WorldWideScience

Sample records for styrene maleic anhydride

  1. Blends of Styrene-Butadiene-Styrene Triblock Copolymer with Random Styrene-Maleic Anhydride Copolymers

    NARCIS (Netherlands)

    Piccini, Maria Teresa; Ruggeri, Giacomo; Passaglia, Elisa; Picchioni, Francesco; Aglietto, Mauro

    2002-01-01

    Blends of styrene-butadiene-styrene triblock copolymer (SBS) with random styrene-maleic anhydride copolymers (PS-co-MA), having different MA content, were prepared in a Brabender Plastigraph mixer. The presence of polystyrene (PS) blocks in the SBS copolymer and the high styrene content (93 and 86

  2. Initiation precursors and initiators in laser-induced copolymerization of styrene and maleic anhydride in acetone

    Science.gov (United States)

    Miner, Gilda A.; Meador, Willard E.; Chang, C. Ken

    1990-01-01

    The initiation step of photopolymerized styrene/maleic anhydride copolymer was investigated at 365 nm. UV absorption measurements provide decisive evidence that the styrene/maleic anhydride charge transfer complex is the sole absorbing species; however, key laser experiments suggest intermediate reactions lead to a monoradical initiating species. A mechanism for the photoinitiation step of the copolymer is proposed.

  3. PDMS-modified poly(styrene-alt-maleic anhydride)s as water-borne coatings based on surfactant-free latexes

    NARCIS (Netherlands)

    Gunbas, I.D.; Wouters, M.E.L.; Benthem, R.A.T.M. van; Koning, C.E.; Noordover, B.A.J.

    2013-01-01

    In this work, two series of PDMS-modified poly(styrene-alt-maleic anhydride)s (PSMA) were prepared by the partial imidization of their anhydride groups with mono-functional, amine-terminated polydimethyl siloxanes (PDMS-NH2) with two different molecular weights. Subsequently, surfactant-free

  4. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene-maleic anhydride copolymers. 177.1820 Section 177.1820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use...

  5. Controlled Release of Damascone from Poly(styrene-co-maleic anhydride-based Bioconjugates in Functional Perfumery

    Directory of Open Access Journals (Sweden)

    Andreas Herrmann

    2013-02-01

    Full Text Available Poly(styrene-co-maleic anhydrides were modified with poly(propylene oxide (PO-co-ethylene oxide (EO side chains (Jeffamine® with different EO/PO molar ratios, varying between 0.11 and 3.60. These copolymers were then further functionalized with a β-mercapto ketone of δ-damascone. The obtained poly(maleic acid monoamide-based β-mercapto ketones were then studied as delivery systems for the controlled release of δ-damascone by retro 1,4-addition. The release of δ-damascone, a volatile, bioactive molecule of the family of rose ketones, was studied by dynamic headspace analysis above a cotton surface after deposition of a cationic surfactant containing fabric softening formulation, as a function of the ethylene oxide (EO/propylene oxide (PO molar ratio of the grafted copolymer side chains. The polarity of the EO/PO side chain influenced the release efficiency of the damascone in a typical fabric softening application. PO-rich copolymers and the corresponding poly(styrene-co-maleic anhydride without Jeffamine® side chains were found to be less efficient for the desired fragrance release than the corresponding bioconjugate with a EO/PO ratio of 3.60 in the side chain. This copolymer conjugate seemed to represent a suitable balance between hydrophilicity and hydrophobicity to favor the release of the δ-damascone and to improve the deposition of the conjugate from an aqueous environment onto a cotton surface.

  6. nanocomposites of PA6/ABS blends compatibilized with styrene-maleic anhydride copolymer

    International Nuclear Information System (INIS)

    Oliveira, Amanda D. de; Pessan, Luiz A.

    2009-01-01

    To achieve a balance between stiffness and toughness, ternary nanocomposites based on blends of polyamide 6 (PA6) and acrylonitrile-butadiene-styrene (ABS) were prepared by the melt intercalation using the organoclay Cloisite R 30B (OMMT) and the styrene-maleic anhydride copolymer (SMA) as compatibilizer. Four blending sequences were used to prepare studied systems and their mechanical properties studied through the Young's modulus and notched Izod impact. It was observed that the materials prepared by all blending sequences studied showed an increase in the Young's modulus compared to the neat PA6. However, a decrease in the toughness was observed for the systems with the addition of the organoclay. The DRX results showed an intercalated structure for the some systems that used ABS in their compositions. HDT measurements of the nanocomposites showed an increase in this property compared to the neat PA6. The use of nanoclay lead to a reinforcement of the polymeric matrix. (author)

  7. Maleic anhydride based copolymer dispersions for surface modification of polar substrates

    NARCIS (Netherlands)

    Gunbas, I.D.; Wouters, M.E.L.; Hendrix, M.M.R.M.; Benthem, R.A.T.M. van; Koning, C.E.; Noordover, B.A.J.

    2012-01-01

    In this article, we report the modification of poly(styrene-alt-maleic anhydride) (PSMA) with monofunctional amine-terminated poly(dimethyl siloxane) (PDMS-NH2) by thermal imidization, followed by the preparation and characterization of a surfactant-free artificial latex thereof and application of

  8. Maleic anhydride based copolymer dispersions for surface modification of polar substrates

    NARCIS (Netherlands)

    Gunbas, I.D.; Wouters, M.E.L.; Hendrix, M.M.R.M.; Benthem, van R.A.T.M.; Koning, C.E.; Noordover, B.A.J.

    2012-01-01

    In this article, we report the modification of poly(styrene-alt-maleic anhydride) (PSMA) with monofunctional amine-terminated poly(dimethyl siloxane) (PDMS–NH2) by thermal imidization, followed by the preparation and characterization of a surfactant-free artificial latex thereof and application of

  9. Controlled radical copolymerization of styrene and maleic anhydride and the synthesis of novel polyolefin-based block copolymers by reversible addition-fragmentation chain-transfer (RAFT) polymerization

    NARCIS (Netherlands)

    Brouwer, de J.A.M.; Schellekens, M.A.J.; Klumperman, B.; Monteiro, M.J.; German, A.L.

    2000-01-01

    Reversible addn.-fragmentation chain transfer (RAFT) was applied to the copolymn. of styrene and maleic anhydride. The product had a low polydispersity and a predetd. molar mass. Novel, well-defined polyolefin-based block copolymers were prepd. with a macromol. RAFT agent prepd. from a com.

  10. Amphiphilic graft copolymer based on poly(styrene-co-maleic anhydride with low molecular weight polyethylenimine for efficient gene delivery

    Directory of Open Access Journals (Sweden)

    Duan XP

    2012-09-01

    Full Text Available Xiaopin Duan,1,2 Jisheng Xiao,2 Qi Yin,2 Zhiwen Zhang,2 Shirui Mao,1 Yaping Li21School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 2Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, ChinaBackground and methods: A new amphiphilic comb-shaped copolymer (SP was synthesized by conjugating poly(styrene-co-maleic anhydride with low molecular weight polyethyleneimine for gene delivery. Fourier transform infrared spectrum, 1H nuclear magnetic resonance, and gel permeation chromatography were used to characterize the graft copolymer.Results: The buffering capability of SP was similar to that of polyethyleneimine within the endosomal pH range. The copolymer could condense DNA effectively to form complexes with a positive charge (13–30 mV and a small particle size (130–200 nm at N/P ratios between 5 and 20, and protect DNA from degradation by DNase I. In addition, SP showed much lower cytotoxicity than polyethyleneimine 25,000. Importantly, the gene transfection activity and cellular uptake of SP-DNA complexes were all markedly higher than that of complexes of polyethyleneimine 25,000 and DNA in MCF-7 and MCF-7/ADR cell lines.Conclusion: This work highlights the promise of SP as a safe and efficient synthetic vector for DNA delivery.Keywords: poly(styrene-co-maleic anhydride, polyethylenimine, DNA, gene delivery

  11. Grafting amino drugs to poly(styrene-alt-maleic anhydride) as a potential method for drug release

    Energy Technology Data Exchange (ETDEWEB)

    Khazaei, Ardeshir; Saednia, Shahnaz; Saien, Javad; Abbasi, Fatemeh, E-mail: Khazaei_1326@yahoo.com, E-mail: ssaednia@gmail.com [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Kazem-Rostami, Masoud [Young Researchers Club and Elite, Takestan Branch, Islamic Azad University, Takestan (Iran, Islamic Republic of); Sadeghpour, Mahdieh [Department of Chemistry, Takestan Branch, Islamic Azad University, Takestan (Iran, Islamic Republic of); Borazjani, Maryam Kiani [Faculty of Science, Department of Chemistry, Bushehr Payame Noor University (PNU), Bushehr (Iran, Islamic Republic of)

    2013-07-15

    Drug delivery systems based on polymer-drug conjugates give an improved treatment with lower toxicity or side effects and be used for the treatment of different diseases. Conjugates of biodegradable poly(styrene-alt-maleic anhydride) (PSMA), with a therapeutic agents such as amantadine hydrochloride, amlodipine, gabapentin, zonisamide and mesalamine, were afforded by the formation of the amide bonds of the amino drugs that reacted with the PSMA anhydride groups. The amounts of covalently conjugated drugs were determined by a {sup 1}H NMR spectroscopic method, and the in vitro release rate in buffer solution (pH 1.3) was studied at body temperature 37 Degree-Sign C. In kinetic studies, different dissolution models were examined to obtain drug release data and the collected data were well-fitted to the Korsmeyer-Peppas equation, revealing a dominant Fickian diffusion mechanism for drug release under the in vitro conditions. (author)

  12. Study of maleic anhydride and styrene grafted onto polypropylene induced by UV irradiation

    International Nuclear Information System (INIS)

    Li Zhenzhong; He Wei; Guo Hongjun; Zhang Wenxiong; Ma Yalin

    2007-01-01

    Maleic anhydride (MAH) and styrene (St) grafted onto polypropylene (PP) were prepared by UV irradiation. Effects of the irradiation time, monomer and initiator content on the grafting rate and melt flow rate (MFR) were studied. The results show that the optimal duration of UV irradiation is 30s. The grafting rate increases with initiator content when initiator content less than 0.6 phr, the MFR value of grafted PP reaches the highest point when benzophenone (BP) content is 0.4 phr. The content of MAH and St have an effect on the grafting rate and MFR value of the grafted PP, and the optimal contents of monomer is 4 phr. The existence of St as a comonomer reduces apparently the MFR value of grafted PP greatly. Grafted PP present significant changes in crystallization and fusion peaks, indicating differences in crystal size and formation after grafting reaction. (authors)

  13. Kaolinite Nanocomposite Platelets Synthesized by Intercalation and Imidization of Poly(styrene-co-maleic anhydride

    Directory of Open Access Journals (Sweden)

    Pieter Samyn

    2015-07-01

    Full Text Available A synthesis route is presented for the subsequent intercalation, exfoliation and surface modification of kaolinite (Kln by an imidization reaction of high-molecular weight poly(styrene-co-maleic anhydride or SMA in the presence of ammonium hydroxide. In a first step, the intercalation of ammonolyzed SMA by guest displacement of intercalated dimethylsulfoxide has been proven. In a second step, the imidization of ammonolyzed SMA at 160 °C results in exfoliation of the kaolinite layers and deposition of poly(styrene-co-maleimide or SMI nanoparticles onto the kaolinite surfaces. Compared with a physical mixture of Kln/SMI, the chemically reacted Kln/SMI provides more efficient exfoliation and hydrogen bonding between the nanoparticles and the kaolinite. The kaolinite nanocomposite particles are synthesized in aqueous dispersion with solid content of 65 wt %. The intercalation and exfoliation are optimized for a concentration ratio of Kln/SMI = 70:30, resulting in maximum intercalation and interlayer distance in combination with highest imide content. After thermal curing at 135 °C, the imidization proceeds towards a maximum conversion of the intermediate amic acid moieties. The changes in O–H stretching and kaolinite lattice vibrations have been illustrated by infrared and FT-Raman spectroscopy, which allow for a good quantification of concentration and imidization effects.

  14. Grafting of copolymer styrene maleic anhydride on poly(ethylene terephthalate) film by chemical reaction and by plasma method

    Energy Technology Data Exchange (ETDEWEB)

    Bigan, Muriel; Bigot, Julien [Laboratoire de Chimie Organique et Macromoleculaire (UMR 8009), Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France); Mutel, Brigitte [Laboratoire de Genie des Procedes d' Interactions Fluides reactifs-Materiaux (UPRES-EA 3751), Batiment C5, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France)], E-mail: Brigitte.mutel@univ-lille1.fr; Coqueret, Xavier [Laboratoire Reactions Selectives et Applications (UMR-CNRS 6519) Universite de Reims Champagne-Ardennes, B.P. 1039, 51687 Reims Cedex 2 (France)

    2008-02-15

    This work deals with the chemical grafting of a styrene maleic anhydride copolymer on the surface of a previously hydrolyzed polyethylene terephthalate (PET) film 12 {mu}m thick via covalent bond. Two different ways are studied. The first one involves an activation of the hydrolyzed PET by the triethylamine before the grafting step. In the second one, the copolymer reacts with the 4-dimethylaminopyridine in order to form maleinyl pyridinium salt which reacts with alcohol function of the hydrolyzed PET. Characterization and quantification of the grafting are performed by Fourier transform infrared spectroscopy. Factorial experiment designs are used to optimize the process and to estimate experimental parameters effects. The opportunity to associate the chemical process to a cold remote nitrogen plasma one is also examined.

  15. Maleic anhydride grafting on EPDM rubber in the melt

    NARCIS (Netherlands)

    Oostenbrink, A.J.; Oostenbrink, A.J.; Gaymans, R.J.

    1992-01-01

    The grafting of maleic anhydride on a EPDM rubber was studied with a twin screw extruder. The effect of barrel temperatures, throughput, maleic anhydride concentration and peroxide concentration [bis(t-butyl peroxy isopropyl)benzene] on the degree of grafting and melt viscosity was studied. The

  16. Styrene-Assisted Maleic Anhydride Grafted Poly(lactic acid as an Effective Compatibilizer for Wood Flour/Poly(lactic acid Bio-Composites

    Directory of Open Access Journals (Sweden)

    Jun Du

    2017-11-01

    Full Text Available This study aimed to evaluate the effect of styrene-assisted maleic anhydride-grafted poly(lactic acid (PLA-g-St/MAH on the interfacial properties of wood flour/poly(lactic acid (PLA bio-composites. PLA-g-St/MAH was synthesized by free-radical melt grafting using styrene as a comonomer and dicumyl peroxide as an initiator. The structure of PLA-g-St/MAH was characterized by Fourier transform infrared spectroscopy. Wood flour/PLA composites were prepared by compression molding using PLA-g-St/MAH as a compatibilizer. The effects of PLA-g-St/MAH on the rheological and mechanical properties, as well as on the fractured surface morphology of the composites were investigated. Results indicated that storage modulus, complex viscosity, equilibrium torque, and shear heat were significantly increased. The mechanical properties of the wood flour/PLA composites were also significantly increased after the addition of PLA-g-St/MAH. The maximum values were achieved at the loading rate of 3 wt % because of the improved interfacial adhesion between the wood flour and the PLA matrix.

  17. Barrier and adhesion properties of anti-corrosion coatings based on surfactant-free latexes from anhydride-containing polymers

    NARCIS (Netherlands)

    Soer, W.J.; Ming, W.; Koning, C.E.; Benthem, van R.A.T.M.; Mol, J.M.C.; Terryn, H.

    2009-01-01

    We have successfully obtained surfactant-free latexes from anhydride-containing polymers, including poly(styrene-alt-maleic anhydride) (PSMA), maleinized polybutadiene (PBDMA), and poly(octadecene-alt-maleic anhydride) (POMA). Here we report barrier and adhesion properties of the coatings made from

  18. Radiation grafting of styrene and maleic anhydride onto PTFE membranes and sequent sulfonation for applications of vanadium redox battery

    International Nuclear Information System (INIS)

    Qiu Jingyi; Ni Jiangfeng; Zhai Maolin; Peng Jing; Zhou Henghui; Li Jiuqiang; Wei Genshuan

    2007-01-01

    Using γ-radiation technique, poly(tetrafluoroethylene) (PTFE) membrane was grafted with styrene (St) (PTFE-graft-PS) or binary monomers of St and maleic anhydride (MAn) (PTFE-graft-PS-co-PMAn), respectively. Then grafted membranes were further sulfonated with chlorosulfonic acid into ion-exchange membranes (denoted as PTFE-graft-PSSA and PTFE-graft-PSSA-co-PMAc, respectively) for application of vanadium redox battery (VRB). Micro-FTIR analysis indicated that PTFE was successfully grafted and sulfonated at the above two different conditions. However, a higher degree of grafting (DOG) was obtained in St/MAn binary system at the same dose due to a synergistic effect. Comparing with PTFE-graft-PSSA, PTFE-graft-PSSA-co-PMAc membrane showed higher water uptake and ion-exchange capacity (IEC) and lower area resistance (AR) at the same DOG. In addition, PTFE-graft-PSSA-co-PMAc with 6% DOG also showed a higher IEC and higher conductivity compared to Nafion membrane. Radiation grafting of PTFE in St/MAn binary system and sequent sulfonation is an appropriate method for preparing ion-exchange membrane of VRB

  19. Amphiphilic graft copolymer based on poly(styrene-co-maleic anhydride) with low molecular weight polyethylenimine for efficient gene delivery

    Science.gov (United States)

    Duan, Xiaopin; Xiao, Jisheng; Yin, Qi; Zhang, Zhiwen; Mao, Shirui; Li, Yaping

    2012-01-01

    Background and methods A new amphiphilic comb-shaped copolymer (SP) was synthesized by conjugating poly(styrene-co-maleic anhydride) with low molecular weight polyethyleneimine for gene delivery. Fourier transform infrared spectrum, 1H nuclear magnetic resonance, and gel permeation chromatography were used to characterize the graft copolymer. Results The buffering capability of SP was similar to that of polyethyleneimine within the endosomal pH range. The copolymer could condense DNA effectively to form complexes with a positive charge (13–30 mV) and a small particle size (130–200 nm) at N/P ratios between 5 and 20, and protect DNA from degradation by DNase I. In addition, SP showed much lower cytotoxicity than polyethyleneimine 25,000. Importantly, the gene transfection activity and cellular uptake of SP-DNA complexes were all markedly higher than that of complexes of polyethyleneimine 25,000 and DNA in MCF-7 and MCF-7/ADR cell lines. Conclusion This work highlights the promise of SP as a safe and efficient synthetic vector for DNA delivery. PMID:23028224

  20. Development of chitosan derivatives with anhydride maleic

    International Nuclear Information System (INIS)

    Silva, Solranny C.C.C.; Braz, Elton Marks de A.; Brito, Carla Adriana R. de S.; Silva, Durcilene A. da; Junior, Luiz de S.S.; Silva Filho, Edson C. da

    2015-01-01

    Chitosan was chemically modified with maleic anhydride in ratios of 1/2, 1/5 and 1/10 in the absence of solvents. The obtained derivatives were characterized by elemental analysis, FTIR, thermal analysis (TGA / DTG) and XRD where it was possible to prove the chemical modification. Elemental analysis showed an increase of the relation C / N with the increasing of the proportion of anhydrides. The FTIR showed the incorporation of the anhydride in the biopolymer structure. The thermal stability of the derivatives was lower in comparison to the polysaccharide and by XRD the modified materials were less crystalline. (author)

  1. Selective hydrogenation of maleic anhydride over Pd/Al2O3 ...

    Indian Academy of Sciences (India)

    Keywords. Pd/Al2O3 catalyst; maleic anhydride; selective hydrogenation; succinic anhydride. 1. Introduction ... attracted a significant amount of attention because the majority of its ... added, and the colour of the resulting mixture turned brown.

  2. Separation and recovery of lead from a low concentration solution of lead(II) and zinc(II) using the hydrolysis production of poly styrene-co-maleic anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xing; Su, Yibing [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou (China); Yang, Ying, E-mail: Yangying@lzu.edu.cn [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou (China); Qin, Wenwu [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Separation and recovery of Pb(II) from a solution of Pb(II) and Zn(II) was performed. Black-Right-Pointing-Pointer Pb(II) can be recovered using the hydrolysis production of poly styrene-co-maleic anhydride. Black-Right-Pointing-Pointer The adsorption capacity of the PSMA resin for Pb(II) is 641.62 mg g{sup -1}. Black-Right-Pointing-Pointer Pb(II) can be recovered through desorption of Pb-PSMA into Pb(II) ion and the solid PSMA resin. Black-Right-Pointing-Pointer The resin can be repeatedly used through desorption by an inorganic acid condition (6 M H{sub 2}SO{sub 4}). - Abstract: The Pb-Zn separation/preconcentration technique, based on the complex formation reaction of Pb(II) and Zn(II), using a copolymer poly(styrene-co-maleic anhydride) (PSMA), without adding any carrier element was developed. The effects of several experimental parameters such as solution pH, temperature and adsorption time were studied. The experimental results show that the PSMA resin-Pb equilibrium was achieved in 2 min and the Pb(II) loading capacity is up to 641.62 mg g{sup -1} in aqueous solution under optimum conditions, which is much higher than the Zn(II) loading capacity within 80 min. The adsorption test for Pb(II) indicates that PSMA can recover Pb(II) from a mixed solution of Pb(II), Zn(II) and light metals such as Ca(II) and Mg(II) with higher adsorption rate and larger selective coefficient. A further study indicates that PSMA as chelating resins recovering Pb(II) can be regenerated via mineral acid (6 M H{sub 2}SO{sub 4}). PSMA was synthesized by radical polymerization and tested as an adsorbent for the selective recovery of Pb(II). In addition, the formation procedure and structure of Pb-PSMA complex were also studied. Both the PSMA and the Pb-PSMA complex were characterized by means of FTIR spectroscopy, elemental analysis, gel permeation chromatography (GPC) and atomic absorption spectrometry (AAS).

  3. Synthesis and Characterization of Poly(maleic Anhydride)s Cross-linked Polyimide Aerogels

    Science.gov (United States)

    Guo, Haiquan; Meador, Mary Ann B.

    2015-01-01

    With the development of technology for aerospace applications, new thermal insulation materials are required to be flexible and capable of surviving high heat flux. For instance, flexible insulation is needed for inflatable aerodynamic decelerators which are used to slow spacecraft for entry, descent and landing (EDL) operations. Polyimide aerogels have low density, high porosity, high surface area, and better mechanical properties than silica aerogels and can be made into flexible thin films, thus they are potential candidates for aerospace needs. The previously reported cross-linkers such as octa(aminophenyl)silsesquioxane (OAPS) and 1,3,5-triaminophenoxybenzene (TAB) are either expensive or not commercially available. Here, we report the synthesis of a series of polyimide aerogels cross-linked using various commercially available poly(maleic anhydride)s, as seen in Figure 1. The amine end capped polyimide oligomers were made with 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA) and diamine combinations of dimethylbenzidine (DMBZ) and 4, 4-oxydianiline (ODA). The resulting aerogels have low density (0.12 gcm3 to 0.16 gcm3), high porosity (90) and high surface area (380-554 m2g). The effect of the different poly(maleic anhydride) cross-linkers and polyimide backbone structures on density, shrinkage, porosity, surface area, mechanical properties, moisture resistance and thermal properties will be discussed.

  4. Fabrication of Poly(styrene-co-maleic anhydride)@Ag Spheres with High Surface Charge Intensity and their Self-Assembly into Photonic Crystal Films.

    Science.gov (United States)

    Bi, Jiajie; Fan, Genrui; Wu, Suli; Su, Xin; Xia, Hongbo; Zhang, Shu-Fen

    2017-10-01

    Herein, we developed a method to prepare monodisperse poly(styrene-co-maleic anhydride)@Ag (PSMA@Ag) core-shell microspheres with high surface charge intensity by using an in situ reduction method. In this method, ethylenediamine tetraacetic acid tetrasodium salt (Na 4 EDTA) was used as a reducing agent to promote the growth of Ag, and at the same time endowed the PSMA@Ag spheres with a surface charge. The monodispersity of PSMA and PSMA@Ag and the ordered array of the photonic crystal films were characterized by using SEM. The formation of Ag nanoparticles was confirmed by using TEM, HR-TEM, and XRD characterizations. Due to the existence of surface charges, the obtained PSMA@Ag microspheres easily self-assembled to form photonic crystal structures. In addition, the surface-enhanced Raman scattering (SERS) activity of the PSMA@Ag photonic crystal films was evaluated by detecting the signal from Raman probe molecules, 4-aminothiophenol (4-ATP). The PSMA@Ag photonic crystal films exhibited a high SERS effect, a low detection limit of up to 10 -8 for 4-ATP, good uniformity, and reproducibility.

  5. Viscometric investigation of compatibilization of the poly(vinyl chloride)/poly(ethylene-co-vinyl acetate) blends by terpolymer of maleic anhydride styrene vinyl acetate

    Science.gov (United States)

    İmren, Dilek; Boztuğ, Ali; Yılmaz, Ersen; Zengin, H. Bayram

    2008-11-01

    In this study, a blend of poly(vinyl chloride) (PVC)/ethylene-co-vinyl acetate (EVA) was compatibilized by terpolymer of maleic anhydride-styrene-vinyl acetate (MAStVA) used as a compatibilizer. It was prepared the blends of 50/50 PVC/EVA containing 2-10% of the terpolymer. The compatibility experiences of these blends were investigated by using viscometric method in the range of concentrations (0.5-2.0 g dL -1) where tetrahydrofuran (THF) is the solvent. The interaction parameter (Δ b) was used to study the miscibility and compatibility of polymer blend in solution, obtained from the modified Krigbaum and Wall theory. Turbidity and FTIR measurements were also used to investigate the miscibility of this pair of polymers. The values of the relative viscosities of the each polymer solution and their blends were measured by a Cannon-Fenske type viscometer. In consequence of the study, it was observed that a considerable improvement was achieved in the miscibility of PVC/EVA blends by adding among 5 and 10 wt% of compatibilizer.

  6. A new process for the valorisation of a bio-alcohol. The oxidehydration of 1-butanol into maleic anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Caldarelli, A.; Cavani, F.; Garone, O.; Pavarelli, G. [Bologna Univ. (Italy). Dipt. di Chimica Industriale e dei Materiali; Bologna Univ. (Italy). CIRCC, Research Unit; Dubois, J.L. [ARKEMA, Colombes (France); Mitsova, I.; Simeonova, L. [JSC, Russe (Bulgaria). Orgachim

    2012-07-01

    This paper deals with a study on the gas-phase transformation of 1-butanol into maleic anhydride, using different types of catalysts. Indeed, catalytic acid properties are needed to dehydrate 1-butanol into 1-butene, whereas redox-type properties are required for the oxidation of the olefin into maleic anhydride. The two types of active sites can be combined in bifunctional systems, showing both acid and redox-type properties. We found that vanadyl pyrophosphate catalyzes the one-pot reaction, giving a maximum selectivity to maleic anhydride of 28%. In fact, various side reactions contributed to the formation of by-products, eg, 1-butanol (oxidative) dehydrogenation into butyraldehyde, formation of light carboxylic acids and carbon oxides, and condensation of unsaturated C{sub 4} intermediates (butenes and butadiene) with the formed maleic anhydride to yield heavier compounds. (orig.)

  7. Removal of Copper ions from aqueous solutions using polymer derivations of poly (styrene-alt-maleic anhydride

    Directory of Open Access Journals (Sweden)

    Naser Samadi

    2017-06-01

    Full Text Available In this study chelating resins have been considered to be suitable materials for the recovery of Copper (II ions in water treatments. Furthermore, these modified resins were reacted with 1,2-diaminoethane in the presence of ultrasonic irradiation for the preparation of a tridimensional chelating resin on the Nano scale for the recovery of Copper (II ions from aqueous solutions. This method which is used for removing and determining Copper (II ions using copolymers derived resins of poly (styrene-alternative-maleic anhydride (SMA and atomic absorption spectroscopy. The method is simple, sensitive, inexpensive and fast. The various parameters such as pH, contact time, concentrations of metal ions, mass of resin, and agitation speed were investigated on adsorption effect. The adsorption behavior of Copper (II ions were investigated by the synthesis of chelating resins at various pHs. The prepared resins showed a good tendency for removing the selected metal ions from aqueous solution, even at an acidic pH. Also, the prepared resins were examined for the removal of Copper (II ions from real samples such as industrial wastewater and were shown to be very efficient at adsorption in the cases of Copper (II ions. The pseudo-first-order, pseudo-second-order, and intra-particle diffusion kinetics equations were used for modeling of adsorption data and it was shown that pseudo-second-order kinetic equation could best describe the adsorption kinetics. The intra-particle diffusion study revealed that external diffusion might be involved in this case. The resins were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction analysis.

  8. Comparative Study Of The Preparation Of Maleic Anhydride-g-Polypropylene By Two Grafting Processes Using Peroxide

    International Nuclear Information System (INIS)

    Sakahara, R.M.; Wang, S.H.

    2010-01-01

    The Polypropylene grafting with Maleic anhydride is a thoroughly known technique. Its wide application is due, mainly,to the controlled changing in the polarity of this polymer, which increases the interfacial adhesion in blends and compounds. In this study, two grafting processes were compared. In the first, the maleic anhydride was grafted on polypropylene in a solution batch process, carried out in a round-bottom vessel. The second approach was carried out by reactive extrusion of polypropylene in the presence of peroxide and maleic anhydride. The samples thus prepared were characterized by DSC, TGA, FTIR, WAXS, EDS e SEM. It was possible to conclude that the solution technique was more efficient than the reactive extrusion; however the later was easier to accomplish due to the high viscosity of PP. (author)

  9. Selective oxidation of n-butane to maleic anhydride under oxygen-deficient conditions over V-P-O mixed oxides

    NARCIS (Netherlands)

    Bosch, H.; Bruggink, A.A.; Ross, J.R.H.

    1987-01-01

    The selective oxidation of n-butane to maleic anhydride over V-P-O mixed oxides was studied under oxygen deficient conditions. The mixed oxides were prepared with P/V atomic ratios ranging from 0.7 to 1.0. Catalysts with P/V <1.0 did not show any selectivity to maleic anhydride formation, regardless

  10. Preparation and Mechanical Properties of Chitosan-graft Maleic Anhydride Reinforced with Montmorillonite

    Science.gov (United States)

    Fajrin, A.; Sari, L. A.; Rahmawati, N.; Saputra, O. A.; Suryanti, V.

    2017-02-01

    The research aims to develop biodegradable composites as bio-based plastics from chitosan. The composites were prepared via solution casting method by introducing the maleic anhydride (MAH) as grafting agent and montmorillonite (MMt) as reinforcement. The grafting process of chitosan was conducted by varying concentrations of MAH which were 10, 20, and 30% w/w. It was observed that the chitosan-graft-maleic anhydride (Cs-g-MAH) containing 10% w/w of MAH increased its tensile strength by 70%. Reinforcement material was added to the Cs-g-MAH by varying MMt concentrations, e.g. 3, 6, 9 and 12% w/w. It was noted that the presence of 9% w/w of MMt in the Cs-g-MAH gave the best mechanical properties of the Cs-g-MAH/MMt composite.

  11. Biomaterial properties evaluation of poly(vinyl acetate- alt-maleic anhydride)/chitosan nanocapsules

    Science.gov (United States)

    Raţă, Delia Mihaela; Popa, Marcel; Chailan, Jean-François; Zamfir, Carmen Lăcrămioara; Peptu, Cătălina Anişoara

    2014-08-01

    Nanocapsules with diameter around 100 nm based on a natural polymer (chitosan) and a synthetic polymer poly(vinyl acetate- alt-maleic anhydride) [poly(MAVA)] by interfacial condensation method were prepared. The present study proposes a new type of biocompatible nanocapsules based on poly(vinyl acetate- alt-maleic anhydride-chitosan) (MCS) able to become a reliable support for inclusion and release of drugs. The spherical shape of the nanocapsules was evidenced by scanning electron microscopy. Nanocapsules presented a good Norfloxacin loading and release capacity. Haemocompatibility tests have demonstrated that the nanocapsules present a low toxicity and a good compatibility with sanguine medium. The biocompatibility properties of the nanocapsules after their intraperitoneal administration in rats were evidenced by histopathological examination of different organs (brain, liver, kidney, and lung). The results are encouraging and the nanocapsules can be used as controlled drug delivery systems.

  12. Hydrolysis and stability of thin pulsed plasma polymerised maleic anhydride coatings

    DEFF Research Database (Denmark)

    Drews, Joanna Maria; Launay, Héléne; Hansen, Charles M.

    2008-01-01

    Abstract The stability of plasma polymerised layers has become important because of their widespread use. This study explored the hydrolysis and degradation stability of coatings of plasma polymerised maleic anhydride. Coatings made with different plasma parameters were exposed to aqueous media...... of different pH as a function of time. ATR-FTIR was used for structure analysis and a toluidine blue staining method allowed quantitative analysis of the hydrolysis of anhydride groups to acid groups. Coatings with constant thickness were obtained at different plasma powers and layers with varying thickness...

  13. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, from ammonium hydroxide... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow... subject to reporting. (1) The chemical substance identified as amides, from ammonium hydroxide - maleic...

  14. Urea- Hydrogen Peroxide (UHP Oxidation of Thiols to the Corresponding Disulfides Promoted by Maleic Anhydride as Mediator

    Directory of Open Access Journals (Sweden)

    M. H. Habibi

    2005-10-01

    Full Text Available Urea-hydrogen peroxide (UHP was used in the presence of maleic anhydride as mediator in a simple and convenient method for the oxidation in high yield of some thiols to the corresponding disulfides. Peroxymaleic acid formed in situ from the reaction of UHP with maleic anhydride has a key role in this oxidation. Performance of the reaction in various solvents showed that methanol was the solvent of choice at 0 oC. The products were isolated by simple filtration on silica gel.

  15. THE GRAFTING OF MALEIC-ANHYDRIDE ON HIGH-DENSITY POLYETHYLENE IN AN EXTRUDER

    NARCIS (Netherlands)

    GANZEVELD, KJ; JANSSEN, LPBM

    The grafting of maleic anhydride (MAH) on high density polyethylene in a counter-rotating twin screw extruder has been studied. As the reaction kinetics appear to be affected by mass transfer, good micro mixing in the extruder is important. Due to the competing mechanisms of increasing mixing and

  16. Réaction du polyisobutène chloré sur l'anhydride maléique : mécanisme. Catalyse par l'anhydride dichloromaléique Reaction of Chlorinated Polyisobutene on Maleic Anhydride. Mechanism. Catalysis by Dichloromaleic Anhydride

    Directory of Open Access Journals (Sweden)

    Sillion B.

    2006-11-01

    Full Text Available Dans cet article le mécanisme de la réaction de condensation du polyisobutène chloré sur l'anhydride maléique, qui sert dans la synthèse d'additif pour lubrifiant, est étudié par une cinétique globale et par un travail sur composés modèles. Il est montré que, dans cette réaction, l'anhydride maléique joue un double rôle : de catalyseur de déshydrochloration par une réactivité de type acide de Lewis organique, de réactif comme diénophile. Grâce à ces résultats, il est proposé une catalyse par l'anhydride dichloromaléique, qui permet une amélioration sensible du procédé. This article examines the mechanism of the chlorinated-polyisobutene condensation reaction on maleic anhydride. The overall kinetics and model compounds are investigated for this reaction which is used in the synthesis of lubricant additives. Maleic anhydride is shown to play the dual role of a dehydrochlorination catalyst by having a reactivity of the organic Lewis acid type and of a reactant like dienophile. These results are used to propose a catalysis by dichloromaleic anhydride which appreciably improves the process.

  17. Structure and thermal performance of poly(styrene-co-maleic anhydride)-g-alkyl alcohol comb-like copolymeric phase change materials

    International Nuclear Information System (INIS)

    Wang, Haixia; Shi, Haifeng; Qi, Miao; Zhang, Lingjian; Zhang, Xingxiang; Qi, Lu

    2013-01-01

    Graphical abstract: SMA-g-CnOH comb-like PCMs exhibit the better thermal stability against 1-alcohols due to the protection of SMA backbones, and the degradation temperature is dependent on the side-chain length, where at 5 wt% weight loss T d increased from 193 to 257 °C with n changing from 14 to 26. SMA-g-CnOH PCMs can be widely used under 300 °C for preparation of energy-saving products and materials. - Highlights: • The length of alkyl side-chains determines the thermal energy storage ability. • SMA backbone restricts the crystallization of alkyl side groups. • SMA-g-CnOH PCMs have the better thermal stability against 1-alcohols. - Abstract: A series of comb-like copolymeric phase change materials (SMA-g-CnOH) composed of poly(styrene-co-maleic anhydride) (SMA) and 1-alcohols CnOH with n = 14, 16, 18 or 26, respectively, was synthesized through grafting reaction. The structure and thermal properties of SMA-g-CnOH were investigated by 1 H nuclear magnetic resonance ( 1 H NMR), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and wide-angle X-ray diffraction (WAXD). The DSC analysis indicates that SMA-g-CnOH exhibit good structure stability with phase change enthalpies changing from 37.9 to 110.7 J g −1 . The results showed that the low thermal efficiency of SMA-g-CnOH was ascribed to the small CH 2 segments of side chains participating in the assembled structure of side-chain crystallites. Their advantageous structural stability and thermal performance of SMA-g-CnOH were favorable for phase change materials in the thermal energy storage systems. Additionally, the influence of side-chain length on thermal properties of SMA-g-CnOH also was discussed in detail in combination with the published results

  18. Tensile and morphology properties of PLA/LNR blends modified with maleic anhydride grafted-polylactic acid and -natural rubber

    Science.gov (United States)

    Ruf, Mohd Farid Hakim Mohd; Ahmad, Sahrim; Chen, Ruey Shan; Shahdan, Dalila; Zailan, Farrah Diyana

    2018-04-01

    This research was carried out to investigate the addition of grafted copolymers of maleic anhydride grafted-polylactic acid(PLA-g-MA) and maleic anhydride grafted-natural rubber (NR-g-MA) on the tensile and morphology properties of polylactic acid/ liquid natural rubber (PLA/LNR) blends. Prior to blend preparation, the PLA-g-MA and NR-g-MA was first self-synthesized using maleic anhydride (MA) and dicumyl peroxide (DCP) as initiator together with the PLA and NR respectively. The PLA/LNR, PLA/LNR/PLA-g-MA and PLA/LNR/NR-g-MA blends were prepared via melt-blending method. The loading of PLA-g-MA and NR-g-MA was varied by 5, 10 and 15 wt% respectively. The addition of PLA-g-MA led to increment in tensile strength with 5 and 10 wt% while NR-g-MA gives lower than controlled sample (PLA/LNR blend). Scanning electron microscope (SEM) showed the interaction of the components in the blends. The PLA/LNR compatibilized with PLA-g-MA and NR-g-MA shows greater dispersion and adhesion.

  19. Towards anti-corrosion coatings from surfactant-free latexes based on maleic anhydride containing polymers

    NARCIS (Netherlands)

    Soer, W.J.; Ming, W.; Koning, C.E.; Benthem, van R.A.T.M.

    2008-01-01

    We report on the film formation of surfactant-free, artificial latexes based on copolymers containing maleic anhydride. Different metallic substrates, such as aluminum, steel and magnesium alloys, were coated with three different latexes. A commercial polyester based coating was used as a

  20. Development of chitosan derivatives with anhydride maleic; Desenvolvimento de derivados de quitosana com anidrido maleico

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Solranny C.C.C.; Braz, Elton Marks de A.; Brito, Carla Adriana R. de S.; Silva, Durcilene A. da; Junior, Luiz de S.S.; Silva Filho, Edson C. da, E-mail: solbiologa@hotmail.com [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil)

    2015-07-01

    Chitosan was chemically modified with maleic anhydride in ratios of 1/2, 1/5 and 1/10 in the absence of solvents. The obtained derivatives were characterized by elemental analysis, FTIR, thermal analysis (TGA / DTG) and XRD where it was possible to prove the chemical modification. Elemental analysis showed an increase of the relation C / N with the increasing of the proportion of anhydrides. The FTIR showed the incorporation of the anhydride in the biopolymer structure. The thermal stability of the derivatives was lower in comparison to the polysaccharide and by XRD the modified materials were less crystalline. (author)

  1. Samarium-modified vanadium phosphate catalyst for the selective oxidation of n-butane to maleic anhydride

    International Nuclear Information System (INIS)

    Wu, Hua-Yi; Wang, Hai-Bo; Liu, Xin-Hua; Li, Jian-Hui; Yang, Mei-Hua; Huang, Chuan-Jing; Weng, Wei-Zheng; Wan, Hui-Lin

    2015-01-01

    Graphical abstract: The addition of a small amount of Sm into VPO catalyst brought about great changes in its physicochemical properties such as surface area, surface morphology, phase composition and redox property, thus leading to a higher catalytic performance in the selective oxidation of n-butane to maleic anhydride, as compared to the undoped VPO catalyst. - Highlights: • The addition of Sm leads to great changes in the structure of VPO catalyst. • Sm improves performance of VPO for oxidation of n-butane to maleic anhydride. • Catalytic performance is closely related to structure of VPO catalyst. - Abstract: A series of samarium-modified vanadium phosphate catalysts were prepared and studied in selective oxidation of n-butane to maleic anhydride. The catalytic evaluation showed that Sm modification significantly increased the overall n-butane conversion and intrinsic activity. N 2 -adsorption, XRD, SEM, Raman, XPS, EPR and H 2 -TPR techniques were used to investigate the intrinsic difference among these catalysts. The results revealed that the addition of Sm to VPO catalyst can increase the surface area of the catalyst, lead to a significant change in catalyst morphology from plate-like structure into rosette-shape clusters, and largely promote the formation of (VO) 2 P 2 O 7 . All of these were related to the different catalytic performance of Sm-doped and undoped VPO catalysts. The roles of the different VOPO 4 phases and the influence of Sm were also described and discussed

  2. Synthesis, characterization, and assessment of cytotoxic, antiproliferative, and antiangiogenic effects of a novel procainamide hydrochloride-poly(maleic anhydride-co-styrene) conjugate.

    Science.gov (United States)

    Karakus, Gulderen; Akin Polat, Zubeyde; Sahin Yaglıoglu, Ayse; Karahan, Mesut; Yenidunya, Ali Fazil

    2013-01-01

    Poly(maleic anhydride-co-styrene) (MAST) was synthesized by a free-radical polymerization reaction. A bioactive molecule, procainamide hydrochloride (PH), was then conjugated to MAST. The conjugation product was named as MAST/PH. Structural characterization of MAST and MAST/PH was carried out by Fourier Transform Infrared and Nuclear Magnetic Resonance spectroscopy. Their molecular weights were determined by size-exclusion chromatography. A mechanism was then suggested for the conjugation reaction. The results of the cytotoxicity assay, employing a mouse fibroblast cell line (L929), indicated that MAST/PH had no cytotoxicity at concentrations [Formula: see text] 62 μg mL(-1) (p > 0.05). Antiproliferative activities of MAST/PH and PH were determined by the BrdU cell proliferation ELISA assay, using C6 and HeLa cell lines. In the experiment, two anticancer chemotherapy drugs, cisplatin and 5-fluorouracil, were included as positive control. Antiproliferative activity results demonstrated that MAST/PH yielded the highest suppression profile (approximately 42%) at 20 μg/ml, while free PH exerted the same activity at 100 μg/ml. Interestingly, both MAST/PH and PH suppressed the proliferation of only one of the cell lines, C6 cells. Both cisplatin and 5-fluorouracil yielded approximately 60% antiproliferative activity on C6 cells at 20 and 100 μg/ml concentrations. Antiangiogenic capacity of both MAST and MAST/PH was also investigated by using the chicken chorioallantoic membrane assay. Results obtained indicated that while MAST/PH could be included into the category of good antiangiogenic substances, the activity score of MAST was within the weak category.

  3. Highly Efficient Gas-Phase Oxidation of Renewable Furfural to Maleic Anhydride over Plate Vanadium Phosphorus Oxide Catalyst.

    Science.gov (United States)

    Li, Xiukai; Ko, Jogie; Zhang, Yugen

    2018-02-09

    Maleic anhydride (MAnh) and its acids are critical intermediates in chemical industry. The synthesis of maleic anhydride from renewable furfural is one of the most sought after processes in the field of sustainable chemistry. In this study, a plate vanadium phosphorus oxide (VPO) catalyst synthesized by a hydrothermal method with glucose as a green reducing agent catalyzes furfural oxidation to MAnh in the gas phase. The plate catalyst-denoted as VPO HT -has a preferentially exposed (200) crystal plane and exhibited dramatically enhanced activity, selectivity and stability as compared to conventional VPO catalysts and other state-of-the-art catalytic systems. At 360 °C reaction temperature with air as an oxidant, about 90 % yield of MAnh was obtained at 10 vol % of furfural in the feed, a furfural concentration value that is much higher than those (<2 vol %) reported for other catalytic systems. The catalyst showed good long-term stability and there was no decrease in activity or selectivity for MAnh during the time-on-stream of 25 h. The high efficiency and catalyst stability indicate the great potential of this system for the synthesis of maleic anhydride from renewable furfural. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Biomimetic porous high-density polyethylene/polyethylene- grafted-maleic anhydride scaffold with improved in vitro cytocompatibility.

    Science.gov (United States)

    Sharma, Swati; Bhaskar, Nitu; Bose, Surjasarathi; Basu, Bikaramjit

    2018-05-01

    A major challenge for tissue engineering is to design and to develop a porous biocompatible scaffold, which can mimic the properties of natural tissue. As a first step towards this endeavour, we here demonstrate a distinct methodology in biomimetically synthesized porous high-density polyethylene scaffolds. Co-extrusion approach was adopted, whereby high-density polyethylene was melt mixed with polyethylene oxide to form an immiscible binary blend. Selective dissolution of polyethylene oxide from the biphasic system revealed droplet-matrix-type morphology. An attempt to stabilize such morphology against thermal and shear effects was made by the addition of polyethylene- grafted-maleic anhydride as a compatibilizer. A maximum ultimate tensile strength of 7 MPa and elastic modulus of 370 MPa were displayed by the high-density polyethylene/polyethylene oxide binary blend with 5% maleated polyethylene during uniaxial tensile loading. The cell culture experiments with murine myoblast C2C12 cell line indicated that compared to neat high-density polyethylene and high-density polyethylene/polyethylene oxide, the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride scaffold significantly increased muscle cell attachment and proliferation with distinct elongated threadlike appearance and highly stained nuclei, in vitro. This has been partly attributed to the change in surface wettability property with a reduced contact angle (∼72°) for 5% PE- g-MA blends. These findings suggest that the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride can be treated as a cell growth substrate in bioengineering applications.

  5. Structure and thermal performance of poly(styrene-co-maleic anhydride)-g-alkyl alcohol comb-like copolymeric phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haixia; Shi, Haifeng, E-mail: haifeng.shi@gmail.com; Qi, Miao; Zhang, Lingjian; Zhang, Xingxiang; Qi, Lu

    2013-07-20

    Graphical abstract: SMA-g-CnOH comb-like PCMs exhibit the better thermal stability against 1-alcohols due to the protection of SMA backbones, and the degradation temperature is dependent on the side-chain length, where at 5 wt% weight loss T{sub d} increased from 193 to 257 °C with n changing from 14 to 26. SMA-g-CnOH PCMs can be widely used under 300 °C for preparation of energy-saving products and materials. - Highlights: • The length of alkyl side-chains determines the thermal energy storage ability. • SMA backbone restricts the crystallization of alkyl side groups. • SMA-g-CnOH PCMs have the better thermal stability against 1-alcohols. - Abstract: A series of comb-like copolymeric phase change materials (SMA-g-CnOH) composed of poly(styrene-co-maleic anhydride) (SMA) and 1-alcohols CnOH with n = 14, 16, 18 or 26, respectively, was synthesized through grafting reaction. The structure and thermal properties of SMA-g-CnOH were investigated by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and wide-angle X-ray diffraction (WAXD). The DSC analysis indicates that SMA-g-CnOH exhibit good structure stability with phase change enthalpies changing from 37.9 to 110.7 J g{sup −1}. The results showed that the low thermal efficiency of SMA-g-CnOH was ascribed to the small CH{sub 2} segments of side chains participating in the assembled structure of side-chain crystallites. Their advantageous structural stability and thermal performance of SMA-g-CnOH were favorable for phase change materials in the thermal energy storage systems. Additionally, the influence of side-chain length on thermal properties of SMA-g-CnOH also was discussed in detail in combination with the published results.

  6. Separation and recovery of lead from a low concentration solution of lead(II) and zinc(II) using the hydrolysis production of poly styrene-co-maleic anhydride.

    Science.gov (United States)

    Liang, Xing; Su, Yibing; Yang, Ying; Qin, Wenwu

    2012-02-15

    The PbZn separation/preconcentration technique, based on the complex formation reaction of Pb(II) and Zn(II), using a copolymer poly(styrene-co-maleic anhydride) (PSMA), without adding any carrier element was developed. The effects of several experimental parameters such as solution pH, temperature and adsorption time were studied. The experimental results show that the PSMA resin-Pb equilibrium was achieved in 2 min and the Pb(II) loading capacity is up to 641.62 mg g(-1) in aqueous solution under optimum conditions, which is much higher than the Zn(II) loading capacity within 80 min. The adsorption test for Pb(II) indicates that PSMA can recover Pb(II) from a mixed solution of Pb(II), Zn(II) and light metals such as Ca(II) and Mg(II) with higher adsorption rate and larger selective coefficient. A further study indicates that PSMA as chelating resins recovering Pb(II) can be regenerated via mineral acid (6M H(2)SO(4)). PSMA was synthesized by radical polymerization and tested as an adsorbent for the selective recovery of Pb(II). In addition, the formation procedure and structure of Pb-PSMA complex were also studied. Both the PSMA and the Pb-PSMA complex were characterized by means of FTIR spectroscopy, elemental analysis, gel permeation chromatography (GPC) and atomic absorption spectrometry (AAS). Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Preparation, characterization and thermal properties of styrene maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials

    International Nuclear Information System (INIS)

    Sari, Ahmet; Alkan, Cemil; Karaipekli, Ali; Onal, Adem

    2008-01-01

    Fatty acids such as stearic acid (SA), palmitic acid (PA), myristic acid (MA) and lauric acid (LA) are promising phase change materials (PCMs) for latent heat thermal energy storage (LHTES) applications, but high cost is the major drawback of them, limiting their utility area in thermal energy storage. The use of fatty acids as form stable PCMs will increase their feasibilities in practical applications due to the reduced cost of the LHTES system. In this regard, a series of styrene maleic anhydride copolymer (SMA)/fatty acid composites, SMA/SA, SMA/PA, SMA/MA, and SMA/LA, were prepared as form stable PCMs by encapsulation of fatty acids into the SMA, which acts as a supporting material. The encapsulation ratio of fatty acids was as much as 85 wt.% and no leakage of fatty acid was observed even when the temperature of the form stable PCM was over the melting point of the fatty acid in the composite. The prepared form stable composite PCMs were characterized using optic microscopy (OM), viscosimetry and Fourier transform infrared (FT-IR) spectroscopy methods, and the results showed that the SMA was physically and chemically compatible with the fatty acids. In addition, the thermal characteristics such as melting and freezing temperatures and latent heats of the form stable composite PCMs were measured by using the differential scanning calorimetry (DSC) technique, which indicated they had good thermal properties. On the basis of all the results, it was concluded that form stable SMA/fatty acid composite PCMs had important potential for practical LHTES applications such as under floor space heating of buildings and passive solar space heating of buildings by using wallboard, plasterboard or floors impregnated with a form stable PCM due to their satisfying thermal properties, easy preparation in desired dimensions, direct usability without needing additional encapsulation thereby eliminating the thermal resistance caused by the shell and, thus, reducing the cost of

  8. A novel reverse osmosis membrane modified by polyvinyl alcohol with maleic anhydride crosslinking

    Science.gov (United States)

    Samnani, Mohit; Rathod, Harshad; Raval, Hiren

    2018-03-01

    In the era of increasing energy crisis, it is inevitable to decrease process energy consumption to increase process viability and curtail green-house gas emission. The Reverse Osmosis plant requires significant energy to transfer water overcoming the osmotic pressure. This paper focuses on increasing the water flux for Thin Film Composite Reverse Osmosis (TFC RO) membrane without compromising salt rejection performance leading to the environmentally friendly and economically attractive process. The virgin TFC RO membrane was exposed to solution of sodium hypochlorite of concentration 2000 mg l-1 for 1 h to activate the surface of the membrane, followed by the treatment with the mixture of polyvinyl alcohol and maleic anhydride with varying concentrations for 1 h and curing in the oven at 80 °C temperature for 10 min. Out of all the treated membranes, the membrane treated with 2000 mg l-1 polyvinyl alcohol and 1000 mg l-1 maleic anhydride demonstrated the highest salt rejection of 96.83 % with 2% increase as compared to the virgin TFC RO membrane. The water flux of the membrane was around 44% higher than the virgin TFC RO membrane. The membrane samples were characterized by atomic force micrographs, ATR-FTIR, Nuclear magnetic resonance and Dynamic mechanical analysis.

  9. Resonance energy transfer from quinolinone modified polystyrene-block-poly(styrene-alt-maleic anhydride) copolymer to terbium(III) metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Výprachtický, Drahomír, E-mail: vyprachticky@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6 (Czech Republic); Mikeš, František [New York University Polytechnic School of Engineering, Polymer Research Institute, 6 MetroTech Center, Brooklyn, NY 11201 (United States); Lokaj, Jan; Pokorná, Veronika; Cimrová, Věra [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6 (Czech Republic)

    2015-04-15

    Polystyrene-block-poly(styrene-alt-maleic anhydride) was synthesized by nitroxide mediated radical polymerization and modified with 7-amino-4-methylquinolin-2(1H)-one (I) and methanol. The formed block polymer ligand contained a quinolinone fluorophore (Ω) and carboxyl (III) or sodium carboxylate (IV) binding sites. The ligand-to-metal resonance energy transfer (RET) and ligand binding properties of [III–Tb{sup 3+}] and [IV–Tb{sup 3+}] complexes were investigated by steady-state and time-resolved luminescence spectroscopy in tetrahydrofuran/methanol and/or tetrahydrofuran/deuterated methanol mixtures and compared with those of a low-molecular-weight model ligand, i.e. the sodium salt of N-(4-methyl-2-oxo-1,2-dihydroquinolin-7-yl)succinamic acid (II). The long-lived emission intensities of Tb{sup 3+} at 490, 545, 585, and 620 nm corresponding to the {sup 5}D{sub 4}→{sup 7}F{sub 6}, {sup 5}D{sub 4}→{sup 7}F{sub 5}, {sup 5}D{sub 4}→{sup 7}F{sub 4}, and {sup 5}D{sub 4}→{sup 7}F{sub 3} transitions, respectively, were strongly increased by the addition of ligands in the order [II-Tb{sup 3+}]⪡[III-Tb{sup 3+}]<[IV-Tb{sup 3+}]. The efficiency of energy transfer (E) was evaluated from the emission intensity of the donor (Ω) in the presence or absence of the acceptor (Tb{sup 3+}) depending on the acceptor concentration and ligand neutralization. It was concluded that the macromolecular ligand structural properties (polymer coil and supramolecular structures, e.g. micelles) were responsible for the increase in RET. The time-resolved luminescence measurements revealed that the binding affinity of the ligands II, III, and IV increased in the order II

  10. Partial oxidation of D-xylose to maleic anhydride and acrylic acid over vanadyl pyrophosphate

    International Nuclear Information System (INIS)

    Ghaznavi, Touraj; Neagoe, Cristian; Patience, Gregory S.

    2014-01-01

    Xylose is the second most abundant sugar after glucose. Despite its tremendous potential to serve as a renewable feedstock, few commercial processes exploit this resource. Here, we report a new technology in which a two-fluid nozzle atomizes a xylose-water solution into a capillary fluidized bed operating above 300 °C. Xylose-water droplets form at the tip of the injector, vaporize then react with a heterogeneous mixed oxide catalyst. A syringe pump metered the solution to the reactor charged with 1 g of catalyst. Product yield over vanadyl pyrophosphate was higher compared to molybdenum trioxide-cobalt oxide and iron molybdate; it reached 25% for maleic anhydride, 17% for acrylic acid and 11% for acrolein. Gas residence time was 0.2 s. The catalyst was free of coke even after operating for 4 h – based on a thermogravimetric analysis of catalyst withdrawn from the reactor. Below 300 °C, powder agglomerated at the tip of the injector at 300 °C; it also agglomerated with a xylose mass fraction of 7% in water. - Highlights: • D-xylose reacts to form maleic anhydride and acrylic acid above 250 °C. • Vanadyl pyrophosphate is both active and selective for maleic and acrylic acid. • Acid and acrolein yield approaches 50% for a xylose mass fraction of 3% in water. • Catalyst agglomerates at low temperatures and high xylose aqueous mass fraction. • Atomization quality is a determining factor to minimize agglomeration

  11. The use of maleic anhydride-modified polypropylene for performance enhancement in continuous glass fiber-reinforced polypropylene composites

    NARCIS (Netherlands)

    Rijsdijk, H.A.; Contant, M.; Peijs, A.A.J.M.; Miravete, A.

    1993-01-01

    The influence of maleic anhydride-modified polypropylene (m-PP) on static mech. properties of continuous glass fiber-reinforced polypropylene (PP) composites was studied. M-PP was added to the PP homopolymer to improve the adhesion between the matrix and the glass fiber. Three-point bending tests

  12. Effects of Different Types of Clays and Maleic Anhydride Modified Polystyrene on Polystyrene/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Mehrabzadeh

    2013-01-01

    Full Text Available Polymer/clay nanocomposites are considered as a new subject of research in Iran and the world. Addition of a minimum amount of clay (2-5wt% can improve the mechanical properties, enhance barrier properties and reduce flammability dramatically. Polystyrene (PS exhibits high strength, high modulus and excellent dimensional stability, but it has poor ductility, elongation, and flexural modulus. By incorporating clay into polystyrene these properties can be improved. In this study preparation of polystyrene/clay nanocomposite, effects of different types of clays (Cloisite 10A andNanomer I.30TC and maleic anhydride modified polystyrene on mechanical properties of the prepared polystyrene/clay nanocomposites were evaluated. Samples were prepared by a twin screw extruder. Transmission electron microscopy (TEM and X-ray diffraction (XRD techniques were employed to evaluate the extent of intercalation and exfoliation of silicate layers in the nanocomposites. Mechanical tests show that by addition of clay and maleic anhydride modified polystyrene the flexural modulus (~30% and elongation-at-break (~40% of prepared nanocomposites have been improved. XRD and TEM results show that nanocomposite have an intercalated structure with ability to change to further exfoliation structure.

  13. A maleic anhydride grafted sugarcane bagasse adsorbent and its performance on the removal of methylene blue from related wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Mingliang; Du, Mingyi; Zheng, Luoyun [Key Laboratory of Polymer Processing Engineering of Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Bingying; Zhou, Xiangyang [College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225 (China); Jia, Zhixin [College of Material Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Hu, Guoqing [Key Laboratory of Polymer Processing Engineering of Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Jahangir Alam, S.M., E-mail: mejahangir@scut.edu.cn [Key Laboratory of Polymer Processing Engineering of Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640 (China)

    2017-05-01

    Sugarcane bagasse (SCB) was selected as the supporting material for grafting maleic anhydride (MA) to obtain sugarcane-bagasse-grafting-maleic-anhydride (SCB-g-MA), which was used as an adsorbent for the removal of methylene blue (MB) in the dye-containing wastewater. The granular morphology and functional groups of the material were characterized by the scanning electron microscope (SEM), Fourier transforms infrared spectroscopy (FTIR), and solid-state analysis (13C NMR) methods. The effect(s) of the adsorbent dosage, adsorption time, initial concentration of MB, and the pH of solution on the MB adsorption performance of the material have been also investigated. The results showed that the adsorption capacity and removal rate of MB were found to be 82 mg/g and 98%, respectively. It has also showed that the adsorption behavior on the MB could be well described by the pseudo-second-order model integrated with Langmuir model. - Highlights: • Using solid phase grafting method to graft the maleic anhydride (MA) onto the Sugarcane bagasse (SCB) and get the SCB-g-MA. • SEM, FTIR and 13C NMR analysis were used to characterize the grafting of MA on to the SCB by the solid phase grafting method. • The adsorption capacity and removal rate of MB were to be 82 mg/g and 98% respectively, to show an excellent adsorption effect. • Pseudo-second-order model and Langmuir model are better fitted the adsorption kinetics and isotherms in this research.

  14. Thermotropic properties of phosphatidylcholine nanodiscs bounded by styrene-maleic acid copolymers.

    Science.gov (United States)

    Dominguez Pardo, J J; Dörr, J M; Renne, M F; Ould-Braham, T; Koorengevel, M C; van Steenbergen, M J; Killian, J A

    2017-11-01

    Styrene-maleic acid copolymers (SMA) have been gaining interest in the field of membrane research due to their ability to solubilize membranes into nanodics. The SMA molecules act as an amphipathic belt that surrounds the nanodiscs, whereby the hydrophobic styrene moieties can insert in between the lipid acyl chains. Here we used SMA variants with different styrene-to-maleic acid ratio (i.e. 2:1, 3:1 and 4:1) to investigate how lipid packing in the nanodiscs is affected by the presence of the polymers and how it depends on polymer composition. This was done by analyzing the thermotropic properties of a series of saturated phosphatidylcholines in nanodiscs using laurdan fluorescence and differential scanning calorimetry. In all cases it was found that the temperature of the main phase transition (T m ) of the lipids in the nanodiscs is downshifted and that its cooperativity is strongly reduced as compared to the situation in vesicles. These effects were least pronounced for lipids in nanodiscs bounded by SMA 2:1. Unexpected trends were observed for the calorimetric enthalpy of the transition, suggesting that the polymer itself contributes, possibly by rearranging around the nanodiscs when the lipids adopt the fluid phase. Finally, distinct differences in morphology were observed for nanodiscs at relatively high polymer concentrations, depending on the SMA variant used. Overall, the results suggest that the extent of preservation of native thermodynamic properties of the lipids as well as the stability of the nanodiscs at high polymer concentrations is better for SMA 2:1 than for the other SMA variants. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Using maleic anhydride functionalized graphene oxide for improving the interfacial properties of carbon fiber/BMI composites

    Directory of Open Access Journals (Sweden)

    W. Li

    2016-11-01

    Full Text Available Maleic anhydride functionalized graphene oxide (MAH-GO was synthesized and then introduced into carbon fiber (CF reinforced bismaleimide (BMI composites, with the aim of improving the interfacial adhesion strength between CF and BMI resin. Various characterization techniques including Fourier transform infrared spectroscopy (FT-IR, X-ray photoelectron spectra (XPS and thermogravimetric analysis (TGA demonstrated that the maleic anhydride has been successfully grafted onto the GO surfaces. The study showed that the interlaminar shear strength (ILSS and flexural properties of CF/BMI composites were all improved by the incorporation of GO and MAH-GO, and the MAH-GO showed the substantially improved effect due to the strong interaction between the MAH-GO and the resin matrix. The maximum increment of the ILSS, flexural strength and flexural modulus of composites were 24.4, 28.7 and 49.7%, respectively. Scanning electron microscope (SEM photographs of the fracture surfaces revealed that the interfacial bonding between CF and resin matrix was significantly strengthened by the addition of MAH-GO. The results suggest that this feasible method may be an ideal substitute for the traditional method in the interfacial modification of composites.

  16. Comparative Study Of The Preparation Of Maleic Anhydride-g-Polypropylene By Two Grafting Processes Using Peroxide; Estudo comparativo de dois processos de graftizacao de polipropileno com anidrido maleico utilizando peroxidos

    Energy Technology Data Exchange (ETDEWEB)

    Sakahara, R.M.; Wang, S.H., E-mail: sakahara@usp.b, E-mail: wangshui@usp.b [Universidade de Sao Paulo (EPUSP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Metalurgica e de Materiais

    2010-07-01

    The Polypropylene grafting with Maleic anhydride is a thoroughly known technique. Its wide application is due, mainly,to the controlled changing in the polarity of this polymer, which increases the interfacial adhesion in blends and compounds. In this study, two grafting processes were compared. In the first, the maleic anhydride was grafted on polypropylene in a solution batch process, carried out in a round-bottom vessel. The second approach was carried out by reactive extrusion of polypropylene in the presence of peroxide and maleic anhydride. The samples thus prepared were characterized by DSC, TGA, FTIR, WAXS, EDS e SEM. It was possible to conclude that the solution technique was more efficient than the reactive extrusion; however the later was easier to accomplish due to the high viscosity of PP. (author)

  17. MECHANICAL, ELECTRICAL, AND THERMAL PROPERTIES OF MALEIC ANHYDRIDE MODIFIED RICE HUSK FILLED PVC COMPOSITES

    OpenAIRE

    Navin Chand; Bhajan Das Jhod

    2008-01-01

    Unmodified and modified rice husk powder filled PVC composites were prepared having different amounts of rice husk powder. Mechanical, thermal, and electrical properties of these composites were determined. The tensile strength of rice husk powder PVC composites having 0, 10, 20, 30, and 40 weight percent of rice husk powder was found to be 33.9, 19.4, 18.1, 14.6, and 9.5 MPa, respectively. Adding of maleic anhydride- modified rice husk powder improved the tensile strength of rice husk powder...

  18. Method for production of dicarbonic acid anhydrides

    International Nuclear Information System (INIS)

    Mistr, A.; Necas, J.; Polak, V.

    1975-01-01

    A method is described of producing dicarboxylic acid anhydrides by the reaction of maleic acid anhydride with olefins. The synthesis is initiated by gamma radiation at a total dose of 10 4 to 10 6 rads in the presence of an organic solvent. The addition reactions of maleic acid anhydride to 1-hexadecene, 1-octene and cyclohexene with yields of 43%, 17% and 11%, respectively, are specified. (L.K.)

  19. Membrane protein extraction and purification using styrene-maleic acid (SMA) copolymer: effect of variations in polymer structure.

    Science.gov (United States)

    Morrison, Kerrie A; Akram, Aneel; Mathews, Ashlyn; Khan, Zoeya A; Patel, Jaimin H; Zhou, Chumin; Hardy, David J; Moore-Kelly, Charles; Patel, Roshani; Odiba, Victor; Knowles, Tim J; Javed, Masood-Ul-Hassan; Chmel, Nikola P; Dafforn, Timothy R; Rothnie, Alice J

    2016-12-01

    The use of styrene-maleic acid (SMA) copolymers to extract and purify transmembrane proteins, while retaining their native bilayer environment, overcomes many of the disadvantages associated with conventional detergent-based procedures. This approach has huge potential for the future of membrane protein structural and functional studies. In this investigation, we have systematically tested a range of commercially available SMA polymers, varying in both the ratio of styrene and maleic acid and in total size, for the ability to extract, purify and stabilise transmembrane proteins. Three different membrane proteins (BmrA, LeuT and ZipA), which vary in size and shape, were used. Our results show that several polymers, can be used to extract membrane proteins, comparably to conventional detergents. A styrene:maleic acid ratio of either 2:1 or 3:1, combined with a relatively small average molecular mass (7.5-10 kDa), is optimal for membrane extraction, and this appears to be independent of the protein size, shape or expression system. A subset of polymers were taken forward for purification, functional and stability tests. Following a one-step affinity purification, SMA 2000 was found to be the best choice for yield, purity and function. However, the other polymers offer subtle differences in size and sensitivity to divalent cations that may be useful for a variety of downstream applications. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  20. Maleic anhydride as an additive to γ-butyrolactone solutions for Li-ion batteries

    International Nuclear Information System (INIS)

    Ufheil, Joachim; Baertsch, Martin C.; Wuersig, Andreas; Novak, Petr

    2005-01-01

    The effect of maleic anhydride (MA) as a new film-forming additive in γ-butyrolactone (GBL)-based electrolytes for use in Li-ion batteries has been studied to advance the understanding of the solid electrolyte interphase (SEI) formation on graphite electrodes. Cyclic voltammetry measurements showed that even small amounts of MA (up to 4 wt.%) improved the lithium intercalation into graphite. The effect of MA was also verified by electrochemical impedance spectroscopy. In situ subtractively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS) and differential electrochemical mass spectrometry (DEMS) allowed identification of gas formation and decomposition products during the SEI formation. GBL-based electrolytes with MA showed both, higher cycling efficiency and cycle life of graphite electrodes

  1. Synthesis and thermal characterization of CdS nano crystals in previously formed template of maleic anhydride-octene 1-vinyl butyl terpolymer

    International Nuclear Information System (INIS)

    Akbarov, O.H; Mammadova, R.E; Malikov, E.Y.

    2008-01-01

    Full text: Nano crystals have dimensions in the range 10100 nm. Crystals in this size range possess unique properties, which enable scientists to manufacture materials and devices capable of performing unimaginable tasks. For that reason synthesis of this semiconductor nano crystals is expedient. Many useful methods have been used for preparing sulphide semiconductor nano crystals, such as colloidal chemistry method, sol-gel method, inverse micelle method, in situ synthesis and assemble on polymer template. The most significant method is in situ synthesis and assemble of sulphide semiconductor nano crystals on polymer. Compared with other methods, the stability of nanoparticles is improved by the protection and confinement of the copolymer. Because of confinement and protection effects of template environmental risk is prevented in this method. On the base of this principles in situ synthesis of CdS nano crystals in maleic anhydride-octene 1-vinyl butyl terpolymer was realized in this scientific work. First of all in specific condition maleic anhydride, octene 1, and vinyl butyl ether were polymerized to form a terpolymer as the result of radical ter polymerization. In second step CdS nano crystals were synthesized in N,N-dimethylformamide solution of maleic anhydride-octene 1-vinyl butyl terpolymer through the reaction of thiourea with cadmium chloride. In this process CdCI 2 x 2.5H 2 O was dissolved in N,N-dimethylformamide solution of previously formed terpolymer and was heated in 90 0 C temperature for 4 hours with vigorous stirring. Then desired amount of thiourea in N,N-dimethylformamide was quickly injected into the reaction flask using a syringe. The reaction continued for another 1 hour, and a yellow clear solution was obtained, which indicated the formation of CdS nano crystals

  2. Amphiphilic poly{[α-maleic anhydride-ω-methoxypoly(ethylene glycol]-co-(ethyl cyanoacrylate} graft copolymer nanoparticles as carriers for transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Jinfeng Xing

    2009-10-01

    Full Text Available Jinfeng Xing, Liandong Deng, Jun Li, Anjie DongDepartment of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of ChinaAbstract: In this study, the transdermal drug delivery properties of D,L-tetrahydropalmatine (THP-loaded amphiphilic poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol]-co-(ethyl cyanoacrylate} (PEGECA graft copolymer nanoparticles (PEGECAT NPs were evaluated by skin penetration experiments in vitro. The transdermal permeation experiments in vitro were carried out in Franz diffusion cells using THP-loaded PEGECAT NPs as the donor system. Transmission electron microscopy and Fourier transform infrared spectroscopy were used to characterize the receptor fluid. The results indicate that the THP-loaded PEGECAT NPs are able to penetrate the rat skin. Fluorescent microscopy measurements demonstrate that THP-loaded PEGECAT NPs can penetrate the skin not only via appendage routes but also via epidermal routes. This nanotechnology has potential application in transdermal drug delivery. Keywords: poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol]-co-(ethyl cyanoacrylate}, nanoparticles, transdermal drug delivery, D,L-tetrahydropalmatine

  3. Oil recovery with sulfomethylated poly (lower alkyl vinyl ether/maleic anhydride)

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-05-22

    Lower alkyl vinyl ether e.g., methyl vinyl ether, propyl vinyl ether, isopropyl vinyl ether, hexyl vinyl ether, is copolymerized conventionally with maleic anhydride, the resulting copolymer is treated with ammonia or ammonium hydroxide to form the partial amide-ammonium salt, and this salt is in turn treated with formaldehyde and thereafter or simultaneously with ammonium or alkali metal salt sulfite (including bisulfites, etc.) to form an at least partially sulfomethylated copolymer. Aqueous solutions of the sulfomethylated copolymer are useful in increasing the viscosity of drive fluids used in the supplemented recovery of petroleum from subterranean formations. In general, enhancing the polyionic character of mobility control agents used in supplemented recovery of petroleum provides enhanced recovery. Achieving this enhancement of polyionic character through use of sulfonate groups provides a mobility control agent with good ability to sustain viscosity in the presence of brine and lime, usually present in the connate waters of petroleum-bearing formations. (7 claims)

  4. Short-chain grafting of tetrahydrofuran and 1,4-dioxane cycles on vinylchloride-maleic anhydride copolymer

    Directory of Open Access Journals (Sweden)

    2009-01-01

    Full Text Available Mass increase of vinylchloride-maleic anhydride (VC-MA copolymer samples aged in tetrahydrofuran (THF or in 1,4-dioxane results from chemical interaction of VC-MA macromolecules with 1,4-dioxane or THF. Microstructure of the products of such modification was proved by infrared spectroscopy (IR- and nuclear magnetic resonance spectroscopy (13C NMR and 1H NMR. Mechanism of modification has been proposed. The results of microstructure research of VC-MA samples aged in THF and in 1,4-dioxane coincide with already known data on the reactions of opening of these and other oxygen-containing cycles under mild conditions.

  5. Controlling Styrene Maleic Acid Lipid Particles through RAFT.

    Science.gov (United States)

    Smith, Anton A A; Autzen, Henriette E; Laursen, Tomas; Wu, Vincent; Yen, Max; Hall, Aaron; Hansen, Scott D; Cheng, Yifan; Xu, Ting

    2017-11-13

    The ability of styrene maleic acid copolymers to dissolve lipid membranes into nanosized lipid particles is a facile method of obtaining membrane proteins in solubilized lipid discs while conserving part of their native lipid environment. While the currently used copolymers can readily extract membrane proteins in native nanodiscs, their highly disperse composition is likely to influence the dispersity of the discs as well as the extraction efficiency. In this study, reversible addition-fragmentation chain transfer was used to control the polymer architecture and dispersity of molecular weights with a high-precision. Based on Monte Carlo simulations of the polymerizations, the monomer composition was predicted and allowed a structure-function analysis of the polymer architecture, in relation to their ability to assemble into lipid nanoparticles. We show that a higher degree of control of the polymer architecture generates more homogeneous samples. We hypothesize that low dispersity copolymers, with control of polymer architecture are an ideal framework for the rational design of polymers for customized isolation and characterization of integral membrane proteins in native lipid bilayer systems.

  6. Designing maleic anhydride-{alpha}-olifin copolymeric combs as wax crystal growth nucleators

    Energy Technology Data Exchange (ETDEWEB)

    Soni, Hemant P. [Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390 002 (India); Kiranbala; Bharambe, D.P. [Department of Applied Chemistry, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara-390 001 (India); Agrawal, K.S. [Department of Petrochemical Technology, Polytechnic, The Maharaja Sayajirao University of Baroda, Vadodara-390 002 (India); Nagar, A. [MH ASSET, ONGC, Mumbai (India)

    2010-09-15

    Modification of the wax crystal habit is of great practical interest during transportation and processing of crude oil at low temperature. Various pour point depressant (PPD) additives can facilitate this modification by different mechanisms. Comb shaped polymer additives are known to depress the pour point of crude oil by providing different nucleation sites for the precipitation of wax. This paper describes performance based design, synthesis, characterization and evaluation of comb shaped polymeric diesters. Copolymers of maleic anhydride with different unsaturated C{sub 22} esters were synthesized and copolymers then reacted with two unsaturated fatty alcohols. All products were characterized by Fourier Transform Infra Red (FTIR) spectroscopy and Gel Permeation Chromatography (GPC). Rheological properties of crude (with and without additive) were studied by Advance Rheometer AR-500. In this study the additive based on oleic acid was evaluated as good PPD and rheology modifier. (author)

  7. Improved performance of Nb-doped vanadyl pyrophosphate, catalyst for n-butane oxidation to maleic anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Pavarelli, G.; Caldarelli, A.; Cavani, F. [Bologna Univ. (Italy). Dipt. di Chimica Industriale ' Toso Montanari' ; Cortelli, C.; Luciani, S. [Polynt SpA, Scanzorosciate (Italy)

    2013-11-01

    We report here about an investigation on the role of Nb{sup 5+} when used as a promoter for vanadyl pyrophosphate, catalyst for the oxidation of n-butane to maleic anhydride. The effect of Nb was very complex, a function of both its amount and the reaction temperature used. The optimal catalytic behavior was shown for very low Nb contents, i.e., for a V/Nb atomic ratio as low as 150. The main role of Nb was that of accelerating the formation of a limited amount of {gamma}-VOPO{sub 4} on the surface of vanadyl pyrophosphate, by accelerating the oxidation of V{sup 4+} into V{sup 5+} under reaction conditions. (orig.)

  8. Physico-mechanical properties of silanized-montmorillonite reinforced chitosan-co-poly(maleic anhydride) composites

    Science.gov (United States)

    Saputra, O. A.; Fajrin, A.; Nauqinida, M.; Suryanti, V.; Pramono, E.

    2017-07-01

    To solve the problems of dependence on petroleum as starting material in the manufacturing of plastics in Indonesia, green plastic from biopolymer like chitosan to be one of promising options and alternative to replace the conventional plastics. However, to overcome the mechanical and physical properties of chitosan, the addition of reinforcement agent was introduced. In this study, silanized-montmorillonite (sMMt) has been prepared as a reinforcement agent in the chitosan-co-poly(maleic anhydride) (referred as Cs-MAH) matrix. Silanizing of montmorillonite is one of strategy to improve the interaction between montmorillonite and chitosan, consequently, the mechanical properties, tensile strength of composites contained 6 phr of sMMt improved 56.5% to chitosan. Moreover, the presence both MAH and sMMt on the comosites also reduced swelling degree and swelling area by 20.6% and 26.7%.

  9. Effect of surface modified kaolin on properties of polypropylene grafted maleic anhydride

    Science.gov (United States)

    Yang, Ni; Zhang, Zuo-Cai; Ma, Ning; Liu, Huan-Li; Zhan, Xue-Qing; Li, Bing; Gao, Wei; Tsai, Fang-Chang; Jiang, Tao; Chang, Chang-Jung; Chiang, Tai-Chin; Shi, Dean

    To achieve reinforcement of mechanical and thermal performances of polypropylene (PP) product, this work aimed at fabrication of surface modified kaolin (M-kaolin) filled polypropylene grafted maleic anhydride (PP-g-MAH) composites with varying contents of fillers and investigation of their mechanical and thermal properties. And the prepared PP-g-MAH/M-kaolin composites were characterized by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Fracture analysis by SEM showed M-kaolin particles were well dispersed in the PP-g-MAH matrix. Mechanical behaviors were determined by tensile strength, tensile strain at break and impact strength analysis. Impact strength of PP-g-MAH/2 wt% M-kaolin composites was improved up to 30% comparing with unfilled composites. Thermostability had been found enhanced when M-kaolin added. The results revealed PP-g-MAH/M-kaolin composites showed the optimal thermal and mechanical properties when 2 wt% of M-kaolin was added.

  10. Sup(1)H n.m.r. relaxation of radiation induced crosslinking in polyester-styrene systems

    International Nuclear Information System (INIS)

    Andreis, M.; Veksli, Z.; Ranogajec, F.; Hedvig, P.

    1989-01-01

    The structure and dynamics of a network formed by radiation induced crosslinking of polyesters based on 1,6-hexane diol and 1,2-propylene glycol and maleic anhydride (HDF and PGF, respectively) with styrene is studied by proton pulsed n.m.r. spectroscopy. The dependence of spin-lattice, T 1 , and spin-spin, T 2 , relaxation times on the structure of polyester chain, molar ratios of styrene to polyester unsaturations and the radiation doses are analysed in terms of network formation and structure, and their effect on molecular motion. Above the gel point, at temperatures above the glass transition, the presence of two T 2 components reflects the heterogeneity of the network structure in both resins. Parallel with the n.m.r. relaxation measurements the crosslink density was determined from the extracted gel phase or double bonds (fumaric and styrene) participating in the crosslinking process. (author)

  11. Two-step modification of poly(D, L-lactic acid) by ethylenediamine-maleic anhydride

    International Nuclear Information System (INIS)

    Cao Chengbo; Zhu Fanglian; Yu Xueli; Wang Qin; Wang Chuandong; Li Baolu; Lv Ronghui; Li Musen

    2008-01-01

    Poly(lactic acid) (PLA) was modified by maleic anhydride (MAH), then the resultant MAH modified PLA (MPLA) was acylated with ethylenediamine (EDA), so EDA-MAH modified PLA (EMPLA) was prepared. The results of DSC, FT-IR and NMR testified that MAH and EAD were successfully introduced into the original polymer. The hydrophilicity of EMPLA was considerably increased compared with that of PLA. The degradation experiment showed that the introduction of EDA into the original polymer could neutralize the carboxyl end groups of the degradation products. The results of SEM and MTT of rat osteoblasts cultured in vitro showed that the cytocompatibility and cell adhesion of the modified materials were significantly increased compared with the original polymer, especially EMPLA; the number of cells were obviously increased and cells attached firmly to the material; these were ascribed to the EDA neutralizing the carboxyl end groups of the degradation products

  12. Effect of maleic anhydride on the physico-mechanical properties of NR/PE blends

    International Nuclear Information System (INIS)

    Yehia, A.A.; El Elnashar, D.

    2005-01-01

    Blending of two or more polymers is considered as a new technique to produce new materials with new properties at low production cost and investment. Rubber / Rubber blends are well known in tire industry. In the last decade rubber and plastic blending attract the interest of many researchers and technologists. In the present work NR and LLDPE was blended in presence of maleic anhydride (MA) on a Brabender premixed at different conditions and namely temperature and time. The obtained blends were cured with sulphur and peroxide curing systems. Peroxide can crosslink both NR and PE, but the sulphur system crosslinks only the rubber phase in the blend. The data showed also that the addition of MA greatly improved the physico-mechanical properties of NR/PE blends. The surface morphology of the blends under investigation was studied by SEM. The results will be presented and discussed in detail

  13. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants

    Science.gov (United States)

    Vargas, Carolyn; Arenas, Rodrigo Cuevas; Frotscher, Erik; Keller, Sandro

    2015-12-01

    Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using 19F and 31P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F6OPC. The lipid interactions of SMA(3 : 1) and F6OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F6OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research.Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and

  14. Modification of montmorillonite fillers by ionizing radiation

    International Nuclear Information System (INIS)

    Zimek, Z.; Przybytniak, G.; Nowicki, A.; Mirkowski, K.

    2006-01-01

    The mineral fillers can be modified by using unsaturated compounds: styrene, methacrylic acid and maleic anhydride (MA), following by irradiation with high energy electron beam. In presented paper the authors have used this method to change properties of bentonite S pecjal , containing about 70% of pure montmorillonite. It has been shown that: (a) the particles obtained in this process can be good fillers for the production of composites; (b) maleic anhydride reacts via anhydride group with active ionic sites of bentonite, forming a salt-like compound. Irradiation with electron beam leads to the breakage of double bond in maleic anhydride and to the production of new organic phases

  15. Effect of maleic anhydride treatment on the mechanical properties of sansevieria fiber/vinyl ester composites

    Science.gov (United States)

    Pradipta, Rangga; Mardiyati, Steven, Purnomo, Ikhsan

    2017-03-01

    Sanseviera trifasciata commonly called mother-in-law tongue also known as snake plant is native to Indonesia, India and Africa. Sansevieria is a new fiber in composite research and has showed promising properties as reinforcement material in polymer matrix composites. Chemical treatment on reinforcing fiber is crucial to reduce hydrophilic tendency and thus improve compatibility with the matrix. In this study, effect of maleic anhydride as chemical treatment on the mechanical properties of Sansevieria fiber/vinyl ester composite was investigated. Sansevieria fibers were immersed by using NaOH 3% for two hours at 100°C and then treated by using maleic anhydrate for two hours at 120°C. Composites were prepared by solution casting with various volume fractions of fiber; 0%, 2.5%, 5%, 7.5% and 10%. Actual density, volume fraction of void and mechanical properties of composite were conducted according to ASTM standard testing methods D792, D3171 and D3039. It was found that mechanical properties of composites increased as volume fractions of fiber was increased. The highest tensile strength and modulus of elasticity of composites were 57.45 MPa and 3.47 GPa respectively, obtained from composites with volume fraction of fiber 10%.

  16. Tailoring magnetic properties of self-biased hexaferrites using an alternative copolymer of isobutylene and maleic anhydride

    Science.gov (United States)

    Wu, Chuanjian; Yu, Zhong; Sokolov, Alexander S.; Yu, Chengju; Sun, Ke; Jiang, Xiaona; Lan, Zhongwen; Harris, Vincent G.

    2018-05-01

    Discussed is a novel self-biased hexaferrite gelling system based on a nontoxic and water-soluble copolymer of isobutylene and maleic anhydride. This copolymer simultaneously acts as a dispersant and gelling agent, and recently received much attention from the ceramics community. Herein its effects on the rheological conditions throughout magnetic-field pressing, and consequently, orientation, density and magnetic properties of textured hexaferrites were investigated. Ka-band FMR linewidths were measured, and the crystalline anisotropy and porosity induced linewidth broadening were estimated according to Schlömann's theory. The copolymer allowed to reduce the friction between micron-sized magnetic particulates, resulting in higher density and degree of crystalline orientation, and lower FMR linewidth.

  17. Effect of hydrostatic pressure, temperature, and solvent on the rate of the Diels-Alder reaction between 9,10-anthracenedimethanol and maleic anhydride

    Science.gov (United States)

    Kiselev, V. D.; Kornilov, D. A.; Anikin, O. V.; Latypova, L. I.; Konovalov, A. I.

    2017-03-01

    The rate of the reaction between 9,10-anthracenedimethanol and maleic anhydride in 1,4-dioxane, acetonitrile, trichloromethane, and toluene is studied at 25, 35, 45°C in the pressure range of 1-1772 bar. The rate constants, enthalpies, entropies and activation volumes are determined. It is shown that the rate of reaction with 9,10-anthracenedimethanol is approximately one order of magnitude higher than with 9-anthracenemethanol.

  18. Partial oxidation of Raffinate II and other mixtures of n-Butane and n-Butenes to maleic anhydride in a fixed-bed reactor

    OpenAIRE

    Brandstädter, Willi Michael

    2008-01-01

    The utilisation of the C4 streams of steamcrackers by converting raffinate II to maleic anhydride was studied. The oxidation reactions were investigated in a laboratory-scale fixed-bed reactor to determine reaction kinetics. The effects of pore diffusional resistance were investigated and explained. A two-dimensional pseudo-homogeneous reactor model was used for the simulation of a production-scale fixed-bed reactor. A flow scheme of the reactor section including a recycle was proposed.

  19. A computational study of the Diels-Alder reactions between 2,3-dibromo-1,3-butadiene and maleic anhydride

    Science.gov (United States)

    Rivero, Uxía; Meuwly, Markus; Willitsch, Stefan

    2017-09-01

    The neutral and cationic Diels-Alder-type reactions between 2,3-dibromo-1,3-butadiene and maleic anhydride have been computationally explored as the first step of a combined experimental and theoretical study. Density functional theory calculations show that the neutral reaction is concerted while the cationic reaction can be either concerted or stepwise. Further isomerizations of the Diels-Alder products have been studied in order to predict possible fragmentation pathways in gas-phase experiments. Rice-Ramsperger-Kassel-Marcus (RRKM) calculations suggest that under single-collision experimental conditions the neutral product may reform the reactants and the cationic product will most likely eliminate CO2.

  20. Preparation and Characterization of Extruded Composites Based on Polypropylene and Chitosan Compatibilized with Polypropylene-Graft-Maleic Anhydride

    Science.gov (United States)

    Carrasco-Guigón, Fernando Javier; Rodríguez-Félix, Dora Evelia; Castillo-Ortega, María Mónica; Santacruz-Ortega, Hisila C.; Burruel-Ibarra, Silvia E.; Encinas-Encinas, Jose Carmelo; Plascencia-Jatomea, Maribel; Herrera-Franco, Pedro Jesus; Madera-Santana, Tomas Jesus

    2017-01-01

    The preparation of composites of synthetic and natural polymers represent an interesting option to combine properties; in this manner, polypropylene and chitosan extruded films using a different proportion of components and polypropylene-graft-maleic anhydride (PPgMA) as compatibilizer were prepared. The effect of the content of the biopolymer in the polypropylene (PP) matrix, the addition of compatibilizer, and the particle size on the properties of the composites was analyzed using characterization by fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), tensile strength, and contact angle, finding that in general, the addition of the compatibilizer and reducing the particle size of the chitosan, favored the physicochemical and morphological properties of the films. PMID:28772464

  1. Effect of polypropylene maleic anhydride (PPMAH) on mechanical and morphological properties of polypropylene (PP)/recycled acrylonitrile butadiene rubber (NBRr)/empty fruit bunch (EFB) composites

    Science.gov (United States)

    Othman, Nurul Syazwani; Santiagoo, Ragunathan; Abdillahi, Khalid Mohamed; Ismail, Hanafi

    2017-07-01

    The fabrication of polypropylene (PP)/ recycled acrylonitrile butadiene rubber (NBRr)/ empty fruit bunch (EFB) composites were investigated. The effects of polypropylene maleic anhydride (PPMAH) as a compatibilizer on the mechanical and morphological properties of PP/NBRr/EFB composites were studied. Composites were prepared through melt mixing using heated two roll mill at 180 °C for 9 minutes and rotor speed of 15 rpm. NBRr loading were varied from 0 to 60 phr and PPMAH was fixed for 5 phr. The composites were moulded into a 1 mm thin sheet using hot press machine and then cut into dumbbell shape. The mechanical and morphological properties of composites were examined using universal tensile machine (UTM) and scanning electron microscope (SEM), respectively. Tensile strength and Young's modulus of PP/NBRr/EFB composites decreased with increasing NBRr loading, whilst increasing the elongation at break. However, PPMAH compatibilized composites have resulted 27% to 40% and 25% to 42% higher tensile strength and Young's modulus, respectively, higher compared to uncompatibilized composites. This was due to the better adhesion between PP/NBRr matrices and EFB filler with the presence of maleic anhydride moieties. From the morphological study, the micrograph of PPMAH compatibilized composites has proved the well bonded and good attachments of EFB filler with PP/NBRr matrices which results better tensile strength to the PP/NBRr/EFB composites.

  2. The effectiveness of styrene-maleic acid (SMA) copolymers for solubilisation of integral membrane proteins from SMA-accessible and SMA-resistant membranes.

    Science.gov (United States)

    Swainsbury, David J K; Scheidelaar, Stefan; Foster, Nicholas; van Grondelle, Rienk; Killian, J Antoinette; Jones, Michael R

    2017-10-01

    Solubilisation of biological lipid bilayer membranes for analysis of their protein complement has traditionally been carried out using detergents, but there is increasing interest in the use of amphiphilic copolymers such as styrene maleic acid (SMA) for the solubilisation, purification and characterisation of integral membrane proteins in the form of protein/lipid nanodiscs. Here we survey the effectiveness of various commercially-available formulations of the SMA copolymer in solubilising Rhodobacter sphaeroides reaction centres (RCs) from photosynthetic membranes. We find that formulations of SMA with a 2:1 or 3:1 ratio of styrene to maleic acid are almost as effective as detergent in solubilising RCs, with the best solubilisation by short chain variants (membranes was uniformly low, but could be increased through a variety of treatments to increase the lipid:protein ratio. However, proteins isolated from such membranes comprised clusters of complexes in small membrane patches rather than individual proteins. We conclude that short-chain 2:1 and 3:1 formulations of SMA are the most effective in solubilising integral membrane proteins, but that solubilisation efficiencies are strongly influenced by the size of the target protein and the density of packing of proteins in the membrane. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Grafting of Maleic Anhydride onto Polyethylene by Blend Process forEnvironmentally Friendly Plastics

    International Nuclear Information System (INIS)

    Hendrana, Sunit; Retno-Yusiasih; Sudirman; Ipit-Karyaningsih; Djimat-Lisnawati

    2000-01-01

    Grafting maleic anhydride (MAH) onto polyethylene is one of the route tomake plastics which can be consumed by microbe in the soil. High temperaturesolution process is one of the method to perform grafting. This method is notreally handy since it involves many steps. Therefore, in this work a simplemethod is performed to graft MAH onto polyethylene, i.e., blending process.As the process occurs in melt, the reaction is more likely to be diffusioncontrol rather than chemical control. Therefore, there are many parameterscan affect the grafting such as temperature of the blending, speed of therotation, concentration of MAH and concentration of dicumyl peroxide (DCP).Preliminary work in our laboratorium found an optimum condition for the firsttwo parameters. Thus, in this work the effect of concentration of MAH and DCPis studied into the effectiveness of grafting process. One of the indicationof unexpected reaction is formation of gel, or in other words the formationof X-link among polyethylene molecules. The grafted polyethylene ischaracterized by calculation of gel content, thermal properties by TG/DTA andFourier Transform Infrared (FTIR). The results show the concentration of MAHand DCP play roles. However, initiator DCP has more significance effect thanthe MAH. (author)

  4. The Free-Radical Copolymerization of Difurylmethane with Maleic

    African Journals Online (AJOL)

    Prof. Jo Michael

    Reaction feeds containing 85 mol % and higher of difurylmethane ... Keywords: difurylmethane; maleic anhydride; copolymerization; thermodecomposition ... delivery apparatus set at 500 psi for a flow rate of 1 cm3 min-1; a Waters model U6K.

  5. Influence of Maleic Anhydride/Glycidyl Methacrylate Cografted Polylactic Acid on Properties of Wood Flour/PLA Composites

    Directory of Open Access Journals (Sweden)

    DU Jun

    2017-12-01

    Full Text Available Graft copolymers of PLA-g-MAH, PLA-g-GMA and PLA-co-MAH/GMA were prepared by means of melt grafting. The structure of the graft copolymers were characterized by FTIR.Wood flour/PLA composites were prepared by injection molding with three kinds of graft copolymers as compatibilizers, and the fractured morphology of composites was investigated by scanning electron microscope (SEM. Results show that there is no obvious phase interface between wood flour and PLA,which indicating the interfacial compatibility of wood flour/PLA composites is improved after adding different graft copolymers. The determination results of mechanical properties, processing flowability and dynamic rheological property of composites prepared with different graft copolymers reveal that, compared to the composite without compatibilizer, the tensile strength and impact strength of wood flour/PLA composites are increased by 9.54% and 7.23% respectively, and the equilibrium torque, shear heat, storage modulus and complex viscosity are all increased after adding maleic anhydride/glycidyl methacrylate cografted polylactic acid.

  6. Carboxy terminated rubber based on natural rubber grafted with acid anhydrides and its adhesion properties

    International Nuclear Information System (INIS)

    Klinpituksa, P; Kongkalai, P; Kaesaman, A

    2014-01-01

    The chemical modification of natural rubber by grafting of various polar functional molecules is an essential method, improving the versatility of rubber in applications. This research investigated the preparation of natural rubber-graft-citraconic anhydride (NR-g-CCA), natural rubber-graft-itaconic anhydride (NR-g-ICA), and natural rubber-graft-maleic anhydride (NR-g-MA), with the anhydrides grafted to natural rubber in toluene using benzoyl peroxide as an initiator. Variations of monomer content, initiator content, temperature and reaction time of the grafting copolymerization were investigated. The maximum degrees of grafting were 1.06% for NR-g-CCA, 4.66% for NR-g-ICA, and 5.03% for NR-g-MA, reached using 10 phr citraconic anhydride, 10 phr of itaconic anhydride, or 8 phr of maleic anhydride, 3 phr benzoyl peroxide, at 85, 80 and 80°C for 2, 2 and 3 hrs, respectively. Solvent-based wood adhesives were formulated from these copolymers with various contents of wood resin in the range 10-40 phr. The maximal 289 N/in cleavage peel and 245.7 KPa shear strength for NR-g-MA (5.03% grafting) were obtained at 40 phr wood resin

  7. Compatibility analysis of Nylon 6 and poly(ethylene-n-butyl acrylate-maleic anhydride) elastomer blends using isothermal crystallization kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Biber, Erkan, E-mail: ebiber@cankaya.edu.tr [Middle East Technical University, Polymer Science and Technology Department, Ankara (Turkey); Cankaya University, Industrial Engineering Department, Ankara (Turkey); Guenduez, Guengoer [Middle East Technical University, Polymer Science and Technology Department, Ankara (Turkey); Middle East Technical University, Chemical Engineering Department, Ankara (Turkey); Mavis, Bora [Hacettepe University, Mechanical Engineering Department, Ankara (Turkey); Colak, Uner [Hacettepe University, Nuclear Energy Engineering Department, Ankara (Turkey)

    2010-07-01

    Nylon 6 is a widely used engineering polymer, and has relatively poor impact strength. Ethylene, n-Butyl acrylate, maleic anhydride (E-nBA-MAH) terpolymer is blended with Nylon 6 to enhance its impact strength. Mixture should be compatible to be used in applications. The bare interaction energy between Nylon 6 and E-nBA-MAH terpolymer is calculated according to melting point depression approach using both Flory-Huggins (FH) Theory and Sanchez-Lacombe Equation of State (SL EOS). It demonstrates that blends are thermodynamically favorable to any arrangements. Yet, isothermal crystallization kinetics and WAXS crystallization peaks of blends reveal that mixtures of various compositions have different crystallization behaviors and require alternating crystallization energy due to crystalline structures of individual polymers. Also, SEM images support that after 5% addition of elastomeric terpolymer, interaction loosens due to strong crystalline structure of Nylon 6.

  8. Separator Membrane from Crosslinked Poly(Vinyl Alcohol and Poly(Methyl Vinyl Ether-alt-Maleic Anhydride

    Directory of Open Access Journals (Sweden)

    Charu Vashisth Rohatgi

    2015-03-01

    Full Text Available In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride (PMVE-MA. Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity, thermal and electrochemical properties using differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, thermo-gravimetric analysis (TGA and electrochemical impedance spectroscopy (EIS. The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications.

  9. Separator Membrane from Crosslinked Poly(Vinyl Alcohol) and Poly(Methyl Vinyl Ether-alt-Maleic Anhydride)

    Science.gov (United States)

    Rohatgi, Charu Vashisth; Dutta, Naba K.; Choudhury, Namita Roy

    2015-01-01

    In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA) with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride) (PMVE-MA). Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity), thermal and electrochemical properties using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermo-gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications. PMID:28347019

  10. TUNG OIL BASED MONOMER FOR THERMOSETTING POLYMERS: SYNTHESIS, CHARACTERIZATION AND COPOLYMERIZATION WITH STYRENE

    Directory of Open Access Journals (Sweden)

    Chengguo Liu,

    2011-11-01

    Full Text Available A tung oil (TO based monomer for rigid thermosetting polymer was synthesized, characterized, and copolymerized with styrene in this study. Tung oil was alcoholyzed with pentaerythritol (PER to get tung oil pentaerythritol alcoholysis products (TOPER, and the optimized conditions were explored according to the yields of TOPER analyzed by gas chromatography-mass spectrometry (GC-MS. The resulting alcoholysis products were maleinated to form tung oil maleate half ester (TOPERMA, and the reaction conditions were determined by monitoring the reaction extents of TOPER and maleic anhydride (MA with 1HNMR spectroscopy. The TO alcoholysis and maleinization reaction products were characterized by IR, 1HNMR, and electrospray ionization-mass spectrometry (ESI-MS techniques. At last, the TOPERMA mixture was cured with styrene (St, and the initiator tert-butyl peroxy benzoate (TPB. Differential scanning calorimetry (DSC was employed to characterize the curing process. Mechanical properties of the cured TOPERMA/St resin further confirmed the best procedure for the maleinization reaction. The loading of TO reached about 30% weight of the resulting thermosetting polymer. This promising material from renewable resources can be a potential substitution for petroleum products when used as sheet molding compounds.

  11. Irradiation grafting of natural rubber latex with maleic anhydride and its compatibilization of poly(lactic acid)/natural rubber blends

    Science.gov (United States)

    Pongsathit, Siriwan; Pattamaprom, Cattaleeya

    2018-03-01

    Maleic anhydride (MA) is an interesting monomer to be grafted onto natural rubber(NR) due to its potential as a compatibilizer of hydrophobic rubbers and polymers with higher polarity. So far, radiation grafting of MA onto NR in latex state has not been reported. In this study, the grafting of NR with MA in latex state was investigated by exposing the latex to cobalt-60 gamma irradiation at a fixed MA content of 9% and a varied absorbed doses from 2 to 10 kGy. The FTIR spectrometer, 1H NMR spectrometer and gel content analysis have confirmed successful grafting of MA onto NR after irradiation. The grafted NRs were then used to increase the compatibility and the impact property of PLA/NR blends. It was found that the highest impact strength of the blends was achieved when the grafting was carried out at the absorbed dose of 4 kGy.

  12. Solubilization of human cells by the styrene-maleic acid copolymer: Insights from fluorescence microscopy.

    Science.gov (United States)

    Dörr, Jonas M; van Coevorden-Hameete, Marleen H; Hoogenraad, Casper C; Killian, J Antoinette

    2017-11-01

    Extracting membrane proteins from biological membranes by styrene-maleic acid copolymers (SMAs) in the form of nanodiscs has developed into a powerful tool in membrane research. However, the mode of action of membrane (protein) solubilization in a cellular context is still poorly understood and potential specificity for cellular compartments has not been investigated. Here, we use fluorescence microscopy to visualize the process of SMA solubilization of human cells, exemplified by the immortalized human HeLa cell line. Using fluorescent protein fusion constructs that mark distinct subcellular compartments, we found that SMA solubilizes membranes in a concentration-dependent multi-stage process. While all major intracellular compartments were affected without a strong preference, plasma membrane solubilization was found to be generally slower than the solubilization of organelle membranes. Interestingly, some plasma membrane-localized proteins were more resistant against solubilization than others, which might be explained by their presence in specific membrane domains with differing properties. Our results support the general applicability of SMA for the isolation of membrane proteins from different types of (sub)cellular membranes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A Styrene-alt-Maleic Acid Copolymer Is an Effective Inhibitor of R5 and X4 Human Immunodeficiency Virus Type 1 Infection

    Directory of Open Access Journals (Sweden)

    Vanessa Pirrone

    2010-01-01

    Full Text Available An alternating copolymer of styrene and maleic acid (alt-PSMA differs from other polyanionic antiviral agents in that the negative charges of alt-PSMA are provided by carboxylic acid groups instead of sulfate or sulfonate moieties. We hypothesized that alt-PSMA would have activity against human immunodeficiency virus type 1 (HIV-1 comparable to other polyanions, such as the related compound, poly(sodium 4-styrene sulfonate (PSS. In assays using cell lines and primary immune cells, alt-PSMA was characterized by low cytotoxicity and effective inhibition of infection by HIV-1 BaL and IIIB as well as clinical isolates of subtypes A, B, and C. In mechanism of action assays, in which each compound was added to cells and subsequently removed prior to HIV-1 infection (“washout” assay, alt-PSMA caused no enhancement of infection, while PSS washout increased infection 70% above control levels. These studies demonstrate that alt-PSMA is an effective HIV-1 inhibitor with properties that warrant further investigation.

  14. Preparation of a Sepia Melanin and Poly(ethylene-alt-maleic Anhydride Hybrid Material as an Adsorbent for Water Purification

    Directory of Open Access Journals (Sweden)

    Guido Panzarasa

    2018-01-01

    Full Text Available Meeting the increasing demand of clean water requires the development of novel efficient adsorbent materials for the removal of organic pollutants. In this context the use of natural, renewable sources is of special relevance and sepia melanin, thanks to its ability to bind a variety of organic and inorganic species, has already attracted interest for water purification. Here we describe the synthesis of a material obtained by the combination of sepia melanin and poly(ethylene-alt-maleic anhydride (P(E-alt-MA. Compared to sepia melanin, the resulting hybrid displays a high and fast adsorption efficiency towards methylene blue (a common industrial dye for a wide pH range (from pH 2 to 12 and under high ionic strength conditions. It is easily recovered after use and can be reused up to three times. Given the wide availability of sepia melanin and P(E-alt-MA, the synthesis of our hybrid is simple and affordable, making it suitable for industrial water purification purposes.

  15. Effects of Polyethylene Grafted Maleic Anhydride on the Mechanical, Morphological, and Swelling Properties of Poly (Vinyl Chloride / Epoxidized Natural Rubber / Kenaf Core Powder Composites

    Directory of Open Access Journals (Sweden)

    Rohani Abdul Majid

    2014-10-01

    Full Text Available The effects of polyethylene grafted maleic anhydride (PE-g-MA on the properties of poly (vinyl chloride/epoxidized natural rubber (PVC/ENR kenaf core powder composites were studied, with four different loadings of kenaf core powder (5, 10, 15, and 20 phr. The tensile properties indicated that the strength and elongation at break of the composites exhibited an increase for samples with PE-g-MA. Morphological analysis using a scanning electron microscope (SEM showed better dispersion of kenaf fiber with the addition of PE-g-MA and less kenaf powder agglomeration. Furthermore, the swelling index indicated that composites with PE-g-MA showed lower toluene absorption than composites without PE-g-MA.

  16. 76 FR 76259 - National Emissions Standards for Hazardous Air Pollutants: Primary Aluminum Reduction Plants

    Science.gov (United States)

    2011-12-06

    ... Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene...). The rule is applicable to facilities with affected sources associated with the production of aluminum... are subject to the requirements of this NESHAP: 14 primary aluminum production plants and one carbon...

  17. Optimal oxygen feeding policy to maximize the production of Maleic anhydride in unsteady state fixed bed catalytic reactors

    Directory of Open Access Journals (Sweden)

    E. Ali

    2017-07-01

    Full Text Available The effect of different oxygen feeding scenarios in a fixed bed reactor for the production of Maleic anhydride (MA is studied. Two reactor configurations were examined. In the first configuration, a cross flow reactor (CFR with 4 discrete feeding points is considered. Another configuration is the conventional packed-bed reactor (PBR with a single feed. Nonlinear Model Predictive Controller (NLMPC was used as optimal controller to operate the CFR in dynamic mode and to optimize the multiple feed dosages in order to enhance the MA yield. The simulation results indicated that different combinations of the four feed ratios can operate the reactor at the best value for the yield provided the first feeding point is kept as low as possible. For the packed bed reactor configuration, a single oxygen feed is considered and is optimized transiently by NLMPC. The simulation outcomes showed that the reactor performance in terms of the produced MA mole fraction can also be enhanced to the same magnitude obtained by CFR configuration. This improvement requires decreasing the oxygen ratio in the reactor single feed by 70%.

  18. Morphology, rheology and electrical resistivity of PLLA/HDPE/CNT nanocomposites: Effect of maleic anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Li-na; Chen, Jie; Dai, Jian; Chen, Hai-ming; Yang, Jing-hui [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Wang, Yong, E-mail: yongwang1976@163.com [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, Chao-liang [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041 (China)

    2015-02-15

    As a part of serial work about tuning the selective location of carbon nanotubes (CNTs) in immiscible polymer blends, this work reports the effects of component polarity and viscosity ratio between components on the selective location of CNTs and the resultant electrical resistivity of the nanocomposites. To achieve the research aim, maleic anhydride (MA) was grafted onto poly(L-lactide) (PLLA) main chain through a reactive compounding processing. After that, different contents of CNTs were incorporated into blends of high density polyethylene (HDPE) and PLLA (or PLLA-g-MA). The morphologies of the ternary nanocomposites and the selective location of CNTs in the nanocomposites were characterized using scanning electron microscope (SEM) and transmission electron microscope (TEM). The microstructure of nanocomposites and the dispersion of CNTs were further proved by rheological measurement. Finally, the electrical resistivity of nanocomposites containing different CNT contents was measured. The results showed that through increasing the polarity of PLLA and decreasing the melt viscosity, CNTs were kinetically trapped at the blend interface region. Consequently, largely decreased percolation threshold was achieved for the PLLA-g-MA/HDPE/CNT nanocomposites. The morphological changes as well as the rheological properties were also comparatively analyzed. - Highlights: • PLLA/HDPE/CNT and PLLA-g-MA/HDPE/CNT composites were prepared. • Different selective location states of CNTs were achieved in different composites. • Selectively located CNTs at the interface resulted in lower percolation threshold.

  19. Preparation of High Density Polyethylene/Waste Polyurethane Blends Compatibilized with Polyethylene-Graft-Maleic Anhydride by Radiation

    Directory of Open Access Journals (Sweden)

    Jong-Seok Park

    2015-04-01

    Full Text Available Polyurethane (PU is a very popular polymer that is used in a variety of applications due to its good mechanical, thermal, and chemical properties. However, PU recycling has received significant attention due to environmental issues. In this study, we developed a recycling method for waste PU that utilizes the radiation grafting technique. Grafting of waste PU was carried out using a radiation technique with polyethylene-graft-maleic anhydride (PE-g-MA. The PE-g-MA-grafted PU/high density polyethylene (HDPE composite was prepared by melt-blending at various concentrations (0–10 phr of PE-g-MA-grafted PU. The composites were characterized using fourier transform infrared spectroscopy (FT-IR, and their surface morphology and thermal/mechanical properties are reported. For 1 phr PU, the PU could be easily introduced to the HDPE during the melt processing in the blender after the radiation-induced grafting of PU with PE-g-MA. PE-g-MA was easily reacted with PU according to the increasing radiation dose and was located at the interface between the PU and the HDPE during the melt processing in the blender, which improved the interfacial interactions and the mechanical properties of the resultant composites. However, the elongation at break for a PU content >2 phr was drastically decreased.

  20. Bacterial Reaction Centers Purified with Styrene Maleic Acid Copolymer Retain Native Membrane Functional Properties and Display Enhanced Stability**

    Science.gov (United States)

    Swainsbury, David J K; Scheidelaar, Stefan; van Grondelle, Rienk; Killian, J Antoinette; Jones, Michael R

    2014-01-01

    Integral membrane proteins often present daunting challenges for biophysical characterization, a fundamental issue being how to select a surfactant that will optimally preserve the individual structure and functional properties of a given membrane protein. Bacterial reaction centers offer a rare opportunity to compare the properties of an integral membrane protein in different artificial lipid/surfactant environments with those in the native bilayer. Here, we demonstrate that reaction centers purified using a styrene maleic acid copolymer remain associated with a complement of native lipids and do not display the modified functional properties that typically result from detergent solubilization. Direct comparisons show that reaction centers are more stable in this copolymer/lipid environment than in a detergent micelle or even in the native membrane, suggesting a promising new route to exploitation of such photovoltaic integral membrane proteins in device applications. PMID:25212490

  1. Carbon Nanotubes Reinforced Maleic Anhydride-Modified Xylan-g-Poly(N-isopropylacrylamide) Hydrogel with Multifunctional Properties

    Science.gov (United States)

    Liu, Xinxin; Song, Tao; Chang, Minmin; Meng, Ling; Wang, Xiaohui; Sun, Runcang; Ren, Junli

    2018-01-01

    Introducing multifunctional groups and inorganic material imparts xylan-based hydrogels with excellent properties, such as responsiveness to pH, temperature, light, and external magnetic field. In this work, a composite hydrogel was synthesized by introducing acid treated carbon nanotubes (AT-CNTs) into the maleic anhydride modified xylan grafted with poly(N-isopropylacrylamide) (MAX-g-PNIPAM) hydrogels network. It was found that the addition of AT-CNTs affected the MAX-g-PNIPAM hydrogel structure, the swelling ratio and mechanical properties, and imparted the hydrogel with new properties of electrical conductivity and near infrared region (NIR) photothermal conversion. AT-CNTs could reinforce the mechanical properties of MAX-g-PNIPAM hydrogels, being up to 83 kPa for the compressive strength when the amount was 11 wt %, which was eight times than that of PNIPAM hydrogel and four times than that of MAX-g-PNIPAM hydrogel. The electroconductibility was enhanced by the increase of AT-CNTs amounts. Meanwhile, the composite hydrogel also exhibited multiple shape memory and NIR photothermal conversion properties, and water temperature was increased from 26 °C to 56 °C within 8 min under the NIR irradiation. Thus, the AT-CNTs reinforced MAX-g-PNIPAM hydrogel possessed promising multifunctional properties, which offered many potential applications in the fields of biosensors, thermal-arrest technology, and drug-controlled release. PMID:29495611

  2. The Formation of Polycomplexes of Poly(Methyl Vinyl Ether-Co-Maleic Anhydride and Bovine Serum Albumin in the Presence of Copper Ions

    Directory of Open Access Journals (Sweden)

    Karahan Mesut

    2014-09-01

    Full Text Available The binary and ternary complex formations of poly(methyl vinyl ether-co-maleic anhydride (PMVEMA with copper ions and with bovine serum albumin (BSA in the presence of copper ions in phosphate buffer solution at pH = 7 were examined by the techniques of UV-visible, fluorescence, dynamic light scattering, atomic force microscopy measurements. In the formation of binary complexes of PMVEMA-Cu(II, the addition of copper ions to the solution of PMVEMA in phosphate buffer solution at pH = 7 forms homogeneous solutions when the molar ratio of Cu(II/MVEMA is 0.5. Then the formations of ternary complexes of PMVEMA-Cu(II-BSA were examined. Study analysis revealed that the toxicities of polymer-metal and polymer-metal-protein mixture solutions depend on the nature and ratio of components in mixtures.

  3. A self-crosslinking thermosetting monomer with both epoxy and anhydride groups derived from Tung oil fatty acids: Synthesis and properties

    Science.gov (United States)

    A self-crosslinking compound with epoxy groups and anhydride groups (GEMA) has been successfully synthesized from Tung oil fatty acid by reacting with maleic anhydride via the Diels-Alder reaction. GEMA has very good storage stability and can be cured with trace amounts of tertiary amine. This advan...

  4. C S Sanmathi

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. C S Sanmathi. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 243-249 Polymers. Terpolymerization of 2-ethoxy ethylmethacrylate, styrene and maleic anhydride: determination of the reactivity ratios · C S Sanmathi S Prasannakumar B S ...

  5. QDs Supported on Langmuir-Blodgett Films of Polymers and Gemini Surfactant

    Directory of Open Access Journals (Sweden)

    T. Alejo

    2013-01-01

    Full Text Available Different LB films of poly(octadecene-co-maleic anhydride, PMAO, poly(styrene-co-maleic anhydride partial 2 butoxy ethyl ester cumene terminated, PS-MA-BEE, and Gemini surfactant ethyl-bis(dimethyl octadecylammonium bromide, 18-2-18, have been used to study the effect of the substrate coating on the surface self-assembly of CdSe quantum dots (QDs. Results show that all the “coating molecules” avoid the 3D aggregation of QDs observed when these nanoparticles are directly deposited on mica. Different morphologies were observed depending on the molecules used as coatings, and this was related to the surface properties, such as wetting ability, and the morphology of the coating LB films.

  6. Blending of Low-Density Polyethylene and Poly-Lactic Acid with Maleic Anhydride as A Compatibilizer for Better Environmentally Food-Packaging Material

    Science.gov (United States)

    Setiawan, A. H.; Aulia, F.

    2017-05-01

    The common conventional food packaging materialsare using a thin layer plastic or film, which is made of a synthetic polymer, such as Low-Density Poly Ethylene (LDPE). However, the use of these polymers hasan adverse impact on the environment, because the synthetic polymersare difficult to degrade naturally. Poly-Lactic Acid (PLA) is a biodegradable polymer that can be substituted to synthetic polymers. Since LDPE and PLA have a difference in polarity, therefore the first step of research is to graft them with maleic anhydride (MAH) for increasing the properties of its miscibility. The interaction between them is confirmed by FTIR; whereas the environment issueis characterized by the water adsorption and biodegradability. The FTIR spectra indicated that there had been an interaction between LDPE and MAH and LDPE/LDPE-g-MAH/PLA blend. Increasing PLA content in the blend affected to the increasing in their water absorption and biodegradable. Poly-blend with 20% PLA content was the optimum composition for environmentally food packaging.

  7. Enhancement of the Mechanical Properties of Basalt Fiber-Wood-Plastic Composites via Maleic Anhydride Grafted High-Density Polyethylene (MAPE Addition

    Directory of Open Access Journals (Sweden)

    Yun Lu

    2013-06-01

    Full Text Available This study investigated the mechanisms, using microscopy and strength testing approaches, by which the addition of maleic anhydride grafted high-density polyethylene (MAPE enhances the mechanical properties of basalt fiber-wood-plastic composites (BF-WPCs. The maximum values of the specific tensile and flexural strengths are achieved at a MAPE content of 5%–8%. The elongation increases rapidly at first and then continues slowly. The nearly complete integration of the wood fiber with the high-density polyethylene upon MAPE addition to WPC is examined, and two models of interfacial behavior are proposed. We examined the physical significance of both interfacial models and their ability to accurately describe the effects of MAPE addition. The mechanism of formation of the Model I interface and the integrated matrix is outlined based on the chemical reactions that may occur between the various components as a result of hydrogen bond formation or based on the principle of compatibility, resulting from similar polarity. The Model I fracture occurred on the outer surface of the interfacial layer, visually demonstrating the compatibilization effect of MAPE addition.

  8. Enhancement of the Mechanical Properties of Basalt Fiber-Wood-Plastic Composites via Maleic Anhydride Grafted High-Density Polyethylene (MAPE) Addition.

    Science.gov (United States)

    Chen, Jinxiang; Wang, Yong; Gu, Chenglong; Liu, Jianxun; Liu, Yufu; Li, Min; Lu, Yun

    2013-06-18

    This study investigated the mechanisms, using microscopy and strength testing approaches, by which the addition of maleic anhydride grafted high-density polyethylene (MAPE) enhances the mechanical properties of basalt fiber-wood-plastic composites (BF-WPCs). The maximum values of the specific tensile and flexural strengths are achieved at a MAPE content of 5%-8%. The elongation increases rapidly at first and then continues slowly. The nearly complete integration of the wood fiber with the high-density polyethylene upon MAPE addition to WPC is examined, and two models of interfacial behavior are proposed. We examined the physical significance of both interfacial models and their ability to accurately describe the effects of MAPE addition. The mechanism of formation of the Model I interface and the integrated matrix is outlined based on the chemical reactions that may occur between the various components as a result of hydrogen bond formation or based on the principle of compatibility, resulting from similar polarity. The Model I fracture occurred on the outer surface of the interfacial layer, visually demonstrating the compatibilization effect of MAPE addition.

  9. Intranasal Administration of Maleic Anhydride-Modified Human Serum Albumin for Pre-Exposure Prophylaxis of Respiratory Syncytial Virus Infection

    Directory of Open Access Journals (Sweden)

    Zhiwu Sun

    2015-02-01

    Full Text Available Respiratory syncytial virus (RSV is the leading cause of pediatric viral respiratory tract infections. Neither vaccine nor effective antiviral therapy is available to prevent and treat RSV infection. Palivizumab, a humanized monoclonal antibody, is the only product approved to prevent serious RSV infection, but its high cost is prohibitive in low-income countries. Here, we aimed to identify an effective, safe, and affordable antiviral agent for pre-exposure prophylaxis (PrEP of RSV infection in children at high risk. We found that maleic anhydride (ML-modified human serum albumin (HSA, designated ML-HSA, exhibited potent antiviral activity against RSV and that the percentages of the modified lysines and arginies in ML- are correlated with such anti-RSV activity. ML-HSA inhibited RSV entry and replication by interacting with viral G protein and blocking RSV attachment to the target cells, while ML-HAS neither bound to F protein, nor inhibited F protein-mediated membrane fusion. Intranasal administration of ML-HSA before RSV infection resulted in significant decrease of the viral titers in the lungs of mice. ML-HSA shows promise for further development into an effective, safe, affordable, and easy-to-use intranasal regimen for pre-exposure prophylaxis of RSV infection in children at high risk in both low- and high-income countries.

  10. Synthesis and evaluation of poly(styrene-co-maleic acid) micellar nanocarriers for the delivery of tanespimycin

    Science.gov (United States)

    Larson, Nate; Greish, Khaled; Bauer, Hillevi; Maeda, Hiroshi; Ghandehari, Hamidreza

    2011-01-01

    Polymeric micelles carrying the heat shock protein 90 inhibitor tanespimycin (17-N-Allylamino-17-demethoxygeldanamycin) were synthesized using poly(styrene-co-maleic acid) (SMA) copolymers and evaluated in vitro and in vivo. SMA-tanespimycin micelles were prepared with a loading efficiency of 93%. The micelles incorporated 25.6% tanespimycin by weight, exhibited a mean diameter of 74 ± 7 nm by dynamic light scattering and a zeta potential of -35 ± 3 mV. Tanespimycin was released from the micelles in a controlled manner in vitro, with 62% released in 24 hours from a pH 7.4 buffer containing bovine serum albumin. The micellar drug delivery systems for tanespimycin showed potent activity against DU145 human prostate cancer cells, with an IC50 of 230 nM. They further exhibited potent anti-cancer activity in vivo in nu/nu mice bearing subcutaneous DU145 human prostate cancer tumor xenografts, with significantly higher anticancer efficacy as measured by tumor regression when compared to free tanespimycin at an equivalent single dose of 10 mg/kg. These data suggest further investigation of SMA-tanespimycin as a promising agent in the treatment of prostate cancer. PMID:21856392

  11. Insight into the informational-structure behavior of the Diels-Alder reaction of cyclopentadiene and maleic anhydride.

    Science.gov (United States)

    Molina-Espíritu, Moyocoyani; Esquivel, Rodolfo O; Kohout, Miroslav; Angulo, Juan Carlos; Dobado, José A; Dehesa, Jesús S; LópezRosa, Sheila; Soriano-Correa, Catalina

    2014-08-01

    The course of the Diels-Alder reactions of cyclopentadiene and maleic anhydride were studied. Two reaction paths were modelled: endo- and exo-selective paths. All structures within the transient region were characterized and analyzed by means of geometrical descriptors, physicochemical parameters and information-theoretical measures in order to observe the linkage between chemical behavior and the carriage of information. We have shown that the information-theoretical characterization of the chemical course of the reaction is in complete agreement with its phenomenological behavior in passing from reactants to products. In addition, we were able to detect the main differences between the two reaction mechanisms. This type of informational analysis serves to provide tools to help understand the chemical reactivity of the two simplest Diels-Alder reactions, which permits the establishment of a connection between the quantum changes that molecular systems exert along reaction coordinates and standard physicochemical phenomenology. In the present study, we have shown that every reaction stage has a family of subsequent structures that are characterized not solely by their phenomenological behavior but also by informational properties of their electronic density distribution (localizability, order, uniformity). Moreover, we were able to describe the main differences between endo-adduct and exo-adduct pathways. With the advent of new experimental techniques, it is in principle possible to observe the structural changes in the transient regions of chemical reactions. Indeed, through this work we have provided the theoretical concepts needed to unveil the concurrent processes associated with chemical reactions.

  12. Effect of Surface Modification of Palygorskite on the Properties of Polypropylene/Polypropylene-g-Maleic Anhydride/Palygorskite Nanocomposites

    Directory of Open Access Journals (Sweden)

    David Cisneros-Rosado

    2017-01-01

    Full Text Available The effect of surface modification of palygorskite (Pal on filler dispersion and on the mechanical and thermal properties of polypropylene (PP/polypropylene grafted maleic anhydride (PP-g-MAH/palygorskite (Pal nanocomposites was evaluated. A natural Pal mineral was purified and individually surface modified with hexadecyl tributyl phosphonium bromide and (3-Aminopropyltrimethoxysilane; the pristine and modified Pals were melt-compounded with PP to produce nanocomposites using PP-g-MAH as compatibilizer. The grafting of Pal surface was verified by FT-IR and the change in surface hydrophilicity was estimated by the contact angle of sessile drops of ethylene glycol on Pal tablets. The extent of Pal dispersion and the degree of improvement in both the mechanical and thermal properties were related to the surface treatment of Pal. Modified Pals were better dispersed during melt processing and improved Young’s modulus and strength; however, maximum deformation tended to decrease. The thermal stability of PP/PP-g-MAH/Pal nanocomposites was considerably improved with the content of modified Pals. The degree of crystallinity increased with Pal content, regardless of the surface modification. Surfactant modified Pal exhibited better results in comparison with silane Pal; it is possible that longer alkyl chains from surfactant molecules promoted interactions with polymer chains, thereby improving nanofiller dispersion and enhancing the properties.

  13. Morphological control of calcium oxalate particles in the presence of poly-(styrene-alt-maleic acid)

    International Nuclear Information System (INIS)

    Yu Jiaguo; Tang Hua; Cheng Bei; Zhao Xiujian

    2004-01-01

    Calcium oxalate (CaOx) particles exhibiting different shapes and phase structures were fabricated by a simple precipitation reaction of sodium oxalate with calcium chloride in the absence and presence of poly-(styrene-alt-maleic acid) (PSMA) as a crystal modifier at room temperature. The as-obtained products were characterized with scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of reaction conditions including pH, [Ca 2+ ]/[C 2 O 4 2- ] ratio and concentration of PSMA and CaC 2 O 4 on the crystal forms and morphologies of the as-obtained calcium oxalate were investigated. The results show that various crystal morphologies of calcium oxalate, such as parallelograms, plates, spheres, bipyramids etc. can be obtained depending on the experimental conditions. Higher polymer concentration favors formation of the metastable calcium oxalate dihydrate (COD) crystals. Lower pH is beneficial to the formation of plate-like CaOx crystals. Especially, the monodispersed parallelogram-like CaOx crystals can be produced by PSMA as an additive at pH 2. PSMA may act as a good inhibitor for urolithiasis since it induces the formation of COD and reduces the particle size of CaOx. This research may provide new insight into the morphological control of CaOx particles and the prevention of urolithiasis

  14. Photo- and radiation chemical cycloaddition of maleic acid derivatives to ethylene and acetylene under elavated pressure

    International Nuclear Information System (INIS)

    Mirbach, M.

    1975-01-01

    Based on spectroscopic and kinetic measurements the influence of high pressure on some selected photochemical cycloaddition-reactions is studied. The photo-cycloaddition-reaction of maleic acid anhydride with ethylen has been performed under high ethylen pressures ( 90%). Surprisingly the quantum yield of the cyclo aduct decreases with increasing ethylene pressure from PHI = 0.06 at p = 1 bar to PHI = 0.022 at p = 42 bar. Based on Stern-Volmer quenching experiments, the decrease in ring formation with increasing ethylene concentrations could be explained by an endoergic triplet energy transfer from maleic acid anhydride to ethylene. The type II dissociation of butyrophenone has been quenched also with ethylene. With a lifetime for the first excited butyrophenone triplett state of tau = 6.8 x 10 -8 sec, obtained from kinetic data, the velocity constant can be calculated for this reaction with the result k 5 = 3 x 10 6 M -1 sec -1 . (orig./HK) [de

  15. Extraction of Micro- and Nano-Fibrils from Nylon 6/Polypropylene Grafted with Maleic Anhydride/Polypropylene Blended Films

    Directory of Open Access Journals (Sweden)

    E. Bagheban Kochak

    2013-01-01

    Full Text Available Atechnical feasibility study has been conducted on production of nano- and micro-fibrils from nylon 6/polypropylene grafted with maleic anhydride/polypropylene blended films. Fibrils are prepared in four consecutive steps.In the first step the polymers melt blended in an extruder with and without compatibilizers to produce chips; in the second step films are extruded from polymer blends chips, in the third step films are cold drawn with different draw ratios at room temperature and in the forth step fibrils are extracted by Soxhlet extraction with formic acid as solvent for nylon 6.  The films and fibrils were examined by scanning electron microscope and FTIR spectroscopy. It is found that the polypropylene dispersed phase deforms and coalesces into elongated fibrils during drawing  operation. The  fibrils’ diameters in the blends containing compatibilizer are more uniform and are smaller than those from films without compatibilizers. The thinnest polypropylene fibril observed has a diameter around 300 nm with the aspect ratio above 150. The stress-elongation curves show three distinctive regions, elastic, yield and hardening-leading to breakage. The elastic region is short and follows by necking and yield, i.e., elongation without increase in load. The hardening region is accompanied by the increase in the slope. The deformations of the polypropylene particles are noticed during the last regions of the extension; the fibril deformations seem to be more severe during breakage.

  16. Bioconjugation of laminin peptide YIGSR with poly(styrene co-maleic acid) increases its antimetastatic effect on lung metastasis of B16-BL6 melanoma cells.

    Science.gov (United States)

    Mu, Y; Kamada, H; Kaneda, Y; Yamamoto, Y; Kodaira, H; Tsunoda, S; Tsutsumi, Y; Maeda, M; Kawasaki, K; Nomizu, M; Yamada, Y; Mayumi, T

    1999-02-05

    A comb-shaped polymeric modifier, SMA [poly(styrene comaleic anhydride)], which binds to plasma albumin in blood was used to modify the synthetic cell-adhesive laminin peptide YIGSR, and its inhibitory effect on experimental lung metastasis of B16-BL6 melanoma cells was examined. YIGSR was chemically conjugated with SMA via formation of an amide bond between the N-terminal amino group of YIGSR and the carboxyl anhydride of SMA. The antimetastatic effect of SMA-conjugated YIGSR was approximately 50-fold greater than that of native YIGSR. When injected intravenously, SMA-YIGSR showed a 10-fold longer plasma half-life than native YIGSR in vivo. In addition, SMA-YIGSR had the same binding affinity to plasma albumin as SMA, while native YIGSR did not bind to albumin. These findings suggested that the enhanced antimetastatic effect of SMA-YIGSR may be due to its prolonged plasma half-life by binding to plasma albumin, and that bioconjugation of in vivo unstable peptides with SMA may facilitate their therapeutic use. Copyright 1999 Academic Press.

  17. Preparation of polymer microspheres by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Naka, Y.; Yamamoto, Y.; Yoshida, Y.; Tagawa, S.

    1995-01-01

    Cross-liking monomer, diethylene glycol dimethacrylate gives microspheres from organic solution by radiation-induced polymerization. /One of the remarkable result is that the number of the microspheres is not changing during the polymerization. Ethyl methacrylate, maleic anhydride, styrene and acrylamide are used as comonomers. These comonomers give the microspheres in the range of 0 to 0.4 as mol fractions. (author)

  18. Adsorption of heavy metal ions and azo dyes by crosslinked nanochelating resins based on poly(methylmethacrylate-co-maleic anhydride

    Directory of Open Access Journals (Sweden)

    M. Ghaemy

    2014-03-01

    Full Text Available Chelating resins are suitable materials for the removal of heavy metals in water treatments. A copolymer, Poly(MMA-co-MA, was synthesized by radical polymerization of maleic anhydride (MA and methyl methacrylate (MMA, characterized and transformed into multifunctional nanochelating resin beads (80–150 nm via hydrolysis, grafting and crosslink reactions. The resin beads were characterized by swelling studies, field emission scanning electron microscopy (FESEM and Fourier transform infrared spectroscopy (FTIR. The main purpose of this work was to determine the adsorption capacity of the prepared resins (swelling ratio ~55% towards metal ions such as Hg2+, Cd2+, Cu2+ from water at three different pH values (3, 6 and 9. Variations in pH and types of metal ions have not significantly affected the chelation capacity of these resins. The maximum chelation capacity of one of the prepared resin beads (Co-g-AP3 for Hg2+ was 63, 85.8 and 71.14 mg/g at pH 3, 6 and 9, respectively. Approximately 96% of the metal ions could be desorbed from the resin. Adsorption capacity of these resins towards three commercial synthetic azo dyes was also investigated. The maximum adsorption of dye AY42 was 91% for the resin Co-g-AP3 at room temperature. This insures the applicability of the synthesized resins for industrial applications.

  19. Effect of the Compatibilizer Upon the Properties of Styrene-butadiene Rubber Organoclay Nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Tavakoli

    2013-01-01

    Full Text Available Nanocomposite vulcunizates based on styrene-butadiene rubber (SBR, organoclay and a conventional sulfur curing system were prepared by melt blending process in an internal mixer. In order to study the effects of the type of interfacial compatibilizer on the properties of SBR and clay nanoparticles,three types of compatibilizers, maleic anhydride grafted ethylene-propylene diene rubber (EPDM-g-MAH, acrylonitrile-butadiene rubber (NBR and epoxidized natural rubber (ENR50 have been used. The nanocomposites have been compared together from view point of their curing behavior, rheological and mechanical properties. The developed microstructure and dynamics of the macromolecular chains in proximity of the clay nanolayers have been characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM, and melt rheo-mechanical spectroscopy (RMS. Curing behavior of the prepared nanocomposites has been evaluated using a rubber curing rheometer. EPDM-g-MAH and ENR50 showed to enhance the interactions between SBR chains into clay tactoids much stronger than NBR as a compatibilizer. These were consistent with the dynamic mechanical thermal analysis (DMTA data as well as macroscale mechanical properties tested on the samples.

  20. Syntheses and properties of complex resins obtained by the reaction of polyethyleneimine with maleic anhydride-isobutene copolymer

    International Nuclear Information System (INIS)

    Usami, Shiro; Hasegawa, Kiyoshi; Takata, Kyoko; Naito, Ryunosuke; Uchida, Hiroshi; Kozuka, Hiroshi.

    1985-01-01

    Complex resins obtained by the reaction of polyethyleneimine with maleic anhydride-isobutene copolymer around 100 0 C revealed selective ion adsorption depending on the equivalent ratio of nitrogen to carboxyl group (N/COOH). In detail, polyanion-excess complex resins (N/COOH 2+ , Pb 2+ , Zn 2+ and Ni 2+ , and resins containing excess polycation (N/COOH > 1) for metal complex anions such as [CrO 4 ] 2- , [Ag(S 2 O 3 ) 2 ] 3- and [Fe(CN) 6 ] 4- . Furthermore, the polycation-excess complex resins had high adsorption capacity for uranium in solution, for example, a polycationic resin (N/COOH = 1.79) had an adsorption capacity of more than 100 mg U/g-dry base resin in a 75 ppm uranium solution. It also adsorbed and recovered uranium from solution contatining such infinitesimal amounts of uranium as sea water. The results from electron probe X-ray microanalyser (EPMA) of a polycationic resin (N/COOH = 1.79) indicated that cations such as Ca 2+ and Mg 2+ , abundant in sea water, were not adsorbed at all while such anions as Cl - and S 2- were adsorbed. It was found that Br - , I - , etc. were not adsorbed from sea water while these anions were adsorbed from the solutions containing them independently. The result indicated that Cl - in sea water probably interfered the adsorption of Br - , I - , etc. However, uranium was adsorbed from sea water in spite of its extremely low concentration without any disturbance of other co-existing ions. It was found that Ni 2+ and Cu 2+ were also adsorbed. (author)

  1. Effect of styrene maleic acid WIN55,212-2 micelles on neuropathic pain in a rat model.

    Science.gov (United States)

    Linsell, Oliver; Brownjohn, Philip W; Nehoff, Hayley; Greish, Khaled; Ashton, John C

    2015-05-01

    Cannabinoid receptor agonists are moderately effective at reducing neuropathic pain but are limited by psychoactivity. We developed a styrene maleic acid (SMA) based on the cannabinoid WIN 55,212-2 (WIN) and tested in a rat model of neuropathic pain and in the rotarod test. We hypothesized that miceller preparation can ensure prolonged plasma half-life being above the renal threshold of excretion. Furthermore, SMA-WIN could potentially reduce the central nervous system effects of encapsulated WIN by limiting its transport across the blood-brain barrier. Using the chronic constriction injury model of sciatic neuropathy, the SMA-WIN micelles were efficacious in the treatment of neuropathic pain for a prolonged period compared to control (base WIN). Attenuation of chronic constriction injury-induced mechanical allodynia occurred for up to 8 h at a dose of 11.5 mg/kg of SMA-WIN micelles. To evaluate central effects on motor function, the rotarod assessment was utilized. Results showed initial impairment caused by SMA-WIN micelles to be identical to WIN control for up to 1.5 h. Despite this, the SMA-WIN micelle formulation was able to produce prolonged analgesia over a time when there was decreased impairment in the rotarod test compared with base WIN.

  2. Identifying airway sensitizers: cytokine mRNA profiles induced by various anhydrides

    International Nuclear Information System (INIS)

    Plitnick, L.M.; Loveless, S.E.; Ladics, G.S.; Holsapple, M.P.; Smialowicz, R.J.; Woolhiser, M.R.; Anderson, P.K.; Smith, C.; Selgrade, M.J.K.

    2003-01-01

    Exposure to low molecular weight (LMW) chemicals in the workplace has been linked to a variety of respiratory effects. Within the LMW chemicals, one of the major classes involved in these effects are the acid anhydrides. The immunological basis of respiratory hypersensitivity involves CD4+ cells. By virtue of their induction of cytokines typical of CD4+ T-helper type 2 (Th2) cells--interleukin (IL)-4, 10, and 13--respiratory sensitizers may be identified and differentiated from contact sensitizers which induce Th1 cytokines (IL-2 and IFN-γ). Our previous work suggested that the ribonuclease protection assay (RPA) was useful in identifying the respiratory sensitizer, trimellitic anhydride (TMA), based on quantitative differences in Th2 cytokine mRNA as compared to the contact sensitizer dinitrochlorobenzene (DNCB). Therefore, the purpose of the studies described in this report was to expand the chemicals tested in the RPA. To this end, four acid anhydrides with known respiratory sensitization potential, TMA, maleic anhydride (MA), phthalic anhydride (PA) and hexahydrophthalic anhydride (HHPA), were tested. Although previously determined to induce immunologically equivalent responses in a local lymph node assay (LLNA), the initial dose chosen (2.5%) failed to induce Th2 cytokine mRNA expression. To determine if the lack of cytokine expression was related to dose, LLNAs were conducted at higher doses for each of the anhydrides. The highest doses evaluated (four- to six-fold higher than those used in the initial RPA) gave equivalent proliferative responses for the various anhydrides and were used for subsequent RPA testing. At these higher doses, significant increases in Th2 versus Th1 cytokine mRNA were observed for all anhydrides tested. These results suggest that the RPA has the potential to serve as a screen for the detection of LMW airway sensitizing chemicals. However, the basis for selecting immunologically equivalent doses may require some modification

  3. Synthesis of Terpolymers with Homogeneous Composition by Free Radical Copolymerization of Maleic Anhydride, Perfluorooctyl and Butyl or Dodecyl Methacrylates: Application of the Continuous Flow Monomer Addition Technique

    Directory of Open Access Journals (Sweden)

    Marian Szkudlarek

    2017-11-01

    Full Text Available Terpolymers of homogeneous composition were prepared by free radical copolymerization of butyl or dodecyl methacrylate, 1H,1H,2H,2H-perfluorodecyl methacrylate and maleic anhydride using the continuous monomer addition technique. The copolymerization reactions were performed at 65 °C in the presence of azobisisobutyronitrile as an initiator in a mixture of methyl ethyl ketone and 1,3-bis (trifluoromethylbenzene. The monomers and initiator are added to the reaction mixture with the same rate they are consumed in 5- and 10-fold excess compared to the initial monomer stock. The obtained terpolymers with molecular weights Mn = 50,000–70,000 are of uniform composition, close to the composition determined in low conversion experiments, proving the principle of the chosen concept. The kinetic data necessary for the design of the continuous addition experiment were obtained from binary copolymerization experiments at low monomer conversion (to avoid compositional drift. In addition, the so-called terpolymerization parameter was determined from ternary copolymerization experiments.

  4. Influence of the composition of hydroxypropyl cellulose/maleic acid-alt-styrene copolymer blends on their properties as matrix for drug release

    Directory of Open Access Journals (Sweden)

    2009-05-01

    Full Text Available Poly(carboxylic acid-polysaccharide compositions have been found suitable for obtaining drug formulations with controlled release, most formulations being therapeutically efficacious, stable, and non-irritant. The influence of the characteristics of the aqueous solutions from which the polymer matrix is prepared (i.e. the total concentration of polymer in solutions and the mixing ratio between the partners, hydroxypropyl cellulose, HPC and maleic acid-alternating-styrene copolymer, MAc-alt-S on the kinetics of some drugs release in acidic environment (pH = 2 has been followed by ‘in vitro’ dissolution tests. It has been established that the kinetics of procaine hydrochloride release from HPC/MAc-alt-S matrix depends on its composition; the diffusion exponent, n is close to 0.5 for matrices where one of the components is in large excess and n~0.02 for middle composition range. The lower value of diffusion exponent for middle composition range could be caused by the so called ‘burst effect’, therefore the kinetic evaluation is difficult.

  5. Styrene-maleic acid-copolymer conjugated zinc protoporphyrin as a candidate drug for tumor-targeted therapy and imaging.

    Science.gov (United States)

    Fang, Jun; Tsukigawa, Kenji; Liao, Long; Yin, Hongzhuan; Eguchi, Kanami; Maeda, Hiroshi

    2016-01-01

    Previous studies indicated the potential of zinc protoporphyrin (ZnPP) as an antitumor agent targeting to the tumor survival factor heme oxygenase-1, and/or for photodynamic therapy (PDT). In this study, to achieve tumor-targeted delivery, styrene-maleic acid-copolymer conjugated ZnPP (SMA-ZnPP) was synthesized via amide bond, which showed good water solubility, having ZnPP loading of 15%. More importantly, it forms micelles in aqueous solution with a mean particle size of 111.6 nm, whereas it has an apparent Mw of 65 kDa. This micelle formation was not detracted by serum albumin, suggesting it is stable in circulation. Further SMA-ZnPP conjugate will behave as an albumin complex in blood with much larger size (235 kDa) by virtue of the albumin binding property of SMA. Consequently, SMA-ZnPP conjugate exhibited prolonged circulating retention and preferential tumor accumulation by taking advantage of enhanced permeability and retention (EPR) effect. Clear tumor imaging was thus achieved by detecting the fluorescence of ZnPP. In addition, the cytotoxicity and PDT effect of SMA-ZnPP conjugate was confirmed in human cervical cancer HeLa cells. Light irradiation remarkably increased the cytotoxicity (IC50, from 33 to 5 μM). These findings may provide new options and knowledge for developing ZnPP based anticancer theranostic drugs.

  6. Dynamics study of free volume properties of SMA/SMMA blends by PAL method

    International Nuclear Information System (INIS)

    Jiang, Z.Y.; Jiang, X.Q.; Huang, Y.J.; Lin, J.; Li, S.M.; Li, S.Z.; Hsia, Y.F.

    2006-01-01

    Miscibility of poly(styrene-co-maleic anhydride) (containing 7 wt% maleic anhydride)/poly(styrene-co-methyl methacrylate) (containing 40 wt% styrene) blends were previously studied. It was obtained that SMA70 (containing 70 wt% of SMA in SMA/SMMA blends) is miscible in molecular level but SMA20 is not. In this paper, the two blends selected were used to investigate the temperature dependence of free volume parameters. It showed there are different deviations of free volume parameters in SMA20 and SMA70, and it was interesting that temperature dependence of ortho-positronium lifetime τ 3 of the SMA20 mixture exhibits two breaks in the range temperature from 90 deg. C to 120 deg. C, which revealed that the mixture has two glass transition ranges. Also, ortho-positronium lifetime τ 3 of the SMA20 mixture is nearly constant in the temperature range from 130 deg. C to 160 deg. C. These indicated that SMA20 blend is phase-separated in room temperature and become miscible above 130 deg. C, which may be due to steric hindrance effect of phenyl rings of SMMA and SMA. From the deviation of o-Ps lifetimes of SMA70, the single glass transition temperature of SMA70 blend was shown. Combining the previous study, it was further concluded that PAL method seems to be a powerful method to detect in situ phase behavior of immiscible polymer blends and glass transition of miscible polymer blends

  7. Co-recycling of acrylonitrile-butadiene-styrene waste plastic and nonmetal particles from waste printed circuit boards to manufacture reproduction composites.

    Science.gov (United States)

    Sun, Zhixing; Shen, Zhigang; Zhang, Xiaojing; Ma, Shulin

    2015-01-01

    This study investigated the feasibility of using acrylonitrile-butadiene-styrene (ABS) waste plastic and nonmetal particles from waste printed circuit boards (WPCB) to manufacture reproduction composites (RC), with the aim of co-recycling these two waste resources. The composites were prepared in a twin-crew extruder and investigated by means of mechanical testing, in situ flexural observation, thermogravimatric analysis, and dimensional stability evaluation. The results showed that the presence of nonmetal particles significantly improved the mechanical properties and the physical performance of the RC. A loading of 30 wt% nonmetal particles could achieve a flexural strength of 72.6 MPa, a flexural modulus of 3.57 GPa, and an impact strength of 15.5 kJ/m2. Moreover, it was found that the application of maleic anhydride-grafted ABS as compatilizer could effectively promote the interfacial adhesion between the ABS plastic and the nonmetal particles. This research provides a novel method to reuse waste ABS and WPCB nonmetals for manufacturing high value-added product, which represents a promising way for waste recycling and resolving the environmental problem.

  8. Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Díaz, A.; Valle, L.; Franco, L. del [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Sarasua, J.R. [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain); Estrany, F. [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Puiggalí, J., E-mail: Jordi.Puiggali@upc.es [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain)

    2014-09-01

    Lactide and trimethylene carbonate copolymers were successfully grafted with polyethylene glycol via previous functionalization with maleic anhydride and using N,N′-diisopropylcarbodiimide as condensing agent. Maleinization led to moderate polymer degradation. Specifically, the weight average molecular weight decreased from 36,200 to 30,200 g/mol for the copolymer having 20 mol% of trimethylene carbonate units. Copolymers were characterized by differential scanning calorimetry, thermogravimetry and X-ray diffraction. Morphology of spherulites and lamellar crystals was evaluated with optical and atomic force microscopies, respectively. The studied copolymers were able to crystallize despite the randomness caused by the trimethylene carbonate units and the lateral groups. Contact angle measurements indicated that PEG grafted copolymers were more hydrophilic than parent copolymers. This feature justified that enzymatic degradation in lipase medium and proliferation of both epithelial-like and fibroblast-like cells were enhanced. Grafted copolymers were appropriate to prepare regular drug loaded microspheres by the oil-in-water emulsion method. Triclosan release from loaded microspheres was evaluated in two media. - Highlights: • Pegylated copolymers of lactide and trimethylene carbonate have been synthesized. • Grafting with polyethylene glycol was able via maleic anhydride functionalization. • Drug-loaded microspheres could be prepared from new pegylated copolymers. • Hydrophilicity of lactide/trimethylene carbonate copolymers increased by pegylation. • New pegylated copolymers supported cell adhesion and proliferation.

  9. Highly Carboxylated Cellulose Nanofibers via Succinic Anhydride Esterification of Wheat Fibers and Facile Mechanical Disintegration.

    Science.gov (United States)

    Sehaqui, H; Kulasinski, K; Pfenninger, N; Zimmermann, T; Tingaut, P

    2017-01-09

    We report herein the preparation of 4-6 nm wide carboxyl-functionalized cellulose nanofibers (CNF) via the esterification of wheat fibers with cyclic anhydrides (maleic, phtalic, and succinic) followed by an energy-efficient mechanical disintegration process. Remarkable results were achieved via succinic anhydride esterification that enabled CNF isolation by a single pass through the microfluidizer yielding a transparent and thick gel. These CNF carry the highest content of carboxyl groups ever reported for native cellulose nanofibers (3.8 mmol g -1 ). Compared to conventional carboxylated cellulose nanofibers prepared via Tempo-mediated oxidation of wheat fibers, the present esterified CNF display a higher molar-mass and a better thermal stability. Moreover, highly carboxylated CNF from succinic anhydride esterification were effectively integrated into paper filters for the removal of lead from aqueous solution and are potentially of interest as carrier of active molecules or as transparent films for packaging, biomedical or electronic applications.

  10. Probing molecular interactions of poly(styrene-co-maleic acid) with lipid matrix models to interpret the therapeutic potential of the co-polymer.

    Science.gov (United States)

    Banerjee, Shubhadeep; Pal, Tapan K; Guha, Sujoy K

    2012-03-01

    To understand and maximize the therapeutic potential of poly(styrene-co-maleic acid) (SMA), a synthetic, pharmacologically-active co-polymer, its effect on conformation, phase behavior and stability of lipid matrix models of cell membranes were investigated. The modes of interaction between SMA and lipid molecules were also studied. While, attenuated total reflection-Fourier-transform infrared (ATR-FTIR) and static (31)P nuclear magnetic resonance (NMR) experiments detected SMA-induced conformational changes in the headgroup region, differential scanning calorimetry (DSC) studies revealed thermotropic phase behavior changes of the membranes. (1)H NMR results indicated weak immobilization of SMA within the bilayers. Molecular interpretation of the results indicated the role of hydrogen-bond formation and hydrophobic forces between SMA and zwitterionic phospholipid bilayers. The extent of membrane fluidization and generation of isotropic phases were affected by the surface charge of the liposomes, and hence suggested the role of electrostatic interactions between SMA and charged lipid headgroups. SMA was thus found to directly affect the structural integrity of model membranes. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Compatibility, Morphology, Mechanical Properties and Biodegradability of Poly(styrene-ethylene-propylenestyrene/ Modified Thermoplastic Starch Blends

    Directory of Open Access Journals (Sweden)

    Saaid Rahimi Bandarabadi

    2016-09-01

    Full Text Available The effect of modified starch on the properties of poly(styrene-ethylenepropylene- styrene tri-block copolymer was studied. Chemical treatment of starch with maleic anhydride was accomplished in an internal mixer in the presence of glycerol. The reaction was confirmed using Fourier infrared spectroscopy (FTIR and titration. The blend samples containing 10, 20, 30 and 50 wt% were obtained by melt blending and their mechanical, morphological and dynamic-mechanical properties were studied. Scanning electron microscopy (SEM images displayed droplet-matrix morphology and with increases in modified starch up to 50 wt% some partial co-continuous morphology was also observed. With increase of modified starch in the compound, the size of dispersed phase increased. DMTA results revealed that the partial compatibility was obtained because of slight difference between glass transition temperatures of two phases in the presence of modified starch. The peak of modified starch shifted to higher values and the differences between the two peaks decreased, indicating partial compatibility. Mechanical properties including tensile, elongation-at-break and modulus were also determined and the results showed that the mechanical properties of the sample were higher than those of neat TPS because of the higher compatibility. Tensile strength was decreased with increase in modified starch content due to the absence of strong interfacial adhesion. Moduli of the samples were increased with increase in modified starch content due to higher stiffness of starch. Biodegradability of the samples was evaluated by weight loss percentage using compost test. A rapid degradation was observed in the first 45 days and with increase of the modified starch content the degree of degradation was increased.

  12. Mechanical and thermal properties of polymer composite based on natural fibers: Moroccan hemp fibers/polypropylene

    International Nuclear Information System (INIS)

    Elkhaoulani, A.; Arrakhiz, F.Z.; Benmoussa, K.; Bouhfid, R.; Qaiss, A.

    2013-01-01

    Highlights: ► Moroccan hemp fibers are used as reinforcement in thermoplastic matrix. ► Moroccan hemp fiber was alkali treated to remove waxes and noncellulosic component. ► Fiber–matrix adhesion was assured by the use of a SEBS-g-MA as a compatibilizer. - Abstract: Moroccan hemp is a cellulosic fiber obtained from the north of Morocco. Their use as reinforcement in thermoplastic matrix composite requires a knowledge of their morphology and structure. In this paper the Moroccan hemp fiber was alkali treated to remove waxes and noncellulosic surface components. Fiber/matrix adhesion was assured by the use of a styrene-(ethylene-butene)-styrene three-block copolymer grafted with maleic anhydride (SEBS-g-MA) as a compatibilizer. Scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), tensile and torsional tests were carried out for hemp fibers polypropylene composite and the compatibilized composite at different fiber content. Thus, the binary composite PP/hemp fibers (Alk) and ternary system with maleic anhydride indicate clearly an improved adhesion of the fiber to the matrix as results of the good interaction at the interface. A gain of 50% on the Young’s modulus of PP/hemp 25 wt.% without coupling agent and 74% on the PP/hemp 20 wt.% composite with the coupling agent were found. Tensile strength curve shows a remarkable stabilization when the coupling agent was used

  13. Evaluation of mechanical and thermal properties of Pine cone fibers reinforced compatibilized polypropylene

    International Nuclear Information System (INIS)

    Arrakhiz, F.Z.; El Achaby, M.; Benmoussa, K.; Bouhfid, R.; Essassi, E.M.; Qaiss, A.

    2012-01-01

    Highlights: ► Pine cone fibers are used as reinforcement in thermoplastic matrix. ► Pine cone fiber was alkali treated to remove waxes and non cellulosic component. ► Fiber–matrix adhesion was assured by the use of a SEBS-g-MA as a compatibilizer. -- Abstract: Pine cone fibers are a cellulosic material readily available and can be used as reinforcement in a thermoplastic-based composite. A solid knowledge of their fibrillar morphology and structure is required to evaluate their usefulness as a substitute to other abundant natural fibers. Pine cone fibers were alkali treated prior usage to remove waxes and non cellulosic surface component. Fiber–matrix adhesion was assured by both a styrene–(ethylene–butene)–styrene triblock copolymer grafted with maleic anhydride (SEBS-g-MA) and a linear block copolymer based on styrene and butadiene compatibilizer. Scanning Electron Microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction, Thermogravimetric analysis (TGA), tensile and torsional tests were employed for Pine cone polypropylene composite and compatibilized composite at different fiber content. Results show a clear improvement in mechanical properties from the use of both alkali treated Pine cone and Pine cone compatibilized with maleic anhydride, a gain of 43% and 49% respectively in the Young’s modulus, as a results of improved adhesion between fibers and matrix at the interface.

  14. Alternating copolymerization of propylene oxide with biorenewable terpene-based cyclic anhydrides: a sustainable route to aliphatic polyesters with high glass transition temperatures.

    Science.gov (United States)

    Van Zee, Nathan J; Coates, Geoffrey W

    2015-02-23

    The alternating copolymerization of propylene oxide with terpene-based cyclic anhydrides catalyzed by chromium, cobalt, and aluminum salen complexes is reported. The use of the Diels-Alder adduct of α-terpinene and maleic anhydride as the cyclic anhydride comonomer results in amorphous polyesters that exhibit glass transition temperatures (Tg ) of up to 109 °C. The polymerization conditions and choice of catalyst have a dramatic impact on the molecular weight distribution, the relative stereochemistry of the diester units along the polymer chain, and ultimately the Tg of the resulting polymer. The aluminum salen complex exhibits exceptional selectivity for copolymerization without transesterification or epimerization side reactions. The resulting polyesters are highly alternating and have high molecular weights and narrow polydispersities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Blending protocol effect in structural properties of PA6/ABS nanocomposites compatibilized with SAN-MA

    International Nuclear Information System (INIS)

    Castro, Lucas D.C. de; Oliveira, Amanda D.; Pessan, Luiz Antonio

    2015-01-01

    Nanocomposites based on polyamide 6 (PA6) and acrylonitrile-butadiene-styrene (ABS) compatibilized with styrene acrylonitrile-co-maleic anhydride were prepared using different blending protocols in a twin screw extruder. Specimen were prepared though injection molding. The organoclay (OMMT) incorporation and blending sequence effect on structural properties were investigated. X-ray diffraction analysis (XRD) indicates a complete exfoliated structure for all samples. Rheological measurements show an increasing in nanocomposites complex viscosities and storage modulus values when compared with the ternary blend. However, no significant effects in the rheological behavior were observed due the blending sequence. Differential scanning calorimetry (DSC) measurements suggests the incorporation of OMMT and different blending protocols may influence the polyamide polymorphism and degree of crystallinity. (author)

  16. Blending protocol effect in structural properties of PA6/ABS nanocomposites compatibilized with SAN-MA; Influencia do protocolo de mistura nas propriedades estruturais de nanocompositos PA6/ABS compatibilizados com SAN-MA

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Lucas D.C. de; Oliveira, Amanda D.; Pessan, Luiz Antonio, E-mail: lucasdanielcastro@hotmail.com, E-mail: pessan@ufscar.br [Universidade Federal de Sao Carlos (UFSCar), Sao Carlos, SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2015-07-01

    Nanocomposites based on polyamide 6 (PA6) and acrylonitrile-butadiene-styrene (ABS) compatibilized with styrene acrylonitrile-co-maleic anhydride were prepared using different blending protocols in a twin screw extruder. Specimen were prepared though injection molding. The organoclay (OMMT) incorporation and blending sequence effect on structural properties were investigated. X-ray diffraction analysis (XRD) indicates a complete exfoliated structure for all samples. Rheological measurements show an increasing in nanocomposites complex viscosities and storage modulus values when compared with the ternary blend. However, no significant effects in the rheological behavior were observed due the blending sequence. Differential scanning calorimetry (DSC) measurements suggests the incorporation of OMMT and different blending protocols may influence the polyamide polymorphism and degree of crystallinity. (author)

  17. Styrene maleic acid encapsulated raloxifene micelles for management of inflammatory bowel disease.

    Science.gov (United States)

    Greish, Khaled; Taha, Safa; Jasim, Anfal; Elghany, Sara Abd; Sultan, Ameera; AlKhateeb, Ali; Othman, Manal; Jun, Fang; Taurin, Sebastien; Bakhiet, Moiz

    2017-12-01

    Inflammatory bowel disease (IBD) comprises a group of disorders that manifest through chronic inflammation of the colon and small intestine. Although the exact cause of IBD is still unclear, dysfunctional immunoregulation involving overproduction of inflammatory cytokines such as TNF-α, and IL-6 have been implicated in pathogenesis. Current therapy relies on immunosuppression, cytotoxic drugs, and monoclonal antibodies against TNF-α. These classes of drugs have severe side-effects, especially when used for long duration. Our previous work with raloxifene, a selective estrogen receptor modulator, has shown that the drug, and to a greater extent its micellar formulation, has a significant suppressive effect on NF-κB, an essential immune-regulator. This finding directed the current work towards testing the anti-inflammatory and immunomodulatory effects of raloxifene using cell lines, as well as testing the potential use of the styrene maleic acid (SMA) micelles loaded with raloxifene (SMA-Ral) against dextran sulfate sodium (DSS) induced colitis in an in vivo model of IBD. Treatment of MCF-7 cells with TNF-α was shown to protect the cells from the cytotoxic effect of raloxifene (42 vs. 10% cell death, with TNF-α. Treating CaCo-2 cells with both free and SMA-Ral improved cell survival after exposure to 2% DDS with significantly higher protection with SMA-Ral. Treatment of U-937 with SMA-Ral and free-Ral resulted in down-regulation of TNF-α, IL-1β, IL-6, and MIP1α, with greater inhibition of the SMA-Ral, compared to free Ral. Balb/c mice treated with raloxifene and SMA-Ral showed weight gain at 14 days, compared to the control group (122, and 115% respectively). Treatment with raloxifene prevented DSS-induced diarrhea in 6/6 of free raloxifene treated mice and in 5/6 mice treated with SMA-Ral. Control group of DSS-treated mice showed average colon length of 7.4 cm compared to 13 cm in the control group. The average colon length was 12.3 and 11.5 cm for

  18. Styrene maleic acid-encapsulated RL71 micelles suppress tumor growth in a murine xenograft model of triple negative breast cancer.

    Science.gov (United States)

    Martey, Orleans; Nimick, Mhairi; Taurin, Sebastien; Sundararajan, Vignesh; Greish, Khaled; Rosengren, Rhonda J

    2017-01-01

    Patients with triple negative breast cancer have a poor prognosis due in part to the lack of targeted therapies. In the search for novel drugs, our laboratory has developed a second-generation curcumin derivative, 3,5-bis(3,4,5-trimethoxybenzylidene)-1-methylpiperidine-4-one (RL71), that exhibits potent in vitro cytotoxicity. To improve the clinical potential of this drug, we have encapsulated it in styrene maleic acid (SMA) micelles. SMA-RL71 showed improved biodistribution, and drug accumulation in the tumor increased 16-fold compared to control. SMA-RL71 (10 mg/kg, intravenously, two times a week for 2 weeks) also significantly suppressed tumor growth compared to control in a xenograft model of triple negative breast cancer. Free RL71 was unable to alter tumor growth. Tumors from SMA-RL71-treated mice showed a decrease in angiogenesis and an increase in apoptosis. The drug treatment also modulated various cell signaling proteins including the epidermal growth factor receptor, with the mechanisms for tumor suppression consistent with previous work with RL71 in vitro. The nanoformulation was also nontoxic as shown by normal levels of plasma markers for liver and kidney injury following weekly administration of SMA-RL71 (10 mg/kg) for 90 days. Thus, we report clinical potential following encapsulation of a novel curcumin derivative, RL71, in SMA micelles.

  19. Synthesis and photooxidation of styrene copolymer bearing camphorquinone pendant groups

    Science.gov (United States)

    Moszner, Norbert; Lukáč, Ivan

    2012-01-01

    Summary (±)-10-Methacryloyloxycamphorquinone (MCQ) was synthesized from (±)-10-camphorsulfonic acid either by a known seven-step synthetic route or by a novel, shorter five-step synthetic route. MCQ was copolymerized with styrene (S) and the photochemical behavior of the copolymer MCQ/S was compared with that of a formerly studied copolymer of styrene with monomers containing the benzil (BZ) moiety (another 1,2-dicarbonyl). Irradiation (λ > 380 nm) of aerated films of styrene copolymers with monomers containing the BZ moiety leads to the insertion of two oxygen atoms between the carbonyl groups of BZ and to the formation of benzoyl peroxide (BP) as pendant groups on the polymer backbone. An equivalent irradiation of MCQ/S led mainly to the insertion of only one oxygen atom between the carbonyl groups of camphorquinone (CQ) and to the formation of camphoric anhydride (11) covalently bound to the polymer backbone. While the decomposition of pendant BP groups formed in irradiated films of styrene copolymers with pendant BZ groups leads to crosslinking, only small molecular-weight changes in irradiated MCQ/S were observed. PMID:22509202

  20. Role of surface functionality on the formation of raspberry-like polymer/silica composite particles: Weak acid–base interaction and steric effect

    International Nuclear Information System (INIS)

    Wang, Lan; Song, LinYong; Chao, ZhiYin; Chen, PengPeng; Nie, WangYan; Zhou, YiFeng

    2015-01-01

    Graphical abstract: - Highlights: • Core–shell structured polymer/SiO 2 was obtained with carboxylic-functionalized templates. • Raspberry-like structure was observed with carboxylic and poly(ethylene glycol) hybrid-functionalized polymer microspheres. • Carboxylic groups contributed to the nucleation and the poly(ethylene glycol) chains was used to control the growth of silica particles. • Super-hydrophobic surface was obtained and the contact angle of water on the dual-sized structured surface was up to 160°. - Abstract: The surface functionality of polymer microspheres is the crucial factor to determine the nucleation and growth of silica particles and to construct the organic/inorganic hierarchical structures. The objective of this work was to evaluate the surface functionality and hierarchical morphology relationship via in situ sol–gel reaction. Carboxylic-functionalized poly (styrene-co-maleic anhydride) [P(S-co-MA)], poly(ethylene glycol)-functionalized poly(styrene-co-poly(ethylene glycol) methacrylate) [P(S-co-PEGMA)], and hybrid functionalized poly(styrene-co-maleic anhydride-co-poly(ethylene glycol) methacrylate) [P(S-co-MA-co-PEGMA)] microspheres were synthesized by emulsifier-free polymerization and used as templates. The morphologies of the composite particles were observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results showed that core–shell structure was obtained with P(S-co-MA) as templates; raspberry-like structure was observed by using P(S-co-MA-co-PEGMA) as templates; and no silica particles were attached onto the surface of P(S-co-PEGMA) microspheres. These results indicated that the carboxylic groups on the surface formed by hydrolysis of anhydride groups were the determinate factor to control the nucleation of silica nanoparticles, and the PEG chains on the surface can affect the growth of silica particles. In addition, the particulate films were constructed by assembling these

  1. Study on thermal properties and crystallization behavior of electron beam irradiated ethylene vinyl acetate (EVA)/waste tyre dust (WTD) blends in the presence of polyethylene graft maleic anhydride (PEgMAH)

    Energy Technology Data Exchange (ETDEWEB)

    Ramli, Syuhada; Ahmad, S. H. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan (Malaysia); Ratnam, C. T. [Radiation Processing Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang (Malaysia); Athirah, Nurul [School of Materials and Mineral Resources, USM Engineering Campus (Malaysia)

    2013-11-27

    The aim of this article is to show the effects of the electron beam irradiation dose and presence of a compatibiliser on the thermal properties and crystallinity of EVA/WTD blends. The purpose of applying electron beam radiation with doses range 50 to 200 kGy and adding a compatibiliser was to enhance the compatibility of the studied blends and at the same time to investigate the possibility of using this technique in the process of recycling polymeric materials. As the compatibilisers, the polyethylene grafted maleic anhydride (PEgMAH) was utilized, they were added at the amounts of 1-5 phr respectively. The enhancement of thermal properties was accompanied by the following effects, discussed in this article: i) an irradiated EVA/WTD blend at 200kGy was found to improve the thermal properties of EVA, ii) the addition of PEgMAH in EVA/WTD blends and the subsequent irradiation allowed prevention of degradation mechanism. iii) the ΔH{sub f} and crystallinity percentage decrease at higher PEgMAH content.

  2. Poly(vinyl methyl ether/maleic anhydride)-Doped PEG-PLA Nanoparticles for Oral Paclitaxel Delivery To Improve Bioadhesive Efficiency.

    Science.gov (United States)

    Wang, Qian; Li, Chan; Ren, Tianyang; Chen, Shizhu; Ye, Xiaoxia; Guo, Hongbo; He, Haibing; Zhang, Yu; Yin, Tian; Liang, Xing-Jie; Tang, Xing

    2017-10-02

    Bioadhesive nanoparticles based on poly(vinyl methyl ether/maleic anhydride) (PVMMA) and poly(ethylene glycol) methyl ether-b-poly(d,l-lactic acid) (mPEG-b-PLA) were produced by the emulsification solvent evaporation method. Paclitaxel was utilized as the model drug, with an encapsulation efficiency of up to 90.2 ± 4.0%. The nanoparticles were uniform and spherical in shape and exhibited a sustained drug release compared with Taxol. m-NPs also exhibited favorable bioadhesive efficiency at the same time. Coumarin 6 or DiR-loaded nanoparticles with/without PVMMA (C6-m-NPs/DiR-m-NPs or C6-p-NPs/DiR-p-NPs) were used for cellular uptake and intestinal adhesion experiments, respectively. C6-m-NPs were shown to enhance cellular uptake, and caveolae/lipid raft mediated endocytosis was the primary route for the uptake of the nanoparticles. Favorable bioadhesive efficiency led to prolonged retention in the intestine reflected by the fluorescence in isolated intestines ex vivo. In a ligated intestinal loops model, C6-m-NPs showed a clear advantage for transporting NPs across the mucus layer over C6-p-NPs and free C6. The apparent permeability coefficient (Papp) of PTX-m-NPs through Caco-2/HT29 monolayers was 1.3- and 1.6-fold higher than PTX-p-NPs and Taxol, respectively, which was consistent with the AUC 0-t of different PTX formulations after oral administration in rats. PTX-m-NPs also exhibited a more effective anticancer efficacy, with an IC 50 of 0.2 ± 1.4 μg/mL for A549 cell lines, further demonstrating the advantage of bioadhesive nanoparticles. The bioadhesive nanoparticles m-NPs demonstrated both mucus permeation and epithelial absorption, and thus, this bioadhesive drug delivery system has the potential to improve the bioavailability of drugs that are insoluble in the gastrointestinal environment.

  3. Design of amine modified polymer dispersants for liquid-phase exfoliation of transition metal dichalcogenide nanosheets and their photodetective nanocomposites

    Science.gov (United States)

    Lee, Jinseong; Hahnkee Kim, Richard; Yu, Seunggun; Babu Velusamy, Dhinesh; Lee, Hyeokjung; Park, Chanho; Cho, Suk Man; Jeong, Beomjin; Sol Kang, Han; Park, Cheolmin

    2017-12-01

    Liquid-phase exfoliation (LPE) of transition metal dichalcogenide (TMD) nanosheets is a facile, cost-effective approach to large-area photoelectric devices including photodetectors and non-volatile memories. Non-destructive exfoliation of nanosheets using macromolecular dispersing agents is beneficial in rendering the TMD nanocomposite films suitable for mechanically flexible devices. Here, an efficient LPE of molybdenum disulfide (MoS2) with an amine modified poly(styrene-co-maleic anhydride) co-polymer (AM-PSMA) is demonstrated, wherein the maleic anhydrides were converted into maleic imides with primary amines using N-Boc-(CH2) n -NH2. The exfoliation of nanosheets was facilitated through Lewis acid-base interaction between the primary amine and transition metal. The results demonstrate that the exfoliation depends upon both the fraction of primary amines in the polymer chain and their distance from the polymer backbone. Under optimized conditions of primary amine content and its distance from the backbone, AM-PSMA gave rise to a highly concentrated MoS2 nanosheet suspension that was stable for over 10 d. Exfoliation of several other TMDs was also achieved using the optimized AM-PSMA, indicating the scope of AM-PSMA applications. Furthermore, a flexible composite film of AM-PSMA and MoS2 nanosheets fabricated by vacuum-assisted filtration showed excellent photoconductive performances including a high I on/I off ratio of 102 and a fast photocurrent switching of 300 ms.

  4. Synthesis and characterization of functional copolymer/organo-silicate nanoarchitectures through interlamellar complex-radical (coterpolymerization

    Directory of Open Access Journals (Sweden)

    2008-09-01

    Full Text Available The functional copolymers, having a combination of rigid/flexible linkages and an ability of complex-formation with interlayered surface of organo-silicate, and their nanocomposites have been synthesized by interlamellar complex-radical (coterpolymerization of intercalated monomer complexes of maleic anhydride (MA and itaconic acid (IA with dimethyl dodecylamine surface modified montmorillonite (organo-MMT (MA…DMDA-MMT and IA…DMDA-MMT n-butyl methacrylate (BMA and/or BMA/styrene monomer mixtures. The results of nanocomposite structure–composition– property relationship studies indicate that interlamellar complex-formation between anhydride/acid units and surface alkyl amine and rigid/flexible linkage balance in polymer chains are important factors providing the effective intercalation/ exfoliation of the polymer chains into the silicate galleries, the formation of nanostructural hybrids with higher thermal stability, dynamic mechanical behaviour and well dispersed morphology.

  5. Compatibilization of acrylonitrile-butadiene-styrene terpolymer/poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) blend: effect on morphology, interface, mechanical properties and hydrophilicity

    Science.gov (United States)

    Chen, Tingting; Zhang, Jun

    2018-04-01

    The compatibilization of acrylonitrile-butadiene-styrene terpolymer (ABS) and poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG) blends was first investigated. Styrene-acrylonitrile-glycidyl methacrylate terpolymer (SAG) and ABS grafted with maleic anhydride (ABS-g-MAH) were selected as reactive compatibilizers for the ABS/PETG blends. The compatibilization effect was assessed by scanning electron microscope (SEM), differential scanning calorimetry (DSC) and mechanical properties. And the effect of compatibilizers on the hydrophilicity of the blends was evaluated as well. SEM observation and DSC analysis confirmed that both SAG and ABS-g-MAH compatibilizers could improve the compatibility between ABS and PETG, leading to an improvement in toughness of the blend. The possible cause for the improvement of compatibility was the reaction between compatibilizers and PETG, which could in situ turn out compatibilizers that acted as interfacial agents to enhance the interfacial interaction in the blend. Especially, the addition of SAG significantly decreased the dispersion phase size and the interface voids almost disappeared. Since the in situ reactions between the epoxy groups of SAG and the end groups (sbnd COOH or sbnd OH) of PETG generated PETG-co-SAG copolymer at the blend interface, and the cross-linking reactions proposed to take place between SAG and the PETG-co-SAG copolymer, acting as compatibilizer, could significantly increase the interfacial interaction. The addition of SAG also enhanced the stiffness of the blends. Moreover, the addition of SAG made the blend more hydrophilic, whereas the addition of ABS-g-MAH made the blend more hydrophobic. Therefore, SAG was a good compatibilizer for the ABS/PETG blends and could simultaneously provide the blends with toughening, stiffening and hydrophilic effects.

  6. Fatigue mechanisms in unidirectional glass-fibre-reinforced polypropylene

    DEFF Research Database (Denmark)

    Gamstedt, E.K.; Berglund, L.A.; Peijs, T.

    1999-01-01

    Polypropylene (PP) and polypropylene modified with maleic anhydride (MA-PP) reinforced by continuous longitudinal glass fibres have been investigated. The most prominent effect of the modification with maleic anhydride in the composite is a stronger fibre/matrix interface. The effects of interfac......Polypropylene (PP) and polypropylene modified with maleic anhydride (MA-PP) reinforced by continuous longitudinal glass fibres have been investigated. The most prominent effect of the modification with maleic anhydride in the composite is a stronger fibre/matrix interface. The effects...... of interfacial strength on fatigue performance and on the underlying micromechanisms have been studied for these composite systems. Tension-tension fatigue tests (R = 0.1) were carried out on 0 degrees glass-fibre/PP and glass-fibre/ MA-PP coupons. The macroscopic fatigue behaviour was characterized in terms...

  7. Decoration of a Poly(methyl vinyl ether-co-maleic anhydride)-Shelled Selol Nanocapsule with Folic Acid Increases Its Activity Against Different Cancer Cell Lines In Vitro.

    Science.gov (United States)

    Ganassin, Rayane; Souza, Ludmilla Regina de; Py-Daniel, Karen Rapp; Longo, João Paulo Figueiró; Coelho, Janaína Moreira; Rodrigues, Mosar Correa; Jiang, Cheng-Shi; Gu, Jinsong; Morais, Paulo César de; Mosiniewicz-Szablewska, Ewa; Suchocki, Piotr; Báo, Sônia Nair; Azevedo, Ricardo Bentes; Muehlmann, Luis Alexandre

    2018-01-01

    Due to the low therapeutic index of different chemotherapeutic drugs used for cancer treatment, the development of new anticancer drugs remains an intense field of research. A recently developed mixture of selenitetriacylglycerides, selol, was shown to be active against different cancer cells in vitro. As this compound is highly hydrophobic, it was encapsulated, in a previous study, into poly(methyl vinyl ether-co-maleic anhydride)-shelled nanocapsules in order to improve its dispersibility in aqueous media. Following this line of research, the present report aimed at enhancing the In Vitro activity of the selol nanocapsules against cancerous cells by decorating their surface with folic acid. It is known that several cancer cells overexpress folate receptors. Stable folic acid-decorated selol nanocapsules (SNP-FA) were obtained, which showed to be spherical, with a hydro-dynamic diameter of 364 nm, and zeta potential of -24 mV. In comparison to non-decorated selol nanocapsules, SNP-FA presented higher activity against 4T1, MCF-7 and HeLa cells. Moreover, the decoration of the nanocapsules did not alter their toxicity towards fibroblasts, NIH-3T3 cells. These results show that the decoration with folic acid increased the toxicity of selol nanocapsules to cancer cells. These nanocapsules, besides enabling to disperse selol in an aqueous medium, increased the toxicity of this drug In Vitro, and may be useful to treat cancer in vivo, potentially increasing the specificity of selol towards cancer cells.

  8. Styrene maleic acid-encapsulated paclitaxel micelles: antitumor activity and toxicity studies following oral administration in a murine orthotopic colon cancer model

    Directory of Open Access Journals (Sweden)

    Parayath NN

    2016-08-01

    Full Text Available Neha N Parayath,1 Hayley Nehoff,1 Samuel E Norton,2 Andrew J Highton,2 Sebastien Taurin,1,3 Roslyn A Kemp,2 Khaled Greish1,4 1Department of Pharmacology and Toxicology, 2Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand; 3Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, USA; 4Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain Abstract: Oral administration of paclitaxel (PTX, a broad spectrum anticancer agent, is challenged by its low uptake due to its poor bioavailability, efflux through P-glycoprotein, and gastrointestinal toxicity. We synthesized PTX nanomicelles using poly(styrene-co-maleic acid (SMA. Oral administration of SMA-PTX micelles doubled the maximum tolerated dose (60 mg/kg vs 30 mg/kg compared to the commercially available PTX formulation (PTX [Ebewe]. In a murine orthotopic colon cancer model, oral administration of SMA-PTX micelles at doses 30 mg/kg and 60 mg/kg reduced tumor weight by 54% and 69%, respectively, as compared to the control group, while no significant reduction in tumor weight was observed with 30 mg/kg of PTX (Ebewe. In addition, toxicity of PTX was largely reduced by its encapsulation into SMA. Furthermore, examination of the tumors demonstrated a decrease in the number of blood vessels. Thus, oral delivery of SMA-PTX micelles may provide a safe and effective strategy for the treatment of colon cancer. Keywords: oral delivery, anticancer nanomedicine, CT-26, enhanced permeability and retention (EPR effect, HUVEC, antiangiogenic

  9. Study of micro-phase separation of two polystyrene-based copolymer mixture using the combination of PALS and FT-IR

    International Nuclear Information System (INIS)

    Jiang, Z.Y.; Jiang, X.Q.; Yang, Y.X.; Huang, Y.J.; Huang, H.B.; Hsia, Y.F.

    2005-01-01

    Positron annihilation lifetime (PAL) spectroscopy, Fourier transform infrared (FT-IR) and differential scanning calorimetry (DSC) have been applied to study the micro-phase separation in the blends of poly(styrene-co-methylmethacrylate) (SMMA) copolymer and poly(styrene-co-maleic anhydride) (SMA) copolymer. The DSC results indicate that the SMA/SMMA blends are miscible and weak intermolecular interactions exist between SMA and SMMA. The strength of intermolecular interactions to some degree exhibits somewhat non-monotonic variation with increasing of SMA component in the blends. The results of PAL measurement present the blend containing 20 wt% SMA is phase-separated in molecular level, which is interpreted by the results of FT-IR analysis. It was concluded that it is helpful to study the miscibility of polymer blends in molecular level by means of PAL method, accompanied with the requisite measurement of DSC and FT-IR

  10. The properties of poly(lactic acid)/starch blends with a functionalized plant oil: tung oil anhydride.

    Science.gov (United States)

    Xiong, Zhu; Li, Chao; Ma, Songqi; Feng, Jianxian; Yang, Yong; Zhang, Ruoyu; Zhu, Jin

    2013-06-05

    Bio-sourced polymers, polylactide (PLA) and starch, have been melt-blended by lab-scale co-extruder with tung oil anhydride (TOA) as the plasticizer. The ready reaction between the maleic anhydride on TOA and the hydroxyl on starch led TOA molecules to accumulate on starch and increased the compatibility of PLA/starch blends, which was confirmed by FT-IR analyses and SEM. The TOA could change the mechanical properties and physical behaviors of PLA/starch blends. DSC and DMA analysis show that the TOA layer on starch has an effect on the thermal behavior of PLA in the ternary blend. The enrichment of TOA on starch improves the toughness and impact strength of the PLA/starch blends. The adding amount of TOA in PLA/starch blends primarily determined the compatibility and mechanical properties of the resulted ternary blends. The tensile and impact fracture modes of the PLA/starch blend with or without TOA has also been investigated by SEM analysis. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. Styrene maleic acid-encapsulated RL71 micelles suppress tumor growth in a murine xenograft model of triple negative breast cancer

    Directory of Open Access Journals (Sweden)

    Martey O

    2017-10-01

    Full Text Available Orleans Martey,1 Mhairi Nimick,1 Sebastien Taurin,1 Vignesh Sundararajan,1 Khaled Greish,2 Rhonda J Rosengren1 1Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand; 2Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain Abstract: Patients with triple negative breast cancer have a poor prognosis due in part to the lack of targeted therapies. In the search for novel drugs, our laboratory has developed a second-generation curcumin derivative, 3,5-bis(3,4,5-trimethoxybenzylidene-1-methylpiperidine-4-one (RL71, that exhibits potent in vitro cytotoxicity. To improve the clinical potential of this drug, we have encapsulated it in styrene maleic acid (SMA micelles. SMA-RL71 showed improved biodistribution, and drug accumulation in the tumor increased 16-fold compared to control. SMA-RL71 (10 mg/kg, intravenously, two times a week for 2 weeks also significantly suppressed tumor growth compared to control in a xenograft model of triple negative breast cancer. Free RL71 was unable to alter tumor growth. Tumors from SMA-RL71-treated mice showed a decrease in angiogenesis and an increase in apoptosis. The drug treatment also modulated various cell signaling proteins including the epidermal growth factor receptor, with the mechanisms for tumor suppression consistent with previous work with RL71 in vitro. The nanoformulation was also nontoxic as shown by normal levels of plasma markers for liver and kidney injury following weekly administration of SMA-RL71 (10 mg/kg for 90 days. Thus, we report clinical potential following encapsulation of a novel curcumin derivative, RL71, in SMA micelles. Keywords: curcumin derivatives, nanomedicine, EGFR, biodistribution

  12. Nuclear magnetic resonance structure investigations on crosslinked polyesters

    International Nuclear Information System (INIS)

    Grobelny, J.

    1999-01-01

    Styrene-crosslinked mixed polyesters derived from maleic anhydride, 2,2-di(4-hydroxypropoxyphenyl)propane, oligo(propylene oxide) and 1,2-propylene glycol were investigated by high-resolution solid-state 13 C NMR spectroscopy. The structural modifications accompanying crosslinking were characterized in terms of spin-lattice relaxation times as a function of unsaturated polyester composition. Copolymerization and crosslinking effects were individually evaluated and the latter effect was related to variations in crosslinking density associated with the chemical structure of the unsaturated prepolymer. As the crosslinking effect is suppressed, the mechanical properties undergo expected changes, e.g., impact strength is increased and modulus of elasticity in tension is decreased. (author)

  13. Transparent lithiated polymer films for thermal neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Mabe, Andrew N., E-mail: andrew.n.mabe@gmail.com [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Auxier, John D. [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Urffer, Matthew J. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Penumadu, Dayakar [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Schweitzer, George K. [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Miller, Laurence F. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2013-09-11

    Novel water-soluble {sup 6}Li loaded copolymer scintillation films have been designed and fabricated to detect thermal neutrons. Styrene and maleic anhydride were copolymerized to form an alternating copolymer, then the anhydride functionality was hydrolyzed using {sup 6}Li hydroxide. The resulting poly(styrene-co-lithium maleate) was mixed with salicylic acid as a fluor and cast as a thin film from water. The maximum {sup 6}Li loading obtained that resulted in a transparent film was 4.36% by mass ({sup 6}Li to polymer). The optimum fluorescence output was obtained for 11.7% salicylic acid by mass, presumably in the form of lithium salicylate, resulting in an optimum film containing 3.85% by mass of {sup 6}Li. A facile and robust synthesis method, film fabrication protocol, photoluminescence results, and scintillation responses are reported herein. -- Highlights: • A transparent polymer scintillator containing 3.85 wt% {sup 6}Li has been synthesized. • This class of polymeric thermal neutron scintillation detector is water-soluble. • Salicylic acid, presumably in the form of lithium salicylate, is used as a fluor. • The material emits 373 photons/α ({sup 241}Am) and an average of 139 photons/β ({sup 36}Cl). • The material emits 360 photons per thermal neutron capture event.

  14. Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends.

    Science.gov (United States)

    Liu, H; Wu, Q; Zhang, Q

    2009-12-01

    Banana fiber (BaF)-filled composites based on high density polyethylene (HDPE)/Nylon-6 blends were prepared via a two-step extrusion method. Maleic anhydride grafted styrene/ethylene-butylene/styrene triblock polymer (SEBS-g-MA) and maleic anhydride grafted polyethylene (PE-g-MA) were used to enhance impact performance and interfacial bonding between BaF and the resins. Mechanical, crystallization/melting, thermal stability, water absorption, and morphological properties of the composites were investigated. In the presence of SEBS-g-MA, better strengths and moduli were found for HDPE/Nylon-6 based composites compared with corresponding HDPE based composites. At a fixed weight ratio of PE-g-MA to BaF, an increase of BaF loading up to 48.2 wt.% led to a continuous improvement in moduli and flexural strength of final composites, while impact toughness was lowered gradually. Predicted tensile modulus by the Hones-Paul model for three-dimensional random fiber orientation agreed well with experimental data at the BaF loading of 29.3 wt.%. However, the randomly-oriented fiber models underestimated experimental data at higher fiber levels. It was found that the presence of SEBS-g-MA had a positive influence on reinforcing effect of the Nylon-6 component in the composites. Thermal analysis results showed that fractionated crystallization of the Nylon-6 component in the composites was induced by the addition of both SEBS-g-MA and PE-g-MA. Thermal stability of both composite systems differed slightly, except an additional decomposition peak related to the minor Nylon-6 for the composites from the HDPE/Nylon-6 blends. In the presence of SEBS-g-MA, the addition of Nylon-6 and increased BaF loading level led to an increase in the water absorption value of the composites.

  15. Synthesis of Functional Materials by Radiation

    International Nuclear Information System (INIS)

    Noh, Y. C.; Kang, P. H.; Choi, J. H.

    2006-06-01

    The radiation crosslinking, grafting, curing and degradation can be easily adjusted and is easily reproducible by controlling the radiation dose. These studies aim to develop new biomaterials such as wound healing, tissue engineering and antiadhesion barrier. The effect of thermal treatment and irradiation on the physico-chemical properties of ultra-high molecular weight polyethylene (UHMWPE) used in orthopedic implants was investigated. If a large amount of polymer radicals remain trapped after the irradiation of ultra-high molecular weight polyethylene (UHMWPE), the radicals may significantly alter the physical properties of UHMWPE during long shelf storage and implantation for a long time period. UHMWPE irradiated in the molten state had a higher crosslinking extent and a lower wear rate than one irradiated in the room temperature. The radiation grafting technology can develop membrane of fuel cell and Li secondary battery and heavy metal absorbents. Proton exchange membranes were prepared by γ-irradiation-induced grafting of styrene into fluorinated polymer films and subsequent sulfonation. Results of the present work suggest that radiation induced-graft polymerization can be used as alternative method to blending to prepare polymer electrolyte membranes for lithium battery applications. The polypropylene-based compatibilizers, polypropylene-g-maleic anhydride (PP-MAH), polypropylene-g-maleic anhydride/styrene (PP-St/MAH), and polypropylene-g-acrylic acid (PP-AA), were prepared by a high energy irradiation method. The compatibilizing effect of newly prepared graft copolymers on immiscible PP/Nylon6 blends has been studied by means of UTM, SEM, and DSC techniques. The results indicate that PP-MAH and PP-St/MAH are more effective compatibilizers for PP/Nylon6 blends than PP-AA showing more than 30 % increase in impact strength, and the compatibilizing effect on PP/Nylon6 blends depends on molecular structure of the compatibilizers and the composition of the

  16. Effect of reinforcement nanoparticles addition on mechanical properties of SBS/curaua fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Borba, Patricia M. [Servico Nacional de Aprendizagem Industrial (CETEPO/SENAI/RS), Sao Leopoldo, RS (Brazil). Centro Tecnologico de Polimeros; Tedesco, Adriana [Braskem S. A., III Polo Petroquimico, Triunfo, RS (Brazil); Lenz, Denise M., E-mail: denise.lenz@gmail.com [Universidade Luterana do Brasil (ULBRA), Canoas, RS (Brazil). Programa de Pos-graduacao em Engenharia de Materiais e Processos Sustentaveis

    2014-03-15

    Composites of styrene-butadiene-styrene triblock copolymer (SBS) matrix with curauá fiber and/or a nanoparticulated mineral (montmorillonite clay - MMT) used as reinforcing agents were prepared by melt-mixing. The influence of clay addition on properties like tensile and tear strength, rebound resilience, flex fatigue life, abrasion loss, hardness and water absorption of composites with 5, 10 and 20 wt% of curauá fiber was evaluated in presence of maleic anhydride grafted styrene-(ethylene-co-butylene)-styrene triblock copolymer (MA-g-SEBS) coupling agent. Furthermore, the effect of mineral plasticizer loading on tensile strength of selected composites was investigated. The hybrid SBS composite that showed the best overall mechanical performance was composed by 2 wt% of MMT and 5 wt% of curauá fiber. Increasing fiber content up to 20 wt% resulted in a general decrease in all mechanical properties as well as incorporation of 5 wt% MMT caused a decrease in the tensile strength in all fiber contents. The hybrid composites showed clay agglomerates (tactoids) poorly dispersed that could explain the poor mechanical performance of composites at higher concentrations of curauá fiber and MMT nanoparticles. The addition of plasticizer further decreased the tensile strength while the addition of MMT nanoparticles decreased water absorption for all SBS composites. (author)

  17. α-Costic anhydride

    Directory of Open Access Journals (Sweden)

    Moha Berraho

    2010-03-01

    Full Text Available The title compound [systematic name: 2-(4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-2-ylacrylic acid anhydride], C30H42O3, is a new isocostic anhydride which was synthesized from the aerial part of Inula Viscosa (L Aiton [or Dittrichia Viscosa (L Greuter]. The molecule adopts an essentially linear shape with two terminal fused-rings bridged by the anhydride group. The external rings have the same conformation (half-chair while each of the two inner rings has an almost ideal chair conformation. In the crystal, intermolecular C—H...O interactions link the molecules into a two-dimensional array in the bc plane.

  18. RANDOM COPOLYMER BLENDS OF STYRENE, PARA-FLUORO STYRENE AND ORTHO-FLUORO STYRENE

    NARCIS (Netherlands)

    OUDHUIS, AACM; TENBRINKE, G; KARASZ, FE

    1993-01-01

    This study completes the investigation of the phase behaviour of polymer blends involving styrene (S), ortho-fluoro styrene (oFS) and para-fluoro styrene (pFS). As before, due to the proximity of the glass transition temperatures of most blends investigated, the miscibility or immiscibility is

  19. Radiation-induced trioxane postpolymerization in the liquid phase

    International Nuclear Information System (INIS)

    Kapustina, I.B.; Starchenko, T.V.

    1979-01-01

    Radiation-induced trioxane postpolymerization in the presence of maleic anhydride and different solvents in the liquid phase has been studied. It has been found that addition of small quantities of different solvents inhibits the trioxane polymerization process both in the presence of maleic anhydride and in the absence of it. Trioxane postpolymerization in a solvent-nonsolvent mixture gives fibrous polyoxymethylene with high molecular mass and high yield

  20. Effect of temperature and ph on the drug release rate from a polymer conjugate system

    International Nuclear Information System (INIS)

    Kenawy, E.; Abdel-Hay, F.I.; El-Newehy, M.H.; Ottenbrite, R.M.

    2005-01-01

    Hydroximide and A-methylhydroxamic acid of poly(ethylene-altmaleic anhydride) (average MW 100-500 k) were used as a carrier for a new drug delivery system. The synthesis of the hydroximide and N methylhydroxamic acid of poly(ethylene-alt-maleic anhydride) were carried out by chemical modification of poly(ethylene-alt-maleic anhydride) with hydroxylamine and N-methyl hydroxylamine, respectively, in N,N- dimethylformamide at room temperature to yield water soluble copolymer. Ketoprofen was reacted with hydroximide and N-methylhydroxamic acid derivatives of poly(ethylene-alt-maleic anhydride) using dicyclohexylcarbodiimide as condensation agent at -5 degree C to yield water insoluble ketoprofen conjugates. All products were characterized by elemental analysis, FTIR and 1HNMR spectra. The in-vitro ketoprofen release was carried out by UV spectrophotometer at max =260 nm. The results demonstrated the effectiveness of hydroximide and N-methylhydroxamic acid of polyethylene-alt-maleic anhydride) as a drug delivery system. The release rates were studied at various ph and temperatures. The copolymer-drug adducts released the drug very slowly at the low ph found in the stomach thus protecting the drug from the action of high concentrations of digestive acids. These results showed the usefulness of hydroxamic acid polymer-drug conjugates as a new drug delivery system for drugs to be targeted to sites in the GI system

  1. Effect of oil palm empty fruit bunches fibers reinforced polymer recycled

    Science.gov (United States)

    Hermawan, B.; Nikmatin, S.; Sudaryanto; Alatas, H.; Sukaryo, S. G.

    2017-07-01

    The aim of this research is to process the OPEFB to become fiber with various sizes which will be used as a filler of polymer matrix recycled acrylonitrile butadiene styrene (ABS). Molecular analysis and mechanical test have been done to understand the influence of fiber size toward material capability to receive outer deformation. Single screw extruder formed a biocomposites granular continued with injection moulding to shaped test pieces. Maleic anhydride was added as coupling agent between filler and matrix. Filler concentration were 10 and 20% in fiber size respectively with constant additif. Two kind of fiber glass (10%) were used as comparator. In order to analyze the results of the mechanical test Fisher least significant difference (LSD) in ANOVA method was performed (-with α=0,05-).

  2. The preparation of highly water-soluble multi-walled carbon nanotubes by irreversible noncovalent functionalization with a pyrene-carrying polymer

    International Nuclear Information System (INIS)

    Xue Chaohua; Zhou Renjia; Shi Minmin; Gao Yan; Wu Gang; Chen Hongzheng; Wang Mang; Zhang Xiaobin

    2008-01-01

    Multi-walled carbon nanotubes (MWNTs) have been solubilized in water via a noncovalent method of exfoliation and centrifugation cycles with the assistance of hydrolyzed poly(styrene-co-maleic anhydride) carrying pyrene (HPSMAP). After the obtained solution was micro-filtered and dried, a water-soluble complex of HPSMAP-MWNTs was obtained. The solubility of HPSMAP-MWNTs was measured to be 46.2 mg ml -1 with a net MWNT concentration of 7.4 mg ml -1 in water. Thermal gravimetric analyses showed that there was a large amount of polymer remaining on the surface of MWNTs irreversibly after thoroughly removing the free polymer. Other characterizations using transmission electron microscopy, Fourier transform infrared (FTIR) spectroscopy, fluorescence spectra, and fluorescence decay were conducted

  3. Incorporating different vegetable oils into an aqueous dispersion of hybrid organic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Samyn, Pieter, E-mail: Pieter.Samyn@fobawi.uni-freiburg.de [Albert-Luedwigs-University Freiburg, Institute for Forest Utilization (Germany); Schoukens, Gustaaf [Ghent University, Department of Textiles (Belgium); Stanssens, Dirk; Vonck, Leo; Van den Abbeele, Henk [Topchim N.V. (Belgium)

    2012-08-15

    Different vegetable oils including soy oil, high-oleic sunflower oil, corn oil, castor oil (CO), rapeseed oil, and hydrogenated CO were added to the imidization reaction of poly(styrene-maleic anhydride) or SMA, with ammonium hydroxide in aqueous medium. The oils favorably reduce viscosity during ammonolysis of the anhydride moieties and increase the maximum solid content of the dispersed imidized SMA to at least 50 wt%, compared to a maximum of 35 wt% for pure imidized SMA. The viscosity of imidized SMA with polyunsaturated oils was generally larger than for monosaturated oils, but it was highest for COs due to high contents of hydroxyl groups. Depending on the oil reactivity, homogeneous or core-shell nanoparticles with 20-60 nm diameters formed. The interactions of oil and organic phase were studied by Fourier-transform infrared spectroscopy, indicating qualitative variances between different oils, the fraction imidized SMA and remaining fraction of ammonolyzed SMA without leakage of oil upon diluting the dispersion and precipitation at low pH. A quantitative analysis with calculation of imide contents, amounts of reacted oil and chemical interactions was made by Fourier-transform-Raman spectroscopy suggesting that most interactions take place around the unsaturated oil moieties and ammonolyzed anhydride.

  4. Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride.

    Science.gov (United States)

    Zhou, Yanmei; Min, Yinghao; Qiao, Han; Huang, Qi; Wang, Enze; Ma, Tongsen

    2015-03-01

    Cellulose modified with maleic (M) and phthalic (P) anhydride, to be named CMA and CPA, were tested as feasible adsorbents for the removal of malachite green from aqueous solution. At the same time, the uptake ability of natural cellulose was also studied for comparison. The structure of material was characterized by FT-IR and XRD. The effects of solution pH, initial dye concentration, contact time and temperature were investigated in detail by batch adsorption experiments. The kinetic and isotherm studies suggested that the adsorption followed the pseudo-second-order model and Langmuir isotherm. The maximum adsorption capacity on CMA and CPA were 370 mg g(-1) and 111 mg g(-1), respectively. Furthermore, the thermodynamics studies indicated the spontaneous nature of adsorption of malachite green on adsorbents. All the studied results showed that the modified cellulose could be used as effective adsorption material for the removal of malachite green from aqueous solutions. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Influence of the Hydrophobicity of Polyelectrolytes on Polyelectrolyte Complex Formation and Complex Particle Structure and Shape

    Directory of Open Access Journals (Sweden)

    Gudrun Petzold

    2011-08-01

    Full Text Available Polyelectrolyte complexes (PECs were prepared by structural uniform and strongly charged cationic and anionic modified alternating maleic anhydride copolymers. The hydrophobicity of the polyelectrolytes was changed by the comonomers (ethylene, isobutylene and styrene. Additionally, the n−/n+ ratio of the molar charges of the polyelectrolytes and the procedure of formation were varied. The colloidal stability of the systems and the size, shape, and structure of the PEC particles were investigated by turbidimetry, dynamic light scattering (DLS and atomic force microscopy (AFM. Dynamic light scattering indicates that beside large PEC particle aggregates distinct smaller particles were formed by the copolymers which have the highest hydrophobicity (styrene. These findings could be proved by AFM. Fractal dimension (D, root mean square (RMS roughness and the surface profiles of the PEC particles adsorbed on mica allow the following conclusions: the higher the hydrophobicity of the polyelectrolytes, the broader is the particle size distribution and the minor is the swelling of the PEC particles. Hence, the most compact particles are formed with the very hydrophobic copolymer.

  6. Properties of SBS and sisal fiber composites: ecological material for shoe manufacturing

    Directory of Open Access Journals (Sweden)

    José Carlos Krause de Verney

    2008-12-01

    Full Text Available The worldwide trend toward using cheap, atoxic and durable materials from renewable resources contributes to sustainable development. Thus, the investigation of the potential use of vegetal fibers as reinforcing agent in polymeric composites has gained new significance. Sisal fiber has emerged as a reinforcing material for polymers used in automobile, footwear and civil industries. In this work, properties such as hardness, tensile strength and tear strength of polymer composites composed by block copolymer styrene-butadiene-styrene (SBS and 5, 10 and 20% by weight of sisal fiber were evaluated. The influence of conventional polymer processing techniques such as single-screw and double-screw extrusion, as well as the addition of coupling agent on the composite mechanical performance was investigated. Also, the morphology and thermal stability of the composites were analyzed. The addition of 2 wt. (% maleic anhydride as coupling agent between sisal fiber and SBS has improved the composite mechanical performance and the processing in a double-screw extruder has favored the sisal fiber distribution in the SBS matrix.

  7. Polyethylene organo-clay nanocomposites: the role of the interface chemistry on the extent of clay intercalation/exfoliation.

    Science.gov (United States)

    Mainil, Michaël; Alexandre, Michaël; Monteverde, Fabien; Dubois, Philippe

    2006-02-01

    High density polyethylene (HDPE)/clay nanocomposites have been prepared using three different functionalized polyethylene compatibilizers: an ethylene/vinyl acetate copolymer, a polyethylene grafted with maleic anhydride functions and a (styrene-b-ethylene/butylene-b-styrene) block copolymer. The nanocomposites were prepared via two different routes: (1) the dispersion in HDPE of a masterbatch prepared from the compatibilizer and the clay or (2) the direct melt blending of the three components. For each compatibilizer, essentially intercalated nanocomposites were formed as determined by X-ray diffraction and transmission electron microscopy. With the ethylene/vinyl acetate copolymer, a significant delamination of the intercalated clay in thin stacks was observed. This dispersion of thin intercalated stacks within the polymer matrix allowed increasing significantly the stiffness and the flame resistance of the nanocomposite. A positive effect of shear rate and blending time has also been put into evidence, especially for the process based on the masterbatch preparation, improving both the formation of thin stacks of intercalated clay and the mechanical properties and the flame resistance of the formed nanocomposites.

  8. Recovery of recycled acrylonitrile-butadiene-styrene, through mixing with styrene-ethylene/butylene-styrene

    OpenAIRE

    Peydro, M. A.; Parres, F.; Crespo Amorós, José Enrique; Navarro Vidal, Raúl

    2013-01-01

    Recovery of recycled acrylonitrile-butadiene-styrene (ABS) through mixing with styrene-ethylene/butylene-styrene (SEBS) has been studied in this paper. To simulate recycled ABS, virgin ABS was processed through 5 cycles, at extreme processing temperatures, 220 degrees C and 260 degrees C. The virgin ABS, the virgin SEBS, the recycled ABS and the mixtures were mechanically, thermally and rheologically characterized after the various cycles of reprocessing in order to evaluate their correspondi...

  9. Hybrid composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites was investigated by Kalaprasad et al [25].Chemical surface modifications such as alkali, acetic anhydride, stearic acid, permanganate, maleic anhydride, silane...

  10. Engineering Design Handbook Short Fiber Plastic Base Composites

    Science.gov (United States)

    1975-07-31

    A adduct f. neopentyl glycol g. trimethyl pentanediol a. styrene b. methyl methacrylate c. vinyl toluene Characteristics a. lowest cost...dibasic acid or an unsaturated anhydride with a glycol . Most polyesters include as a third component a saturated dibasic acid or anhydride. The...anhydride, propylene glycol , and styrene monomer are used for lowest cost; isophthalic acid may be added for higher heat resistance and improved

  11. Synthesis and characterization of radiation grafted films for removal of arsenic and some heavy metals from contaminated water

    International Nuclear Information System (INIS)

    Chowdhury, M.N.K.; Khan, M.W.; Mina, M.F.; Beg, M.D.H.; Khan, Maksudur R.; Alam, A.K.M.M.

    2012-01-01

    Grafting of styrene/maleic anhydride and methyl methacrylate/maleic anhydride binary monomers onto the low density polyethylene film was performed using the γ-ray irradiation technique. Then, the synthesized grafted films were treated with different ammonia derivatives for developing chelating functionalization. These chelating products were characterized by the gravimetric method as well as by the Fourier transformed infrared spectroscopic method, and were used for removal of arsenic and some heavy metals from aqueous solutions. The optimum absorbed dose of 30 kGy reveals the graft yielding of about 325% in the films. Uptake of arsenic and some heavy-metal ions (Cr(III), Mn(II), Fe(III), Ni(II), Cu(II) and Pb(II)) from contaminated water by the chelating functionalized films (CFF) was examined by an atomic absorption spectrophotometer. The maximum arsenic removal capacity of 5062 mg/kg has been observed for the film treated with hydroxylamine hydrochloride. The CFF prepared by semicarbazide and thiol analogs show affinity toward the metal ions with an order: Cu(II)>Fe(III)>Mn(II) etc. The results obtained from this study indicate that the functionalized films show good chelating and ion-exchange property for metal ions. - Highlights: ► Optimization of radiation dose for grafting reaction of polyethylene with binary monomers. ► Chelating functionalization of grafted film with various amine compounds. ► Characterization of both grafted and chelating functionalized films. ► Proposed mechanism for both grafting and chelating functionalization reaction. ► Application of the synthesized films for the removal of arsenic and some heavy metals from contaminated water.

  12. Characterization of polyester composites from recycled polyethylene terephthalate reinforced with empty fruit bunch fibers

    International Nuclear Information System (INIS)

    Tan, Chiachun; Ahmad, Ishak; Heng, Muichin

    2011-01-01

    Highlights: → Unsaturated polyester resin (UPR) was synthesized from recycled PET. → Effect of surface treatment on EFB/UPR was studied. → Treatment on EFB improved the mechanical and thermal properties. → Treatment on EFB also improved fiber-matrix interaction. -- Abstract: Unsaturated polyester resin (UPR) was synthesized from recycled polyethylene terephthalate (PET) which acted as a matrix for the preparation of UPR/empty fruit bunch fibers (EFB) composite. Chemical recycling on fine pieces of PET bottles were conducted through glycolysis process using ethylene glycol. The unsaturated polyester resin (UPR) was then prepared by reacting the glycolysed product with maleic anhydride. FTIR analysis of glycolyzed product and prepared UPR showed that cross-links between unsaturated polyester chain and styrene monomer occurred at the unsaturated sites which resulted in the forming of cross-linking network. The preparation of UPR/EFB composite was carried out by adding EFB into prepared UPR matrix. The effects of surface treatment on EFB with sodium hydroxide solution (NaOH), silane coupling agent and maleic anhydride (MA) were then studied. The experimental results showed that treated EFB have higher values of tensile and impact strength compared with untreated EFB. The best results were obtained for silane treatment followed by MA and NaOH treatments where the tensile strength was increased by about 21%, 18% and 13% respectively. SEM micrographs of the tensile fracture surfaces of UPR/EFB composite also proved that treatment on EFB has increased the interfacial adhesion between the fiber and UPR matrix compared to the untreated UPR/EFB composite.

  13. Effect of plasticiser on properties of styrene-butadiene-styrene thermoplastic elastomers

    International Nuclear Information System (INIS)

    Norzalia, S.; Farid, A.S.; O'Brien, M.G.

    1999-01-01

    This study investigates the properties of plasticised styrene-butadiene-styrene thermoplastic elastomers for possible applications in pharmaceutical, medical and food industries. Unplasticised styrene-butadiene-styrene (USBS) materials: vector 8550-D and vector 4461-D, which are developmental materials introduced by Exxon, and blends of vector 8550-D with vector 4461-D were plasticised paraffinic type plasticisers plastol 172 and plastol 352. Shore A hardness, tensile stress at break, modulus at 100% strain, elongation at break and density values showed a decrease whereas flow properties such as melt flow index (MFI) increased considerably with increasing plasticiser concentration. The properties of the plasticised styrene-butadiene-styrene thermoplastic elastomers were compared to the USBS materials. (author)

  14. -Styrene)

    KAUST Repository

    Sutisna, Burhannudin; Polymeropoulos, George; Musteata, Valentina-Elena; Sougrat, Rachid; Smilgies, Detlef-M.; Peinemann, Klaus-Viktor; Hadjichristidis, Nikolaos; Nunes, Suzana Pereira

    2017-01-01

    Membranes are prepared by self-assembly and casting of 5 and 13 wt% poly(styrene-b-butadiene-b-styrene) (PS-b-PB-b-PS) copolymers solutions in different solvents, followed by immersion in water or ethanol. By controlling the solution-casting gap

  15. Copolymerization of Carbon–carbon Double-bond Monomer (Styrene with Cyclic Monomer (Tetrahydrofuran

    Directory of Open Access Journals (Sweden)

    Sari Fouad

    2012-12-01

    Full Text Available We reported in this work that the cationic copolymerization in one step takes place between carbon–carbon double-bond monomer styrene with cyclic monomer tetrahydrofuran. The comonomers studied belong to different families: vinylic and cyclic ether. The reaction is initiated with maghnite-H+ an acid exchanged montmorillonite as acid solid ecocatalyst. Maghnite-H+ is already used as catalyst for polymerization of many vinylic and heterocyclic monomers. The oxonium ion of tetrahydrofuran and carbonium ion of styrene propagated the reaction of copolymerization. The acetic anhydride is essential for the maintenance of the ring opening of tetrahydrofuran and the entry in copolymerization. The temperature was kept constant at 40°C in oil bath heating for 6 hours. A typical reaction product was analyzed by 1H-NMR, 13C-NMR and IR and the formation of the copolymer was confirmed. The reaction was proved by matched with analysis. The maghnite-H+ allowed us to obtain extremely pure copolymer in good yield by following a simples operational conditions. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 29th October 2012; Revised: 29th November 2012; Accepted: 29th November 2012[How to Cite: S. Fouad, M.I. Ferrahi, M. Belbachir. (2012. Copolymerization of Carbon–carbon Double-bond Monomer (Styrene with Cyclic Monomer (Tetrahydrofuran. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 165-171. (doi:10.9767/bcrec.7.2.4074.165-171][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.4074.165-171 ] | View in 

  16. Influence of SEBS-MA and SBS compatibilizers on properties and morphology of blends of polystyrene/rubber residue (SBRr from the footwear industry

    Directory of Open Access Journals (Sweden)

    Carlos Bruno Barreto Luna

    Full Text Available Abstract The reuse of rubber waste is very important today, both to reduce the harmful effects on the environment, and to reduce the cost of new material development. Considering that most of the studies reported in literature refer to the reuse of tire waste, this article aims to evaluate the influence of styrene-butadiene-styrene (SBS and styrene-(ethylene-butylene-styrene grafted with maleic anhydride (SEBS-MA compatibilizers on the blend performance of polystyrene (PS/styrene-butadiene rubber residue (SBRr, which come from the footwear industry. The blends were prepared in a co-rotating twin screw extruder and then were molded by injection. They were analyzed by impact and tensile tests, heat deflection temperature (HDT, ductile-brittle transition temperature, dynamic mechanical thermal analysis (DMTA and transmission electron microscopy (TEM. The results evidenced that the use of any of the compatibilizers on the PS/SBRr blend significantly increased the impact strength, while the tensile properties and HDT were lower when compared to the polymer matrix. The ductile-brittle transition temperature remains at approximately 25°C range for all the blends. In general, it has been proved that the SBS was the most effective compatibilization process in the PS/SBRr system. The DMTA test shows the presence of two distinct temperature peaks. The morphologies obtained by TEM of binary and ternary blends were quite different and typical of immiscible blend. The results show a good perspective regarding the use of industrial waste (SBRr, since it may enhance a material that would be discarded.

  17. Blends of nitrile butadiene rubber/poly (vinyl chloride: The use of maleated anhydride castor oil based plasticizer

    Directory of Open Access Journals (Sweden)

    Indiah Ratna Dewi

    2016-06-01

    Full Text Available Recently, much attention has been focused on research to replace petroleum-based plasticizers, with biodegradable materials, such as biopolymer which offers competitive mechanical properties. In this study, castor oil was modified with maleic anhydride (MAH to produce bioplasticizer named maleated anhydride castor oil (MACO, and used in nitrile butadiene rubber (NBR/poly vinyl chloride (PVC blend. The effect of MACO on its cure characteristics and mechanical properties of NBR/PVC blend has been determined. The reactions were carried out at different castor oil (CO/xylene ratios, i.e. 1:0 and 1:1 by weight, and fixed CO/MAH ratio, 1:3 by mole. DOP, CO, and MACO were added into each NBR/PVC blend according to the formula. It was found that the viscosity and safe process level of NBR/PVC blend is similar from all plasticizer, however, MACO (1:0 showed the highest cure rate index (CRI. MACO-based plasticizer gave a higher value of the mechanical properties of the NBR/PVC blend as compared to DOP based plasticizer. MACO (1:1 based plasticizer showed a rather significance performance compared to another type of plasticizers both before and after aging. The value of hardness, elongation at break, tensile strength, and tear strength were 96 Shore A, 155.91 %, 19.15 MPa, and 74.47 MPa, respectively. From this result, NBR/PVC blends based on MACO plasticizer can potentially replace the DOP, and therefore, making the rubber blends eco-friendly.

  18. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    Science.gov (United States)

    Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

  19. Development of Transparent Materials Which Reduce Effects of Precipitation Static in Aircraft

    Science.gov (United States)

    1952-03-01

    table shows the acid numbers of some available compounds: Polymer Acid Number Polyacrylic acid 780 Polymethacrylic acid 653 1:1 Styrene-maleic acid ...orthophosphoric acid in polymethyl methacrylate and analogous systems merit further detailed investigation. PUBLICATION REVIEW Manuscript Copy of this report...Resins 74 4.4 Polyacrylic Acid Films 76 4.5 Films of the Ammonium Salt of Styrene- Maleic Acid Copolymer 76 4.6 Imidization 80 4.7 Vinyl Addition 81 4.8

  20. Preparation and Surface Sizing Application of Sizing Agent Based on Collagen from Leather Waste

    Directory of Open Access Journals (Sweden)

    Xuechuan Wang

    2015-09-01

    Full Text Available Collagen extracted from leather waste was modified with maleic anhydride. Then, using ammonium persulfate as an initiator, by pre-modifying collagen reacted with styrene and ethyl acrylate monomers, a vinyl-grafted collagen sizing agent (VGCSA for paper was prepared. Before the experiment, the performance of VGCSA was tested and VGCSA emulsion was applied to the surface sizing of the corrugated paper. Effects of the amount of VGCSA, the compound proportion of VGCSA, and starch and styrene-acrylic emulsion were studied relative to paper properties. The morphological changes of the paper before and after sizing were characterized by SEM. It was found that the collagen reacted with styrene and ethyl acrylate monomers. Through the grafting of vinyl and collagen, the crystallinity and thermal stability of VGCSA increased. The structure of VGCSA was spherical with a uniform size, and the average particle size was approximately 350 to 400 nm. After being sized, the surface fibers of paper became smooth and orderly. The optimal sizing of VGCSA was 8 g/m2. The optimal proportion of VGCSA with starch was 4:6, and the optimal proportion of VGCSA with SAE was 2:8. The research indicates that collagen extracted from leather waste could be used as a biomaterial, and environmental and economic benefits could be created as well.

  1. The Preparation and Properties of Thermo-reversibly Cross-linked Rubber Via Diels-Alder Chemistry

    NARCIS (Netherlands)

    Polgar, Lorenzo Massimo; van Duin, Martin; Picchioni, Francesco

    2016-01-01

    A method for using Diels Alder thermo-reversible chemistry as cross-linking tool for rubber products is demonstrated. In this work, a commercial ethylene-propylene rubber, grafted with maleic anhydride, is thermo-reversibly cross-linked in two steps. The pending anhydride moieties are first modified

  2. Use of Diels-Alder Chemistry for Thermoreversible Cross-Linking of Rubbers : The Next Step toward Recycling of Rubber Products?

    NARCIS (Netherlands)

    Polgar, L. M.; van Duin, M.; Broekhuis, A. A.; Picchioni, F.

    2015-01-01

    A proof of principle for the use of Diels-Alder chemistry as a thermoreversible cross-linking tool for rubber products is demonstrated. A commercial ethylene-propylene rubber grafted with maleic anhydride has been thermoreversibly cross-linked in two steps. The pending anhydride rings were first

  3. Biocompatibility of epoxidized styrene-butadiene-styrene block copolymer membrane

    International Nuclear Information System (INIS)

    Yang, Jen Ming; Tsai, Shih Chang

    2010-01-01

    Styrene-butadiene-styrene block copolymer (SBS) membrane was prepared by solution casting method and then was epoxidized with peroxyformic acid generated in situ to yield the epoxidized styrene-butadiene-styrene block copolymer membrane (ESBS). The structure and properties of ESBS were characterized with infrared spectroscopy, Universal Testing Machine, differential scanning calorimetry (DSC), and thermogravimetry analysis (TGA). The performances of contact angle, water content, protein adsorption, and water vapor transmission rate on ESBS membrane were determined. After epoxidation, the hydrophilicity of the membrane increased. The water vapor transmission rate of ESBS membrane is similar to human skin. The biocompatibility of ESBS membrane was evaluated with the cell culture of fibroblasts on the membrane. It revealed that the cells not only remained viable but also proliferated on the surface of the various ESBS membranes and the population doubling time for fibroblast culture decreased.

  4. Study of the Influence of adding styrene-ethylene/butadiene-styrene in acrylonitrile-butadiene-styrene and polyethylene blends

    OpenAIRE

    Peydro, M. A.; Parres, F.; Navarro Vidal, Raúl; Sanchez-Caballero, Samuel

    2014-01-01

    This work studies the recovery of two grades of acrylonitrile butadiene styrene (ABS) contaminated with low-density polyethylene (LDPE), by adding styrene ethylene/butadiene styrene (SEBS). To simulate contaminated ABS, virgin ABS was mixed with 1, 2, 4, and 8% of LDPE and then extruded at 220°C. After this, the ABS with the highest percentage of LDPE (8%) was mixed with 1, 2, 4, and 8% of SEBS and then extruded. Different blends were mechanically, rheologically, optically, and dimensionally ...

  5. Effect of Graphene Oxide Mixed Epoxy on Mechanical Properties of Carbon Fiber/Acrylonitrile-Butadiene-Styrene Composites.

    Science.gov (United States)

    Wang, Cuicui; Ge, Heyi; Ma, Xiaolong; Liu, Zhifang; Wang, Ting; Zhang, Jingyi

    2018-04-01

    In this study, the watersoluble epoxy resin was prepared via the ring-opening reaction between diethanolamine and epoxy resin. The modified resin mixed with graphene oxide (GO) as a sizing agent was coated onto carbon fiber (CF) and then the GO-CF reinforced acrylonitrile-butadienestyrene (ABS) composites were prepared. The influences of the different contents of GO on CF and CF/ABS composite were explored. The combination among epoxy, GO sheets and maleic anhydride grafted ABS (ABSMA) showed a synergistic effect on improving the properties of GO-CF and GO-CF/ABS composite. The GO-CF had higher single tensile strength than the commercial CF. The maximum ILSS of GO-CF/ABS composite obtained 19.2% improvement as compared with that of the commercial CF/ABS composite. Such multiscale enhancement method and the synergistic reinforced GO-CF/ABS composite show good prospective applications in many industry areas.

  6. Formaldehyde-free and thermal resistant microcapsules containing n-octadecane

    International Nuclear Information System (INIS)

    Shan, X.L.; Wang, J.P.; Zhang, X.X.; Wang, X.C.

    2009-01-01

    Microcapsules containing n-octadecane were synthesized using methacrylic acid (MAA), methyl methacrylate (MMA) and 1,4-butylene glycol diacrylate (BDDA) as shell. The surface morphology, thermal physical properties, thermal stabilities and diameter distributions of the microcapsules were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and particle size distribution analysis, respectively. The experimental results show that, the core material is well encapsulated in the presence of emulsifier-sodium salt of styrene-maleic anhydride co-polymer. The average diameter of the microcapsules is 18 μm. The enthalpy of microencapsulated n-octadecane (MC 18 ) with MAA-MMA co-polymeric shell is 155 J g -1 which corresponds to 70 wt.% core content. The thermal resistant temperature of MC 18 is 238 o C, which is affected by n-octadecane/monomers mass ratios and the content of cross-linking agent-BDDA.

  7. The role of polymer dots on efficiency enhancement of organic solar cells: Improving charge transport property

    Science.gov (United States)

    Li, Jinfeng; Zhang, Xinyuan; Liu, Chunyu; Li, Zhiqi; He, Yeyuan; Zhang, Zhihui; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2017-07-01

    In this work, poly(9,9-dioctylfluorene)-co-(4,7-di-2-thienyl-2,1,3-benzothiadiazole) (PF-5DTBT) and copolymer poly(styrene-co-maleic anhydride) (PSMA) dots were prepared as additive for active layer doping to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs), which based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole) (PCDTBT) and [6,6]-phenyl C71 butyric acid methyl-ester (PC71BM). A high efficiency of 7.40% was achieved due to increase of short-circuit current (Jsc) and fill factor (FF). The operation mechanism of OSCs doping with polymer dots was investigated, which demonstrated that the efficiency enhancement ascribes to improvement of electrical properties, such as exciton generation, exction dissociation, charge transport, and charge collection.

  8. Kinetics of Maleic Acid and Aluminum Chloride Catalyzed Dehydration and Degradation of Glucose

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ximing; Hewetson, Barron B.; Mosier, Nathan S.

    2015-04-16

    We report the positive effect of maleic acid, a dicarboxylic acid, on the selectivity of hexose dehydration to 5-hydroxymethyfurfural (HMF) and subsequent hydrolysis to levulinic and formic acids. We also describe the kinetic analysis of a Lewis acid (AlCl3) alone and in combination with HCl or maleic acid to catalyze the isomerization of glucose to fructose, dehydration of fructose to HMF, hydration of HMF to levulinic and formic acids, and degradation of these compounds to humins. The results show that AlCl3 significantly enhances the rate of glucose conversion to HMF and levulinic acid in the presence of both maleic acid and HCl. In addition, the degradation of HMF to humins, rather than levulinic and formic acids, is reduced by 50% in the presence of maleic acid and AlCl3 compared to HCl combined with AlCl3. The results suggest different reaction mechanisms for the dehydration of glucose and rehydration of HMF between maleic acid and HCl.

  9. Blending of styrene-block-butadiene-block-styrene copolymer with sulfonated vinyl aromatic polymers

    NARCIS (Netherlands)

    Ruggeri, Giacomo; Passaglia, Elisa; Giorgi, Ivan; Picchioni, Francesco; Aglietto, Mauro

    2001-01-01

    Different polymers containing sulfonic groups attached to the phenyl rings were prepared by sulfonation of polystyrene (PS) and styrene-block-(ethylene-co-1-butene)-block-styrene (SEBS). The sulfonation degree (SD) was varied between 1 and 20 mol% of the styrene units. Polyphase materials containing

  10. Pharmacokinetics of Maleic Acid as a Food Adulterant Determined by Microdialysis in Rat Blood and Kidney Cortex

    Directory of Open Access Journals (Sweden)

    Mei-Ling Hou

    2016-03-01

    Full Text Available Maleic acid has been shown to be used as a food adulterant in the production of modified starch by the Taiwan Food and Drug Administration. Due to the potential toxicity of maleic acid to the kidneys, this study aimed to develop an analytical method to investigate the pharmacokinetics of maleic acid in rat blood and kidney cortex. Multiple microdialysis probes were simultaneously inserted into the jugular vein and the kidney cortex for sampling after maleic acid administration (10 or 30 mg/kg, i.v., respectively. The pharmacokinetic results demonstrated that maleic acid produced a linear pharmacokinetic phenomenon within the doses of 10 and 30 mg/kg. The area under concentration versus time curve (AUC of the maleic acid in kidney cortex was 5-fold higher than that in the blood after maleic acid administration (10 and 30 mg/kg, i.v., respectively, indicating that greater accumulation of maleic acid occurred in the rat kidney.

  11. Effect of wood filler treatment and EBAGMA compatibilizer on morphology and mechanical properties of low density polyethylene/olive husk flour composites

    Directory of Open Access Journals (Sweden)

    2007-07-01

    Full Text Available This paper deals with plastic-wood composites based on low density polyethylene (LDPE and olive husk flour (OHF. The problem of incompatibility between the hydrophilic wood filler and the LDPE hydrophobic matrix was treated by two methods: a chemical modification of the olive husk flour with maleic anhydride to esterify the free hydroxyl groups of the wood components and the use of a compatibilizer agent, i.e. an ethylene-butyl acrylate-glycidyl methacrylate (EBAGMA terpolymer. The changes in the structure, the morphology, and the properties resulting from these treatments were followed by various techniques, especially FTIR spectroscopy, scanning electron microscopy (SEM, tensile measurements and water absorption. The experimental results indicated that both methods, i.e. the chemical treatment of the olive husk flour with maleic anhydride and the inclusion of EBAGMA terpolymer, improved the interactions between the two composite components and promoted better dispersion of the filler in the matrix. Moreover, ultimate tensile properties were also increased. However, the use of EBAGMA terpolymer as compatibilizer produced better enhancement of the properties of LDPE/OHF composites compared to those treated with maleic anhydride.

  12. Styrene exposure and risk of cancer

    Science.gov (United States)

    Huff, James; Infante, Peter F.

    2011-01-01

    Styrene is widely used in the manufacture of synthetic rubber, resins, polyesters and plastics. Styrene and the primary metabolite styrene-7,8-oxide are genotoxic and carcinogenic. Long-term chemical carcinogenesis bioassays showed that styrene caused lung cancers in several strains of mice and mammary cancers in rats and styrene-7,8-oxide caused tumours of the forestomach in rats and mice and of the liver in mice. Subsequent epidemiologic studies found styrene workers had increased mortality or incidences of lymphohematopoietic cancers (leukaemia or lymphoma or all), with suggestive evidence for pancreatic and esophageal tumours. No adequate human studies are available for styrene-7,8-oxide although this is the primary and active epoxide metabolite of styrene. Both are genotoxic and form DNA adducts in humans. PMID:21724974

  13. Structural studies of 4-aminoantipyrine derivatives

    Science.gov (United States)

    Cunha, Silvio; Oliveira, Shana M.; Rodrigues, Manoel T.; Bastos, Rodrigo M.; Ferrari, Jailton; de Oliveira, Cecília M. A.; Kato, Lucília; Napolitano, Hamilton B.; Vencato, Ivo; Lariucci, Carlito

    2005-10-01

    Reaction of 4-aminoantipyrine with acetylacetone, ethyl acetoacetate, benzoyl isothiocyanate, phenyl isothiocyanate, maleic anhydride and methoxymethylene Meldrum's acid afforded a series of new antipyrine derivatives. The antibacterial activity of the synthesized compounds against Micrococcus luteus ATCC 9341, Staphilococcus aureus ATCC 29737, and Escherichia coli ATCC 8739 was evaluated and the minimal inhibitory concentration determined. Modest activity was found only to the maleamic acid obtained from the reaction of 4-aminoantipyrine and maleic anhydride. 1H NMR investigation of this maleamic acid showed that it is slowly converted to the corresponding toxic maleimide. The structures of three derivatives were determined by X-ray diffraction analysis.

  14. pH-sensitive polymeric cisplatin-ion complex with styrene-maleic acid copolymer exhibits tumor-selective drug delivery and antitumor activity as a result of the enhanced permeability and retention effect.

    Science.gov (United States)

    Saisyo, Atsuyuki; Nakamura, Hideaki; Fang, Jun; Tsukigawa, Kenji; Greish, Khaled; Furukawa, Hiroyuki; Maeda, Hiroshi

    2016-02-01

    Cisplatin (CDDP) is widely used to treat various cancers. However, its distribution to normal tissues causes serious adverse effects. For this study, we synthesized a complex of styrene-maleic acid copolymer (SMA) and CDDP (SMA-CDDP), which formed polymeric micelles, to achieve tumor-selective drug delivery based on the enhanced permeability and retention (EPR) effect. SMA-CDDP is obtained by regulating the pH of the reaction solution of SMA and CDDP. The mean SMA-CDDP particle size was 102.5 nm in PBS according to electrophoretic light scattering, and the CDDP content was 20.1% (w/w). The release rate of free CDDP derivatives from the SMA-CDDP complex at physiological pH was quite slow (0.75%/day), whereas it was much faster at pH 5.5 (4.4%/day). SMA-CDDP thus had weaker in vitro toxicity at pH 7.4 but higher cytotoxicity at pH 5.5. In vivo pharmacokinetic studies showed a 5-fold higher tumor concentration of SMA-CDDP than of free CDDP. SMA-CDDP had more effective antitumor potential but lower toxicity than did free CDDP in mice after i.v. administration. Administration of parental free CDDP at 4 mg/kg×3 caused a weight loss of more than 5%; SMA-CDDP at 60 mg/kg (CDDP equivalent)×3 caused no significant weight change but markedly suppressed S-180 tumor growth. These findings together suggested using micelles of the SMA-CDDP complex as a cancer chemotherapeutic agent because of beneficial properties-tumor-selective accumulation and relatively rapid drug release at the acidic pH of the tumor-which resulted in superior antitumor effects and fewer side effects compared with free CDDP. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Effects of electric fields in polymerization on enthalpy of PMAA anhydridization

    Energy Technology Data Exchange (ETDEWEB)

    Chang Zhenqi; Liu Gang; Zhang Zhicheng

    2004-02-19

    PMAA (polymethacrylic acid) polymerized by {gamma}-irradiation in electric field forms six-membered cyclic anhydride during heating process and the enthalpy of PMAA anhydridization was determined by DSC. Why the endothermic peak of PMAA anhydridization in DSC curve between 200 and 300 deg. C appears is particularly explained by calculation. The relations between applied electric field and the enthalpy of PMAA anhydridization are studied. The results show that, with the increases of the intensity of electric field in polymerization, the enthalpy of PMAA forming anhydrides nonlinearly increase, which might be related to orientation of carboxylic acid groups of the PMAA in an electric field.

  16. Dynamic mechanical properties of toughened polyamide composites

    International Nuclear Information System (INIS)

    Alsewailem, Fares D.

    2008-01-01

    The effect of incorporating thermoplastic rubber on the dynamic mechanical properties, storage and loss moduli, of virgin and recycled glass-fiber-reinforced polyamide 66 has been investigated in this study. Styrene-Ethylene-Styrene and Ethylene-Propylene grafted with maleic anhydride were used as elastomers for toughening. Dynamic mechanical properties of the composites were examined by the rotational rhometry. Shear storage and loss moduli of recycled and virgin materials were measured against frequency. Also the variation of storage modulus of the virgin composites was measured against temperatures by conducting a series of torsion tests. Both dynamic storage and loss moduli of the composites were found to increase with increasing glass fiber and rubber contents. Recycled composites had lower values of dynamic modulus compared that of virgin composites; however by proper combining of fiber and rubber into the recycled material, its modulus fairly matches that of the virgin material. Addition of rubber to virgin composites causes a reduction in G' as temperature increases. Rubber, which acts as a stress concentrator, had a major effect on minimizing the overall modulus of the composites. The in G' versus temperature has been observed for all composites: however the temperature at which the transition G' occurs decreases with increasing rubber content. (author)

  17. Thermal Properties, Structure and Morphology of Graphene Reinforced Polyethylene Terephthalate/ Polypropylene Nano composites

    International Nuclear Information System (INIS)

    Inuwa, I.M.; Hassan, A.; Shamsudin, S.A.

    2014-01-01

    In this work the thermal properties, structure and morphology of a blend of polyethylene terephthalate (PET) and polypropylene (PP) reinforced with graphene nano platelets (GNP) were investigated. A blend of PET/ PP (70/ 30 weight percent) compatibilized with styrene-ethylene-butylene-styrene grafted maleic anhydride triblock copolymer (10 phr) were fabricated by melt extrusion process in a twin screw extruder. The effective thermal conductivity of the nano composites increased as a function of the GNP concentration. More than 80 % increase in effective thermal conductivity was observed for the 7 phr reinforced sample compared to the neat blend. This observation was attributed to the development interconnected GNP sheets which formed heat conductive bridges that are suitable for maximum heat transfer. However, in the case of thermal stability which is a function of dispersibility of GNP in polymer matrix, the maximum increase was observed at 3 phr GNP loading which could be attributed to the uniform dispersion of GNPs in the matrix. It is explained that the GNP nano fillers migrated to the surface of matrix forming an effective oxygen barrier due to char formation. Morphological studies revealed uniform dispersion graphene in the polymer matrix at 3 phr GNP loading along with isolated instances of exfoliation of the graphene layers. (author)

  18. Morphological, rheological and mechanical characterization of polypropylene nanocomposite blends.

    Science.gov (United States)

    Rosales, C; Contreras, V; Matos, M; Perera, R; Villarreal, N; García-López, D; Pastor, J M

    2008-04-01

    In the present work, the effectiveness of styrene/ethylene-butylene/styrene rubbers grafted with maleic anhydride (MA) and a metallocene polyethylene (mPE) as toughening materials in binary and ternary blends with polypropylene and its nanocomposite as continuous phases was evaluated in terms of transmission electron microscopy (TEM), scanning electron microscopy (SEM), oscillatory shear flow and dynamic mechanical thermal analysis (DMA). The flexural modulus and heat distortion temperature values were determined as well. A metallocene polyethylene and a polyamide-6 were used as dispersed phases in these binary and ternary blends produced via melt blending in a corotating twin-screw extruder. Results showed that the compatibilized blends prepared without clay are tougher than those prepared with the nanocomposite of PP as the matrix phase and no significant changes in shear viscosity, melt elasticity, flexural or storage moduli and heat distortion temperature values were observed between them. However, the binary blend with a nanocomposite of PP as matrix and metallocene polyethylene phase exhibited better toughness, lower shear viscosity, flexural modulus, and heat distortion temperature values than that prepared with polyamide-6 as dispersed phase. These results are related to the degree of clay dispersion in the PP and to the type of morphology developed in the different blends.

  19. Metal-ion retention properties of water-soluble amphiphilic block copolymer in double emulsion systems (w/o/w) stabilized by non-ionic surfactants.

    Science.gov (United States)

    Palencia, Manuel; Rivas, Bernabé L

    2011-11-15

    Metal-ion retention properties of water-soluble amphiphilic polymers in presence of double emulsion were studied by diafiltration. Double emulsion systems, water-in-oil-in-water, with a pH gradient between external and internal aqueous phases were prepared. A poly(styrene-co-maleic anhydride) (PSAM) solution at pH 6.0 was added to the external aqueous phase of double emulsion and by application of pressure a divalent metal-ion stream was continuously added. Metal-ions used were Cu(2+) and Cd(2+) at the same pH of polymer solution. According to our results, metal-ion retention is mainly the result of polymer-metal interaction. Interaction between PSMA and reverse emulsion globules is strongly controlled by amount of metal-ions added in the external aqueous phase. In addition, as metal-ion concentration was increased, a negative effect on polymer retention capacity and promotion of flocculation phenomena were produced. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Retardation of the dewetting process due to the addition of functional copolymers at polymer-polymer interfaces

    CERN Document Server

    Wunnicke, O; Lorenz-Haas, C; Leiner, V

    2002-01-01

    We studied the retardation of the dewetting process due to the addition of a functional copolymer in a polymer bilayer film. The model system consists of fully deuterated polystyrene (PS-d) on top of an amorphous polyamide (PA) sublayer on silicon substrates. Bilayer films were prepared with different content (0, 5, 10 and 30 vol. %) of a statistical copolymer (protonated styrene maleic anhydride acid (SMA2) containing 2% MA groups along the chain) being capable of forming hydrogen bonds with PA. The as-prepared as well as the annealed samples were investigated by neutron-reflectivity (NR) experiments, scanning force microscopy and optical microscopy. A significant retardation of dewetting is observed with the addition of SMA2. From model fits of NR curves the scattering length density profiles perpendicular to the sample surface were determined and an enrichment layer of SMA2 is detected. Retardation is explained by the intermixing of SMA2 and PS-d at the interface. (orig.)

  1. Fabrication of PVDF-based blend membrane with a thin hydrophilic deposition layer and a network structure supporting layer via the thermally induced phase separation followed by non-solvent induced phase separation process

    Science.gov (United States)

    Wu, Zhiguo; Cui, Zhenyu; Li, Tianyu; Qin, Shuhao; He, Benqiao; Han, Na; Li, Jianxin

    2017-10-01

    A simple strategy of thermally induced phase separation followed by non-solvent induced phase separation (TIPS-NIPS) is reported to fabricate poly (vinylidene fluoride) (PVDF)-based blend membrane. The dissolved poly (styrene-co-maleic anhydride) (SMA) in diluent prevents the crystallization of PVDF during the cooling process and deposites on the established PVDF matrix in the later extraction. Compared with traditional coating technique, this one-step TIPS-NIPS method can not only fabricate a supporting layer with an interconnected network structure even via solid-liquid phase separation of TIPS, but also form a uniform SMA skin layer approximately as thin as 200 nm via surface deposition of NIPS. Besides the better hydrophilicity, what's interesting is that the BSA rejection ratio increases from 48% to 94% with the increase of SMA, which indicates that the separation performance has improved. This strategy can be conveniently extended to the creation of firmly thin layer, surface functionalization and structure controllability of the membrane.

  2. Glycerine Treated Nanofibrillated Cellulose Composites

    Directory of Open Access Journals (Sweden)

    Esra Erbas Kiziltas

    2016-01-01

    Full Text Available Glycerine treated nanofibrillated cellulose (GNFC was prepared by mixing aqueous nanofibrillated cellulose (NFC suspensions with glycerine. Styrene maleic anhydride (SMA copolymer composites with different loadings of GNFC were prepared by melt compounding followed by injection molding. The incorporation of GNFC increased tensile and flexural modulus of elasticity of the composites. Thermogravimetric analysis showed that as GNFC loading increased, the thermal stability of the composites decreased marginally. The incorporation of GNFC into the SMA copolymer matrix resulted in higher elastic modulus (G′ and shear viscosities than the neat SMA copolymer, especially at low frequencies. The orientation of rigid GNFC particles in the composites induced a strong shear thinning behavior with an increase in GNFC loading. The decrease in the slope of elastic modulus with increasing GNFC loading suggested that the microstructural changes of the polymer matrix can be attributed to the incorporation of GNFC. Scanning electron microscopy (SEM images of fracture surfaces show areas of GNFC agglomerates in the SMA matrix.

  3. Evaluation of Scotchbond Multipurpose and maleic acid as alternative methods of bonding orthodontic brackets.

    Science.gov (United States)

    Olsen, M E; Bishara, S E; Damon, P; Jakobsen, J R

    1997-05-01

    Damage to the enamel surface during bonding and debonding of orthodontic brackets is a clinical concern. Alternative bonding methods that minimize enamel surface damage while maintaining a clinically useful bond strength is an aim of current research. The purpose of this study was to compare the effects on bond strength and bracket failure location of two adhesives (System 1+ and Scotchbond Multipurpose, 3M Dental Products Division) and two enamel conditioners (37% phosphoric acid and 10% maleic acid). Forty-eight freshly extracted human premolars were pumiced and divided into four groups of 12 teeth, and metal orthodontic brackets were attached to the enamel surface by one of four protocols: (1) System 1+ and phosphoric acid, (2) Scotchbond and phosphoric acid, (3) System 1+ and maleic acid, and (4) Scotchbond and maleic acid. After bracket attachment, the teeth were mounted in phenolic rings and stored in deionized water at 37 degrees C for 72 hours. A Zwick universal testing machine (Zwick GmbH & Co.) was used to determine shear bond strengths. The residual adhesive on the enamel surface was evaluated with the Adhesive Remnant Index. The analysis of variance was used to compare the four groups. Significance was predetermined at p adhesives on the enamel surfaces, revealed significant differences among the four groups (mean 2 = 0.005). A Duncan multiple range test revealed the difference occurred between the phosphoric acid and maleic acid groups, with maleic acid having bond failures at the enamel-adhesive interface. In conclusion, the use of Scotchbond Multipurpose and/or maleic acid does not significantly effect bond strength, however, the use of maleic acid resulted in an unfavorable bond failure location.

  4. Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria Rhodococcus sp. ST-5 and ST-10.

    Science.gov (United States)

    Toda, Hiroshi; Itoh, Nobuya

    2012-01-01

    Styrene metabolism genes were isolated from styrene-assimilating bacteria Rhodococcus sp. ST-5 and ST-10. Strain ST-5 had a gene cluster containing four open reading frames which encoded styrene degradation enzymes. The genes showed high similarity to styABCD of Pseudomonas sp. Y2. On the other hand, strain ST-10 had only two genes which encoded styrene monooxygenase and flavin oxidoreductase (styAB). Escherichia coli transformants possessing the sty genes of strains ST-5 and ST-10 produced (S)-styrene oxide from styrene, indicating that these genes function as styrene degradation enzymes. Metabolite analysis by resting-cell reaction with gas chromatography-mass spectrometry revealed that strain ST-5 converts styrene to phenylacetaldehyde via styrene oxide by styrene oxide isomerase (styC) reaction. On the other hand, strain ST-10 lacked this enzyme, and thus accumulated styrene oxide as an intermediate. HPLC analysis showed that styrene oxide was spontaneously isomerized to phenylacetaldehyde by chemical reaction. The produced phenylacetaldehyde was converted to phenylacetic acid (PAA) in strain ST-10 as well as in strain ST-5. Furthermore, phenylacetic acid was converted to phenylacetyl-CoA by the catalysis of phenylacetate-CoA ligase in strains ST-5 and ST-10. This study proposes possible styrene metabolism pathways in Rhodococcus sp. strains ST-5 and ST-10. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Biofiltration of a styrene/acetone vapor mixture in two reactor types under conditions of styrene overloading

    Directory of Open Access Journals (Sweden)

    Lubos Zapotocky

    2014-10-01

    Full Text Available This aim of study was to compare the performance of a biofilter (BF and trickle bed reactor (TBR under increased styrene loading with a constant acetone load, 2 gc/m3/h. At styrene loading rates up to 30 gc/m3/h, the BF showed higher styrene removal than TBR. However, the BF efficiency started to drop beyond this threshold loading and could never reach steady state, whereas the TBR continued to yield a 50% styrene removal. The acetone removal remained constant (93-98% in both the reactors at any styrene loading. Once the overloading was lifted, the BF recovered within 26 min, whereas the TBR efficiency bounced back only to 95%, gradually returning to complete removal only in 10 h.

  6. Radical polymerization of styrene and styrene-butylmethacrylate in a counterrotating twin screw extruder

    NARCIS (Netherlands)

    vanderGoot, AJ; Janssen, LPB

    1997-01-01

    This article describes the copolymerization of styrene-butylmethacrylate (St-BMA) and the homopolymerization of styrene (St) in a counterrotating twin screw extruder. The effect of prepolymerization on both the product properties and process was studied. It turned out that the process of reactive

  7. Poly(ester-anhydride):poly(beta-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection.

    Science.gov (United States)

    Pfeifer, Blaine A; Burdick, Jason A; Little, Steve R; Langer, Robert

    2005-11-04

    Poly(ester-anhydride) delivery devices allow flexibility regarding carrier dimensions (micro- versus nanospheres), degradation rate (anhydride versus ester hydrolysis), and surface labeling (through the anhydride functional unit), and were therefore tested for DNA encapsulation and transfection of a macrophage P388D1 cell line. Poly(l-lactic acid-co-sebacic anhydride) and poly(l-lactic acid-co-adipic anhydride) were synthesized through melt condensation, mixed with 25 wt.% poly(beta-amino ester), and formulated with plasmid DNA (encoding firefly luciferase) into micro- and nanospheres using a double emulsion/solvent evaporation technique. The micro- and nanospheres were then characterized (size, morphology, zeta potential, DNA release) and assayed for DNA encapsulation and cellular transfection over a range of poly(ester-anhydride) copolymer ratios. Poly(ester-anhydride):poly(beta-amino ester) composite microspheres (6-12 microm) and nanospheres (449-1031 nm), generated with copolymers containing between 0 and 25% total polyanhydride content, encapsulated plasmid DNA (>or=20% encapsulation efficiency). Within this polyanhydride range, poly(adipic anhydride) copolymers provided DNA encapsulation at an increased anhydride content (10%, microspheres; 10-25%, nanospheres) compared to poly(sebacic anhydride) copolymers (1%, microspheres and nanospheres) with cellular transfection correlating with the observed DNA encapsulation.

  8. PREPARATION AND CHARACTERIZATION OF COMPOSITES COMPRISING MODIFIED HARDWOOD AND WOOD POLYMERS/POLY(VINYL CHLORIDE

    Directory of Open Access Journals (Sweden)

    Ruxanda Bodîrlău

    Full Text Available Chemical modification of hardwood sawdust from ash-tree species was carried out with a solution of maleic anhydride in acetone. Wood polymers, lignin, and cellulose were isolated from the wood sawdust and modified by the same method. Samples were characterized by Fourier transform infrared spectroscopy (FTIR, providing evidence that maleic anhydride esterifies the free hydroxyl groups of the wood polymer components. Composites comprising chemically modified wood sawdust and wood polymers (cellulose, lignin-as variable weight percentages-, and poly (vinyl chloride were obtained and further characterized by using FTIR spectroscopy and scanning electron microscopy (SEM. The thermal behavior of composites was investigated by using the thermogravimetric analysis (TGA. In all cases, thermal properties were affected by fillers addition.

  9. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ) andMn(II) complexes of poly(methyl vinyl ether-alt-maleic anhydride). Synthesis, characterization and thermodynamic parameters. Hidayet Mazi Ali Gulpinar. Volume 126 Issue 1 January 2014 pp 239-245 ...

  10. Characteristic of Irradiation Result Film of Poly-Propylene-Co-Ethylene/Poly-ε-Caprolactone and Poly-Propylene Grafted Maleic Anhydrate Blend

    International Nuclear Information System (INIS)

    Nikham

    2004-01-01

    The effect of gamma rays irradiation to film of melt-blending polypropylene-co-ethylene (CPP) and poly-ε-caprolactone (PCL) with polypropylene grafted maleic anhydride (PP-g-MAH) blend as compatibilizer has been studied. The objective of the research is to prepare the biodegradable polyblend. The composition blend of CPP/PCL with 0, 10, 15, 20 wt % PP-g-MAH i.e. 100/0, 75/25, 50/50, 25/75 and 0/100 were irradiated by using gamma rays 60 Co with activity 420 kCi at doses; 0, 50, 100, 150, 200 kGy, at dose rate 8.2 kGy/hrs and temperature 90 o C. The elongation at break, tensile strength, gel fraction, enzymatic degradation and heat resistance were evaluated. The results showed that the compatibility of PP-g-MAH to reach good enough polyblend is 20 % weight. Elongation at break film of CPP/PCL 50/50 blend which irradiated at dose 200 kGy decreased, whereas the tensile strength increased. Gel fraction and heat resistance of the film irradiated increased. Enzyme of lipase AK can degraded either without irradiated or irradiated film. Thus quality of the polyblend can be called as biodegradable plastic material. (author)

  11. Resonance energy transfer from quinolinone modified polystyrene-block-poly(styrene-alt-maleic anhydride) copolymer to terbium(III) metal ions

    Czech Academy of Sciences Publication Activity Database

    Výprachtický, Drahomír; Mikeš, F.; Lokaj, Jan; Pokorná, Veronika; Cimrová, Věra

    2015-01-01

    Roč. 160, April (2015), s. 27-34 ISSN 0022-2313 R&D Projects: GA ČR GAP106/12/0827; GA ČR(CZ) GA13-26542S Institutional support: RVO:61389013 Keywords : energy transfer * terbium luminescence * quinolinone donor Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.693, year: 2015

  12. Effects of electron-beam irradation on some structural properties of granulated polymer blends

    International Nuclear Information System (INIS)

    Zenkiewicz, Marian; Czuprynska, Joanna; Polanski, Julian; Karasiewicz, Tomasz; Engelgard, Wlodzimierz

    2008-01-01

    The aim of this article was to show the effects of the electron radiation dose and presence of a compatibiliser on the peak melting temperature (T pm ) of the crystalline phase, crystallinity (X c ), and melt flow rate (MFR) of granulated blends of low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) as well as of blends of LDPE, HDPE, and PP. The purpose of applying the high-energy electron radiation with doses up to 300 kGy and of adding a compatibiliser was to enhance mechanical properties of the studied blends and, at the same time, to investigate the possibility of using this technique in the processes of recycling polymeric materials. As the compatibilisers, the styrene-ethylene/butylene-styrene elastomer grafted with maleic anhydride (SEBS-g-MA) and trimethylol propane trimethacrylate (TMPTA) were utilised; they were added at the amounts of 5, 10, and 15 wt% and 1, 2, and 3 wt%, respectively. The enhancement of mechanical properties was accompanied by the following effects, discussed in this article: (i) a decrease in the peak melting temperature upon the electron radiation for the crystalline phase of LDPE, HDPE, and PP that constituted the studied granulated blends and (ii) changes in MFR upon both the electron radiation and the addition of compatibilisers

  13. Production of polymer composites by radiation and chemical treatments from recycled plastic wastes and their applications

    International Nuclear Information System (INIS)

    Khaffaga, M.R.A.

    2009-01-01

    Different applied methods have been proposed for the recycling of poly (ethylene terephthalate)(PET) and its blends with other polymers to obtain useful products. These methods are based on blending with different polymers or compounding with radiation synthesized copolymers based on maleic anhydride with methyl methacrylate, styrene and vinyl acetate. On the other hand, the methods proposed to improve the miscibility of mixed polymers are based on different methods of gamma and electron beam irradiation at various doses (30-50 kGy). Also , the addition of compatibilizers based on LDPE graft copolymer with comonomer composed of ethylene glycol (EG) and acrylic acid (AAc) as well as radiation synthesized copolymer based on acrylic acid and styrene (Sty) monomers during mixing. The modified properties were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), mechanical testing and studying the affinity for acid, based and disperse dyes. Based on the results obtained throughout this work, few conclusions may made:(1) The composites of PET with copolymers is effective than the blending with other polymers. (2) The pre method of gamma or electron beam irradiation is effectively improved the miscibility of PET/LDPE or PET/PS blends than the direct method of irradiation.(3) The addition of EG/AAc or AAc/Sty copolymers during mixing improved the miscibility than the use of graft copolymer.

  14. Radiation graft copolymerization of styrene with m/e and styrene with acrylic acid at highthyl methacryl dose rate

    International Nuclear Information System (INIS)

    Aliev, R.Eh.; Kabanov, B.Ya.

    1984-01-01

    Comparative investigation of radiation graft copolymerization of styrene with methyl methacrylate (MMA) and styrene with acrylic acid (AA) is carried out at considerably differing radiation dose rates. The monomer mixture was grafted to PE low density films at dose rates of 0.16, 0.25 Gy/s (1 MeV electron acceleration). The value of graft was 3-6 and 5-10%, respectively, for the styrene-MMA and styrene-AA systems. An essential difference in the dependences of the formed copolymer composition on initial monomer mixture composition is noticed. Difference in composition of graft polymers prepared at different dose rates is less for the systems with AA, than for systems with MMA. It is shown that at high dose rates in difference with low ones not only radical graft copolymerization of the styrene mixture with AA takes place, but a contribution of the graft styrene polymerization according to cation mechanism as well

  15. Hydrolysis of Acetic Anhydride in a CSTR

    Directory of Open Access Journals (Sweden)

    Veronica N. Coraci

    2016-05-01

    Full Text Available To find the optimal reactor volume and temperature for the hydrolysis of acetic anhydride at the lowest possible cost with a 90% conversion of acetic anhydride, a formula for the total cost of the reaction was created. Then, the first derivative was taken to find a value for the temperature. This value was then inputted into the second derivative of the equation to find the sign of the value which would indicate whether that point was a minima or maxima value. The minima value would then be the lowest total cost for the optimum reaction to take place.

  16. Low-Cost and High-Impact Environmental Solutions for Military Composite Structures

    Science.gov (United States)

    2005-12-15

    moduli of UPE polymers are considerably increased when neopentyl glycol is used as the polyol instead of ethylene glycol in the formulations [56...general purpose unsaturated polyester based on phthalic anhydride, ethylene glycol , and maleic anhydride. The VIAPAL 570G was a colorless solid in the...modulus. In this case, the neopentyl center of the Bisphenol A backbone of the VE 828 polymer may be responsible for increased modulus values. The

  17. [Studies on the industrial styrene poisoning (Part X). Determination of styrene in biological materials by gas chromatography (author's transl)].

    Science.gov (United States)

    Teramoto, K; Horiguchi, S

    1980-09-01

    For monitoring solvents exposure, it is useful to determine not only metabolites of the solvents in urine but also the solvents themselves in blood and tissues. In a series of studies on the industrial styrene poisoning, we have been determining styrene in blood and other tissues as occasion calls. Our examination of the method is presented in this report. The outline on the method is as follows: Aliquots of 0.5g of tissues being added 5 ml of n-hexane are homogenized by a high-speed homogenizer (Polytoron) for 10 to 30 seconds and the filtrates containing extracts are analyzed for styrene by gas chromatography. The linearity was ascertained from the calibration curve obtained by adding the known quantities of styrene (4, 10, 20, 40, 100 ppm) to the blood, liver and adipose tissues of rats. Rates of recoveries of styrene from the above tissues were 92 to 101 per cent. Reproducibility of this method was examined by repeating determinations of styrene in the blood, liver and adipose tissues of rats exposed to 500 ppm styrene for 4 hours, the coefficients of variation being 2.8 to 14.0 per cent. There was an approximately linear relationship between the styrene concentration (0 to 1,000 ppm) of the exposed air and those in the blood of exposed rats. We conclude that our simple and rapid method is applicable to determination of solvents other than styrene in organs and tissues by combining suitable solvents for extraction and packings of gas chromatography.

  18. Acrylic composition

    International Nuclear Information System (INIS)

    Kimura, Tadashi; Ozeki, Takao; Kobayashi, Juichi; Nakamoto, Hideo; Meda, Yutaka.

    1969-01-01

    An acrylic composition and a process for the production of an easily hardenable coating material by irradiating with active energy, particularly electron beams and ultraviolet light, are provided using a mixture of 10%-100% by weight of an unsaturated compound and 90%-0% of a vinyl monomer. The composition has a high degree of polymerization, low volatility, low viscosity and other properties similar to thermosetting acrylic or amino alkyd resins. The aforesaid unsaturated compound is produced by primarily reacting saturated cyclocarboxylic anhydride and/or alpha-, beta-ethylene unsaturated carboxylic anhydride and by secondarily reacting an epoxy radical-containing vinyl monomer by addition reaction with polyhydric alcohols. Each reaction is conducted in the presence of a tertiary amino radical-containing vinyl monomer as a catalyst. The cross-linking is effected generally with an electron beam accelerator of 0.1-2.0 MeV or with a light beam in the 2,000-8,000A range in the presence of a photosensitive agent. In one example, 62 parts of ethylene glycol and 196 parts of maleic anhydride were dissolved in a mixture consisting of 100 parts of n-butyl methacrylate and 30 parts of styrene. To the mixture were added 5 parts of 2-methyl 5 vinyl piridine and 0.005 part of hydroquinone monomethyl ether. After the reaction at 90 0 C for 3 hours, a compound HOC:O-CH=CHC:OCH 2 CH 2 C:OOH was produced. To this solution were added 285 parts of glycidyl methacrylate. After the reaction at 90 0 C for 6 hours, 95% of the carboxylic acids reacted with epoxy radicals. Fourteen examples are given. (Iwakiri, K.)

  19. An additive for a petroleum coke and water suspension

    Energy Technology Data Exchange (ETDEWEB)

    Khiguti, K.; Igarasi, T.; Isimura, Y.; Kharaguti, S.; Tsudzina, T.

    1983-03-04

    The patent covers an additive for a petroleum coke and watersuspension which contains soap of an aliphatic acid (AM) and or a salt of a maleic acid copolymer (SMK). The aliphatic acid soap is a salt of an alkaline earth metal of C6 to C22 aliphatic acid, an ammonium salt or a salt of a lower amine. The maleic acid copolymer is a salt (sodium, NH4) of a lower amine of a maleic anhydride copolymer with a copolymerizing vinyl additive. Capric acid, lauric acid, palmatic acid, aleic and other acids may be used as the aliphatic acid, while methylamine, trimethylamine, diethanolamine, morpholine and so on may be used as the lower amine salt. Ethylene, vinylchloride, methyl(meta)acrylate and so on are used as the polymerizing vinyl compound. The molar ratio of the maleic anhydride to the polymerizing vinyl compound is in a range from 1 to 1 to 1 to 10 (preferably 1 to 1 to 1 to 3). The maleic acid copolymer has a mean molecular mass within 1,000 to 5,000. The additive with the optimal composition contains a solvent, a thickener, an anticorrosion substance, anticoagulants, surfacants (PAV) and so on. A highly concentrated suspension of oil coke and water with a 50 to 75 percent concentration of powder form petroleum coke may be produced using the patented additive. Such a suspension is characterized by low viscosity, high stability and forms no foam during processing.

  20. Trifluoromethanesulfonic Anhydride as a Low-Cost and Versatile Trifluoromethylation Reagent.

    Science.gov (United States)

    Ouyang, Yao; Xu, Xiu-Hua; Qing, Feng-Ling

    2018-04-19

    A large number of reagents have been developed for the synthesis of trifluoromethylated compounds. However, an ongoing challenge in trifluoromethylation reaction is the use of less expensive and practical trifluoromethyl sources. We report herein the unprecedented direct trifluoromethylation of (hetero)arenes using trifluoromethanesulfonic anhydride as a radical trifluoromethylation reagent by merging photoredox catalysis and pyridine activation. Furthermore, introduction of both the CF 3 and OTf groups of the trifluoromethanesulfonic anhydride into internal alkynes to access tetrasubstituted trifluoromethylated alkenes was achieved. Since trifluoromethanesulfonic anhydride is a low-cost and abundant chemical, this method provides a cost-efficient and practical route to trifluoromethylated compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. 21 CFR 177.1810 - Styrene block polymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene block polymers. 177.1810 Section 177.1810... FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1810 Styrene block polymers. The styrene...

  2. A fuzzy logic based PROMETHEE method for material selection problems

    Directory of Open Access Journals (Sweden)

    Muhammet Gul

    2018-03-01

    Full Text Available Material selection is a complex problem in the design and development of products for diverse engineering applications. This paper presents a fuzzy PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation method based on trapezoidal fuzzy interval numbers that can be applied to the selection of materials for an automotive instrument panel. Also, it presents uniqueness in making a significant contribution to the literature in terms of the application of fuzzy decision-making approach to material selection problems. The method is illustrated, validated, and compared against three different fuzzy MCDM methods (fuzzy VIKOR, fuzzy TOPSIS, and fuzzy ELECTRE in terms of its ranking performance. Also, the relationships between the compared methods and the proposed scenarios for fuzzy PROMETHEE are evaluated via the Spearman’s correlation coefficient. Styrene Maleic Anhydride and Polypropylene are determined optionally as suitable materials for the automotive instrument panel case. We propose a generic fuzzy MCDM methodology that can be practically implemented to material selection problem. The main advantages of the methodology are consideration of the vagueness, uncertainty, and fuzziness to decision making environment.

  3. Effect of γ-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    International Nuclear Information System (INIS)

    Jha, Pradeep K.; Jha, Rakhi; Gupta, B.L.; Guha, Sujoy K.

    2010-01-01

    Functional necessity to use a particular range of dose rate and total dose of γ-initiated polymerization to manufacture a novel polymeric hydrogel RISUG (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG. The results of randomized experiment indicated that a range of 18-24 Gy/min γ-dose rate and 2.0-2.4 kGy γ-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  4. Sperm characteristics and teratology in rats following vas deferens occlusion with RISUG and its reversal.

    Science.gov (United States)

    Lohiya, N K; Suthar, R; Khandelwal, A; Goyal, S; Ansari, A S; Manivannan, B

    2010-02-01

    The functional success of the reversal of vas occlusion by styrene maleic anhydride (RISUG), using the solvent vehicle, Dimethyl Sulphoxide (DMSO), has been investigated. Reversal with DMSO was carried out in Wistar albino rats 90 days after bilateral vas occlusion. The body weight, organ weight, sperm characteristics, fertility test and teratology, including skeletal morphology were evaluated in vas occlusion and reversal animals and in F(1) progenies to assess the functional success of the occlusion and reversal. Body weight, organ weight and the cauda epididymal sperm characteristics of vas occlusion and reversal animals and of F(1) progenies were comparable to control. Ejaculated spermatozoa in the vaginal smear showed detached head/tail, acrosomal damage, bent midpiece, bent tail and morphological aberrations in sperm head after vas occlusion, which returned to normal, 90 days after reversal. Monthly fertility test, post-injection showed 0% fertility, which improved gradually and 100% fertility was achieved 90 days after reversal. The fertility/pregnancy/implantation record and skeletal morphology of the offspring were comparable to control. The results suggest functional success and safety of vas occlusion reversal by DMSO.

  5. Synthesis and properties of a novel bio-based polymer from modified soybean oil

    Science.gov (United States)

    Li, Y. T.; Yang, L. T.; Zhang, H.; Tang, Z. J.

    2017-02-01

    Maleated acrylated epoxidized soybean oil (MAESO) was prepared by acrylated epoxidized soybean oil (AESO) and maleic anhydride. AESO were obtained by the reaction of epoxidized soybean oil (ESO) with acrylic acid as the ring-opening reagent. The polymer was prepared by MAESO react with styrene. The structures of the products were studied by Fourier transformation infrared spectrometer (FT-IR), and were consistent with the theoretical structures. Swelling experiment indicated that the crosslinking degree increased with increasing epoxy value of ESO. Thermal properties was tested by thermo-gravimetric analysis (TG) and differential scanning calorimetry analysis (DSC), indicating that glass transition temperature (Tg) of the polymer increased with increasing epoxy value of ESO, and thermal stability of polymer have a good correlation with the crosslinking degree. Mechanical properties analysis presented that tensile strength and impact strength affected by epoxy value of ESO. With the increase of epoxy value, the tensile strength increase, while the impact strength decrease. The property of the polymer ranged from elastomer to plastic character depended on the functionality of the ESO.

  6. Muonium radicals in benzene-styrene mixtures

    International Nuclear Information System (INIS)

    Ng, B.W.; Stadlbauer, J.W.; Walker, D.C.

    1984-01-01

    Muonium radicals were observed through their μ + SR precession frequencies in high transverse magnetic fields in pure benzene, pure styrene and their mixtures, all as liquids at room temperature. In benzene-styrene mixtures, the radicals obtained in each pure liquid are both present, so no slow (10 -9 -10 -5 s) intermolecular exchange occurs; but strong selectivity was found with the formation of the radical from styrene being about eight-times more probable than the radical from benzene. (Auth.)

  7. Helbredsrisici ved eksponering for styren i glasfiberplastindustrien

    DEFF Research Database (Denmark)

    Kolstad, Henrik Albert; Ebbehøj, Nielse; Bonde, Jens Peter

    2012-01-01

    or relevant exposure levels. We recommend reconsideration of the current Danish threshold limit value of 25 ppm, biological monitoring of styrene exposed workers, and epidemiological analyses of styrene exposure levels and long-term health effects among employees of the Danish reinforced plastics industry.......This is a summary of the health risks of occupational styrene exposure based on recent reviews. We conclude about the exposure levels that there is strong evidence that styrene causes acute irritation of eyes and respiratory tract above 25 ppm, genotoxic effects above 10 ppm, and persistent nervous...... system effects with for instance reduced psychological performance, colour discrimination and hearing level following long-term styrene exposure above 10 ppm. There is moderate evidence of a causal association with cancer, but data are not sufficient to allow us to pinpoint specific cancers at risk...

  8. Nanoclay Effect on the Flow and Thermal Properties of PP/SEBS-g-MA Blend

    Directory of Open Access Journals (Sweden)

    M. Ranjbar

    2014-01-01

    Full Text Available The effect of nanoclay (Cloisite® 15A was studied in relation to the flow behavior, mechanical and thermal properties of polypropylene/maleic anhydride-g-(styrene-ethylene-butylene-styrene triblock copolymer (PP/SEBS(15%-g-MA blend. In this regard, the composites based on the blend and various amounts of nanoclay (1,3,5 wt% were melt compounded using an internal mixer at the temperature of 190°C, rotor speed of 75rpm for 12min. The prepared samples were compression molded in a hot-press machine under the conditions of 190°C, 31 MPa pressure for 9 min to obtain the sheets in various thicknesses. The sheets were then cooled to ambient temperature with cooling water at the rate of 1.5°C.s-1. X-ray diffraction (XRD and transmission electron microscopy (TEM were used to study the structure and morphology of the samples. In addition, the mechanical and thermal properties were determined by standard methods. The results of X-ray diffraction and transmission electron photographs confirmed both exfoliated and intercalated structures in the prepared samples. There were balanced strength/toughness properties in all the prepared nanocomposites by addition of both SEBS-g-MA and clay simultaneously. The measurement of rheological properties showed that as the shear rate increased, the apparent viscosity of the samples decreased (shear thinning behavior. Gradual increase in incorporation of nanoclay also decreased the melt flow index (MFI values. In addition, increases in nanoclay content had an insignificant effect on the thermal behavior and in that respect there were slight increases in degree of crystallinity, heat deflection temperature (HDT as well as Vicat softening point by slight increase in temperatureThe effect of nanoclay (Cloisite® 15A was studied in relation to the flow behavior, mechanical and thermal properties of polypropylene/maleic anhydride-g-(styrene-ethylene-butylene-styrene triblock copolymer (PP/SEBS(15%-g-MA blend. In this regard

  9. Analisis sifat fisika pemanfaatan pati tandan kosong sawit dan limbah plastik LDPE sebagai bahan pembuatan plastik biodegradabel

    Directory of Open Access Journals (Sweden)

    Tengku Rachmi Hidayani

    2017-06-01

    Full Text Available This research aimed to overcome the issue of plastic packaging waste that accumulates in nature because synthetic polymers cannot be easily unraveled by bacteria. Biodegradable plastics were produced by mixing waste of plastics of the low density polyethylene (LDPE with starch of empty palm fruit bunches, modified with the addition of maleic anhydride as a crosslinking agent. To produce biodegradable plastics, different compositions of LDPE waste, starch of empty palm fruit bunch, maleic anhydride, and benzoyl peroxide were used, namely (90: 10: 1: 1, (80: 20: 1: 1, (70: 30: 1: 1, and (60: 40: 1: 1. Research stages consisted of extraction of starch from palm empty fruit bunch (PEFB; preparation of biodegradable plastic powder with the reflux method and xylene solvents; and making of biodegradable plastics using the press molding method. Based on the results of characterization, it was revealed that the optimum condition was generated by biodegradable plastics with the composition of LDPE waste, starch of empty palm bunches, maleic anhydride, and benzoyl peroxide was equal to 60: 40: 1: 1, which generated the tensile strength value of 6.9410 N/m2, the elongation at break of 3.1875%, the the melting point temperature of 103oC, and the decomposition temperature of 384oC. Besides, the thermal gravimetric test generated a residue of 12.6% and results of the analysis on morphological properties suggested that the starch distributed evenly.

  10. Dimethylthioarsinic anhydride: A standard for arsenic speciation

    International Nuclear Information System (INIS)

    Fricke, Michael; Zeller, Matthias; Cullen, William; Witkowski, Mark; Creed, John

    2007-01-01

    Dimethylthioarsinic acid (DMTA V ) has recently been identified in biological, dietary and environmental matrices. The relevance of this compound to the toxicity of arsenic in humans is unknown and further exposure assessment and metabolic studies are difficult to conduct because of the unavailability of a well characterized standard. The synthesis of DMTA V was accomplished by the reaction of dimethylarsinic acid (DMA V ) with hydrogen sulfide. The initial reaction product produced is DMTA V but multiple products over the course of the reaction are also observed. Therefore, a chromatographic separation was developed to monitor the reaction progress via LC-ICP-MS. In this synthesis, conversion of DMA V to DMTA V was not taken to completion to avoid the production of side products. The product was isolated from the starting material by standard organic techniques. Single crystal diffraction demonstrated that solid DMTA V is present in the form of the oxygen-bridged dimethylthioarsinic anhydride. Dissolution of the anhydride in water produces the acid form of DMTA V and the aqueous phase DMTA V provided a characteristic molecular ion of m/z 155 by LC-ESI-MS. The synthesis and isolation of dimethylthioarsinic anhydride provides a stable crystalline standard suitable for identification, toxicological study and exposure assessment of dimethylthioarsinic acid

  11. Effects of single and double bonds in linkers on colorimetric and fluorescent sensing properties of polyving akohol grafting rhodamine hydrazides.

    Science.gov (United States)

    Geng, Tong-Mou; Wang, Xie; Wang, Zhu-Qing; Chen, Tai-Jie; Zhu, Hai; Wang, Yu

    2015-03-01

    Two rhodamine derivatives, N-mono-maleic acid amide-N'-rhodamine B hydrazide (MRBH) and N-mono-succinic acid amide-N'-rhodamine 6G hydrazide (SR6GH), were synthesized by amidation with maleic anhydride (MAH), succinic anhydride (SAH) and rhodamine B hydrazide, rhodamine 6G hydrazide, which were identified by FTIR, (1)H NMR and elemental analysis. Two water-soluble fluorescent materials (PVA-MRBH and PVA-SR6GH) were prepared via esterification reaction with N-mono-maleic acyl chloride amide-N'-rhodamine B hydrazide (MRBHCl) or N-mono-maleic acyl chloride amide-N'-rhodamine 6G hydrazide (SR6GHCl) and poly(vinyl alcohol) (PVA) in DMSO solution. The sensing behaviors of PVA-MRBH and PVA-SR6GH were explored by recording the fluorescence spectra in completely aqueous solution. Upon the addition of Cu(2+) and Fe(3+) ions to the aqueous solution of PVA-MRBH, visual color change from rose pink to amaranth and orange for Cu(2+) and Fe(3+) ions, respectively, and fluorescence quenching were observed. Titration of Cu(2+), Fe(3+), Cr(3+) or Hg(2+) into the aqueous solution of PVA-SR6GH, although they induced fluorescence enhancement, only Fe(3+) made the color changing from colorless to yellow. Moreover, other metal ions did not induce obvious changes to color and the fluorescence spectra.

  12. Synthesis and property characterization of cassava starch grafted poly(acrylamide-co-(maleic acid)) superabsorbent via γ-irradiation

    International Nuclear Information System (INIS)

    Kiatkamjornwong, Suda; Mongkolsawat, Kanlaya; Sonsuk, Manit

    2004-01-01

    Graft copolymerizations of acrylamide and maleic acid onto cassava starch by a simultaneous irradiation technique using γ-rays as a initiator were carried out. Various important parameters of total dose, dose rate, monomer-to-cassava starch ratio and maleic acid content were studied. Addition of 2% ww -1 diprotic acid of maleic acid into the reaction mixture yields a saponified starch graft copolymer with a water absorption in distilled water as high as 2256g g -1 of its dried weight. The water absorption of these saponified graft copolymers insaline and buffer solutions was also measured. The water absorption depends largely on the cationic type and concentration of these solutions in terms of ionic strength. This research explains a charge transfer mechanism for graft copolymerization of maleic acid and acrylamide onto cassava starch, and describes the influential parameters that affect grafting efficiency and water absorption. (author)

  13. Nicotine-selective radiation-induced poly(acrylamide/maleic acid) hydrogels

    International Nuclear Information System (INIS)

    Saraydin, D.; Karadag, E.; Caldiran, Y.; Gueven, O.

    2001-01-01

    Nicotine-selective poly(acrylamide/maleic acid) (AAm/MA) hydrogels prepared by γ-irradiation were used in experiments on swelling, diffusion, and interactions of the pharmaceuticals nicotine, nicotinic acid, nicotinamide, and nikethamide. For AAm/MA hydrogel containing 60 mg maleic acid and irradiated at 5.2 kGy, the studies indicated that swelling increased in the following order; nicotine>nicotinamide>nikethamide>nicotinic acid>water. Diffusions of water and the pharmaceuticals within the hydrogels were found to be non-Fickian in character. AAm/MA hydrogel sorbed only nicotine and did not sorb nicotinamide, nikethamide and nicotinic acid in the binding experiments. S-type adsorption in Giles's classification system was observed. Some binding and thermodynamic parameters for AAm/MA hydrogel-nicotine system were calculated using the Scatchard method. The values of adsorption heat and free energy of this system were found to be negative whereas adsorption entropy was found to be positive. (author)

  14. Pulmonary function and oxidative stress in workers exposed to styrene in plastic factory: occupational hazards in styrene-exposed plastic factory workers.

    Science.gov (United States)

    Sati, Prakash Chandra; Khaliq, Farah; Vaney, Neelam; Ahmed, Tanzeel; Tripathi, Ashok K; Banerjee, Basu Dev

    2011-11-01

    Styrene is a volatile organic compound used in factories for synthesis of plastic products. The pneumotoxicity of styrene in experimental animals is known. The aim of the present study was to study the effect of styrene on lung function and oxidative stress in occupationally exposed workers in plastic factory. Thirty-four male workers, between 18 and 40 years of age, exposed to styrene for atleast 8 hours a day for more than a year were studied, while 30 age- and sex-matched healthy subjects not exposed to styrene served as controls. Assessment of lung functions showed a statistically significant reduction (p volumes, capacities (FVC, FEV(1), VC, ERV, IRV, and IC) and flow rates (PEFR, MEF(75%), and MVV) in the study group (workers) as compared to controls. Malondialdehyde (MDA) was observed to be significantly high (p < 0.05) while ferric-reducing ability of plasma (FRAP) was significantly low (p < 0.05) in styrene-exposed subjects. Reduced glutathione (GSH) level was significantly depleted in exposed subjects as compared to control group. The mean value of serum cytochrome c in styrene-exposed subjects was found to be 1.1 ng/ml (0.89-1.89) while in control its levels were under detection limit (0.05 ng/ml). It shows that styrene inhalation by workers leads to increased level of oxidative stress, which is supposed to be the cause of lung damage.

  15. CYP2F2-generated metabolites, not styrene oxide, are a key event mediating the mode of action of styrene-induced mouse lung tumors.

    Science.gov (United States)

    Cruzan, G; Bus, J; Hotchkiss, J; Harkema, J; Banton, M; Sarang, S

    2012-02-01

    Styrene induces lung tumors in mice but not in rats. Although metabolism of styrene to 7,8-styrene oxide (SO) by CYP2E1 has been suggested as a mediator of styrene toxicity, lung toxicity is not attenuated in CYP2E1 knockout mice. However, styrene and/or SO metabolism by mouse lung Clara cell-localized CYP2F2 to ring-oxidized cytotoxic metabolite(s) has been postulated as a key metabolic gateway responsible for both lung toxicity and possible tumorigenicity. To test this hypothesis, the lung toxicity of styrene and SO was evaluated in C57BL/6 (WT) and CYP2F2⁻/⁻ knockout mice treated with styrene (400 mg/kg/day, gavage, or 200 or 400 mg/kg/day, ip) or S- or R-SO (200 mg/kg/day, ip) for 5 days. Styrene treated WT mice displayed significant necrosis and exfoliation of Clara cells, and cumulative BrdU-labeling index of S-phase cells was markedly increased in terminal bronchioles of WT mice exposed to styrene or S- or RSO. In contrast, Clara and terminal bronchiole cell toxicity was not observed in CYP2F2⁻/⁻ mice exposed to either styrene or SO. This study clearly demonstrates that the mouse lung toxicity of both styrene and SO is critically dependent on metabolism by CYP2F2. Importantly, the human isoform of CYP2F, CYP2F1, is expressed at much lower levels and likely does not catalyze significant styrene metabolism, supporting the hypothesis that styrene-induced mouse lung tumors may not quantitatively, or possibly qualitatively, predict lung tumor potential in humans. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Polyisobutenylsuccinimides as detergents and dispersants in fuel: infrared spectroscopy application

    Energy Technology Data Exchange (ETDEWEB)

    Aleman-Vazquez, L.O.; Villagomez-Ibarra, J.R. [Instituto Mexicano del Petrole, San Bartolo Atepehuacan (Mexico). Gerencia de Productos Quimicos

    2001-05-01

    Polyalkenylsuccinimides were synthesized and their dispersancy properties evaluated in an internal combustion engine. The synthesis is based on the reaction of polyisobutene with maleic anhydride as the first step. The polyisobutenylsuccinic anhydride obtained reacts with primary amines in the last step to give polyalkenylsuccinimides. The results of the evaluations showed that some polyisobutenylsuccinimides reduce the deposit formation in the intake system with good efficiency. Infrared spectra of the prepared compounds allowed their identification. 16 refs., 2 tabs.

  17. Bridging adhesion and barrier properties with functional dispersions : towards waterborne anti-corrosion coatings

    NARCIS (Netherlands)

    Soer, W.J.

    2008-01-01

    The successful preparation of waterborne anti-corrosion coatings based on maleic anhydride containing copolymers is described in this thesis. To obtain good anticorrosion coatings, three different properties should be present in a coating system; they should display good mechanical properties, good

  18. SHORT COMMUNICATION SOLVENT FREE PREPARATION OF N ...

    African Journals Online (AJOL)

    Preferred Customer

    KEYWORDS: Solvent free, Maleanilic acids, Maleic anhydride, Aniline derivatives ... associated with the carboxylic group between 3275-2877 cm-1, the weak –NH .... Chemical shifts (σ/ppm) relative to TMS*. O-H N-H Ha. Hb. Hc. Hd. He. Hf.

  19. Styrene-Based Copolymer for Polymer Membrane Modifications

    OpenAIRE

    Harsha Srivastava; Harshad Lade; Diby Paul; G. Arthanareeswaran; Ji Hyang Kweon

    2016-01-01

    Poly(vinylidene fluoride) (PVDF) was modified with a styrene-based copolymer. The crystalline behavior, phase, thermal stability, and surface morphology of the modified membranes were analyzed. The membrane surface roughness showed a strong dependence on the styrene-acrylonitrile content and was reduced to 34% for a PVDF/styrene-acrylonitrile blend membrane with a 40/60 ratio. The thermal and crystalline behavior confirmed the blend miscibility of both polymers. It was observed in X-ray diffr...

  20. Dimethylthioarsinic anhydride: A standard for arsenic speciation

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, Michael [United States Environmental Protection Agency, National Exposure Research Laboratory, Microbiological and Chemical Exposure Assessment Research Division, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States); Zeller, Matthias [STaRBURSTT-Cyberdiffraction Consortium, Department of Chemistry, Youngstown State University, One University Plaza, Youngstown, OH 44555-3663 (United States); Cullen, William [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Witkowski, Mark [Food and Drug Administration, Forensic Chemistry Center, Vibrational Spectroscopy Laboratory, 6751 Steger Drive, Cincinnati, OH 45237 (United States); Creed, John [United States Environmental Protection Agency, National Exposure Research Laboratory, Microbiological and Chemical Exposure Assessment Research Division, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States)]. E-mail: creed.jack@epa.gov

    2007-01-30

    Dimethylthioarsinic acid (DMTA{sup V}) has recently been identified in biological, dietary and environmental matrices. The relevance of this compound to the toxicity of arsenic in humans is unknown and further exposure assessment and metabolic studies are difficult to conduct because of the unavailability of a well characterized standard. The synthesis of DMTA{sup V} was accomplished by the reaction of dimethylarsinic acid (DMA{sup V}) with hydrogen sulfide. The initial reaction product produced is DMTA{sup V} but multiple products over the course of the reaction are also observed. Therefore, a chromatographic separation was developed to monitor the reaction progress via LC-ICP-MS. In this synthesis, conversion of DMA{sup V} to DMTA{sup V} was not taken to completion to avoid the production of side products. The product was isolated from the starting material by standard organic techniques. Single crystal diffraction demonstrated that solid DMTA{sup V} is present in the form of the oxygen-bridged dimethylthioarsinic anhydride. Dissolution of the anhydride in water produces the acid form of DMTA{sup V} and the aqueous phase DMTA{sup V} provided a characteristic molecular ion of m/z 155 by LC-ESI-MS. The synthesis and isolation of dimethylthioarsinic anhydride provides a stable crystalline standard suitable for identification, toxicological study and exposure assessment of dimethylthioarsinic acid.

  1. Maleic acid treatment of biologically detoxified corn stover liquor.

    Science.gov (United States)

    Kim, Daehwan; Ximenes, Eduardo A; Nichols, Nancy N; Cao, Guangli; Frazer, Sarah E; Ladisch, Michael R

    2016-09-01

    Elimination of microbial and enzyme inhibitors from pretreated lignocellulose is critical for effective cellulose conversion and yeast fermentation of liquid hot water (LHW) pretreated corn stover. In this study, xylan oligomers were hydrolyzed using either maleic acid or hemicellulases, and other soluble inhibitors were eliminated by biological detoxification. Corn stover at 20% (w/v) solids was LHW pretreated LHW (severity factor: 4.3). The 20% solids (w/v) pretreated corn stover derived liquor was recovered and biologically detoxified using the fungus Coniochaeta ligniaria NRRL30616. After maleic acid treatment, and using 5 filter paper units of cellulase/g glucan (8.3mg protein/g glucan), 73% higher cellulose conversion from corn stover was obtained for biodetoxified samples compared to undetoxified samples. This corresponded to 87% cellulose to glucose conversion. Ethanol production by yeast of pretreated corn stover solids hydrolysate was 1.4 times higher than undetoxified samples, with a reduction of 3h in the fermentation lag phase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes.

    Science.gov (United States)

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2014-01-21

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e., styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. A dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes relative to that in the wild-type mouse lung microsomes; however, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knockout and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed a susceptibility to lung toxicity of styrene similar to that of the wild-type animals; however, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene.

  3. Autophobicity and layering behavior of thin liquid-crystalline polymer films.

    NARCIS (Netherlands)

    Wielen, van der M.W.J.; Cohen Stuart, M.A.; Fleer, G.J.

    1998-01-01

    The stability against breaking-up of thin spin-coated films of liquid-crystalline polymers depends on the film thickness and annealing temperature. This study concerns side-chain liquid-crystalline polymers, based on alternating copolymers of maleic anhydride and mesogenic alkenes. The mesogenic

  4. Solution blow spun nanocomposites of poly(lactic acid)/cellulose nanocrystals from Eucalyptus kraft pulp

    Science.gov (United States)

    Cellulose nanocrystals (CNCs) were extracted from Eucalyptus kraft pulp by sulfuric acid hydrolysis, and esterified with maleic anhydride (CNCMA). The incorporation of sulfate ester groups on the cellulose surface resulted in higher stability of the nanoparticles in aqueous suspensions and lower the...

  5. Styrene and Azo-Styrene Based Colorimetric Sensors for Highly Selective Detection of Cyanide

    OpenAIRE

    Prestiani, Agustina Eka; Purwono, Bambang

    2017-01-01

    A novel styrene (1) and azo-styrene (2) based chemosensor from vanillin has been successfully synthesized. Sensor 1 was obtained by one step Knoevenagel condensation of Ultrasound method and sensor 2 by coupling diazo and Knoevenagel condensation reaction. Both of sensors showed high sensitivity and selectivity to detect CN- in aqueous media, even the presence of other anions, such as F-, Cl-, Br-, I-, CO32-, SO42-, H2PO4-, and AcO-. Colorimetric sensing of sensor 1 is inclined to be deproton...

  6. Crystallo-chemistry of boric anhydride and of anhydrous borates

    International Nuclear Information System (INIS)

    Bernardin, Jacques

    1968-01-01

    After an overview of various aspects related to the atomic structure of boron and of its three-bind and four-bind compounds, this report briefly presents the different forms of boric anhydride (in solid, liquid, glassy and gaseous state), presents and comments the structure of these different forms, and addresses the molten boric anhydride which is used as oxide solvent. The next part addresses the structure of anhydrous borates. It presents some generalities on their structure, and describes examples of known structures: dimers, trimers, polymers with a degree higher than three like calcium metaborate, caesium tri-borate, lithium tetraborate, or potassium pentaborate

  7. Tailoring the morphology and properties of poly(lactic acid)/poly(ethylene-co-vinyl acetate)/starch blends via reactive compatibilization

    NARCIS (Netherlands)

    Ma, P.; Hristova - Bogaerds, D.G.; Schmit, P.; Goossens, J.G.P.; Lemstra, P.J.

    2012-01-01

    Poly(lactic acid)/poly(ethylene-co-vinyl acetate)/starch (PLA/EVA/starch) ternary blends were prepared by multi-step melt processing (reactive extrusion) in the presence of maleic anhydride (MA), benzoyl peroxide and glycerol. The effects of MA and glycerol concentration on the morphology and

  8. Synthesis and characterization of acrylated Parkia biglobosa ...

    African Journals Online (AJOL)

    The results revealed that acid functional acrylic copolymers containing maleic anhydride as a functional co-monomer can successfully be used to modify alkyd resins yielding acrylated resins with better drying, flexibility, scratch hardness, impact resistance and chemical resistance properties. However there exist optimum ...

  9. In situ Raman spectroscopy studies of bulk and surface metal

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Jehng, J.M.; Deo, G.; Guliants, V.V.; Benziger, J.B.

    1996-01-01

    Bulk V-P-O and model supported vanadia catalysts were investigated with in situ Raman spectroscopy during n-butane oxidation to maleic anhydride in order to determine the fundamental molecular structure-reactivity/selectivity insights that can be obtained from such experiments. The in situ Raman

  10. Biofiltration of Air/Styrene and Air/Styrene/Acetone mixtures in a bubble column reactor

    OpenAIRE

    Vieira, Ana

    2009-01-01

    The goal of this work was the treatment of polluted waste gases in a bubble column reactor (BCR), in order to determinate the maximum value of reactor’s efficiency (RE), varying the inlet concentration (C in) of the pollutants. The gaseous mixtures studied were: (i) air with styrene and (ii) air with styrene and acetone. The liquid phase used to contain the biomass in the reactor was a basal salt medium (BSM), fundamental for the microorganisms’ development. The reactor used in this pro...

  11. Helbredsrisici ved eksponering for styren i glasfiberplastindustrien

    DEFF Research Database (Denmark)

    Kolstad, Henrik Albert; Ebbehøj, Nielse; Bonde, Jens Peter

    2012-01-01

    or relevant exposure levels. We recommend reconsideration of the current Danish threshold limit value of 25 ppm, biological monitoring of styrene exposed workers, and epidemiological analyses of styrene exposure levels and long-term health effects among employees of the Danish reinforced plastics industry....

  12. COPOLYMER BLENDS OF STYRENE AND ORTHO-FLUOROSTYRENE

    NARCIS (Netherlands)

    TENBRINKE, G; KARASZ, FE

    1991-01-01

    The traditional method, using differential scanning calorimetry, to study phase behaviour in blends containing styrene and fluorinated styrene is hampered by the fact that the glass transition temperatures of fluorinated polystyrenes are almost independent of the degree of fluorination. To deal with

  13. CYP2E1 Metabolism of Styrene Involves Allostery

    Science.gov (United States)

    Hartman, Jessica H.; Boysen, Gunnar

    2012-01-01

    We are the first to report allosterism during styrene oxidation by recombinant CYP2E1 and human liver microsomes. At low styrene concentrations, oxidation is inefficient because of weak binding to CYP2E1 (Ks = 830 μM). A second styrene molecule then binds CYP2E1 with higher affinity (Kss = 110 μM) and significantly improves oxidation to achieve a kcat of 6.3 nmol · min−1 · nmol CYP2E1−1. The transition between these metabolic cycles coincides with reported styrene concentrations in blood from exposed workers; thus, this CYP2E1 mechanism may be relevant in vivo. Scaled modeling of the in vitro-positive allosteric mechanism for styrene metabolism to its in vivo clearance led to significant deviations from the traditional model based on Michaelis-Menten kinetics. Low styrene levels were notably much less toxic than generally assumed. We interrogated the allosteric mechanism using the CYP2E1-specific inhibitor and drug 4-methylpyrazole, which we have shown binds two CYP2E1 sites. From the current studies, styrene was a positive allosteric effector on 4-methylpyrazole binding, based on a 10-fold increase in 4-methylpyrazole binding affinity from Ki 0.51 to Ksi 0.043 μM. The inhibitor was a negative allosteric effector on styrene oxidation, because kcat decreased 6-fold to 0.98 nmol · min−1 · nmol CYP2E1−1. Consequently, mixtures of styrene and other molecules can induce allosteric effects on binding and metabolism by CYP2E1 and thus mitigate the efficiency of their metabolism and corresponding effects on human health. Taken together, our elucidation of mechanisms for these allosteric reactions provides a powerful tool for further investigating the complexities of CYP2E1 metabolism of drugs and pollutants. PMID:22807108

  14. Analysis physical properties of composites polymer from cocofiber and polypropylene plastic waste with maleic anhydrate as crosslinking agent

    Science.gov (United States)

    Pelita, E.; Hidayani, T. R.; Akbar, A.

    2017-07-01

    This research was conducted with the aim to produce composites polymer with polypropylene plastic waste materials and cocofiber which aims to produce wood replacement material in the home furnishings industry. This research was conducted with several stages. The first stage is the process of soaking coco fiber with detergent to remove oil and 2% NaOH. The second stage is to combine the polypropylene plastic waste with cocofiber is a chemical bond, modification by adding maleic anhydride as a crosslinking agent and benzoyl peroxide as an initiator each as much as 1%. Mixing materials done by reflux method using xylene solvent. In this study, carried out a wide range of weight variation of coco fiber are added to the 10, 20, 30, 40 and 50%. The third stage is a polymer composite molding process using hot press at a temperature of 158°C. The results of polymer composites Showed optimum condition on the addition of 40% cocofiber with supple tensile strength value of 90.800 kgf /cm2 and value of elongation break at 3.6726 x 104 (kgf/cm2), melting point at 160.02°C, burning point 463.43°C, residue of TGA is 19%, the density of 0.84 g/mL. From these data, conclude that the resulting polymer composites meet the SNI 03-2105-2006 about ordinary composite polymer and polymer composite structural type 8 regular types from 17.5 to 10.5.

  15. Safe design and operation of fluidized-bed reactors: Choice between reactor models

    NARCIS (Netherlands)

    Westerink, E.J.; Westerterp, K.R.

    1990-01-01

    For three different catalytic fluidized bed reactor models, two models presented by Werther and a model presented by van Deemter, the region of safe and unique operation for a chosen reaction system was investigated. Three reaction systems were used: the oxidation of benzene to maleic anhydride, the

  16. Switchgrass (Panicum virgatum L.) as a reinforcing fibre in polypropylene composites

    NARCIS (Netherlands)

    Oever, van den M.J.A.; Elbersen, H.W.; Keijsers, E.R.P.; Gosselink, R.J.A.; Klerk-Engels, de B.

    2003-01-01

    In this study the switchgrass (Panicum virgatum L.), a biomass crop being developed in North America and Europe, was tested as a stiffening and reinforcing agent in polypropylene (PP) composites with and without maleic anhydride grafted PP (MAPP) as a compatibiliser and to evaluate the effect of

  17. Surface Polymerisation Methods for Optimised Adhesion

    DEFF Research Database (Denmark)

    Drews, Joanna Maria

    Arbejdet har fokuseret på muligheder for at forstærke kompositmaterialer til højteknologiske anvendelser fx til vindmøllevinger. Forskningen har derfor været centreret om plasma polymerisation af henholdsvis maleic anhydrid (MAH) og 1,2-methylenedioxybenzen til tynde film på modelkulstofsubstrate...

  18. Exposure to styrene and chronic health effects

    DEFF Research Database (Denmark)

    Kolstad, Henrik; Juel, K; Olsen, J H

    1995-01-01

    To study the occurrence of non-malignant diseases and solid cancers in workers exposed to styrene in the Danish reinforced plastics industry.......To study the occurrence of non-malignant diseases and solid cancers in workers exposed to styrene in the Danish reinforced plastics industry....

  19. Occupational asthma in the furniture industry: is it due to styrene?

    Science.gov (United States)

    Oner, Ferda; Mungan, Dilşad; Numanoglu, Numan; Demirel, Yavuz

    2004-01-01

    Styrene, a volatile monomer, has been reported as a cause of occupational asthma in a few case reports. The aim of this study was to investigate the risk for asthma in relation to exposure to styrene in a large number of workers. A total of 47 workers with a history of exposure to styrene were included in the study. To establish whether asthma was present, each patient underwent a clinical interview, pulmonary function testing and bronchial challenge with methacholine. Specific bronchial challenges with styrene and serial peak expiratory flow (PEF) measurement at home and at work were carried out in subjects with a diagnosis of asthma to evaluate the relationship between their asthma and exposure to styrene in the workplace. Among the 47 subjects, 5 workers had given a history of work-related symptoms, and 3 of them had a positive methacholine challenge test. Specific bronchial challenges with styrene and serial PEF measurement were subsequently carried out in these 3 subjects. Although provocation tests with styrene were negative in the 3 workers, 1 worker had PEF rate records compatible with occupational asthma. We established one patient with occupational asthma from a group of people who have excessive styrene exposure. This finding may be suggestive but is not conclusive about the causative role of styrene in occupational asthma. Since styrene is a frequently used substance in the furniture industry, it is worth performing further studies to investigate the relationship between styrene and occupational asthma. Copyright 2004 S. Karger AG, Basel

  20. 78 FR 76567 - Tall Oil, Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs...

    Science.gov (United States)

    2013-12-18

    ..., Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs.; Tolerance Exemption... an exemption from the requirement of a tolerance for residues of tall oil, polymer with polyethylene..., polymer with polyethylene glycol and succinic anhydride monopolyisobutylene derivs. on food or feed...

  1. Electrical resistivity and thermal properties of compatibilized multi-walled carbon nanotube/polypropylene composites

    Directory of Open Access Journals (Sweden)

    A. Szentes

    2012-06-01

    Full Text Available The electrical resistivity and thermal properties of multi-walled carbon nanotube/polypropylene (MWCNT/PP composites have been investigated in the presence of coupling agents applied for improving the compatibility between the nanotubes and the polymer. A novel olefin-maleic-anhydride copolymer and an olefin-maleic-anhydride copolymer based derivative have been used as compatibilizers to achieve better dispersion of MWCNTs in the polymer matrix. The composites have been produced by extrusion followed by injection moulding. They contained different amounts of MWCNTs (0.5, 2, 3 and 5 wt% and coupling agent to enhance the interactions between the carbon nanotubes and the polymer. The electrical resistivity of the composites has been investigated by impedance spectroscopy, whereas their thermal properties have been determined using a thermal analyzer operating on the basis of the periodic thermal perturbation method. Rheological properties, BET-area and adsorption-desorption isotherms have been determined. Dispersion of MWCNTs in the polymer has been studied by scanning electron microscopy (SEM.

  2. Crystallization analysis fractionation of poly(ethylene-co-styrene) produced by metallocene catalysts

    KAUST Repository

    Kamal, Muhammad Shahzad

    2013-06-06

    Ethylene homo polymer and ethylene-styrene copolymers were synthesized using Cp2ZrCl2 (1)/methyl aluminoxane (MAO) and rac-silylene-bis (indenyl) zirconium dichloride (2)/MAO catalyst systems by varying styrene concentration and reaction conditions. Crystallization analysis fractionation (CRYSTAF), DSC, FTIR and 1H NMR spectroscopy were used for characterizing the synthesized polymers. Interestingly, styrene was able to increase the activity of 1/MAO and 2/MAO catalyst systems at low concentrations, but at higher concentrations the activity decreases. The 1/MAO system at low and high pressure was unable to incorporate styrene, and the final product was pure polyethylene. On the other hand, with 2/MAO polymerization of ethylene and styrene yielded copolymer containing both styrene and ethylene. Results obtained from CRYSTAF and DSC reveal that on using 1/MAO system at high pressure, the resulting polymer in the presence of styrene has similar crystallinity as the polymer produced without styrene. Using both 1/MAO at low pressure and 2/MAO leads to decrease in crystallinity with increase in styrene concentration, even though the former does not incorporate styrene. © 2013 Springer-Verlag Berlin Heidelberg.

  3. Copolymerization of propene and styrene using a zirconocene - methylaluminoxane initiator system

    International Nuclear Information System (INIS)

    Rabagliati, F.M.; Rodriguez, F.J.; Quijada, R.; Galland, G.B.

    2009-01-01

    The copolymerization of propene with styrene has been tested using the rac-Et(Ind) 2 ZrCl 2 -methylaluminoxane initiator system. The various proportion of styrene in initial feed showed an important effect on the polymerization activity. Low contents of styrene in the reaction produced a considerable fall in the activity. Respect to thermal behavior, it is noted that obtained propene/styrene copolymers showed Tm values slightly lower than the corresponding polypropene one. NMR spectroscopy allowed to confirm that the copolymer composition includes a very low incorporation of styrene in polypropylene chains. (author)

  4. Modelling the size and polydispersity of magnetic hybrid nanoparticles for luminescent sensing of oxygen

    International Nuclear Information System (INIS)

    Marín-Suárez, Marta; Arias-Martos, María C.; Fernández-Sánchez, Jorge F.; Fernández-Gutiérrez, Alberto; Galeano-Díaz, Teresa

    2013-01-01

    We report on a strategy to model both the size (d) and the polydispersity (PdI) of magnetic oxygen-sensitive nanoparticles with a typical size of 200 nm in order to increase the surface area. The strategy is based on experimental design and Response Surface Methodology. Nanoparticles were prepared by mini emulsion solvent evaporation of solutions of poly(styrene-co-maleic anhydride). Features of this strategy include (1) a quick selection of the most important variables that govern d and PdI; (2) a better understanding of the parameters that affect the performance of the polymer; and (3) optimized conditions for the synthesis of nanoparticles of targeted d and PdI. The results were used to produce nanoparticles in sizes that range from 100 to 300 nm and with small polydispersity. The addition of a platinum porphyrin complex that acts as a luminescent probe for oxygen and of magnetite (Fe 3 O 4 ) to the polymeric particles, did not affect d and PdI, thus demonstrating that this strategy simplifies their synthesis. The resulting luminescent and magnetic sensor nanoparticles respond to dissolved oxygen with sensitivity (Stern-Volmer constant) of around 35 bar −1 . (author)

  5. Hydrogel-laden paper scaffold system for origami-based tissue engineering.

    Science.gov (United States)

    Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S

    2015-12-15

    In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca(2+). This procedure ensures the formation of alginate hydrogel on the paper due to Ca(2+) diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs.

  6. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... glass slides coated with polyvinyl alcohol (PVA) crosslinked with maleic anhydride (MA). FTIR and XRD studies of the coated film were also done. AFM studies further helped in the morphological study of the film deposited. Finally, conductivity and ammonia gas-sensing property of the polyaniline film were also studied.

  7. Synthesis and 1,3-Dipolar Cycloaddition Reactions of Chiral Maleimides

    Directory of Open Access Journals (Sweden)

    Lubor Fisera

    1997-02-01

    Full Text Available New routes to the synthesis of various novel chiral maleimides are described. The oxabicyclic anhydride 2 readily available exo-Diels-Alder adduct of furan and maleic anhydride was used as a vehicle, which in turn reacted with hydrochlorides of amino acids 3a-f in the presence of Et3N with release of furan to give the requisite novel chiral imides 4a-f in good to moderate yields. The stereoselectivity of 1,3-dipolar cycloaddition of nitrile oxides with prepared chiral imides 4a-f is investigated.

  8. Fire and heat resistant laminating resins based on maleimido substituted aromatic cyclotriphosphazene polymer

    Science.gov (United States)

    Kumar, Devendra (Inventor); Fohlen, George M. (Inventor); Parker, John A. (Inventor)

    1987-01-01

    4-Aminophenoxy cyclotriphosphazenes are reacted with maleic anhydride to produce maleamic acids which are converted to the maleimides. The maleimides are polymerized. By selection of starting materials (e.g., hexakis amino or trisaminophenoxy trisphenoxy cyclotriphosphazenes), selection of molar proportions of reactants, use of mixtures of anhydrides and use of dianhydrides as bridging groups a variety of maleimides and polymers are produced. The polymers have high limiting oxygen indices, high char yields and other useful heat and fire resistant properties making them useful as, for example, impregnants of fabrics.

  9. Evaluation of tri-steps modified styrene-butadiene-styrene block copolymer membrane for wound dressing

    International Nuclear Information System (INIS)

    Yang, Jen Ming; Huang, Huei Tsz

    2012-01-01

    Tri-steps modified styrene-butadiene-styrene block copolymer (SBS) membrane was prepared with epoxidation, ring opening reaction with maleated ionomer and layer-by-layer assembled polyelectrolyte technique. The tri-steps modified SBS membrane was characterized by infrared spectroscopy and X-ray photoelectron spectroscope (XPS). The structures of the modified SBS membranes were identified with methylene blue and azocarmine G. The content of amino group on the surface of the modified membrane was calculated from uptake of an acid dye. The values of the contact angle, water absorption, water vapor transmission rate and the adsorption of fibronectin on the membranes were determined. To evaluate the biocompatibility of the tri-steps modified SBS membrane, the cytotoxicity, antibacterial and growth profile of the cell culture of 3T3 fibroblasts on the membrane were evaluated. The bactericidal activity was found on the modified SBS. From the cell culture of 3T3 fibroblasts on the membrane, it revealed that the cells not only remained viable but also proliferated on the surface of the tri-steps modified SBS membranes. As the membranes are sterile semipermeable with bactericidal activity and transparent allowing wound checks, they can be considered for shallow wound with low exudates. - Highlights: ► Styrene-butadiene-styrene block copolymer (SBS) was modified with tri-steps. ► The tri-steps are epoxidation, ring opening reaction and layer-by-layer assembly. ► Modified SBS membrane for wound dressing is evaluated. ► Membranes are sterile semipermeable with bactericidal activity and transparent. ► Membranes can be considered for shallow wound with low exudates.

  10. Bacterial degradation of styrene in waste gases using a peat filter

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, M.; Reittu, A. [Kuopio Univ. (Finland). Dept. of Environmental Sciences; Wright, A. von; Suihko, M.L. [VTT Biotechnology and Food Research (Finland); Martikainen, P.J. [Kuopio Univ. (Finland). Dept. of Environmental Sciences]|[National Public Health Inst., Lab. of Environmental Microbiology, Kuopio (Finland)

    1997-12-31

    A biofiltration process was developed for styrene-containing off-gases using peat as filter material. The average styrene reduction ratio after 190 days of operation was 70% (max. 98%) and the mean styrene elimination capacity was 12 g m{sup -3} h{sup -1} (max. 30 g m{sup -3} h{sup -1}). Efficient styrene degradation required addition of nutrients to the peat, adjustment of the pH to a neutral level and efficient control of the humidity. Maintenance of the water balance was easier in a down-flow than in an up-flow process, the former consequently resulting in much better filtration efficiency. The optimum operation temperature was around 23 C, but the styrene removal was still satisfactory at 12 C. Seven different bacterial isolates belonging to the genera Tsukamurella, Pseudomonas, Sphingomonas, Xanthomonas and an unidentified genus in the {gamma} group of the Proteobacteria isolated from the microflora of active peat filter material were capable of styrene degradation. The isolates differed in their capacity to decompose styrene to carbon dioxide and assimilate it to biomass. No toxic intermediate degradation products of styrene were detected in the filter outlet gas or in growing cultures of isolated bacteria. The use of these isolates in industrial biofilters is beneficial at low styrene concentrations and is safe from both the environmental and public health points of view. (orig.)

  11. Bacterial degradation of styrene in waste gases using a peat filter.

    Science.gov (United States)

    Arnold, M; Reittu, A; von Wright, A; Martikainen, P J; Suihko, M L

    1997-12-01

    A biofiltration process was developed for styrene-containing off-gases using peat as filter material. The average styrene reduction ratio after 190 days of operation was 70% (max. 98%) and the mean styrene elimination capacity was 12 g m-3 h-1 (max. 30 g m-3 h-1). Efficient styrene degradation required addition of nutrients to the peat, adjustment of the pH to a neutral level and efficient control of the humidity. Maintenance of the water balance was easier in a down-flow than in an up-flow process, the former consequently resulting in much better filtration efficiency. The optimum operation temperature was around 23 degrees C, but the styrene removal was still satisfactory at 12 degrees C. Seven different bacterial isolates belonging to the genera Tsukamurella, Pseudomonas, Sphingomonas, Xanthomonas and an unidentified genus in the gamma group of the Proteobacteria isolated from the microflora of active peat filter material were capable of styrene degradation. The isolates differed in their capacity to decompose styrene to carbon dioxide and assimilate it to biomass. No toxic intermediate degradation products of styrene were detected in the filter outlet gas or in growing cultures of isolated bacteria. The use of these isolates in industrial biofilters is beneficial at low styrene concentrations and is safe from both the environmental and public health points of view.

  12. Using graphene/styrene-isoprene-styrene copolymer composite thin film as a flexible microstrip antenna for the detection of heptane vapors

    Science.gov (United States)

    Olejnik, Robert; Matyas, Jiri; Slobodian, Petr; Riha, Pavel

    2018-03-01

    Most portable devices, such as mobile phones or tablets, use antennas made of copper. This paper demonstrates the possible use of antenna constructed from electrically conductive polymer composite materials for use in those applications. The method of preparation and the properties of the graphene/styrene-isoprene-styrene copolymer as flexible microstrip antenna are described in this contribution. Graphene/styrene-isoprene-styrene copolymer toluene solution was prepared by means of ultrasound and the PET substrate was dip coated to reach a fine thin film. The main advantages of using PET as a substrate are low weight and flexibility. The final size of the flexible microstrip antenna was 10 × 25 mm with thickness of 0.48 mm (PET substrate 0.25 mm) with a weight of 0.110 g. The resulting antenna operates at a frequency of 1.8 GHz and gain ‑40.02 dB.

  13. Synthesis and Characterization of New ‎Copolymers as Asphalt Additives

    Directory of Open Access Journals (Sweden)

    Firyal M. ‎ A

    2017-12-01

    Full Text Available Rheological properties of asphalt S50  were improved by adding different prepared copolymers as additives with high homogeneity of asphalts  samples.  Three types of copolymers were prepared  Poly  (Indene –Co- maleic anhydride(A1 Poly (Acrylonitrile –Co- Maleic anhydride (A2 and Poly (Dipentine –Co-Maleic anhydride (A3, the cross linking of (A3 to (A3d. by using sulfur.              These copolymers  were designed by inserting Maleic anhydride as  rings  containing through backbone of polymer chains to be high potentially to react with water to protect the crack of pavement .And moisture with inhibit bonding of crack of pavement, Many factors should be considered when prepared the additives to enhanced performance to be convenience cost, beneficial thermal safety ,   extended life of the asphalt, preparing conditions which gave high thermal resistance with more stabilities, all these prepared copolymer have been characterized by FTIR and H-NMR spectroscopies .Intrinsic viscosities were calculated. softening point and penetration were observed for all asphalts blends which were  compared with the  asphalt samples, which gave high thermal resistance with more stabilities.                                          The results  showed high properties of these blends when  compared with the original asphalt. The physical properties of a specific polymers are determined by the sequence and chemical structure , When polymers are added to asphalt , the properties of the modified asphalt cement depend on polymer characteristic of asphalt and compatibility of polymer with asphalt. All these prepared copolymers were tested by softening points and penetration for all  asphalt blends which were compared with the asphalt sample. All the Improvements made by adding polymers to asphalt included the Increasing the viscosity of the binder service, the thermal susceptibility of the binder

  14. Modification of cellulose with succinic anhydride in TBAA/DMSO mixed solvent under catalyst-free conditions

    Science.gov (United States)

    Homogeneous modification of cellulose with succinic anhydride was performed in tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU) and TBAA dosage were investigated as paramete...

  15. -Styrene)

    KAUST Repository

    Sutisna, Burhannudin

    2017-10-04

    Membranes are prepared by self-assembly and casting of 5 and 13 wt% poly(styrene-b-butadiene-b-styrene) (PS-b-PB-b-PS) copolymers solutions in different solvents, followed by immersion in water or ethanol. By controlling the solution-casting gap, porous films of 50 and 1 µm thickness are obtained. A gradient of increasing pore size is generated as the distance from the surface increased. An ordered porous surface layer with continuous nanochannels can be observed. Its formation is investigated, by using time-resolved grazing incident small angle X-ray scattering, electron microscopy, and rheology, suggesting a strong effect of the air-solution interface on the morphology formation. The thin PS-b-PB-b-PS ordered films are modified, by promoting the photolytic addition of thioglycolic acid to the polybutadiene groups, adding chemical functionality and specific transport characteristics on the preformed nanochannels, without sacrificing the membrane morphology. Photomodification increases fivefold the water permeance to around 2 L m(-2) h(-1) bar(-1) , compared to that of the unmodified one. A rejection of 74% is measured for methyl orange in water. The membranes fabrication with tailored nanochannels and chemical functionalities can be demonstrated using relatively lower cost block copolymers. Casting on porous polyacrylonitrile supports makes the membranes even more scalable and competitive in large scale.

  16. Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood-polypropylene composites

    Science.gov (United States)

    Nadir Ayrilmis; Turgay Akbulut; Turker Dundar; Robert H. White; Fatih Mengeloglu; Umit Buyuksari; Zeki Candan; Erkan Avci

    2012-01-01

    Physical, mechanical, and fire properties of the injection-molded wood flour/polypropylene composites incorporated with different contents of boron compounds; borax/boric acid and zinc borate, and phosphate compounds; mono and diammonium phosphates were investigated. The effect of the coupling agent content, maleic anhydride-grafted polypropylene, on the properties of...

  17. Reactive compatibilization of ethylene-co-vinyl acetate/starch blends

    NARCIS (Netherlands)

    Ma, P.; Hristova - Bogaerds, D.G.; Schmit, P.; Goossens, J.G.P.; Lemstra, P.J.

    2012-01-01

    The dispersion of starch as a filler in hydrophobic ethylene-co-vinyl acetate (EVA) rubber is an issue. To obtain a fine dispersion of starch in EVA rubber, EVA/starch blends were prepared by reactive extrusion in the pres- ence of maleic anhydride (MA), benzoyl peroxide (BPO), and glycerol. MA,

  18. Amine modified polyethylenes, prepared in near critical propane, as adhesion promoting agents in multilayered HDPE/PET films

    NARCIS (Netherlands)

    Gooijer, de J.M.; Scheltus, M.; Koning, C.E.

    2001-01-01

    High d. polyethylene (HDPE) grafted with 0.13, 0.40 and 1.04 wt% maleic anhydride (abbreviation PEMA) was modified with an excess of a variety of diamines in near crit. propane. The resulting amic acid groups were quant. imidized to the corresponding imide (PEMI) in the melt. Increasing the

  19. Copper-catalyzed radical carbooxygenation: alkylation and alkoxylation of styrenes.

    Science.gov (United States)

    Liao, Zhixiong; Yi, Hong; Li, Zheng; Fan, Chao; Zhang, Xu; Liu, Jie; Deng, Zixin; Lei, Aiwen

    2015-01-01

    A simple copper-catalyzed direct radical carbooxygenation of styrenes is developed utilizing alkyl bromides as radical resources. This catalytic radical difunctionalization accomplishes both alkylation and alkoxylation of styrenes in one pot. A broad range of styrenes and alcohols are well tolerated in this transformation. The EPR experiment shows that alkyl halides could oxidize Cu(I) to Cu(II) in this transformation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Morphology-properties relationship on nanocomposite films based on poly(styrene-block-diene-block-styrene copolymers and silver nanoparticles

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available A comparative study on the self-assembled nanostructured morphology and the rheological and mechanical properties of four different triblock copolymers, based on poly(styrene-block-diene-block-styrene and poly(styrene-block-diene-block-styrene matrices, and of their respective nanocomposites with 1 wt% silver nanoparticles, is reported in this work. In order to obtain well-dispersed nanoparticles in the block copolymer matrix, dodecanethiol was used as surfactant, showing good affinity with both nanoparticles and the polystyrene phase of the matrices as predicted by the solubility parameters calculated based on Hoftyzer and Van Krevelen theory. The block copolymer with the highest PS content shows the highest tensile modulus and tensile strength, but also the smallest elongation at break. When silver nanoparticles treated with surfactant were added to the block copolymer matrices, each system studied shows higher mechanical properties due to the good dispersion and the good interface of Ag nanoparticles in the matrices. Furthermore, it has been shown that semiempirical models such as Guth and Gold equation and Halpin-Tsai model can be used to predict the tensile modulus of the analyzed nanocomposites.

  1. Study on radiation-induced polymerization of vinyl monomers adsorbed on inorganic substances. II. Radiation-induced polymerization of methyl methacrylate adsorbed on several inorganic substances

    International Nuclear Information System (INIS)

    Fukano, K.; Kageyama, E.

    1975-01-01

    The radiation-induced polymerization of methyl methacrylate (MMA) adsorbed on such inorganic substances as silica gel, white carbon, silicic acid anhydride, zeolite, and activated alumina was carried out to compare with the case of styrene. The rate of radiation-induced polymerization adsorbed on inorganic substances was high compared with that of radiation-induced bulk state polymerization, as was the case with styrene. Inorganic substrates which contain aluminum as a component element are more likely to be grafted than those which consist of SiO 2 alone, as with styrene. The molecular weight distribution of unextractable polymer and extractable polymer differs, depending on the type of inorganic substance. Experiments by a preirradiation method were carried out in case of silica gel, white carbon, and silicic acid anhydride. GPC spectra of the polymer obtained were different from those of polymer formed by the simultaneous irradiation method. It appears that all the unextractable polymer is grafted to the inorganic surface with chemical bond

  2. Thermochemistry of sarcosine and sarcosine anhydride: Theoretical and experimental studies

    International Nuclear Information System (INIS)

    Amaral, Luísa M.P.F.; Santos, Ana Filipa L.O.M.; Ribeiro da Silva, Maria das Dores M.C.; Notario, Rafael

    2013-01-01

    Highlights: ► Study on the Energetics of the sarcosine and sarcosine anhydride. ► Experimental and computational thermochemistry of sarcosine and its anhydride. ► Ab initio calculations for two amino acid derivatives by G3(MP2)//B3LYP method. -- Abstract: The standard molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, of sarcosine, −(388.0 ± 1.0) kJ · mol −1 , and sarcosine anhydride, −(334.5 ± 1.6) kJ · mol −1 , were calculated by combining, for each compound, the standard molar enthalpy of formation, in the crystalline phase, and the standard molar enthalpy of sublimation, derived from measurements of the standard massic energies of combustion by static bomb combustion calorimetry, and from measurements of vapour pressures by the Knudsen mass-loss effusion method, respectively. The standard (p o = 0.1 MPa) molar enthalpies, entropies and Gibbs functions of sublimation, at T = 298.15 K, were also calculated. A theoretical study at the G3 and G4 levels has been carried out, and the calculated enthalpies of formation have been compared with the experimental ones

  3. Subcellular distribution of styrene oxide in rat liver

    International Nuclear Information System (INIS)

    Pacifici, G.M.; Cuoci, L.; Rane, A.

    1984-01-01

    The subcellular distribution of ( 3 H)-styrene-7,8-oxide was studied in the rat liver. The compound was added to liver homogenate to give a final concentration of 2 X 10(-5); 2 X 10(-4) and 2 X 10(-3) M. Subcellular fractions were obtained by differential centrifugation. Most of styrene oxide (59-88%) was associated with the cytosolic fraction. Less than 15 percent of the compound was retrieved in each of the nuclear, mitochondrial and microsomal fractions. A considerable percentage of radioactivity was found unextractable with the organic solvents, suggesting that styrene oxide reacted with the endogenous compounds. The intracellular distribution of this epoxide was also studied in the perfused rat liver. Comparable results with those previously described were obtained. The binding of styrene oxide to the cytosolic protein was investigated by equilibrium dialysis and ultrafiltration. Only a small percentage of the compound was bound to protein

  4. Evaluation of tri-steps modified styrene-butadiene-styrene block copolymer membrane for wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jen Ming, E-mail: jmyang@mail.cgu.edu.tw; Huang, Huei Tsz

    2012-08-01

    Tri-steps modified styrene-butadiene-styrene block copolymer (SBS) membrane was prepared with epoxidation, ring opening reaction with maleated ionomer and layer-by-layer assembled polyelectrolyte technique. The tri-steps modified SBS membrane was characterized by infrared spectroscopy and X-ray photoelectron spectroscope (XPS). The structures of the modified SBS membranes were identified with methylene blue and azocarmine G. The content of amino group on the surface of the modified membrane was calculated from uptake of an acid dye. The values of the contact angle, water absorption, water vapor transmission rate and the adsorption of fibronectin on the membranes were determined. To evaluate the biocompatibility of the tri-steps modified SBS membrane, the cytotoxicity, antibacterial and growth profile of the cell culture of 3T3 fibroblasts on the membrane were evaluated. The bactericidal activity was found on the modified SBS. From the cell culture of 3T3 fibroblasts on the membrane, it revealed that the cells not only remained viable but also proliferated on the surface of the tri-steps modified SBS membranes. As the membranes are sterile semipermeable with bactericidal activity and transparent allowing wound checks, they can be considered for shallow wound with low exudates. - Highlights: Black-Right-Pointing-Pointer Styrene-butadiene-styrene block copolymer (SBS) was modified with tri-steps. Black-Right-Pointing-Pointer The tri-steps are epoxidation, ring opening reaction and layer-by-layer assembly. Black-Right-Pointing-Pointer Modified SBS membrane for wound dressing is evaluated. Black-Right-Pointing-Pointer Membranes are sterile semipermeable with bactericidal activity and transparent. Black-Right-Pointing-Pointer Membranes can be considered for shallow wound with low exudates.

  5. Features of radiation chemical processes in ethylene-styrene copolymers

    International Nuclear Information System (INIS)

    Leshchenko, S.S.; Mal'tseva, A.P.; Iskakov, L.I.; Karpov, V.L.

    1976-01-01

    A study was made of statistical copolymers of ethylene with styrene to determine their structure and properties and radio-chemical transformations. The styrene content of the copolymers ranged from 1 to 85 mole%. The investigation covered non-irradiated copolymers and those irradiated with doses of 1-1000Mrad at room temperature and at liquid nitrogen temperature. It is shown that styrene units present in the CES inhibited all radio-chemical processes compared with PE irradiated under similar conditions. It is suggested that the radiation resistance of CES with styrene contents up to 10 mole % increases in the course of irradiation as a result of the formation of structures with a high degree of conjugation which are more capable of scattering absorbed energy than in the case of phenyl rings by themselves. The most promising of the CES examined is the one with a styrene content of 5 mole %. The mechanical properties of this copolymer are similar to those of PE, and its radiation resistance rises under service conditions in the presence of ionizing radiation

  6. Radiation resistance of ethylene-styrene copolymers

    International Nuclear Information System (INIS)

    Matsumoto, Kaoru; Ikeda, Masaaki; Ohki, Yoshimichi; Kusama, Yasuo; Harashige, Masahiro; Yazaki, Fumihiko.

    1988-01-01

    In this paper, the radiation resistance of ethylene-styrene copolymer, a polymeric resin developed newly by the authors, is reported. Resin examined were five kinds of ethylene-styrene copolymers: three random and two graft copolymers with different styrene contents. Low-density polyethylene was used as a reference. The samples were irradiated by 60 Co γ-rays to total absorbed doses up to 10 MGy. The mechanical properties of the smaples were examined. Infrared spectroscopy, differential scanning calorimetry and X-ray scattering techniques were used to examine the morphology of the samples. The random copolymers are soft and easy to extend, because benzene rings which exisist highly at random hinder the crystallization. As for the radiation resistance, they are highly resistant to γ-rays in the aspects of carbonyl group formation, gel formation, and elongation. Further, they show even better radiation resistance when proper additives were compounded in. The graft copolymers are hard to extend, because they consist of segregated polystyrene and polyethylene regions which are connected with each other. The tensile strength of irradiated graft copolymers does not decrease below that of unirradiated copolymers, up to a total dose of 10 MGy. As a consequence, it can be said that ethylene-styrene copolymers have good radiation resistance owing to the so-called 'sponge' effect of benzene rings. (author)

  7. Dynamic and Capillary Shear Rheology of Natural Fiber-Reinforced Composites

    NARCIS (Netherlands)

    Moigne, Le N.; Oever, van den M.J.A.; Budtova, T.

    2013-01-01

    An extended dynamic and capillary rheological study of molten flax and sisal polypropylene (PP) composites was performed. Fiber concentration varied from 20 to 50 wt% and shear rate from 0.1 rad s−1 to 10,000 s#142;−1. Maleic anhydride-grafted-PP was used as compatibilizer; it strongly reduces PP

  8. Modification of cellulose with succinic anhydride in TBAA/DMSO mixed solvent under catalyst-free conditions

    Science.gov (United States)

    Ping-Ping Xin; Yao-Bing Huang; Chung-Yun Hse; Huai N. Cheng; Chaobo Huang; Hui. Pan

    2017-01-01

    Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS)...

  9. 21 CFR 177.1050 - Acrylonitrile/styrene copoly-mer modified with butadiene/styrene elastomer.

    Science.gov (United States)

    2010-04-01

    ... parts by weight of a grafted rubber consisting of (i) 8-12 parts of butadiene/styrene elastomer... limitations are determined by an infrared spectro-photo-metric method titled “Infrared Spectro-photo-metric...

  10. Radical coupling of maleic anhydride onto graphite to fabricate ...

    Indian Academy of Sciences (India)

    graphene is oxidation of graphite to graphene oxide (GO) and subsequently modification of GO with modifiers [5,6]. However, oxidation process is performed under harsh condi- tions with different oxidizing agents such ..... Sci. 87 392. [20] Nakajima T, Žemva B and Tressaud A 2000 Advanced inor- ganic fluorides: synthesis ...

  11. Conceptual process design of extractive distillation processes for ethylbenzene/styrene separation

    NARCIS (Netherlands)

    Jongmans, Mark; Hermens, E.; Raijmakers, M.; Maassen, J.I.W.; Schuur, Boelo; de Haan, A.B.

    2012-01-01

    In the current styrene production process the distillation of the close-boiling ethylbenzene/styrene mixture to obtain an ethylbenzene impurity level of 100 ppm in styrene accounts for 75–80% of the energy requirements. The future target is to reach a level of 1–10 ppm, which will increase the

  12. Synaptic contacts impaired by styrene-7,8-oxide toxicity

    International Nuclear Information System (INIS)

    Corsi, P.; D'Aprile, A.; Nico, B.; Costa, G.L.; Assennato, G.

    2007-01-01

    Styrene-7,8-oxide (SO), a chemical compound widely used in industrial applications, is a potential hazard for humans, particularly in occupational settings. Neurobehavioral changes are consistently observed in occupationally exposed individuals and alterations of neurotransmitters associated with neuronal loss have been reported in animal models. Although the toxic effects of styrene have been extensively documented, the molecular mechanisms responsible for SO-induced neurotoxicity are still unclear. A possible dopamine-mediated effect of styrene neurotoxicity has been previously demonstrated, since styrene oxide alters dopamine neurotransmission in the brain. Thus, the present study hypothesizes that styrene neurotoxicity may involve synaptic contacts. Primary striatal neurons were exposed to styrene oxide at different concentrations (0.1-1 mM) for different time periods (8, 16, and 24 h) to evaluate the dose able to induce synaptic impairments. The expression of proteins crucial for synaptic transmission such as Synapsin, Synaptophysin, and RAC-1 were considered. The levels of Synaptophysin and RAC-1 decreased in a dose-dependent manner. Accordingly, morphological alterations, observed at the ultrastructural level, primarily involved the pre-synaptic compartment. In SO-exposed cultures, the biochemical cascade of caspases was activated affecting the cytoskeleton components as their target. Thus the impairments in synaptic contacts observed in SO-exposed cultures might reflect a primarily morphological alteration of neuronal cytoskeleton. In addition, our data support the hypothesis developed by previous authors of reactive oxygen species (ROS) initiating events of SO cytotoxicity

  13. Properties and quality verification of biodiesel produced from tobacco seed oil

    Energy Technology Data Exchange (ETDEWEB)

    Usta, N., E-mail: n_usta@pau.edu.t [Pamukkale University, Mechanical Engineering Department, 20070 Denizli (Turkey); Aydogan, B. [Pamukkale University, Mechanical Engineering Department, 20070 Denizli (Turkey); Con, A.H. [Pamukkale University, Food Engineering Department, 20070 Denizli (Turkey); Uguzdogan, E. [Pamukkale University, Chemical Engineering Department, 20070 Denizli (Turkey); Ozkal, S.G. [Pamukkale University, Food Engineering Department, 20070 Denizli (Turkey)

    2011-05-15

    Research highlights: {yields} High quality biodiesel fuel can be produced from tobacco seed oil. {yields} Pyrogallol was found to be effective antioxidant improving the oxidation stability. {yields} The iodine number was reduced with a biodiesel including more saturated fatty acids. {yields} Octadecene-1-maleic anhydride copolymer was an effective cold flow improver. {yields} The appropriate amounts of the additives do not affect the properties negatively. -- Abstract: Tobacco seed oil has been evaluated as a feedstock for biodiesel production. In this study, all properties of the biodiesel that was produced from tobacco seed oil were examined and some solutions were derived to bring all properties of the biodiesel within European Biodiesel Standard EN14214 to verify biodiesel quality. Among the properties, only oxidation stability and iodine number of the biodiesel, which mainly depend on fatty acid composition of the oil, were not within the limits of the standard. Six different antioxidants that are tert-butylhydroquinone, butylated hydroxytoluene, propyl gallate, pyrogallol, {alpha}-tocopherol and butylated hydroxyanisole were used to improve the oxidation stability. Among them, pyrogallol was found to be the most effective antioxidant. The iodine number was improved with blending the biodiesel produced from tobacco seed oil with a biodiesel that contains more saturated fatty acids. However, the blending caused increasing the cold filter plugging point. Therefore, four different cold flow improvers, which are ethylene-vinyl acetate copolymer, octadecene-1-maleic anhydride copolymer and two commercial cold flow improvers, were used to decrease cold filter plugging point of the biodiesel and the blends. Among the improvers, the best improver is said to be octadecene-1-maleic anhydride copolymer. In addition, effects of temperature on the density and the viscosity of the biodiesel were investigated.

  14. Synthesis and characterization of the polystyrene - asphaltene graft copolymer BY FT-IR spectroscopy

    International Nuclear Information System (INIS)

    Leo, Adan Yovani; Salazar Ramiro

    2008-01-01

    The creation of new polymer compounds to be added to asphalt has drawn considerable attention because these substances have succeeded in modifying the asphalt rheological characteristics and physical properties for the enhancement of its behavior during the time of use. This work explains the synthesis of a new graft copolymer based on an asphalt fraction called asphaltene, modified with maleic anhydride. Polystyrene functionalization is conducted in a parallel fashion in order to obtain polybenzylamine resin with an amine - NH2 free group that reacts with the anhydride graft groups in the asphaltene, thus obtaining the new Polystyrene/Asphaltene graft copolymer

  15. 1-O-vinyl glycosides via Tebbe olefination, their use as chiral auxiliaries and monomers.

    Science.gov (United States)

    Yuan, Jialong; Lindner, Kristof; Frauenrath, Holger

    2006-07-21

    A series of anomerically pure 1-O-formyl glycosides 1 was prepared and converted into the corresponding 1-O-vinyl glycosides 2 by Tebbe olefination. The unsubstituted vinyl glycosides were obtained as anomerically pure compounds in good yields, and the method of preparation was compatible with the presence of a variety of functional groups. Remarkably, the anomeric formate group was regioselectively converted into the corresponding olefin in the presence of acetate and benzoate protecting groups. With the perspective to use the 1-O-vinyl glycosides as monomers for the preparation of glycosylated poly(vinyl alcohol) derivatives with controlled tacticity, their scope as chiral auxiliaries for a stereodifferentiation in addition reactions to the olefin function was investigated by using the [2+2] cycloaddition to dichloroketene as a model reaction. In particular, vinyl 2,3,4,6-tetra-O-benzoyl-alpha-d-mannopyranoside (2i) exhibited excellent diastereoselectivity. Finally, the 1-O-vinyl glycosides were successfully subjected to radical homopolymerization in bulk or used as electron-rich comonomers in radical copolymerizations with maleic anhydride, yielding alternating, glycosylated poly(vinyl alcohol-alt-maleic anhydride).

  16. Styrene vapor control systems in FRP yacht plants.

    Science.gov (United States)

    Todd, W F

    1985-01-01

    The production of large (greater than 25-ft) fiber-reinforced plastic (FRP) yachts has presented problems of styrene exposure in excess of the Occupational Safety and Health Administration permissible exposure level (OSHA PEL) of 100 ppm. Also, the National Institute for Occupational Safety and Health (NIOSH) is currently recommending a 10-hour workshift, 40-hour workweek time weighted average (TWA) of 50 ppm for styrene. Meeting this challenge will require a system of engineering, work practice, personal protective equipment, and monitoring control measures. NIOSH has performed a study of the engineering controls in three FRP yacht plants. Work practices and the use of personal protective equipment (PPE) were also considered in the evaluation. The three systems evaluated included a dilution system, a local ventilation system, and a push-pull ventilation system. The cost of constructing and operating these systems was not evaluated in this study. Study results indicated that each type of ventilation system can meet the present PEL of 100 ppm styrene; however, it is not certain that these systems can meet a lower PEL of 50 ppm styrene.

  17. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate and...

  18. Photophysical processes study for poly (P-substituted styrenes) in solid films and in solutions

    International Nuclear Information System (INIS)

    Al-Hakeem, I.A.

    1985-01-01

    In this work, the absorption and emission spectra of poly (P-NN dimethyl amino styrene), poly (P-Fluoro Styrene), poly (P-CH2OCH3 styrene), poly (P-Methyl (styrene), poly(P-Tertiary butyl styrene) have been studied in solid films and solutions. The effect of added dimethylterph-thalate as a quencher to the fluorescence emission of the polymers used in this work were studied.(5 tabs., 39 figs., 60 refs.)

  19. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  20. Synthesis and characterization of poly(styrene-co-methyl methacrylate)

    International Nuclear Information System (INIS)

    Augustinho, Tiago R.; Abarca, Silvia A.C.; Machado, Ricardo A.F.

    2011-01-01

    Polystyrene (PS) is nowadays commonly used due its advantages over competitors. PS presents a lower cost when compared with Acrylonitrile Butadiene Styrene (ABS) and with Polyethylene Tere-phthalate (PET), and can be easier processed than polypropylene (PP). At expandable form (EPS), can be used as projective equipment, thermal insulation, floating boards, refrigerators, isothermal, and low cost applications such as packaging and disposable material. Searching for more resistant materials and with a low cost, researches with copolymers materials are being developed. In this study, copolymerization reactions were carried out by suspension polymerization using monomers styrene and methyl methacrylate (MMA) with styrene. Styrene was in the highest percentage in relation to the MMA. The MMA was selected because is a monomer that presents a higher resistance than PS. The copolymerization was confirmed by performing infrared spectroscopy (IR), nuclear magnetic resonance of hydrogen (RMN 1 H), differential scanning calorimetry (DSC) and thermogravimetry (TGA). (author)

  1. Occupational Styrene Exposure on Auditory Function Among Adults: A Systematic Review of Selected Workers.

    Science.gov (United States)

    Pleban, Francis T; Oketope, Olutosin; Shrestha, Laxmi

    2017-12-01

    A review study was conducted to examine the adverse effects of styrene, styrene mixtures, or styrene and/or styrene mixtures and noise on the auditory system in humans employed in occupational settings. The search included peer-reviewed articles published in English language involving human volunteers spanning a 25-year period (1990-2015). Studies included peer review journals, case-control studies, and case reports. Animal studies were excluded. An initial search identified 40 studies. After screening for inclusion, 13 studies were retrieved for full journal detail examination and review. As a whole, the results range from no to mild associations between styrene exposure and auditory dysfunction, noting relatively small sample sizes. However, four studies investigating styrene with other organic solvent mixtures and noise suggested combined exposures to both styrene organic solvent mixtures may be more ototoxic than exposure to noise alone. There is little literature examining the effect of styrene on auditory functioning in humans. Nonetheless, findings suggest public health professionals and policy makers should be made aware of the future research needs pertaining to hearing impairment and ototoxicity from styrene. It is recommended that chronic styrene-exposed individuals be routinely evaluated with a comprehensive audiological test battery to detect early signs of auditory dysfunction.

  2. Cooperative effects for CYP2E1 differ between styrene and its metabolites

    Science.gov (United States)

    Hartman, Jessica H.; Boysen, Gunnar; Miller, Grover P.

    2014-01-01

    Cooperative interactions are frequently observed in the metabolism of drugs and pollutants by cytochrome P450s; nevertheless, the molecular determinants for cooperativity remain elusive. Previously, we demonstrated that steady-state styrene metabolism by CYP2E1 exhibits positive cooperativity.We hypothesized that styrene metabolites have lower affinity than styrene toward CYP2E1 and limited ability to induce cooperative effects during metabolism. To test the hypothesis, we determined the potency and mechanism of inhibition for styrene and its metabolites toward oxidation of 4-nitrophenol using CYP2E1 Supersomes® and human liver microsomes.Styrene inhibited the reaction through a mixed cooperative mechanism with high affinity for the catalytic site (67 μM) and lower affinity for the cooperative site (1100 μM), while increasing substrate turnover at high concentrations. Styrene oxide and 4-vinylphenol possessed similar affinity for CYP2E1. Styrene oxide behaved cooperatively like styrene, but 4-vinylphenol decreased turnover at high concentrations. Styrene glycol was a very poor competitive inhibitor. Among all compounds, there was a positive correlation with binding and hydrophobicity.Taken together, these findings for CYP2E1 further validate contributions of cooperative mechanisms to metabolic processes, demonstrate the role of molecular structure on those mechanisms and underscore the potential for heterotropic cooperative effects between different compounds. PMID:23327532

  3. Influence of natural fibers on the phase transitions in high-density polyethylene composites using dynamic mechanical analysis

    Science.gov (United States)

    Mehdi Tajvidi; Robert H. Falk; John C. Hermanson; Colin Felton

    2003-01-01

    Dynamic mechanical analysis was employed to evaluate the performance of various natural fibers in high-density polyethylene composites. Kenaf, newsprint, rice hulls, and wood flour were sources of fiber. Composites were made at 25 percent and 50 percent by weight fiber contents. Maleic anhydride modified polyethylene was also added at 1:25 ratio to the fiber....

  4. VOLUME 8 (2003) Sada and J. Guthrie ABSTRACT

    African Journals Online (AJOL)

    denise

    Conjugated dienes tend to form 1:1 Diels. Alder adducts instead of copolymerizing while non - conjugated dienes can react to form 1:1 or 1:2 copolymers with vinyl groups which are cyclic15. A more extensive description of the current knowledge on the kinetics of copolymerization of maleic anhydride with dienes is found in ...

  5. Coir fiber reinforced polypropylene composite panel for automotive interior applications

    Science.gov (United States)

    Nadir Ayrilmis; Songklod Jarusombuti; Vallayuth Fueangvivat; Piyawade Bauchongkol; Robert H. White

    2011-01-01

    In this study, physical, mechanical, and flammability properties of coconut fiber reinforced polypropylene (PP) composite panels were evaluated. Four levels of the coir fiber content (40, 50, 60, and 70 % based on the composition by weight) were mixed with the PP powder and a coupling agent, 3 wt % maleic anhydride grafted PP (MAPP) powder. The water resistance and the...

  6. Effects of fire retardants on physical, mechanical, and fire properties of flat-pressed WPCs

    Science.gov (United States)

    Nadir Ayrilmis; Jan T. Benthien; Heiko Thoemen; Robert H. White

    2012-01-01

    Physical, mechanical, and fire properties of the flat-pressed wood plastic composites (WPCs) incorporated with various fire retardants (10% by weight) at different levels of wood flour (WF) content, 40, 50, or 60 wt%, were investigated. The WPC panels were made from dry-blended WF, polypropylene (PP), and fire retardant (FR) powders with maleic anhydride-grafted PP (2...

  7. Dynamic mechanical analysis of compatibilizer effect on the mechanical properties of wood flour/high-density polyethylene composites

    Science.gov (United States)

    Mehdi Behzad; Medhi Tajvidi; Ghanbar Ehrahimi; Robert H. Falk

    2004-01-01

    In this study, effect of MAPE (maleic anhydride polyethylene) as the compatibilizer on the mechanical properties of wood-flour polyethylene composites has been investigated by using Dynamic Mechanical Analysis (DMA). Composites were made at 25% and 50% by weight fiber contents and 1% and 2% compatibilizer respectively. Controls were also made at the same fiber contents...

  8. Plasma modification of polypropylene surfaces and its alloying with styrene in situ

    Energy Technology Data Exchange (ETDEWEB)

    Ma Guiqiu, E-mail: magq@tju.edu.cn [School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 (China); Liu Ben; Li Chen; Huang Dinghai; Sheng Jing [School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 (China)

    2012-01-15

    The treatment of polypropylene surfaces has been studied by dielectric barrier discharges plasma of Ar. The structure and morphology of polypropylene surfaces of Ar plasma modification are characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectrometers and scanning electron microscope. The modified by plasma treatment of iPP (isotactic polypropylene) surface properties have been examined in a determination of free radicals. The modified active surfaces of polypropylene can induce grafting copolymerization of styrene onto polypropylene. The structure of grafting copolymer is characterized and the grafting percent of styrene onto polypropylene is calculated. The homopolymer of styrene can be formed under grafting copolymerization of styrene onto polypropylene, which follows that the alloying of polypropylene with styrene is achieved in situ.

  9. Binary and ternary LLE data of the system (ethylbenzene + styrene + 1-ethyl-3-methylimidazolium thiocyanate) and binary VLE data of the system (styrene + 1-ethyl-3-methylimidazolium thiocyanate)

    International Nuclear Information System (INIS)

    Jongmans, Mark T.G.; Schuur, Boelo; Haan, André B. de

    2012-01-01

    Highlights: ► LLE data have been measured for the system {ethylbenzene + styrene + [EMIM][SCN]}. ► VLE was determined for the system {styrene + [EMIM][SCN]} at vacuum conditions. ► All experimental data were correlated well with the NRTL model. ► [EMIM][SCN] has a much larger selectivity than the benchmark solvent sulfolane. - Abstract: The distillation of close boiling mixtures may be improved by adding a proper affinity solvent, and thereby creating an extractive distillation process. An example of a close boiling mixture that may be separated by extractive distillation is the mixture ethylbenzene/styrene. The ionic liquid 1-ethyl-3-methylimidazolium thiocyanate ([EMIM][SCN]) is a promising solvent to separate ethylbenzene and styrene by extractive distillation. In this study, (vapour + liquid) equilibrium data have been measured for the binary system (styrene + [EMIM][SCN]) over the pressure range of (3 to 20) kPa and binary and ternary (liquid + liquid) equilibrium data of the system (ethylbenzene + styrene + [EMIM][SCN]) at temperatures (313.2, 333.2 and 353.2) K. Due to the low solubility of ethylbenzene in [EMIM][SCN], it was not possible to measure accurately VLE data of the binary system (ethylbenzene + [EMIM][SCN]) and of the ternary system (ethylbenzene + styrene + [EMIM][SCN]) using the ebulliometer. Because previous work showed that the LLE selectivity is a good measure for the selectivity in VLE, we determined the selectivity with LLE. The selectivity of [EMIM][SCN] to styrene in LLE measurements ranges from 2.1 at high styrene raffinate purity to 2.6 at high ethylbenzene raffinate purity. The NRTL model can properly describe the experimental results. The rRMSD in temperature, pressure and mole fraction for the binary VLE data are respectively (0.1, 0.12 and 0.13)%. The rRMSD is only 0.7% in mole fraction for the LLE data.

  10. Comparing in situ removal strategies for improving styrene bioproduction.

    Science.gov (United States)

    McKenna, Rebekah; Moya, Luis; McDaniel, Matthew; Nielsen, David R

    2015-01-01

    As an important conventional monomer compound, the biological production of styrene carries significant promise with respect to creating novel sustainable materials. Since end-product toxicity presently limits styrene production by previously engineered Escherichia coli, in situ product removal by both solvent extraction and gas stripping were explored as process-based strategies for circumventing its inhibitory effects. In solvent extraction, the addition of bis(2-ethylhexyl)phthalate offered the greatest productivity enhancement, allowing net volumetric production of 836 ± 64 mg/L to be reached, representing a 320 % improvement over single-phase cultures. Gas stripping rates, meanwhile, were controlled by rates of bioreactor agitation and, to a greater extent, aeration. A periodic gas stripping protocol ultimately enabled up to 561 ± 15 mg/L styrene to be attained. Lastly, by relieving the effects of styrene toxicity, new insight was gained regarding subsequent factors limiting its biosynthesis in E. coli and strategies for future strain improvement are discussed.

  11. Alternating copolymerization of epoxides with anhydrides initiated by organic bases

    Czech Academy of Sciences Publication Activity Database

    Hošťálek, Z.; Trhlíková, Olga; Walterová, Zuzana; Martinez, T.; Peruch, F.; Cramail, H.; Merna, J.

    2017-01-01

    Roč. 88, March (2017), s. 433-447 ISSN 0014-3057 Institutional support: RVO:61389013 Keywords : copolymerization * epoxides * anhydrides Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.531, year: 2016

  12. Occupational Styrene Exposure Induces Stress-Responsive Genes Involved in Cytoprotective and Cytotoxic Activities

    Science.gov (United States)

    Strafella, Elisabetta; Bracci, Massimo; Staffolani, Sara; Manzella, Nicola; Giantomasi, Daniele; Valentino, Matteo; Amati, Monica; Tomasetti, Marco; Santarelli, Lory

    2013-01-01

    Objective The aim of this study was to evaluate the expression of a panel of genes involved in toxicology in response to styrene exposure at levels below the occupational standard setting. Methods Workers in a fiber glass boat industry were evaluated for a panel of stress- and toxicity-related genes and associated with biochemical parameters related to hepatic injury. Urinary styrene metabolites (MA+PGA) of subjects and environmental sampling data collected for air at workplace were used to estimate styrene exposure. Results Expression array analysis revealed massive upregulation of genes encoding stress-responsive proteins (HSPA1L, EGR1, IL-6, IL-1β, TNSF10 and TNFα) in the styrene-exposed group; the levels of cytokines released were further confirmed in serum. The exposed workers were then stratified by styrene exposure levels. EGR1 gene upregulation paralleled the expression and transcriptional protein levels of IL-6, TNSF10 and TNFα in styrene exposed workers, even at low level. The activation of the EGR1 pathway observed at low-styrene exposure was associated with a slight increase of hepatic markers found in highly exposed subjects, even though they were within normal range. The ALT and AST levels were not affected by alcohol consumption, and positively correlated with urinary styrene metabolites as evaluated by multiple regression analysis. Conclusion The pro-inflammatory cytokines IL-6 and TNFα are the primary mediators of processes involved in the hepatic injury response and regeneration. Here, we show that styrene induced stress responsive genes involved in cytoprotection and cytotoxicity at low-exposure, that proceed to a mild subclinical hepatic toxicity at high-styrene exposure. PMID:24086524

  13. Selective deoxygenation of stearic acid via an anhydride pathway

    NARCIS (Netherlands)

    Hollak, S.A.W.; Bitter, W.; Haveren, van J.; Es, van D.S.

    2012-01-01

    Stearic anhydride is proposed as reactive intermediate in the hydrogen free decarbonylation and ketonization of stearic acid over Pd/Al2O3 at 523 K. This information is crucial towards developing of a selective low temperature decarbonylation process of fatty acids towards olefins.

  14. Atom transfer radical copolymerization of styrene and butyl acrylate

    NARCIS (Netherlands)

    Chambard, G.; Klumperman, B.; Matyjaszewski, K.

    2000-01-01

    Atom transfer radical polymerization of styrene and butyl acrylate has been investigated from a kinetic point of view. Attention is focused on the activation of the dormant species as well as on the termination that plays a role in these reactions. It has been shown that the activation of a styrene

  15. Occupational Styrene Exposure on Auditory Function Among Adults: A Systematic Review of Selected Workers

    Directory of Open Access Journals (Sweden)

    Francis T. Pleban

    2017-12-01

    Full Text Available A review study was conducted to examine the adverse effects of styrene, styrene mixtures, or styrene and/or styrene mixtures and noise on the auditory system in humans employed in occupational settings. The search included peer-reviewed articles published in English language involving human volunteers spanning a 25-year period (1990–2015. Studies included peer review journals, case–control studies, and case reports. Animal studies were excluded. An initial search identified 40 studies. After screening for inclusion, 13 studies were retrieved for full journal detail examination and review. As a whole, the results range from no to mild associations between styrene exposure and auditory dysfunction, noting relatively small sample sizes. However, four studies investigating styrene with other organic solvent mixtures and noise suggested combined exposures to both styrene organic solvent mixtures may be more ototoxic than exposure to noise alone. There is little literature examining the effect of styrene on auditory functioning in humans. Nonetheless, findings suggest public health professionals and policy makers should be made aware of the future research needs pertaining to hearing impairment and ototoxicity from styrene. It is recommended that chronic styrene-exposed individuals be routinely evaluated with a comprehensive audiological test battery to detect early signs of auditory dysfunction. Keywords: auditory system, human exposure, ototoxicity, styrene

  16. Synthesized cellulose/succinic anhydride as an ion exchanger. Calorimetry of divalent cations in aqueous suspension

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Julio C.P. [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil); Silva Filho, Edson C. [LIMAV, Federal University of Piaui, 64049-550 Teresina, Piaui (Brazil); Santana, Sirlane A.A. [Departamento de Quimica/CCET, Universidade Federal do Maranhao, Av. dos Portugueses S/N, Campus do Bacanga, 65080-540 Sao Luiz, MA (Brazil); Airoldi, Claudio, E-mail: airoldi@iqm.unicamp.br [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil)

    2011-09-20

    Highlights: {yields} Synthetic route based on anhydride melting point. {yields} Cellulosic biopolymer/anhydride as ion exchanger. {yields} Calorimetry of cation exchange at solid/liquid interface. {yields} Favorable thermodynamic data of exchanging process. - Abstract: A synthetic route to a biopolymer/anhydride ion exchanger adds cellulose directly to molten succinic anhydride in a quasi solvent-free procedure. An amount of 3.07 {+-} 0.05 mmol of pendant groups incorporated onto the polymeric structure, which was characterized by elemental analysis, solid state carbon NMR, infrared, X-ray and thermogravimetry. The new polysaccharide is able to exchange cations from aqueous solution through a batchwise methodology, to obtain 2.46 {+-} 0.09 mmol g{sup -1} for divalent cobalt and nickel cations. The net thermal effects obtained from calorimetric titrations gave endothermic values of 3.81 {+-} 0.02 and 2.35 {+-} 0.01 kJ mol{sup -1}. The spontaneity of this ion-exchange process reflected in negative Gibbs energies and also a positive entropic contribution. These thermodynamic data at the solid/liquid interface suggests a favorable ion exchange process for this anchored biopolymer, for cation removal from the environment.

  17. Synthesis of soft shell poly(styrene) colloids for filtration experiments

    DEFF Research Database (Denmark)

    Hinge, Mogens

    Separating a solid from a liquid is an important unit operation in many different industries e.g. mining, chemical, pharmaceutical and food industries. Solid liquid separation can roughly be divided into three groups. 1) Separation by gravity forces e.g. sedimentation, centrifugation, 2) Separation...... consisting of a solid poly(styrene) (PS) core with a water swollen shell have been employed in investigating the effect from varying amounts and type of water swollen material on filtration dewatering properties. Three series of model material have been used in this investigation 1) poly......(styrene-co-acrylic acid) core-shell colloids with varying thickness of the poly(acrylic acid) (PAA) shell. 2) poly(styrene-co-acrylic acid) core-shell colloids with varying diameter of the PS core and 3) poly(styrene-co-N-isopropylacrylamide) core-shell colloids with varying thickness of the poly...

  18. Modified Method for Detection of Benzoylecgonine in Human Urine by GC-MS: Derivatization Using Pentafluoropropanol/Acetic Anhydride.

    Science.gov (United States)

    Serafin, Michelle C; Paulemon, Kasandra M; Fuller, Zachary J; Bronner, William E

    2017-05-01

    An existing GC-MS method for detecting benzoylecgonine (BZE) in urine was modified by changing derivatizing reagents. This method modification presents a cost-effective alternative derivatization procedure for the detection of BZE in urine by GC-MS. The combination of pentafluoropropanol and acetic anhydride was found to produce the same reaction product for BZE as pentafluoropropanol with pentafluoropropionic anhydride, while reducing reagent cost. With no anhydride present, derivatization of BZE by pentafluoropropanol did not occur. Published by Oxford University Press 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. Block copolymer assisted self-assembly of nanoparticles into Langmuir–Blodgett films: Effect of polymer concentration

    International Nuclear Information System (INIS)

    Martín-García, Beatriz; Velázquez, M. Mercedes

    2013-01-01

    We propose to use the self-assembly ability of a block copolymer to obtain CdSe quantum dots (QDs) structures of different morphology. The methodology proposed consist in transferring mixed Langmuir monolayers of QDs and the polymer poly (styrene-co-maleic anhydride) partial 2 buthoxy ethyl ester cumene terminated, PS-MA-BEE onto mica by the Langmuir–Blodgett (LB) methodology. The morphology of the LB films was analyzed by AFM and TEM measurements. Our results show that it is possible to modulate the self-assembly process by modifying the composition of the mixed Langmuir monolayer precursor of the LB film. The different morphologies are interpreted according to two different dewetting mechanisms, growth of holes and spinodal-like dewetting. The growth of holes dewetting process is driven by gravitatory effects and was observed for LB films obtained by transferring Langmuir monolayer of the smallest elasticity values in which the polymer is in brush conformation. The spinodal dewetting mechanism prevailed when the Langmuir monolayer presents the highest elasticity values. - Graphical abstract: Display Omitted - Highlights: • Effect of the surface composition on the LB films architecture. • QDs/polymer LB films morphology interpreted in terms of dewetting mechanism. • The dewetting mechanism depends on the Langmuir monolayer state

  20. Block copolymer assisted self-assembly of nanoparticles into Langmuir–Blodgett films: Effect of polymer concentration

    Energy Technology Data Exchange (ETDEWEB)

    Martín-García, Beatriz; Velázquez, M. Mercedes, E-mail: mvsal@usal.es

    2013-08-15

    We propose to use the self-assembly ability of a block copolymer to obtain CdSe quantum dots (QDs) structures of different morphology. The methodology proposed consist in transferring mixed Langmuir monolayers of QDs and the polymer poly (styrene-co-maleic anhydride) partial 2 buthoxy ethyl ester cumene terminated, PS-MA-BEE onto mica by the Langmuir–Blodgett (LB) methodology. The morphology of the LB films was analyzed by AFM and TEM measurements. Our results show that it is possible to modulate the self-assembly process by modifying the composition of the mixed Langmuir monolayer precursor of the LB film. The different morphologies are interpreted according to two different dewetting mechanisms, growth of holes and spinodal-like dewetting. The growth of holes dewetting process is driven by gravitatory effects and was observed for LB films obtained by transferring Langmuir monolayer of the smallest elasticity values in which the polymer is in brush conformation. The spinodal dewetting mechanism prevailed when the Langmuir monolayer presents the highest elasticity values. - Graphical abstract: Display Omitted - Highlights: • Effect of the surface composition on the LB films architecture. • QDs/polymer LB films morphology interpreted in terms of dewetting mechanism. • The dewetting mechanism depends on the Langmuir monolayer state.

  1. Facile approach to prepare pH and redox-responsive nanogels via Diels-Alder click reaction

    Directory of Open Access Journals (Sweden)

    C. M. Q. Le

    2018-08-01

    Full Text Available A novel pH and redox responsive system of sub-100 nm nanogels was prepared by arm-first approach via Diels-Alder click reaction. First, well-defined poly(ethylene glycol-block-poly(styrene-alt-maleic anhydride (PEG-b-PSM was synthesized and subsequently functionalized with furfuryl amine, leading to the formation of the dual-functional block copolymer of PEG-b-PSMf. The furfuryl groups in the PSMf block were employed to incorporate a redox-responsive linkage and the carboxylic acid moieties generated through functionalization acted as a pH-responsive part. The Diels-Alder click reaction between a bismaleimide crosslinker and PEG-b-PSMf was conducted at 60 °C, affording star-like nanogel structures. Doxorubicin, a model anticancer drug, was loaded into to the core of the nanogels primarily by the ionic interaction with carboxylates of core blocks and a highest drug loading capacity of 38.1% was obtained. Furthermore, the in vitro profile showed a low release percentage (11.2% of DOX at PBS pH 7.4, whereas a burst release (62% at pH 5.0 in the presence of 10 mM glutathione, indicating the effective pH and redox responsive characteristic of the PEG-b-PSMf nanogels.

  2. [Male contraception - the current state of knowledge].

    Science.gov (United States)

    Zdrojewicz, Zygmynt; Kasperska, Karolina; Lewandowska, Marta

    2016-08-01

    Contraception is important from a health, psychological and socioeconomic point of view. Due to the fact that male-based contraceptive methods are mostly represented by condoms and vasectomy, researchers are working on the new solutions, which could let the men be more involved in a conscious family planning. In this review we will present the current state of knowledge on this subject. There is a lot going on in the field of hormonal contraception. Studies including testosterone, progestins, synthetic androgens and other derivatives are on a different stages of clinical trials and mostly demonstrate high efficacy rates. Recent discovers of Izumo and Juno proteins, essential for the fertilization process, give hope for an easily reversible, non-hormonal method. Researchers are also trying to interfere with the process of spermatogenesis using BRDT inhibitor - JQ1, or neutralize the sperm by injecting styrene maleic anhydride (SMA) into the lumen of the vas deferens. The other studies explore processes involved in proper sperm motility. A vaccine which induces an immune response to the reproductive system is also an interesting method. The latest research use ultrasound waves and mechanical device which blocks the patency of vas deferens. The aim of the study current state of knowledge male contraception. © 2016 MEDPRESS.

  3. Ab initio study of styrene isotopomers

    International Nuclear Information System (INIS)

    Zhang Jicheng; Tang Yongjian; Wu Weidong; Wang Hongyan; Zhu Zhenghe

    2002-01-01

    Using Gaussian98W program, the equilibrium geometry molecule structure of styrene has been optimized with HF/6-31G, MP2/6-31G and BLYP/6-31G methods. At same time, using BLYP/6-31G method, the harmonic frequency of styrene and its isotopomers, the bond energy of C-D bond (with ZPE correction), the intensity of IR spectrum are studied, and the modes of harmonic vibrational frequencies are simply discussed. At the same time, the effect of temperature and pressure on the thermodynamics parameter-entropy are studied. The results show that the calculated results are in good agreement with the experimental results

  4. Polyoxyethylene/styrene - a model system for studying reaction-induced phase separation (RIPS)

    International Nuclear Information System (INIS)

    Sutton, D.; Stanford, J.L.; Ryan, A.J.

    2003-01-01

    Full text: Reaction-induced, phase-separation has been studied in polymer blends. A model crystalline-amorphous system consisted of semi-crystalline polyoxyethylene (POE) dissolved in the monomer styrene, which was employed as a reactive solvent to ease processing. When the styrene was polymerised to polystyrene (PS) in the mould, phase-separation and phase-inversion are induced, and a polymer blend was formed. POE was selected with a molar mass, Mn = 8578 g mol -1 and a polydispersity of 1.19 as determined using GPC. The polymerisation of styrene was initiated using 1 wt-% benzoin methyl ether (BME) and 0.2 wt-% 2,2'-azobisisobutyronitrile (AIBN) under ultra-violet (UV) light. The polymerisation kinetics were determined by monitoring the reduction in the intensity of the C=C stretching vibration band at 1631 cm -1 in the Raman spectrum of styrene. The onset times for the liquid-solid (L-S) phase-separation and crystallisation of POE from styrene/PS were observed using simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). Onset times for L-S phase-separation determined from the SAXS data were combined with the styrene polymerisation kinetics to plot the L-S phase-separation data onto a ternary phase diagram for the reactive system POE/styrene/PS at 45 and 50 deg C

  5. Graft-copolymerization of styrene on polypropylene in the solid phase

    NARCIS (Netherlands)

    Beenen, W.; VanderWal, D.; Janssen, L.P.B.M.; Buijtenhuijs, A.; Hogt, A.H.; Wal, Douwe J. v.d.

    The graft-copolymerization of styrene on PP in the solid phase has been studied under various reaction conditions using a radical initiator. Polymerization kinetics were investigated by DSC experiments and reactions in glass ampoules. The conversion rate and grafting efficiency of styrene appeared

  6. Method of solidifying radioactive laundry wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro

    1984-01-01

    Purpose: To enable to solidify radioactive laundry wastes containing non-ionic liquid detergents less solidifiable by plastic solidification process in liquid laundry wastes for cloths or the likes discharged from a nuclear power plant. Method: Radioactive laundry wastes are solidified by using plastic solidifying agent comprising, as a main ingredient, unsaturated polyester resins and methylmethacrylate monomers. The plastic solidifying agents usable herein include, for example, unsaturated polyester resins prepared by condensating maleic anhydride and phthalic anhydride with propylene glycol and incorporated with methylmethacrylate monomers. The mixing ratio of the methylmethacrylate monomers is preferably 30 % by weight based on the unsaturated polyester resins. (Aizawa, K.)

  7. Controlled release from aspirin based linear biodegradable poly(anhydride esters) for anti-inflammatory activity.

    Science.gov (United States)

    Dasgupta, Queeny; Movva, Sahitya; Chatterjee, Kaushik; Madras, Giridhar

    2017-08-07

    This work reports the synthesis of a novel, aspirin-loaded, linear poly (anhydride ester) and provides mechanistic insights into the release of aspirin from this polymer for anti-inflammatory activity. As compared to conventional drug delivery systems that rely on diffusion based release, incorporation of bioactives in the polymer backbone is challenging and high loading is difficult to achieve. In the present study, we exploit the pentafunctional sugar alcohol (xylitol) to provide sites for drug (aspirin) attachment at its non-terminal OH groups. The terminal OH groups are polymerized with a diacid anhydride. The hydrolysis of the anhydride and ester bonds under physiological conditions release aspirin from the matrix. The resulting poly(anhydride ester) has high drug loading (53%) and displays controlled release kinetics of aspirin. The polymer releases 8.5 % and 20%, of the loaded drug in one and four weeks, respectively and has a release rate constant of 0.0035h -0.61 . The release rate is suitable for its use as an anti-inflammatory agent without being cytotoxic. The polymer exhibits good cytocompatibility and anti-inflammatory properties and may find applications as injectable or as an implantable bioactive material. The physical insights into the release mechanism can provide development of other drug loaded polymers. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Compatibility of anhydride cured epoxies with hexanitroazobenzene (HNAB) and hexanitrostilbene (HNS)

    International Nuclear Information System (INIS)

    Massis, T.M.; Wischmann, K.B.

    1985-01-01

    The explosives HNAB (hexanitroazobenzene) and HNS (hexanitrostilbene) have compatibility problems with amine-cured epoxy systems. A program was instituted to find compatible polymeric substitutes for use with these explosives. These polymeric materials must have rigid structures after curing for both adhesive and encapsulant applications. A promising class of epoxy materials using anhydride curing agents with various catalysts to trigger the cure reaction were developed. These polymeric systems have very good compatibility with HNS. Of those tested with HNAB, the anhydride epoxy system that used uranyl nitrate as the catalyst was found to be marginally compatible while the others were incompatible. These results indicated further studies are needed. The CRT (chemical reactivity test) was used to evaluate the compatibility of these materials. 6 references, 2 figures, 5 tables

  9. The Causes of Blistering in Boat Building Materials

    Science.gov (United States)

    1986-08-01

    acrylate units (MET) Ethylene glycol (MET) Propylene glycol (MET) Neopentyl glycol (NET) Maleic acid or anhydride (unsaturated) (NET) lumaric acid...PROPYLENE GLYCOL OPA ORTHOPHTHALIC ACID VINYL - URETHANE BASED POLYESTER IqPG NEOPENTYL GLYCOL RESIN EG - ETHYLENE GLYCOL TMPD - 22,, - TRiMETHY...IPA Isophthalic acid WSN Low molecular weight water soluble material NPG Neopentyl glycol OPA Orthophthalio acid PG Propylene glycol MEKP Hethyl

  10. Fundamental Studies of Butane Oxidation over Model-Supported Vanadium Oxide Catalysts: Molecular Structure-Reactivity Relationships

    NARCIS (Netherlands)

    Wachs, I.E.; Jehng, J.M.; Deo, G.; Weckhuysen, B.M.; Guliants, V.V.; Benziger, J.B.; Sundaresan, S.

    1997-01-01

    The oxidation of n-butane to maleic anhydride was investigated over a series of model-supported vanadia catalysts where the vanadia phase was present as a two-dimensional metal oxide overlayer on the different oxide supports (TiO2, ZrO2, CeO2, Nb2O5, Al2O3, and SiO2). No correlation was found

  11. Effect of boron compounds on physical, mechanical, and fire properties of injection molded wood plastic composites

    Science.gov (United States)

    Nadir Ayrilmis; Turgay Akbulut; Turker Dundar; Robert H. White; Fatih Mengeloglu; Zeki Candan; Umit Buyuksari; Erkan Avci

    2011-01-01

    Physical, mechanical, and fire properties of the injection-molded wood flour/polypropylene composites (WPCs) incorporated with different levels of boron compounds, borax/boric acid (BX/BA) (0.5:0.5 wt %) and zinc borate (ZB) (4, 8, or 12 wt %) were investigated. The effect of the coupling agent loading (2, 4, or 6 wt %), maleic anhydride-grafted PP (MAPP), on the...

  12. Properties of flat-pressed wood plastic composites containing fire retardants

    Science.gov (United States)

    Nadir Ayrilmis; Jan. T. Benthien; Heiko Thoemen; Robert H. White

    2011-01-01

    This study investigated physical, mechanical, and fire properties of the flat-pressed wood plastic composites (WPCs) incorporated with various fire retardants (FRs) [5 or 15% by weight (wt)] at 50 wt % of the wood flour (WF). The WPC panels were made from dry-blended WF, polypropylene (PP) with maleic anhydride grafted PP (2 wt %), and FR powder formulations using a...

  13. Graft polymerization of styrene onto starch by simultaneous cobalt-60 irradiation

    International Nuclear Information System (INIS)

    Fanta, G.F.; Burr, R.C.; Doane, W.M.; Russell, C.R.

    1977-01-01

    Starch-g-polystyrene copolymers have been prepared by the simultaneous 60 Co irradiation of starch--styrene mixtures, and copolymers have been characterized with respect to weight per cent polystyrene (% add-on) and also the molecular weight and molecular weight distribution of polystyrene grafts. In a typical polymerization, 4g each of starch and styrene were blended with 1 ml water and 1.5 ml of an organic solvent; the resulting semisolid paste was irradiated to a total dose of 1 Mrad. With ethylene glycol, acetonitrile, ethanol, methanol, acetone, and dimethylformamide as the organic solvent, values for % add-on ranged from 24% to 29%. The highest % add-on (43%) and the highest conversion of styrene to grafted polymer (76%) were obtained when the organic solvent was omitted, and water alone was used. When water was also omitted, polymerization of styrene was negligible; however, graft copolymer was formed in the absence of water when either ethylene glycol or ethanol was added. Attempts were unsuccessful to achieve a % add-on greater than 43% by doubling the amount of styrene in the polymerization recipe. Mixtures of equal weights of starch and styrene are relatively nonviscous, but these mixtures thicken when either water or ethylene glycol is blended in. Reasons for this thickening action and the possible influence of thickening on the graft polymerization reaction were explored

  14. Solvent influence during radiation induced grafting of styrene in PVDF

    International Nuclear Information System (INIS)

    Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B.

    2013-01-01

    Radiation-induced grafting was studied to produce styrene grafted poly(vinylidene fluoride) (PVDF) membranes. PVDF films with 0.125 mm thickness were irradiated at doses between 5 and 20 kGy in the presence of styrene/N,N-dimethylformamide (DMF), styrene/acetone or styrene/toluene solutions (1:1, v/v) at dose rate of 5 kGy h -1 by simultaneous method, using gamma rays from a Co-60, under nitrogen atmosphere and at room temperature. The films were characterized before and after modification by grafting yield (GY %), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM and EDS), differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). GY results shows that grafting increases with dose and toluene hinders the grafting, leading to a small GY comparing to DMF and acetone. It was possible to confirm the grafting of styrene by FT-IR due to the new characteristics peaks and by the TG and DSC due to changes in thermal behavior of the grafted material. SEM and EDS show surface and cross-section distribution of the grafting, which takes place on the surface and heterogeneously with toluene as solvent and homogeneously and penetrating into the inner layers of the matrix using DMF and acetone as solvent. (author)

  15. Solvent influence during radiation induced grafting of styrene in PVDF

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B., E-mail: hp.ferreira@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radiation-induced grafting was studied to produce styrene grafted poly(vinylidene fluoride) (PVDF) membranes. PVDF films with 0.125 mm thickness were irradiated at doses between 5 and 20 kGy in the presence of styrene/N,N-dimethylformamide (DMF), styrene/acetone or styrene/toluene solutions (1:1, v/v) at dose rate of 5 kGy h{sup -1} by simultaneous method, using gamma rays from a Co-60, under nitrogen atmosphere and at room temperature. The films were characterized before and after modification by grafting yield (GY %), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM and EDS), differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). GY results shows that grafting increases with dose and toluene hinders the grafting, leading to a small GY comparing to DMF and acetone. It was possible to confirm the grafting of styrene by FT-IR due to the new characteristics peaks and by the TG and DSC due to changes in thermal behavior of the grafted material. SEM and EDS show surface and cross-section distribution of the grafting, which takes place on the surface and heterogeneously with toluene as solvent and homogeneously and penetrating into the inner layers of the matrix using DMF and acetone as solvent. (author)

  16. Morphological and physical characterization of poly(styrene-isobutylene-styrene) block copolymers and ionomers thereof

    Science.gov (United States)

    Baugh, Daniel Webster, III

    Poly(styrene-isobutylene-styrene) block copolymers made by living cationic polymerization using a difunctional initiator and the sequential monomer addition technique were analyzed using curve-resolution software in conjunction with high-resolution GPC. Fractional precipitation and selective solvent extraction were applied to a representative sample in order to confirm the identity of contaminating species. The latter were found to be low molecular weight polystyrene homopolymer, diblock copolymer, and higher molecular weight segmented block copolymers formed by intermolecular electrophilic aromatic substitution linking reactions occurring late in the polymerization of the styrene outer blocks. Solvent-cast films of poly(styrene-isobutylene-styrene) (PS-PIB-PS) block copolymers and block ionomers were analyzed using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Four block copolymer samples with center block molecular weights of 52,000 g/mol and PS volume fractions (o sbPS) ranging from 0.17 to 0.31 were studied. All samples exhibited hexagonally packed cylinders of PS within the PIB matrix. Cylinder spacing was in the range 32 to 36 nm for most samples, while cylinder diameters varied from 14 to 21 nm. Porod analysis of the scattering data indicated the presence of isolated phase mixing and sharp phase boundaries. PS-PIB-PS block copolymers and ionomers therefrom were analyzed using dynamic mechanical analysis (DMA) and tensile testing. The study encompassed five block copolymer samples with similar PIB center blocks with molecular weights of approx52,000 g/mol and PS weight fractions ranging from 0.127 to 0.337. Ionomers were prepared from two of these materials by lightly sulfonating the PS outer blocks. Sulfonation levels varied from 1.7 to 4.7 mol % and the sodium and potassium neutralized forms were compared to the parent block copolymers. Dynamic mechanical analysis (DMA) of the block copolymer films indicated the existence

  17. Comparison of Extruder Systems for 3D Printer Filament Fabrication

    Science.gov (United States)

    Ramirez, Adriana

    Additive Manufacturing (AM) has grown in popularity over the past thirty years, due to its versatility, short design to product cycle, and capability to fabricate complex geometries, which cannot otherwise be produced. There exist several platforms that are able to print objects composed of different materials, making this technology significant in different fields such as: automotive, aerospace, medical, electronics, amongst others. Though several types of AM technologies are available, the expiration of the patents on fused deposition modeling (FDM) in 2009 has led to a widespread use of this platform in academia and home use settings. Widespread use of FDM-type AM platforms has led to a demand to fabricate feedstock materials for this AM platform. Particularly, in the home do it yourself (DIY) community there has been a widespread interest for users to manufacture their own feedstock filament leading to a large growth in home-use extrusion systems. The low cost of these desktop-grade systems has also made them attractive to academics, but there has not been a widespread effort into determining the efficacy of these small scale extrusion systems as compared to industrial quality extruders which are typically used to manufacture feedstock for FDM platforms. The aim of this study was to compare two extrusion processes: 1) a desktop grade single-screw extruder; and 2) an industrial scale twin-screw extruder. In order to understand differences between their performance and quality of mixing, a rubberized blend of acrylonitrile butadiene styrene (ABS) mixed with styrene ethylene butylene styrene with a maleic anhydride graft (SEBS-g-MA) at different ratios was compounded on each extrusion system. Melt flow index, and mechanical properties were compared. In addition, a raster pattern sensitivity study was performed to evaluate the effect of the extruder system on 3D printed objects. Finally, scanning electron microscopy (SEM) was used to examine the fracture surfaces

  18. Terpolymerization of 2-ethoxy ethylmethacrylate, styrene and maleic ...

    Indian Academy of Sciences (India)

    Unknown

    MMa, MSt and M2-EOEMA are molecular weights of Ma, St and 2-EOEMA monomer units, respectively. The compo- sition of terpolymers obtained by FTIR analysis is pre- sented in figure 1 and table 1. The donor–acceptor interaction between St and Ma results in equimolar (1 : 1) charge transfer complex (CTC) system and ...

  19. EVALUATION OF TRICKLE-BED AIR BIOFILTER PERFORMANCE FOR STYRENE REMOVAL

    Science.gov (United States)

    A pilot-scale trickle-bed air biofilter (TBAB) was evaluated for the removal of styrene from a waste gas stream. Six-millimeter (6 mm) Celite pellets (R-635) were used as the biological attachment medium. The operating parameters considered in the study included the styrene vol...

  20. Infrared and ultraviolet spectroscopic studies of low-temperature radiolysis of ethylene - styrene copolymers

    International Nuclear Information System (INIS)

    Mal'tseva, A.P.; Golikov, V.P.; Leshchenko, S.S.; Karpov, V.L.

    1977-01-01

    Certain features of low-temperature radiolysis of statistic ethylene-styrene copolymers have been studied by infrared and ultraviolet spectroscopy. It is shown that the nature of the accumulation and decay of trans-vinylene, vinyl and vinylidene double bonds in an ethylene-styrene copolymer is essentially influenced by both the dose absorbed and copolymer composition. A suggestion is made that the ethylene-styrene copolymer is formed when structures are irradiated containing double bonds conjugated with the phenyl rings of styrene groups - which more effectively dissipate the absorbed energy than solitary phenyl rings

  1. Company-level, semi-quantitative assessment of occupational styrene exposure when individual data are not available.

    Science.gov (United States)

    Kolstad, Henrik A; Sønderskov, Jette; Burstyn, Igor

    2005-03-01

    In epidemiological research, self-reported information about determinants and levels of occupational exposures is difficult to obtain, especially if the disease under study has a high mortality rate or follow-up has exceeded several years. In this paper, we present a semi-quantitative exposure assessment strategy for nested case-control studies of styrene exposure among workers of the Danish reinforced plastics industry when no information on job title, task or other indicators of individual exposure were readily available from cases and controls. The strategy takes advantage of the variability in styrene exposure level and styrene exposure probability across companies. The study comprised 1522 cases of selected malignancies and neurodegenerative diseases and controls employed in 230 reinforced plastics companies and other related industries. Between 1960 and 1996, 3057 measurements of styrene exposure level obtained from 191 companies, were identified. Mixed effects models were used to estimate expected styrene exposure levels by production characteristics for all companies. Styrene exposure probability within each company was estimated for all but three cases and controls from the fraction of laminators, which was reported by a sample of 945 living colleagues of the cases and controls and by employers and dealers of plastic raw materials. The estimates were validated from a subset of 427 living cases and controls that reported their own work as laminators in the industry. We computed styrene exposure scores that integrated estimated styrene exposure level and styrene exposure probability. Product (boats), process (hand and spray lamination) and calendar year period were the major determinants of styrene exposure level. Within-company styrene exposure variability increased by calendar year and was accounted for when computing the styrene exposure scores. Exposure probability estimates based on colleagues' reports showed the highest predictive values in the

  2. Novel Synthesis of Phytosterol Ester from Soybean Sterol and Acetic Anhydride.

    Science.gov (United States)

    Yang, Fuming; Oyeyinka, Samson A; Ma, Ying

    2016-07-01

    Phytosterols are important bioactive compounds which have several health benefits including reduction of serum cholesterol and preventing cardiovascular diseases. The most widely used method in the synthesis of its ester analogous form is the use of catalysts and solvents. These methods have been found to present some safety and health concern. In this paper, an alternative method of synthesizing phytosterol ester from soybean sterol and acetic anhydride was investigated. Process parameters such as mole ratio, temperature and time were optimized. The structure and physicochemical properties of phytosterol acetic ester were analyzed. By the use of gas chromatography, the mole ratio of soybean sterol and acetic anhydride needed for optimum esterification rate of 99.4% was 1:1 at 135 °C for 1.5 h. FTIR spectra confirmed the formation of phytosterol ester with strong absorption peaks at 1732 and 1250 cm(-1) , which corresponds to the stretching vibration of C=O and C-O-C, respectively. These peaks could be attributed to the formation of ester links which resulted from the reaction between the hydroxyl group of soybean sterol and the carbonyl group of acetic anhydride. This paper provides a better alternative to the synthesis of phytosterol ester without catalyst and solvent residues, which may have potential application in the food, health-care food, and pharmaceutical industries. © 2016 Institute of Food Technologists®

  3. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Science.gov (United States)

    2010-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

  4. Polymerization of styrene with cyclopentadienyl nickel complex/methylaluminoxane

    Science.gov (United States)

    Yu, Dongping; Zhang, Danfeng

    2017-09-01

    Polystyrene was synthesized by Cp(CH2CH2OCH3)NiCl(PPh3) in the presence of methylaluminoxane (MAO). This complex displayed a very high activity for styrene polymerization up to 107 g.mol-1Nih-1. 76.6% styrene was converted to polystyrene (PS) with an average molecular (Mn) of 1.13×105 at 50 °C in 30 min. The structure of the obtained polymer was characterized by 1H NMR and FT-IR.

  5. Olefin–Styrene Copolymers

    OpenAIRE

    Nunzia Galdi; Antonio Buonerba; Leone Oliva

    2016-01-01

    In this review are reported some of the most relevant achievements in the chemistry of the ethylene–styrene copolymerization and in the characterization of the copolymer materials. Focus is put on the relationship between the structure of the catalyst and that of the obtained copolymer. On the other hand, the wide variety of copolymer architecture is related to the properties of the material and to the potential utility.

  6. Mortality among styrene-exposed workers in the reinforced plastic boatbuilding industry.

    Science.gov (United States)

    Ruder, Avima M; Meyers, Alysha R; Bertke, Stephen J

    2016-02-01

    We updated mortality through 2011 for 5203 boat-building workers potentially exposed to styrene, and analysed mortality among 1678 employed a year or more between 1959 and 1978. The a priori hypotheses: excess leukaemia and lymphoma would be found. Standardised mortality ratios (SMRs) and 95% CIs and standardised rate ratios (SRRs) used Washington State rates and a person-years analysis programme, LTAS.NET. The SRR analysis compared outcomes among tertiles of estimated cumulative potential styrene exposure. Overall, 598 deaths (SMR=0.96, CI 0.89 to 1.04) included excess lung (SMR=1.23, CI 0.95 to 1.56) and ovarian cancer (SMR 3.08, CI 1.00 to 7.19), and chronic obstructive pulmonary disease (COPD) (SMR=1.15, CI 0.81 to 1.58). Among 580 workers with potential high-styrene exposure, COPD mortality increased 2-fold (SMR=2.02, CI 1.08 to 3.46). COPD was more pronounced among those with potential high-styrene exposure. However, no outcome was related to estimated cumulative styrene exposure, and there was no change when latency was taken into account. We found no excess leukaemia or lymphoma mortality. As in most occupational cohort studies, lack of information on lifestyle factors or other employment was a substantial limitation although we excluded from the analyses those (n=3525) who worked <1 year. Unanticipated excess ovarian cancer mortality could be a chance finding. Comparing subcohorts with potential high-styrene and low-styrene exposure, COPD mortality SRR was elevated while lung cancer SRR was not, suggesting that smoking was not the only cause for excess COPD mortality. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. Chemical functionalization of hyaluronic acid for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Vasi, Ana-Maria [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. dr. docent Dimitrie Mangeron Street, 700050 Iasi (Romania); Popa, Marcel Ionel, E-mail: mipopa@ch.tuiasi.ro [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. dr. docent Dimitrie Mangeron Street, 700050 Iasi (Romania); Butnaru, Maria [“Grigore T. Popa” University of Medicine Pharmacy, Faculty of Medical Bioengineering, 9-13 Kogalniceanu Street, 700454 Iasi (Romania); Dodi, Gianina [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. dr. docent Dimitrie Mangeron Street, 700050 Iasi (Romania); SCIENT — Research Center for Instrumental Analysis, S.C. CROMATEC PLUS, 18 Sos. Cotroceni, 060114 Bucharest (Romania); Verestiuc, Liliana [“Grigore T. Popa” University of Medicine Pharmacy, Faculty of Medical Bioengineering, 9-13 Kogalniceanu Street, 700454 Iasi (Romania)

    2014-05-01

    Functionalized hyaluronic acid (HA) derivatives were obtained by ring opening mechanism of maleic anhydride (MA). FTIR and H{sup 1} NMR spectroscopy were used to confirm the chemical linkage of MA on the hyaluronic acid chains. Thermal analysis (TG-DTG and DSC) and GPC data for the new products revealed the formation of new functional groups, without significant changes in molecular weight and thermal stability. New gels based on hyaluronic acid modified derivatives were obtained by acrylic acid copolymerization in the presence of a redox initiation system. The resulted circular and interconnected pores of the gels were visualized by SEM. The release profiles of an ophthalmic model drug, pilocarpine from tested gels were studied in simulated media. Evaluation of the cytotoxicity and cell proliferation properties indicates the potential of the new systems to be used in contact with biological media in drug delivery applications. - Highlights: • New functionalized hyaluronic acid was prepared by ring opening of maleic anhydride. • Gels with circular pores based on acrylic acid copolymerization were formulated. • In vitro drug loading/release profile was evaluated in simulated ophthalmic media. • The cytotoxicity indicates the potential of derivatives to be used in vivo.

  8. Kinetics of styrene biodegradation by Pseudomonas sp. E-93486.

    Science.gov (United States)

    Gąszczak, Agnieszka; Bartelmus, Grażyna; Greń, Izabela

    2012-01-01

    The research into kinetics of styrene biodegradation by bacterial strain Pseudomonas sp. E-93486 coming from VTT Culture Collection (Finland) was presented in this work. Microbial growth tests in the presence of styrene as the sole carbon and energy source were performed both in batch and continuous cultures. Batch experiments were conducted for initial concentration of styrene in the liquid phase changed in the range of 5-90 g m(-3). The Haldane model was found to be the best to fit the kinetic data, and the estimated constants of the equation were: μ (m) = 0.1188 h(-1), K(S) = 5.984 mg l(-1), and K (i) = 156.6 mg l(-1). The yield coefficient mean value [Formula in text] for the batch culture was 0.72 g(dry cells weight) (g(substrate))(-1). The experiments conducted in a chemostat at various dilution rates (D = 0.035-0.1 h(-1)) made it possible to determine the value of the coefficient for maintenance metabolism m (d) = 0.0165 h(-1) and the maximum yield coefficient value [Formula in text]. Chemostat experiments confirmed the high value of yield coefficient [Formula in text] observed in the batch culture. The conducted experiments showed high activity of the examined strain in the styrene biodegradation process and a relatively low sensitivity to inhibition of its growth at higher concentrations of styrene in the solution. Such exceptional features of Pseudomonas sp. E-93486 make this bacterial strain the perfect candidate for technical applications.

  9. Radiation-induced copolymerization of styrene/n-butyl acrylate in the presence of ultra-fine powdered styrene-butadiene rubber

    Energy Technology Data Exchange (ETDEWEB)

    Yu Haibo [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Peng Jing [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: jpeng@pku.edu.cn; Zhai Maolin; Li Jiuqiang; Wei Genshuan [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Qiao Jinliang [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013 (China)

    2007-11-15

    Styrene (St)/n-butyl acrylate (BA) copolymers were prepared by two-stage polymerization: St/BA was pre-polymerized to a viscous state by bulk polymerization with initiation by benzoyl peroxide (BPO) followed by {sup 60}Co {gamma}-ray radiation curing. The resultant copolymers had higher molecular weight and narrower molecular weight distribution than conventional methods. After incorporation of ultra-fine powdered styrene-butadiene rubber (UFSBR) with a particle size of 100 nm in the monomer, the glass transition temperature (T{sub g}) of St-BA copolymer increased at low rubber content. Both the St-BA copolymer and the St-BA copolymer/UFSBR composites had good transparency at BA content below 40%.

  10. Indirect rapid prototyping of antibacterial acid anhydride copolymer microneedles

    International Nuclear Information System (INIS)

    Boehm, Ryan D; Miller, Philip R; Singh, Ritika; Narayan, Roger J; Shah, Akash; Stafslien, Shane; Daniels, Justin

    2012-01-01

    Microneedles are needle-like projections with microscale features that may be used for transdermal delivery of a variety of pharmacologic agents, including antibacterial agents. In the study described in this paper, an indirect rapid prototyping approach involving a combination of visible light dynamic mask micro-stereolithography and micromolding was used to prepare microneedle arrays out of a biodegradable acid anhydride copolymer, Gantrez® AN 169 BF. Fourier transform infrared spectroscopy, energy dispersive x-ray spectrometry and nanoindentation studies were performed to evaluate the chemical and mechanical properties of the Gantrez® AN 169 BF material. Agar plating studies were used to evaluate the in vitro antimicrobial performance of these arrays against Bacillus subtilis, Candida albicans, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Large zones of growth inhibition were noted for Escherichia coli, S. aureus, Enterococcus faecalis and B. subtilis. The performance of Gantrez® AN 169 BF against several bacteria suggests that biodegradable acid anhydride copolymer microneedle arrays prepared using visible light dynamic mask micro-stereolithography micromolding may be useful for treating a variety of skin infections. (communication)

  11. Polyhedral Oligomeric Silsesquioxane (POSS) Styrene Macromers

    National Research Council Canada - National Science Library

    Haddad, Timothy

    2001-01-01

    .... Cyclohexyl, cyclopentyl and isobutyl substituted POSS-stryenes (at 30 weight % loadings) undergo free radical bulk polymerizations with styrene to produce polymers with an enhanced modulus above the glass transition temperature...

  12. Proton exchange membranes prepared by grafting of styrene/divinylbenzene into crosslinked PTFE membranes

    International Nuclear Information System (INIS)

    Li Jingye; Ichizuri, Shogo; Asano, Saneto; Mutou, Fumihiro; Ikeda, Shigetoshi; Iida, Minoru; Miura, Takaharu; Oshima, Akihiro; Tabata, Yoneho; Washio, Masakazu

    2005-01-01

    Thin PTFE membranes were prepared by coating the PTFE dispersion onto the aluminum films. Thus the thin crosslinked PTFE (RX-PTFE) membranes were obtained by means of electron beam irradiation above the melting temperature of PTFE under oxygen-free atmosphere. The RX-PTFE membranes were pre-irradiated and grafted by styrene with or without divinylbenzene (DVB) in liquid phase. The existence of DVB accelerated the initial grafting rate. The styrene grafted RX-PTFE membranes are white colored, on the other hand, the styrene/DVB grafted RX-PTFE membranes are colorless. The proton exchange membranes (PEMs) were obtained by sulfonating the grafted membranes using chlorosulfonic acid. The ion exchange capacity (IEC) values of the PEMs ranging from 1.5 to 2.8 meq/g were obtained. The PEMs made from the styrene/DVB grafted membranes showed higher chemical stability than those of the styrene grafted membranes under oxidative circumstance

  13. Morphology and Phase Transitions in Styrene-Butadiene-Styrene Triblock Copolymer Grafted with Isobutyl Substituted Polyhedral Oligomeric Silsesquioxanes (Postprint)

    National Research Council Canada - National Science Library

    Drazowski, Daniel B; Lee, Andre; Haddad, Timothy S

    2007-01-01

    Two symmetric triblock polystyrene-butadiene-polystyrene (SBS) copolymers with different styrene content were grafted with varying amounts of isobutyl-substituted polyhedral oligomeric silsesquioxane (POSS) molecules...

  14. Morphology and Phase Transitions in Styrene-Butadiene-Styrene Triblock Copolymer Grafted with Isobutyl Substituted Polyhedral Oligomeric Silsesquioxanes (preprint)

    National Research Council Canada - National Science Library

    Drazkowski, Daniel B; Lee, Andre; Haddad, Timothy S

    2006-01-01

    Two symmetric triblock polystyrene-butadiene-polystyrene (SBS) copolymers with different styrene content were grafted with varying amounts of isobutyl-substituted polyhedral oligomeric silsesquioxane (POSS) molecules...

  15. A sulfonic anhydride derivative from dibenzyl trisulphide with agro-chemical activities.

    Science.gov (United States)

    Williams, L A D; Vasquez, E; Klaiber, I; Kraus, W; Rosner, H

    2003-06-01

    In the present study, the biologically active natural product dibenzyl trisulphide (DTS) which was previously isolated from the sub-tropical shrub Petiveria alliacea was transformed to methyl benzyl sulphonic anhydride (MBSA) using a "one pot" transformation method. The anhydride was evaluated for anti-microbial activities on the bacteria, Bacillus subtilis and Pseudomonas fluorescens and found to be 2.5 fold more effective than the commercial agents isoniazid and ampicillin in inhibiting the growth of B. subtilis, while on P. fluorescens it was 2.5, 5.0 and 10.0 fold more inhibitory than isoniazid, ampicillin and dibenzyl trisulphide, respectively. DTS was inactive on B. subtillis. The MIC value (microgram/spot) found for DTS on the plant pathogenic fungus, Cladosporium cucumerinum was 5.0 microgram/spot, while MBSA gave a value of 0.1 microgram/spot, compared with 1.25 and 0.16 microgram/spot for the commercial agents ketoconazole and nystatin, respectively. On the larval nematode (Meloidogyne incognita) MBSA inflicted 97.72% and 57.47% Abbotts nematicidal activities at 125.0 and 62.5 ppm, respectively, while DTS had no effect at 125.0 ppm. Nematodes which were immobilized by the low concentrations of MBSA were unable to re-activate when exposed to 10.0 ppm picrotoxin, thus suggesting that the anhydride nematicidal activity is independent of the GABA-ergic neurophysiological pathway.MBSA demonstrated a strong dose dependent radicular suppression effect (r=0.984), on the radicles of Latuca sativa germinating seeds. DTS was weakly active.

  16. Cooxidation of styrene by horseradish peroxidase and phenols. A biochemical model for protein-mediated cooxidation

    International Nuclear Information System (INIS)

    Ortiz de Montellano, P.R.; Grab, L.A.

    1987-01-01

    Styrene is oxidized to styrene oxide and benzaldehyde when incubated with horseradish peroxidase, H 2 O 2 , and 4-methylphenol. Styrene oxide is not formed in the absence of any of these reaction components or of molecular oxygen. The coupling products 2-(4-methylphenoxy)-1-phenylethane, 2-(4-methylphenoxy)-1-phenylethan-1-ol, and 2-(4-methylphenoxy)-2-phenylethan-1-ol are not formed, but the ortho-linked dimer of 4-methylphenol is a major product. The epoxide oxygen is labeled in the presence of 18 O 2 but not H 2 18 O 2 . Styrene oxide formation is not inhibited by mannitol or superoxide dismutase. The stereochemistry of trans-[1- 2 H]styrene is partially scrambled in the epoxide product. EPR signals attributable to the 2,4-dihydroxyl-5-methylphenoxy radical, a product of the oxidation of 4-methylcatechol, are observed if Zn 2+ is added to stabilize the radical. This radical is only detected in the presence of styrene. The results imply that styrene is epoxidized by the hydroperoxy radical generated by addition of molecular oxygen to the 4-methylphenoxy radical. The epoxidation mimics the chemistry proposed to occur in the protein-mediated cooxidation of styrene by hemoglobin and myoglobin

  17. Styrene biofiltration in a trickle-bed reactor

    Directory of Open Access Journals (Sweden)

    V. Novak

    2008-04-01

    Full Text Available The biological treatment of styrene waste gas in a trickle-bed filter (TBF was investigated. The bioreactor consisted of a two-part glass cylinder (ID 150 mm filled with 25 mm polypropylene Pall rings serving as packing material. The bed height was 1m. Although the laboratory temperature was maintained at 22 ºC, the water temperature in the trickle-bed filter was slightly lower (about 18 ºC.The main aim of our study was to observe the effect of empty-bed residence time (EBRT on bioreactor performance at a constant pollutant concentration over an extended time period. The bioreactor was inoculated with a mixed microbial consortium isolated from a styrene-degrading biofilter that had been running for the previous two years. After three weeks of acclimation period, the bioreactor was loaded with styrene (100 mg.m-3. EBRT was in the range of 53 s to 13 s. A maximum elimination capacity (EC of 11.3 gC.m-3.h-1 was reached at an organic loading (OL rate of 18.6 gC.m-3.h-1.

  18. Development of Styrene-Grafted Polyurethane by Radiation-Based Techniques

    Directory of Open Access Journals (Sweden)

    Jin-Oh Jeong

    2016-06-01

    Full Text Available Polyurethane (PU is the fifth most common polymer in the general consumer market, following Polypropylene (PP, Polyethylene (PE, Polyvinyl chloride (PVC, and Polystyrene (PS, and the most common polymer for thermosetting resins. In particular, polyurethane has excellent hardness and heat resistance, is a widely used material for electronic products and automotive parts, and can be used to create products of various physical properties, including rigid and flexible foams, films, and fibers. However, the use of polar polymer polyurethane as an impact modifier of non-polar polymers is limited due to poor combustion resistance and impact resistance. In this study, we used gamma irradiation at 25 and 50 kGy to introduce the styrene of hydrophobic monomer on the polyurethane as an impact modifier of the non-polar polymer. To verify grafted styrene, we confirmed the phenyl group of styrene at 690 cm−1 by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR and at 6.4–6.8 ppm by 1H-Nuclear Magnetic Resonance (1H-NMR. Scanning Electron Microscope (SEM, X-ray Photoelectron Spectroscopy (XPS, Thermogravimetric Analysis (TGA and contact angle analysis were also used to confirm styrene introduction. This study has confirmed the possibility of applying high-functional composite through radiation-based techniques.

  19. [Mechanism and performance of styrene oxidation by O3/H2O2].

    Science.gov (United States)

    He, Jue-Cong; Huang, Qian-Ru; Ye, Qi-Hong; Luo, Yu-Wei; Zhang, Zai-Li; Fan, Qing-Juan; Wei, Zai-Shan

    2013-10-01

    It can produce a large number of free radicals in O3/H2O2, system, ozone and free radical coupling oxidation can improve the styrene removal efficiency. Styrene oxidation by O3/H2O2 was investigated. Ozone dosage, residence time, H2o2 volume fraction, spray density and molar ratio of O3/C8H8 on styrene removal were evaluated. The experimental results showed that styrene removal efficiency achieved 85.7%. The optimal residence time, H2O2, volume fraction, spray density and O3/C8H8 molar ratio were 20. 6 s, 10% , 1.72 m3.(m2.h)-1 and 0.46, respectively. The gas-phase degradation intermediate products were benzaldehyde(C6H5CHO) and benzoic acid (C6H5 COOH) , which were identified by means of gas chromatography-mass spectrometry(GC-MS). The degradation mechanism of styrene is presented.

  20. Investigation of free-radical processes in low temperature radiolysis of copolymers of ethylene with styrene

    International Nuclear Information System (INIS)

    Mal'tseva, A.P.; Golikov, V.P.; Leshchenko, S.S.; Karpov, V.L.; Muromtsev, V.I.

    1977-01-01

    Free radical processes during γ-radiolysis of statistical ethylene-styrene copolimers (ESC) have been investigated. The presence of styrene links in the ESC has been shown to reduce both radical yields and their reaction ability as compared with low density polyethylene irradiated under the same conditions. The character of radical processes in ESC sighificantly depends both on styrene concentration in them and on the dose absorbed. The most pronounced decrease in radical yield is found in the copolymer having 5 mol % styrene. This effect seems to be caused by the accumulation in the irradiated copolymer of products which are capable of more effective dissipation of absorbed energy than only styrene links alone

  1. A novel approach in acidic disinfection through inhibition of acid resistance mechanisms; Maleic acid-mediated inhibition of glutamate decarboxylase activity enhances acid sensitivity of Listeria monocytogenes.

    Science.gov (United States)

    Paudyal, Ranju; Barnes, Ruth H; Karatzas, Kimon Andreas G

    2018-02-01

    Here it is demonstrated a novel approach in disinfection regimes where specific molecular acid resistance systems are inhibited aiming to eliminate microorganisms under acidic conditions. Despite the importance of the Glutamate Decarboxylase (GAD) system for survival of Listeria monocytogenes and other pathogens under acidic conditions, its potential inhibition by specific compounds that could lead to its elimination from foods or food preparation premises has not been studied. The effects of maleic acid on the acid resistance of L. monocytogenes were investigated and found that it has a higher antimicrobial activity under acidic conditions than other organic acids, while this could not be explained by its pKa or Ka values. The effects were found to be more pronounced on strains with higher GAD activity. Maleic acid affected the extracellular GABA levels while it did not affect the intracellular ones. Maleic acid had a major impact mainly on GadD2 activity as also shown in cell lysates. Furthermore, it was demonstrated that maleic acid is able to partly remove biofilms of L. monocytogenes. Maleic acid is able to inhibit the GAD of L. monocytogenes significantly enhancing its sensitivity to acidic conditions and together with its ability to remove biofilms, make a good candidate for disinfection regimes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Crystallization analysis fractionation of poly(ethylene-co-styrene) produced by metallocene catalysts

    KAUST Repository

    Kamal, Muhammad Shahzad; Bahuleyan, Bijal Kottukkal; Sohail, Omer Bin; Emwas, Abdul-Hamid M.; Bercaw, John E.; Al-Harthi, Mamdouh Ahmed

    2013-01-01

    Ethylene homo polymer and ethylene-styrene copolymers were synthesized using Cp2ZrCl2 (1)/methyl aluminoxane (MAO) and rac-silylene-bis (indenyl) zirconium dichloride (2)/MAO catalyst systems by varying styrene concentration and reaction conditions

  3. STYRENE/STYRENE-DERIVATIVE COPOLYMERIZATION BY PH2Zn-METALLOCENE-MAO SYSTEMS: HOMO- AND COPOLYMERIZATION OF á-METHYLSTYRENE WITH STYRENE

    OpenAIRE

    RABAGLIATI, FRANCO M; MUÑOZ, HÉCTOR E; MARDONES, GABRIELA V

    2010-01-01

    The copolymerization of styrene with á-methylstyrene has been tested using combined metallocene-MAO initiator systems with and without diphenylzinc. The metallocenes used were biscyclopentadienyltitanium dichloride, Cp2TiCl2, bis(n-butylcyclopentadienyl)titanium dichloride, (n-BuCp)2TiCl2, and the half-sandwich metallocene indenyltitanium trichloride, IndTiCl3. The results indicate that both binary metallocene-MAO, and ternary Ph2Zn-metallocene-MAO systems are capable of polymerizing á-methyl...

  4. Respiratory irritation by trimellitic anhydride in Brown Norway and Wistar rats

    NARCIS (Netherlands)

    Arts, J.H.E.; Koning, M.W.de; Bloksma, N.; Kuper, C.F.

    2001-01-01

    Several acid anhydrides are known for their sensitizing and irritative properties. Since both irritation and respiratory allergy can cause changes of lung function, proper testing of allergen-dependent effects on the respiratory tract requires knowledge of the respiratory irritant effects. To study

  5. Synthesis and characterization of c-PTFE-g-styrene copolymer by preirradiation method

    International Nuclear Information System (INIS)

    Oktaviani; Ambyah Suliwarno; Tita Puspitasari

    2011-01-01

    Crosslinked-poly(tetrafluoroethylene)-graf-styrene (c-PTFE-g-styrene) copolymer has been synthesized by copolymerization preirradiation method. Irradiation onto c-PTFE films was carried out by γ-ray with irradiation doses of 15, 30, and 45 kGy at room temperature. Styrene was grafted into irradiated c-PTFE films in the temperature range of between 600-90°C. Parameter observed in the grafting process was degree of grafting. The results showed that the degree of grafting increased with increasing of irradiation doses. The highest degree of grafting was 25,44 % obtained at temperature of 70°C and still increased up to 25,73% with increasing of the grafting time. The optimum grafting time was 2 hours. Chemical and physical properties of c-PTFE-g-styrene film were analyzed by IR spectrophotometer and Scanning Electron Microscopy (SEM). (author)

  6. Side chain alkylation of toluene with methanol over basic zeolites - novel production route towards styrene?

    NARCIS (Netherlands)

    Rep, M.; Rep, M.

    2002-01-01

    Styrene is an important monomer for the production of different types of (co-) polymers that are used in, e.g., toys, medical devices, food packaging, paper coatings etc. Styrene is produced with several different industrial processes. In 1998, the production of styrene monomer was approximately 21

  7. New powder compaction method using a styrene foam

    International Nuclear Information System (INIS)

    Kinemuchi, Y.; Takata, A.; Ishizaki, K.

    1999-01-01

    In general, metallic and ceramic powder compacts for sintering are shaped by uni-axial pressing or cold isostatic pressing (CIPing). Since metal or rubber is used as dies or moulds, it is difficult to form complicated shapes and flat disks, i.e., the ratio of diameter / thickness more than 50, by using uni-axial or CIPing. Rubber moulding, a moulding method with a rubber bag, can not press powder uniformly into flat disks because rubber deforms significantly. To solve this problem, we developed a new shaping technique to obtain complicated or thin flat shape by using styrene foam, which is cheap and has good machinability. Plastic foams such as styrene and acrylic foam contain many pores, and shrink uniformly by applying external pressure when the pores are collapsed. In this study, shrinking behavior of styrene and acrylic rubber moulds related to CIPing pressure was investigated. The experimental results show that the plastic foams shrink uniformly and the plastic deformation is linearly increased as CIP pressure increases. Copyright (1999) AD-TECH - International Foundation for the Advancement of Technology Ltd

  8. Site-Specific Antibody Functionalization Using Tetrazine-Styrene Cycloaddition.

    Science.gov (United States)

    Umlauf, Benjamin J; Mix, Kalie A; Grosskopf, Vanessa A; Raines, Ronald T; Shusta, Eric V

    2018-05-03

    Biologics, such as antibody-drug conjugates, are becoming mainstream therapeutics. Consequently, methods to functionalize biologics without disrupting their native properties are essential for identifying, characterizing, and translating candidate biologics from the bench to clinical practice. Here, we present a method for site-specific, carboxy-terminal modification of single-chain antibody fragments (scFvs). ScFvs displayed on the surface of yeast were isolated and functionalized by combining intein-mediated expressed protein ligation (EPL) with inverse electron-demand Diels-Alder (IEDDA) cycloaddition using a styrene-tetrazine pair. The high thiol concentration required to trigger EPL can hinder the subsequent chemoselective ligation reactions; therefore, the EPL reaction was used to append styrene to the scFv, limiting tetrazine exposure to damaging thiols. Subsequently, the styrene-functionalized scFv was reacted with tetrazine-conjugated compounds in an IEDDA cycloaddition to generate functionalized scFvs that retain their native binding activity. Rapid functionalization of yeast surface-derived scFv in a site-directed manner could find utility in many downstream laboratory and preclinical applications.

  9. Synthesis and characterization of Cis-5-Norbornene-2, 3-dicarboxylic anhydride-chitosan

    International Nuclear Information System (INIS)

    Ku Marshilla Ku Ishak; Zulkifli Ahmad; Hazizan Mohd Akil

    2009-01-01

    Chitosan was chemically modified with bulky structure, cis-5-norbornene-2, 3-dicarboxylic anhydride and the characteristic of this modified chitosan was studied. The resulting material was analyzed by FTIR, TGA, DSC, XRD and SEM to study the effect of N-acylation to the polysaccharide structure. FTIR results show that the anhydride monomer was successfully bound to amine group of chitosan. Thermal analysis of the modified structure provides the chitosan fibers with thermal stability while XRD and SEM show the lost of crystallinity of modified chitosan. XRD of modified chitosan shows broader peak pattern and a considerable increase in a dimension while SEM of chitosan presented the single particle morphology while norbornene-chitosan shows aggromolarate behaviour due to the hydrophobic nature of norbornene pendant group which induced aggromolaration of the particles in modified structure.(author)

  10. Ultrasonic degradation of butadiene, styrene and their copolymers.

    Science.gov (United States)

    Sathiskumar, P S; Madras, Giridhar

    2012-05-01

    Ultrasonic degradation of commercially important polymers, styrene-butadiene (SBR) rubber, acrylonitrile-butadiene (NBR) rubber, styrene-acrylonitrile (SAN), polybutadiene rubber and polystyrene were investigated. The molecular weight distributions were measured using gel permeation chromatography (GPC). A model based on continuous distribution kinetics approach was used to study the time evolution of molecular weight distribution for these polymers during degradation. The effect of solvent properties and ultrasound intensity on the degradation of SBR rubber was investigated using different pure solvents and mixed solvents of varying volatility and different ultrasonic intensities. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Stabilization of polypropylene, polypropylene blends with poly (styrene-b-(ethylene-co-butylene)-b-styrene) under irradiation: A comparative investigation

    International Nuclear Information System (INIS)

    Luan Shifang; Yang Huawei; Shi Hengchong; Zhao Jie; Wang Jianwei; Yin Jinghua

    2011-01-01

    The aim of this paper is to investigate the stabilization of polypropylene in the poly (styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS)/polypropylene (PP) blends under irradiation with respect to PP. The PP films, SEBS/PP films were subjected to electron beam irradiation and characterized by wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), gel permeation chromatography (GPC), and dynamic mechanical thermal analysis (DMTA). It demonstrated that upon irradiation, the molecular weight of PP had a pronounced decrease due to the major chain scission, and the minor chain cross-linking or chain branching occurred at the higher irradiation dose. Stabilization of PP was improved in the presence of SEBS, exhibiting an enhanced irradiation resistance.

  12. Stabilization of polypropylene, polypropylene blends with poly (styrene-b-(ethylene-co-butylene)-b-styrene) under irradiation: A comparative investigation

    Energy Technology Data Exchange (ETDEWEB)

    Luan Shifang; Yang Huawei; Shi Hengchong; Zhao Jie [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Wang Jianwei [Shandong Weigao Group Medical Polymer Company Limited, Weihai 264209 (China); Yin Jinghua, E-mail: yinjh@ciac.jl.c [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2011-01-15

    The aim of this paper is to investigate the stabilization of polypropylene in the poly (styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS)/polypropylene (PP) blends under irradiation with respect to PP. The PP films, SEBS/PP films were subjected to electron beam irradiation and characterized by wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), gel permeation chromatography (GPC), and dynamic mechanical thermal analysis (DMTA). It demonstrated that upon irradiation, the molecular weight of PP had a pronounced decrease due to the major chain scission, and the minor chain cross-linking or chain branching occurred at the higher irradiation dose. Stabilization of PP was improved in the presence of SEBS, exhibiting an enhanced irradiation resistance.

  13. Identification and characterization of epoxide hydrolase activity of polycyclic aromatic hydrocarbon-degrading bacteria for biocatalytic resolution of racemic styrene oxide and styrene oxide derivatives.

    Science.gov (United States)

    Woo, Jung-Hee; Kwon, Tae-Hyung; Kim, Jun-Tae; Kim, Choong-Gon; Lee, Eun Yeol

    2013-04-01

    A novel epoxide hydrolase (EHase) from polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was identified and characterized. EHase activity was identified in four strains of PAH-degrading bacteria isolated from commercial gasoline and oil-contaminated sediment based on their growth on styrene oxide and its derivatives, such as 2,3- and 4-chlorostyrene oxides, as a sole carbon source. Gordonia sp. H37 exhibited high enantioselective hydrolysis activity for 4-chlorostyrene oxide with an enantiomeric ratio of 27. Gordonia sp. H37 preferentially hydrolyzed the (R)-enantiomer of styrene oxide derivatives resulting in the preparation of a (S)-enantiomer with enantiomeric excess greater than 99.9 %. The enantioselective EHase activity was identified and characterized in various PAH-degrading bacteria, and whole cell Gordonia sp. H37 was employed as a biocatalyst for preparing enantiopure (S)-styrene oxide derivatives.

  14. Artemisia vulgaris pollen allergoids digestibility in the simulated conditions of the gastrointestinal tract

    OpenAIRE

    RATKO M. JANKOV; NATALIJA DJ. POLOVIC; MARIJA DJ. GAVROVIC-JANKULOVIC; LIDIJA BURAZER; DANICA DJERGOVIC-PETROVIC; OLGA VUCKOVIC; OLIKA DROBNJAK; ZORICA SPORCIC; MARINA ATANASKOVIC-MARKOVIC; RATKO M. JANKOV

    2006-01-01

    Chemically modified allergens (allergoids) have found use in both traditional and novel forms of immunotherapy of allergic disorders. Novel forms of immunotherapy include local allergen delivery, via the gastrointestinal tract. This study conveys the gastrointestinal stability of three types ofmugwort pollen allergoids under simulated conditions of the gut. Allergoids of the pollen extract of Artemisia vulgaris were obtained by means of potassium cyanate, succinic and maleic anhydride. Gastro...

  15. Simultaneous determination of the styrene unit content and assessment of molecular weight of triblock copolymers in adhesives by a size exclusion chromatography method.

    Science.gov (United States)

    Wang, Mingfang; Wang, Yuerong; Luo, Pei; Zhang, Hongyang; Zhang, Min; Hu, Ping

    2017-10-01

    The content of styrene units in nonhydrogenated and hydrogenated styrene-butadiene-styrene and styrene-isoprene-styrene triblock copolymers significantly influences product performance. A size exclusion chromatography method was developed to determine the average styrene content of triblock copolymers blended with tackifier in adhesives. A complete separation of the triblock copolymer from the other additives was realized with size exclusion chromatography. The peak area ratio of the UV and refraction index signals of the copolymers at the same effective elution volume was correlated to the average styrene unit content using nuclear magnetic resonance spectroscopy with commercial copolymers as standards. The obtained calibration curves showed good linearity for both the hydrogenated and nonhydrogenated styrene-butadiene-styrene and styrene-isoprene-styrene triblock copolymers (r = 0.974 for styrene contents of 19.3-46.3% for nonhydrogenated ones and r = 0.970 for the styrene contents of 23-58.2% for hydrogenated ones). For copolymer blends, the developed method provided more accurate average styrene unit contents than nuclear magnetic resonance spectroscopy provided. These results were validated using two known copolymer blends consisting of either styrene-isoprene-styrene or hydrogenated styrene-butadiene-styrene and a hydrocarbon tackifying resin as well as an unknown adhesive with styrene-butadiene-styrene and an aromatic tackifying resin. The methodology can be readily applied to styrene-containing polymers in blends such as poly(acrylonitrile-butadiene styrene). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Rh-catalyzed linear hydroformylation of styrene

    NARCIS (Netherlands)

    Boymans, E.H.; Janssen, M.C.C.; Mueller, C.; Lutz, M.; Vogt, D.

    2012-01-01

    Usually the Rh-catalyzed hydroformylation of styrene predominantly yields the branched, chiral aldehyde. An inversion of regioselectivity can be achieved using strong p-acceptor ligands. Binaphthol-based diphosphite and bis(dipyrrolyl-phosphorodiamidite) ligands were applied in the Rh-catalyzed

  17. Studies of electron-beam irradiation on ethylene-styrene interpolymers

    CERN Document Server

    Liu, I C

    2002-01-01

    Electron-beam irradiation-induced structural and properties changes on ethylene-styrene interpolymers (ESI) have been studied at electron doses ranging from 0 to 200 kGy. The amounts of species generated by irradiation such as hydroxyls, hydroperoxides, carbonyls and unsaturated double bonds have been analyzed using ATR-FTIR. While the structural changes are minimal for ESI69 comprising 69 wt.% styrene regardless of the dose level, the changes for ESI40 comprising 40 wt.% styrene are dose dependent and reaches a maximum at a dose of 100 kGy. Gel permeation chromatography analysis indicates that macromolecular chain scission occurs at low irradiation dose and crosslinking dominates at high irradiation doses. The average molecular weights between crosslinks, M sub C 's, have been calculated using the Flory-Rehner equation based on data collected from solvent extraction experiments. The M sub C 's of ESI40 samples are much smaller than those of ESI69 samples. Irradiated ESI samples have higher glass transition t...

  18. Molecular mechanisms of action of styrene toxicity in blood plasma and liver.

    Science.gov (United States)

    Niaz, Kamal; Mabqool, Faheem; Khan, Fazlullah; Ismail Hassan, Fatima; Baeeri, Maryam; Navaei-Nigjeh, Mona; Hassani, Shokoufeh; Gholami, Mahdi; Abdollahi, Mohammad

    2017-10-01

    Styrene is an aromatic colorless hydrocarbon available in liquid form and highly volatile. In its pure form, it gives a sweet smell. The primary source of exposure in the environment is from plastic materials, rubber industries, packaging materials, insulations, and fiber glass and carpet industry. Natural sources of styrene include: few metabolites in plants which are transferred through food chain. The current study was designed to evaluate styrene toxicity, including: superoxide dismutase (SOD) and protein carbonyl, oxidative stress, glucose-6-phosphatase (G6Pase), glycogen phosphorylase (GP), and phosphoenolpyruvate carboxykinase (PEPCK) activities, adenosine triphosphate (ATP) to adenosine diphosphate (ADP) ratio, and changes in gene expressions such as glutamate dehydrogenase 1 (GLUD1), glucose transporter 2 (GLUT2), and glucokinase (GCK) in the rat liver tissue. For this purpose, styrene was dissolved in corn oil and was administered via gavage, at doses 250, 500, 1000, 1500, 2000, mg/kg/day per mL and control (corn oil) to each rat with one day off in a week, for 42 days. Plasma SOD and protein carbonyl of plasma were significantly up-regulated in 1000, 1500, and 2000 mg/kg/day styrene administrated groups (P < .001). In addition, styrene caused an increase in lipid peroxidation (LPO) and reactive oxygen species (ROS) in the dose-dependent manners in liver tissue (P < .001). Furthermore, the ferrous reducing antioxidant power (FRAP) and total thiol molecules (TTM) in styrene-treated groups were significantly decreased in liver tissue (P < .001) with increasing doses. In treated rats, styrene significantly increased G6Pase activity (P < .001) and down-regulated GP activity (P < .001) as compared to the control group. The PEPCK activity was significantly raised in a dose-dependent manner (P < .001). The ATP/ADP ratio of live cells was significantly raised by increasing the dose (P < .001). There was significantly an up

  19. Nickel/zinc-catalyzed decarbonylative addition of anhydrides to alkynes: a DFT study.

    Science.gov (United States)

    Meng, Qingxi; Li, Ming

    2013-10-01

    Density functional theory (DFT) was used to investigate the nickel- or nickel(0)/zinc- catalyzed decarbonylative addition of phthalic anhydrides to alkynes. All intermediates and transition states were optimized completely at the B3LYP/6-31+G(d,p) level. Calculated results indicated that the decarbonylative addition of phthalic anhydrides to alkynes was exergonic, and the total free energy released was -87.6 kJ mol(-1). In the five-coordinated complexes M4a and M4b, the insertion reaction of alkynes into the Ni-C bond occurred prior to that into the Ni-O bond. The nickel(0)/zinc-catalyzed decarbonylative addition was much more dominant than the nickel-catalyzed one in whole catalytic decarbonylative addition. The reaction channel CA→M1'→T1'→M2'→T2'→M3a'→M4a'→T3a1'→M5a1' →T4a1'→M6a'→P was the most favorable among all reaction pathways of the nickel- or nickel(0)/zinc- catalyzed decarbonylative addition of phthalic anhydrides to alkynes. And the alkyne insertion reaction was the rate-determining step for this channel. The additive ZnCl2 had a significant effect, and it might change greatly the electron and geometry structures of those intermediates and transition states. On the whole, the solvent effect decreased the free energy barriers.

  20. Preparation of irradiated natural rubber latex-styrene copolymer for electrical gloves

    International Nuclear Information System (INIS)

    Made Sumarti Kardha

    2010-01-01

    Research on irradiated natural rubber latex-styrene copolymer to prepare electrical glove have been done. Vulcanization of natural rubber latex (NRL) was done by mixing 2 phr (per hundred of rubber) of normal butyl acrylate (n-BA) emulsion then irradiated with ã-ray "6"0Co at the dose of 30 kGy producing irradiated natural rubber latex (INRL). Natural rubber latex-styrene copolymers (SC) were prepared by mixing NRL and styrene monomer at styrene concentrations of 50 phr, 75 phr, 100 phr, 500 phr and irradiated at the doses of 15 kGy, 30 kGy and 45 kGy, then characterized their latex and film properties to obtain optimum SC of SC50. This optimum SC, SC50 then mixed with IRNL at the weight ratio of 0/100, 30/70, 50/50, 70/30 and 100/0, to produce irradiated natural rubber latex-styrene copolymer. The properties of copolymer rubber films made by dipping process i.e., % conversion, total solid content, latex viscosity, tensile strength, modulus 300 %, elongation at break, electrical resistance and dielectric constant were then characterized. Characterization result showed that (INRL-SC50) with 50/50 ratio irradiated at the dose of 30 kGy, have % conversion of 80.93 %, electrical resistivity of 1.73 x 10"1"4 Ohm cm and dielectric constant of 2.76 which fulfill the requirement as material for electrical gloves. (author)

  1. Radiation induced vapour phase grafting of styrene onto fluorinated substrates

    International Nuclear Information System (INIS)

    Dargaville, T.; Hill, D.; George, G.; Cardona, F.

    2000-01-01

    Full text: Polytetrafluoroethylene (PTFE) is well known for being inert towards heat, solvents and harsh chemicals. However, in contrast, PTFE is extremely sensitive to radiation suffering from a dramatic decrease in mechanical strength even when exposed to low doses. In this study we have used a copolymer of PTFE, poly(tetrafluoroethylene-co-perfluoropropylvinyl ether) (PFA). The effect of the ether comonomer is to render the polymer melt processable, lower the crystallinity and increase the radical yield when compared with PTFE. When grafting styrene to PFA using a radiation initiated process, the resulting polymer has the desirable chemical and thermal resistance of the PFA substrate combined with the functionality of the styrene, however, due to the incidental degradative effect of radiation on the PFA substrate it is important to find conditions where the best graft is achieved without exposing the substrate to extraneous levels of radiation. We have successfully grafted styrene to PFA by simultaneously exposing PFA to styrene vapour and gamma radiation. This process was found to be independent of dose rate at low dose rates suggesting a diffusion controlled mechanism. The penetration of the graft into the PFA substrate was measured by mapping a cross-section using micro-probe Raman spectroscopy

  2. Determination of styrene migration from food-contact polymers into margarine, using azeotropic distillation and headspace gas chromatography.

    Science.gov (United States)

    Varner, S L; Breder, C V; Fazio, T

    1983-09-01

    Migration studies were conducted to determine the quantity of styrene that migrates from polymers into fatty foods, specifically margarine. Azeotropic distillation was used to isolate styrene from the margarine. Headspace gas chromatography with a Chromosorb 104 column and a flame ionization detector was used for quantitation. The quantitation limit for the method was about 25 ppb (wt/wt) styrene in margarine. On the average, greater than 90% of the styrene was recovered. Several commercial margarines were examined. The method and results of the migration studies are presented. There was no detectable migration of styrene into margarine.

  3. Molecular changes in copolymers of styrene and methyl methacrylate caused by radiation

    International Nuclear Information System (INIS)

    Busfield, W.K.; O'Donnell, J.H.; Smith, C.A.

    1976-01-01

    Homopolymers of styrene and methyl methacrylate and copolymers of these monomers were irradiated in vacuo at room temperature using 60 Co γ-radiation to various doses. The gaseous radiolysis products of the polymers were analysed by gas chromatography. The radiation chemical yield, G values, of the gaseous and liquid products were calculated for the homopolymers and copolymers. The G values obtained for the homopolymers were compared with those obtained by previous workers. The graphs of G value versus composition (% Styrene) showed a marked deviation from linearity which indicated that the styrene in the copolymer had a greater effect on the behaviour than did the methyl methacrylate units. It has been postulated that the benzene ring on the styrene unit acts in some way as an energy sink, and hence protects the copolymer from radiation damage in an analogous way to that suggested for hydrocarbon mixtures. Mechanisms for the process are discussed. (author)

  4. Characterization of a Poly(styrene-block-methylacrylate-random-octadecylacrylate-block-styrene) Shape Memory ABA Triblock Copolymer

    Science.gov (United States)

    Fei, Pengzhan; Cavicchi, Kevin

    2011-03-01

    A new ABA triblock copolymer of poly(styrene-block- methylacrylate-random-octadecylacrylate-block-styrene) (PS-b- PMA-r-PODA-b-PS) was synthesized by reversible addition fragmentation chain transfer polymerization. The triblock copolymer can generate a three-dimensional, physically crosslinked network by self-assembly, where the glassy PS domains physically crosslink the midblock chains. The side chain crystallization of the polyoctadecylacrylare (PODA) side chain generates a second reversible network enabling shape memory properties. Shape memory tests by uniaxial deformation and recovery of molded dog-bone shape samples demonstrate that shape fixities above 96% and shape recoveries above 98% were obtained for extensional strains up to 300%. An outstanding advantage of this shape memory material is that it can be very easily shaped and remolded by elevating the temperature to 140circ; C, and after remolding the initial shape memory properties are totally recovered by eliminating the defects introduced by the previous deformation cycling.

  5. Preparation and Characterization of Styrene Bearing Diethanolamine Side Group, Styrene Copolymer Systems, and Their Metal Complexes

    Directory of Open Access Journals (Sweden)

    Aslışah Açıkses

    2018-01-01

    Full Text Available The two copolymer systems of styrene bearing diethanol amine side group and styrene were prepared by free radical polymerization method at 60°C in presence of 1,4-dioxane as solvent and AIBN as initiator. Their metal complexes were prepared by reaction of the copolymer used as ligand P(DEAMSt-co-StL′′ and Ni(II and Co(II metal ions, which was carried out in presence of ethanol and NaOH at 65°C for 48 h in pH = 7.5. The structures of the copolymers used as ligand and metal complexes were identified by FT-IR, 1H-NMR spectra, and elemental analysis. The properties of the copolymers used as ligand and metal complexes were characterized by SEM-EDX, AAS, DSC, TGA, and DTA techniques. Then, the electrical properties of the copolymers and metal complexes were examined as a function of the temperature and frequency, and the activation energies (Ea were estimated with conductivity measurements.

  6. Genotoxicity of styrene oligomers extracted from polystyrene intended for use in contact with food

    Directory of Open Access Journals (Sweden)

    Makoto Nakai

    2014-01-01

    Full Text Available Here, we conducted in vitro genotoxicity tests to evaluate the genotoxicity of styrene oligomers extracted from polystyrene intended for use in contact with food. Styrene oligomers were extracted with acetone and the extract was subjected to the Ames test (OECD test guideline No. 471 and the in vitro chromosomal aberration test (OECD test guideline No. 473 under good laboratory practice conditions. The concentrations of styrene dimers and trimers in the concentrated extract were 540 and 13,431 ppm, respectively. Extraction with acetone provided markedly higher concentrations of styrene oligomers compared with extraction with 50% ethanol aqueous solution, which is the food simulant currently recommended for use in safety assessments of polystyrene by both the United States Food and Drug Administration and the European Food Safety Authority. And these high concentrations of styrene dimers and trimers were utilized for the evaluation of genotoxicity in vitro. Ames tests using five bacterial tester strains were negative both in the presence or absence of metabolic activation. The in vitro chromosomal aberration test using Chinese hamster lung cells (CHL/IU was also negative. Together, these results suggest that the risk of the genotoxicity of styrene oligomers that migrate from polystyrene food packaging into food is very low.

  7. Design of a multi-dopamine-modified polymer ligand optimally suited for interfacing magnetic nanoparticles with biological systems.

    Science.gov (United States)

    Wang, Wentao; Ji, Xin; Na, Hyon Bin; Safi, Malak; Smith, Alexandra; Palui, Goutam; Perez, J Manuel; Mattoussi, Hedi

    2014-06-03

    We have designed a set of multifunctional and multicoordinating polymer ligands that are optimally suited for surface functionalizing iron oxide and potentially other magnetic nanoparticles (NPs) and promoting their integration into biological systems. The amphiphilic polymers are prepared by coupling (via nucleophilic addition) several amine-terminated dopamine anchoring groups, poly(ethylene glycol) moieties, and reactive groups onto a poly(isobutylene-alt-maleic anhydride) (PIMA) chain. This design greatly benefits from the highly efficient and reagent-free one-step reaction of maleic anhydride groups with amine-containing molecules. The availability of several dopamine groups in the same ligand greatly enhances the ligand affinity, via multiple coordination, to the magnetic NPs, while the hydrophilic and reactive groups promote colloidal stability in buffer media and allow subsequent conjugation with target biomolecules. Iron oxide nanoparticles ligand exchanged with these polymer ligands have a compact hydrodynamic size and exhibit enhanced long-term colloidal stability over the pH range of 4-12 and in the presence of excess electrolytes. Nanoparticles ligated with terminally reactive polymers have been easily coupled to target dyes and tested in live cell imaging with no measurable cytotoxicity. Finally, the resulting hydrophilic nanoparticles exhibit large and size-dependent r2 relaxivity values.

  8. Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties

    International Nuclear Information System (INIS)

    Essabir, H.; Nekhlaoui, S.; Malha, M.; Bensalah, M.O.; Arrakhiz, F.Z.; Qaiss, A.; Bouhfid, R.

    2013-01-01

    Highlights: • Almond Shells (ASs) particles have been used as reinforcement in polypropylene matrix. • The SEBS-g-MA has been used to improve the adhesion between matrix and particles. • The mechanical and thermal properties of the composite have been improved by the AS. - Abstract: In this work, Almond Shells (ASs) particles are used as reinforcement in a thermoplastic matrix as polypropylene (PP). Composites containing Almond Shells (ASs) particles with and without compatibilizer (maleic anhydride grafted polypropylene; SEBS-g-MA) for various particle content (5, 10, 15, 20, 25, 30 wt.%) was investigated by means of studying their mechanical, thermal and rheological properties. The composites were prepared in a twin-screw extruder and assessed by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), tensile testing and Dynamic Mechanical Analysis (DMA). Results show a clear improvement in mechanical and rheological properties from the use of Almond Shells particles in the matrix without and with maleic anhydride compatibilizer, corresponding to a gain in Young’s modulus of 56.2% and 35% respectively, at 30 wt.% particle loading. Thermal analysis revealed that incorporation of particle in the composites resulted in increase in the initial thermal decomposition temperatures

  9. Synthesis and Verification of Biobased Terephthalic Acid from Furfural

    Science.gov (United States)

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-Ichi

    2015-02-01

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon.

  10. Radiation-curable coatings containing reactive pigment dispersants

    International Nuclear Information System (INIS)

    Ansel, R.E.

    1985-01-01

    Liquid coating compositions adapted to be cured by exposure to penetrating radiation are disclosed in which a liquid vehicle of coating viscosity having an ethylenically unsaturated portion comprising one or more polyethylenically unsaturated materials adapted to cure on radiation exposure, pigment dispersed in the vehicle, and an ethylenically unsaturated radiation-curable dispersant containing a carboxyl group for wetting the pigment and assisting in the stable dipsersion of the pigment in the vehicle. This dispersant is a half amide or half ester of an ethylenically unsaturated polycarboxylic acid anhydride, such as maleic anhydride, with an organic compound having a molecular weight of from 100 to 4000 and which contains a single hydroxy group or a single amino group as the sole reactive group thereof

  11. Styrene removal from wate gas by the fungus Exophiala Jeanselmei in a biofilter

    NARCIS (Netherlands)

    Cox, Hubertus Henricus Jacobus

    1995-01-01

    Styrene is an environmental pollutant, emitted in large quantities to the atmosphere by various industrial sectors. Legislation requires industry to reduce the emission of styrene. One option to purify industrial waste gases is biological treatment in biofilters. ... Zie: Summary

  12. Effect of maleic hydrazide and waxing on quality and shelf life of papaya (carica papaya L.) fruits

    International Nuclear Information System (INIS)

    Abu-Goukh, A. A.; Shattir, A. E.

    2012-01-01

    The effect of post harvest treatment of maleic hydrazide (MH) with and with out waxing on the quality and shelf-life of Baladi and Ekostika I papaya fruits at 18 ±1°C and 85%-90% relative humidity was evaluated. Maleic hydrazide at 250 and 500 ppm significantly delayed fruit ripening by two and three days in both papaya cultivars, respectively, compared with untreated fruits. The higher the concentration, the more was the delay in fruit ripening. The results also showed that waxing addition to MH resulted in a delay of two more days in fruit ripening that treatment with MH alone. The effect of MH and waxing treatments in delaying papaya fruits ripening was manifested in retarded respiratory climacteric, reduced weight loss and delayed fruit softening and increase in total soluble solids and ascorbic acid content.(Author)

  13. Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via photo-initiated graft polymerization of poly(ethylene glycol)

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaomeng [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Luan Shifang, E-mail: sfluan@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yang Huawei; Shi Hengchong; Zhao Jie; Jin Jing [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yin Jinghua, E-mail: yinjh@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Stagnaro, Paola [Istituto per Io Studio delle Macromolecole, Consiglio Nazionale delle Ricerche, Via de Marini 6, 16149 Genova (Italy)

    2012-01-15

    Poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) copolymer biomedical elastomer was covalently grafted with poly(ethylene glycol) methyl ether methacrylate (PEGMA) via a photo-initiated graft polymerization technique. The surface graft polymerization of SEBS with PEGMA was verified by ATR-FTIR and XPS. Effect of graft polymerization parameters, i.e., monomer concentration, UV irradiation time and initiator concentration on the grafting density was investigated. Comparing with the virgin SEBS film, the PEGMA-modified SEBS film presented an enhanced wettability and a larger surface energy. Besides, the surface grafting of PEGMA imparted excellent anti-platelet adhesion and anti-protein adsorption to the SEBS surface.

  14. A pulse radiolysis study of the reaction of the sulphate radical ion in aqueous solutions of styrene

    International Nuclear Information System (INIS)

    McAskill, N.A.; Sangster, D.F.

    1979-01-01

    The ultraviolet absorption spectra of the transient species formed during the pulse radiolysis of styrene and peroxydisulfate solutions showed that a benzyl-type radical was formed from styrene and the SO 4 - radical. The effect of adding Cl - was also studied. These results are in conflict with the claim that a phenylethyl radical was formed from SO 4 - via the styrene cation radical. That study was made on acetonitrile solutions of styrene, S 2 O 8 2- CUCl 2 and LiCl and the present results suggest that up to 70% of the SO 4 - radicals may have been converted into Cl 2 - radical which then reacted with styrene

  15. Substituted Phthalic Anhydrides from Biobased Furanics : A New Approach to Renewable Aromatics

    NARCIS (Netherlands)

    Thiyagarajan, Shanmugam; Genuino, Homer C.|info:eu-repo/dai/nl/371571685; Sliwa, Michal; van der Waal, Jan C.; de Jong, Ed; van Haveren, Jacco; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397; Bruijnincx, Pieter C. A.|info:eu-repo/dai/nl/33799529X; van Es, Daan S.

    2015-01-01

    A novel route for the production of renewable aromatic chemicals, particularly substituted phthalic acid anhydrides, is presented. The classical two-step approach to furanics-derived aromatics via Diels-Alder (DA) aromatization has been modified into a three-step procedure to address the general

  16. Study of energy transfer to solvent in radiation graft polymerization of styrene onto polyethylene

    International Nuclear Information System (INIS)

    Rabie, A.; Odian, G.

    1977-01-01

    The radiation-initiated graft polymerization of styrene onto polyethylene was studied to determine whether energy transfer to diluent was responsible for the previously observed high orders of dependence of the grafting rate on monomer concentration. n-Octane was used as the diluent instead of benzene. If energy transfer from excited polyethylene to benzene were present, it should not be with n-octane. The percent swelling of polyethylene by various n-octane--styrene mixtures was determined. The compositions of various n-octane--styrene mixtures absorbed inside polyethylene were determined by ultraviolet and refractive index measurements and found to be richer in styrene than the corresponding mixtures in which the polyethylene had been placed. The graft polymerization rates were determined at 0.000761, 0.0371, and 0.213 Mrad/hr and plotted against the inside styrene concentrations on a log-log scale to yield the kinetic orders of dependence of rate on monomer as 2, 3, and 3, respectively. It was concluded that energy transfer to diluent was not responsible for the high-order dependence observed

  17. Characterization of TPS/PHBV blends prepared in the presence of maleated PHBV

    International Nuclear Information System (INIS)

    Magalhaes, Natalia F.; Andrade, Cristina T.

    2011-01-01

    Maleated derivatives of poly(3-hydroxybutyrate-3-hydroxyvalerate) (PHBV) were obtained in an internal mixer in the presence of maleic anhydride and benzoyl peroxide, and characterized by infrared spectroscopy. Extruded blends of cornstarch and PHBV were prepared with and without the addition of maleated PHBV. Although the X-ray diffractograms had revealed decreased crystallinity, the micrographs obtained by scanning electron microscopy indicated that the addition of the maleated derivatives led to a partial compatibilization. (author)

  18. Effect of styrene exposure on plasma parameters, molecular mechanisms and gene expression in rat model islet cells.

    Science.gov (United States)

    Niaz, Kamal; Hassan, Fatima Ismail; Mabqool, Faheem; Khan, Fazlullah; Momtaz, Saeideh; Baeeri, Maryam; Navaei-Nigjeh, Mona; Rahimifard, Mahban; Abdollahi, Mohammad

    2017-09-01

    Styrene is an aromatic hydrocarbon compound present in the environment and have primary exposure through plastic industry. The current study was designed to evaluate styrene-induced toxicity parameters in rat plasma fasting blood glucose (FBG) level, oral glucose tolerance, insulin secretion, oxidative stress, and inflammatory cytokines in cellular and molecular levels. Styrene was dissolved in corn oil and administered at different doses (250, 500, 1000, 1500, 2000mg/kg/day and control) to each rat, for 42days. In treated groups, styrene significantly increased fasting blood glucose, plasma insulin (p<0.001) and glucose tolerance. Glucose tolerance, insulin resistance and hyperglycemia were found to be the main consequences correlating gene expression of islet cells. Styrene caused a significant enhancement of oxidative stress markers (p<0.001) and inflammatory cytokines in a dose and concentration-dependent manner in plasma (p<0.001). Moreover, the activities of caspase-3 and -9 of the islet cells were significantly up-regulated by this compound at 1500 and 2000mg/kg/day styrene administrated groups (p<0.001). The relative fold change of GLUD1 was downregulated (p<0.05) and upregulated at 1500 and 2000mg/kg, respectively (p<0.01). The relative fold changes of GLUT2 were down regulated at 250 and 1000mg/kg and up regulated in 500, 1500 and 2000mg/kg doses of styrene (p<0.01). The expression level of GCK indicated a significant upregulation at 250mg/kg and downregulation of relative fold changes in the remaining doses of styrene, except for no change at 2000mg/kg of styrene for GCK. Targeting genes (GLUD1, GLUT2 and GCK) of the pancreatic islet cells in styrene exposed groups, disrupted gluconeogenesis, glycogenolysis pathways and insulin secretory functions. The present study illustrated that fasting blood glucose, insulin pathway, oxidative balance, inflammatory cytokines, cell viability and responsible genes of glucose metabolism are susceptible to styrene

  19. A Novel Voltammetric Method for the Determination of Maleic Acid Using Silver Amalgam Paste Electrode

    Czech Academy of Sciences Publication Activity Database

    Niaz, A.; Fischer, J.; Barek, J.; Josypčuk, Bohdan; Sirajuddin, C.; Bhanger, M. I.

    2009-01-01

    Roč. 21, č. 15 (2009), s. 1719-1722 ISSN 1040-0397 R&D Projects: GA MŠk(CZ) LC06035; GA ČR GA203/07/1195 Institutional research plan: CEZ:AV0Z40400503 Keywords : voltammetry * maleic acid * silver amalgam paste electrode Subject RIV: CG - Electrochemistry Impact factor: 2.630, year: 2009

  20. Occupational styrene exposure and acquired dyschromatopsia: A systematic review and meta-analysis.

    Science.gov (United States)

    Choi, Ariel R; Braun, Joseph M; Papandonatos, George D; Greenberg, Paul B

    2017-11-01

    Styrene is a chemical used in the manufacture of plastic-based products worldwide. We systematically reviewed eligible studies of occupational styrene-induced dyschromatopsia, qualitatively synthesizing their findings and estimating the exposure effect through meta-analysis. PubMed, EMBASE, and Web of Science databases were queried for eligible studies. Using a random effects model, we compared measures of dyschromatopsia between exposed and non-exposed workers to calculate the standardized mean difference (Hedges'g). We also assessed between-study heterogeneity and publication bias. Styrene-exposed subjects demonstrated poorer color vision than did the non-exposed (Hedges' g = 0.56; 95%CI: 0.37, 0.76; P < 0.0001). A non-significant Cochran's Q test result (Q = 23.2; P = 0.171) and an I 2 of 32.2% (0.0%, 69.9%) indicated low-to-moderate between-study heterogeneity. Funnel plot and trim-and-fill analyses suggested publication bias. This review confirms the hypothesis of occupational styrene-induced dyschromatopsia, suggesting a modest effect size with mild heterogeneity between studies. © 2017 Wiley Periodicals, Inc.

  1. Styrene Exposure and Risk of Lymphohematopoietic Malignancies in 73,036 Reinforced Plastics Workers

    DEFF Research Database (Denmark)

    Christensen, Mette Skovgaard; Vestergaard, Jesper Medom; d'Amore, Francesco

    2018-01-01

    BACKGROUND: Styrene is an important industrial chemical that the general population is exposed to at low levels. Previous research has suggested increased occurrence of leukemia and lymphoma among reinforced plastics workers exposed at high levels of styrene. METHODS: We followed 73,036 workers o...

  2. Meiotic changes in Vicia faba L. subsequent to treatments of hydrazine hydrate and maleic hydrazide

    Directory of Open Access Journals (Sweden)

    Shaheen Husain

    2013-01-01

    Full Text Available Assessing the impact of mutagens for creating variations in crops like faba bean (Vicia faba L. is an important criterion in the contemporary world where food insecurity and malnutrition is alarming at the doors of various nations. Impact of two chemical mutagens viz. hydrazine hydrate (HZ and maleic hydrazide (MH on the two varieties (NDF-1 and HB-405 of Vicia faba were analysed in terms of meiotic behavior and pollen sterility. Since there are not enough data about the effect of these mutagens on the chromosomal behaviors of Vicia faba, this study presents the role of hydrazine hydrate and maleic hydrazide as well as various types of chromosomal aberrations in crop improvement. The lower concentration of mutagens showed less pollen sterility compared to the higher concentrations. Manipulation of plant structural component to induce desirable alternations provides valuable material for the breeders and could be used favorably for increasing mutation rate and obtaining a desirable spectrum of mutation in faba beans based on preliminary studies of cell division.

  3. Carbon-14 kinetic isotope effects and mechanisms of addition of 2,4-dinitrobenzenesulfenyl chloride to substituted styrenes-1-14C and styrenes-2-14C

    International Nuclear Information System (INIS)

    Kanska, M.; Fry, A.

    1983-01-01

    As the first reported examples of carbon isotope effects in simple electrophilic addition reactions we have measured the carbon-14 kinetic isotope effects in the addition of 2,4-dinitrobenzenesulfenyl chloride to a series of para-substituted α and β-labeled styrenes in acetic acid at 30.1 0 C: for para substituents Cl, H, and CH 3 the k/ 14 K values for α labeling are 1.027, 1.022, and 1.004, and the k/ 14 k values for β labeling are 1.035, 1.032, and 1.037, all +/-approx.0.004. The kinetics of the reaction were measured for the p-CH 3 O,p-CH 3 , unsubstituted, p-Cl, and m-NO 2 styrenes; electron-donating groups strongly accelerate the reaction, and electron-withdrawing groups retard it. The Hammett plot is curved with p + values ranging from about -4.6 at the electron-donating group (EDG) end to about -1.8 at the electron-withdrawing group (EWG) end. Both the isotope effect and kinetic data, and related data from the literature, are interpreted in terms of a changing mechanism, with the activated complexes of the rate-determining steps having much open carbenium ion (ion pair) character for EDG-substituted styrenes and much cyclic thiiranium io (ion par) character for EWG-substituted styrenes. 1 figure, 2 tables

  4. Susceptibility of linear and nonlinear otoacoustic emission components to low-dose styrene exposure.

    Science.gov (United States)

    Tognola, G; Chiaramello, E; Sisto, R; Moleti, A

    2015-03-01

    To investigate potential susceptibility of active cochlear mechanisms to low-level styrene exposure by comparing TEOAEs in workers and controls. Two advanced analysis techniques were applied to detect sub-clinical changes in linear and nonlinear cochlear mechanisms of OAE generation: the wavelet transform to decompose TEOAEs into time-frequency components and extract signal-to-noise ratio and latency of each component, and the bispectrum to detect and extract nonlinear TEOAE contributions as quadratic frequency couplings (QFCs). Two cohorts of workers were examined: subjects exposed exclusively to styrene (N = 9), and subjects exposed to styrene and noise (N = 6). The control group was perfectly matched by age and sex to the exposed group. Exposed subjects showed significantly lowered SNR in TEOAE components at mid-to-high frequencies (above 1.6 kHz) and a shift of QFC distribution towards lower frequencies than controls. No systematic differences were observed in latency. Low-level styrene exposure may have induced a modification of cochlear functionality as concerns linear and nonlinear OAE generation mechanisms. The lack of change in latency seems to suggest that the OAE components, where generation region and latency are tightly coupled, may not have been affected by styrene and noise exposure levels considered here.

  5. Styrene metabolism, genotoxicity, an potential carcinogenicity

    Czech Academy of Sciences Publication Activity Database

    Vodička, Pavel; Koskinen, M.; Naccarati, Alessio; Oesch-Bartlomowicz, B.; Vodičková, Ludmila; Hemminki, K.; Oesch, F.

    2006-01-01

    Roč. 38, č. 4 (2006), s. 805-853 ISSN 0360-2532 R&D Projects: GA ČR GA310/03/0437 Institutional research plan: CEZ:AV0Z50390512 Keywords : Styrene * Biotransformation * DNA and chromosomal damage Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.754, year: 2006

  6. Coke formation in the oxidative dehydrogenation of ethylbenzene to styrene by TEOM

    NARCIS (Netherlands)

    Nederlof, C.; Vijfhuizen, P.; Zarubina, V.; Melian-Cabrera, I.; Kapteijn, F.; Makkee, M.

    2014-01-01

    A packed bed microbalance reactor setup (TEOM-GC) is used to investigate the formation of coke as a function of time-on-stream on gamma-Al2O3 and 3P/SiO2 catalyst samples under different conditions for the ODH reaction of ethylbenzene to styrene. All samples show a linear correlation of the styrene

  7. Coke formation in the oxidative dehydrogenation of ethylbenzene to styrene by TEOM

    NARCIS (Netherlands)

    Nederlof, C.; Vijfhuizen, P.; Zarubina, V.; Melián-Cabrera, I.; Kapteijn, F.; Makkee, M.

    2014-01-01

    A packed bed microbalance reactor setup (TEOM-GC) is used to investigate the formation of coke as a function of time-on-stream on ?-Al2O3 and 3P/SiO2 catalyst samples under different conditions for the ODH reaction of ethylbenzene to styrene. All samples show a linear correlation of the styrene

  8. Radiation chemical grafting of vinyl acetate and styrene on nitrocellulose

    International Nuclear Information System (INIS)

    Chapiro, A.; Foex, M.; Jendrychowska-Bonamour, A.M.

    1977-01-01

    Vinyl acetate and styrene were grafted onto nitrocellulose using the direct radiation grafting technique with 500 and 3000 Ci 60 Co γ sources. For vinyl acetate, the reaction proceeds homogeneously. The kinetics are dominated by degradative chain transfer to the nitrocellulose. The polymerization of vinyl acetate was examined in the presence of isoamyl nitrate, a model for nitrocellulose; the transfer constant was determined and the results are treated semi-quantitatively. For styrene, grafting occurs in a swollen film irradiated in the presence of excess monomer. The diffusion of styrene into nitrocellulose is extremely slow; methanol was added to the reaction mixture to favour diffusion which was found to obey Fick's law. The diffusion constant and activation energy of diffusion are evaluated. The grafting kinetics are controlled by monomer diffusion, accounting for the increase of dose-rate exponent with temperature. A spontaneous grafting process occurs in the absence of irradiation. It is initiated by macroradicals arising from thermal decomposition of nitrocellulose. (author)

  9. Radiation-initiated emulsion copolymerization of styrene and carboxylic acid monomers

    International Nuclear Information System (INIS)

    Egusa, S.; Makuuchi, K.

    1982-01-01

    The emulsion copolymerization of styrene and carboxylic acid monomers such as acrylic, methacrylic, and itaconic acids (AAc, MAAc, IAc) was studied by using 60 Co γ-rays as initiator and sodium dodecylsulfate as emulsifier. The polymerization behavior of these acid monomers was followed by simultaneous conductometric and potentiometric titrations for a latex sample taken in polymerization. The polymerization rate of these acid monomers increases in the following order of hydrophobicity: IAc < AAc < MAAc; this suggests that their polymerization sites are mainly the surface and/or subsurface regions of latex particles. The copolymerization rate of styrene and acid monomer increases with an increase in the acid monomer content for AAc and MAAc, whereas for IAc the rate decreases. The particle sizes determined by the stopped-flow method reveal that this variation of copolymerization rate cannot be explained by the number of growing particles and should be attributed to another factor; for instance, the transfer rate of styrene molecules from oil droplets to growing particles

  10. Microbial production of the aromatic building-blocks (S)-styrene oxide and (R)-1,2-phenylethanediol from renewable resources.

    Science.gov (United States)

    McKenna, Rebekah; Pugh, Shawn; Thompson, Brian; Nielsen, David R

    2013-12-01

    (S)-Styrene oxide and (R)-1,2-phenylethanediol are chiral aromatic molecular building blocks used commonly as precursors to pharmaceuticals and other specialty chemicals. Two pathways have been engineered in Escherichia coli for their individual biosynthesis directly from glucose. The novel pathways each constitute extensions of the previously engineered styrene pathway, developed by co-expressing either styrene monooxygenase (SMO) or styrene dioxygenase (SDO) to convert styrene to (S)-styrene oxide and (R)-1,2-phenylethanediol, respectively. StyAB from Pseudomonas putida S12 was determined to be the most effective SMO. SDO activity was achieved using NahAaAbAcAd of Pseudomonas sp. NCIB 9816-4, a naphthalene dioxygenase with known broad substrate specificity. Production of phenylalanine, the precursor to both pathways, was systematically enhanced through a number of mutations, most notably via deletion of tyrA and over-expression of tktA. As a result, (R)-1,2-phenylethanediol reached titers as high as 1.23 g/L, and at 1.32 g/L (S)-styrene oxide titers already approach their toxicity limit. As with other aromatics, product toxicity was strongly correlated with a model of membrane accumulation and disruption. This study additionally demonstrates that greater flux through the styrene pathway can be achieved if its toxicity is addressed, as achieved in this case by reacting styrene to less toxic products. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Heterogeneous catalytic oxidative dehydrogenation of ethylbenzene to styrene with carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Badstube, T.; Papp, H. [Leipzig Univ. (Germany). Inst. fuer Technische Chemie; Kustrowski, P.; Dziembaj, R. [Jagiellonian Univ., Crakow (Poland). Faculty of Chemistry

    1998-12-31

    Alkaline promoted active carbon supported iron catalysts are very active in the oxidative dehydrogenation of ethylbenzene to styrene in the presence of carbon dioxide. The best results were obtained at 550 C for a Li-promoted catalyst with a conversion of ethylbenzene of 75% and a selectivity towards styrene of nearly 95%. These results are better than those obtained with industrial catalysts which perform the dehydrogenation process with an excess of water. The main product of the dehydrogenation reaction with CO{sub 2} was styrene, but the following by-products were detected - benzene and toluene. The selectivity towards toluene was always higher than towards benzene. We observed also the formation of carbon monoxide and water, which were produced with a constant molar ratio of about 0.8. The weight of the catalysts increased up to 20% during the reaction due to deposition of carbon. Using a too large excess of CO{sub 2} (CO{sub 2}/EB>10) was harmful for the styrene yield. The most favorable molar ratio of CO{sub 2} to EB was 10:1. No correlation between the molar ratios of reactants and the amount of deposited coke on the surface of catalysts was observed. The highest catalytic activity showed iron loaded D-90 catalysts which were promoted with alkali metals in a molar ratio of 1:10. Iron, nickel and cobalt loaded carbonized PPAN, PC, inorganic supports like Al{sub 2}O{sub 3}, SiO{sub 2}/ZrO{sub 2} or TiO{sub 2} respectively and commercial iron catalysts applied for styrene production did not show comparable catalytic activity in similar conditions. (orig.)

  12. Synthesis, characterization and catalytic property of CuO and Ag/CuO nanoparticles for the epoxidation of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Lashanizadegan, Maryam; Erfaninia, Nasrin [Alzahra University, Tehran (Iran, Islamic Republic of)

    2013-11-15

    CuO nanorodes, CuO nanoplates and Ag/CuO nanoparticles were synthesized in the presence of polyethylene glycol by depositional in alkaline environment. Oxide nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared absorption spectra (FT-IR). CuO and Ag/CuO nanoparticles show high catalytic activity for the selective epoxidation of styrene to styrene oxide by TBHP. Under the optimized reaction condition, the oxidation of styrene catalyzed by CuO nanorods gave 100% conversion with 60 and 35% styrene oxide and benzaldehyde, respectively. Ag/CuO gave 99% conversion and styrene oxide (71%) and benzaldehyde (12%) being the major product.

  13. Highly efficient and selective pressure-assisted photon-induced polymerization of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Jiwen [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Song, Yang, E-mail: yang.song@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7 (Canada)

    2016-06-07

    The polymerization process of condensed styrene to produce polystyrene as an industrially important polymeric material was investigated using a novel approach by combining external compression with ultraviolet radiation. The reaction evolution was monitored as a function of time and the reaction products were characterized by in situ Fourier transform infrared spectroscopy. By optimizing the loading pressures, we observed highly efficient and selective production of polystyrene of different tacticities. Specifically, at relatively low loading pressures, infrared spectra suggest that styrene monomers transform to amorphous atactic polystyrene (APS) with minor crystalline isotactic polystyrene. In contrast, APS was found to be the sole product when polymerization occurs at relatively higher loading pressures. The time-dependent reaction profiles allow the examination of the polymerization kinetics by analyzing the rate constant and activation volume as a function of pressure. As a result, an optimized pressure condition, which allows a barrierless reaction to proceed, was identified and attributed to the very desirable reaction yield and kinetics. Finally, the photoinitiated reaction mechanism and the growth geometry of the polymer chains were investigated from the energy diagram of styrene and by the topology analysis of the crystal styrene. This study shows strong promise to produce functional polymeric materials in a highly efficient and controlled manner.

  14. Simulation for Synthesis of Tritiated Styrene by Catalyzed Addition of Deuterium

    Directory of Open Access Journals (Sweden)

    CUI Xiao-jing;KANG Yi;HU Shi-lin

    2016-08-01

    Full Text Available Tritiated styrene plays an important role in the organic tritium lights, which could be made by selective hydrogenation of phenylacetylene. A simulated reaction of the preparation of tritiated styrene was studied by using deuterium instead of tritium and using the Lindlar catalyst instead of Pd/C catalyst to improve the conversion and selectivity of the reaction. Experiment results showed that stirring speed, temperature and the amount of deuterium were the most important factors to effect the conversion and selectivity of the reaction. The relative stronger stirring speed and higher temperature could improve the conversion rate of the reaction, but could not change the selectivity. When the excessive or less deuterium was added in the reaction, the selectivity was decreased significantly, since the over deuterium promoted the reaction toward ethylbenzene. Lindlar catalyst exhibited higher selectivity toward styrene than Pd/C.

  15. Biofiltration of mixtures of gas-phase styrene and acetone with the fungus Sporothrix variecibatus

    International Nuclear Information System (INIS)

    Rene, Eldon R.; Spackova, Radka; Veiga, Maria C.; Kennes, Christian

    2010-01-01

    The biodegradation performance of a biofilter, inoculated with the fungus Sporothrix variecibatus, to treat gas-phase styrene and acetone mixtures under steady-state and transient conditions was evaluated. Experiments were carried out by varying the gas-flow rates (0.05-0.4 m 3 h -1 ), leading to empty bed residence times as low as 17.1 s, and by changing the concentrations of gas-phase styrene (0.01-6.3 g m -3 ) and acetone (0.01-8.9 g m -3 ). The total elimination capacities were as high as 360 g m -3 h -1 , with nearly 97.5% removal of styrene and 75.6% for acetone. The biodegradation of acetone was inhibited by the presence of styrene, while styrene removal was affected only slightly by the presence of acetone. During transient-state experiments, increasing the overall pollutant load by almost 3-fold, i.e., from 220 to 600 g m -3 h -1 , resulted in a sudden drop of removal efficiency (>90-70%), but still high elimination capacities were maintained. Periodic microscopic observations revealed that the originally inoculated Sporothrix sp. remained present in the reactor and actively dominant in the biofilm.

  16. Reduced graphene oxide/hydroxylated styrene-butadiene-styrene tri-block copolymer electroconductive nanocomposites: Preparation and properties

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Yuanqin; Xie, Yanyan [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Zhang, Fan [College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000 (China); Ou, Encai; Jiang, Zhuojuan; Ke, Lili; Hu, Ding [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Xu, Weijian, E-mail: weijianxu59@gmail.com [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2012-08-20

    Highlights: Black-Right-Pointing-Pointer RGO/HO-SBS nanocomposites are prepared successfully. Black-Right-Pointing-Pointer The introduction of -OH improves the compatibility between RGO and HO-SBS. Black-Right-Pointing-Pointer RGO disperse homogeneously and form a compact continuous network in matrix (HO-SBS). Black-Right-Pointing-Pointer The percolation threshold of the nanocomposites is of 0.2-0.5 wt% (0.09-0.23 vol%) and its conductivity is up to 1.3 S/m. - Abstract: Flexible and electroconductive nanocomposites based on reduced graphene oxide (RGO) and hydroxylated styrene-butadiene-styrene tri-block copolymer (HO-SBS) were prepared by solution blending method. By the introduction of the groups of -OH and >C=O onto SBS, the compatibility between RGO and SBS was enhanced. Field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) showed that RGO dispersed homogeneously and formed a compact continuous network in matrix (HO-SBS). The addition of RGO improved the thermal stability of the RGO/HO-SBS nanocomposites while slightly lowered the mechanical property. Moreover, RGO gave the nanocomposites a maximum electrical conductivity up to 1.3 S/m.

  17. The effect of ethanol on the γ radiation induced polymerization of styrene

    International Nuclear Information System (INIS)

    Zhang Xujia; Ha Hongfei; Wu Jilan

    1990-01-01

    The γ radiation induced polymerization of styrene in the presence of ethanol was studied at dose rate of 5 x 10 17 eV/ml min. The result showed that the radiation induced polymerization of styrene was sensitized by ethanol. The experimental results were in agreement with the theoretical calculation of WAS equation. The mechanism of sensitization was proposed as proton transfer reaction

  18. High resolution X-ray photoelectron spectroscopy of styrene oxide adsorption and reaction on Ag(1 1 1)

    Science.gov (United States)

    Piao, H.; Enever, M. C. N.; Adib, K.; Hrbek, J.; Barteau, M. A.

    2004-11-01

    Synchrotron-based X-ray photoelectron spectroscopy (XPS) has been used to investigate the adsorption and reaction of styrene oxide on Ag(1 1 1). When adsorption is carried out at 250 K or above, ring opening of styrene oxide forms a stable surface oxametallacycle intermediate which eventually reacts at 485 K to regenerate styrene oxide. High resolution XPS is capable of distinguishing the oxametallacycle from molecularly adsorbed and condensed styrene oxide on the basis of different C1s peak separations. The observed separations are well accounted for by the results of DFT calculations.

  19. Respiratory Allergy to Trimellitic Anhydride in Rats: Concentration-Response Relationships during Elicitation

    NARCIS (Netherlands)

    Arts, J.H.E.; Koning, M.W. de; Bloksma, N.; Kuper, C.F.

    2004-01-01

    The present study investigated whether airway responses of sensitized rats to trimellitic anhydride (TMA) were concentration dependent and whether these were related to irritation by TMA. Groups of BN and Wistar rats were sensitized by two dermal applications of TMA (50% w/v, followed by 25% w/v in

  20. FAD C(4a)-hydroxide stabilized in a naturally fused styrene monooxygenase

    Science.gov (United States)

    Schlömann, Michael; van Berkel, Willem J.H.; Gassner, George T.

    2013-01-01

    StyA2B represents a new class of styrene monooxygenases that integrates flavin-reductase and styrene-epoxidase activities into a single polypeptide. This naturally-occurring fusion protein offers new avenues for studying and engineering biotechnologically relevant enantioselective biochemical epoxidation reactions. Stopped-flow kinetic studies of StyA2B reported here identify reaction intermediates similar to those reported for the separate reductase and epoxidase components of related two-component systems. Our studies identify substrate epoxidation and elimination of water from the FAD C(4a)-hydroxide as rate-limiting steps in the styrene epoxidation reaction. Efforts directed at accelerating these reaction steps are expected to greatly increase catalytic efficiency and the value of StyA2B as biocatalyst. PMID:24157359

  1. Cellular effect of styrene substituted biscoumarin caused cellular apoptosis and cell cycle arrest in human breast cancer cells.

    Science.gov (United States)

    Perumalsamy, Haribalan; Sankarapandian, Karuppasamy; Kandaswamy, Narendran; Balusamy, Sri Renukadevi; Periyathambi, Dhaiveegan; Raveendiran, Nanthini

    2017-11-01

    Coumarins occurs naturally across plant kingdoms exhibits significant pharmacological properties and pharmacokinetic activity. The conventional, therapeutic agents are often associated with poor stability, absorption and increased side effects. Therefore, identification of a drug that has little or no-side effect on humans is consequential. Here, we investigated the antiproliferative activity of styrene substituted biscoumarin against various human breast cancer cell lines, such as MCF-7, (ER-) MDA-MB-231 and (AR+) MDA-MB-453. Styrene substituted biscoumarin induced cell death by apoptosis in MDA-MB-231 cell line was analyzed. Antiproliferative activity of Styrene substituted biscoumarin was performed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Styrene substituted biscoumarin induced apoptosis was assessed by Hoechst staining, Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining and flow cytometric analysis. Migratory and proliferating characteristic of breast cancer cell line MDA-MB-231 was also analyzed by wound healing and colony formation assay. Furthermore, mRNA expression of BAX and BCL-2 were quantified using qRT-PCR and protein expression level analyzed by Western blot. The inhibition concentration (IC 50 ) of styrene substituted biscoumarin was assayed against three breast cancer cell lines. The inhibition concentration (IC 50 ) value of styrene substituted biscoumarin toward MDA-MB-231, MDA-MB-453 and MCF-7 cell lines was 5.63, 7.30 and 10.84μg/ml respectively. Styrene substituted biscoumarin induced apoptosis was detected by Hoechst staining, DAPI/PI analysis and flow-cytometric analysis. The migration and proliferative efficiency of MDA-MB-231 cells were completely arrested upon styrene substituted biscoumarin treatment. Also, mRNA gene expression and protein expression of pro-apoptotic (BAX) and anti-apoptotic (BCL-2) genes were analyzed by qRT-PCR and western blot analysis upon

  2. Formal description of styrene conversion in ionized air

    International Nuclear Information System (INIS)

    Novoselov, Yu.N.; Filatov, I.E.

    2002-01-01

    The styrene conversion in the air flow under the effect of the electron beam with the energy of 180 keV and the streamer corona charge is studied with the purpose of searching the general criterion of the efficiency of the air purification from the toxic aromatic unsaturated compounds with application of the electrophysical methods. It is established, that dependence of the styrene concentration on the radiation pulse number have the character of the falling curves specific for the first order reactions. It is shown that it is advisable to use as the criterion of the efficiency of the electrophysical air purification methods the initial characteristic energy, the numerical value whereof corresponds to the energy quantity, removed substance concentration by e = 2.718 times [ru

  3. Cationic polymerization of styrene by means of pulse radiolysis

    International Nuclear Information System (INIS)

    Egusa, S.; Arai, S.; Kira, A.; Imamura, M.; Tabata, Y.

    1977-01-01

    The radiation-induced cationic polymerization of styrene has been studied by microsecond pulse radiolysis. It was possible to observe absorption bands of a monomer cation radical (St. + ) at 630 nm and at 350 nm in a mixture of isopentane and n-butyl chloride at - 165 0 C. Three absorption bands, around 1600 nm, at 600 nm and at 450 nm, grew in parallel with the decay of St. + after pulse. The 1600-nm and 600-nm bands were assigned to an associated dimer cation radical (St 2 . + ), and the 450-nm band to a bonded dimer cation radical (St-St. + ) by comparison of absorption spectra of α-methylstyrene, 1,2-dihydronaphthalene and trans-β-methylstyrene. The kinetic behaviour of these species suggests that St-St. + and a part of St 2 . + are formed by the reaction of St. + with a styrene monomer, and the rest of St 2 . + may be formed by positive charge transfer from a solvent cation radical to an auto-associated neutral dimer of styrene. A long-lived absorption band at 340 nm grew with the decay of St-St. + . This band is considered due to a growing polymer carbonium ion. (author)

  4. Solvent effect on post-irradiation grafting of styrene onto poly(ethylene-alt-tetrafluoroethylene) (ETFE) films

    Science.gov (United States)

    Napoleão Geraldes, Adriana; Augusto Zen, Heloísa; Ribeiro, Geise; Fernandes Parra, Duclerc; Benévolo Lugão, Ademar

    2013-03-01

    Radiation-induced grafting of styrene onto ETFE films in different solvent was investigated after simultaneous irradiation (in post-irradiation condition) using a 60Co source. Grafting of styrene followed by sulfonation onto poly(ethylene-alt-tetrafluoroethylene) (ETFE) are currently studied for synthesis of ion exchange membranes. The ETFE films were immersed in styrene/toluene, styrene/methanol and styrene/isopropyl alcohol and irradiated at 20 and 100 kGy doses at room temperature. The post-irradiation time was established at 14 day and the grafting degree was evaluated. The grafted films were sulfonated using chlorosulfonic acid and 1,2-dichloroethane 20:80 (v/v) at room temperature for 5 h. The degree of grafting (DOG) was determined gravimetrically and physical or chemical changes were evaluated by differential scanning calorimeter analysis (DSC), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The ion exchange capacity (IEC) values showed the best performance of sulfonation for ETFE membranes grafted in toluene solvent. Surface images of the grafted films by SEM technique have presented a strong effect of the solvents on the films morphology.

  5. 0177 Exposure to styrene and the risk of cancer

    DEFF Research Database (Denmark)

    Christensen, Mette Skovgaard; Hansen, J; Ramlau-Hansen, Cecilia

    2014-01-01

    OBJECTIVES: Styrene was incorporated in the 12(th) Report on Carcinogens (RoC) based on sufficient experimental evidence in animals. The human evidence has been evaluated as limited by RoC and IARC. The objective of this study was to analyse the risk of haematopoetic malignancies and other cancers...... following occupational styrene exposure. METHOD: The cohort consists of 74 902 workers (84% men) in the Danish reinforced plastics industry, originating from 481 companies ever producing reinforced plastics in Denmark 1964-2009. We identified all workers in the National Supplementary Pension Fund Registry...

  6. Quantitative analysis of styrene butadiene copolymers using S-SIMS and LA-FTICRMS

    International Nuclear Information System (INIS)

    Ruch, D.; Boes, C.; Zimmer, R.; Muller, J.F.; Migeon, H.-N.

    2003-01-01

    Styrene butadiene copolymers (SBR) have been analyzed by static secondary ion mass spectrometry (S-SIMS) and laser ablation Fourier transform ion cyclotron resonance mass spectrometry (LA-FTICRMS) to obtain quantitative information based on specific peaks knowing that the complication of this system is that there are no characteristic SIMS peaks unique to each styrene and butadiene monomer. So, to overcome this problem, a silver deposition has been applied into polystyrene (PS), butadiene rubber (BR) and SBR. By this way, new secondary ions are detected in particular silver cationized butadiene and styrene monomers at m/z 161/163 and 211/213, respectively. The LA-FTICRMS experiments do not require pre-treatment. At high laser power density, UV photons (193, 266 and 355 nm) allow to detect directly the styrene and butadiene ions at m/z 104 and 54, respectively. Using these SIMS and LA-FTICRMS peaks, it is possible to obtain quantitative results. However, the silver coating in the SIMS experiment seems to have a great influence on the obtention of quantitative information. For LA-FTICRMS experiments, the best results seem to be obtained at the 355 nm wavelength

  7. Antimicrobial residual effects of irrigation regimens with maleic acid in infected root canals

    OpenAIRE

    Ferrer-Luque, Carmen Mar?a; Gonz?lez-Castillo, Silvia; Ruiz-Linares, Matilde; Arias-Moliz, Mar?a Teresa; Rodr?guez-Archilla, Alberto; Baca, Pilar

    2015-01-01

    Background The success of endodontic treatment depends largely on the control of microorganisms present in infected root canals. The aim of this study was to determine the residual antimicrobial activity of several final irrigation protocols with 7% maleic acid (MA) alone and combined with chlorhexidine (CHX), cetrimide (CTR) or both, in root canals infected with Enterococcus faecalis. Biofilms of E. faecalis were grown in uniradicular roots for 4 weeks. A total of 72 specimens were divided i...

  8. High performance maleated lignocellulose epicarp fibers for copper ion removal

    OpenAIRE

    Vieira,A. P.; Santana,S. A. A.; Bezerra,C. W. B.; Silva,H. A. S.; Santos,K. C. A.; Melo,J. C. P.; Silva Filho,E. C.; Airoldi,C.

    2014-01-01

    Natural lignocellulosic fiber epicarp extracted from the babassu coconut (Orbignya speciosa) was chemically modified through reaction with molten maleic anhydride without solvent, with incorporation of 189.34 mg g(-1) of carboxylic acid groups into the biopolymer structure. The success of this reaction was also confirmed by the presence of carboxylic acid bands at 1741 and 1164 cm(-1) in the infrared spectrum. Identically, the same group is observed through C-13 NMR CP/MAS in the solid state,...

  9. IgG binding of mugwort pollen allergens and allergoids exposed to simulated gastrointestinal conditions measured by a self-developed ELISA test

    OpenAIRE

    RATKO M. JANKOV; OLGA VUCKOVIC; DANICA DJERGOVIC-PETROVIC; LIDIJA BURAZER; TANJA D. CIRKOVICVELICKOVIC; MARIJA DJ. GAVROVIC-JANKULOVIC; NATALIJA DJ. POLOVIC

    2004-01-01

    This study considers the influence of exposure to simulated gastrointestinal conditions (saliva, gut, intestine and acidic conditions of the gut) on IgG binding of unmodified allergens and three types of LMW allergoids of Artemisia vulgaris pollen extract obtained by means of potassium cyanate, succinic and maleic anhydride. It also concerns the optimization of a self-developed ELISA assay for comparison of the specific IgG binding of mugwort pollen extract and modified mugwort pollen derivat...

  10. Morphology Development and Mechanical Properties Variation during Cold-Drawing of Polyethylene-Clay Nanocomposite Fibers

    OpenAIRE

    Bartolomeo Coppola; Paola Scarfato; Loredana Incarnato; Luciano Di Maio

    2017-01-01

    In this work, the influence of composition and cold-drawing on nano- and micro-scale morphology and tensile mechanical properties of PE/organoclay nanocomposite fibers was investigated. Nanocomposites were prepared by melt compounding in a twin-screw extruder, using a maleic anhydride grafted linear low density polyethylene (LLDPE–g–MA) and an organomodified montmorillonite (Dellite 67G) at three different loadings (3, 5 and 10 wt %). Fibers were produced by a single-screw extruder and drawn ...

  11. Lewis acid controlled regioselectivity in styrene hydrocyanation

    NARCIS (Netherlands)

    Bini, L.; Pidko, E.A.; Müller, C.; Santen, van R.A.; Vogt, D.

    2009-01-01

    According to present knowledge, the Ni-catalyzed hydrocyanation of styrene leads predominantly to the branched product 2-phenylpropionitrile (98%). We observed a dramatic inversion of the regioselectivity upon addition of a Lewis acid. Up to 83 % of the linear product 3-phenylpropionitrile was

  12. An Examination of the Chemistry of Peroxycarboxylic Nitric Anhydrides and Related Volatile Organic Compounds During Texas Air Quality Study 2000 Using Ground-Based Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, James M.; Jobson, B Tom T.; Kuster, W. C.; Goldan, P. D.; Murphy, Paul; Williams, Eric; Frost, G. J.; Riemer, D.; Apel, Eric; Stroud, C.; Wiedinmyer, Christine; Fehsenfeld, Fred C.

    2003-08-19

    Measurements of peroxycarboxylic nitric anhydrides (PANs) along with related volatile organic compounds (VOCs) were made at the La Porte super site during the TexAQS 2000 Houston study. The PAN mixing ratios ranged up to 6.5 ppbv and were broadly correlated with O3, characteristic of a highly polluted urban environment. The anthropogenic PAN homologue concentrations were generally consistent with those found in other urban environments; peroxypropionic nitric anhydride (PPN) averaged 15%, and peroxyisobutyric nitric anhydride (PiBN) averaged 3% of PAN,. Some periods were noted where local petrochemical sources resulted in anomalous PANs chemistry. This effect was especially noticeable in the case of peroxyacrylic nitric anhydride (APAN) where local sources of 1,3-butadiene and acrolein resulted in APAN as high as 30% of PAN. Peroxymethacrylic nitric anhydride (MPAN) was a fairly minor constituent of the PANs except for two periods on 4 and 5 September when air masses from high biogenic hydrocarbons (BHC) areas were observed. BHC chemistry was not a factor in the highest ozone pollution episodes in Houston but may have an impact on daily average ozone levels in some circumstances.

  13. Mechanism of isotactic styrene polymerization with a C 6F 5-substituted bis(phenoxyimine) titanium system

    KAUST Repository

    Caporaso, Lucia; Loria, Marianna; Mazzeo, Mina; Michiue, Kenji; Nakano, Takashi; Fujita, Terunori; Cavallo, Luigi

    2012-01-01

    We report a combined, experimental and theoretical, study of styrene polymerization to clarify the regio- and stereocontrol mechanism operating with a C 6F 5-substituted bis(phenoxyimine) titanium dichloride complex. Styrene homopolymerization, styrene-propene and styrene-ethene-propene copolymerizations have been carried out to this aim. A combination of 13C NMR analysis of the chain-end groups and of the microstructure of the homopolymers and copolymers reveals that styrene polymerization is highly regioselective and occurs prevalently through 2,1-monomer insertion. DFT calculations evidenced that steric interaction between the growing chain and the monomer in the transition state insertion stage is at the origin of this selectivity. The formation of isotactic polystyrene with a chain-end like microstructure is rationalized on the base of a mechanism similar to that proposed for the syndiospecific propene polymerization catalyzed by bis(phenoxyimine) titanium dichloride complexes. Finally, a general stereocontrol mechanism operative in olefin polymerization with this class of complexes is proposed. © 2012 American Chemical Society.

  14. Mechanism of isotactic styrene polymerization with a C 6F 5-substituted bis(phenoxyimine) titanium system

    KAUST Repository

    Caporaso, Lucia

    2012-11-13

    We report a combined, experimental and theoretical, study of styrene polymerization to clarify the regio- and stereocontrol mechanism operating with a C 6F 5-substituted bis(phenoxyimine) titanium dichloride complex. Styrene homopolymerization, styrene-propene and styrene-ethene-propene copolymerizations have been carried out to this aim. A combination of 13C NMR analysis of the chain-end groups and of the microstructure of the homopolymers and copolymers reveals that styrene polymerization is highly regioselective and occurs prevalently through 2,1-monomer insertion. DFT calculations evidenced that steric interaction between the growing chain and the monomer in the transition state insertion stage is at the origin of this selectivity. The formation of isotactic polystyrene with a chain-end like microstructure is rationalized on the base of a mechanism similar to that proposed for the syndiospecific propene polymerization catalyzed by bis(phenoxyimine) titanium dichloride complexes. Finally, a general stereocontrol mechanism operative in olefin polymerization with this class of complexes is proposed. © 2012 American Chemical Society.

  15. Synthesis and properties of the metallo-supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]·AgNO3: Ag+/Cu2+ ion exchange and effective antibacterial activity

    KAUST Repository

    Xu, Feng

    2014-01-01

    The commercial polymeric anhydride poly(methyl vinyl ether-alt-maleic anhydride) (PVM/MA) is converted by reaction with NaOH to give poly(methyl vinyl ether-alt-mono-sodium maleate) (PVM/Na-MA). By addition of AgNO 3-solution, the formation of the silver(i) supramolecular polymer hydrogel poly[methyl vinyl ether-alt-mono-sodium maleate]·AgNO 3 is reported. Freeze-dried samples of the hydrogel show a mesoporous network of polycarboxylate ligands that are crosslinked by silver(i) cations. In the intact hydrogel, ion-exchange studies are reported and it is shown that Ag+ ions can be exchanged by copper(ii) cations without disintegration of the hydrogel. The silver(i) hydrogel shows effective antibacterial activity and potential application as burn wound dressing. © the Partner Organisations 2014.

  16. NIOSH Manual of Analytical Methods (third edition). Fourth supplement

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-15

    The NIOSH Manual of Analytical Methods, 3rd edition, was updated for the following chemicals: allyl-glycidyl-ether, 2-aminopyridine, aspartame, bromine, chlorine, n-butylamine, n-butyl-glycidyl-ether, carbon-dioxide, carbon-monoxide, chlorinated-camphene, chloroacetaldehyde, p-chlorophenol, crotonaldehyde, 1,1-dimethylhydrazine, dinitro-o-cresol, ethyl-acetate, ethyl-formate, ethylenimine, sodium-fluoride, hydrogen-fluoride, cryolite, sodium-hexafluoroaluminate, formic-acid, hexachlorobutadiene, hydrogen-cyanide, hydrogen-sulfide, isopropyl-acetate, isopropyl-ether, isopropyl-glycidyl-ether, lead, lead-oxide, maleic-anhydride, methyl-acetate, methyl-acrylate, methyl-tert-butyl ether, methyl-cellosolve-acetate, methylcyclohexanol, 4,4'-methylenedianiline, monomethylaniline, monomethylhydrazine, nitric-oxide, p-nitroaniline, phenyl-ether, phenyl-ether-biphenyl mixture, phenyl-glycidyl-ether, phenylhydrazine, phosphine, ronnel, sulfuryl-fluoride, talc, tributyl-phosphate, 1,1,2-trichloro-1,2,2-trifluoroethane, trimellitic-anhydride, triorthocresyl-phosphate, triphenyl-phosphate, and vinyl-acetate.

  17. Langmuir-Blodgett films prepared from pre-formed cholestanic liquid-crystalline polymers

    Energy Technology Data Exchange (ETDEWEB)

    Tundo, P.; Hodge, P.; Valli, L.; Davis, F. (Venice Univ. (Italy). Dip. di Scienze Ambientali Lecce Univ. (Italy). Dip. di Scienza dei Materiali Manchester Univ. (United Kingdom). Dep. of Chemistry)

    1992-01-01

    A series of alternating copolymers of maleic anhydride and a-olefins functionalized through different alkyl chains with cholestanic groups were synthetised and derivatives prepared by reactions of the anhydride residues with methanol, water, dimethylamine and morpholine, respectively. The same starting functionalized a-olefins were used to prepare other suitable compounds in order to correlate the features of the liquid-crystalline behaviour of the mesogenic cholestanic group with the stability of the forthcoming polymeric or not polymeric Langmuir-Blodgett (LB) films. For some copolymers surface pressure against area per molecule isotherms are reported. In some multilayer (LB) films, the spacings between the layers were determined by the detection of BRAGG peaks by X-ray diffraction. The (LB) films of these polymers are closed packed, owing to either the polymeric skeleton or liquid-crystalline interaction.

  18. Kinetics and mechanism of styrene epoxidation by chlorite: role of chlorine dioxide.

    Science.gov (United States)

    Leigh, Jessica K; Rajput, Jonathan; Richardson, David E

    2014-07-07

    An investigation of the kinetics and mechanism for epoxidation of styrene and para-substituted styrenes by chlorite at 25 °C in the pH range of 5-6 is described. The proposed mechanism in water and water/acetonitrile includes seven oxidation states of chlorine (-I, 0, I, II, III, IV, and V) to account for the observed kinetics and product distributions. The model provides an unusually detailed quantitative mechanism for the complex reactions that occur in mixtures of chlorine species and organic substrates, particularly when the strong oxidant chlorite is employed. Kinetic control of the reaction is achieved by the addition of chlorine dioxide to the reaction mixture, thereby eliminating a substantial induction period observed when chlorite is used alone. The epoxidation agent is identified as chlorine dioxide, which is continually formed by the reaction of chlorite with hypochlorous acid that results from ClO produced by the epoxidation reaction. The overall stoichiometry is the result of two competing chain reactions in which the reactive intermediate ClO reacts with either chlorine dioxide or chlorite ion to produce hypochlorous acid and chlorate or chloride, respectively. At high chlorite ion concentrations, HOCl is rapidly eliminated by reaction with chlorite, minimizing side reactions between HOCl and Cl2 with the starting material. Epoxide selectivity (>90% under optimal conditions) is accurately predicted by the kinetic model. The model rate constant for direct reaction of styrene with ClO2(aq) to produce epoxide is (1.16 ± 0.07) × 10(-2) M(-1) s(-1) for 60:40 water/acetonitrile with 0.20 M acetate buffer. Rate constants for para substituted styrenes (R = -SO3(-), -OMe, -Me, -Cl, -H, and -NO2) with ClO2 were determined. The results support the radical addition/elimination mechanism originally proposed by Kolar and Lindgren to account for the formation of styrene oxide in the reaction of styrene with chlorine dioxide.

  19. Beyond benzyl grignards: facile generation of benzyl carbanions from styrenes.

    Science.gov (United States)

    Grigg, R David; Rigoli, Jared W; Van Hoveln, Ryan; Neale, Samuel; Schomaker, Jennifer M

    2012-07-23

    Benzylic functionalization is a convenient approach towards the conversion of readily available aromatic hydrocarbon feedstocks into more useful molecules. However, the formation of carbanionic benzyl species from benzyl halides or similar precursors is far from trivial. An alternative approach is the direct reaction of a styrene with a suitable coupling partner, but these reactions often involve the use of precious-metal transition-metal catalysts. Herein, we report the facile and convenient generation of reactive benzyl anionic species from styrenes. A Cu(I)-catalyzed Markovnikov hydroboration of the styrenic double bond by using a bulky pinacol borane source is followed by treatment with KOtBu to facilitate a sterically induced cleavage of the C-B bond to produce a benzylic carbanion. Quenching this intermediate with a variety of electrophiles, including CO(2), CS(2), isocyanates, and isothiocyanates, promotes C-C bond formation at the benzylic carbon atom. The utility of this methodology was demonstrated in a three-step, two-pot synthesis of the nonsteroidal anti-inflammatory drug (±)-flurbiprofen. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Biofiltration of mixtures of gas-phase styrene and acetone with the fungus Sporothrix variecibatus

    Energy Technology Data Exchange (ETDEWEB)

    Rene, Eldon R.; Spackova, Radka; Veiga, Maria C. [University of La Coruna, Dpt. of Chemical Engineering, Campus da Zapateira, Rua da Fraga, 10, 15008 La Coruna (Spain); Kennes, Christian, E-mail: kennes@udc.es [University of La Coruna, Dpt. of Chemical Engineering, Campus da Zapateira, Rua da Fraga, 10, 15008 La Coruna (Spain)

    2010-12-15

    The biodegradation performance of a biofilter, inoculated with the fungus Sporothrix variecibatus, to treat gas-phase styrene and acetone mixtures under steady-state and transient conditions was evaluated. Experiments were carried out by varying the gas-flow rates (0.05-0.4 m{sup 3} h{sup -1}), leading to empty bed residence times as low as 17.1 s, and by changing the concentrations of gas-phase styrene (0.01-6.3 g m{sup -3}) and acetone (0.01-8.9 g m{sup -3}). The total elimination capacities were as high as 360 g m{sup -3} h{sup -1}, with nearly 97.5% removal of styrene and 75.6% for acetone. The biodegradation of acetone was inhibited by the presence of styrene, while styrene removal was affected only slightly by the presence of acetone. During transient-state experiments, increasing the overall pollutant load by almost 3-fold, i.e., from 220 to 600 g m{sup -3} h{sup -1}, resulted in a sudden drop of removal efficiency (>90-70%), but still high elimination capacities were maintained. Periodic microscopic observations revealed that the originally inoculated Sporothrix sp. remained present in the reactor and actively dominant in the biofilm.

  1. Biosorption of styrene from synthetic wastewater by sugar cane waste(Bagass

    Directory of Open Access Journals (Sweden)

    Mehdi Hassanzadeh

    2015-04-01

    Full Text Available In this work, styrene removal from wastewater by using sugarcane waste (bagasse as an adsorbent was studied. Equilibrium isotherms and kinetics were determined; the effects of bagasse particle size and concentration, solutions pH, and temperature on the biosorption of styrene were studied in batch experiments. Adsorption equilibrium data was successfully fitted to Langmuir isotherms (R2=0.986 and Freundlich isotherms (R2=0.96. Also, the kinetics of biosorption was fitted to pseudo-second order equations (K2=0.00146 g mg-1 min-1, qe=24.5 mg g-1 for particle size range of 88-105 μm. According to the obtained results, an empirical equation was presented that could be used to calculate the percentage of styrene adsorption. The results showed that an increase in temperature caused a decrease in styrene removal. Moreover, maximum uptake was observed with NaOH-treated bagasse. It was found that an increase in average particle size decreased the biosorption rate. According to the calculated heat of adsorption, this sorption can be classified as a chemical biosorption. The optimum uptake was determined to be 88% at a pH equal to 12.1, a temperature of 35 oC, a particle size of 420-500 μm, and a bagasse concentration of 1 g L-1.

  2. Enhanced styrene recovery from waste polystyrene pyrolysis using response surface methodology coupled with Box-Behnken design.

    Science.gov (United States)

    Mo, Yu; Zhao, Lei; Wang, Zhonghui; Chen, Chia-Lung; Tan, Giin-Yu Amy; Wang, Jing-Yuan

    2014-04-01

    A work applied response surface methodology coupled with Box-Behnken design (RSM-BBD) has been developed to enhance styrene recovery from waste polystyrene (WPS) through pyrolysis. The relationship between styrene yield and three selected operating parameters (i.e., temperature, heating rate, and carrier gas flow rate) was investigated. A second order polynomial equation was successfully built to describe the process and predict styrene yield under the study conditions. The factors identified as statistically significant to styrene production were: temperature, with a quadratic effect; heating rate, with a linear effect; carrier gas flow rate, with a quadratic effect; interaction between temperature and carrier gas flow rate; and interaction between heating rate and carrier gas flow rate. The optimum conditions for the current system were determined to be at a temperature range of 470-505°C, a heating rate of 40°C/min, and a carrier gas flow rate range of 115-140mL/min. Under such conditions, 64.52% WPS was recovered as styrene, which was 12% more than the highest reported yield for reactors of similar size. It is concluded that RSM-BBD is an effective approach for yield optimization of styrene recovery from WPS pyrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Helbredsrisici ved eksponering for styren i glasfiberplastindustrien

    DEFF Research Database (Denmark)

    Kolstad, Henrik Albert; Ebbehøj, Nielse; Bonde, Jens Peter

    2012-01-01

    system effects with for instance reduced psychological performance, colour discrimination and hearing level following long-term styrene exposure above 10 ppm. There is moderate evidence of a causal association with cancer, but data are not sufficient to allow us to pinpoint specific cancers at risk...

  4. Highly selective cobalt-catalyzed hydrovinylation of styrene

    NARCIS (Netherlands)

    Grutters, M.M.P.; Müller, C.; Vogt, D.

    2006-01-01

    The hydrovinylation reaction is a codimerization of a 1,3-diene or vinyl arene and ethene with great potential for fine chemicals and pharmaceuticals. For the first time, enantioselective cobalt-catalyzed hydrovinylations of styrene were achieved with a cobalt-based system bearing a chiral

  5. Styrene and ethylbenzene absorption in ionic liquids : comparing DFT affinity calculations with experimental data

    NARCIS (Netherlands)

    Ervasti, H.K.; Kroon, M.C.; Vlugt, T.J.H.; Peters, C.J.

    2013-01-01

    Styrene is a widely used bulk chemical produced by dehydrogenation of ethylbenzene (EB). Purification of styrene to contain <100 ppm EB is not cost-effective by conventional separation methods. One separation method is extractive distillation with an ionic liquid (IL) as a binding agent for one of

  6. Maleic acid and aluminum chloride catalyzed conversion of glucose to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ximing [Laboratory of Renewable Resources Engineering and Department of Agricultural and Biological Engineering; Purdue University; West Lafayette; USA; The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Murria, Priya [The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Discovery Park; Purdue University; West Lafayette; USA; Jiang, Yuan [The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Discovery Park; Purdue University; West Lafayette; USA; Xiao, Weihua [Laboratory of Renewable Resources Engineering and Department of Agricultural and Biological Engineering; Purdue University; West Lafayette; USA; College of Engineering; Kenttämaa, Hilkka I. [The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Discovery Park; Purdue University; West Lafayette; USA; Abu-Omar, Mahdi M. [The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Discovery Park; Purdue University; West Lafayette; USA; Mosier, Nathan S. [Laboratory of Renewable Resources Engineering and Department of Agricultural and Biological Engineering; Purdue University; West Lafayette; USA; The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio)

    2016-01-01

    Maleic acid (MA) and AlCl3self-assemble into catalytic complexes (Al–(MA)2–(OH)2(aq)) with improved selectivity for converting glucose to HMF, and levulinic acid.

  7. Cancer mortality in an international cohort of reinforced plastics workers exposed to styrene: a reanalysis.

    Science.gov (United States)

    Loomis, Dana; Guha, Neela; Kogevinas, Manolis; Fontana, Vincenzo; Gennaro, Valerio; Kolstad, Henrik A; McElvenny, Damien Martin; Sallmén, Markku; Saracci, Rodolfo

    2018-04-17

    To investigate the carcinogenicity of styrene by reanalysing data from a previous international cohort study of workers in the reinforced plastics industry. Mortality from cancers of prior interest was analysed with more detailed consideration of exposure-response relations and an updated classification of leukaemias and lymphomas in data from a previous international cohort study of 37 021 reinforced plastics workers exposed to airborne styrene. Increased mortality from non-Hodgkin's lymphoma (NHL) was associated with the mean level of exposure to styrene in air (relative risk (RR) 2.31, 95% CI 1.29 to 4.12 per 100 ppm), but not with cumulative styrene exposure. Similar associations with mean exposure were observed for the oesophagus (RR 2.44, 95% CI 1.11 to 5.36 per 100 ppm) and pancreas (RR 1.89, 95% CI 1.17 to 3.09). Oesophageal cancer mortality was also associated with cumulative styrene exposure lagged 20 years (RR 1.16, 95% CI 1.03 to 1.31). No other cancer, including lung cancer, was associated with any indicator of styrene exposure. This reanalysis does not substantially change the conclusions of the original study with respect to NHL or lung cancer but new evidence concerning cancers of the oesophagus and pancreas merits further investigation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Depletion by styrene of glutathione in plasma and bronchioalveolar lavage fluid of non-Swiss albino (NSA) mice.

    Science.gov (United States)

    Carlson, Gary P

    2010-01-01

    Styrene is a widely used chemical, but it is known to produce lung and liver damage in mice. This may be related to oxidative stress associated with the decrease in the levels of reduced glutathione (GSH) in the target tissues. The purpose of this study was to investigate the effect of styrene and its primary metabolites R-styrene oxide (R-SO) and S-styrene oxide (S-SO) on GSH levels in the lung lumen, as determined by amounts of GSH in bronchioalveolar lavage fluid (BALF) and in plasma. When non-Swiss albino (NSA) mice were administered styrene (600 mg/kg, ip), there was a significant fall in GSH levels in both BALF and plasma within 3 h. These returned to control levels by 12 h. The active metabolite R-SO (300 mg/kg, ip) also produced significant decreases in GSH in both BALF and plasma, but S-SO was without marked effect. Since GSH is a principal antioxidant in the lung epithelial lining fluid, this fall due to styrene may exert a significant influence on the ability of the lung to buffer oxidative damage.

  9. Synthesis of biodegradable styrene copolymers

    OpenAIRE

    Gevers, Dries; Kobben, Stephan; Junkers, Tanja; Copinet, Alain; Buntinx, Mieke; Peeters, Roos

    2017-01-01

    Polystyrene (PS), a versatile polymer with many applications (e.g. packaging) representing about 10% of the total annual polymer consumption, shows practically no biodegradability. In this study a styrene (ST) based copolymer is synthesized and examined regarding its ability to degrade in a composting test. As second monomer, to introduce biodegradable ester groups, 5,6-benzo-2-metylene-dioxepane (BMDO) has been used in radical copolymerization reactions performed in inert and stirred 10 m...

  10. Styrene induces an inflammatory response in human lung epithelial cells via oxidative stress and NF-κB activation

    International Nuclear Information System (INIS)

    Roeder-Stolinski, Carmen; Fischaeder, Gundula; Oostingh, Gertie Janneke; Feltens, Ralph; Kohse, Franziska; Bergen, Martin von; Moerbt, Nora; Eder, Klaus; Duschl, Albert; Lehmann, Irina

    2008-01-01

    Styrene is a volatile organic compound (VOC) that is widely used as a solvent in many industrial settings. Chronic exposure to styrene can result in irritation of the mucosa of the upper respiratory tract. Contact of styrene with epithelial cells stimulates the expression of a variety of inflammatory mediators, including the chemotactic cytokine monocyte chemoattractant protein-1 (MCP-1). To characterise the underlying mechanisms of the induction of inflammatory signals by styrene, we investigated the influence of this compound on the induction of oxidative stress and the activation of the nuclear factor-kappa B (NF-κB) signalling pathway in human lung epithelial cells (A549). The results demonstrate that styrene-induced MCP-1 expression, as well as the expression of the oxidative stress marker glutathione S-transferase (GST), is associated with a concentration dependent pattern of NF-κB activity. An inhibitor of NF-κB, IKK-NBD, and the anti-inflammatory antioxidant N-acetylcysteine (NAC) were both effective in suppressing styrene-induced MCP-1 secretion. In addition, NAC was capable of inhibiting the upregulation of GST expression. Our findings suggest that the activation of the NF-κB signalling pathway by styrene is mediated via a redox-sensitive mechanism

  11. Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol

    Directory of Open Access Journals (Sweden)

    P. J. Gallimore

    2011-12-01

    Full Text Available Many important atmospheric aerosol processes depend on the chemical composition of the aerosol, e.g. water uptake and particle cloud interactions. Atmospheric ageing processes, such as oxidation reactions, significantly and continuously change the chemical composition of aerosol particles throughout their lifetime. These ageing processes are often poorly understood. In this study we utilize an aerosol flow tube set up and an ultra-high resolution mass spectrometer to explore the effect of relative humidity (RH in the range of <5–90% on the ozonolysis of maleic acid aerosol which is employed as model organic aerosol system. Due to the slow reaction kinetics relatively high ozone concentrations of 160–200 ppm were used to achieve an appreciable degree of oxidation of maleic acid. The effect of oxidative ageing on the hygroscopicity of maleic acid particles is also investigated using an electrodynamic balance and thermodynamic modelling. RH has a profound effect on the oxidation of maleic acid particles. Very little oxidation is observed at RH < 50% and the only observed reaction products are glyoxylic acid and formic acid. In comparison, when RH > 50% there are about 15 oxidation products identified. This increased oxidation was observed even when the particles were exposed to high humidities long after a low RH ozonolysis reaction. This result might have negative implications for the use of water as an extraction solvent for the analysis of oxidized organic aerosols. These humidity-dependent differences in the composition of the ozonolyzed aerosol demonstrate that water is both a key reactant in the oxidation scheme and a determinant of particle phase and hence diffusivity. The measured chemical composition of the processed aerosol is used to model the hygroscopic growth, which compares favourably with water uptake results from the electrodynamic balance measurements. A reaction mechanism is presented which takes into account the RH dependent

  12. Preparation and characterization of poly(methyl methacrylate)-clay nanocomposites via melt intercalation: Effect of organoclay on thermal, mechanical and flammability properties

    Energy Technology Data Exchange (ETDEWEB)

    Unnikrishnan, Lakshmi; Mohanty, Smita [Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology, Bhubaneswar 751024 (India); Nayak, Sanjay K., E-mail: drsknayak@gmail.com [Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology, Bhubaneswar 751024 (India); Ali, Anwar [Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of Plastics Engineering and Technology, Bhubaneswar 751024 (India)

    2011-05-15

    Research highlights: {yields} The present work deals with preparation and characterization of poly(methyl methacrylate) nanocomposites via melt intercalation technique. {yields} The effect of various modified nanoclays on the properties of base matrix has been investigated. {yields} It was observed that compatibilization using maleic anhydride improved the performance characteristics of PMMA/layered silicate nanocomposites. - Abstract: The PMMA nanocomposites were prepared by melt processing method. The influence of organoclay loading on extent of intercalation, thermal, mechanical and flammability properties of poly(methyl methacrylate) (PMMA)-clay nanocomposites were studied. Three different organoclay modifiers with varying hydrophobicity (single tallow vs. ditallow) were investigated. The nanocomposites were characterized by using wide angle X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), and tensile tests. The intercalation of polymer chain within the silicate galleries was confirmed by WAXD and TEM. Mechanical properties such as tensile modulus (E), tensile strength, percentage elongation at break and impact strength were determined for nanocomposites at various clay loadings. Overall thermal stability of nanocomposites increased by 16-17 deg. C. The enhancement in T{sub g} of nanocomposite is merely by 2-4 deg. C. The incorporation of maleic anhydride as compatibilizer further enhanced all the properties indicating improved interface between PMMA and clay. The flammability characteristics were studied by determining the rate of burning and LOI.

  13. Preparation and characterization of poly(methyl methacrylate)-clay nanocomposites via melt intercalation: Effect of organoclay on thermal, mechanical and flammability properties

    International Nuclear Information System (INIS)

    Unnikrishnan, Lakshmi; Mohanty, Smita; Nayak, Sanjay K.; Ali, Anwar

    2011-01-01

    Research highlights: → The present work deals with preparation and characterization of poly(methyl methacrylate) nanocomposites via melt intercalation technique. → The effect of various modified nanoclays on the properties of base matrix has been investigated. → It was observed that compatibilization using maleic anhydride improved the performance characteristics of PMMA/layered silicate nanocomposites. - Abstract: The PMMA nanocomposites were prepared by melt processing method. The influence of organoclay loading on extent of intercalation, thermal, mechanical and flammability properties of poly(methyl methacrylate) (PMMA)-clay nanocomposites were studied. Three different organoclay modifiers with varying hydrophobicity (single tallow vs. ditallow) were investigated. The nanocomposites were characterized by using wide angle X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry (DSC), and tensile tests. The intercalation of polymer chain within the silicate galleries was confirmed by WAXD and TEM. Mechanical properties such as tensile modulus (E), tensile strength, percentage elongation at break and impact strength were determined for nanocomposites at various clay loadings. Overall thermal stability of nanocomposites increased by 16-17 deg. C. The enhancement in T g of nanocomposite is merely by 2-4 deg. C. The incorporation of maleic anhydride as compatibilizer further enhanced all the properties indicating improved interface between PMMA and clay. The flammability characteristics were studied by determining the rate of burning and LOI.

  14. nanohybrid composites as antimicrobial, antifungal and anticancer platforms

    Directory of Open Access Journals (Sweden)

    D. Demircan

    2018-08-01

    Full Text Available This work presents a new approach to synthesize the colloidal ODA-MMT-poly(maleic anhydride-alt-1-dodecene-g-α,ω-methoxyhydroxyl-PEO/silver nanoparticles (AgNPs nanohybrid composites (NHC using the following synthetic pathways: (1 complex-radical alternating copolymerization of maleic anhydride with 1-dodecene α-olefin comonomer, (2 grafting of PEO onto alternating copolymer through esterification, (3 intercalating a copolymer-g-PEO between organoclay layers via complex formation of maleate carboxyl with octadecyl amine, and (4 in situ generation of AgNPs in polymer nanocomposite by annealing method under vacuum. The obtained multifunctional NHCs with different contents of AgNPs were characterized by UV spectroscopy, ζ-potential and size analysis methods. It was demonstrated that annealing of the colloidal NHC is accompanied with in situ generation of stable and partially protonated AgNPs due to specific reducing and stabilizing effects of multifunctional matrix polymer contained positively charged reactive and bioactive sites. Antibacterial and antifungal activities against Gram-negative and Gram-positive bacteria and fungal microorganism were investigated. The cytotoxic, apoptotic and necrotic effects in NHC/L929 fibroblast cells systems were evaluated. The synthesized watersoluble, biocompatible, and bioactive colloidal NHCs are promising candidate for a wide-range of applications in air filtration, food packaging systems, bioengineering, especially in tissue regeneration and nanomedicine.

  15. Effect of modified polypropylene on the interfacial bonding of polymer–aluminum laminated films

    International Nuclear Information System (INIS)

    Liang, Chang-Sheng; Lv, Zhong-Fei; Bo, Yang; Cui, Jia-Yang; Xu, Shi-Ai

    2015-01-01

    Highlights: • Aluminium-polymer composite packing material with high T-peel strength was prepared. • Polypropylene was grafted by acrylic acid, glycidyl methacrylate, maleic anhydride. • Grafted polypropylene greatly improved the T-peel strength. • Chemical bonding plays an important role in improving the adhesion strength. - Abstract: The interfacial bonding between functionalized polymers and chromate–phosphate treated aluminum (Al) foil were investigated in this study. Glycidyl methacrylate (GMA), acrylic acid (AA) and maleic anhydride (MAH) were grafted onto polypropylene (PP) to improve its adhesion strength with the treated Al foil. The interfacial peel strength was evaluated by the T-peel test, and the results showed that modification of PP resulted in a significant improvement in the interfacial peel strength from 1 N/15 mm for pure PP to 10–14 N/15 mm for the modified PP. The surface chemistry, topography and surface energy of the modified PP and Al foil after peeling were characterized by time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) and contact angle measurement. The treated Al foil could react with the functional groups of PP, resulting in the formation of new carboxylates. The new chemical bonding rather than the mechanical interlocking contributed to the improvement of adhesion strength

  16. Microstructure Development and Its Influence on the Properties of Styrene-Ethylene-Butylene-Styrene/Polystyrene Blends

    Directory of Open Access Journals (Sweden)

    Ritima Banerjee

    2018-04-01

    Full Text Available The present work is a novel attempt to understand the microstructure of styrene-ethylene-butylene-styrene (SEBS/polystyrene (PS blends not only through morphological studies, but also thermal, mechanical and rheological characterizations. SEBS/PS blends containing 10, 30 and 50 wt % PS were processed in a micro-compounder and characterized. Scanning electron microscopy (SEM studies, with selective staining of the PS phase, revealed the presence of PS as nanometer-sized domains, as well as phase-separated micrometer-sized aggregates. Blends with 30 and 50 wt % PS exhibited a fibrillar microstructure, obeying Hirsch’s model of short fiber composites. A remarkable increase in glass transition temperature indicated a strong interaction of the fibrils with SEBS. All blends showed two modes of relaxation corresponding to the two phases. A single mode of relaxation of the PS phase has been attributed to combined effects of the partial miscibility of the added PS, along with the interaction of the fibrils with SEBS. The long relaxation time of the elastomeric phase indicated the tendency of these materials to undergo time-dependent shrinkage in secondary processing operations. An increase in PS content resulted in the lowering of the shear viscosity and energy requirement for mixing, indicating the ease of processing.

  17. Occupational exposures to styrene vapor in a manufacturing plant for fiber-reinforced composite wind turbine blades.

    Science.gov (United States)

    Hammond, Duane; Garcia, Alberto; Feng, H Amy

    2011-07-01

    A utility-scale wind turbine blade manufacturing plant requested assistance from the National Institute for Occupational Safety and Health (NIOSH) in controlling worker exposures to styrene at a plant that produced 37 and 42 m long fiber-reinforced wind turbine blades. The plant requested NIOSH assistance because previous air sampling conducted by the company indicated concerns about peak styrene concentrations when workers entered the confined space inside of the wind turbine blade. NIOSH researchers conducted two site visits and collected personal breathing zone and area air samples while workers performed the wind turbine blade manufacturing tasks of vacuum-assisted resin transfer molding (VARTM), gelcoating, glue wiping, and installing the safety platform. All samples were collected during the course of normal employee work activities and analyzed for styrene using NIOSH Method 1501. All sampling was task based since full-shift sampling from a prior Occupational Safety and Health Administration (OSHA) compliance inspection did not show any exposures to styrene above the OSHA permissible exposure limit. During the initial NIOSH site visit, 67 personal breathing zone and 18 area air samples were collected while workers performed tasks of VARTM, gelcoating, glue wipe, and installation of a safety platform. After the initial site visit, the company made changes to the glue wipe task that eliminated the need for workers to enter the confined space inside of the wind turbine blade. During the follow-up site visit, 12 personal breathing zone and 8 area air samples were collected from workers performing the modified glue wipe task. During the initial site visit, the geometric means of the personal breathing zone styrene air samples were 1.8 p.p.m. (n = 21) for workers performing the VARTM task, 68 p.p.m. (n = 5) for workers installing a safety platform, and 340 p.p.m. (n = 14) for workers performing the glue wipe task, where n is the number of workers sampled for a

  18. Effect of mineral acid on polymer produced during radiation-induced grafting of styrene monomer

    International Nuclear Information System (INIS)

    Garnett, J.L.; Jankiewicz, S.V.; Sangster, D.F.

    1982-01-01

    The inclusion of mineral acid in a solution of styrene in methanol subjected to 60 Co γ irradiation markedly enhances the yield of monomer grafted to cellulose and other radiation grafting systems. Results were reported from a preliminary investigation into the mechanism of this acid effect through a study of the action of acid during the solution polymerization process. It was found that the presence of acid in a monomer solution such as styrene in 1, 4-dioxan led to an enhancement in the homopolymer yield of styrene; and it was showed that the acid also effected the number-average molecular weight of this homopolymer. 1 figure, 4 tables

  19. Chemical radiolabeling of carboxyatractyloside by [14C]acetic anhydride

    International Nuclear Information System (INIS)

    Block, M.R.; Pougeois, R.; Vignais, P.V.

    1980-01-01

    The authors report the synthesis and biological properties of a radiolabeled derivative of CAT obtained with acetylation of the primary alcohol of CAT with radiolabeled acetic anhydride. They also investigate the question of mutual exclusion of CAT and BA for binding to the mitochondrial ADP/ATP carrier in double labeling experiments based on the use of [ 3 H]BA and [ 14 C]Ac-CAT. The results are consistent with the view that the ADP/ATP carrier possesses two separate interacting binding sites for AT (or CAT) and for BA. (Auth.)

  20. Ionic polymerization of p-methoxystyrene and other styrene derivatives by radiation. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K; Pepper, D C [Trinity Coll., Dublin (Ireland)

    1976-01-01

    Polymerization of p-methoxystyrene by radiation was studied in bulk. Upon drying the monomer, the rate of polymerization, Rsub(p), became greater, changing its dose rate dependence from 0.5 to 1. The molecular weight distribution of the obtained polymers failed to give a bimodal curve; however, the peak molecular weight increased with higher Rsub(p). These kinetic features can be explained by a coexistence of radical and cationic mechanisms, as has been established in styrene, though there remain ambiguities about the effects of additives. Copolymerizations with styrene and 2-chloroethyl vinyl ether also showed a cationic nature for the reaction. A survey of possibilities of ionic polymerization by radiation was also carried out in ten ring-substituted styrene derivatives.

  1. Predominant 1,2-insertion of styrene in the Pd-catalyzed alternating copolymerization with carbon monoxide.

    Science.gov (United States)

    Nozaki, K; Komaki, H; Kawashima, Y; Hiyama, T; Matsubara, T

    2001-01-31

    The regioselectivity of styrene insertion to an acyl-Pd bond was studied by NMR in (i) a stoichiomeric reaction and (ii) a copolymerization with CO. In the stoichiometric reaction of styrene with [(CH(3)CO)Pd(CH(3)CN)[(R,S)-BINAPHOS

  2. Exploiting Framework Flexibility of a Metal-Organic Framework for Selective Adsorption of Styrene over Ethylbenzene

    NARCIS (Netherlands)

    Mukherjee, S.; Joarder, B.; Desai, A.V.; Manna, B.; Krishna, R.; Ghosh, S.K.

    2015-01-01

    The separation of styrene and ethylbenzene mixtures is industrially important and is currently performed in highly energy-intensive vacuum distillation columns. The primary objective of our investigation is to offer an energy-efficient alternative for selective adsorption of styrene by a flexible

  3. Regional distribution of styrene analogues generated from polystyrene degradation along the coastlines of the North-East Pacific Ocean and Hawaii

    International Nuclear Information System (INIS)

    Kwon, Bum Gun; Saido, Katsuhiko; Koizumi, Koshiro; Sato, Hideto; Ogawa, Naoto; Chung, Seon-Yong; Kusui, Takashi; Kodera, Yoichi; Kogure, Kazuhio

    2014-01-01

    Beach sand and seawater taken from the coastlines of the North-East Pacific Ocean and Hawaii State were investigated to determine the causes of global chemical contamination from polystyrene (PS). All samples were found to contain styrene monomer (SM), styrene dimers (SD), and styrene trimers (ST) with a concentration distribution of styrene analogues in the order of ST > SD > SM. The contamination by styrene analogues along the West Coast proved more severe than in Alaska and other regions. The Western Coastlines of the USA seem be affected by both land- and ocean-based pollution sources, which might result from it being a heavily populated area as the data suggest a possible proportional relationship between PS pollution and population. Our results suggest the presence of new global chemical contaminants derived from PS in the ocean, and along coasts. - Highlights: • This study reports for the first time the regional distribution of styrene analogues. • Styrene analogues can be originated from polystyrene decomposition. • This study can contribute to assessing the fate of polystyrene (PS) degradation. - This study represents a first step in establishing the relationship between plastic pollution from polystyrene in the ocean and the presence of styrene analogues as low molecules

  4. Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution.

    Science.gov (United States)

    Kwon, Bum Gun; Koizumi, Koshiro; Chung, Seon-Yong; Kodera, Yoichi; Kim, Jong-Oh; Saido, Katsuhiko

    2015-12-30

    Polystyrene (PS) plastic marine pollution is an environmental concern. However, a reliable and objective assessment of the scope of this problem, which can lead to persistent organic contaminants, has yet to be performed. Here, we show that anthropogenic styrene oligomers (SOs), a possible indicator of PS pollution in the ocean, are found globally at concentrations that are higher than those expected based on the stability of PS. SOs appear to persist to varying degrees in the seawater and sand samples collected from beaches around the world. The most persistent forms are styrene monomer, styrene dimer, and styrene trimer. Sand samples from beaches, which are commonly recreation sites, are particularly polluted with these high SOs concentrations. This finding is of interest from both scientific and public perspectives because SOs may pose potential long-term risks to the environment in combination with other endocrine disrupting chemicals. From SOs monitoring results, this study proposes a flow diagram for SOs leaching from PS cycle. Using this flow diagram, we conclude that SOs are global contaminants in sandy beaches around the world due to their broad spatial distribution. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Application of the photo-fenton process to the mineralization of phthalic anhydride in aqueous medium

    International Nuclear Information System (INIS)

    Trabelsi Souissi, Souhaila; Oturan, N.; Oturan, M. A; Bellakhal, N.

    2009-01-01

    A photochemical method for the oxidation of persistent organic pollutants (POPs) present in liquid effluents of plastic industry is described. This method, called p hoto-Fenton , involves the generation of hydroxyl radicals by coupling the Fenton reaction and photochemistry, .OH radicals thus formed react rapidly with organic pollutants leading to their oxidation until their total mineralization. In this study, we applied the photo-Fenton process for the removal of phthalic anhydride (plasticizer). In this way, an optimization of experimental parameters (namely the ratio R = [H 2 O 2 ]/[Fe 3+ ] and Fe 3+ initial concentration) was performed. Under optimal conditions, the kinetic of mineralization of phthalic anhydride by .OH has been studied. All results confirm the efficiency of photo-Fenton process for the decontamination of liquid effluents loaded with plasticizers.

  6. Synthesis of crosslinked poly (styrene-co-divinylbenzene-co ...

    Indian Academy of Sciences (India)

    Synthesis of crosslinked poly(styrene--divinylbenzene--sulfopropyl methacrylate) nanoparticles by emulsion polymerization: Tuning the particle size and surface charge density. Dhamodaran Arunbabu Mousumi Hazarika Somsankar Naik Tushar Jana. Polymers Volume 32 Issue 6 December 2009 pp 633-641 ...

  7. Nanostructuration of self-assembled poly(styrene-b-isoprene-b-styrene) block copolymer thin films in a highly oriented pyrolytic graphite substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zalakain, Inaki; Ramos, Jose Angel; Fernandez, Raquel; Etxeberria, Haritz; Mondragon, Inaki, E-mail: inaki.mondragon@ehu.e

    2011-01-03

    Highly oriented pyrolitic graphite (HOPG) is a useful substrate to visualize epitaxial formation due to its crystallographic structure. The morphology of a poly(styrene-b-isoprene-b-styrene) block copolymer thin film on a HOPG substrate was investigated by atomic force microscopy. Block copolymer domains generated a morphology with triangular regularity. This arrangement was induced by the HOPG substrate structure due to van der Waals attraction between the HOPG {pi}-conjugated system and aromatic ring of polystyrene domains. However, increasing the film thickness, the substrate effect on the surface morphology decreased. As a consequence, film surfaces showed the coexistence of different structures such as highly aligned cylinders and perforated lamellae. When film thickness exceeded a threshold value, the substrate did not have effect in the surface arrangements and the surface showed a similar morphology to that existing in bulk.

  8. Cooperativity in CYP2E1 Metabolism of Acetaminophen and Styrene Mixtures

    OpenAIRE

    Hartman, Jessica H.; Letzig, Lynda G.; Robertsc, Dean W.; James, Laura P.; Fifer, E. Kim; Miller, Grover P.

    2015-01-01

    Risk assessment for exposure to mixtures of drugs and pollutants relies heavily on in vitro characterization of their bioactivation and/or metabolism individually and extrapolation to mixtures assuming no interaction. Herein, we demonstrated that in vitro CYP2E1 metabolic activation of acetaminophen and styrene mixtures could not be explained through the Michaelis-Menten mechanism or any models relying on that premise. As a baseline for mixture studies with styrene, steady-state analysis of a...

  9. Styrene Oxide Isomerase of Rhodococcus opacus 1CP, a Highly Stable and Considerably Active Enzyme

    Science.gov (United States)

    Gröning, Janosch A. D.; Tischler, Dirk; Kaschabek, Stefan R.; Schlömann, Michael

    2012-01-01

    Styrene oxide isomerase (SOI) is involved in peripheral styrene catabolism of bacteria and converts styrene oxide to phenylacetaldehyde. Here, we report on the identification, enrichment, and biochemical characterization of a novel representative from the actinobacterium Rhodococcus opacus 1CP. The enzyme, which is strongly induced during growth on styrene, was shown to be membrane integrated, and a convenient procedure was developed to highly enrich the protein in active form from the wild-type host. A specific activity of about 370 U mg−1 represents the highest activity reported for this enzyme class so far. This, in combination with a wide pH and temperature tolerance, the independence from cofactors, and the ability to convert a spectrum of substituted styrene oxides, makes a biocatalytic application imaginable. First, semipreparative conversions were performed from which up to 760 μmol of the pure phenylacetaldehyde could be obtained from 130 U of enriched SOI. Product concentrations of up to 76 mM were achieved. However, due to the high chemical reactivity of the aldehyde function, SOI was shown to be the subject of an irreversible product inhibition. A half-life of 15 min was determined at a phenylacetaldehyde concentration of about 55 mM, indicating substantial limitations of applicability and the need to modify the process. PMID:22504818

  10. Metabolism of styrene-7,8-oxide in human liver in vitro: interindividual variation and stereochemistry

    NARCIS (Netherlands)

    Wenker, M. A.; Kezić, S.; Monster, A. C.; de Wolff, F. A.

    2000-01-01

    Styrene is an industrial solvent which is mainly oxidized by cytochrome P450 to an electrophilic, chiral epoxide metabolite: styrene-7,8-oxide (SO). SO has cytotoxic and genotoxic properties; the (R)-enantiomer is more mutagenic to Salmonella typhimurium TA 100 in the Ames test than the

  11. Continuous Preparation of 1:1 Haloperidol-Maleic Acid Salt by a Novel Solvent-Free Method Using a Twin Screw Melt Extruder.

    Science.gov (United States)

    Lee, Hung Lin; Vasoya, Jaydip M; Cirqueira, Marilia de Lima; Yeh, Kuan Lin; Lee, Tu; Serajuddin, Abu T M

    2017-04-03

    Salts are generally prepared by acid-base reaction in relatively large volumes of organic solvents, followed by crystallization. In this study, the potential for preparing a pharmaceutical salt between haloperidol and maleic acid by a novel solvent-free method using a twin-screw melt extruder was investigated. The pH-solubility relationship between haloperidol and maleic acid in aqueous medium was first determined, which demonstrated that 1:1 salt formation between them was feasible (pH max 4.8; salt solubility 4.7 mg/mL). Extrusion of a 1:1 mixture of haloperidol and maleic acid at the extruder barrel temperature of 60 °C resulted in the formation of a highly crystalline salt. The effects of operating temperature and screw configuration on salt formation were also investigated, and those two were identified as key processing parameters. Salts were also prepared by solution crystallization from ethyl acetate, liquid-assisted grinding, and heat-assisted grinding and compared with those obtained by melt extrusion by using DSC, PXRD, TGA, and optical microscopy. While similar salts were obtained by all methods, both melt extrusion and solution crystallization yielded highly crystalline materials with identical enthalpies of melting. During the pH-solubility study, a salt hydrate form was also identified, which, upon heating, converted to anhydrate similar to that obtained by other methods. There were previous reports of the formation of cocrystals, but not salts, by melt extrusion. 1 H NMR and single-crystal X-ray diffraction confirmed that a salt was indeed formed in the present study. The haloperidol-maleic acid salt obtained was nonhygroscopic in the moisture sorption study and converted to the hydrate form only upon mixing with water. Thus, we are reporting for the first time a relatively simple and solvent-free twin-screw melt extrusion method for the preparation of a pharmaceutical salt that provides material comparable to that obtained by solution

  12. Assessment of Styrene Oxide Neurotoxicity Using In Vitro Auditory Cortex Networks

    Science.gov (United States)

    Gopal, Kamakshi V.; Wu, Calvin; Moore, Ernest J.; Gross, Guenter W.

    2011-01-01

    Styrene oxide (SO) (C8H8O), the major metabolite of styrene (C6H5CH=CH2), is widely used in industrial applications. Styrene and SO are neurotoxic and cause damaging effects on the auditory system. However, little is known about their concentration-dependent electrophysiological and morphological effects. We used spontaneously active auditory cortex networks (ACNs) growing on microelectrode arrays (MEA) to characterize neurotoxic effects of SO. Acute application of 0.1 to 3.0 mM SO showed concentration-dependent inhibition of spike activity with no noticeable morphological changes. The spike rate IC50 (concentration inducing 50% inhibition) was 511 ± 60 μM (n = 10). Subchronic (5 hr) single applications of 0.5 mM SO also showed 50% activity reduction with no overt changes in morphology. The results imply that electrophysiological toxicity precedes cytotoxicity. Five-hour exposures to 2 mM SO revealed neuronal death, irreversible activity loss, and pronounced glial swelling. Paradoxical “protection” by 40 μM bicuculline suggests binding of SO to GABA receptors. PMID:23724250

  13. Polybutadiene and Styrene-Butadiene rubbers for high-dose dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Lucas N. [Instituto Federal de Educacao, Ciencia e Tecnologia de Goias-IFG,Campus Goiania, Goiania -GO (Brazil); Instituto de Pesquisas Energeticas e Nucleares -IPEN, Sao Paulo-SP (Brazil); Vieira, Silvio L. [Instituto de Fisica, Universidade Federal de Goias-UFG, Campus Samambaia, Goiania-GO (Brazil); Schimidt, Fernando [Instituto Federal de Educacao, Ciencia e Tecnologia de Goias-IFG,Campus Inhumas, Inhumas-GO (Brazil); Antonio, Patricia L.; Caldas, Linda V.E. [Instituto de Pesquisas Energeticas e Nucleares -IPEN, Sao Paulo-SP (Brazil)

    2015-07-01

    Polybutadiene and Styrene-Butadiene are synthetical rubbers used widely for pneumatic tires manufacturing. In this research, the dosimeter characteristics of those rubbers were studied for application in high-dose dosimetry. The rubber samples were irradiated with doses of 10 Gy up to 10 kGy, using a {sup 60}Co Gamma Cell-220 system (dose rate of 1.089 kGy/h) and their readings were taken on a Fourier Transform Infrared Spectroscopy-FTIR system (model Frontier/Perkin Elmer). The ratios of two absorbance peaks were taken for each kind of rubber spectrum, Polybutadiene (1306/1130 cm{sup -1}) and Styrene-Butadiene (1449/1306 cm{sup -1}). The ratio calculated was used as the response to the irradiation, and is not uniform across the sample. From the results, it can be concluded for both rubbers: a) the dose-response curves may be useful for high-dose dosimetry (greater than 250 Gy); b) their response for reproducibility presented standard deviations lower than 2.5%; c) the relative sensitivity was higher for Styrene-Butadiene (1.86 kGy{sup -1}) than for Polybutadiene (1.81 kGy{sup -1}), d) for doses of 10 kGy to 200 kGy, there was no variation in the dosimetric response. Both types of rubber samples showed usefulness as high-dose dosimeters. (authors)

  14. Production and characterization of poly(styrene-co-methylmethacrylate)

    International Nuclear Information System (INIS)

    Augustinho, Tiago R.; Coan, Thais; Abarca, Silvia A.C.; Testoni, Alex A.S.; Baumgarten, Bruno P.; Machado, Ricardo A.F.

    2009-01-01

    Polystyrene (PS) is a polymer used in diverse industrial segments. It is easy to process and has a low cost when compared to other materials. However, PS has low mechanical resistance, which limits its application in some areas. Thus, a methodology that is sufficiently used is the synthesis of a copolymer, formed of two or more monomers to get products that have characteristics that are not possible to obtain with only one monomer. In this work, the styrene and methyl methacrylate monomers had been carried through reactions of copolymerization by means of polymerization in suspension using (MMA) with styrene in a bigger percentage. MMA was selected for being a monomer that results in a polymeric configuration more resistant than the PS. The copolymerization was proven to occur by infra-red spectroscopy (IR) and Nuclear Magnetic Resonance (NMR). Different analyses were performed using different initiators, weight molar and conversion studies. (author)

  15. Improved biocompatibility of poly (styrene-b-(ethylene-co-butylene)-b-styrene) elastomer by a surface graft polymerization of hyaluronic acid.

    Science.gov (United States)

    Li, Xiaomeng; Luan, Shifang; Shi, Hengchong; Yang, Huawei; Song, Lingjie; Jin, Jing; Yin, Jinghua; Stagnaro, Paola

    2013-02-01

    Hyaluronic acid (HA) is an important component of extracellular matrix (ECM) in many tissues, providing a hemocompatible and supportive environment for cell growth. In this study, glycidyl methacrylate-hyaluronic acid (GMHA) was first synthesized and verified by proton nuclear magnetic resonance ((1)H NMR) spectroscopy. GMHA was then grafted to the surface of biomedical elastomer poly (styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) via an UV-initiated polymerization, monitored by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The further improvement of biocompatibility of the GMHA-modified SEBS films was assessed by platelet adhesion experiments and in vitro response of murine osteoblastic cell line MC-3T3-E1 with the virgin SEBS surface as the reference. It showed that the surface modification with HA strongly resisted platelet adhesion whereas improved cell-substrate interactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Final Technical Report - Autothermal Styrene Manufacturing Process with Net Export of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Trubac, Robert , E.; Lin, Feng; Ghosh, Ruma: Greene, Marvin

    2011-11-29

    The overall objectives of the project were to: (a) develop an economically competitive processing technology for styrene monomer (SM) that would reduce process energy requirements by a minimum 25% relative to those of conventional technology while achieving a minimum 10% ROI; and (b) advance the technology towards commercial readiness. This technology is referred to as OMT (Oxymethylation of Toluene). The unique energy savings feature of the OMT technology would be replacement of the conventional benzene and ethylene feedstocks with toluene, methane in natural gas and air or oxygen, the latter of which have much lower specific energy of production values. As an oxidative technology, OMT is a net energy exporter rather than a net energy consumer like the conventional ethylbenzene/styrene (EB/SM) process. OMT plants would ultimately reduce the cost of styrene monomer which in turn will decrease the costs of polystyrene making it perhaps more cost competitive with competing polymers such as polypropylene.

  17. Efficient photochemical generation of peroxycarboxylic nitric anhydrides with ultraviolet light-emitting diodes

    Science.gov (United States)

    Rider, N. D.; Taha, Y. M.; Odame-Ankrah, C. A.; Huo, J. A.; Tokarek, T. W.; Cairns, E.; Moussa, S. G.; Liggio, J.; Osthoff, H. D.

    2015-07-01

    Photochemical sources of peroxycarboxylic nitric anhydrides (PANs) are utilized in many atmospheric measurement techniques for calibration or to deliver an internal standard. Conventionally, such sources rely on phosphor-coated low-pressure mercury (Hg) lamps to generate the UV light necessary to photo-dissociate a dialkyl ketone (usually acetone) in the presence of a calibrated amount of nitric oxide (NO) and oxygen (O2). In this manuscript, a photochemical PAN source in which the Hg lamp has been replaced by arrays of ultraviolet light-emitting diodes (UV-LEDs) is described. The output of the UV-LED source was analyzed by gas chromatography (PAN-GC) and thermal dissociation cavity ring-down spectroscopy (TD-CRDS). Using acetone, diethyl ketone (DIEK), diisopropyl ketone (DIPK), or di-n-propyl ketone (DNPK), respectively, the source produces peroxyacetic (PAN), peroxypropionic (PPN), peroxyisobutanoic (PiBN), or peroxy-n-butanoic nitric anhydride (PnBN) from NO in high yield (> 90 %). Box model simulations with a subset of the Master Chemical Mechanism (MCM) were carried out to rationalize product yields and to identify side products. The present work demonstrates that UV-LED arrays are a viable alternative to current Hg lamp setups.

  18. Effect of swelling behavior of organoclays in styrene on flammability of polystyrene nanocomposites obtained through in situ incorporation

    International Nuclear Information System (INIS)

    Timochenco, Licinia; Sayer, Claudia; Machado, Ricardo A.F.; Araujo, Pedro H.H.

    2009-01-01

    In this work the effect of the interaction between organoclays and styrene on the flammability of polystyrene/clay nanocomposites obtained through in-situ incorporation was investigated. The reactions were carried out in bulk polymerization. The interaction between organoclays and styrene was inferred by swelling of the organoclay in styrene. The nanocomposites were characterized by X-ray diffraction and Transmission Electron Microscopy. The heat release rate was obtained by Cone Calorimeter and the nanocomposites were tested through UL94 horizontal burn test. Thermogravimetric analysis were also performed. Results showed that intercalated and partially exfoliated nanocomposites were obtained depending on the swelling behavior of the organoclay in styrene. It was also observed an increase of the higher decomposition temperature and an accentuated decrease on the peak of heat release of the nanocomposites when comparing to the virgin polymer. No remarkable effect between the swelling behavior of the organoclay in styrene and the flammability properties was observed. (author)

  19. Partial oxidation of n- and i-pentane over promoted vanadium-phosphorus oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zazhigalov, V.A.; Mikhajluk, B.D.; Komashko, G.A. [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Fizicheskoj Khimii

    1998-12-31

    It is known, that the cost of raw materials for catalytic oxidation processes is about 60% of the product price. Cheap initial compounds to produce variety of products and to replace olefins and aromatic hydrocarbons are paraffins. That is why catalytic systems which could be possibly rather efficient in selective oxidation of paraffin hydrocarbons are under very close investigation now. One of such processes in n-pentane oxidation. The obtained results on n-pentane oxidation over VPO catalysts were quite encouraging in respect of possible reach high selectivity and yield of phthalic anhydride. However, in our work it was shown that the main product of n-pentane oxidation in the presence of VPO catalytic system as well as VPMeO was maleic anhydride. Some later our results were confirmed in, where to grow the selectivity towards phthalic anhydride the Co-additive was introduced. On the basis of the proposal made before on the mechanism of paraffins conversion over the vanadyl pyrophosphate surface with their activation at the first and fourth carbon atoms, we assumed possible methylmaleic (citraconic) anhydride forming at n- and i-pentane oxidation. This assumption has been recently supported by both our and other researchers` experimental results. In it was also hypothized possible mechanistic features for phthalic anhydride forming from n-pentane. The present work deals with the results of n- and i-pentane oxidation over VPO catalysts promoted with Bi, Cs, Te, Zr. (orig.)

  20. Continuous emulsion copolymerisation of styrene and methyl acrylate

    NARCIS (Netherlands)

    Boomen, van den F.H.A.M.; Meuldijk, J.; Thoenes, D.

    1996-01-01

    For emulsion polymerisation the reactor type has a strong influence on the final product properties, for example the particle size (distribution) and the polymer composition. A batch copolymerisation of styrene and methyl acrylate shows strong composition drift. The course of the batch reaction has

  1. Selective and Stable Ethylbenzene Dehydrogenation to Styrene over Nanodiamonds under Oxygen-lean Conditions.

    Science.gov (United States)

    Diao, Jiangyong; Feng, Zhenbao; Huang, Rui; Liu, Hongyang; Hamid, Sharifah Bee Abd; Su, Dang Sheng

    2016-04-07

    For the first time, significant improvement of the catalytic performance of nanodiamonds was achieved for the dehydrogenation of ethylbenzene to styrene under oxygen-lean conditions. We demonstrated that the combination of direct dehydrogenation and oxidative dehydrogenation indeed occurred on the nanodiamond surface throughout the reaction system. It was found that the active sp(2)-sp(3) hybridized nanostructure was well maintained after the long-term test and the active ketonic carbonyl groups could be generated in situ. A high reactivity with 40% ethylbenzene conversion and 92% styrene selectivity was obtained over the nanodiamond catalyst under oxygen-lean conditions even after a 240 h test, demonstrating the potential of this procedure for application as a promising industrial process for the ethylbenzene dehydrogenation to styrene without steam protection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Catalytic performance improvement of styrene hydrogenation in trickle bed reactor by using periodic operation

    International Nuclear Information System (INIS)

    Wongkia, Atittahn; Praserthdam, Piyasan; Assabumrungrat, Suttichai; Suriye, Kongkiat; Nonkhamwong, Anuwat

    2013-01-01

    We investigated the catalytic performance improvement of styrene hydrogenation in a trickle bed reactor by using periodic operation. The effects of cycle period and split on relative conversion, which is defined as styrene conversion obtained from periodic operation over that from steady state operation, were examined at various operating conditions including gas and average liquid flow rates, pressure and temperature. The experimental results reveal that both cycle period and split have strong influence on the catalytic performance. The fast mode (short cycle period) is a favorable condition. The improvement by the periodic operation becomes less pronounced for operations at high average liquid flow rate, pressure and temperature. From this study, a maximum improvement of styrene conversion of 18% is observed

  3. Catalytic performance improvement of styrene hydrogenation in trickle bed reactor by using periodic operation

    Energy Technology Data Exchange (ETDEWEB)

    Wongkia, Atittahn; Praserthdam, Piyasan; Assabumrungrat, Suttichai [Chulalongkorn University, Bangkok (Thailand); Suriye, Kongkiat; Nonkhamwong, Anuwat [SCG Chemicals Co. Ltd., Bangkok (Thailand)

    2013-03-15

    We investigated the catalytic performance improvement of styrene hydrogenation in a trickle bed reactor by using periodic operation. The effects of cycle period and split on relative conversion, which is defined as styrene conversion obtained from periodic operation over that from steady state operation, were examined at various operating conditions including gas and average liquid flow rates, pressure and temperature. The experimental results reveal that both cycle period and split have strong influence on the catalytic performance. The fast mode (short cycle period) is a favorable condition. The improvement by the periodic operation becomes less pronounced for operations at high average liquid flow rate, pressure and temperature. From this study, a maximum improvement of styrene conversion of 18% is observed.

  4. Light-Induced C-H Arylation of (Hetero)arenes by In Situ Generated Diazo Anhydrides.

    Science.gov (United States)

    Cantillo, David; Mateos, Carlos; Rincon, Juan A; de Frutos, Oscar; Kappe, C Oliver

    2015-09-07

    Diazo anhydrides (Ar-N=N-O-N=N-Ar) have been known since 1896 but have rarely been used in synthesis. This communication describes the development of a photochemical catalyst-free C-H arylation methodology for the preparation of bi(hetero)aryls by the one-pot reaction of anilines with tert-butyl nitrite and (hetero)arenes under neutral conditions. The key step in this procedure is the in situ formation and subsequent photochemical (>300 nm) homolytic cleavage of a transient diazo anhydride intermediate. The generated aryl radical then efficiently reacts with a (hetero)arene to form the desired bi(hetero)aryls producing only nitrogen, water, and tert-butanol as byproducts. The scope of the reaction for several substituted anilines and (hetero)arenes was investigated. A continuous-flow protocol increasing selectivity and safety has been developed enabling the experimentally straightforward preparation of a variety of substituted bi(hetero)aryls within 45 min of reaction time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Antimocrobial Polymer

    Science.gov (United States)

    McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  6. The polymerization of furfuryl alcohol with p-toluenesulfonic acid: photo cross-linkable feature of the polymer

    International Nuclear Information System (INIS)

    Principe, Martha; Martinez, Ricardo; Ortiz, Pedro; Rieumont, Jacques

    2000-01-01

    Poly (furfuryl alcohol) with different amounts of oxymethylenic bridges was synthesized using trifluoroacetic and p-toluenesulfonic acid. All polymers displayed a tendency to retain acids. The isolated products containing traces of acid became insoluble in a few hours; while neutral material maintains theirs solubility for at least one month. Polymers stored in solution were stable according to their HNMR spectra. Polymers cross-linked after being exposed to UV radiation. The product of the reaction of polymer with maleic anhydride is useful for preparing negative photo resists. (author)

  7. Expanding Upon Styrene Biosynthesis to Engineer a Novel Route to 2-Phenylethanol.

    Science.gov (United States)

    Machas, Michael S; McKenna, Rebekah; Nielsen, David R

    2017-10-01

    2-Phenylethanol (2PE) is a key molecule used in the fragrance and food industries, as well as a potential biofuel. In contrast to its extraction from plant biomass and/or more common chemical synthesis, microbial 2PE production has been demonstrated via both native and heterologous expression of the yeast Ehrlich pathway. Here, a novel alternative to this established pathway is systematically engineered in Escherichia coli and evaluated as a more robust and efficient route. This novel pathway is constructed via the modular extension of a previously engineered styrene biosynthesis pathway, proceeding from endogenous l-phenylalanine in five steps and involving four heterologous enzymes. This "styrene-derived" pathway boasts nearly a 10-fold greater thermodynamic driving force than the Ehrlich pathway, and enables reduced accumulation of acetate byproduct. When directly compared using a host strain engineered for l-phenylalanine over-production, preservation of phosphoenolpyruvate, and reduced formation of byproduct 2-phenylacetic acid, final 2PE titers via the styrene-derived and Ehrlich pathways reached 1817 and 1164 mg L -1 , respectively, at yields of 60.6 and 38.8 mg g -1 . Following optimization of induction timing and initial glucose loading, 2PE titers by the styrene-derived pathway approached 2 g L -1 - nearly a two-fold twofold increase over prior reports for 2PE production by E. coli employing the Ehrlich pathway. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of casting solvents on the properties of styrene-butadiene-styrene block copolymers studied by positron annihilation techniques

    International Nuclear Information System (INIS)

    Djermouni, B.; Ache, H.J.

    1980-01-01

    The positron annihilation technique was used to study the properties of styrene-butadiene-styrene block copolymers obtained by casting them in four different solvents: toluene, carbon tetrachloride, ethyl acetate, and methyl ethyl ketone. The positron annihilation rates plotted as a function of temperature show in all films irregularities at -70 and +85 0 C which were attributed to the onset of motions in the polybutadiene and polystyrene domaines, respectively. In addition to that, two irregularities were observed at -14 and +10 0 C if a poor solvent, such as ethyl acetate or methyl ethyl ketone, was used, while films cast in a good solvent such as toluene or carbon tetrachloride show only one additional irregularity on the lambda 2 -T curves at -14 0 C. The latter results were explained in terms of the interfacial model by assuming that these irregularities correspond to the glass transition of interlayer phases between the pure polystyrene and the pure polybutadiene phases. The one which shows the irregularity at -14 0 C could be the phase in which polybutadiene is the major component, while the transition at +10 0 C can be attributed to a phase in which polystyrene is the dominating factor

  9. PSD Applicability for Ashland Chemical's Maleic Anhydride Plant in Neal, West Virginia

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  10. Synthesis of a highly dispersed CuO catalyst on CoAl-HT for the epoxidation of styrene.

    Science.gov (United States)

    Hu, Rui; Yang, Pengfei; Pan, Yongning; Li, Yunpeng; He, Yufei; Feng, Junting; Li, Dianqing

    2017-10-10

    A highly dispersed CuO catalyst was prepared by the deposition-precipitation method and evaluated for the catalytic epoxidation of styrene with tert-butyl hydroperoxide (TBHP) as the oxidant under solvent acetonitrile conditions. Compared with MgAl hydrotalcite (MgAl-HT)-, MgO-, TiO 2 -, C-, and MCM-22-supported catalysts, CuO/CoAl-HT exhibited preferable activity and selectivity towards styrene oxide (72% selectivity at 99.5% styrene conversion) due to its high dispersion of CuO and surface area of Cu. The improved dispersion of CuO/CoAl-HT could be ascribed to the nature of HT support, especially the synergistic effect of acidic and basic sites on the surface, which facilitated the formation of highly dispersed CuO species. A structure-performance relationship study indicated that copper(ii) in CuO was the active site for the epoxidation and oxidation of styrene, and that Cu II of rich electronic density favored the improvement of selectivity of styrene oxide. Based on these results, a reaction mechanism was proposed. Moreover, the preferred catalytic performance of CuO/CoAl-HT could be maintained in five reused cycles.

  11. Nanostructured poly(styrene-b-butadiene-b-styrene) (SBS) membranes for the separation of nitrogen from natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Buonomenna, Maria Giovanna; Golemme, Giovanni [Department of Chemical Engineering and Materials, University of Calabria, and Consorzio INSTM, Rende (Italy); Tone, Caterina Maria; De Santo, Maria Penelope; Ciuchi, Federica [IPCF-CNR UOS Cosenza, c/o Physics Department, University of Calabria, Rende (Italy); Perrotta, Enrico [Department of Ecology, University of Calabria, Rende (Italy)

    2012-04-24

    The preparation and characterization of new, tailor-made polymeric membranes using poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymers for gas separation are reported. Structural differences in the copolymer membranes, obtained by manipulation of the self-assembly of the block copolymers in solution, are characterized using atomic force microscopy, transmission electron microscopy, and the transport properties of three gases (CO{sub 2}, N{sub 2}, and CH{sub 4}). The CH{sub 4}/N{sub 2} ideal selectivity of 7.2, the highest value ever reported for block copolymers, with CH{sub 4} permeability of 41 Barrer, is obtained with a membrane containing the higher amount of polybutadiene (79 wt%) and characterized by a hexagonal array of columnar polystyrene cylinders normal to the membrane surface. Membranes with such a high separation factor are able to ease the exploitation of natural gas with high N{sub 2} content. The CO{sub 2}/N{sub 2} ideal selectivity of 50, coupled with a CO{sub 2} permeability of 289 Barrer, makes SBS a good candidate for the preparation of membranes for the post-combustion capture of carbon dioxide. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Calcium oxide supported gold nanoparticles as catalysts for the selective epoxidation of styrene by t-butyl hydroperoxide.

    Science.gov (United States)

    Dumbre, Deepa K; Choudhary, Vasant R; Patil, Nilesh S; Uphade, Balu S; Bhargava, Suresh K

    2014-02-01

    Gold nanoparticles are deposited on basic CaO supports as catalysts for the selective conversion of styrene into styrene oxide. Synthetic methods, gold loading and calcination temperatures are varied to permit an understanding of their influence on gold nanoparticle size, the presence of cationic gold species and the nature of interaction between the gold nanoparticles and the CaO support. Based on these studies, optimal conditions are designed to make the Au/CaO catalyst efficient for the selective epoxidation of styrene. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Automated batch emulsion copolymerization of styrene and butyl acrylate

    NARCIS (Netherlands)

    Mballa Mballa, M.A.; Schubert, U.S.; Heuts, J.P.A.; Herk, van A.M.

    2011-01-01

    This article describes a method for carrying out emulsion copolymerization using an automated synthesizer. For this purpose, batch emulsion copolymerizations of styrene and butyl acrylate were investigated. The optimization of the polymerization system required tuning the liquid transfer method,

  14. Formation and stability of Vitamin E enriched nanoemulsions stabilized by Octenyl Succinic Anhydride modified starch

    Science.gov (United States)

    Vitamin E (VE) is highly susceptible to autoxidation; therefore, it requires systems to encapsulate and protect it from autoxidation.In this study,we developed VE delivery systems, which were stabilized by Capsul® (MS), a starch modified with octenyl succinic anhydride. Influences of interfacial ten...

  15. Microstructure and magnetorheological properties of the thermoplastic magnetorheological elastomer composites containing modified carbonyl iron particles and poly(styrene-b-ethylene-ethylenepropylene-b-styrene) matrix

    International Nuclear Information System (INIS)

    Qiao, Xiuying; Lu, Xiushou; Li, Wei; Sun, Kang; Li, Weihua; Chen, Jun; Gong, Xinglong; Yang, Tao; Chen, Xiaodong

    2012-01-01

    Novel isotropic and anisotropic thermoplastic magnetorheological elastomers (MRE) were prepared by melt blending titanated coupling agent modified carbonyl iron (CI) particles with poly(styrene-b-ethylene-ethylene–propylene-b-styrene) (SEEPS) matrix in the absence and presence of a magnetic field, and the microstructure and magnetorheological properties of these SEEPS-based MRE were investigated in detail. The particle surface modification improves the dispersion of the particles in the matrix and remarkably softens the CI/SEEPS composites, thus significantly enhancing the MR effect and improving the processability of these SEEPS-based MRE. A microstructural model was proposed to describe the interfacial compatibility mechanism that occurred in the CI/SEEPS composites after titanate coupling agent modification, and validity of this model was also demonstrated through adsorption tests of unmodified and surface-modified CI particles. (paper)

  16. Study of radiation-induced polymerization of vinyl monomers adsorbed on inorganic substances. VIII. Polymerization of styrene and methyl methacrylate adsorbed on aerosil

    International Nuclear Information System (INIS)

    Fukano, K.; Kageyama, E.

    1976-01-01

    Aerosol is silica having a purity which is very high compared with that of silica gel and having, unlike silica gel, no micropores. To investigate the effects of impurities and micropores on the radiation-induced polymerization of styrene and methyl methacrylate adsorbed on silica gel, the radiation-induced polymerization of styrene and methyl methacrylate adsorbed on Aerosil was carried out. The results of both the styrene--Aerosil 300 system and the methyl methacrylate--Aerosil 300 system were similar to those of the styrene-silica gel and methyl methacrylate-silica gel systems, respectively. This suggests that in the radiation-induced polymerization of both styrene--silica gel and methyl methacrylate--silica gel systems the impurities and the presence of micropores have almost no effect on the reaction mechanism. The effect of aluminum as an impurity was investigated on the styrene--Aerosil MOX 170 system. It was found that aluminum accelerated the cationic polymerization

  17. Hydrogenation of Phenylacetylene to Styrene on Pre-C_xH_y- and C-Covered Cu(111) Single Crystal Catalysts

    International Nuclear Information System (INIS)

    Sohn, Young Ku; Wei, Wei; White, John M.

    2011-01-01

    Thermal hydrogenation of phenylacetylene (PA, C_8H_6) to styrene (C_8H_8) on pre-C_xH_y- and C-covered Cu(111) single crystal substrates has been studied using temperature-programmed desorption (TPD) mass spectrometry. Chemisorbed PA with an acetylene group has been proved to be associated with hydrogen of pre-adsorbed C_xH_y to form styrene (104 amu) on Cu surface. For the parent (PA) mass (102 amu) TPD profile, the TPD peaks at 360 K and 410 K are assigned to chemisorbed vertically aligned PA and flat-lying cross-bridged PA, respectively (J. Phys. Chem. C 2007, 111, 5101). The relative I_3_6_0_K/I_4_1_0_K TPD ratio dramatically increases with increasing pre-adsorbed C_xH_y before dosing PA, while the ratio does not increase for pre-C-covered surface. For PA on pre-C_xH_y-covered Cu(111) surface, styrene desorption is enhanced relative to the parent PA desorption, while styrene formation is dramatically quenched on pre-C-covered (lack of adsorbed hydrogen nearby) surface. It appears that only cross-bridged PA associates with adsorbed hydrogen to form styrene that promptly desorbs at 410 K, while vertically aligned PA is less likely to participate in forming styrene

  18. Efficient photochemical generation of peroxycarboxylic nitric anhydrides with ultraviolet light emitting diodes

    Science.gov (United States)

    Rider, N. D.; Taha, Y. M.; Odame-Ankrah, C. A.; Huo, J. A.; Tokarek, T. W.; Cairns, E.; Moussa, S. G.; Liggio, J.; Osthoff, H. D.

    2015-01-01

    Photochemical sources of peroxycarboxylic nitric anhydrides (PANs) are utilized in many atmospheric measurement techniques for calibration or to deliver an internal standard. Conventionally, such sources rely on phosphor-coated low-pressure mercury (Hg) lamps to generate the UV light necessary to photo-dissociate a dialkyl ketone (usually acetone) in the presence of a calibrated amount of nitric oxide (NO) and oxygen (O2). In this manuscript, a photochemical PAN source in which the Hg lamp has been replaced by arrays of ultraviolet light-emitting diodes (UV-LEDs) is described. The output of the UV-LED source was analyzed by gas chromatography (PAN-GC) and thermal dissociation cavity ring-down spectroscopy (TD-CRDS). Using acetone, diethyl ketone (DIEK), diisopropyl ketone (DIPK), or di-n-propyl ketone (DNPK), respectively, the source produces peroxyacetic (PAN), peroxypropionic (PPN), peroxyisobutanoic (PiBN), or peroxy-n-butanoic nitric anhydride (PnBN) from NO in high yield (> 90%). Box model simulations with a subset of the Master Chemical Mechanism (MCM) were carried out to rationalize products yields and to identify side products. The use of UV-LED arrays offers many advantages over conventional Hg lamp setups, including greater light output over a narrower wavelength range, lower power consumption, and minimal generation of heat.

  19. Directory of Open Access Journals (Sweden)

    Kamal M. El-Gamal

    2016-12-01

    Full Text Available A series of 3-substituted 6-methoxy-1H-pyrazolo [3,4-b]quinoline derivatives was synthesized by treating 6-methoxy-1H-pyrazolo[3,4-b]quinolin-3-amine (6 with different acid anhydrides including succinic anhydride, maleic anhydride and phthalic anhydride. Also, a series of 3-heteroaryl-2-chloro-6-methoxyquinolines was prepared through 1,3-dipolar cycloaddition of different bi-nucleophiles including hydrazine hydrate, hydroxylamine hydrochloride, thiourea, guanidine hydrochloride, urea and metformin hydrochloride to the chalcone derivative 3-(2-chloro-6-methoxyquinolin-3-yl-1-(4-methoxyphenylprop-2-en-1-one. Structural identifications of all products were reported and the new compounds were screened for their in vitro antimicrobial activity against Streptococcus pneumonia and Bacillus subtilis as examples for Gram-positive bacteria, Pseudomonas aeruginosa and Escherichia coli as examples for Gram-negative bacteria, and Aspergillus fumigatus, Syncephalastrum racemosum, Geotriucum candidum and Candida albicans as representative examples of fungi. The majority of tested compounds showed moderate activities against a wide range of the selected organisms. Among the tested compounds, pyrimidine derivatives 16 and 17 showed the highest antimicrobial activity against gram-positive strains while the highest activity against E. coli as example for Gram-negative strains was observed in the case of 11 and 17. Compounds 14 and 17 were found to be extremely potent against three of the selected fungal strains.

  20. Microstructure and properties of styrene acrylate polymer cement concrete

    NARCIS (Netherlands)

    Undetermined, U.

    1995-01-01

    The paper systematically describes the evolution of the microstructure of a styrene acrylate polymer cement concrete in relation to its mechanical properties and durability. The results presented and discussed at the present paper involve the interaction of the polymer dispersion with portland