validity of the non-geometric solutions (and of our proposed holographic duality) by computing the three-sphere partition function $Z$ of the CFTs. A first class of solutions is obtained by an S-duality quotient of Janus-type non-compact solutions and is dual to 3d $\\mathcal{N}=4$ SCFTs; for these we manage to compute $Z$ of the dual CFT at finite $N$, and it agrees perfectly with the supergravity result in the large $N$ limit. A second class has five-branes, it is obtained by a M\\"obius-like S-quotient of ordinary compact solutions and is dual to 3d $\\mathcal{N}=3$ SCFTs. For these, $Z$ agrees with the supergravity result if one chooses the limit caref...

  9. From Sakata model to Goldberg-Ne'eman quarks and Nambu QCD phenomenology and 'right' and 'wrong' experiments

    International Nuclear Information System (INIS)

    Lipkin, Harry J.

    2007-01-01

    The basic theoretical milestones were the Sakata SU(3) symmetry, the Goldberg-Ne'eman composite model with SU(3) triplets having baryon number (1/3) and the Nambu color gauge Lagrangian. The transition was led in right and wrong directions by experiments interpreted by phenomenology. A 'good' experiment on p-bar p annihilation at rest showed that the Sakata model predictions disagreed with experiment. A 'bad' experiment prevented the use of the Goldberg-Ne'eman triplet model to predict the existence and masses of the Ξ * and Ω - . More 'good' experiments revealed the existence and mass of the Ξ * and the Ω - and the absence of positive strangeness baryon resonances, thus confirming the 'tenfold way'. Further 'good experiments' revealed the existence of the vector meson nonet, SU(3) breaking with singlet-octet mixing and the suppression of the φ → ρπ decay. These led to the quark triplet model. The paradox of peculiar statistics then arose as the Δ ++ and Ω - contained three identical spin-1/2 fermions coupled symmetrically to spin (3/2). This led to color and the Nambu QCD. The book 'Lie Groups for Pedestrians' used the Sakata model with the name 'sakaton' for the pnΛ triplet to teach the algebra of SU(3) to particle physicists in the U.S. and Europe who knew no group theory. The Sakata model had a renaissance in hypernuclear physics in the 1970's. (author)

  10. Numerical renormalization group studies of the partially brogen SU(3) Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Fuh Chuo, Evaristus

    2013-04-15

    The two-channel Kondo (2CK) effect with its exotic ground state properties has remained difficult to realize in physical systems. At low energies, a quantum impurity with orbital degree of freedom, like a proton bound in an interstitial lattice space, comprises a 3-level system with a unique ground state and (at least) doubly degenerate rotational excitations with excitation energy {Delta}{sub 0}. When immersed in a metal, electronic angular momentum scattering induces transitions between any two of these levels (couplings J), while the electron spin is conserved. We show by extensive numerical renormalization group (NRG) calculations that without fi ne-tuning of parameters this system exhibits a 2CK fixed point, due to Kondo correlations in the excited-state doublet whose degeneracy is stabilized by the host lattice parity, while the channel symmetry (electron spin) is guaranteed by time reversal symmetry. We find a pronounced plateau in the entropy at S(T{sub K}>{Delta}{sub 0})=k{sub B} ln 3, and the 2CK ground state value, S(0)=k{sub B} ln {radical}(2). This indicates a downward renormalization of the doublet below the non-interacting ground state, thus realizing the 2CK fixed point, in agreement with earlier conjectures. We mapped out the phase diagram of the model in the J-{Delta}{sub 0} plane. The Kondo temperature T{sub K} shows non-monotonic J-dependence, characteristic for 2CK systems. Beside the two-channel Kondo effect of the model, we also study the single-channel version, which is realized by applying a strong magnetic fi eld to the conduction band electrons so that their degeneracy is lifted and consequently having only one kind of electrons scattering off the impurity. This single-channel case is easier to analyze since the Hilbert space is not as large as that of the 2CK. We equally find a downward renormalization of the excited state energy by the Kondo correlations in the SU(2) doublet

  11. Testable flipped SU(5)xU(1){sub X} models

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jing [Institute of Theoretical Science, University of Oregon, Eugene, OR 97403 (United States); Li Tianjun [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States) and Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080 (China) and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States)]. E-mail: tjli@physics.rutgers.edu; Nanopoulos, Dimitri V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States); Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States); Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece)

    2007-06-11

    The little hierarchy between the GUT scale and the string scale may give us some hints that can be tested at the LHC. To achieve string-scale gauge coupling unification, we introduce additional vector-like particles. We require that these vector-like particles be standard, form complete GUT multiplets, and have masses around the TeV scale or close to the string scale. Interestingly, only the flipped SU(5)xU(1){sub X} models can work elegantly. We consider all possible sets of vector-like particles with masses around the TeV scale. And we introduce vector-like particles with masses close to the string scale which can mimic the string-scale threshold corrections. We emphasize that all of these vector-like particles can be obtained in the interesting flipped SU(5)xU(1){sub X} string models from the four-dimensional free fermionic string construction. Assuming the low-energy supersymmetry, high-scale supersymmetry, and split supersymmetry, we show that the string-scale gauge coupling unification can indeed be achieved in the flipped SU(5)xU(1){sub X} models. These models can be tested at the LHC by observing simple sets of vector-like particles at the TeV scale. Moreover, we discuss a simple flipped SU(5)xU(1){sub X} model with string-scale gauge coupling unification and high-scale supersymmetry by introducing only one pair of the vector-like particles at the TeV scale, and we predict the corresponding Higgs boson masses. Also, we briefly comment on the string-scale gauge coupling unification in the model with low-energy supersymmetry by introducing only one pair of the vector-like particles at the intermediate scale. And we briefly comment on the mixings among the SM fermions and the corresponding extra vector-like particles.

  12. Predicting sugar consumption: Application of an integrated dual-process, dual-phase model.

    Science.gov (United States)

    Hagger, Martin S; Trost, Nadine; Keech, Jacob J; Chan, Derwin K C; Hamilton, Kyra

    2017-09-01

    Excess consumption of added dietary sugars is related to multiple metabolic problems and adverse health conditions. Identifying the modifiable social cognitive and motivational constructs that predict sugar consumption is important to inform behavioral interventions aimed at reducing sugar intake. We tested the efficacy of an integrated dual-process, dual-phase model derived from multiple theories to predict sugar consumption. Using a prospective design, university students (N = 90) completed initial measures of the reflective (autonomous and controlled motivation, intentions, attitudes, subjective norm, perceived behavioral control), impulsive (implicit attitudes), volitional (action and coping planning), and behavioral (past sugar consumption) components of the proposed model. Self-reported sugar consumption was measured two weeks later. A structural equation model revealed that intentions, implicit attitudes, and, indirectly, autonomous motivation to reduce sugar consumption had small, significant effects on sugar consumption. Attitudes, subjective norm, and, indirectly, autonomous motivation to reduce sugar consumption predicted intentions. There were no effects of the planning constructs. Model effects were independent of the effects of past sugar consumption. The model identified the relative contribution of reflective and impulsive components in predicting sugar consumption. Given the prominent role of the impulsive component, interventions that assist individuals in managing cues-to-action and behavioral monitoring are likely to be effective in regulating sugar consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Topological susceptibility near Tc in SU(3 gauge theory

    Directory of Open Access Journals (Sweden)

    Guang-Yi Xiong

    2016-01-01

    Full Text Available Topological charge susceptibility χt for pure gauge SU(3 theory at finite temperature is studied using anisotropic lattices. The over-improved stout-link smoothing method is utilized to calculate the topological charge. Near the phase transition point we find a rapid declining behavior for χt with values decreasing from (188(1 MeV4 to (67(3 MeV4 as the temperature increased from zero temperature to 1.9Tc which demonstrates the existence of topological excitations far above Tc. The 4th order cumulant c4 of topological charge, as well as the ratio c4/χt is also investigated. Results of c4 show step-like behavior near Tc while the ratio at high temperature agrees with the value as predicted by the diluted instanton gas model.

  14. Locally Rotationally Symmetric Bianchi Type-I Model with Time Varying Λ Term

    International Nuclear Information System (INIS)

    Tiwari, R. K.; Jha, Navin Kumar

    2009-01-01

    We investigate the locally rotationally symmetric (LRS) Bianchi type-I cosmological model for stiff matter and a vacuum solution with a cosmological term proportional to R −m (R is the scale factor and m is a positive constant). The cosmological term decreases with time. We obtain that for both the cases the present universe is accelerating with a large fraction of cosmological density in the form of a cosmological term

  15. Correlator of fundamental and anti-symmetric Wilson loops in AdS/CFT correspondence

    International Nuclear Information System (INIS)

    Tai, T.-S.; Yamaguchi, Satoshi

    2007-01-01

    We study the two circular Wilson loop correlator in which one is of anti-symmetric representation, while the other is of fundamental representation in 4-dimensional N = 4 super Yang-Mills theory. This correlator has a good AdS dual, which is a system of a D5-brane and a fundamental string. We calculated the on-shell action of the string, and clarified the Gross-Ooguri transition in this correlator. Some limiting cases are also examined

  16. Order-disorder transformations in the Σ3 (111)/[110] symmetrical tilt boundary in tungsten

    International Nuclear Information System (INIS)

    Wang, G.J.; Vitek, V.

    1996-01-01

    The structure of the Σ3 (111)/[110] symmetrical tilt boundary in tungsten was modeled by molecular statics using Finnis-Sinclair type many body potentials. Several multiple structures have been found which are composed of two types of structural units and the interaction energy between these units is negative. Hence, order-disorder structural transitions may occur in the boundary with structures being ordered and/or disordered mixtures of the two units. the transition temperature is found to be 1,158 K if only the internal energy and configurational entropy are included when evaluating the free energy. However, the transition temperature is 782 K if the vibrational entropy is also incorporated. This demonstrates that the vibrational contribution to the entropy may be as important as the configurational contribution when considering the interfacial transformations

  17. Counting with symmetric functions

    CERN Document Server

    Mendes, Anthony

    2015-01-01

    This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics.  It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions.  Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions.  Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4.  The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Pólya’s enu...

  18. Exact scattering in the SU(n) supersymmetric principal chiral model

    CERN Document Server

    Evans, J M; Evans, Jonathan M; Hollowood, Timothy J

    1997-01-01

    The complete spectrum of states in the supersymmetric principal chiral model based on SU(n) is conjectured, and an exact factorizable S-matrix is proposed to describe scattering amongst these states. The SU(n)_L*SU(n)_R symmetry of the lagrangian is manifest in the S-matrix construction. The supersymmetries, on the other hand, are incorporated in the guise of spin-1/2 charges acting on a set of RSOS kinks associated with su(n) at level n. To test the proposed S-matrix, calculations of the change in the ground-state energy in the presence of a coupling to a background charge are carried out. The results derived from the lagrangian using perturbation theory and from the S-matrix using the TBA are found to be in complete agreement for a variety of background charges which pick out, in turn, the highest weight states in each of the fundamental representations of SU(n). In particular, these methods rule out the possibility of additional CDD factors in the S-matrix. Comparison of the expressions found for the free-...

  19. Perspectives for detecting lepton flavour violation in left-right symmetric models

    International Nuclear Information System (INIS)

    Bonilla, Cesar; Krauss, Manuel E.; Opferkuch, Toby; Porod, Werner

    2017-01-01

    We investigate lepton flavour violation in a class of minimal left-right symmetric models where the left-right symmetry is broken by triplet scalars. In this context we present a method to consistently calculate the triplet-Yukawa couplings which takes into account the experimental data while simultaneously respecting the underlying symmetries. Analysing various scenarios, we then calculate the full set of tree-level and one-loop contributions to all radiative and three-body flavour-violating fully leptonic decays as well as μ−e conversion in nuclei. Our method illustrates how these processes depend on the underlying parameters of the theory. To that end we observe that, for many choices of the model parameters, there is a strong complementarity between the different observables. For instance, in a large part of the parameter space, lepton flavour violating τ-decays have a large enough branching ratio to be measured in upcoming experiments. Our results further show that experiments coming online in the immediate future, like Mu3e and BELLE II, or longer-term, such as PRISM/PRIME, will probe significant portions of the currently allowed parameter space.

  20. Perspectives for detecting lepton flavour violation in left-right symmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Bonilla, Cesar [AHEP Group, Instituto de Física Corpuscular - C.S.I.C./Universitat de València,Edificio de Institutos de Paterna, C/Catedratico José Beltrán 2,E-46980 Paterna (València) (Spain); Krauss, Manuel E.; Opferkuch, Toby [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn,Nussallee 12, 53115 Bonn (Germany); Porod, Werner [Institut für Theoretische Physik und Astronomie, Universität Würzburg,Am Hubland, 97074 Würzburg (Germany)

    2017-03-06

    We investigate lepton flavour violation in a class of minimal left-right symmetric models where the left-right symmetry is broken by triplet scalars. In this context we present a method to consistently calculate the triplet-Yukawa couplings which takes into account the experimental data while simultaneously respecting the underlying symmetries. Analysing various scenarios, we then calculate the full set of tree-level and one-loop contributions to all radiative and three-body flavour-violating fully leptonic decays as well as μ−e conversion in nuclei. Our method illustrates how these processes depend on the underlying parameters of the theory. To that end we observe that, for many choices of the model parameters, there is a strong complementarity between the different observables. For instance, in a large part of the parameter space, lepton flavour violating τ-decays have a large enough branching ratio to be measured in upcoming experiments. Our results further show that experiments coming online in the immediate future, like Mu3e and BELLE II, or longer-term, such as PRISM/PRIME, will probe significant portions of the currently allowed parameter space.

  1. Dual coding: a cognitive model for psychoanalytic research.

    Science.gov (United States)

    Bucci, W

    1985-01-01

    Four theories of mental representation derived from current experimental work in cognitive psychology have been discussed in relation to psychoanalytic theory. These are: verbal mediation theory, in which language determines or mediates thought; perceptual dominance theory, in which imagistic structures are dominant; common code or propositional models, in which all information, perceptual or linguistic, is represented in an abstract, amodal code; and dual coding, in which nonverbal and verbal information are each encoded, in symbolic form, in separate systems specialized for such representation, and connected by a complex system of referential relations. The weight of current empirical evidence supports the dual code theory. However, psychoanalysis has implicitly accepted a mixed model-perceptual dominance theory applying to unconscious representation, and verbal mediation characterizing mature conscious waking thought. The characterization of psychoanalysis, by Schafer, Spence, and others, as a domain in which reality is constructed rather than discovered, reflects the application of this incomplete mixed model. The representations of experience in the patient's mind are seen as without structure of their own, needing to be organized by words, thus vulnerable to distortion or dissolution by the language of the analyst or the patient himself. In these terms, hypothesis testing becomes a meaningless pursuit; the propositions of the theory are no longer falsifiable; the analyst is always more or less "right." This paper suggests that the integrated dual code formulation provides a more coherent theoretical framework for psychoanalysis than the mixed model, with important implications for theory and technique. In terms of dual coding, the problem is not that the nonverbal representations are vulnerable to distortion by words, but that the words that pass back and forth between analyst and patient will not affect the nonverbal schemata at all. Using the dual code

  2. Multivariate Non-Symmetric Stochastic Models for Spatial Dependence Models

    Science.gov (United States)

    Haslauer, C. P.; Bárdossy, A.

    2017-12-01

    A copula based multivariate framework allows more flexibility to describe different kind of dependences than what is possible using models relying on the confining assumption of symmetric Gaussian models: different quantiles can be modelled with a different degree of dependence; it will be demonstrated how this can be expected given process understanding. maximum likelihood based multivariate quantitative parameter estimation yields stable and reliable results; not only improved results in cross-validation based measures of uncertainty are obtained but also a more realistic spatial structure of uncertainty compared to second order models of dependence; as much information as is available is included in the parameter estimation: incorporation of censored measurements (e.g., below detection limit, or ones that are above the sensitive range of the measurement device) yield to more realistic spatial models; the proportion of true zeros can be jointly estimated with and distinguished from censored measurements which allow estimates about the age of a contaminant in the system; secondary information (categorical and on the rational scale) has been used to improve the estimation of the primary variable; These copula based multivariate statistical techniques are demonstrated based on hydraulic conductivity observations at the Borden (Canada) site, the MADE site (USA), and a large regional groundwater quality data-set in south-west Germany. Fields of spatially distributed K were simulated with identical marginal simulation, identical second order spatial moments, yet substantially differing solute transport characteristics when numerical tracer tests were performed. A statistical methodology is shown that allows the delineation of a boundary layer separating homogenous parts of a spatial data-set. The effects of this boundary layer (macro structure) and the spatial dependence of K (micro structure) on solute transport behaviour is shown.

  3. Black holes and gravitating axially symmetric non-abelian solitons in d 3+1 and d = 4+1

    International Nuclear Information System (INIS)

    Radu, Eugen; Shnir, Yasha; Tchrakian, D. H.

    2010-01-01

    We construct static, asymptotically flat solutions of SU(2) Einstein-Yang-Mills (EYM) theory in 4+1 dimensions, subject to bi-azimuthal symmetry. The results are compared with similar solutions of the SU(2) Yang--Mills--dilaton (YMd) model. Both particle-like and black hole solutions are considered.

  4. Bounds on $Z^\\prime$ from 3-3-1 model at the LHC energies

    CERN Document Server

    Coutinho, Y A; Nepomuceno, A A

    2013-01-01

    The Large Hadron Collider will restart with higher energy and luminosity in 2015. This achievement opens the possibility of discovering new phenomena hardly described by the Standard Model, that is based on two neutral gauge bosons: the photon and the $Z$. This perspective imposes a deep and systematic study of models that predicts the existence of new neutral gauge bosons. One of such models is based on the gauge group $SU(3)_C \\times SU(3)_L \\times U(1)_N$ called 3-3-1 model for short. In this paper we perform a study with $Z^\\prime$ predicted in two versions of the 3-3-1 model and compare the signature of this resonance in each model version. By considering the present and future LHC energy regimes, we obtain some distributions and the total cross section for the process $p + p \\longrightarrow \\ell^{+} + \\ell^{-} + X$. Additionally, we derive lower bounds on $Z^\\prime$ mass from the latest LHC results. Finally we analyze the LHC potential for discovering this neutral gauge boson at 14 TeV center-of-mass en...

  5. O(3)-symmetric tunneling at false vacuum decay in general relativity

    International Nuclear Information System (INIS)

    Berezin, V.A.; Tkachev, I.I.; Kuzmin, V.A.; AN SSSR, Moscow. Inst. Yadernykh Issledovanij)

    1987-12-01

    The O(3)-symmetric vacuum decay is investigated in general relativity in thin-wall approximation. The following processes are studied: the spontaneous nucleation of a new phase bubble containing a remnant of an old phase inside; a subbarrier transition of a new phase bubble with the non-vanishing total energy from a subcritical state to the infinite expansion; the vacuum decay in the vicinity of a black hole; the creation from nothing of the Universe containing a bubble. General formulae for bounces for all these processes are derived. (orig.)

  6. Connection between Einstein equations, nonlinear sigma models, and self-dual Yang-Mills theory

    International Nuclear Information System (INIS)

    Sanchez, N.; Whiting, B.

    1986-01-01

    The authors analyze the connection between nonlinear sigma models self-dual Yang-Mills theory, and general relativity (self-dual and non-self-dual, with and without killing vectors), both at the level of the equations and at the level of the different type of solutions (solitons and calorons) of these theories. They give a manifestly gauge invariant formulation of the self-dual gravitational field analogous to that given by Yang for the self-dual Yang-Mills field. This formulation connects in a direct and explicit way the self-dual Yang-Mills and the general relativity equations. They give the ''R gauge'' parametrization of the self-dual gravitational field (which corresponds to modified Yang's-type and Ernst equations) and analyze the correspondence between their different types of solutions. No assumption about the existence of symmetries in the space-time is needed. For the general case (non-self-dual), they show that the Einstein equations contain an O nonlinear sigma model. This connection with the sigma model holds irrespective of the presence of symmetries in the space-time. They found a new class of solutions of Einstein equations depending on holomorphic and antiholomorphic functions and we relate some subclasses of these solutions to solutions of simpler nonlinear field equations that are well known in other branches of physics, like sigma models, SineGordon, and Liouville equations. They include gravitational plane wave solutions. They analyze the response of different accelerated quantum detector models, compare them to the case when the detectors are linterial in an ordinary Planckian gas at a given temperature, and discuss the anisotropy of the detected response for Rindler observers

  7. Maximally Symmetric Two Higgs Doublet Model with Natural Standard Model Alignment

    CERN Document Server

    Dev, P S Bhupal

    2014-01-01

    We study the Higgs mass spectrum as predicted by a Maximally Symmetric Two Higgs Doublet Model (MS-2HDM) potential based on the SO(5) group, softly broken by bilinear Higgs mass terms. We show that the lightest Higgs sector resulting from this MS-2HDM becomes naturally aligned with that of the Standard Model (SM), independently of the charged Higgs boson mass and $\\tan \\beta$. In the context of Type-II 2HDM, SO(5) is the simplest of the three possible symmetry realizations of the scalar potential that can naturally lead to the SM alignment. Nevertheless, renormalization group effects due to the hypercharge gauge coupling $g'$ and third-generation Yukawa couplings may break sizeably this SM alignment, along with the custodial symmetry inherited by the SO(5) group. Using the current Higgs signal strength data from the LHC, which disfavour large deviations from the SM alignment limit, we derive lower mass bounds on the heavy Higgs sector as a function of $\\tan\\beta$, which can be stronger than the existing limit...

  8. Symmetric splitting of very light systems

    International Nuclear Information System (INIS)

    Grotowski, K.; Majka, Z.; Planeta, R.

    1984-01-01

    Inclusive and coincidence measurements have been performed to study symmetric products from the reactions 74--186 MeV 12 C+ 40 Ca, 141 MeV 9 Be+ 40 Ca, and 153 MeV 6 Li+ 40 Ca. The binary decay of the composite system has been verified. Energy spectra, angular distributions, and fragment correlations are presented. The total kinetic energies for the symmetric products from these very light composite systems are compared to liquid drop model calculations and fission systematics

  9. SU (2) with fundamental fermions and scalars

    DEFF Research Database (Denmark)

    Hansen, Martin; Janowski, Tadeusz; Pica, Claudio

    2018-01-01

    We present preliminary results on the lattice simulation of an SU(2) gauge theory with two fermion flavors and one strongly interacting scalar field, all in the fundamental representation of SU(2). The motivation for this study comes from the recent proposal of "fundamental" partial compositeness...... the properties of light meson resonances previously obtained for the SU(2) model. Preprint: CP3-Origins-2017-047 DNRF90...

  10. Symmetric Anderson impurity model: Magnetic susceptibility, specific heat and Wilson ratio

    Science.gov (United States)

    Zalom, Peter; Pokorný, Vladislav; Janiš, Václav

    2018-05-01

    We extend the spin-polarized effective-interaction approximation of the parquet renormalization scheme from Refs. [1,2] applied on the symmetric Anderson model by adding the low-temperature asymptotics of the total energy and the specific heat. We calculate numerically the Wilson ratio and determine analytically its asymptotic value in the strong-coupling limit. We demonstrate in this way that the exponentially small Kondo scale from the strong-coupling regime emerges in qualitatively the same way in the spectral function, magnetic susceptibility and the specific heat.

  11. Unifying flipped SU(5) in five dimensions

    International Nuclear Information System (INIS)

    Barr, S.M.; Dorsner, Ilja

    2002-01-01

    It is shown that embedding a four-dimensional flipped SU(5) model in a five-dimensional SO(10) model preserves the best features of both flipped SU(5) and SO(10). The missing partner mechanism, which naturally achieves both doublet-triplet splitting and suppression of d=5 proton decay operators, is realized as in flipped SU(5), while the gauge couplings are unified as in SO(10). The masses of down quarks and charged leptons, which are independent in flipped SU(5), are related by the SO(10). Distinctive patterns of quark and lepton masses can result. The gaugino mass M 1 is independent of M 3 and M 2 , which are predicted to be equal

  12. Exploring viable vacua of the Z{sub 3}-symmetric NMSSM

    Energy Technology Data Exchange (ETDEWEB)

    Beuria, Jyotiranjan [Harish-Chandra Research Institute,Allahabad 211019 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Regional Centre for Accelerator-based Particle Physics, Harish-Chandra Research Institute,Allahabad 211019 (India); Chattopadhyay, Utpal [Department of Theoretical Physics, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032 (India); Datta, AseshKrishna [Harish-Chandra Research Institute,Allahabad 211019 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Dey, Abhishek [Maulana Azad College, Government of West Bengal, 8 Rafi Ahmed Kidwai Road, Kolkata 700013 (India)

    2017-04-05

    We explore the vacua of the Z{sub 3}-symmetric Next-to-Minimal Supersymmetric Standard Model (NMSSM) and their stability by going beyond the simplistic paradigm that works with a tree-level neutral scalar potential and adheres to some specific flat directions in the field space. We work in the so-called phenomenological NMSSM (pNMSSM) scenario. Also, for our purpose, we adhere to a reasonably ‘natural’ setup by requiring |μ{sub eff}| not too large. Key effects are demonstrated by first studying the profiles of this potential under various circumstances of physical interest via a semi-analytical approach. The results thereof are compared to the ones obtained from a dedicated package like Vevacious which further incorporates the thermal effects to the potential. Regions of the pNMSSM parameter space that render the desired symmetry breaking (DSB) vacuum absolutely stable, long- or short-lived (in relation to the age of the Universe) under quantum/thermal tunneling are delineated. Regions that result in the appearance of color and charge breaking (CCB) minima are also presented. It is demonstrated that light singlet scalars along with a light LSP (lightest supersymmetric particle) having an appreciable singlino admixture are compatible with a viable DSB vacuum. Their implications for collider experiments are commented upon.

  13. Antonio Colinas: la isla y su simbolog??a

    OpenAIRE

    Mart??nez Fern??ndez, Jos?? Enrique

    2012-01-01

    P. 283-314 En Ibiza penetr?? Colinas en el pensamiento primitivo oriental, intuy?? la realidad dual de la isla, ahond?? en la vieja cultura mediterr??nea, percibi?? en el ??mbito isle??o s??mbolos reveladores que dar??an nuevas dimensiones a su obra y escribi?? algunos de sus m??s intensos poemarios

  14. SU(3) properties of semileptonic and nonleptonic decays of mesons

    International Nuclear Information System (INIS)

    Montvay, I.

    1977-11-01

    The recent discovery of charmed D and F mesons led to an accumulation of a lot of information on the weak decays of these particles. The facts known at present are generally consistent with the Glashow-Iliopoulos-Maiami scheme for the weak currents, which are predicted the fourth flavour of quarks, the charm. The weak decays of the charmed mesons are governed by SU(3) rules analogous to the Okubo-Zweig-Iizuka rule for strong decays. Such Su(3) rules are given for semileptonic and nonleptonic decays of strange and charmed mesons. These relations depend on the colour structure of currents in the nonleptonic case. (D.P.)

  15. On the topological structure of the vacuum in SU(2) and SU(3) lattice gauge theories

    International Nuclear Information System (INIS)

    Ishikawa, K.; Schierholz, G.; Schneider, H.; Teper, M.

    1983-01-01

    We present Monte Carlo measurements of the net topological charge of the vacuum in SU(2) and SU(3) lattice gauge theories. In both cases there is no evidence of any topological structure, and the values obtained are a factor of 0(100) smaller than expectations based on analyses of the U(1) problem. Moreover we find a strong sensitivity to the lattice size and to the boundary conditions imposed on the lattice. We comment on the physical significance of these results, establish criteria for the reliable performance of such calculations, and remark on the possibly detrimental impact of these findings on the calculation of hadron spectra

  16. Global Model for Asymmetric, Diode-Type Dual Frequency Capacitive Discharge

    Science.gov (United States)

    Kim, Jisoo; Lieberman, M. A.; Lichtenberg, A. J.

    2003-10-01

    Dual frequency capacitive reactors can have desirable properties for dielectric etch: low cost, robust uniformity over large areas, and control of dissociation. In the ideal case, the high frequency power controls the plasma density (ion flux) and the low frequency voltage controls the ion bombarding energy. Typical operating conditions are: discharge radius 15-30 cm, length 1-3 cm, pressure 30-200 mTorr, high frequency 27.1-160 MHz, low frequency 2-13.6 MHz, and powers of 500-3000 W for both high and low frequencies. The decoupling of the high and low frequencies is an important feature of dual frequency capacitive discharges. In this work, we describe a global (volume-averaged) model having different top and bottom plate areas that incorporates particle balance, and ohmic and stochastic heating for high and low frequencies. The model is used to obtain the decoupling of high and low frequencies and to investigate limitations to ideal decoupling. Support provided by Lam Research, NSF Grant ECS-0139956, California industries, and UC-SMART Contract SM99-10051.

  17. On Symmetric Polynomials

    OpenAIRE

    Golden, Ryan; Cho, Ilwoo

    2015-01-01

    In this paper, we study structure theorems of algebras of symmetric functions. Based on a certain relation on elementary symmetric polynomials generating such algebras, we consider perturbation in the algebras. In particular, we understand generators of the algebras as perturbations. From such perturbations, define injective maps on generators, which induce algebra-monomorphisms (or embeddings) on the algebras. They provide inductive structure theorems on algebras of symmetric polynomials. As...

  18. Topological susceptibility for the SU(3) Yang--Mills theory

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Giusti, Leonardo; Pica, Claudio

    2004-01-01

    We present the results of a computation of the topological susceptibility in the SU(3) Yang--Mills theory performed by employing the expression of the topological charge density operator suggested by Neuberger's fermions. In the continuum limit we find r_0^4 chi = 0.059(3), which corresponds to chi...

  19. Communication: Equivalence between symmetric and antisymmetric stretching modes of NH3 in promoting H + NH3 → H2 + NH2 reaction

    Science.gov (United States)

    Song, Hongwei; Yang, Minghui; Guo, Hua

    2016-10-01

    Vibrational excitations of reactants sometimes promote reactions more effectively than the same amount of translational energy. Such mode specificity provides insights into the transition-state modulation of reactivity and might be used to control chemical reactions. We report here a state-of-the-art full-dimensional quantum dynamical study of the hydrogen abstraction reaction H + NH3 → H2 + NH2 on an accurate ab initio based global potential energy surface. This reaction serves as an ideal candidate to study the relative efficacies of symmetric and degenerate antisymmetric stretching modes. Strong mode specificity, particularly for the NH3 stretching modes, is demonstrated. It is further shown that nearly identical efficacies of the symmetric and antisymmetric stretching modes of NH3 in promoting the reaction can be understood in terms of local-mode stretching vibrations of the reactant molecule.

  20. [The dual process model of addiction. Towards an integrated model?].

    Science.gov (United States)

    Vandermeeren, R; Hebbrecht, M

    2012-01-01

    Neurobiology and cognitive psychology have provided us with a dual process model of addiction. According to this model, behavior is considered to be the dynamic result of a combination of automatic and controlling processes. In cases of addiction the balance between these two processes is severely disturbed. Automated processes will continue to produce impulses that ensure the continuance of addictive behavior. Weak, reflective or controlling processes are both the reason for and the result of the inability to forgo addiction. To identify features that are common to current neurocognitive insights into addiction and psychodynamic views on addiction. The picture that emerges from research is not clear. There is some evidence that attentional bias has a causal effect on addiction. There is no evidence that automatic associations have a causal effect, but there is some evidence that automatic action-tendencies do have a causal effect. Current neurocognitive views on the dual process model of addiction can be integrated with an evidence-based approach to addiction and with psychodynamic views on addiction.

  1. Quark confinement: Dual superconductor picture based on a non-Abelian Stokes theorem and reformulations of Yang-Mills theory

    Science.gov (United States)

    Kondo, Kei-Ichi; Kato, Seikou; Shibata, Akihiro; Shinohara, Toru

    2015-05-01

    confinement. The Wilson loop average is calculated according to the new reformulation written in terms of new field variables obtained from the original Yang-Mills field based on change of variables. The Maximally Abelian gauge in the original Yang-Mills theory is also reproduced by taking a specific gauge fixing in the reformulated Yang-Mills theory. This observation justifies the preceding results obtained in the maximal Abelian gauge at least for gauge-invariant quantities for SU(2) gauge group, which eliminates the criticism of gauge artifact raised for the Abelian projection. The claim has been confirmed based on the numerical simulations. However, for SU(N) (N ≥ 3), such a gauge-invariant reformulation is not unique, although the extension along the line proposed by Cho, Faddeev and Niemi is possible. In fact, we have found that there are a number of possible options of the reformulations, which are discriminated by the maximal stability group H ˜ of G, while there is a unique option of H ˜ = U(1) for G = SU(2) . The maximal stability group depends on the representation of the gauge group, to that the quark source belongs. For the fundamental quark for SU(3) , the maximal stability group is U(2) , which is different from the maximal torus group U(1) × U(1) suggested from the Abelian projection. Therefore, the chromomagnetic monopole inherent in the Wilson loop operator responsible for confinement of quarks in the fundamental representation for SU(3) is the non-Abelian magnetic monopole, which is distinct from the Abelian magnetic monopole for the SU(2) case. Therefore, we claim that the mechanism for quark confinement for SU(N) (N ≥ 3) is the non-Abelian dual superconductivity caused by condensation of non-Abelian magnetic monopoles. We give some theoretical considerations and numerical results supporting this picture. Finally, we discuss some issues to be investigated in future studies.

  2. In-situ characterization of symmetric dual-pass architecture of microfluidic co-laminar flow cells

    International Nuclear Information System (INIS)

    Ibrahim, Omar A.; Goulet, Marc-Antoni; Kjeang, Erik

    2016-01-01

    Highlights: • An analytical cell design is proposed for characterization of dual-pass flow cells • High power density up to 0.75 W cm −2 is demonstrated • The performance contributions of the inlet and outlet passes are of the same order • Downstream crossover is analyzed as a function of cell current and flow rate - Abstract: Microfluidic co-laminar flow cells with dual-pass architecture enable fuel recirculation and in-situ regeneration, and offer improvements in performance characteristics. In this work, a unique analytical cell design is proposed, with two split portions having flow-through porous electrodes. Each cell portion is first tested individually with vanadium redox species and the results are used to quantify the previously unknown crossover losses at the downstream portion of the cell, shown here to be a strong function of the flow rate. Moreover, the upstream cell portion demonstrates impressive room-temperature power density up to 0.75 W cm −2 at 1.0 A cm −2 , which is the highest performance reported to date for a microfluidic vanadium redox battery. Next, the two cell portions are connected in parallel to resemble a complete cell with dual-pass architecture, thereby enabling novel in-situ diagnostics of the inlet and outlet passes of the cell. For instance, the reactant utilization efficiency of the downstream cell portion is shown to be on the same order as that of the upstream portion at both low and high flow rates. Furthermore, in-situ regeneration is also demonstrated. Overall, the present results provide a deeper understanding of dual-pass reactant conversion and crossover which will be useful for future device optimization.

  3. Symmetrization of Facade Layouts

    KAUST Repository

    Jiang, Haiyong; Yan, Dong-Ming; Dong, Weiming; Wu, Fuzhang; Nan, Liangliang; Zhang, Xiaopeng

    2016-01-01

    We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.

  4. Symmetrization of Facade Layouts

    KAUST Repository

    Jiang, Haiyong

    2016-02-26

    We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.

  5. Model tracking dual stochastic controller design under irregular internal noises

    International Nuclear Information System (INIS)

    Lee, Jong Bok; Heo, Hoon; Cho, Yun Hyun; Ji, Tae Young

    2006-01-01

    Although many methods about the control of irregular external noise have been introduced and implemented, it is still necessary to design a controller that will be more effective and efficient methods to exclude for various noises. Accumulation of errors due to model tracking, internal noises (thermal noise, shot noise and l/f noise) that come from elements such as resistor, diode and transistor etc. in the circuit system and numerical errors due to digital process often destabilize the system and reduce the system performance. New stochastic controller is adopted to remove those noises using conventional controller simultaneously. Design method of a model tracking dual controller is proposed to improve the stability of system while removing external and internal noises. In the study, design process of the model tracking dual stochastic controller is introduced that improves system performance and guarantees robustness under irregular internal noises which can be created internally. The model tracking dual stochastic controller utilizing F-P-K stochastic control technique developed earlier is implemented to reveal its performance via simulation

  6. Brane/Flux Annihilation and the String Dual of a Non-Supersymmetric Field Theory

    International Nuclear Information System (INIS)

    Kachru, Shamit

    2002-01-01

    We consider the dynamics of p anti-D3 branes inside the Klebanov-Strassler geometry, the deformed conifold with M units of RR 3-form flux around the S 3 . We find that for p << M the system relaxes to a nonsupersymmetric NS 5-brane ''giant graviton'' configuration, which is classically stable, but quantum mechanically can tunnel to a nearby supersymmetric vacuum with M - p D3 branes. This decay mode is exponentially suppressed and proceeds via the nucleation of an NS 5-brane bubble wall. They propose a dual field theory interpretation of the decay as the transition between a nonsupersymmetric baryonic branch and a supersymmetric mesonic branch of the corresponding SU(2M-p) x SU(M-p) low energy gauge theory. The NS 5-brane tunneling process also provides a simple visualization of the geometric transition by which D3-branes can dissolve into 3-form flux

  7. Stationary states of a PT symmetric two-mode Bose–Einstein condensate

    International Nuclear Information System (INIS)

    Graefe, Eva-Maria

    2012-01-01

    The understanding of nonlinear PT symmetric quantum systems, arising for example in the theory of Bose–Einstein condensates in PT symmetric potentials, is widely based on numerical investigations, and little is known about generic features induced by the interplay of PT symmetry and nonlinearity. To gain deeper insights it is important to have analytically solvable toy models at hand. In the present paper the stationary states of a simple toy model of a PT symmetric system previously introduced in [1, 2] are investigated. The model can be interpreted as a simple description of a Bose–Einstein condensate in a PT symmetric double well trap in a two-mode approximation. The eigenvalues and eigenstates of the system can be explicitly calculated in a straightforward manner; the resulting structures resemble those that have recently been found numerically for a more realistic PT symmetric double delta potential. In addition, a continuation of the system is introduced that allows an interpretation in terms of a simple linear matrix model. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  8. Analyzing Supply Chain Uncertainty to Deliver Sustainable Operational Performance: Symmetrical and Asymmetrical Modeling Approaches

    Directory of Open Access Journals (Sweden)

    Mohammad Asif Salam

    2017-11-01

    Full Text Available The purpose of this study is to analyze different types of supply chain uncertainties and suggest strategies to deal with unexpected contingencies to deliver superior operational performance (OP using symmetrical and asymmetrical modeling approaches. The data were collected through a survey given to 146 supply chain managers within the fast moving consumer goods industry in Thailand. Symmetrical modeling is applied via partial least squares structural equation modeling (PLS-SEM in order to assess the theoretical relationships among the latent variables, while asymmetrical modeling is applied via fuzzy set qualitative comparative analysis (fsQCA to emphasize their combinatory causal relation. The empirical results support the theory by highlighting the mediating effect of supply chain strategy (SCS in the relation between supply chain uncertainty (SCU and firms’ OP and, hence, deliver business sustainability for the firms, demonstrating that the choice of SCS should not be an “either-or” decision. This research contributes by providing an illustration of a PLS-SEM and fsQCA based estimation for the rapidly emerging field of sustainable supply chain management. This study provides empirical support for resource dependence theory (RDT in explaining the relation between SCU and SCS, which leads to sustainable OP. From a methodological standpoint, this study also illustrates predictive validation testing of models using holdout samples and testing for causal asymmetry.

  9. From clinical to tissue-based dual TIA: Validation and refinement of ABCD3-I score.

    Science.gov (United States)

    Dai, Qiliang; Sun, Wen; Xiong, Yunyun; Hankey, Graeme J; Xiao, Lulu; Zhu, Wusheng; Ma, Minmin; Liu, Wenhua; Liu, Dezhi; Cai, Qiankun; Han, Yunfei; Duan, Lihui; Chen, Xiangliang; Xu, Gelin; Liu, Xinfeng

    2015-04-07

    To investigate whether dual tissue-defined ischemic attacks, defined as multiple diffusion-weighted imaging lesions of different age and/or arterial territory (dual DWI), are an independent and stronger predictor of 90-day stroke than dual clinical TIAs (dual TIA). Consecutive patients with clinically defined TIA were enrolled and assessed clinically and by MRI within 3 days. The predictive ability of the ABCD clinical factors, dual TIA, and dual DWI was evaluated by means of multivariate logistic regression. Among 658 patients who were included in the study and completed 90 days of follow-up, a total of 70 patients (10.6%) experienced subsequent stroke by 90 days. Multivariate logistic regression indicated that dual DWI was an independent predictor for subsequent stroke (odds ratio 4.64, 95% confidence interval 2.15-10.01), while dual TIA was not (odds ratio 1.18, 95% confidence interval 0.69-2.01). C statistics was higher when the item of dual TIA in ABCD3-I score was replaced by dual DWI (0.759 vs 0.729, p = 0.035). The net reclassification value for 90-day stroke risk was also improved (continuous net reclassification improvement 0.301, p = 0.017). Dual DWI independently predicted future stroke in patients with TIA. A new ABCD3-I score with dual DWI instead of dual clinical TIA may improve risk stratification for early stroke risk after TIA. © 2015 American Academy of Neurology.

  10. Distributed Model Predictive Control via Dual Decomposition

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Stoustrup, Jakob; Andersen, Palle

    2014-01-01

    This chapter presents dual decomposition as a means to coordinate a number of subsystems coupled by state and input constraints. Each subsystem is equipped with a local model predictive controller while a centralized entity manages the subsystems via prices associated with the coupling constraints...

  11. Uniqueness of flat spherically symmetric spacelike hypersurfaces admitted by spherically symmetric static spacetimes

    Science.gov (United States)

    Beig, Robert; Siddiqui, Azad A.

    2007-11-01

    It is known that spherically symmetric static spacetimes admit a foliation by flat hypersurfaces. Such foliations have explicitly been constructed for some spacetimes, using different approaches, but none of them have proved or even discussed the uniqueness of these foliations. The issue of uniqueness becomes more important due to suitability of flat foliations for studying black hole physics. Here, flat spherically symmetric spacelike hypersurfaces are obtained by a direct method. It is found that spherically symmetric static spacetimes admit flat spherically symmetric hypersurfaces, and that these hypersurfaces are unique up to translation under the timelike Killing vector. This result guarantees the uniqueness of flat spherically symmetric foliations for such spacetimes.

  12. Effective monopole potential for SU(2) lattice gluodynamics in spatial maximal Abelian gauge

    International Nuclear Information System (INIS)

    Chernodub, M.N.; Polikarpov, M.I.; Veselov, A.I.

    1999-01-01

    We investigate the dual superconductor hypothesis in finite-temperature SU(2) lattice gluodynamics in the Spatial Maximal Abelian gauge. This gauge is more physical than the ordinary Maximal Abelian gauge due to absence of non-localities in temporal direction. We shown numerically that in the Spatial Maximal Abelian gauge the probability distribution of the abelian monopole field is consistent with the dual superconductor mechanism of confinement [ru

  13. Spontaneous symmetry breaking in the $S_3$-symmetric scalar sector

    CERN Document Server

    Emmanuel-Costa, D.; Osland, P.; Rebelo, M.N.

    2016-02-23

    We present a detailed study of the vacua of the $S_3$-symmetric three-Higgs-doublet potential, specifying the region of parameters where these minimisation solutions occur. We work with a CP conserving scalar potential and analyse the possible real and complex vacua with emphasis on the cases in which the CP symmetry can be spontaneously broken. Results are presented both in the reducible-representation framework of Derman, and in the irreducible-representation framework. Mappings between these are given. Some of these implementations can in principle accommodate dark matter and for that purpose it is important to identify the residual symmetries of the potential after spontaneous symmetry breakdown. We are also concerned with constraints from vacuum stability.

  14. Super-symmetric informationally complete measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Huangjun, E-mail: hzhu@pitp.ca

    2015-11-15

    Symmetric informationally complete measurements (SICs in short) are highly symmetric structures in the Hilbert space. They possess many nice properties which render them an ideal candidate for fiducial measurements. The symmetry of SICs is intimately connected with the geometry of the quantum state space and also has profound implications for foundational studies. Here we explore those SICs that are most symmetric according to a natural criterion and show that all of them are covariant with respect to the Heisenberg–Weyl groups, which are characterized by the discrete analog of the canonical commutation relation. Moreover, their symmetry groups are subgroups of the Clifford groups. In particular, we prove that the SIC in dimension 2, the Hesse SIC in dimension 3, and the set of Hoggar lines in dimension 8 are the only three SICs up to unitary equivalence whose symmetry groups act transitively on pairs of SIC projectors. Our work not only provides valuable insight about SICs, Heisenberg–Weyl groups, and Clifford groups, but also offers a new approach and perspective for studying many other discrete symmetric structures behind finite state quantum mechanics, such as mutually unbiased bases and discrete Wigner functions.

  15. Smooth Gowdy-symmetric generalized Taub–NUT solutions

    International Nuclear Information System (INIS)

    Beyer, Florian; Hennig, Jörg

    2012-01-01

    We study a class of S 3 -Gowdy vacuum models with a regular past Cauchy horizon which we call smooth Gowdy-symmetric generalized Taub–NUT solutions. In particular, we prove the existence of such solutions by formulating a singular initial value problem with asymptotic data on the past Cauchy horizon. We prove that also a future Cauchy horizon exists for generic asymptotic data, and derive an explicit expression for the metric on the future Cauchy horizon in terms of the asymptotic data on the past horizon. This complements earlier results about S 1 ×S 2 -Gowdy models. (paper)

  16. Weak decays of doubly heavy baryons. SU(3) analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Xing, Zhi-Peng; Xu, Ji [Shanghai Jiao Tong University, INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai (China)

    2017-11-15

    Motivated by the recent LHCb observation of doubly charmed baryon Ξ{sub cc}{sup ++} in the Λ{sub c}{sup +}K{sup -}π{sup +}π{sup +} final state, we analyze the weak decays of doubly heavy baryons Ξ{sub cc}, Ω{sub cc}, Ξ{sub bc}, Ω{sub bc}, Ξ{sub bb} and Ω{sub bb} under the flavor SU(3) symmetry. The decay amplitudes for various semileptonic and nonleptonic decays are parametrized in terms of a few SU(3) irreducible amplitudes. We find a number of relations or sum rules between decay widths and CP asymmetries, which can be examined in future measurements at experimental facilities like LHC, Belle II and CEPC. Moreover, once a few decay branching fractions have been measured in the future, some of these relations may provide hints for exploration of new decay modes. (orig.)

  17. Difficulties for SU(N) quark models of the new particles

    International Nuclear Information System (INIS)

    Colglazier, E.W.; Barnes, K.J.; Hey, A.J.; Zia, R.K.

    1975-01-01

    If preliminary experimental results on the new particles are confirmed and if conventional theoretical prejudices are accepted, it is shown that Harari's SU(6) model is the minimal N-quark model (with hidden color) which can accommodate these constraints. (author)

  18. Separator-Integrated, Reversely Connectable Symmetric Lithium-Ion Battery.

    Science.gov (United States)

    Wang, Yuhang; Zeng, Jiren; Cui, Xiaoqi; Zhang, Lijuan; Zheng, Gengfeng

    2016-02-24

    A separator-integrated, reversely connectable, symmetric lithium-ion battery is developed based on carbon-coated Li3V2(PO4)3 nanoparticles and polyvinylidene fluoride-treated separators. The Li3V2(PO4)3 nanoparticles are synthesized via a facile solution route followed by calcination in Ar/H2 atmosphere. Sucrose solution is used as the carbon source for uniform carbon coating on the Li3V2(PO4)3 nanoparticles. Both the carbon and the polyvinylidene fluoride treatments substantially improve the cycling life of the symmetric battery by preventing the dissolution and shuttle of the electroactive Li3V2(PO4)3. The obtained symmetric full cell exhibits a reversible capacity of ≈ 87 mA h g(-1), good cycling stability, and capacity retention of ≈ 70% after 70 cycles. In addition, this type of symmetric full cell can be operated in both forward and reverse connection modes, without any influence on the cycling of the battery. Furthermore, a new separator integration approach is demonstrated, which enables the direct deposition of electroactive materials for the battery assembly and does not affect the electrochemical performance. A 10-tandem-cell battery assembled without differentiating the electrode polarity exhibits a low thickness of ≈ 4.8 mm and a high output voltage of 20.8 V. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Plane Symmetric Cosmological Model with Quark and Strange ...

    Indian Academy of Sciences (India)

    Keywords. f(R,T) theory of gravity—plane symmetric space-time—quark and strange quark matter—constant deceleration parameter. 1. Introduction. Modern astrophysical observations point out that present expansion of the Universe is an accelerated epoch. The most fascinating evidence for this is found in measurements ...

  20. String threshold corrections and flipped SU(5)

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, I. (Ecole Polytechnique, Centre de Physique Theorique, 91 - Palaiseau (France) Theory Div., CERN, Geneva (Switzerland)); Ellis, J. (Theory Div., CERN, Geneva (Switzerland)); Lacaze, R. (Service de Physique Theorique, CEN-Saclay, 91 - Gif-sur-Yvette (France)); Nanopoulos, D.V. (Center for Theoretical Physics, Dept. of Physics, Texas A and M Univ., College Station, TX (United States) Astroparticle Physics Group, HARC, The Woodlands, TX (United States) Theory Div., CERN, Geneva (Switzerland))

    1991-10-10

    We revise previous calculations of the effective unification scale m{sub SU} at which the extrapolated low-energy gauge couplings should appear to become equal, and we show explicitly how to calculate m{sub SU} in the fermionic construction of four-dimensional strings. In the case of the flipped SU(5) GUT derived from the string, the SU(5) and U(1) couplings defined in the anti Danti R scheme become equal to g{sub SU} at m{sub SU} {approx equal} 1.76 x g{sub SU} x 10{sup 18} GeV. This scale is significantly larger than m{sub GUT}, the scale at which the low-energy SU(3) and SU(2) couplings become equal if extrapolated using the renormalization group equations of the minimal supersymmetric extension of the standard model. The existence of an intermediate SU(5) x U(1) phase could have an observable effect on the calculated value of sin{sup 2}{theta}{sub w}. (orig.).

  1. Dual elaboration models in attitude change processes

    Directory of Open Access Journals (Sweden)

    Žeželj Iris

    2005-01-01

    Full Text Available This article examines empirical and theoretical developments in research on attitude change in the past 50 years. It focuses the period from 1980 till present as well as cognitive response theories as the dominant theoretical approach in the field. The postulates of Elaboration Likelihood Model, as most-researched representative of dual process theories are studied, based on review of accumulated research evidence. Main research findings are grouped in four basic factors: message source, message content, message recipient and its context. Most influential criticisms of the theory are then presented regarding its empirical base and dual process assumption. Some possible applications and further research perspectives are discussed at the end.

  2. SU(2) with fundamental fermions and scalars

    Science.gov (United States)

    Hansen, Martin; Janowski, Tadeusz; Pica, Claudio; Toniato, Arianna

    2018-03-01

    We present preliminary results on the lattice simulation of an SU(2) gauge theory with two fermion flavors and one strongly interacting scalar field, all in the fundamental representation of SU(2). The motivation for this study comes from the recent proposal of "fundamental" partial compositeness models featuring strongly interacting scalar fields in addition to fermions. Here we describe the lattice setup for our study of this class of models and a first exploration of the lattice phase diagram. In particular we then investigate how the presence of a strongly coupled scalar field affects the properties of light meson resonances previously obtained for the SU(2) model. Preprint: CP3-Origins-2017-047 DNRF90

  3. Positive projections of symmetric matrices and Jordan algebras

    DEFF Research Database (Denmark)

    Fuglede, Bent; Jensen, Søren Tolver

    2013-01-01

    An elementary proof is given that the projection from the space of all symmetric p×p matrices onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem in a statistical model.......An elementary proof is given that the projection from the space of all symmetric p×p matrices onto a linear subspace is positive if and only if the subspace is a Jordan algebra. This solves a problem in a statistical model....

  4. Center vortex model for the infrared sector of SU(4) Yang-Mills theory: String tensions and deconfinement transition

    International Nuclear Information System (INIS)

    Engelhardt, M.

    2006-01-01

    A random vortex world-surface model for the infrared sector of SU(4) Yang-Mills theory is constructed, focusing on the confinement properties and the behavior at the deconfinement phase transition. Although the corresponding data from lattice Yang-Mills theory can be reproduced, the model requires a more complex action and considerably more tuning than the SU(2) and SU(3) cases studied previously. Its predictive capabilities are accordingly reduced. This behavior has a definite physical origin, which is elucidated in detail in the present work. As the number of colors is raised in Yang-Mills theory, the corresponding infrared effective vortex description cannot indefinitely continue to rely on dynamics determined purely by vortex world-surface characteristics; additional color structures present on the vortices begin to play a role. As evidenced by the modeling effort reported here, definite signatures of this behavior appear in the case of four colors

  5. Isolated/Non-Isolated Quad-Inverter Configuration for Multilevel Symmetrical/Asymmetrical Dual Six-Phase Star-Winding Converter

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Hontz, Michael R.; Khanna, Raghav

    2016-01-01

    This article presents the developments of a novel isolated/non-isolated quad inverter configuration for multilevel dual six-phase (twelve-phase) star-winding converter. The modular circuit consists of four standard voltage source inverters (VSIs). Each VSI is incorporated with one bi-directional ...... systems, electrical vehicles, AC tractions, and `More-Electric Aircraft' propulsion systems....... converter is numerically modeled using Matlab/PLECS simulation software and the predicted behavior of the system is analyzed and presented. Good agreement is obtained between these results and the theoretical analysis. Suitable applications for the converter include (low-voltage/high-current) medium power...

  6. An Analysis of $B_{s}$ Decays in the Left-Right-Symmetric Model with Spontaneous CP Violation

    CERN Document Server

    Ball, Patricia; Ball, Patricia; Fleischer, Robert

    2000-01-01

    Non-leptonic B_s decays into CP eigenstates that are caused by \\bar b -> \\bar cc\\bar s quark-level transitions, such as B_s -> D_s^+D^-_s, J/psi eta^(') or J/psi phi, provide a powerful tool to search for ``new physics'', as the CP-violating effects in these modes are tiny in the Standard Model. We explore these effects for a particular scenario of new physics, the left-right-symmetric model with spontaneous CP violation. In our analysis, we take into account all presently available experimental constraints on the parameters of this model, i.e. those implied by K- and B-decay observables; we find that CP asymmetries as large as O(40%) may arise in the B_s channels, whereas the left-right-symmetric model favours a small CP asymmetry in the ``gold-plated'' mode B_d -> J/psi K_S. Such a pattern would be in favour of B-physics experiments at hadron machines, where the B_s modes are very accessible.

  7. Phenomenology of an SU(2)×SU(2)×U(1) model with lepton-flavour non-universality

    Energy Technology Data Exchange (ETDEWEB)

    Boucenna, Sofiane M. [Laboratori Nazionali di Frascati, INFN,Via Enrico Fermi 40, 100044 Frascati (Italy); Celis, Alejandro [Arnold Sommerfeld Center for Theoretical Physics, Fakultät für Physik,Ludwig-Maximilians-Universität München,Theresienstrasse 37, 80333 München (Germany); Fuentes-Martín, Javier; Vicente, Avelino [Instituto de Física Corpuscular, Universitat de València - CSIC,E-46071 València (Spain); Virto, Javier [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,CH-3012 Bern (Switzerland)

    2016-12-14

    We investigate a gauge extension of the Standard Model in light of the observed hints of lepton universality violation in b→cℓν and b→sℓ{sup +}ℓ{sup −} decays at BaBar, Belle and LHCb. The model consists of an extended gauge group SU(2){sub 1}×SU(2){sub 2}×U(1){sub Y} which breaks spontaneously around the TeV scale to the electroweak gauge group. Fermion mixing effects with vector-like fermions give rise to potentially large new physics contributions in flavour transitions mediated by W{sup ′} and Z{sup ′} bosons. This model can ease tensions in B-physics data while satisfying stringent bounds from flavour physics, and electroweak precision data. Possible ways to test the proposed new physics scenario with upcoming experimental measurements are discussed. Among other predictions, the ratios R{sub M}=Γ(B→Mμ{sup +}μ{sup −})/Γ(B→Me{sup +}e{sup −}), with M=K{sup ∗},ϕ, are found to be reduced with respect to the Standard Model expectation R{sub M}≃1.

  8. Anti-symmetrically fused model and non-linear integral equations in the three-state Uimin-Sutherland model

    International Nuclear Information System (INIS)

    Fujii, Akira; Kluemper, Andreas

    1999-01-01

    We derive the non-linear integral equations determining the free energy of the three-state pure bosonic Uimin-Sutherland model. In order to find a complete set of auxiliary functions, the anti-symmetric fusion procedure is utilized. We solve the non-linear integral equations numerically and see that the low-temperature behavior coincides with that predicted by conformal field theory. The magnetization and magnetic susceptibility are also calculated by means of the non-linear integral equation

  9. An interior-point method for the Cartesian P*(k-linear complementarity problem over symmetric cones

    Directory of Open Access Journals (Sweden)

    B Kheirfam

    2014-06-01

    Full Text Available A novel primal-dual path-following interior-point algorithm for the Cartesian P*(k-linear complementarity problem over symmetric cones is presented. The algorithm is based on a reformulation of the central path for finding the search directions. For a full Nesterov-Todd step feasible interior-point algorithm based on the new search directions, the complexity bound of the algorithm with small-update approach is the best-available bound.

  10. Black hole spectra in holography: Consequences for equilibration of dual gauge theories

    Directory of Open Access Journals (Sweden)

    Alex Buchel

    2015-07-01

    Full Text Available For a closed system to equilibrate from a given initial condition there must exist an equilibrium state with the energy equal to the initial one. Equilibrium states of a strongly coupled gauge theory with a gravitational holographic dual are represented by black holes. We study the spectrum of black holes in Pilch–Warner geometry. These black holes are holographically dual to equilibrium states of strongly coupled SU(N N=2⁎ gauge theory plasma on S3 in the planar limit. We find that there is no energy gap in the black hole spectrum. Thus, there is a priori no obstruction for equilibration of arbitrary low-energy states in the theory via a small black hole gravitational collapse. The latter is contrasted with phenomenological examples of holography with dual four-dimensional CFTs having non-equal central charges in the stress–energy tensor trace anomaly.

  11. A dual model approach to ground water recovery trench design

    International Nuclear Information System (INIS)

    Clodfelter, C.L.; Crouch, M.S.

    1992-01-01

    The design of trenches for contaminated ground water recovery must consider several variables. This paper presents a dual-model approach for effectively recovering contaminated ground water migrating toward a trench by advection. The approach involves an analytical model to determine the vertical influence of the trench and a numerical flow model to determine the capture zone within the trench and the surrounding aquifer. The analytical model is utilized by varying trench dimensions and head values to design a trench which meets the remediation criteria. The numerical flow model is utilized to select the type of backfill and location of sumps within the trench. The dual-model approach can be used to design a recovery trench which effectively captures advective migration of contaminants in the vertical and horizontal planes

  12. Formation of shatter cones by symmetric fracture bifurcation: Phenomenological modeling and validation

    Science.gov (United States)

    Kenkmann, Thomas; Hergarten, Stefan; Kuhn, Thomas; Wilk, Jakob

    2016-08-01

    Several models of shatter cone formation require a heterogeneity at the cone apex of high impedance mismatch to the surrounding bulk rock. This heterogeneity is the source of spherically expanding waves that interact with the planar shock front or the following release wave. While these models are capable of explaining the overall conical shape of shatter cones, they are not capable of explaining the subcone structure and the diverging and branching striations that characterize the surface of shatter cones and lead to the so-called horse-tailing effect. Here, we use the hierarchical arrangement of subcone ridges of shatter cone surfaces as key for understanding their formation. Tracing a single subcone ridge from its apex downward reveals that each ridge branches after some distance into two symmetrically equivalent subcone ridges. This pattern is repeated to form new branches. We propose that subcone ridges represent convex-curved fracture surfaces and their intersection corresponds to the bifurcation axis. The characteristic diverging striations are interpreted as the intersection lineations delimiting each subcone. Multiple symmetric crack branching is the result of rapid fracture propagation that may approach the Raleigh wave speed. We present a phenomenological model that fully constructs the shatter cone geometry to any order. The overall cone geometry including apex angle of the enveloping cone and the degree of concavity (horse-tailing) is largely governed by the convexity of the subcone ridges. Straight cones of various apical angles, constant slope, and constant bifurcation angles form if the subcone convexity is low (30°). Increasing subcone convexity leads to a stronger horse-tailing effect and the bifurcation angles increase with increasing distance from the enveloping cone apex. The model predicts possible triples of enveloping cone angle, bifurcation angle, and subcone angle. Measurements of these quantities on four shatter cones from different

  13. ɛ '/ ɛ anomaly and neutron EDM in SU(2) L × SU(2) R × U(1) B- L model with charge symmetry

    Science.gov (United States)

    Haba, Naoyuki; Umeeda, Hiroyuki; Yamada, Toshifumi

    2018-05-01

    The Standard Model prediction for ɛ '/ ɛ based on recent lattice QCD results exhibits a tension with the experimental data. We solve this tension through W R + gauge boson exchange in the SU(2) L × SU(2) R × U(1) B- L model with `charge symmetry', whose theoretical motivation is to attribute the chiral structure of the Standard Model to the spontaneous breaking of SU(2) R × U(1) B- L gauge group and charge symmetry. We show that {M_W}{_R}study a correlation between ɛ ' /ɛ and the neutron EDM. We confirm that the model can solve the ɛ ' /ɛ anomaly without conflicting the current bound on the neutron EDM, and further reveal that almost all parameter regions in which the ɛ ' /ɛ anomaly is explained will be covered by future neutron EDM searches, which leads us to anticipate the discovery of the neutron EDM.

  14. Nanotrumpets and circularly polarized luminescent nanotwists hierarchically self-assembled from an achiral C3-symmetric ester.

    Science.gov (United States)

    Sang, Yutao; Duan, Pengfei; Liu, Minghua

    2018-04-17

    An achiral C3-symmetric molecule was found to self-assemble into various hierarchical nanostructures such as nanotwists, nanotrumpets and nanobelts, in which the twisted fibers showed supramolecular chirality as well as circularly polarized luminescence although the compound is achiral.

  15. MODELING OF SYMMETRIC THREE-PHASE ASYNCHRONOUS ELECTRIC MOTOR IN ASYMMETRIC CONNECTION TO NETWORK

    Directory of Open Access Journals (Sweden)

    V. I. Lukovnikov

    2005-01-01

    Full Text Available The paper shows how to solve the problem concerning reveal of changes in mathematical models and electric parameters of symmetric three-phase short-circuited asynchronous electric motors in case of their connection to single- or two-phase network in comparison with their connection to three-phase network. The uniform methodological approach permitting to generalize the known data and receive new results is offered in the paper.

  16. Symmetric q-Bessel functions

    Directory of Open Access Journals (Sweden)

    Giuseppe Dattoli

    1996-05-01

    Full Text Available q analog of bessel functions, symmetric under the interchange of q and q^ −1 are introduced. The definition is based on the generating function realized as product of symmetric q-exponential functions with appropriate arguments. Symmetric q-Bessel function are shown to satisfy various identities as well as second-order q-differential equations, which in the limit q → 1 reproduce those obeyed by the usual cylindrical Bessel functions. A brief discussion on the possible algebraic setting for symmetric q-Bessel functions is also provided.

  17. Dyon Condensation and Dual Superconductivity in Abelian Higgs Model of QCD

    Directory of Open Access Journals (Sweden)

    B. S. Rajput

    2010-01-01

    Full Text Available Constructing the effective action for dyonic field in Abelian projection of QCD, it has been demonstrated that any charge (electrical or magnetic of dyon screens its own direct potential to which it minimally couples and antiscreens the dual potential leading to dual superconductivity in accordance with generalized Meissner effect. Taking the Abelian projection of QCD, an Abelian Higgs model, incorporating dual superconductivity and confinement, has been constructed and its representation has been obtained in terms of average of Wilson loop.

  18. Neutrino bilarge mixing and flavor physics in the flipped SU(5) model

    Energy Technology Data Exchange (ETDEWEB)

    Huang Chaoshang; Li Tianjun; Liao Wei E-mail: liaow@ictp.trieste.it

    2003-11-24

    We have constructed a specific supersymmetric flipped SU(5) GUT model in which bilarge neutrino mixing is incorporated. Because the up-type and down-type quarks in the model are flipped in the representations ten and five with respect to the usual SU(5), the radiatively generated flavor mixing in squark mass matrices due to the large neutrino mixing has a pattern different from those in the conventional SU(5) and SO(10) supersymmetric GUTs. This leads to phenomenological consequences quite different from SU(5) or SO(10) supersymmetric GUT models. That is, it has almost no impact on B physics. On the contrary, the model has effects in top and charm physics as well as lepton physics. In particular, it gives promising prediction on the mass difference, {delta}M{sub D}, of the D-D-bar mixing which for some ranges of the parameter space with large tan{beta} can be at the order of 10{sup 9} {Dirac_h} s{sup -1}, one order of magnitude smaller than the experimental upper bound. In some regions of the parameter space {delta}M{sub D} can saturate the present bound. For these ranges of parameter space, t{yields}u,c+h{sup 0} can reach 10{sup -5}-10{sup -6} which would be observed at the LHC and future {gamma}-{gamma} colliders.

  19. The su(2 vertical bar 3) dynamic spin chain

    International Nuclear Information System (INIS)

    Beisert, Niklas

    2004-01-01

    The complete one-loop, planar dilatation operator of the N=4 superconformal gauge theory was recently derived and shown to be integrable. Here, we present further compelling evidence for a generalisation of this integrable structure to higher orders of the coupling constant. For that we consider the su(2 vertical bar 3) subsector and investigate the restrictions imposed on the spin chain Hamiltonian by the symmetry algebra. This allows us to uniquely fix the energy shifts up to the three-loop level and thus prove the correctness of a conjecture in hep-th/0303060. A novel aspect of this spin chain model is that the higher-loop Hamiltonian, as for N=4 SYM in general, does not preserve the number of spin sites. Yet this dynamic spin chain appears to be integrable

  20. Identification and characterization of the Spodoptera Su(var) 3-9 histone H3K9 trimethyltransferase and its effect in AcMNPV infection.

    Science.gov (United States)

    Li, Binbin; Li, Sisi; Yin, Juan; Zhong, Jiang

    2013-01-01

    Histone H3-lysine(9) (H3K9) trimethyltransferase gene Su(var) 3-9 was cloned and identified in three Spodoptera insects, Spodopterafrugiperda (S. frugiperda), S. exigua and S. litura. Sequence analysis showed that Spodoptera Su(var) 3-9 is highly conserved evolutionarily. Su(var) 3-9 protein was found to be localized in the nucleus in Sf9 cells, and interact with histone H3, and the heterochromatin protein 1a (HP1a) and HP1b. A dose-dependent enzymatic activity was found at both 27 °C and 37 °C in vitro, with higher activity at 27 °C. Addition of specific inhibitor chaetocin resulted in decreased histone methylation level and host chromatin relaxation. In contrast, overexpression of Su(var) 3-9 caused increased histone methylation level and cellular genome compaction. In AcMNV-infected Sf9 cells, the transcription of Su(var) 3-9 increased at late time of infection, although the mRNA levels of most cellular genes decreased. Pre-treatment of Sf9 cells with chaetocin speeded up viral DNA replication, and increased the transcription level of a variety of virus genes, whereas in Sf9 cells pre-transformed with Su(var) 3-9 expression vector, viral DNA replication slow down slightly. These findings suggest that Su(var) 3-9 might participate in the viral genes expression an genome replication repression during AcMNPV infection. It provided a new insight for the understanding virus-host interaction mechanism.