WorldWideScience

Sample records for stutzeri nitrite reductase

  1. Intramolecular electron transfer in Pseudomonas aeruginosa cd(1) nitrite reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Brunori, Maurizio; Cutruzzolà, Francesca

    2009-01-01

    The cd(1) nitrite reductases, which catalyze the reduction of nitrite to nitric oxide, are homodimers of 60 kDa subunits, each containing one heme-c and one heme-d(1). Heme-c is the electron entry site, whereas heme-d(1) constitutes the catalytic center. The 3D structure of Pseudomonas aeruginosa...... is controlling this internal ET step. In this study we have investigated the internal ET in the wild-type and His369Ala mutant of P. aeruginosa nitrite reductases and have observed similar cooperativity to that of the Pseudomonas stutzeri enzyme. Heme-c was initially reduced, in an essentially diffusion...... nitrite reductase has been determined in both fully oxidized and reduced states. Intramolecular electron transfer (ET), between c and d(1) hemes is an essential step in the catalytic cycle. In earlier studies of the Pseudomonas stutzeri enzyme, we observed that a marked negative cooperativity...

  2. Pseudoazurin-nitrite reductase interactions.

    Science.gov (United States)

    Impagliazzo, Antonietta; Krippahl, Ludwig; Ubbink, Marcellus

    2005-09-01

    The nitrite reductase-binding site on pseudoazurin has been determined by using NMR chemical-shift perturbations. It comprises residues in the hydrophobic patch surrounding the exposed copper ligand His81 as well as several positively charged residues. The binding site is similar for both redox states of pseudoazurin, despite differences in the binding mode. The results suggest that pseudoazurin binds in a well-defined orientation. Docking simulations provide a putative structure of the complex with a binding site on nitrite reductase that has several hydrophobic and polar residues as well as a ridge of negatively charged side chains and a copper-to-copper distance of 14 A.

  3. Allosteric control of internal electron transfer in cytochrome cd1 nitrite reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Kroneck, Peter M H; Zumft, Walter G

    2003-01-01

    Cytochrome cd1 nitrite reductase is a bifunctional multiheme enzyme catalyzing the one-electron reduction of nitrite to nitric oxide and the four-electron reduction of dioxygen to water. Kinetics and thermodynamics of the internal electron transfer process in the Pseudomonas stutzeri enzyme have...... been studied and found to be dominated by pronounced interactions between the c and the d1 hemes. The interactions are expressed both in dramatic changes in the internal electron-transfer rates between these sites and in marked cooperativity in their electron affinity. The results constitute a prime...... example of intraprotein control of the electron-transfer rates by allosteric interactions....

  4. Molybdenum-containing nitrite reductases: Spectroscopic characterization and redox mechanism.

    Science.gov (United States)

    Wang, Jun; Keceli, Gizem; Cao, Rui; Su, Jiangtao; Mi, Zhiyuan

    2017-01-01

    This review summarizes the spectroscopic results, which will provide useful suggestions for future research. In addition, the fields that urgently need more information are also advised. Nitrite-NO-cGMP has been considered as an important signaling pathway of NO in human cells. To date, all the four known human molybdenum-containing enzymes, xanthine oxidase, aldehyde oxidase, sulfite oxidase, and mitochondrial amidoxime-reducing component, have been shown to function as nitrite reductases under hypoxia by biochemical, cellular, or animal studies. Various spectroscopic techniques have been applied to investigate the structure and catalytic mechanism of these enzymes for more than 20 years. We summarize the published data on the applications of UV-vis and EPR spectroscopies, and X-ray crystallography in studying nitrite reductase activity of the four human molybdenum-containing enzymes. UV-vis has provided useful information on the redox active centers of these enzymes. The utilization of EPR spectroscopy has been critical in determining the coordination and redox status of the Mo center during catalysis. Despite the lack of substrate-bound crystal structures of these nitrite reductases, valuable structural information has been obtained by X-ray crystallography. To fully understand the catalytic mechanisms of these physiologically/pathologically important nitrite reductases, structural studies on substrate-redox center interaction are needed.

  5. Cloning and characterization of a nitrite reductase gene related to ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-01

    Mar 1, 2010 ... somatic embryogenesis stages, and that the level of GhNiR mRNA was also higher in the cultivar with higher somatic ..... Planta, 183: 17-24. Alexander H, Treusch, Sven L, Arnulf K, Stephan CS, Hans-Peter K,. Christa S (2005). Novel genes for nitrite reductase and Amo-related proteins indicate a role of ...

  6. Recent structural insights into the function of copper nitrite reductases.

    Science.gov (United States)

    Horrell, Sam; Kekilli, Demet; Strange, Richard W; Hough, Michael A

    2017-11-15

    Copper nitrite reductases (CuNiR) carry out the first committed step of the denitrification pathway of the global nitrogen cycle, the reduction of nitrite (NO 2 - ) to nitric oxide (NO). As such, they are of major agronomic and environmental importance. CuNiRs occur primarily in denitrifying soil bacteria which carry out the overall reduction of nitrate to dinitrogen. In this article, we review the insights gained into copper nitrite reductase (CuNiR) function from three dimensional structures. We particularly focus on developments over the last decade, including insights from serial femtosecond crystallography using X-ray free electron lasers (XFELs) and from the recently discovered 3-domain CuNiRs.

  7. Nitrate decreases xanthine oxidoreductase-mediated nitrite reductase activity and attenuates vascular and blood pressure responses to nitrite

    Directory of Open Access Journals (Sweden)

    Célio Damacena-Angelis

    2017-08-01

    Full Text Available Nitrite and nitrate restore deficient endogenous nitric oxide (NO production as they are converted back to NO, and therefore complement the classic enzymatic NO synthesis. Circulating nitrate and nitrite must cross membrane barriers to produce their effects and increased nitrate concentrations may attenuate the nitrite influx into cells, decreasing NO generation from nitrite. Moreover, xanthine oxidoreductase (XOR mediates NO formation from nitrite and nitrate. However, no study has examined whether nitrate attenuates XOR-mediated NO generation from nitrite. We hypothesized that nitrate attenuates the vascular and blood pressure responses to nitrite either by interfering with nitrite influx into vascular tissue, or by competing with nitrite for XOR, thus inhibiting XOR-mediated NO generation. We used two independent vascular function assays in rats (aortic ring preparations and isolated mesenteric arterial bed perfusion to examine the effects of sodium nitrate on the concentration-dependent responses to sodium nitrite. Both assays showed that nitrate attenuated the vascular responses to nitrite. Conversely, the aortic responses to the NO donor DETANONOate were not affected by sodium nitrate. Further confirming these results, we found that nitrate attenuated the acute blood pressure lowering effects of increasing doses of nitrite infused intravenously in freely moving rats. The possibility that nitrate could compete with nitrite and decrease nitrite influx into cells was tested by measuring the accumulation of nitrogen-15-labeled nitrite (15N-nitrite by aortic rings using ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS. Nitrate exerted no effect on aortic accumulation of 15N-nitrite. Next, we used chemiluminescence-based NO detection to examine whether nitrate attenuates XOR-mediated nitrite reductase activity. Nitrate significantly shifted the Michaelis Menten saturation curve to the right, with a 3-fold increase in

  8. A random-sequential mechanism for nitrite binding and active site reduction in copper-containing nitrite reductase

    NARCIS (Netherlands)

    Wijma, HJ; Jeuken, LJC; Verbeet, MP; Armstrong, FA; Canters, GW

    2006-01-01

    The homotrimeric copper-containing nitrite reductase ( NiR) contains one type-1 and one type-2 copper center per monomer. Electrons enter through the type-1 site and are shuttled to the type-2 site where nitrite is reduced to nitric oxide. To investigate the catalytic mechanism of NiR the effects of

  9. Expression of the nos operon proteins from Pseudomonas stutzeri in transgenic plants to assemble nitrous oxide reductase.

    Science.gov (United States)

    Wan, Shen; Mottiar, Yaseen; Johnson, Amanda M; Goto, Kagami; Altosaar, Illimar

    2012-06-01

    Nitrous oxide (N(2)O) is a stable greenhouse gas that plays a significant role in the destruction of the ozone layer. Soils are a significant source of atmospheric N(2)O. It is important to explore some innovative and effective biology-based strategies for N(2)O mitigation. The enzyme nitrous oxide reductase (N(2)OR), naturally found in soil bacteria, is responsible for catalysing the final step of the denitrification pathway, conversion of N(2)O to dintrogen gas (N(2)). To transfer this catalytic pathway from soil into plants and amplify the abundance of this essential mechanism (to reduce global warming), a mega-cassette of five coding sequences was assembled to produce transgenic plants heterologously expressing the bacterial nos operon in plant leaves. Both the single-gene transformants (nosZ) and the multi-gene transformants (nosFLZDY) produced active recombinant N(2)OR. Enzymatic activity was detected using the methyl viologen-linked enzyme assay, showing that extracts from both types of transgenic plants exhibited N(2)O-reducing activity. Remarkably, the single-gene strategy produced higher reductase capability than the whole-operon approach. The data indicate that bacterial N(2)OR expressed in plants could convert N(2)O into inert N(2) without involvement of other Nos proteins. Silencing by homologous signal sequences, or cryptic intracellular targeting are possible explanations for the low activities obtained. Expressing N(2)OR from Pseudomonas stutzeri in single-gene transgenic plants indicated that such ag-biotech solutions to climate change have the potential to be easily incorporated into existing genetically modified organism seed germplasm.

  10. Nitrite-dependent vasodilation is facilitated by hypoxia and is independent of known NO-generating nitrite reductase activities

    DEFF Research Database (Denmark)

    Dalsgaard, Thomas; Simonsen, Ulf; Fago, Angela

    2007-01-01

    The reduction of circulating nitrite to nitric oxide (NO) has emerged as an important physiological reaction aimed to increase vasodilation during tissue hypoxia. Although hemoglobin, xanthine oxidase, endothelial NO synthase, and the bc(1) complex of the mitochondria are known to reduce nitrite...... target for vasoactive NO), and known nitrite reductase activities under hypoxia. Vasodilation followed overall first-order dependency on nitrite concentration and, at low oxygenation and norepinephrine levels, was induced by low-nitrite concentrations, comparable to those found in vivo. The vasoactive...... effect of nitrite during hypoxia was abolished on inhibition of soluble guanylate cyclase and was unaffected by removal of the endothelium or by inhibition of xanthine oxidase and of the mitochondrial bc(1) complex. In the presence of hemoglobin and inositol hexaphosphate (which increases the fraction...

  11. The nitric oxide reductase activity of cytochrome c nitrite reductase from Escherichia coli.

    Science.gov (United States)

    van Wonderen, Jessica H; Burlat, Bénédicte; Richardson, David J; Cheesman, Myles R; Butt, Julea N

    2008-04-11

    Cytochrome c nitrite reductase (NrfA) from Escherichia coli has a well established role in the respiratory reduction of nitrite to ammonium. More recently the observation that anaerobically grown E. coli nrf mutants were more sensitive to NO. than the parent strain led to the proposal that NrfA might also participate in NO. detoxification. Here we describe protein film voltammetry that presents a quantitative description of NrfA NO. reductase activity. NO. reduction is initiated at similar potentials to NrfA-catalyzed reduction of nitrite and hydroxylamine. All three activities are strongly inhibited by cyanide. Together these results suggest a common site for reduction of all three substrates as axial ligands to the lysine-coordinated NrfA heme rather than nonspecific NO. reduction at one of the four His-His coordinated hemes also present in each NrfA subunit. NO. reduction by NrfA is described by a K(m) of the order of 300 microm. The predicted turnover number of approximately 840 NO. s(-1) is much higher than that of the dedicated respiratory NO. reductases of denitrification and the flavorubredoxin and flavohemoglobin of E. coli that are also proposed to play roles in NO. detoxification. In considering the manner by which anaerobically growing E. coli might detoxify exogenously generated NO. encountered during invasion of a human host it appears that the periplasmically located NrfA should be effective in maintaining low NO. levels such that any NO. reaching the cytoplasm is efficiently removed by flavorubredoxin (K(m) approximately 0.4 microm).

  12. Intramolecular electron transfer in cytochrome cd(1) nitrite reductase from Pseudomonas stutzeri; kinetics and thermodynamics

    DEFF Research Database (Denmark)

    Farver, Ole; Kroneck, Peter M H; Zumft, Walter G

    2002-01-01

    diffusion controlled process. Following this initial step, the reduction equivalent is equilibrating between the c and d(1) heme sites in a unimolecular process (k=23 s(-1), 298 K, pH 7.0) and an equilibrium constant of 1.0. The temperature dependence of this internal electron transfer process has been...... determined over a 277-313 K temperature range and yielded both equilibrium standard enthalpy and entropy changes as well as activation parameters of the specific rate constants. The significance of these parameters obtained at low degree of reduction of the enzyme is discussed and compared with earlier...

  13. Voltammetry and In Situ Scanning Tunneling Microscopy of Cytochrome c Nitrite Reductase on Au(111)-Electrodes

    DEFF Research Database (Denmark)

    Gwyer, James; Zhang, Jingdong; Butt, Julea

    2006-01-01

    Escherichia coli cytochrome c nitrite reductase (NrfA) catalyzes the six-electron reduction of nitrite to perform an important role in the biogeochemical cycling of nitrogen. Here we describe NrfA adsorption on single-crystal Au(111) electrodes as an electrocatalytically active film in which the ...

  14. Protein film voltammetry of copper-containing nitrite reductase reveals reversible inactivation

    NARCIS (Netherlands)

    Wijma, Hein J.; Jeuken, Lars J. C.; Verbeet, Martin Ph.; Armstrong, Fraser A.; Canters, Gerard W.

    2007-01-01

    The Cu-containing nitrite reductase from Alcaligenes faecalis S-6 catalyzes the one-electron reduction of nitrite to nitric oxide (NO). Electrons enter the enzyme at the so-called type-1 Cu site and are then transferred internally to the catalytic type-2 Cu site. Protein film voltammetry experiments

  15. The role of light in the inducation of nitrate reductase and nitrite reductase in cucumber seedlings

    Directory of Open Access Journals (Sweden)

    J. Buczek

    2015-01-01

    Full Text Available The activity of nitrate reductase (NR and nitrite reductase (NiR was investigated in vivo and in vitro in the roots and NR activity in 3-day-old cotyledons of cucumber seedlings. NR activity in the roots appears almost immediately after addition of nitrate ions to the induction medium, whereas, in the cotyledones NR induction is delayed. In general light enhances NR activity in the cotyledons and depresses it in the roots in experiments of short duration. Etiolation of the cotyledons reduces NR activity in the roots and leads to disappearance of the activity of this enzyme in the cotyledons, whereas the NR activity of roots kept in darkness, after transfer of the etiolated plants to light, increases threefold. In roots growing in darkness a delay in NiR induction is observed, while in those growing in ligth it occurs at the same time as NR induction. Chlormaphenicol (CAP, cycloheximide (CHI and actinomycin D (ACM applied at the beginning of the period of seedling induction with initrates inhibit NR activity in the cotyledons, whereas in the roots only CHI and ACM exert such an effect. To sum up, NR is synthesized in cucumber roots and cotyledons de novo on the cytoplasmic polyribosomes, and light per se is not indispensable for this synthesis, but it has an indirect influence on the activity level of NR and NiR both in the roots and the cotyledons.

  16. Absorption of atmospheric nitrogen dioxide by plants and soils. II. Nitrite accumulation, nitrite reductase activity and diurnal change of nitrogen dioxide absorption in leaves

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, T.; Sasakawa, H.; Ishizuka, S.; Totsuka, T.

    1979-01-01

    NO/sub 2/ uptake by leaves and reduction systems of nitrite produced were investigated using 3-week-old kidney bean, sunflower, and corn plants, which were grown in vermiculite beds supplied with tap water. The plants were fumigated with ppM NO/sub 2/ for 6 hr in an artificially-lit chamber (30 klux), and the following things were observed. Fumigation in the light at daytime caused severe injury (wilting) in kidney bean leaves, and slight injury in sunflower leaves, but corn leaves were tolerant to this treatment. A high concentration of nitrite rapidly accumulted in the kidney bean leaves, but the nitrite reductase activity was only increased to a small extent. In sunflower leaves a high concentration of nitrite was accumulated, and the nitrite reductase activity also increased rapidly. Fumigation in the dark at nighttime caused low concentration of nitrite to accumulate in the kidney bean and sunflower leaves, and it was leveled down at the later fumigation time. The nitrite reductase activity of the two plants was increased with a slow rate continuously during the NO/sub 2/ fumigation period. On the other hand, in the corn leaves, nitrite was not detected in the daytime, but only a low concentration of nitrite was detected in the nighttime. A high activity of nitrite reductase was detected compared with the other two plants. Application of nitrite through the culture solution reduced nitrite accumulation in the light but not in the dark. These results indicate that acute NO/sub 2/ injury is mainly related to nitrite accumulation. Therefore, low NO/sub 2/ absorption and high nitrite reductase activity (including its rapid induction) may reduce injury in leaves. Absorption of /sup 15/NO/sub 2/ at night by sunflower leaves was around 14% that at daytime. These indicate that a diurnal change of NO/sub 2/ uptake is operating. 14 references, 2 figures, 3 tables.

  17. Redox-state-dependent complex formation between pseudoazurin and nitrite reductase.

    Science.gov (United States)

    Impagliazzo, Antonietta; Blok, Anneloes J; Cliff, Matthew J; Ladbury, John E; Ubbink, Marcellus

    2007-01-10

    Bacterial copper-containing nitrite reductase catalyzes the reduction of nitrite to nitric oxide as part of the denitrification process. Pseudoazurin interacts with nitrite reductase in a transient fashion to supply the necessary electrons. The redox-state dependence of complex formation between pseudoazurin and nitrite reductase was studied by nuclear magnetic resonance spectroscopy and isothermal titration calorimetry. Binding of pseudoazurin in the reduced state is characterized by the presence of two binding modes, a slow and a fast exchange mode, with a K(d)(app) of 100 microM. In the oxidized state of pseudoazurin, binding occurs in a single fast exchange mode with a similar affinity. Metal-substituted proteins have been used to show that the mode of binding of pseudoazurin is independent of the metal charge of nitrite reductase. Contrary to what was found for other cupredoxins, protonation of the exposed His ligand to the copper of pseudoazurin, His81, does not appear to be involved directly in the dual binding mode of the reduced form. A model assuming the presence of a minor form of pseudoazurin is proposed to explain the behavior of the complex in the reduced state.

  18. The anoxic plant mitochondrion as a nitrite: NO reductase.

    Science.gov (United States)

    Gupta, Kapuganti J; Igamberdiev, Abir U

    2011-07-01

    Under the conditions of oxygen deprivation, accumulating nitrite can be reduced in the mitochondrial electron transport chain forming free radical nitric oxide (NO). By reducing nitrite to NO, plant mitochondria preserve the capacity to oxidize external NADH and NADPH and retain a limited power for ATP synthesis complementing glycolytic ATP production. NO participates in O(2) balance in mitochondria by competitively inhibiting cytochrome c oxidase which can oxidize it to nitrite when oxygen concentration increases. Some of the NO escapes to the cytosol, where the efficient scavenging system involving non-symbiotic hemoglobin oxygenates NO to nitrate and supports continuous anaerobic turnover of nitrogen species. © 2011 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  19. Calorimetric and spectroscopic investigations of the thermal denaturation of wild type nitrite reductase

    NARCIS (Netherlands)

    Stirpe, A; Guzzi, R; Wijma, H; Verbeet, MP; Canters, GW; Sportelli, L

    2005-01-01

    Nitrite reductase (NiR) is a multicopper protein, with a trimeric structure containing two types of copper site: type I is present in each subunit whereas type 2 is localized at the subunits interface. The paper reports on the thermal behaviour of wild type NiR from Alcaligenes faecalis S-6. The

  20. Nitrite and Nitrous Oxide Reductase Regulation by Nitrogen Oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106

    Science.gov (United States)

    Sabaty, Monique; Schwintner, Carole; Cahors, Sandrine; Richaud, Pierre; Verméglio, Andre

    1999-01-01

    We have cloned the nap locus encoding the periplasmic nitrate reductase in Rhodobacter sphaeroides f. sp. denitrificans IL106. A mutant with this enzyme deleted is unable to grow under denitrifying conditions. Biochemical analysis of this mutant shows that in contrast to the wild-type strain, the level of synthesis of the nitrite and N2O reductases is not increased by the addition of nitrate. Growth under denitrifying conditions and induction of N oxide reductase synthesis are both restored by the presence of a plasmid containing the genes encoding the nitrate reductase. This demonstrates that R. sphaeroides f. sp. denitrificans IL106 does not possess an efficient membrane-bound nitrate reductase and that nitrate is not the direct inducer for the nitrite and N2O reductases in this species. In contrast, we show that nitrite induces the synthesis of the nitrate reductase. PMID:10498715

  1. Boletus edulis Nitrite Reductase Reduces Nitrite Content of Pickles and Mitigates Intoxication in Nitrite-intoxicated Mice

    National Research Council Canada - National Science Library

    Zhang, Weiwei; Tian, Guoting; Feng, Shanshan; Wong, Jack Ho; Zhao, Yongchang; Chen, Xiao; Wang, Hexiang; Ng, Tzi Bun

    2015-01-01

    Pickles are popular in China and exhibits health-promoting effects. However, nitrite produced during fermentation adversely affects health due to formation of methemoglobin and conversion to carcinogenic nitrosamine...

  2. Colour formation in fermented sausages by meat-associated staphylococci with different nitrite- and nitrate-reductase activities

    DEFF Research Database (Denmark)

    Gøtterup, Jacob; Olsen, Karsten; Knøchel, Susanne

    2008-01-01

    nitrate depended on the specific Staphylococcus strain. Strains with high nitrate-reductase activity showed a significantly faster rate of pigment formation, but other factors were of influence as well. Product stability for the sliced, packaged sausage was evaluated as surface colour and oxidation......Three Staphylococcus strains, S. carnosus, S. simulans and S. saprophyticus, selected due to their varying nitrite and/or nitrate-reductase activities, were used to initiate colour formation during sausage fermentation. During fermentation of sausages with either nitrite or nitrate added, colour...... with hexanal content, and may be used as predictive tools. Overall, nitrite- and nitrate-reductase activities of Staphylococcus strains in nitrite-cured sausages were of limited importance regarding colour development, while in nitrate-cured sausages strains with higher nitrate reductase activity were crucial...

  3. Polyethylene glycol conjugation enhances the nitrite reductase activity of native and cross-linked hemoglobin.

    Science.gov (United States)

    Lui, Francine E; Dong, Pengcheng; Kluger, Ronald

    2008-10-07

    Although stabilized hemoglobins have been evaluated as oxygen-carrying replacements for red cells in transfusions, in vivo evaluations have noted that these materials are associated with vasoactivity, a serious complication. Scavenging of endogenous nitric oxide by the deoxyheme sites of the stabilized proteins is one likely source of vasoactivity. Recent reports indicate that modification of cell-free hemoglobin derivatives with multiple chains of polyethylene glycol (PEG) suppresses vasoactivity. Gladwin and co-workers observed that the nitrite reductase activity of hemoglobin serves as a major endogenous source of nitric oxide. If PEG conjugation leads to enhanced nitrite reductase activity, this could compensate for scavenged endogenous nitric oxide. To test this possibility, the rates of conversion of nitrite ion to nitric oxide by altered hemoglobins with and without PEG were measured at 25 degrees C. Fumaryl (alpha99-alpha99) cross-linked hemoglobin reacts with nitrite with a bimolecular rate constant of 0.52 M (-1) s (-1), which is comparable to that associated with native hemoglobin (0.25 M (-1) s (-1)). Addition of PEG chains to the cross-linked hemoglobin at beta-Cys93 (alphaalpha-Hb-PEG5K 2) results in a material that produces nitric oxide much more rapidly ( k = 1.41 M (-1) s (-1)). R-State-stabilized hemoglobins with multiple PEG chains (Hb-PEG5K 2 and Hb-PEG5K 6) react 10 times faster with nitrite to produce nitric oxide than does native hemoglobin ( k = 2.5 and 2.4 M (-1) s (-1), respectively). These results, showing enhanced production of nitric oxide resulting from an increased proportion of the protein residing in the R-state, are consistent with the decrease in vasoactivity associated with PEG conjugation.

  4. Voltammetry and Electrocatalysis of Achrornobacter Xylosoxidans Copper Nitrite Reductase on Functionalized Au(111)-Electrode Surfaces

    DEFF Research Database (Denmark)

    Welinder, Anna C.; Zhang, Jingdong; Hansen, Allan G.

    2007-01-01

    planar electrode surfaces is a step towards the resolution of this central issue. We report here the voltammetry of copper nitrite reductase (CNiR, Achromobacter xylosoxidons) on Au(111)-electrode surfaces modified by monolayers of a broad variety of thiol-based linker molecules. These represent......NiR thus shows highly efficient, close to ideal reversible electrocatalytic voltammetry on cysteamine-covered Au(111)-electrode surfaces, most likely due to two cysteamine orientations previously disclosed by in situ scanning tunnelling microscopy. Such a dual orientation exposes both a hydrophobic...

  5. Interspecific variation and plasticity in hemoglobin nitrite reductase activity and its correlation with oxygen affinity in vertebrates.

    Science.gov (United States)

    Jensen, Frank B; Kolind, Rasmus A H; Jensen, Natashia S; Montesanti, Gabriella; Wang, Tobias

    2017-04-01

    Deoxygenated hemoglobin (Hb) is a nitrite reductase that reduces naturally occurring nitrite to nitric oxide (NO), supplying physiological relevant NO under hypoxic conditions. The nitrite reductase activity is modulated by the allosteric equilibrium between the R and T structures of Hb that also determines oxygen affinity. In the present study we investigated nitrite reductase activity and O2 affinity in Hbs from ten different vertebrate species under identical conditions to disclose interspecific variations and allow an extended test for a correlation between the rate constant for nitrite reduction and O2 affinity. We also tested plastic changes in Hb properties via addition of T-structure-stabilizing organic phosphates (ATP and GTP). The decay in deoxyHb during its reaction with nitrite was exponential-like in ectotherms (Atlantic hagfish, carp, crucian carp, brown trout, rainbow trout, cane toad, Indian python and red-eared slider turtle), while it was sigmoid in mammals (harbor porpoise and rabbit). Typically, hypoxia-tolerant species showed a faster reaction than intolerant species. Addition of ATP and GTP decreased O2 affinity and slowed the rate of nitrite reduction in a concentration-dependent manner. The initial second order rate constant of the deoxyHb-mediated nitrite reduction showed a strong curvilinear correlation with oxygen affinity among all ectothermic vertebrates, and the relationship also applied to plastic variations of Hb properties via organic phosphates. The relationship predicts high nitrite reductase activity in hypoxic tolerant species with high Hb-O2 affinity and reveals that the decrease in erythrocyte ATP and/or GTP during acclimation to hypoxia in ectotherms increases the erythrocyte NO generating capacity. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The effect of ionic and non-ionic surfactants on the growth, nitrate reductase and nitrite reductase activities of Spirodela polyrrhiza (L. Schleiden

    Directory of Open Access Journals (Sweden)

    Józef Buczek

    2014-01-01

    Full Text Available Inclusion into the medium of 5 mg•dm-3 of non-ionic (ENF or ionic (DBST surfactant caused 50-60% inhibition of nitrite reductase MR activity in S. polyrrhiza. At the same time, increased accumulation of NO2- in the plant tissues and lowering of the total and soluble protein contents were found. DBST also lowered the nitrate reductase (NR activity and the dry mass of the plants.

  7. Impact of hemoglobin nitrite to nitric oxide reductase on blood transfusion for resuscitation from hemorrhagic shock

    Directory of Open Access Journals (Sweden)

    Chad Brouse

    2015-01-01

    Full Text Available Background: Transfusion of blood remains the gold standard for fluid resuscitation from hemorrhagic shock. Hemoglobin (Hb within the red blood cell transports oxygen and modulates nitric oxide (NO through NO scavenging and nitrite reductase. Aims: This study was designed to examine the effects of incorporating a novel NO modulator, RRx-001, on systemic and microvascular hemodynamic response after blood transfusion for resuscitation from hemorrhagic shock in a hamster window chamber model. In addition, to RRx-001 the role of low dose of nitrite (1 × 10−9 moles per animal supplementation after resuscitation was studied. Materials and Methods: Severe hemorrhage was induced by arterial controlled bleeding of 50% of the blood volume (BV and the hypovolemic state was maintained for 1 h. The animals received volume resuscitation by an infusion of 25% of BV using fresh blood alone or with added nitrite, or fresh blood treated with RRx-001 (140 mg/kg or RRx-001 (140 mg/kg with added nitrite. Systemic and microvascular hemodynamics were followed at baseline and at different time points during the entire study. Tissue apoptosis and necrosis were measured 8 h after resuscitation to correlate hemodynamic changes with tissue viability. Results: Compared to resuscitation with blood alone, blood treated with RRx-001 decreased vascular resistance, increased blood flow and functional capillary density immediately after resuscitation and preserved tissue viability. Furthermore, in RRx-001 treated animals, both mean arterial pressure (MAP and met Hb were maintained within normal levels after resuscitation (MAP >90 mmHg and metHb <2%. The addition of nitrite to RRx-001 did not significantly improve the effects of RRx-001, as it increased methemoglobinemia and lower MAP. Conclusion: RRx-001 alone enhanced perfusion and reduced tissue damage as compared to blood; it may serve as an adjunct therapy to the current gold standard treatment for resuscitation from

  8. Interspecific variation and plasticity in hemoglobin nitrite reductase activity and its correlation with oxygen affinity in vertebrates

    DEFF Research Database (Denmark)

    Jensen, Frank B.; Kolind, Rasmus A. H.; Jensen, Natashia S.

    2017-01-01

    determines oxygen affinity. In the present study we investigated nitrite reductase activity and O2 affinity in Hbs from ten different vertebrate species under identical conditions to disclose interspecific variations and allow an extended test for a correlation between the rate constant for nitrite reduction......-dependent manner. The initial second order rate constant of the deoxyHb-mediated nitrite reduction showed a strong curvilinear correlation with oxygen affinity among all ectothermic vertebrates, and the relationship also applied to plastic variations of Hb properties via organic phosphates. The relationship...

  9. Met144Ala mutation of the copper-containing nitrite reductase from Alcaligenes xylosoxidans reverses the intramolecular electron transfer

    DEFF Research Database (Denmark)

    Farver, Ole; Eady, Robert R; Sawers, Gary

    2004-01-01

    Pulse radiolysis has been employed to investigate the intramolecular electron transfer (ET) between the type 1 (T1) and type 2 (T2) copper sites in the Met144Ala Alcaligenes xylosoxidans nitrite reductase (AxCuNiR) mutant. This mutation increases the reduction potential of the T1 copper center...

  10. Effect of the methionine ligand on the reorganization energy of the type-1 copper site of nitrite Reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Wijma, Hein J.; MacPherson, Iain

    2007-01-01

    Copper-containing nitrite reductase harbors a type-1 and a type-2 Cu site. The former acts as the electron acceptor site of the enzyme, and the latter is the site of catalytic action. The effect of the methionine ligand on the reorganization energy of the type-1 site was explored by studying...

  11. Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal

    Directory of Open Access Journals (Sweden)

    Sam Horrell

    2016-07-01

    Full Text Available Relating individual protein crystal structures to an enzyme mechanism remains a major and challenging goal for structural biology. Serial crystallography using multiple crystals has recently been reported in both synchrotron-radiation and X-ray free-electron laser experiments. In this work, serial crystallography was used to obtain multiple structures serially from one crystal (MSOX to study in crystallo enzyme catalysis. Rapid, shutterless X-ray detector technology on a synchrotron MX beamline was exploited to perform low-dose serial crystallography on a single copper nitrite reductase crystal, which survived long enough for 45 consecutive 100 K X-ray structures to be collected at 1.07–1.62 Å resolution, all sampled from the same crystal volume. This serial crystallography approach revealed the gradual conversion of the substrate bound at the catalytic type 2 Cu centre from nitrite to nitric oxide, following reduction of the type 1 Cu electron-transfer centre by X-ray-generated solvated electrons. Significant, well defined structural rearrangements in the active site are evident in the series as the enzyme moves through its catalytic cycle, namely nitrite reduction, which is a vital step in the global denitrification process. It is proposed that such a serial crystallography approach is widely applicable for studying any redox or electron-driven enzyme reactions from a single protein crystal. It can provide a `catalytic reaction movie' highlighting the structural changes that occur during enzyme catalysis. The anticipated developments in the automation of data analysis and modelling are likely to allow seamless and near-real-time analysis of such data on-site at some of the powerful synchrotron crystallographic beamlines.

  12. Nitrite-reductase and peroxynitrite isomerization activities of Methanosarcina acetivorans protoglobin.

    Directory of Open Access Journals (Sweden)

    Paolo Ascenzi

    Full Text Available Within the globin superfamily, protoglobins (Pgb belong phylogenetically to the same cluster of two-domain globin-coupled sensors and single-domain sensor globins. Multiple functional roles have been postulated for Methanosarcina acetivorans Pgb (Ma-Pgb, since the detoxification of reactive nitrogen and oxygen species might co-exist with enzymatic activity(ies to facilitate the conversion of CO to methane. Here, the nitrite-reductase and peroxynitrite isomerization activities of the CysE20Ser mutant of Ma-Pgb (Ma-Pgb* are reported and analyzed in parallel with those of related heme-proteins. Kinetics of nitrite-reductase activity of ferrous Ma-Pgb* (Ma-Pgb*-Fe(II is biphasic and values of the second-order rate constant for the reduction of NO2- to NO and the concomitant formation of nitrosylated Ma-Pgb*-Fe(II (Ma-Pgb*-Fe(II-NO are k(app1= 9.6 ± 0.2 M(-1 s(-1 and k(app2 = 1.2 ± 0.1 M(-1 s(-1 (at pH 7.4 and 20 °C. The k(app1 and k(app2 values increase by about one order of magnitude for each pH unit decrease, between pH 8.3 and 6.2, indicating that the reaction requires one proton. On the other hand, kinetics of peroxynitrite isomerization catalyzed by ferric Ma-Pgb* (Ma-Pgb*-Fe(III is monophasic and values of the second order rate constant for peroxynitrite isomerization by Ma-Pgb*-Fe(III and of the first order rate constant for the spontaneous conversion of peroxynitrite to nitrate are h(app = 3.8 × 10(4 M(-1 s(-1 and h0 = 2.8 × 10(-1 s(-1 (at pH 7.4 and 20 °C. The pH-dependence of hon and h0 values reflects the acid-base equilibrium of peroxynitrite (pKa = 6.7 and 6.9, respectively; at 20 °C, indicating that HOONO is the species that reacts preferentially with the heme-Fe(III atom. These results highlight the potential role of Pgbs in the biosynthesis and scavenging of reactive nitrogen and oxygen species.

  13. Mapping of the binding site on pseudoazurin in the transient 152 kDa complex with nitrite reductase.

    Science.gov (United States)

    Impagliazzo, Antonietta; Ubbink, Marcellus

    2004-05-12

    Nitrite reductase (NiR) catalyzes the reduction of nitrite to nitrite oxide as a part of the denitrification process. In Alcaligenes faecalis S-6, the copper protein pseudoazurin acts as electron donor to NiR. The binding surface of pseudoazurin involved in the formation of the 152 kDa complex with NiR has been determined by NMR using cross saturation from NiR to perdeuterated pseudoazurin. Due to the transient nature of the complex, saturation effects can be observed on the resonances of the unbound protein. The binding site comprises the hydrophobic area surrounding the exposed copper ligand His81, suggesting that this residue is important for efficient electron transfer.

  14. Hydrotris(triazolyl)borate complexes as functional models for Cu nitrite reductase: the electronic influence of distal nitrogens.

    Science.gov (United States)

    Kumar, Mukesh; Dixon, Natalie A; Merkle, Anna C; Zeller, Matthias; Lehnert, Nicolai; Papish, Elizabeth T

    2012-07-02

    Hydrotris(triazolyl)borate (Ttz) ligands form CuNO(x) (x = 2, 3) complexes for structural and functional models of copper nitrite reductase. These complexes have distinct properties relative to complexes of hydrotris(pyrazolyl)borate (Tp) and neutral tridentate N-donor ligands. The electron paramagnetic resonance spectra of five-coordinate copper complexes show rare nitrogen superhyperfine couplings with the Ttz ligand, indicating strong σ donation. The copper(I) nitrite complex [PPN](+)[(Ttz(tBu,Me))Cu(I)NO(2)](-) has been synthesized and characterized and allows for the stoichiometric reduction of NO(2)(-) to NO with H(+) addition. Anionic Cu(I) nitrite complexes are unusual and are stabilized here for the first time because Ttz is a good π acceptor.

  15. Impact of residues remote from the catalytic centre on enzyme catalysis of copper nitrite reductase.

    Science.gov (United States)

    Leferink, Nicole G H; Antonyuk, Svetlana V; Houwman, Joseline A; Scrutton, Nigel S; Eady, Robert R; Hasnain, S Samar

    2014-07-15

    Enzyme mechanisms are often probed by structure-informed point mutations and measurement of their effects on enzymatic properties to test mechanistic hypotheses. In many cases, the challenge is to report on complex, often inter-linked elements of catalysis. Evidence for long-range effects on enzyme mechanism resulting from mutations remains sparse, limiting the design/redesign of synthetic catalysts in a predictable way. Here we show that improving the accessibility of the active site pocket of copper nitrite reductase by mutation of a surface-exposed phenylalanine residue (Phe306), located 12 Å away from the catalytic site type-2 Cu (T2Cu), profoundly affects intra-molecular electron transfer, substrate-binding and catalytic activity. Structures and kinetic studies provide an explanation for the lower affinity for the substrate and the alteration of the rate-limiting step in the reaction. Our results demonstrate that distant residues remote from the active site can have marked effects on enzyme catalysis, by driving mechanistic change through relatively minor structural perturbations.

  16. Novel pyridine containing ligands as models for the copper centres in nitrite reductase

    CERN Document Server

    Arnold, P J

    2001-01-01

    This thesis is concerned with the synthesis of a series of novel pyridine containing ligands and their copper co-ordination chemistry. The aim was to design ligands which would produce copper complexes which model the active sites within certain copper-containing Nitrite Reductase enzymes. The first chapter reviews previous work in this area and details the promising nature of pyridine-containing ligands. The remainder of this thesis is concerned with the synthesis and characterisation of some novel pyridine-containing ligands and their copper chemistry. The synthetic routes developed during this work enabled tris(pyrid-2-yl)methylamine ligands to be produced and studied which were tripodal in form but which had a primary amine group at the cap which could be further elaborated. Additional substituents were also placed on the pyridine rings to investigate their impact on the chemistry of their copper complexes. These ligands showed a variety, counter ion dependent chemistry. The structures of number of the co...

  17. A Nitrite Biosensor Based on Co-immobilization of Nitrite Reductase and Viologen-modified Chitosan on a Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    De Quan

    2010-06-01

    Full Text Available An electrochemical nitrite biosensor based on co-immobilization of copper- containing nitrite reductase (Cu-NiR, from Rhodopseudomonas sphaeroides forma sp. denitrificans and viologen-modified chitosan (CHIT-V on a glassy carbon electrode (GCE is presented. Electron transfer (ET between a conventional GCE and immobilized Cu-NiR was mediated by the co-immobilized CHIT-V. Redox-active viologen was covalently linked to a chitosan backbone, and the thus produced CHIT-V was co-immobilized with Cu-NiR on the GCE surface by drop-coating of hydrophilic polyurethane (HPU. The electrode responded to nitrite with a limit of detection (LOD of 40 nM (S/N = 3. The sensitivity, linear response range, and response time (t90% were 14.9 nA/mM, 0.04−11 mM (r2 = 0.999 and 15 s, respectively. The corresponding Lineweaver-Burk plot showed that the apparent Michaelis-Menten constant (KMapp was 65 mM. Storage stability of the biosensor (retaining 80% of initial activity was 65 days under ambient air and room temperature storage conditions. Reproducibility of the sensor showed a relative standard deviation (RSD of 2.8% (n = 5 for detection of 1 mM of nitrite. An interference study showed that anions commonlyfound in water samples such as chlorate, chloride, sulfate and sulfite did not interfere with the nitrite detection. However, nitrate interfered with a relative sensitivity of 64% and this interference effect was due to the intrinsic character of the NiR employed in this study.

  18. Synthesis, Structure, and Reactivity of Model Complexes of Copper Nitrite Reductase.

    Science.gov (United States)

    Casella, Luigi; Carugo, Oliviero; Gullotti, Michele; Doldi, Sergio; Frassoni, Massimiliano

    1996-02-28

    The copper(I) and copper(II) complexes with the nitrogen donor ligands bis[(1-methylbenzimidazol-2-yl)methyl]amine (1-BB), bis[2-(1-methylbenzimidazol-2-yl)ethyl]amine (2-BB), N-acetyl-2-BB (AcBB), and tris[2-(1-methylbenzimidazol-2-yl)ethyl]nitromethane (TB) have been studied as models for copper nitrite reductase. The copper(II) complexes form adducts with nitrite and azide that have been isolated and characterized. The Cu(II)-(1-BB) and Cu(II)-AcBB complexes are basically four-coordinated with weak axial interaction by solvent or counterion molecules, whereas the Cu(II)-(2-BB) and Cu(II)-TB complexes prefer to assume five-coordinate structures. A series of solid state structures of Cu(II)-(1-BB) and -(2-BB) complexes have been determined. [Cu(1-BB)(DMSO-O)(2)](ClO(4))(2): triclinic, P&onemacr; (No. 2), a = 9.400(1) Å, b = 10.494(2) Å, c = 16.760(2) Å, alpha = 96.67(1) degrees, beta = 97.10(1) degrees, gamma = 108.45(1) degrees, V = 1534.8(5) Å(3), Z = 2, number of unique data [I >/= 3sigma(I)] = 4438, number of refined parameters = 388, R = 0.058. [Cu(1-BB)(DMSO-O)(2)](BF(4))(2): triclinic, P&onemacr; (No. 2), a = 9.304(5) Å, b = 10.428(4) Å, c = 16.834(8) Å, alpha = 96.85(3) degrees, beta = 97.25(3) degrees, gamma = 108.21(2) degrees, V = 1517(1) Å(3), Z = 2, number of unique data [I >/= 2sigma(I)] = 3388, number of refined parameters = 397, R = 0.075. [Cu(1-BB)(DMSO-O)(NO(2))](ClO(4)): triclinic, P&onemacr; (No. 2), a = 7.533(2) Å, b = 8.936(1) Å, c = 19.168(2) Å, alpha = 97.66(1) degrees, beta = 98.62(1) degrees, gamma = 101.06(1) degrees, V = 1234.4(7) Å(3), Z = 2, number of unique data [I >/= 2sigma(I)] = 3426, number of refined parameters = 325, R = 0.081. [Cu(2-BB)(MeOH)(ClO(4))](ClO(4)): triclinic, P&onemacr; (No. 2), a = 8.493(3) Å, b = 10.846(7) Å, c = 14.484(5) Å, alpha = 93.71(4) degrees, beta = 103.13(3) degrees, gamma = 100.61(4) degrees, V = 1270(1) Å(3), Z = 2, number of unique data [I>/= 2sigma(I)] = 2612, number of refined

  19. Inhibition of xanthine oxidase by the aldehyde oxidase inhibitor raloxifene: implications for identifying molybdopterin nitrite reductases.

    Science.gov (United States)

    Weidert, E R; Schoenborn, S O; Cantu-Medellin, N; Choughule, K V; Jones, J P; Kelley, E E

    2014-02-15

    Sources of nitric oxide alternative to nitric oxide synthases are gaining significant traction as crucial mediators of vessel function under hypoxic inflammatory conditions. For example, capacity to catalyze the one electron reduction of nitrite (NO2-) to ·NO has been reported for hemoglobin, myoglobin and molybdopterin-containing enzymes including xanthine oxidoreductase (XOR) and aldehyde oxidase (AO). For XOR and AO, use of selective inhibition strategies is therefore crucial when attempting to assign relative contributions to nitrite-mediated ·NO formation in cells and tissue. To this end, XOR inhibition has been accomplished with application of classic pyrazolopyrimidine-based inhibitors allo/oxypurinol or the newly FDA-approved XOR-specific inhibitor, Uloric® (febuxostat). Likewise, raloxifene, an estrogen receptor antagonist, has been identified as a potent (Ki=1.0 nM) inhibitor of AO. Herein, we characterize the inhibition kinetics of raloxifene for XOR and describe the resultant effects on inhibiting XO-catalyzed ·NO formation. Exposure of purified XO to raloxifene (PBS, pH 7.4) resulted in a dose-dependent (12.5-100 μM) inhibition of xanthine oxidation to uric acid. Dixon plot analysis revealed a competitive inhibition process with a Ki=13 μM. This inhibitory process was more effective under acidic pH; similar to values encountered under hypoxic/inflammatory conditions. In addition, raloxifene also inhibited anoxic XO-catalyzed reduction of NO2- to NO (EC50=64 μM). In contrast to having no effect on XO-catalyzed uric acid production, the AO inhibitor menadione demonstrated potent inhibition of XO-catalyzed NO2- reduction (EC50=60 nM); somewhat similar to the XO-specific inhibitor, febuxostat (EC50=4 nM). Importantly, febuxostat was found to be a very poor inhibitor of human AO (EC50=613 μM) suggesting its usefulness for validating XO-dependent contributions to NO2- reduction in biological systems. Combined, these data indicate care should be taken

  20. Role of. pi. -cation radicals in the enzymatic cycles of peroxidases, catalases, and nitrite and sulfite reductases

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, L K; Chang, C K; Davis, M S; Fajer, J

    1980-01-01

    Charge iterative extended Hueckel calculations, and magnetic and optical results on porphyrins, chlorins, and isobacteriochlorins (1) suggest that the catalytic cycles of the enzymes horseradish peroxidase, catalase, Neurospora crassa catalase, and nitrite and sulfite reductases proceed via ..pi..-cation radicals of their prosthetic groups; (2) offer distinguishing features for the optical and magnetic spectra of these radicals, pertinent to their detection as enzymatic intermediates; (3) reconcile the seemingly contradictory optical and NMR data on Compounds I of horseradish peroxidase; and (4) predict that the axial ligation of the heme differs for horseradish peroxidase and catalase.

  1. Catalytic monolayer voltammetry and in situ scanning tunneling microscopy of copper nitrite reductase on cysteamine-modified Au(111) electrodes

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Welinder, A.C.; Hansen, Allan Glargaard

    2003-01-01

    and the actual rate constant 120-220 s(-1) is much closer to the values in homogeneous solution. The results show that AxCuNiR can be brought to immobilization in a functional state on suitably modified, well-defined, atomically planar Au(111)-electrode surfaces. This would be important for forthcoming......We have studied the adsorption and electrocatalysis of the redox metalloenzyme blue copper nitrite reductase from Achromobacter xylosoxidans (AxCuNiR) on single-crystal Au(111)-electrode surfaces modified by a self-assembled monolayer of cysteamine. A combination of cyclic voltammetry and in situ...

  2. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling

    DEFF Research Database (Denmark)

    Treusch, Alexander H; Leininger, Sven; Kletzin, Arnulf

    2005-01-01

    Mesophilic crenarchaeota are frequently found in terrestrial and marine habitats worldwide, but despite their considerable abundance the physiology of these as yet uncultivated archaea has remained unknown. From a 1.2 Gb large-insert environmental fosmid library of a calcareous grassland soil, a 43...... kb genomic fragment was isolated with a ribosomal RNA that shows its affiliation to group 1.1b of crenarchaeota repeatedly found in soils. The insert encoded a homologue of a copper-containing nitrite reductase with an unusual C-terminus that encoded a potential amicyanin-like electron transfer...

  3. Expression of a putative nitrite reductase and the reversible inhibition of nitrite-dependent respiration by nitric oxide in Nitrobacter winogradskyi Nb-255.

    Science.gov (United States)

    Starkenburg, Shawn R; Arp, Daniel J; Bottomley, Peter J

    2008-11-01

    The nitrite oxidizing Alphaproteobacterium, Nitrobacter winogradskyi, primarily conserves energy from the oxidation of nitrite (NO(2)(-))to nitrate (NO(3)(-)) through aerobic respiration. Almost 20 years ago, NO-dependent NADH formation was reported to occur in both aerobic and anaerobic cell suspensions of N. winogradskyi strain 'agilis', suggesting that NO oxidation might contribute to energy conservation by Nitrobacter. Recently, the N. winogradskyi Nb-255 genome was found to contain a gene (Nwin_2648) that encodes a putative copper-containing nitrite reductase (NirK), which may reduce NO(2)(-) to NO. In this study, the putative nirK was found to be maximally transcribed under low O(2) (between zero and 4% O(2)) in the presence of NO(2)(-). Transcription of nirK was not detected under anaerobic conditions in the absence of NO(2)(-) or in the presence of NO(3)(-) and pyruvate. Although net production of NO could not be detected from either aerobically grown or anaerobically incubated cells, exogenous NO was consumed by viable cells and concomitantly inhibited NO(2)(-)-dependent O(2) uptake in a reversible, concentration dependent manner. Both NO(2(-)-dependent O(2) uptake and NO consumption were inhibited by 1 mM cyanide suggesting involvement of cytochrome oxidase with NO consumption. Abiotic consumption of NO was measured, yet, both the rates and kinetics of NO transformation in buffer alone, or by heat killed, or cyanide-treated cells differed from those of viable cells. In light of this new information, a modified model is proposed to explain how NirK and NO manage electron flux in Nitrobacter.

  4. ARM-microcontroller based portable nitrite electrochemical analyzer using cytochrome c reductase biofunctionalized onto screen printed carbon electrode.

    Science.gov (United States)

    Santharaman, Paulraj; Venkatesh, Krishna Arun; Vairamani, Kanagavel; Benjamin, Alby Robson; Sethy, Niroj K; Bhargava, Kalpana; Karunakaran, Chandran

    2017-04-15

    Nitrite (NO2-) supplementation limits hypoxia-induced oxidative stress and activates the alternate NO pathway which may partially account for the nitrite-mediated cardioprotection. So, sensitive and selective biosensors with point-of-care devices need to be explored to detect the physiological nitrite level due to its important role in human pathophysiology. In this work, cytochrome c reductase (CcR) biofunctionalized self assembled monolayer (SAM) functionalized on gold nanoparticles (GNPs) in polypyrrole (PPy) nanocomposite onto the screen printed carbon electrode (SPCE) was investigated as a biosensor for the detection of nitrite based on its electrochemical and catalytic properties. CcR was covalently coupled with SAM layers on GNPs by using EDC and NHS. Direct electrochemical response of CcR biofunctionalized electrodes showed a couple of well-defined and nearly reversible cyclic voltammetric peaks at -0.34 and -0.45 vs. Ag/AgCl. Under optimal conditions, the biosensor could be used for the determination of NO2- with a linear range from 0.1-1600µm and a detection limit of 60nM with a sensitivity of 0.172µAµM-1cm-2. Further, we have designed and developed a novel and cost effective portable electrochemical analyzer for the measurement of NO2- in hypoxia induced H9c2 cardiac cells using ARM microcontroller. The results obtained here using the developed portable electrochemical nitrite analyzer were also compared with the standard cyclic voltammetry instrument and found in agreement with each other. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Reconstitution of the type-1 active site of the H145G/A variants of nitrite reductase by ligand insertion

    NARCIS (Netherlands)

    Wijma, HJ; Boulanger, MJ; Molon, A; Fittipaldi, M; Huber, M; Murphy, MEP; Verbeet, MP; Canters, GW

    2003-01-01

    Variants of the copper-containing nitrite reductase (NiR) of Alcaligenes faecalis S6 were constructed by site-directed mutagenesis, by which the C-terminal histidine ligand (His145) of the Cu in the type-1 site was replaced by an alanine or a glycine. The type-1 sites in the NiR variants as

  6. Structural and electronic properties of copper-containing nitrite reductase (CuNiR): elucidating the mechanism of nitrite reduction at the T2Cu center

    Science.gov (United States)

    Li, Yan; Hodak, Miroslav; Bernholc, Jerry

    2012-02-01

    Copper-containing nitrite reductases (CuNiRs) play an important role in catalyzing the reduction of NO2^- to NO during the bacterial denitrification process. Experimental studies have provided the structures of various states of CuNiR in the catalytic reaction, but many important aspects of the initial and intermediate attachments as well as the mechanism of the enzyme function remain unclear. We present a density-functional-theory-based study of the structural and electronic properties of different coordination forms at the T2Cu center. The nudged elastic band (NEB) method is used to examine the activation energy barriers and to determine the minimum energy pathways (MEP) of the reaction processes. Our results reveal the role of the Asp^98 residue in the enzymatic function of CuNiR and also address the transformation from the initial O-coordinated binding of NO2^- to the N-coordinated attachment of the NO during the enzymatic reaction.

  7. Refinement of immunizing antigens to produce functional blocking antibodies against the AniA nitrite reductase of Neisseria gonorrhoeae.

    Science.gov (United States)

    Shewell, Lucy K; Jen, Freda E-C; Jennings, Michael P

    2017-01-01

    The emergence of multi-drug resistant Neisseria gonorrhoeae has generated an urgent need for novel therapies or a vaccine to prevent gonococcal disease. In this study we investigate the potential of targeting the surface exposed nitrite reductase, AniA, to block activity by producing functional blocking antibodies. AniA activity is essential for anaerobic growth and biofilm formation of N. gonorrhoeae and functional blocking antibodies may prevent colonisation and disease. Seven peptides covering regions adjacent to the active site were designed based on the AniA structure. Six of the seven peptide conjugates generated immune responses. Peptide 7, GALGQLKVEGAEN, was able to elicit antibodies capable of blocking AniA activity. Antiserum raised against the peptide 7 conjugate detected AniA in 20 N. gonorrhoeae clinical isolates. Recombinant AniA protein antigens were also assessed in this study and generated high-titre, functional blocking antibody responses. Peptide 7 conjugates or truncated recombinant AniA antigens have potential for inclusion in a vaccine against N. gonorrhoeae.

  8. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling.

    Science.gov (United States)

    Treusch, Alexander H; Leininger, Sven; Kletzin, Arnulf; Schuster, Stephan C; Klenk, Hans-Peter; Schleper, Christa

    2005-12-01

    Mesophilic crenarchaeota are frequently found in terrestrial and marine habitats worldwide, but despite their considerable abundance the physiology of these as yet uncultivated archaea has remained unknown. From a 1.2 Gb large-insert environmental fosmid library of a calcareous grassland soil, a 43 kb genomic fragment was isolated with a ribosomal RNA that shows its affiliation to group 1.1b of crenarchaeota repeatedly found in soils. The insert encoded a homologue of a copper-containing nitrite reductase with an unusual C-terminus that encoded a potential amicyanin-like electron transfer domain as well as two proteins related to subunits of ammonia monooxygenases or particulate methane monooxygenases (AmoAB/PmoAB) respectively. Expression of nirK and the amoA-like gene was shown by reverse transcription polymerase chain reaction (PCR) analyses in soil samples, the latter being found at higher levels when the soil was incubated with ammonia (measured by quantitative PCR). Further variants of both genes were amplified from soil samples and were found in the environmental database from the Sargasso Sea plankton. Taken together, our findings suggest that mesophilic terrestrial and marine crenarchaeota might be capable of ammonia oxidation under aerobic and potentially also under anaerobic conditions.

  9. Structural adaptations of octaheme nitrite reductases from haloalkaliphilic Thioalkalivibrio bacteria to alkaline pH and high salinity.

    Directory of Open Access Journals (Sweden)

    Anna Popinako

    Full Text Available Bacteria Tv. nitratireducens and Tv. paradoxus from soda lakes grow optimally in sodium carbonate/NaCl brines at pH range from 9.5 to 10 and salinity from 0.5 to 1.5 M Na+. Octaheme nitrite reductases (ONRs from haloalkaliphilic bacteria of genus Thioalkalivibrio are stable and active in a wide range of pH (up to 11 and salinity (up to 1 M NaCl. To establish adaptation mechanisms of ONRs from haloalkaliphilic bacteria a comparative analysis of amino acid sequences and structures of ONRs from haloalkaliphilic bacteria and their homologues from non-halophilic neutrophilic bacteria was performed. The following adaptation strategies were observed: (1 strategies specific for halophilic and alkaliphilic proteins (an increase in the number of aspartate and glutamate residues and a decrease in the number of lysine residues on the protein surface, (2 strategies specific for halophilic proteins (an increase in the arginine content and a decrease in the number of hydrophobic residues on the solvent-accessible protein surface, (3 strategies specific for alkaliphilic proteins (an increase in the area of intersubunit hydrophobic contacts. Unique adaptation mechanism inherent in the ONRs from bacteria of genus Thioalkalivibrio was revealed (an increase in the core in the number of tryptophan and phenylalanine residues, and an increase in the number of small side chain residues, such as alanine and valine, in the core.

  10. Extreme nitrite tolerance in the clown knifefish Chitala ornata is linked to up-regulation of methaemoglobin reductase activity

    DEFF Research Database (Denmark)

    Le Thi Hong Gam; Jensen, Frank Bo; Damsgaard, Christian

    2017-01-01

    and fell towards control values during the last half of the exposure period. Plasma nitrate, in contrast, rose continuously, reflecting detoxification of nitrite to nitrate. MetHb generated from the reaction between nitrite and erythrocyte Hb reached 38% at day 2, but then decreased to 17% by the end...

  11. SERR Spectroelectrochemical Study of Cytochrome cd1 Nitrite Reductase Co-Immobilized with Physiological Redox Partner Cytochrome c552 on Biocompatible Metal Electrodes.

    Directory of Open Access Journals (Sweden)

    Célia M Silveira

    Full Text Available Cytochrome cd1 nitrite reductases (cd1NiRs catalyze the one-electron reduction of nitrite to nitric oxide. Due to their catalytic reaction, cd1NiRs are regarded as promising components for biosensing, bioremediation and biotechnological applications. Motivated by earlier findings that catalytic activity of cd1NiR from Marinobacter hydrocarbonoclasticus (Mhcd1 depends on the presence of its physiological redox partner, cytochrome c552 (cyt c552, we show here a detailed surface enhanced resonance Raman characterization of Mhcd1 and cyt c552 attached to biocompatible electrodes in conditions which allow direct electron transfer between the conducting support and immobilized proteins. Mhcd1 and cyt c552 are co-immobilized on silver electrodes coated with self-assembled monolayers (SAMs and the electrocatalytic activity of Ag // SAM // Mhcd1 // cyt c552 and Ag // SAM // cyt c552 // Mhcd1 constructs is tested in the presence of nitrite. Simultaneous evaluation of structural and thermodynamic properties of the immobilized proteins reveals that cyt c552 retains its native properties, while the redox potential of apparently intact Mhcd1 undergoes a ~150 mV negative shift upon adsorption. Neither of the immobilization strategies results in an active Mhcd1, reinforcing the idea that subtle and very specific interactions between Mhcd1 and cyt c552 govern efficient intermolecular electron transfer and catalytic activity of Mhcd1.

  12. Redox properties of lysine- and methionine-coordinated hemes ensure downhill electron transfer in NrfH2A4 nitrite reductase.

    Science.gov (United States)

    Todorovic, Smilja; Rodrigues, Maria Luísa; Matos, Daniela; Pereira, Inês A C

    2012-05-17

    The multiheme NrfHA nitrite reductase is a menaquinol:nitrite oxidoreductase that catalyzes the 6-electron reduction of nitrite to ammonia in a reaction that involves eight protons. X-ray crystallography of the enzyme from Desulfovibrio vulgaris revealed that the biological unit, NrfH2A4, houses 28 c-type heme groups, 22 of them with low spin and 6 with pentacoordinated high spin configuration. The high spin hemes, which are the electron entry and exit points of the complex, carry a highly unusual coordination for c-type hemes, lysine and methionine as proximal ligands in NrfA and NrfH, respectively. Employing redox titrations followed by X-band EPR spectroscopy and surface-enhanced resonance Raman spectroelectrochemistry, we provide the first experimental evidence for the midpoint redox potential of the NrfH menaquinol-interacting methionine-coordinated heme (-270 ± 10 mV, z = 0.96), identified by the use of the inhibitor HQNO, a structural analogue of the physiological electron donor. The redox potential of the catalytic lysine-coordinated high spin heme of NrfA is -50 ± 10 mV, z = 0.9. These values determined for the integral NrfH2A4 complex indicate that a driving force for a downhill electron transfer is ensured in this complex.

  13. Diversity of nitrite reductase genes (nirS) in the denitrifying water column of the coastal Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, D.A.; Francis, C.A.; Naqvi, S.W.A.; Ward, B.B.

    Denitrification often occurs in the water column, underlying zones of intense productivity and decomposition in upwelling regions. In the denitrifying zone off the southwest coast of India, high concentrations of nitrite (greater than 15 mu M...

  14. Effects of heavy metals on aerobic denitrification by strain Pseudomonas stutzeri PCN-1.

    Science.gov (United States)

    Gui, Mengyao; Chen, Qian; Ma, Tao; Zheng, Maosheng; Ni, Jinren

    2017-02-01

    Effects of heavy metals on aerobic denitrification have been poorly understood compared with their impacts on anaerobic denitrification. This paper presented effects of four heavy metals (Cd(II), Cu(II), Ni(II), and Zn(II)) on aerobic denitrification by a novel aerobic denitrifying strain Pseudomonas stutzeri PCN-1. Results indicated that aerobic denitrifying activity decreased with increasing heavy metal concentrations due to their corresponding inhibition on the denitrifying gene expression characterized by a time lapse between the expression of the nosZ gene and that of the cnorB gene by PCN-1, which led to lower nitrate removal rate (1.67∼6.67 mg L(-1) h(-1)), higher nitrite accumulation (47.3∼99.8 mg L(-1)), and higher N2O emission ratios (5∼283 mg L(-1)/mg L(-1)). Specially, promotion of the nosZ gene expression by increasing Cu(II) concentrations (0∼0.05 mg L(-1)) was found, and the absence of Cu resulted in massive N2O emission due to poor synthesis of N2O reductase. The inhibition effect for both aerobic denitrifying activity and denitrifying gene expression was as follows from strongest to least: Cd(II) (0.5∼2.5 mg L(-1)) > Cu(II) (0.5∼5 mg L(-1)) > Ni(II) (2∼10 mg L(-1)) > Zn(II) (25∼50 mg L(-1)). Furthermore, sensitivity of denitrifying gene to heavy metals was similar in order of nosZ > nirS ≈ cnorB > napA. This study is of significance in understanding the potential application of aerobic denitrifying bacteria in practical wastewater treatment.

  15. Physical mapping of transposon Tn5 insertions defines a gene cluster functional in nitrous oxide respiration by Pseudomonas stutzeri.

    OpenAIRE

    Viebrock, A; Zumft, W G

    1987-01-01

    By transposon Tn5 mutagenesis, 19 strains of Pseudomonas stutzeri were acquired that had defects in nitrous oxide respiration (Nos- phenotype). A physical map of the mutants showed nearly random Tn5 insertions into genomic DNA within a single region ca. 8 kilobases long. Mutants were characterized immunochemically, enzymatically, and chemically. Several functions related to the synthesis and regulation of nitrous oxide reductase were associated with this DNA region, indicating that in P. stut...

  16. A study on nitrogen removal efficiency of Pseudomonas stutzeri ...

    African Journals Online (AJOL)

    USER

    2010-02-08

    Feb 8, 2010 ... 1College of Environmental Science and Engineering, South China University of Technology, Guangzhou Higher. Education Mega Centre, Panyu District, ... Key words: Anaerobic/anoxic/oxic treatment process, reaction condition, denitrification, nitrification, nitrogen removal, Pseudomonas stutzeri.

  17. Engineering Pseudomonas stutzeri as a biogeochemical biosensor

    Science.gov (United States)

    Boynton, L.; Cheng, H. Y.; Del Valle, I.; Masiello, C. A.; Silberg, J. J.

    2016-12-01

    Biogeochemical cycles are being drastically altered as a result of anthropogenic activities, such as the burning of fossil fuels and the industrial production of ammonia. We know microbes play a major part in these cycles, but the extent of their biogeochemical roles remains largely uncharacterized due to inadequacies with culturing and measurement. While metagenomics and other -omics methods offer ways to reconstruct microbial communities, these approaches can only give an indication of the functional roles of microbes in a community. These -omics approaches are rapidly being expanded to the point of outpacing our knowledge of functional genes, which highlights an inherent need for analytical methods that non-invasively monitor Earth's processes in real time. Here we aim to exploit synthetic biology methods in order to engineer a ubiquitous denitrifying microbe, Pseudomonas stutzeri that can act as a biosensor in soil and marine environments. By using an easily cultivated microbe that is also common in many environments, we hope to develop a tool that allows us to zoom in on specific aspects of the nitrogen cycle. In order to monitor processes occurring at the genetic level in environments that cannot be resolved with fluorescence-based methods, such as soils, we have developed a system that instead relies on gas production by engineered microbial biosensors. P. stutzeri has been successfully engineered to release a gas, methyl bromide, which can continuously and non-invasively be measured by GC-MS. Similar to using Green Fluorescent Protein, GFP, in the biological sciences, the gene controlling gas production can be linked to those involved in denitrification, thereby creating a quantifiable gas signal that is correlated with microbial activity in the soil. Synthetically engineered microbial biosensors could reveal key aspects of metabolism in soil systems and offer a tool for characterizing the scope and degree of microbial impact on major biogeochemical cycles.

  18. Physiology and interaction of nitrate and nitrite reduction in Staphylococcus carnosus.

    OpenAIRE

    Neubauer, H; Götz, F.

    1996-01-01

    Staphylococcus carnosus reduces nitrate to ammonia in two steps. (i) Nitrate was taken up and reduced to nitrite, and nitrite was subsequently excreted. (ii) After depletion of nitrate, the accumulated nitrite was imported and reduced to ammonia, which again accumulated in the medium. The localization, energy gain, and induction of the nitrate and nitrite reductases in S. carnosus were characterized. Nitrate reductase seems to be a membrane-bound enzyme involved in respiratory energy conserva...

  19. Diisopropylammonium nitrite

    Directory of Open Access Journals (Sweden)

    Ying-Chun Wang

    2012-04-01

    Full Text Available In the title molecular salt, C6H16N+·NO2−, the cation forms two N—H...O hydrogen bonds to nearby nitrite anions which link the ionic units into chains propagating along the b-axis direction.

  20. Analytical properties of some commercially available nitrate reductase enzymes evaluated as replacements for cadmium in automated, semiautomated, and manual colorimetric methods for determination of nitrate plus nitrite in water

    Science.gov (United States)

    Patton, Charles J.; Kryskalla, Jennifer R.

    2013-01-01

    A multiyear research effort at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) evaluated several commercially available nitrate reductase (NaR) enzymes as replacements for toxic cadmium in longstanding automated colorimetric air-segmented continuous-flow analyzer (CFA) methods for determining nitrate plus nitrite (NOx) in water. This research culminated in USGS approved standard- and low-level enzymatic reduction, colorimetric automated discrete analyzer NOx methods that have been in routine operation at the NWQL since October 2011. The enzyme used in these methods (AtNaR2) is a product of recombinant expression of NaR from Arabidopsis thaliana (L.) Heynh. (mouseear cress) in the yeast Pichia pastoris. Because the scope of the validation report for these new automated discrete analyzer methods, published as U.S. Geological Survey Techniques and Methods 5–B8, was limited to performance benchmarks and operational details, extensive foundational research with different enzymes—primarily YNaR1, a product of recombinant expression of NaR from Pichia angusta in the yeast Pichia pastoris—remained unpublished until now. This report documents research and development at the NWQL that was foundational to development and validation of the discrete analyzer methods. It includes: (1) details of instrumentation used to acquire kinetics data for several NaR enzymes in the presence and absence of known or suspected inhibitors in relation to reaction temperature and reaction pH; and (2) validation results—method detection limits, precision and bias estimates, spike recoveries, and interference studies—for standard- and low-level automated colorimetric CFA-YNaR1 reduction NOx methods in relation to corresponding USGS approved CFA cadmium-reduction (CdR) NOx methods. The cornerstone of this validation is paired sample statistical and graphical analysis of NOx concentrations from more than 3,800 geographically and seasonally diverse surface

  1. The denitrification characteristics of Pseudomonas stutzeri SC221-M and its application to water quality control in grass carp aquaculture.

    Directory of Open Access Journals (Sweden)

    Bin Deng

    Full Text Available To reduce ammonium and nitrite in aquaculture water, an isolate of the denitrifying bacterium Pseudomonas stutzeri, SC221-M, was obtained. The effects of various nitrogen and carbon sources, the ratio of carbon to nitrogen and temperature on bacterial growth, denitrification rates and the expression levels of nirS and nosZ in SC221-M were studied. The following conditions were determined to be optimal for growth and denitrification in SC221-M: NaNO2 as the nitrogen source, sodium citrate as the carbon source, a carbon to nitrogen ratio range of 4-8, and a temperature range of 20-35°C. Subsequently, SC221-M and the Bacillus cereus BSC24 strain were selected to generate microbial preparations. The results showed that addition of the microbial preparations decreased various hydrochemical parameters, including total dissolved solids, ammonium, nitrite, total nitrogen and the chemical oxygen demand. Nitrogen removal rates were highest on day 9; the removal rates of BSC24, SC221-M, a mixed preparation and a 3× mixed preparation were 24.5%, 26.6%, 53.9% and 53.4%, respectively. The mixed preparation (SC221-M+BSC24 was more effective at removing nitrogen than either the SC221-M or BSC24 preparation. Roche 454 pyrosequencing and subsequent analysis indicated that the control and other groups formed separate clusters, and the microbial community structure in the water changed significantly after the addition of microbial preparations. These results indicate that the addition of microbial preparations can improve both the water quality and microbial community structure in an experimental aquaculture system. P. stutzeri strain SC221-M and its related microbial preparations are potential candidates for the regulation of water quality in commercial aquaculture systems.

  2. A study on nitrogen removal efficiency of Pseudomonas stutzeri ...

    African Journals Online (AJOL)

    By using the nitrogen balance method, the total nitrogen loss was calculated to be 40.1% (w/w) when the carbon source was citric acid with a C/N ratio of 5. Meanwhile, the isolated strain was identified by 16S rDNA to be a Pseudomonas stutzeri with a similarity of 99%. Varying the initial TN, the C/N, the pH value and the ...

  3. Nitrite in feed: From Animal health to human health

    Energy Technology Data Exchange (ETDEWEB)

    Cockburn, Andrew [Institute for Research on Environment and Sustainability, Devonshire Building, University of Newcastle upon Tyne, Newcastle upon Tyne, NE17RU (United Kingdom); Brambilla, Gianfranco [Istituto Superiore di Sanità, Toxicological chemistry unit, Viale Regina Elena 299, 00161 Rome (Italy); Fernández, Maria-Luisa [Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ministerio de Ciencia e Innovación, Carretera de la Coruña, 28040 Madrid (Spain); Arcella, Davide [Unit on Data Collection and Exposure, European Food Safety Authority, Largo N. Palli 5/A43100 Parma (Italy); Bordajandi, Luisa R. [Unit on Contaminants in the Food chain, European Food Safety Authority, Largo N. Palli 5/A, 43100 Parma (Italy); Cottrill, Bruce [Policy Delivery Group, Animal Health and Welfare, ADAS, Wolverhampton (United Kingdom); Peteghem, Carlos van [University of Gent, Harelbekestraat 72, 9000 Gent (Belgium); Dorne, Jean-Lou, E-mail: jean-lou.dorne@efsa.europa.eu [Unit on Contaminants in the Food chain, European Food Safety Authority, Largo N. Palli 5/A, 43100 Parma (Italy)

    2013-08-01

    Nitrite is widely consumed from the diet by animals and humans. However the largest contribution to exposure results from the in vivo conversion of exogenously derived nitrate to nitrite. Because of its potential to cause to methaemoglobin (MetHb) formation at excessive levels of intake, nitrite is regulated in feed and water as an undesirable substance. Forages and contaminated water have been shown to contain high levels of nitrate and represent the largest contributor to nitrite exposure for food-producing animals. Interspecies differences in sensitivity to nitrite intoxication principally result from physiological and anatomical differences in nitrite handling. In the case of livestock both pigs and cattle are relatively susceptible. With pigs this is due to a combination of low levels of bacterial nitrite reductase and hence potential to reduce nitrite to ammonia as well as reduced capacity to detoxify MetHb back to haemoglobin (Hb) due to intrinsically low levels of MetHb reductase. In cattle the sensitivity is due to the potential for high dietary intake and high levels of rumen conversion of nitrate to nitrite, and an adaptable gut flora which at normal loadings shunts nitrite to ammonia for biosynthesis. However when this escape mechanism gets overloaded, nitrite builds up and can enter the blood stream resulting in methemoglobinemia. Looking at livestock case histories reported in the literature no-observed-effect levels of 3.3 mg/kg body weight (b.w.) per day for nitrite in pigs and cattle were estimated and related to the total daily nitrite intake that would result from complete feed at the EU maximum permissible level. This resulted in margins of safety of 9-fold and 5-fold for pigs and cattle, respectively. Recognising that the bulkiness of animal feed limits their consumption, these margins in conjunction with good agricultural practise were considered satisfactory for the protection of livestock health. A human health risk assessment was also

  4. Nitrite in feed: from animal health to human health.

    Science.gov (United States)

    Cockburn, Andrew; Brambilla, Gianfranco; Fernández, Maria-Luisa; Arcella, Davide; Bordajandi, Luisa R; Cottrill, Bruce; van Peteghem, Carlos; Dorne, Jean-Lou

    2013-08-01

    Nitrite is widely consumed from the diet by animals and humans. However the largest contribution to exposure results from the in vivo conversion of exogenously derived nitrate to nitrite. Because of its potential to cause to methaemoglobin (MetHb) formation at excessive levels of intake, nitrite is regulated in feed and water as an undesirable substance. Forages and contaminated water have been shown to contain high levels of nitrate and represent the largest contributor to nitrite exposure for food-producing animals. Interspecies differences in sensitivity to nitrite intoxication principally result from physiological and anatomical differences in nitrite handling. In the case of livestock both pigs and cattle are relatively susceptible. With pigs this is due to a combination of low levels of bacterial nitrite reductase and hence potential to reduce nitrite to ammonia as well as reduced capacity to detoxify MetHb back to haemoglobin (Hb) due to intrinsically low levels of MetHb reductase. In cattle the sensitivity is due to the potential for high dietary intake and high levels of rumen conversion of nitrate to nitrite, and an adaptable gut flora which at normal loadings shunts nitrite to ammonia for biosynthesis. However when this escape mechanism gets overloaded, nitrite builds up and can enter the blood stream resulting in methemoglobinemia. Looking at livestock case histories reported in the literature no-observed-effect levels of 3.3mg/kg body weight (b.w.) per day for nitrite in pigs and cattle were estimated and related to the total daily nitrite intake that would result from complete feed at the EU maximum permissible level. This resulted in margins of safety of 9-fold and 5-fold for pigs and cattle, respectively. Recognising that the bulkiness of animal feed limits their consumption, these margins in conjunction with good agricultural practise were considered satisfactory for the protection of livestock health. A human health risk assessment was also

  5. Probing the nitrite and nitric oxide reductase activity of cbb3 oxidase: resonance Raman detection of a six-coordinate ferrous heme-nitrosyl species in the binuclear b3/CuB center.

    Science.gov (United States)

    Loullis, Andreas; Pinakoulaki, Eftychia

    2015-12-21

    In this work we report the first spectroscopic evidence demonstrating that cbb3 oxidase catalyzes the reduction of nitrite to nitrous oxide under reducing anaerobic conditions. The reaction proceeds through the formation of a ferrous six-coordinate heme b3-nitrosyl species that has been characterized by resonance Raman spectroscopy.

  6. Optimum conditions for cotton nitrate reductase extraction and ...

    African Journals Online (AJOL)

    GREGO

    nitrate transformation into nitrite (µg of NO2. -/min/g F.W) is observed when incubation period of enzyme is short (1 to 5 min). Key words: Extraction, dosage, nitrate reductase activity, callus, cotton. INTRODUCTION. Nitrate reductase (EC. 1.7.99.4) is an oxidoreductase enzyme involved in nitrogen assimilation in plant. It.

  7. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Science.gov (United States)

    2010-04-01

    ... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red meat... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium...

  8. Nitrite Formation from Hydroxylamine and Oximes by Pseudomonas aeruginosa

    Science.gov (United States)

    Amarger, Noelle; Alexander, M.

    1968-01-01

    Nitrite was formed from hydroxylamine and several oximes by intact cells and extracts of Pseudomonas aeruginosa. The activity was induced by the presence of oximes in the culture medium. Nitroalkanes were not intermediates in the conversion of acetaldoxime, acetone oxime, or butanone oxime to nitrite, since nitromethane inhibited the formation of nitrite from the nitro compounds but not from the corresponding oximes. The oxime apparently functions as a constant source of hydroxylamine during growth of the bacterium. Hydroxylamine at low concentration was converted stoichiometrically to nitrite by extracts of the bacterium; high concentrations were inhibitory. Nicotinamide adenine dinucleotide phosphate, oxygen, and other unidentified cofactors were necessary for the reaction. Actively nitrifying extracts possessed no hydroxylamine-cytochrome c reductase activity. Hyponitrite, nitrous oxide, and nitric oxide were not metabolized. PMID:4384968

  9. Nitrite formation from hydroxylamine and oximes by Pseudomonas aeruginosa.

    Science.gov (United States)

    Amarger, N; Alexander, M

    1968-05-01

    Nitrite was formed from hydroxylamine and several oximes by intact cells and extracts of Pseudomonas aeruginosa. The activity was induced by the presence of oximes in the culture medium. Nitroalkanes were not intermediates in the conversion of acetaldoxime, acetone oxime, or butanone oxime to nitrite, since nitromethane inhibited the formation of nitrite from the nitro compounds but not from the corresponding oximes. The oxime apparently functions as a constant source of hydroxylamine during growth of the bacterium. Hydroxylamine at low concentration was converted stoichiometrically to nitrite by extracts of the bacterium; high concentrations were inhibitory. Nicotinamide adenine dinucleotide phosphate, oxygen, and other unidentified cofactors were necessary for the reaction. Actively nitrifying extracts possessed no hydroxylamine-cytochrome c reductase activity. Hyponitrite, nitrous oxide, and nitric oxide were not metabolized.

  10. [Mechanism of cyanide and thiocyanate decomposition by an association of Pseudomonas putida and Pseudomonas stutzeri strains].

    Science.gov (United States)

    Grigor'eva, N V; Kondrat'eva, T F; Krasil'nikova, E N; Karavaĭko, G I

    2006-01-01

    The intermediate and terminal products of cyanide and thiocyanate decomposition by individual strains of the genus Pseudomonas, P. putida strain 21 and P. stutzeri strain 18, and by their association were analyzed. The activity of the enzymes of nitrogen and sulfur metabolism in these strains was compared with that of the collection strains P. putida VKM B-2187T and P. stutzeri VKM B-975T. Upon the introduction of CN- and SCN- into cell suspensions of strains 18 and 21 in phosphate buffer (pH 8.8), the production of NH4+ was observed. Due to the high rate of their utilization, NH3, NH4+, and CNO- were absent from the culture liquids of P. putida strain 21 and P. stutzeri strain 18 grown with CN- or SCN-. Both Pseudomonas strains decomposed SCN- via cyanate production. The cyanase activity was 0.75 micromol/(min mg protein) for P. putida strain 21 and 1.26 micromol/(min mg protein) for P. stutzeri strain 18. The cyanase activity was present in the cells grown with SCN- but absent in cells grown with NH4+. Strain 21 of P. putida was a more active CN- decomposer than strain 18 of P. stutzeri. Ammonium and CO2 were the terminal nitrogen and carbon products of CN- and SCN- decomposition. The terminal sulfur products of SCN- decomposition by P. stutzeri strain 18 and P. putida strain 21 were thiosulfate and tetrathionate, respectively. The strains utilized the toxic compounds in the anabolism only, as sources of nitrogen (CN- and SCN-) and sulfur (SCN-). The pathway of thiocyanate decomposition by the association of bacteria of the genus Pseudomonas is proposed based on the results obtained.

  11. Methemoglobin reductase activity in intact fish red blood cells

    DEFF Research Database (Denmark)

    Jensen, Frank B; Nielsen, Karsten

    2018-01-01

    Hb reductase activity in fish offsets their higher Hb autoxidation and higher likelihood of encountering elevated nitrite. Deoxygenation significantly raised the rates of RBC metHb reduction, and more so in rainbow trout than in carp. The temperature sensitivity of metHb reduction in rainbow trout RBCs......Red blood cells (RBCs) possess methemoglobin reductase activity that counters the ongoing oxidation of hemoglobin (Hb) to methemoglobin (metHb), which in circulating blood is caused by Hb autoxidation or reactions with nitrite. We describe an assay for determining metHb reductase activity in intact...... of counteracting oxidation. This assay was used to compare metHb reduction in rainbow trout and carp RBCs under both oxygenated and deoxygenated conditions. Washing resulted in effective wash-out of nitrite to low and safe values (~2μM). The subsequent decline in [metHb] with time followed first-order kinetics...

  12. Impact of mitochondria on nitrite metabolism in HL-1 cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Peter eDungel

    2013-05-01

    Full Text Available Apart from ATP synthesis mitochondria have many other functions, one being nitrite reductase activity. NO released from nitrite has been shown to protect the heart from ischemia/reperfusion injury in a cGMP-dependent manner. However, the exact impact of mitochondria on the release of NO from nitrite in cardiomyocytes is not completely understood. Besides mitochondria, a number of non-mitochondrial metalloproteins have been suggested to facilitate this process. The aim of this study was to investigate the impact of mitochondria on the bioactivation of nitrite in HL-1 cardiomyocytes.The levels of nitrosyl complexes of hemoglobin (NO-Hb and cGMP levels were measured by electron spin resonance spectroscopy and enzyme immunoassay. In addition the formation of free NO was determined by confocal microscopy as well as intracellular nitrite and S-nitrosothiols by chemoluminescence analysis. NO was released from nitrite in cell culture in an oxygen dependent manner. Application of specific inhibitors of the respiratory chain, p450, NO synthases and xanthine oxidoreductase showed that all four enzymatic systems are involved in the release of NO, but more than 50% of NO is released via the mitochondrial pathway. Only NO released by mitochondria activated cGMP synthesis. Cardiomyocytes co-cultured with red blood cells (RBC competed with RBC for nitrite, but free NO was detected only in HL-1 cells suggesting that RBC are not a source of NO in this model. Apart from activation of cGMP synthesis, NO formed in HL-1 cells diffused out of the cells and formed NO-Hb complexes. In addition nitrite was converted by HL-1 cells to S-nitrosyl complexes. In HL-1 cardiomyocytes, several enzymatic systems are involved in nitrite reduction to NO but only the mitochondrial pathway of NO release activates cGMP synthesis. Our data suggest that this pathway may be a key regulator of myocardial contractility especially under hypoxic conditions.

  13. Genome Sequence of Pseudomonas stutzeri 273 and Identification of the Exopolysaccharide EPS273 Biosynthesis Locus

    Directory of Open Access Journals (Sweden)

    Shimei Wu

    2017-07-01

    Full Text Available Pseudomonas stutzeri 273 is a marine bacterium producing exopolysaccharide 273 (EPS273 with high anti-biofilm activity against P. aeruginosa PAO1. Here, the complete genome of P. stutzeri 273 was sequenced and the genome contained a circular 5.03 Mb chromosome. With extensive analysis of the genome, a genetic locus containing 18 genes was predicted to be involved in the biosynthesis of EPS273. In order to confirm this prediction, two adjacent genes (eps273-H and eps273-I encoding glycosyltransferases and one gene (eps273-O encoding tyrosine protein kinase within the genetic locus were deleted and biosynthesis of EPS273 was checked in parallel. The molecular weight profile of EPS purified from the mutant Δeps273-HI was obviously different from that purified from wild-type P. stutzeri 273, while the corresponding EPS was hardly detected from the mutant Δeps273-O, which indicated the involvement of the proposed 18-gene cluster in the biosynthesis of EPS273. Moreover, the mutant Δeps273-HI had the biofilm formed earlier compared with the wild type, and the mutant Δeps273-O almost completely lost the ability of biofilm formation. Therefore, EPS273 might facilitate the biofilm formation for its producing strain P. stutzeri 273 while inhibiting the biofilm formation of P. aeruginosa PAO1. This study can contribute to better understanding of the biosynthesis of EPS273 and disclose the biological function of EPS273 for its producing strain P. stutzeri 273.

  14. KINETIC DISTRIBUTION MODEL OF EVAPORATION, BIOSORPTION AND BIODEGRADATION OF POLYCHLORINATED BIPHENYLS (PCBS) IN THE SUSPENSION OF PSEUDOMONAS STUTZERI. (R826652)

    Science.gov (United States)

    AbstractKinetics of distribution of PCBs in an active bacterial suspension of Pseudomonas stutzeri was studied by monitoring the evaporated amounts and the concentration remaining in the liquid medium with the biomass. To determine the biodegradation rate const...

  15. Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans

    NARCIS (Netherlands)

    de Boer, A P; van der Oost, J.; Reijnders, W N; Westerhoff, H V; Stouthamer, A.H.; van Spanning, R J

    1996-01-01

    The genes that encode the hc-type nitric-oxide reductase from Paracoccus denitrificans have been identified. They are part of a cluster of six genes (norCBQDEF) and are found near the gene cluster that encodes the cd1-type nitrite reductase, which was identified earlier [de Boer, A. P. N.,

  16. Sequential unfolding of the two-domain protein Pseudomonas stutzeri cytochrome c(4)

    DEFF Research Database (Denmark)

    Andersen, Niels Højmark; Jensen, Thomas Jon; Nørgaard, Allan

    2002-01-01

    , and different spin states of the oxidised haem groups. We have studied unfolding of oxidised P. stutzeri cyt c(4) induced thermally and by chemical denaturants Horse heart cyt c was a reference molecule. Isothermal unfolding induced by guanidinium chloride and acid was followed by Soret. alpha/beta. and 701-nm...... chloride up to 0.4 M is present. This reflects different chemical action in chemical and thermal unfolding. Acid-induced unfolding kinetics was addressed by pH jumps using diode array stopped-flow techniques, Three kinetic phases in the 701 nm Fe-Met marker band. and four phases in the Soret and alpha/beta......F stutzeri cytochrome c. is a di-haem protein, composed of two globular domains each with His-Met coordinated haem. and a hydrogen bond network between the domains. The domain foldings are highly symmetric but with specific differences including structural differences of ligand coordination...

  17. Nitrogen-removal efficiency of a novel aerobic denitrifying bacterium, Pseudomonas stutzeri strain ZF31, isolated from a drinking-water reservoir.

    Science.gov (United States)

    Huang, Tinglin; Guo, Lin; Zhang, Haihan; Su, Junfeng; Wen, Gang; Zhang, Kai

    2015-11-01

    An aerobic denitrifier, identified as Pseudomonas stutzeri strain ZF31, was isolated from the Zhoucun drinking-water reservoir. Strain ZF31 removed 97% of nitrate nitrogen after 16h, without nitrite accumulation. Sequence amplification indicated the presence of the denitrification genes napA, nirS, norB, and nosZ. Nitrogen balance analysis revealed that approximately 75% of the initial nitrogen was removed as gas products. Response surface methodology (RSM) experiments showed that maximum removal of total nitrogen (TN) occurred at pH 8.23, a C/N ratio of 6.68, temperature of 27.72°C, and with shaking at 54.15rpm. The TN removal rate at low C/N ratio (i.e., 3) and low temperature (i.e., 10°C) was 73.30% and 60.08%, respectively. These results suggest that strain ZF31 has potential applications for the bioremediation of slightly polluted drinking-water reservoirs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. [Isolation of Pseudomonas stutzeri from an odontogenic inflammatory cyst: Diagnostic relevance].

    Science.gov (United States)

    Molgatini, Susana; Rey, Eduardo; Basilaki, Jorge; Mosca, Christian; Galante, Rafael; Gliosca, Laura

    Pseudomonas stutzeri is distributed widely in the environment, and occupies different ecological niches. However, it is found in clinically relevant infections as an opportunistic pathogen. Isolation of P. stutzeri from an odontogenic inflammatory cyst is an uncommon microbiological finding that has not been reported to date. In the case presented here, the bacterium was isolated from surgical material obtained from excision of an inflammatory odontogenic cyst located in the tooth 1.2, and presenting with concomitant pulp necrosis. Complementary techniques such as radiographs, CAT scans, and histopathological and microbiological studies were used to establish definitive diagnosis. The obtained results allowed classifying the process as an inflammatory cyst infected by P. stutzeri. Biotyping and characterization of the susceptibility profile of the isolated strain allowed adjusting the antibiotic therapy more specifically. The microbiological studies allowed establishing the etiology of the infectious process, adjusting the treatment plan, and re-establishing tissue integrity. Copyright © 2016 Asociación Argentina de Microbiología. All rights reserved.

  19. Production of melanin pigment from Pseudomonas stutzeri isolated from red seaweed Hypnea musciformis.

    Science.gov (United States)

    Ganesh Kumar, C; Sahu, N; Narender Reddy, G; Prasad, R B N; Nagesh, N; Kamal, A

    2013-10-01

    Hypnea musciformis red seaweed is popularly known to produce carrageenan was collected from the Gulf of Mannar, India. Strain HMGM-7 [MTCC 11712] was isolated from the surface of this seaweed, which was capable of producing an extracellular black-coloured polymeric pigment. Based on phenotypic characterization and 16S rDNA sequencing, the strain HMGM-7 was identified as Pseudomonas stutzeri. Biophysical characterization by UV-visible, FT-IR, EPR and XRD spectroscopic studies confirmed the pigment as melanin. Further chemical characterization showed that it was acid-resistant, alkali-soluble and alkali-insoluble in most of the organic solvents and distilled water. To our knowledge, this is a first report on a marine Pseudomonas stutzeri strain producing significant amounts of melanin of about 6·7 g l(-1) without L-tyrosine supplementation in the sea-water production medium. This investigation reports a marine Pseudomonas stutzeri strain HMGM-7 [MTCC 11712] that produces significant quantities of melanin (6·7 g l(-1) ) in sea-water medium without the supplementation of L-tyrosine. The confirmation of the produced melanin was carried out by various chemical and physical characterization studies. The isolated melanin may find potential application for use in cosmetic and/or pharmaceutical industries. © 2013 The Society for Applied Microbiology.

  20. Parallel pathways for nitrite reduction during anaerobic growth in Thermus thermophilus.

    Science.gov (United States)

    Alvarez, Laura; Bricio, Carlos; Hidalgo, Aurelio; Berenguer, José

    2014-04-01

    Respiratory reduction of nitrate and nitrite is encoded in Thermus thermophilus by the respective transferable gene clusters. Nitrate is reduced by a heterotetrameric nitrate reductase (Nar) encoded along transporters and regulatory signal transduction systems within the nitrate respiration conjugative element (NCE). The nitrite respiration cluster (nic) encodes homologues of nitrite reductase (Nir) and nitric oxide reductase (Nor). The expression and role of the nirSJM genes in nitrite respiration were analyzed. The three genes are expressed from two promoters, one (nirSp) producing a tricistronic mRNA under aerobic and anaerobic conditions and the other (nirJp) producing a bicistronic mRNA only under conditions of anoxia plus a nitrogen oxide. As for its nitrite reductase homologues, NirS is expressed in the periplasm, has a covalently bound heme c, and conserves the heme d1 binding pocket. NirJ is a cytoplasmic protein likely required for heme d1 synthesis and NirS maturation. NirM is a soluble periplasmic homologue of cytochrome c552. Mutants defective in nirS show normal anaerobic growth with nitrite and nitrate, supporting the existence of an alternative Nir in the cells. Gene knockout analysis of different candidate genes did not allow us to identify this alternative Nir protein but revealed the requirement for Nar in NirS-dependent and NirS-independent nitrite reduction. As the likely role for Nar in the process is in electron transport through its additional cytochrome c periplasmic subunit (NarC), we concluded all the Nir activity takes place in the periplasm by parallel pathways.

  1. The intramolecular electron transfer between copper sites of nitrite reductase

    DEFF Research Database (Denmark)

    Farver, O; Eady, R R; Abraham, Z H

    1998-01-01

    is induced following reduction of the type 1 Cu(II) by radicals produced by pulse radiolysis. The reversible ET reaction proceeds with a rate constant kET = k(1-->2) + k(2-->1) of 450 +/- 30 s(-1) at pH 7.0 and 298 K. The equilibrium constant K was determined to be 0.7 at 298 K from which the individual rate...... constants for the forward and backward reactions were calculated to be: k(1-->2) = 185 +/- 12 s(-1) and k(2-->1) 265 +/- 18 s(-1). The temperature dependence of K allowed us to determine the deltaH(o) value of the ET equilibrium to be 12.1 kJ mol(-1). Measurements of the temperature dependence of the ET...

  2. Cloning and characterization of a nitrite reductase gene related to ...

    African Journals Online (AJOL)

    ... among different somatic embryogenesis stages, and that the level of GhNiR mRNA was also higher in the cultivar with higher somatic embryogenesis ability. The catalytic GhNiR was verified by transformation in E. coli BL21 (DE3) strain with the recombinant expression vector pET-28A-GhNiR. NiR activity assay showed

  3. Nitrate and nitrite uptake and reduction by intact sunflower plants.

    Science.gov (United States)

    Agüera, E; de la Haba, P; Fontes, A G; Maldonado, J M

    1990-08-01

    Nitrogen-starved sunflower plants (Helianthus annuus L. cv. Peredovic) cannot absorb NO 3 (-) or NO 2 (-) upon initial exposure to these anions. Ability of the plants to take up NO 3 (-) and NO 2 (-) at high rates from the beginning was induced by a pretreatment with NO 3 (-) . Nitrite also acted as inducer of the NO 2 (-) -uptake system. The presence of cycloheximide during NO 3 (-) -pretreatment prevented the subsequent uptake of NO 3 (-) and NO 2 (-) , indicating that both uptake systems are synthesized de novo when plants are exposed to NO 3 (-) . Cycloheximide also suppressed nitrate-reductase (EC 1.6.6.1) and nitrite-reductase (EC 1.7.7.1) activities in the roots. The sulfhydryl-group reagent N-ethylmaleimide greatly inhibited the uptake of NO 3 (-) and NO 2 (-) . Likewise, N-ethylmaleimide promoted in vivo the inactivation of nitrate reductase without affecting nitrite-reductase activity. Rates of NO 3 (-) and NO 2 (-) uptake as a function of external anion concentration exhibited saturation kinetics. The calculated Km values for NO 3 (-) and NO 2 (-) uptake were 45 and 23 μM, respectively. Rates of NO 3 (-) uptake were four to six times higher than NO 3 (-) -reduction rates in roots. In contrast, NO 2 (-) -uptake rates, found to be very similar to NO 3 (-) -uptake rates, were much lower (about 30 times) than NO 2 (-) -reduction rates. Removal of oxygen from the external solution drastically suppressed NO 3 (-) and NO 2 (-) uptake without affecting their reduction. Uptake and reduction were also differentially affected by pH. The results demonstrate that uptake of NO 3 (-) and NO 2 (-) into sunflower plants is mediated by energy-dependent inducible-transport systems distinguishable from the respective enzymatic reducing systems.

  4. Interspecies Transfer and Regulation of Pseudomonas stutzeri A1501 Nitrogen Fixation Island in Escherichia coli.

    Science.gov (United States)

    Han, Yunlei; Lu, Na; Chen, Qinghua; Zhan, Yuhua; Liu, Wei; Lu, Wei; Zhu, Baoli; Lin, Min; Yang, Zhirong; Yan, Yongliang

    2015-08-01

    Until now, considerable effort has been made to engineer novel nitrogen-fixing organisms through the transfer of nif genes from various diazotrophs to non-nitrogen fixers; however, regulatory coupling of the heterologous nif genes with the regulatory system of the new host is still not well understood. In this work, a 49 kb nitrogen fixation island from P. stutzeri A1501 was transferred into E. coli using a novel and efficient transformation strategy, and a series of recombinant nitrogen-fixing E. coli strains were obtained. We found that the nitrogenase activity of the recombinant E. coli strain EN-01, similar to the parent strain P. stutzeri A1501, was dependent on external ammonia concentration, oxygen tension, and temperature. We further found that there existed a regulatory coupling between the E. coli general nitrogen regulatory system and the heterologous P. stutzeri nif island in the recombinant E. coli strain. We also provided evidence that the E. coli general nitrogen regulator GlnG protein was involved in the activation of the nif-specific regulator NifA via a direct interaction with the NifA promoter. To the best of our knowledge, this work plays a groundbreaking role in increasing understanding of the regulatory coupling of the heterologous nitrogen fixation system with the regulatory system of the recipient host. Furthermore, it will shed light on the structure and functional integrity of the nif island and will be useful for the construction of novel and more robust nitrogen-fixing organisms through biosynthetic engineering.

  5. Degradation of soil cyanide by single and mixed cultures of Pseudomonas stutzeri and Bacillus subtilis.

    Science.gov (United States)

    Nwokoro, Ogbonnaya; Dibua, Marie Esther Uju

    2014-03-01

    The aim of this investigation was to study whether certain bacteria could be used for cyanide degradation in soil. The bacteria Pseudomonas stutzeri and Bacillus subtilis were selected based on their good growth in a minimal medium containing 0.8 mg mL-1 potassium cyanide (KCN). In this study we tested their ability to reduce cyanide levels in a medium containing 1.5 mg mL-1 of KCN. Although both microorganisms reduced cyanide levels, Pseudomonas stutzeri was the more effective test organism. Later on, the selected cultures were grown, diluted and their various cell concentrations were used individually and in combination to test their ability of cyanide degradation in soil samples collected around a cassava processing mill. Bacillus subtilis caused degradation of soil cyanide from 0.218 mg g-1 soil immediately with an inoculum concentration of 0.1 (OD600nm) to 0.072 mg g-1 soil after 10 days with an inoculum concentration of 0.6 (OD600nm) implying a 66.9 % reduction. Pseudomonas stutzeri cell concentration of 0.1 (OD600nm) decreased soil cyanide from 0.218 mg g-1 soil initially to 0.061 mg g-1 soil after 10 days with an inoculum concentration of 0.6 (OD600nm) (72 % reduction). The mixed culture of the two bacteria produced the best degradation of soil cyanide from 0.218 mg g-1 soil sample with a combined inoculum concentration of 0.1 (OD600nm) initially to 0.025 mg g-1 soil with a combined inoculum concentration of 0.6 (OD600nm) after 10 days incubation resulting in an 88.5 % degradation of soil cyanide. The analysed bacteria displayed high cyanide degradation potential and may be useful for efficient decontamination of cyanide contaminated sites.

  6. The roles of tissue nitrate reductase activity and myoglobin in securing nitric oxide availability in deeply hypoxic crucian carp

    DEFF Research Database (Denmark)

    Hansen, Marie Niemann; Lundberg, Jon O; Filice, Mariacristina

    2016-01-01

    In mammals, treatment with low doses of nitrite has a cytoprotective effect in ischemia/reperfusion events, as a result of nitric oxide formation and S-nitrosation of proteins. Interestingly, anoxia-tolerant lower vertebrates possess an intrinsic ability to increase intracellular nitrite concentr...... and myoglobin levels. Finally, we found a low but significant nitrate reductase activity in liver and white muscle, but not in cardiomyocytes. Nitrate reduction was inhibited by allopurinol, showing that it was partly catalyzed by xanthine oxidoreductase........ We also tested whether liver, muscle and heart tissue possess nitrate reductase activity that supplies nitrite to the tissues during severe hypoxia. Crucian carp exposed to deep hypoxia (1

  7. Oxygen exchange between nitrate molecules during nitrite oxidation by Nitrobacter.

    Science.gov (United States)

    DiSpirito, A A; Hooper, A B

    1986-08-15

    During oxidation of nitrite, cells of Nitrobacter winogradskyi are shown to catalyze the active exchange of oxygen atoms between exogenous nitrate molecules (production of 15N16/18O3- during incubation of 14N16/18O3-, 15N16O3-, and 15N16O2- in H216O). Little, if any, exchange of oxygens between nitrate and water also occurs (production of 15N16/18O3- during incubation of 15N16O3- and 14N16O2- in H218O). 15N species of nitrate were assayed by 18O-isotope shift in 15N NMR. Taking into account the O-exchange reactions which occur during nitrite oxidation, H2O is seen to be the source of O in nitrate produced by oxidation of nitrite by N. winogradskyi. The data do not establish whether the nitrate-nitrate O exchange is catalyzed by nitrite oxidase (H2O + HNO2----HNO3 + 2H+ + 2e-) or nitrate reductase (HNO3 + 2H+ + 2e-----HNO2 + H2O) or both enzymes in consort. The nitrate-nitrate exchange reaction suggests the existence of an oxygen derivative of a H2O-utilizing oxidoreductase.

  8. Changes of sodium nitrate, nitrite, and N-nitrosodiethylamine during in vitro human digestion.

    Science.gov (United States)

    Kim, Hyeong Sang; Hur, Sun Jin

    2017-06-15

    This study aimed to determine the changes in sodium nitrate, sodium nitrite, and N-nitrosodiethylamine (NDEA) during in vitro human digestion, and the effect of enterobacteria on the changes in these compounds. The concentrations of nitrate, nitrite, and NDEA were significantly reduced from 150, 150, and 1ppm to 42.8, 63.2, and 0.85ppm, respectively, during in vitro human digestion (p<0.05). The enterobacteria Escherichia coli and Lactobacillus casei reduced the amount of these compounds present during in vitro human digestion. This study is the first to report that E. coli can dramatically reduce the amount of nitrite during in vitro human digestion and this may be due to the effect of nitrite reductase present in E. coli. We therefore conclude that the amounts of potentially harmful substances and their toxicity can be decreased during human digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The periplasmic nitrate reductase in Shewanella: the resolution, distribution and functional implications of two NAP isoforms, NapEDABC and NapDAGHB

    National Research Council Canada - National Science Library

    Simpson, Philippa J. L; Richardson, David J; Codd, Rachel

    2010-01-01

    ... of Medical Sciences (Pharmacology) and Bosch Institute, University of Sydney, New South Wales 2006, Australia In the bacterial periplasm, the reduction of nitrate to nitrite is catalysed by a periplasmic nitrate reductase (NAP...

  10. Crosstalk between nitrite, myoglobin and reactive oxygen species to regulate vasodilation under hypoxia.

    Directory of Open Access Journals (Sweden)

    Matthias Totzeck

    Full Text Available The systemic response to decreasing oxygen levels is hypoxic vasodilation. While this mechanism has been known for more than a century, the underlying cellular events have remained incompletely understood. Nitrite signaling is critically involved in vessel relaxation under hypoxia. This can be attributed to the presence of myoglobin in the vessel wall together with other potential nitrite reductases, which generate nitric oxide, one of the most potent vasodilatory signaling molecules. Questions remain relating to the precise concentration of nitrite and the exact dose-response relations between nitrite and myoglobin under hypoxia. It is furthermore unclear whether regulatory mechanisms exist which balance this interaction. Nitrite tissue levels were similar across all species investigated. We then investigated the exact fractional myoglobin desaturation in an ex vivo approach when gassing with 1% oxygen. Within a short time frame myoglobin desaturated to 58±12%. Given that myoglobin significantly contributes to nitrite reduction under hypoxia, dose-response experiments using physiological to pharmacological nitrite concentrations were conducted. Along all concentrations, abrogation of myoglobin in mice impaired vasodilation. As reactive oxygen species may counteract the vasodilatory response, we used superoxide dismutase and its mimic tempol as well as catalase and ebselen to reduce the levels of reactive oxygen species during hypoxic vasodilation. Incubation of tempol in conjunction with catalase alone and catalase/ebselen increased the vasodilatory response to nitrite. Our study shows that modest hypoxia leads to a significant nitrite-dependent vessel relaxation. This requires the presence of vascular myoglobin for both physiological and pharmacological nitrite levels. Reactive oxygen species, in turn, modulate this vasodilation response.

  11. Depolymerization of Pseudomonas stutzeri exopolysaccharide upon fermentation as a promising production process of antibacterial compounds.

    Science.gov (United States)

    Maalej, Hana; Boisset, Claire; Hmidet, Noomen; Colin-Morel, Philippe; Buon, Laurine; Nasri, Moncef

    2017-07-15

    Many researchers have focused on high molecular weight (Mw) exopolysaccharides (EPS) as a source of potentially bioactive lower Mw derivatives. Therefore, it is of interest to find means for efficient and safe production of depolymerized-polymer derivatives. Exopolysaccharide-depolymerization products (EDP) varying in molecular weight were recovered from fermentative depolymerization of a native EPS produced by Pseudomonas stutzeri AS22. Following their purification and physicochemical characterization, the antibacterial activity of EDP on food spoilage and food poisoning microorganisms was evaluated through the measurement of the inhibition zone diameter, the half maximal (IC50) and the minimal (MIC) inhibitory concentrations. Our results indicate that the lower the Mw, the higher will be the effectiveness of EDP on reducing Gram-negative bacteria growth and the opposite trend was observed in the case of Gram-positive bacteria. EDP bioactivities may provide novel insights into the potentiality of P. stutzeri EPS and its derivatives to be used as functional-food components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Colorimetric determination of nitrate plus nitrite in water by enzymatic reduction, automated discrete analyzer methods

    Science.gov (United States)

    Patton, Charles J.; Kryskalla, Jennifer R.

    2011-01-01

    This report documents work at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) to validate enzymatic reduction, colorimetric determinative methods for nitrate + nitrite in filtered water by automated discrete analysis. In these standard- and low-level methods (USGS I-2547-11 and I-2548-11), nitrate is reduced to nitrite with nontoxic, soluble nitrate reductase rather than toxic, granular, copperized cadmium used in the longstanding USGS automated continuous-flow analyzer methods I-2545-90 (NWQL laboratory code 1975) and I-2546-91 (NWQL laboratory code 1979). Colorimetric reagents used to determine resulting nitrite in aforementioned enzymatic- and cadmium-reduction methods are identical. The enzyme used in these discrete analyzer methods, designated AtNaR2 by its manufacturer, is produced by recombinant expression of the nitrate reductase gene from wall cress (Arabidopsis thaliana) in the yeast Pichia pastoris. Unlike other commercially available nitrate reductases we evaluated, AtNaR2 maintains high activity at 37°C and is not inhibited by high-phenolic-content humic acids at reaction temperatures in the range of 20°C to 37°C. These previously unrecognized AtNaR2 characteristics are essential for successful performance of discrete analyzer nitrate + nitrite assays (henceforth, DA-AtNaR2) described here.

  13. Gastric S-nitrosothiol formation drives the antihypertensive effects of oral sodium nitrite and nitrate in a rat model of renovascular hypertension.

    Science.gov (United States)

    Pinheiro, Lucas C; Amaral, Jefferson H; Ferreira, Graziele C; Portella, Rafael L; Ceron, Carla S; Montenegro, Marcelo F; Toledo, Jose Carlos; Tanus-Santos, Jose E

    2015-10-01

    Many effects of nitrite and nitrate are attributed to increased circulating concentrations of nitrite, ultimately converted into nitric oxide (NO(•)) in the circulation or in tissues by mechanisms associated with nitrite reductase activity. However, nitrite generates NO(•) , nitrous anhydride, and other nitrosating species at low pH, and these reactions promote S-nitrosothiol formation when nitrites are in the stomach. We hypothesized that the antihypertensive effects of orally administered nitrite or nitrate involve the formation of S-nitrosothiols, and that those effects depend on gastric pH. The chronic effects of oral nitrite or nitrate were studied in two-kidney, one-clip (2K1C) hypertensive rats treated with omeprazole (or vehicle). Oral nitrite lowered blood pressure and increased plasma S-nitrosothiol concentrations independently of circulating nitrite levels. Increasing gastric pH with omeprazole did not affect the increases in plasma nitrite and nitrate levels found after treatment with nitrite. However, treatment with omeprazole severely attenuated the increases in plasma S-nitrosothiol concentrations and completely blunted the antihypertensive effects of nitrite. Confirming these findings, very similar results were found with oral nitrate. To further confirm the role of gastric S-nitrosothiol formation, we studied the effects of oral nitrite in hypertensive rats treated with the glutathione synthase inhibitor buthionine sulfoximine (BSO) to induce partial thiol depletion. BSO treatment attenuated the increases in S-nitrosothiol concentrations and antihypertensive effects of oral nitrite. These data show that gastric S-nitrosothiol formation drives the antihypertensive effects of oral nitrite or nitrate and has major implications, particularly to patients taking proton pump inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm

    Science.gov (United States)

    Li, Dao-Bo; Cheng, Yuan-Yuan; Wu, Chao; Li, Wen-Wei; Li, Na; Yang, Zong-Chuang; Tong, Zhong-Hua; Yu, Han-Qing

    2014-01-01

    In situ reduction of selenite to elemental selenium (Se(0)), by microorganisms in sediments and soils is an important process and greatly affects the environmental distribution and the biological effects of selenium. However, the mechanism behind such a biological process remains unrevealed yet. Here we use Shewanella oneidensis MR-1, a widely-distributed dissimilatory metal-reducing bacterium with a powerful and diverse respiration capability, to evaluate the involvement of anaerobic respiration system in the microbial selenite reduction. With mutants analysis, we identify fumarate reductase FccA as the terminal reductase of selenite in periplasm. Moreover, we find that such a reduction is dependent on central respiration c-type cytochrome CymA. In contrast, nitrate reductase, nitrite reductase, and the Mtr electron transfer pathway do not work as selenite reductases. These findings reveal a previously unrecognized role of anaerobic respiration reductases of S. oneidensis MR-1 in selenite reduction and geochemical cycles of selenium in sediments and soils.

  15. The nitrogen-fixation island insertion site is conserved in diazotrophic Pseudomonas stutzeri and Pseudomonas sp. isolated from distal and close geographical regions.

    Directory of Open Access Journals (Sweden)

    Anastasia Venieraki

    Full Text Available The presence of nitrogen fixers within the genus Pseudomonas has been established and so far most isolated strains are phylogenetically affiliated to Pseudomonas stutzeri. A gene ortholog neighborhood analysis of the nitrogen fixation island (NFI in four diazotrophic P. stutzeri strains and Pseudomonas azotifigens revealed that all are flanked by genes coding for cobalamin synthase (cobS and glutathione peroxidise (gshP. The putative NFIs lack all the features characterizing a mobilizable genomic island. Nevertheless, bioinformatic analysis P. stutzeri DSM 4166 NFI demonstrated the presence of short inverted and/or direct repeats within both flanking regions. The other P. stutzeri strains carry only one set of repeats. The genetic diversity of eleven diazotrophic Pseudomonas isolates was also investigated. Multilocus sequence typing grouped nine isolates along with P. stutzeri and two isolates are grouped in a separate clade. A Rep-PCR fingerprinting analysis grouped the eleven isolates into four distinct genotypes. We also provided evidence that the putative NFI in our diazotrophic Pseudomonas isolates is flanked by cobS and gshP genes. Furthermore, we demonstrated that the putative NFI of Pseudomonas sp. Gr65 is flanked by inverted repeats identical to those found in P. stutzeri DSM 4166 and while the other P. stutzeri isolates harbor the repeats located in the intergenic region between cobS and glutaredoxin genes as in the case of P. stutzeri A1501. Taken together these data suggest that all putative NFIs of diazotrophic Pseudomonas isolates are anchored in an intergenic region between cobS and gshP genes and their flanking regions are designated by distinct repeats patterns. Moreover, the presence of almost identical NFIs in diazotrophic Pseudomonas strains isolated from distal geographical locations around the world suggested that this horizontal gene transfer event may have taken place early in the evolution.

  16. Nifurtimox biotransformation to reactive metabolites or nitrite in liver subcellular fractions and model systems.

    Science.gov (United States)

    Montalto de Mecca, M; Diaz, E G; Castro, J A

    2002-11-15

    Liver microsomal (mic); nuclei (N) and mitochondria (mit) anaerobically nitroreduce Nifurtimox (Nfx) in the presence of NADPH generating system. Simultaneous formation of small amounts of nitrite was observed in microsomes and nuclei but not in mitochondria. The microsomal nitroreductase activity was enhanced by the presence of flavine-adenine-dinucleotide disodium salt (FAD), was not inhibited by CO and was significantly inhibited by diphenyleneiodonium (DPI). In the microsomal NADPH-dependent fraction nitrite formation was null in the presence of FAD, DPI and under air and was partially inhibited by pure CO. Pure human cytochrome P450 reductase in the presence of NADPH significantly nitroreduced Nfx and produced small amounts of nitrite. The nitroreductive process was significantly enhanced by FAD but the nitrite formation became null. FAD itself was able to chemically nitroreduce Nfx without production of nitrite. NADPH generating system enhanced the FAD nitroreductive effect and led to small production of nitrite. Formation of reactive metabolites and nitric oxide during Nfx metabolism might contribute to its toxicity.

  17. ADVANCED TECHNOLOGY WASTEWATER TREATMENT OF NITRITE IONS

    Directory of Open Access Journals (Sweden)

    E.G. Morozov

    2012-06-01

    Full Text Available The main reason for high concentration of nitrite ions in water is the existence of sources of industrial and agricultural pollution. Contamination of drinking water, juices, wine and other liquids of nitrite ions as a result of improper use of nitrogen fertilizers has an adverse effect on living organism, because under the influence of enzymes nitrite ions in living organisms form high carcinogenic nitrosamines, and the interaction of nitrite ions from blood hemoglobin causes such toxicity that leads to disease cyanosis [1]. Therefore removal of nitrite ions from water has received increased attention. The paper discusses an innovative wastewater treatment technology from the nitrite ion with hypochlorite produced during electrolysis.

  18. A novel marine nitrite-oxidizing

    NARCIS (Netherlands)

    Haaijer, S.C.M.; Ji, K.; van Niftrik, L.; Hoischen, A.; Speth, D.R.; Jetten, M.S.M.; Sinninghe Damsté, J.S.; Op den Camp, H.J.M.

    2013-01-01

    Marine microorganisms are important for the global nitrogen cycle, but marine nitrifiers, especially aerobic nitrite oxidizers, remain largely unexplored. To increase the number of cultured representatives of marine nitrite-oxidizing bacteria (NOB), a bioreactor cultivation approach was adopted to

  19. 21 CFR 573.700 - Sodium nitrite.

    Science.gov (United States)

    2010-04-01

    ... Listing § 573.700 Sodium nitrite. Sodium nitrite may be safely used in canned pet food containing meat and... as a preservative and color fixative in canned pet food containing fish, meat, and fish and meat... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium nitrite. 573.700 Section 573.700 Food and...

  20. Nitric oxide formation from nitrite in zebrafish

    DEFF Research Database (Denmark)

    Jensen, Frank Bo

    2007-01-01

    Nitrite is a potential nitric oxide (NO) donor and may have important biological functions at low concentrations. The present study tests the hypothesis that nitrite accumulation across the gills in fish will cause a massive NO production from nitrite. Zebrafish were exposed to three different...

  1. An investigation into the unusual linkage isomerization and nitrite reduction activity of a novel tris(2-pyridyl) copper complex

    Science.gov (United States)

    Roger, Isolda; Wilson, Claire; Senn, Hans M.; Sproules, Stephen; Symes, Mark D.

    2017-08-01

    The copper-containing nitrite reductases (CuNIRs) are a class of enzymes that mediate the reduction of nitrite to nitric oxide in biological systems. Metal-ligand complexes that reproduce the salient features of the active site of CuNIRs are therefore of fundamental interest, both for elucidating the possible mode of action of the enzymes and for developing biomimetic catalysts for nitrite reduction. Herein, we describe the synthesis and characterization of a new tris(2-pyridyl) copper complex ([Cu1(NO2)2]) that binds two molecules of nitrite, and displays all three of the common binding modes for NO2-, with one nitrite bound in an asymmetric quasi-bidentate κ2-ONO manner and the other bound in a monodentate fashion with a linkage isomerism between the κ1-ONO and κ1-NO2 binding modes. We use density functional theory to help rationalize the presence of all three of these linkage isomers in one compound, before assessing the redox activity of [Cu1(NO2)2]. These latter studies show that the complex is not a competent nitrite reduction electrocatalyst in non-aqueous solvent, even in the presence of additional proton donors, a finding which may have implications for the design of biomimetic catalysts for nitrite reduction.

  2. Effect of electrolyzed oxidizing water treatment on the reduction of nitrite levels in fresh spinach during storage.

    Science.gov (United States)

    Hao, Jianxiong; Li, Huiying; Wan, Yangfang; Liu, Haijie

    2015-03-01

    Leafy vegetables are the major source of nitrite intake in the human diet, and technological processing to control nitrite levels in harvested vegetables is necessary. In the current work, the effect of electrolyzed oxidizing water (EOW) on the nitrite and nitrate levels in fresh spinach during storage was studied. EOW treatment, including slightly acidic electrolyzed water and acidic electrolyzed water, was found to effectively reduce nitrite levels in fresh spinach during storage; levels in the late period were 30 to 40% lower than that of the control. However, the nitrate levels in fresh spinach during storage were not influenced by EOW treatment. The reduction of nitrite levels in EOW-treated fresh spinach during storage can be attributed to the inactivation of nitrate reductase directly and to the reduction of bacterial populations. Our results suggest that treatment with slightly acidic electrolyzed water may be a better choice to control nitrite levels in fresh vegetables during storage. This study provided a useful method to reduce nitrite levels in fresh spinach.

  3. The Medicinal Chemistry of Nitrite as a Source of Nitric Oxide Signaling.

    Science.gov (United States)

    Blood, Arlin B

    2017-01-01

    Conventional understanding of nitric oxide (NO) signaling in biology is commonly based on the premise that it simply diffuses randomly from its site of production by NO synthases to its site of action or inactivation. This notion has been challenged on a systemic cardiovascular scale with the realization that NO has endocrine effects despite being unable to exist in blood for more than a few milliseconds. Investigation of this phenomenon has led to the understanding that many of the chemical pathways that consume NO may not render it inactive as once thought. Instead, many of NO's metabolic products are still capable of carrying out NO signaling, or participate in NO-independent signaling in their own right. Nitrite and nitrate are two such products of NO metabolism that were once thought to be inert at physiological concentrations but are now known to contribute to NO bioactivity. The activity of nitrate is dependent upon its reduction to nitrite by bacterial nitrate reductase activity in the mouth. Nitrite can be reduced to NO by several metal-containing proteins under hypoxic conditions, or by nonenzymatic reactions under acidic conditions. Reduction and oxidation products of nitrite metabolism may also result in the production of NO adducts with a wide array of biological functions. The following review provides a general overview of the basic pathways underlying the physiological activity of nitrate and nitrite, as well as insight into the therapeutic potential of these pathways. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater

    Science.gov (United States)

    Sun, Xin; Ji, Qixing; Jayakumar, Amal; Ward, Bess B.

    2017-08-01

    Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (Ks = 0.254 ± 0.161 μM) was 1-3 orders of magnitude lower than in cultivated NOB, indicating higher affinity of marine NOB for nitrite. The highest rates of nitrite oxidation were measured in the oxygen depleted zone (ODZ), and were partially inhibited by additions of oxygen. This oxygen sensitivity suggests that ODZ specialist NOB, adapted to low-oxygen conditions, are responsible for apparently anaerobic nitrite oxidation.

  5. Generation and initial characterization of Pseudomonas stutzeri KC mutants with impaired ability to degrade carbon tetrachloride.

    Science.gov (United States)

    Sepúlveda-Torres, L C; Rajendran, N; Dybas, M J; Criddle, C S

    1999-01-01

    Under iron-limiting conditions, Pseudomonas stutzeri KC secretes a small but as yet unidentified factor that transforms carbon tetrachloride (CT) to CO2 and nonvolatile products when activated by reduction at cell membranes. Pseudomonas fluorescens and other cell types activate the factor. Triparental mating was used to generate kanamycin-resistant lux::Tn5 recombinants of strain KC. Recombinants were streaked onto the surface of agar medium plugs in microtiter plates and were then screened for carbon tetrachloride degradation by exposing the plates to gaseous 14C-carbon tetrachloride. CT+ recombinants generated nonvolatile 14C-labeled products, but four CT- recombinants did not generate significant nonvolatile 14C-labeled products and had lost the ability to degrade carbon tetrachloride. When colonies of P. fluorescens were grown next to colonies of CT+ recombinants and were exposed to gaseous 14C-carbon tetrachloride, 14C-labeled products accumulated around the P. fluorescens colonies, indicating that the factor secreted by CT+ colonies had diffused through the agar and become activated. When P. fluorescens was grown next to CT- colonies, little carbon tetrachloride transformation was observed, indicating a lack of active factor. Expression of lux reporter genes in three of the CT- mutants was regulated by added iron and was induced under the same iron-limiting conditions that induce carbon tetrachloride transformation in the wild-type.

  6. Immobilization of Pseudomonas stutzeri lipase for the transesterification of wood sterols with fatty acid esters.

    Science.gov (United States)

    Fauré, Nicole; Illanes, Andrés

    2011-11-01

    Lipase from Pseudomonas stutzeri PL-836 was immobilized on hydrophobic supports and evaluated in the transesterification of wood sterols in solvent-free and solvent-containing media. Triton X-100 was used as additive during immobilization in butyl and octadecyl sepabeads increasing enzyme activity yield by 5% and 60%, respectively. Hyperactivation was observed during immobilization in EC octadecyl sepabeads with enzyme activity yield of 200% and protein immobilization yield of 93%. Thermostability of the immobilized enzyme was assessed at 50 °C in different media in the absence and presence of exogenous solvents. The presence of Triton X-100 during immobilization reduced enzyme stability while tert-butanol increased it. Transesterification in solvent-free and solvent-containing medium with lipase immobilized in EC octadecyl sepabeads showed that the presence of exogenous solvent increased both conversion yield and productivity. At rather high levels of biocatalyst hydration (40% on wet basis) the presence of tert-butanol in the reaction medium more than doubled conversion yield and productivity.

  7. Bioremediation of endocrine disruptor di-n-butyl phthalate ester by Deinococcus radiodurans and Pseudomonas stutzeri.

    Science.gov (United States)

    Liao, Chien-Sen; Chen, Lung-Chieh; Chen, Bing-Sheng; Lin, Sin-Hsien

    2010-01-01

    Di-n-butyl phthalate (DBP) is a group of phthalate esters (PAEs) that are widely used in cosmetics, perfumes, and plasticizers. Due to its high production and application figures, DBP is commonly found in wastewater, sewage sludge, and aquatic environments. It has been classified as suspected endocrine disruptors by most countries. In this study, we isolated two DBP degradable strains from activated sludge. The strains were identified with their 16S rRNA as Deinococcus radiodurans and Pseudomonas stutzeri. We constructed the optimal condition of DBP degradation by using different kinds of incubation factors such as temperature, initial pH, yeast extract and surfactants. The optimal conditions of DBP degradation for these two strains are: 30 degrees C, pH 7.5 and static culture. Besides, addition of 0.23 mM of Triton X-100 could enhance the DBP degradation for D. radiodurans. In the end, we amended these two strains into the origin activated sludge and analyzed the whole microbial community structure of mixed cultures by PCR-DGGE technique. The result showed that only D. radiodurans could survive in the activated sludge after 7d of incubation. Based on this work, we hope that these findings could provide some useful information for applying the bioremediation of DBP in our environment. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Nitrates and nitrites intoxications’ management

    Directory of Open Access Journals (Sweden)

    Alexandra Trif

    2007-12-01

    Full Text Available The study pointed out the major sources for clinical and subclinical intoxications with nitrates/nitrites (drinking water and nitrates containing fertilizers, circumstances that determine fertilizers to became sources of intoxication (excessive fertilization/consecutive high level of nitrates in fodders, free access of animals to the fertilizers, administration into the diet instead of natrium chloride, factors that determine high nitrates accumulation in fodders despite optimal fertilization (factors related to the plants, soil, clime, harvest methods, storage, agrotechnical measures, nitrates/nitrites toxicity (over 45 ppm nitrates in drinking water, over 0.5 g nitrate/100 g D.M fodder/diet, the factors that influence nitrates/nitrites toxicity ( species, age, rate of feeding, diet balance especially energetically, pathological effects and symptoms (irritation and congestions on digestive tract, resulting diarrhoea, transformation of hemoglobin into methemoglobin determining severe respiratory insufficiency, vascular collapse, low blood pressure inthe acute nitrates intoxication; hypotiroidism, hypovitaminosis A, reproductive disturbances(abortion, low rate of fertility, dead born offspring, diarrhoea and/or respiratory insufficiency in new born e.g. calves, immunosuppression, decrease of milk production in chronic intoxication. There were presented some suggestions concerning management practices to limit nitrate intoxication (analyze of nitrates/nitrites in water and fodders, good management of the situation of risk ,e .g. dilution of the diet with low nitrate content fodders, feeding with balanced diet in energy, protein, minerals and vitamins, accommodation to high nitrate level diet, avoid grazing one week after a frost period, avoid feeding chop green fodders stored a couple of days, monitoring of health status of animals fed with fodders containing nitrates at risk level, a.o..

  9. Dietary Nitrite: from menace to marvel

    Directory of Open Access Journals (Sweden)

    Nathan S. Bryan

    2016-11-01

    Full Text Available The health benefits of nitrite are now indisputable when administered in a clinical setting for specific diseases. Currently, most published reports identify the production of nitric oxide (NO as the mechanism of action for nitrite. Basic science, in addition to clinical studies, demonstrate that nitrite and/or nitrate cannot restore NO homeostasis as an endothelium independent source of NO that may be a redundant system for endogenous NO production. Nitrate must first be reduced to nitrite by oral commensal bacteria; nitrite can then be further reduced to NO along the physiological oxygen gradient. But despite decades of rigorous research on sodium nitrate’s safety and efficacy as a curing agent, sodium nitrite is still regarded by many as a toxic undesirable food additive. However, research within the biomedical science community has revealed enormous therapeutic benefits of nitrite which are being developed as novel therapies for conditions associated with nitric oxide insufficiency. Thus, this review will highlight the fundamental biochemistry of nitrite in human physiology and provide evidence that nitrite be considered an essential nutrient. Foods or diets enriched with nitrite can have profound positive health benefits.

  10. Crystal structures of manganese- and cobalt-substituted myoglobin in complex with NO and nitrite reveal unusual ligand conformations.

    Science.gov (United States)

    Zahran, Zaki N; Chooback, Lilian; Copeland, Daniel M; West, Ann H; Richter-Addo, George B

    2008-02-01

    Nitrite is now recognized as a storage pool of bioactive nitric oxide (NO). Hemoglobin (Hb) and myoglobin (Mb) convert, under certain conditions, nitrite to NO. This newly discovered nitrite reductase activity of Hb and Mb provides an attractive alternative to mammalian NO synthesis from the NO synthase pathway that requires dioxygen. We recently reported the X-ray crystal structure of the nitrite adduct of ferric horse heart Mb, and showed that the nitrite ligand binds in an unprecedented O-binding (nitrito) mode to the d(5) ferric center in Mb(III)(ONO) [D.M. Copeland, A. Soares, A.H. West, G.B. Richter-Addo, J. Inorg. Biochem. 100 (2006) 1413-1425]. We also showed that the distal pocket in Mb allows for different conformations of the NO ligand (120 degrees and 144 degrees ) in Mb(II)NO depending on the mode of preparation of the compound. In this article, we report the crystal structures of the nitrite and NO adducts of manganese-substituted hh Mb (a d(4) system) and of the nitrite adduct of cobalt-substituted hh Mb (a d(6) system). We show that the distal His64 residue directs the nitrite ligand towards the rare nitrito O-binding mode in Mn(III)Mb and Co(III)Mb. We also report that the distal pocket residues allow a stabilization of an unprecendented bent MnNO moiety in Mn(II)MbNO. These crystal structural data, when combined with the data for the aquo, methanol, and azide MnMb derivatives, provide information on the role of distal pocket residues in the observed binding modes of nitrite and NO ligands to wild-type and metal-substituted Mb.

  11. Nitrite in hamburgers in Arak, Iran.

    Science.gov (United States)

    Rezaei, Mohammad; Shariatifar, Nabi; Jahed Khaniki, Gholamreza; Javadzadeh, Morteza

    2013-01-01

    Nitrite and nitrate are used as additives in meat products to provide colour, taste and protection against micro-organisms, but excessive use of these substances can be toxic and can cause carcinogenesis in man. Natural and organic foods are not permitted to use chemical preservatives, the traditional curing agents used for cured meats, and so nitrate and/or nitrite cannot be added to hamburgers. This study aimed to measure nitrite in hamburgers sold in Arak city, in the centre of Iran, in 2011. For this purpose, 105 samples were randomly selected and analysed according to Official AOAC Method 973. The residual nitrite in the samples was 30-100 mg/kg (p < 0.001). In 85.7% of the samples, presence of nitrite was demonstrated, which suggests unfavourable production conditions and poor sodium nitrite standards at hamburger factories.

  12. Nitrite and nitric oxide reduction in Paracoccus denitrificans is under the control of NNR, a regulatory protein that belongs to the FNR family of transcriptional activators

    NARCIS (Netherlands)

    Van Spanning, R J; De Boer, A P; Reijnders, W N; Spiro, S.; Westerhoff, H V; Stouthamer, A.H.; van der Oost, J.

    1995-01-01

    The nir and nor genes, which encode nitrite and nitric oxide reductase, lie close together on the DNA of Paracoccus denitrificans. We here identify an adjacent gene, nnr, which is involved in the expression of nir and nor under anaerobic conditions. The corresponding protein of 224 amino acids is

  13. Quinone Reductase 2 Is a Catechol Quinone Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao (NYMEDCO)

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  14. Analysis of nitrite/nitrate in biological fluids: denitrification of 2-nitropropane in F344 rats.

    Science.gov (United States)

    Sohn, O S; Fiala, E S

    2000-03-15

    2-Nitropropane (2-NP), a rat hepatocarcinogen, is denitrified to nitrite and acetone by rat liver microsomes; the denitrification rate is increased using microsomes from phenobarbital (PB)-pretreated rats. To obtain evidence that denitrification of 2-NP also occurs in vivo, we attempted to determine nitrite and nitrate levels in blood sera and urines of 2-NP-treated (1.5 mmol/kg, ip, once) rats with and without PB pretreatment (80 mg/kg, ip, once daily, 3 days), using enzymatic reduction followed by the standard Griess reaction. However, due to various interfering factors, including pigment from methemoglobinemia, we found the assay had to be modified as follows: (a) reduction of nitrate to nitrite was accomplished using NADPH and nitrate reductase, (b) excess NADPH, proteins, and interfering pigments were precipitated using zinc acetate and Na(2)CO(3), and (c) the Griess reagents were prepared in 3 N HCl rather than 5% H(3)PO(4). With these modifications it became possible to show that 2-NP is indeed metabolized to nitrite in vivo and that the metabolism is increased by PB pretreatment. Two hours after 2-NP administration, rat blood serum nitrate plus nitrite levels were approximately 1600 microM (PB-pretreated) and 940 microM (vehicle-pretreated controls). The PB-pretreated and control rats, respectively, excreted 250 and 120 micromol nitrate/nitrite in the 24-h urine post 2-NP treatment. The modifications described make the method more specific, reproducible, and more widely applicable. Copyright 2000 Academic Press.

  15. Controlled-potential iodometric titration of nitrite. Application to the determination of nitrite in meat products.

    Science.gov (United States)

    Karlsson, R; Torstensson, L G

    1974-09-01

    A controlled-potential coulometric method using iodine as an intermediate has been devised for the determination of nitrite. Nitrite is reduced by iodide and the iodine formed is then reduced coulometrically. The reduction of nitrite in the pH range 0-6 has been studied and the optimum conditions for an accurate determination are stated. The time of analysis for a determination in the range 0.005-5 mg of nitrite is about 2-5 min and the error +/- 0.1%. The method is applied to the determination of nitrite in some meat products.

  16. SPECTROPHOTOMETRIC DETERMINATION OF NITRITE BY ITS ...

    African Journals Online (AJOL)

    Preferred Customer

    KEY WORDS: Nitrite, Catalytic effect, Congo red, Spectrophotometry, Drinking water. INTRODUCTION ... such as high sensitivity, low detection limits, good selectivity, rapid analysis and inexpensive instrumentation. ... Determination of nitrite by its catalytic effect on oxidation of congo red with bromate. Bull. Chem. Soc.

  17. Expression of recombinant Pseudomonas stutzeri di-heme cytochrome c(4) by high-cell-density fed-batch cultivation of Pseudomonas putida

    DEFF Research Database (Denmark)

    Thuesen, Marianne Hallberg; Nørgaard, Allan; Hansen, Anne Merete

    2003-01-01

    The gene of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri was expressed in Pseudomonas putida. High-yield expression of the protein was achieved by high-cell-density fed-batch cultivation using an exponential glucose feeding strategy. The recombinant cytochrome c(4) protein...

  18. A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production in Chlamydomonas.

    Science.gov (United States)

    Chamizo-Ampudia, Alejandro; Sanz-Luque, Emanuel; Llamas, Ángel; Ocaña-Calahorro, Francisco; Mariscal, Vicente; Carreras, Alfonso; Barroso, Juan B; Galván, Aurora; Fernández, Emilio

    2016-10-01

    Nitric oxide (NO) is a relevant signal molecule involved in many plant processes. However, the mechanisms and proteins responsible for its synthesis are scarcely known. In most photosynthetic organisms NO synthases have not been identified, and Nitrate Reductase (NR) has been proposed as the main enzymatic NO source, a process that in vitro is also catalysed by other molybdoenzymes. By studying transcriptional regulation, enzyme approaches, activity assays with in vitro purified proteins and in vivo and in vitro NO determinations, we have addressed the role of NR and Amidoxime Reducing Component (ARC) in the NO synthesis process. N\\R and ARC were intimately related both at transcriptional and activity level. Thus, arc mutants showed high NIA1 (NR gene) expression and NR activity. Conversely, mutants without active NR displayed an increased ARC expression in nitrite medium. Our results with nia1 and arc mutants and with purified enzymes support that ARC catalyses the NO production from nitrite taking electrons from NR and not from Cytb5-1/Cytb5-Reductase, the component partners previously described for ARC (proposed as NOFNiR, Nitric Oxide-Forming Nitrite Reductase). This NR-ARC dual system would be able to produce NO in the presence of nitrate, condition under which NR is unable to do it. © 2016 John Wiley & Sons Ltd.

  19. Analysis of nitrate reductase mRNA expression and nitrate reductase activity in response to nitrogen supply

    OpenAIRE

    Gholamreza Kavoosi; Sadegh Balotf; Homeira Eshghi; Hasan Hasani

    2014-01-01

    Nitrate is one of the major sources of nitrogen for the growth of plants. It is taken up by plant roots and transported to the leaves where it is reduced to nitrite in the. The main objective of this research was to investigate stimulatory effects of sodium nitrate, potassium nitrate, ammonia and urea on the production/generation of the nitrate reductase mRNA in Triticum aestivum plants. The plants were grown in standard nutrient solution for 21 days and then starved in a media without nitrat...

  20. Comparative modelling and molecular docking of nitrate reductase from Bacillus weihenstephanensis (DS45

    Directory of Open Access Journals (Sweden)

    R. Seenivasagan

    2016-07-01

    Full Text Available Nitrate reductase catalyses the oxidation of NAD(PH and the reduction of nitrate to nitrite. NR serves as a central point for the integration of metabolic pathways by governing the flux of reduced nitrogen through several regulatory mechanisms in plants, algae and fungi. Bacteria express nitrate reductases that convert nitrate to nitrite, but mammals lack these specific enzymes. The microbial nitrate reductase reduces toxic compounds to nontoxic compounds with the help of NAD(PH. In the present study, our results revealed that Bacillus weihenstephanensis expresses a nitrate reductase enzyme, which was made to generate the 3D structure of the enzyme. Six different modelling servers, namely Phyre2, RaptorX, M4T Server, HHpred, SWISS MODEL and Mod Web, were used for comparative modelling of the structure. The model was validated with standard parameters (PROCHECK and Verify 3D. This study will be useful in the functional characterization of the nitrate reductase enzyme and its docking with nitrate molecules, as well as for use with autodocking.

  1. Radiation preservation of low nitrite bacon

    Science.gov (United States)

    Singh, Harwant

    Sodium nitrite, a key ingredient of the mix used to cure bacon and other meats, promotes and fixes bacon's characteristic pink color, inhibits lipid peroxidation and prevents growth of microorganisms, particularly Clostridium botulinum spores. Unfortunately, nitrite leads to the formation of carcinogenic nitrosamines in bacon. This has led to a search for alternatives to the use of nitrite. Irradiation with reduced level of nitrite is a promising alternative. Radurization of bacon containing 20 to 40 mg/kg of nitrite in evacuated packages, irradiated and stored at 4°C, gives a product with good organoleptic qualities and extended shelf life of ⩾ 90 days, as opposed to ˜ 30 days for the conventionally treated bacon. Radappertization of bacon containing 20 mg/kg of nitrite at a dose of about 30 kGy, irradiated at temperature of -20° or lower in evacuated packages, results in a product that is shelf stable at room temperature for months to years. It has organoleptic qualities comparable to commercial bacon in terms of color, flavor, odor and texture. Irradiation also reduces the nitrite and preformed nitrosamines present in bacon. Various aspects of preservation of bacon are reviewed in this report with emphasis on radiation processing.

  2. New composite nitrite-free and low-nitrite meat-curing systems using natural colorants.

    Science.gov (United States)

    Eskandari, Mohammad H; Hosseinpour, Sara; Mesbahi, Gholamreza; Shekarforoush, Shahram

    2013-09-01

    Nitrite-free and low-nitrite meat-curing systems were developed to eliminate or reduce nitrite in frankfurter-type sausages. Different composite meat-curing mixtures were formulated using cochineal and paprika as natural colorants, sodium hypophosphite (SHP) as antimicrobial agent, butylated hydroxyanisole (BHA) as antioxidant and sodium nitrite. The treatment, which contained 0.015% cochineal, most closely resembled the 120 ppm NaNO2 in its ability to create cured-meat color. BHA was found to be a strong antioxidant at the 30 ppm level in cooked sausages during refrigerated storage for 5 weeks. All treatments containing 40 ppm sodium nitrite were successful in replicating sensory attributes of frankfurter samples. Our findings support the use of SHP as possible antibotulinal agent in nitrite-free meat-curing systems.

  3. Community Analysis of Ammonia and Nitrite Oxidizers during Start-Up of Nitritation Reactors

    OpenAIRE

    Egli, Konrad; Langer, Christian; Siegrist, Hans-Ruedi; Zehnder, Alexander J. B.; Wagner, Michael; van der Meer, Jan Roelof

    2003-01-01

    Partial nitrification of ammonium to nitrite under oxic conditions (nitritation) is a critical process for the effective use of alternative nitrogen removal technologies from wastewater. Here we investigated the conditions which promote establishment of a suitable microbial community for performing nitritation when starting from regular sewage sludge. Reactors were operated in duplicate under different conditions (pH, temperature, and dilution rate) and were fed with 50 mM ammonium either as ...

  4. Nitrate, Nitrite, and nitroso compounds in foods

    Energy Technology Data Exchange (ETDEWEB)

    Hotchkiss, J.H.; Cassens, R.G.

    1987-04-01

    The concern that human foods might contain nitroso compounds stems from the discovery in the early 1960s that domestic animals fed fish meal preserved with high levels of sodium nitrite were dying of liver failure. It has been known for many years that nitrite can combine with amines to form N-nitrosamines. N-nitrosodimethylamine was determined to be the cause of the liver failure. The nitrosamine resulted from the reaction between dimethylamine contained in the fish and the added nitrite. Because nitrite is an important and widely used human food additive, particularly in the curing of meats, poultry, and fish, research was undertaken by several groups around the world to investigate the occurrence of these compounds in human foods.

  5. Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Larimer, Frank W [ORNL; Arp, D J [Oregon State University; Hickey, W J [University of Wisconsin, Madison

    2006-03-01

    The alphaproteobacterium Nitrobacter winogradskyi (ATCC 25391) is a gram-negative facultative chemolithoautotroph capable of extracting energy from the oxidation of nitrite to nitrate. Sequencing and analysis of its genome revealed a single circular chromosome of 3,402,093 bp encoding 3,143 predicted proteins. There were extensive similarities to genes in two alphaproteobacteria, Bradyrhizobium japonicum USDA110 (1,300 genes) and Rhodopseudomonas palustris CGA009 CG (815 genes). Genes encoding pathways for known modes of chemolithotrophic and chemoorganotrophic growth were identified. Genes encoding multiple enzymes involved in anapleurotic reactions centered on C2 to C4 metabolism, including a glyoxylate bypass, were annotated. The inability of N. winogradskyi to grow on C6 molecules is consistent with the genome sequence, which lacks genes for complete Embden-Meyerhof and Entner-Doudoroff pathways, and active uptake of sugars. Two gene copies of the nitrite oxidoreductase, type I ribulose-1,5-bisphosphate carboxylase/oxygenase, cytochrome c oxidase, and gene homologs encoding an aerobic-type carbon monoxide dehydrogenase were present. Similarity of nitrite oxidoreductases to respiratory nitrate reductases was confirmed. Approximately 10% of the N. winogradskyi genome codes for genes involved in transport and secretion, including the presence of transporters for various organic-nitrogen molecules. The N. winogradskyi genome provides new insight into the phylogenetic identity and physiological capabilities of nitrite-oxidizing bacteria. The genome will serve as a model to study the cellular and molecular processes that control nitrite oxidation and its interaction with other nitrogen-cycling processes.

  6. Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255.

    Science.gov (United States)

    Starkenburg, Shawn R; Chain, Patrick S G; Sayavedra-Soto, Luis A; Hauser, Loren; Land, Miriam L; Larimer, Frank W; Malfatti, Stephanie A; Klotz, Martin G; Bottomley, Peter J; Arp, Daniel J; Hickey, William J

    2006-03-01

    The alphaproteobacterium Nitrobacter winogradskyi (ATCC 25391) is a gram-negative facultative chemolithoautotroph capable of extracting energy from the oxidation of nitrite to nitrate. Sequencing and analysis of its genome revealed a single circular chromosome of 3,402,093 bp encoding 3,143 predicted proteins. There were extensive similarities to genes in two alphaproteobacteria, Bradyrhizobium japonicum USDA110 (1,300 genes) and Rhodopseudomonas palustris CGA009 CG (815 genes). Genes encoding pathways for known modes of chemolithotrophic and chemoorganotrophic growth were identified. Genes encoding multiple enzymes involved in anapleurotic reactions centered on C2 to C4 metabolism, including a glyoxylate bypass, were annotated. The inability of N. winogradskyi to grow on C6 molecules is consistent with the genome sequence, which lacks genes for complete Embden-Meyerhof and Entner-Doudoroff pathways, and active uptake of sugars. Two gene copies of the nitrite oxidoreductase, type I ribulose-1,5-bisphosphate carboxylase/oxygenase, cytochrome c oxidase, and gene homologs encoding an aerobic-type carbon monoxide dehydrogenase were present. Similarity of nitrite oxidoreductases to respiratory nitrate reductases was confirmed. Approximately 10% of the N. winogradskyi genome codes for genes involved in transport and secretion, including the presence of transporters for various organic-nitrogen molecules. The N. winogradskyi genome provides new insight into the phylogenetic identity and physiological capabilities of nitrite-oxidizing bacteria. The genome will serve as a model to study the cellular and molecular processes that control nitrite oxidation and its interaction with other nitrogen-cycling processes.

  7. Reduction of nitrogen oxides by gamma-irradiated hemoproteins. Pt. 1. Nitrite reducing activity of gamma-irradiated hemoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Oku, Tadatake; Kondo, Mitutaka; Sato, Hitoshi; Ichikawa, Yoshinobu; Nishio, Toshiyuki; Ito, Teiichiro [Nihon Univ., Tokyo (Japan). Coll. of Agriculture and Veterinary Medicine

    1994-08-01

    In nature, nitrite reductases located in microorganisms as well as in plants convert nitrite (NO{sub 2}{sup -}) into ammonium ion (NH{sub 4}{sup +}). It is rather difficult to isolate nitrite reductase because of very low content in microorganisms and plants. Bovine blood hemoglobin (Hb), horse cardiac muscle myoglobin (Mb) and horse cardiac muscle cytochrome c (Cyt c) in 50{mu}M aqueous solution were treated by gamma-irradiation at doses of 10-30 kGy in the presence of air. The present study shows that NO{sub 2}{sup -} is connected into NH{sub 4}{sup +} by gamma-irradiated hemoprotein in the presence of sodium hydrosulfite as a reducing agent and methyl viologen as an electron carrier. The concentration of NO{sub 2}{sup -} and NH{sub 4}{sup +} after reaction were determined by using diazo-reaction and ninhydrin reaction, respectively, after separation by HPLC. NO{sub 2}{sup -} remained and NH{sub 4}{sup +} formed by 10 kGy irradiated Cyt c, Hb and Mb at pH4 at 60 min were, 0% and 46%, 17% and 31%, 31% and 24%, respectively. Formation of hydroxylamine by reaction of NO{sub 2}{sup -} was not recognized in this reaction. The process of conversion of NO{sub 2}{sup -} to NH{sub 4}{sup +} is a net 6 electrons, 8-proton reaction. These results suggest that gamma-irradiated Hb, Mb and Cyt c can be used as a substituent of nitrite reductase. (J.P.N.).

  8. Hierarchical Control of Nitrite Respiration by Transcription Factors Encoded within Mobile Gene Clusters of Thermus thermophilus.

    Science.gov (United States)

    Alvarez, Laura; Quintáns, Nieves G; Blesa, Alba; Baquedano, Ignacio; Mencía, Mario; Bricio, Carlos; Berenguer, José

    2017-12-01

    Denitrification in Thermus thermophilus is encoded by the nitrate respiration conjugative element (NCE) and nitrite and nitric oxide respiration (nic) gene clusters. A tight coordination of each cluster's expression is required to maximize anaerobic growth, and to avoid toxicity by intermediates, especially nitric oxides (NO). Here, we study the control of the nitrite reductases (Nir) and NO reductases (Nor) upon horizontal acquisition of the NCE and nic clusters by a formerly aerobic host. Expression of the nic promoters PnirS, PnirJ, and PnorC, depends on the oxygen sensor DnrS and on the DnrT protein, both NCE-encoded. NsrR, a nic-encoded transcription factor with an iron-sulfur cluster, is also involved in Nir and Nor control. Deletion of nsrR decreased PnorC and PnirJ transcription, and activated PnirS under denitrification conditions, exhibiting a dual regulatory role never described before for members of the NsrR family. On the basis of these results, a regulatory hierarchy is proposed, in which under anoxia, there is a pre-activation of the nic promoters by DnrS and DnrT, and then NsrR leads to Nor induction and Nir repression, likely as a second stage of regulation that would require NO detection, thus avoiding accumulation of toxic levels of NO. The whole system appears to work in remarkable coordination to function only when the relevant nitrogen species are present inside the cell.

  9. Physiological roles for two periplasmic nitrate reductases in Rhodobacter sphaeroides 2.4.3 (ATCC 17025).

    Science.gov (United States)

    Hartsock, Angela; Shapleigh, James P

    2011-12-01

    The metabolically versatile purple bacterium Rhodobacter sphaeroides 2.4.3 is a denitrifier whose genome contains two periplasmic nitrate reductase-encoding gene clusters. This work demonstrates nonredundant physiological roles for these two enzymes. One cluster is expressed aerobically and repressed under low oxygen while the second is maximally expressed under low oxygen. Insertional inactivation of the aerobically expressed nitrate reductase eliminated aerobic nitrate reduction, but cells of this strain could still respire nitrate anaerobically. In contrast, when the anaerobic nitrate reductase was absent, aerobic nitrate reduction was detectable, but anaerobic nitrate reduction was impaired. The aerobic nitrate reductase was expressed but not utilized in liquid culture but was utilized during growth on solid medium. Growth on a variety of carbon sources, with the exception of malate, the most oxidized substrate used, resulted in nitrite production on solid medium. This is consistent with a role for the aerobic nitrate reductase in redox homeostasis. These results show that one of the nitrate reductases is specific for respiration and denitrification while the other likely plays a role in redox homeostasis during aerobic growth.

  10. Platelet inhibition by nitrite is dependent on erythrocytes and deoxygenation.

    Directory of Open Access Journals (Sweden)

    Sirada Srihirun

    Full Text Available Nitrite is a nitric oxide (NO metabolite in tissues and blood, which can be converted to NO under hypoxia to facilitate tissue perfusion. Although nitrite is known to cause vasodilation following its reduction to NO, the effect of nitrite on platelet activity remains unclear. In this study, the effect of nitrite and nitrite+erythrocytes, with and without deoxygenation, on platelet activity was investigated.Platelet aggregation was studied in platelet-rich plasma (PRP and PRP+erythrocytes by turbidimetric and impedance aggregometry, respectively. In PRP, DEANONOate inhibited platelet aggregation induced by ADP while nitrite had no effect on platelets. In PRP+erythrocytes, the inhibitory effect of DEANONOate on platelets decreased whereas nitrite at physiologic concentration (0.1 µM inhibited platelet aggregation and ATP release. The effect of nitrite+erythrocytes on platelets was abrogated by C-PTIO (a membrane-impermeable NO scavenger, suggesting an NO-mediated action. Furthermore, deoxygenation enhanced the effect of nitrite as observed from a decrease of P-selectin expression and increase of the cGMP levels in platelets. The ADP-induced platelet aggregation in whole blood showed inverse correlations with the nitrite levels in whole blood and erythrocytes.Nitrite alone at physiological levels has no effect on platelets in plasma. Nitrite in the presence of erythrocytes inhibits platelets through its reduction to NO, which is promoted by deoxygenation. Nitrite may have role in modulating platelet activity in the circulation, especially during hypoxia.

  11. Differences in nitric oxide steady states between arginine, hypoxanthine, uracil auxotrophs (AHU) and non-AHU strains of Neisseria gonorrhoeae during anaerobic respiration in the presence of nitrite.

    Science.gov (United States)

    Barth, Kenneth; Clark, Virginia L

    2008-08-01

    Neisseria gonorrhoeae can grow by anaerobic respiration using nitrite as an alternative electron acceptor. Under these growth conditions, N. gonorrhoeae produces and degrades nitric oxide (NO), an important host defense molecule. Laboratory strain F62 has been shown to establish and maintain a NO steady-state level that is a function of the nitrite reductase/NO reductase ratio and is independent of cell number. The nitrite reductase activities (122-197 nmol NO2 reduced x min(-1) x OD600(-1)) and NO reductase activities (88-155 nmol NO reduced x min(-1) x OD600(-1)) in a variety of gonococcal clinical isolates were similar to the specific activities seen in F62 (241 nmol NO2 reduced x min(-1) x OD600(-1) and 88 nmol NO reduced x min(-1) x OD600(-1), respectively). In seven gonococcal strains, the NO steady-state levels established in the presence of nitrite were similar to that of F62 (801-2121 nmol x L-1 NO), while six of the strains, identified as arginine, hypoxanthine, and uracil auxotrophs (AHU), that cause asymptomatic infection in men had either two- to threefold (373-579 nmol x L-1 NO) or about 100-fold (13-24 nmol x L-1 NO) lower NO steady-state concentrations. All tested strains in the presence of a NO donor, 2,2'-(hydroxynitrosohydrazono)bis-ethanimine/NO, quickly lowered and maintained NO levels in the noninflammatory range of NO (<300 nmol x L-1). The generation of a NO steady-state concentration was directly affected by alterations in respiratory control in both F62 and an AHU strain, although differences in membrane function are suspected to be responsible for NO steady-state level differences in AHU strains.

  12. Functional roles of CymA and NapC in reduction of nitrate and nitrite by Shewanella putrefaciens W3-18-1

    Energy Technology Data Exchange (ETDEWEB)

    Beliav, Alex; Qiu, Dongru; Fredrickson, James K.; Wei, Hehong; Nealson, Kenneth H.; Xia, Ming; Zhou, Jizhong; Dai, Jingcheng; Shi, Liang; Tiedje, James M.; Romine, Margaret F.

    2016-06-01

    Shewanella putrefaciens W3-18-1 harbours two periplasmic nitrate reductase (Nap) gene clusters, NapC-associated nap-alpha (napEDABC) and CymA-dependent nap-beta (napDAGHB), for dissimilatory nitrate respiration. CymA is a member of the NapC/NirT quinol dehydrogenase family and acts as a hub to support different respiratory pathways, including those on iron [Fe(III)] and manganese [Mn(III, IV)] (hydr)oxide, nitrate, nitrite, fumarate and arsenate in Shewanella strains. However, in our analysis it was shown that another NapC/NirT family protein, NapC, was only involved in nitrate reduction, although both CymA and NapC can transfer quinol-derived electrons to a periplasmic terminal reductase or an electron acceptor. Furthermore, our results showed that NapC could only interact specifically with the Nap-alpha nitrate reductase while CymA could interact promiscuously with Nap-alpha, Nap-beta and the NrfA nitrite reductase for nitrate and nitrite reduction. To further explore the difference in specificity, site-directed mutagenesis on both CymA and NapC was conducted and the phenotypic changes in nitrate and nitrite reduction were tested. Our analyses demonstrated that the Lys-91 residue played a key role in nitrate reduction for quinol oxidation and the Asp-166 residue might influence the maturation of CymA. The Asp-97 residue might be one of the key factors that influence the interaction of CymA with the cytochromes NapB and NrfA.

  13. Functional roles of CymA and NapC in reduction of nitrate and nitrite by Shewanella putrefaciens W3-18-1.

    Science.gov (United States)

    Wei, Hehong; Dai, Jingcheng; Xia, Ming; Romine, Margaret F; Shi, Liang; Beliav, Alex; Tiedje, James M; Nealson, Kenneth H; Fredrickson, James K; Zhou, Jizhong; Qiu, Dongru

    2016-06-01

    Shewanella putrefaciens W3-18-1 harbours two periplasmic nitrate reductase (Nap) gene clusters, NapC-associated nap-alpha (napEDABC) and CymA-dependent nap-beta (napDAGHB), for dissimilatory nitrate respiration. CymA is a member of the NapC/NirT quinol dehydrogenase family and acts as a hub to support different respiratory pathways, including those on iron [Fe(III)] and manganese [Mn(III, IV)] (hydr)oxide, nitrate, nitrite, fumarate and arsenate in Shewanella strains. However, in our analysis it was shown that another NapC/NirT family protein, NapC, was only involved in nitrate reduction, although both CymA and NapC can transfer quinol-derived electrons to a periplasmic terminal reductase or an electron acceptor. Furthermore, our results showed that NapC could only interact specifically with the Nap-alpha nitrate reductase while CymA could interact promiscuously with Nap-alpha, Nap-beta and the NrfA nitrite reductase for nitrate and nitrite reduction. To further explore the difference in specificity, site-directed mutagenesis on both CymA and NapC was conducted and the phenotypic changes in nitrate and nitrite reduction were tested. Our analyses demonstrated that the Lys-91 residue played a key role in nitrate reduction for quinol oxidation and the Asp-166 residue might influence the maturation of CymA. The Asp-97 residue might be one of the key factors that influence the interaction of CymA with the cytochromes NapB and NrfA.

  14. Construction of effective disposable biosensors for point of care testing of nitrite.

    Science.gov (United States)

    Monteiro, Tiago; Rodrigues, Patrícia R; Gonçalves, Ana Luisa; Moura, José J G; Jubete, Elena; Añorga, Larraitz; Piknova, Barbora; Schechter, Alan N; Silveira, Célia M; Almeida, M Gabriela

    2015-09-01

    In this paper we aim to demonstrate, as a proof-of-concept, the feasibility of the mass production of effective point of care tests for nitrite quantification in environmental, food and clinical samples. Following our previous work on the development of third generation electrochemical biosensors based on the ammonia forming nitrite reductase (ccNiR), herein we reduced the size of the electrodes' system to a miniaturized format, solved the problem of oxygen interference and performed simple quantification assays in real samples. In particular, carbon paste screen printed electrodes (SPE) were coated with a ccNiR/carbon ink composite homogenized in organic solvents and cured at low temperatures. The biocompatibility of these chemical and thermal treatments was evaluated by cyclic voltammetry showing that the catalytic performance was higher with the combination acetone and a 40°C curing temperature. The successful incorporation of the protein in the carbon ink/solvent composite, while remaining catalytically competent, attests for ccNiR's robustness and suitability for application in screen printed based biosensors. Because the direct electrochemical reduction of molecular oxygen occurs when electroanalytical measurements are performed at the negative potentials required to activate ccNiR (ca.-0.4V vs Ag/AgCl), an oxygen scavenging system based on the coupling of glucose oxidase and catalase activities was successfully used. This enabled the quantification of nitrite in different samples (milk, water, plasma and urine) in a straightforward way and with small error (1-6%). The sensitivity of the biosensor towards nitrite reduction under optimized conditions was 0.55 A M(-1) cm(-2) with a linear response range 0.7-370 μM. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Carbon-Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    Science.gov (United States)

    During nitrification, nitrite is produced as an intermediate when ammonia is oxidized to nitrate. It is well established that nitrifying biofilm are involved in nitrification episodes in chloraminated drinking water distribution systems with nitrite accumulation occurring during ...

  16. Chemically modified field effect transistors with nitrite or fluoride selectivity

    NARCIS (Netherlands)

    Antonisse, M.M.G.; Ruel, Bianca H.M.; Engbersen, Johannes F.J.; Reinhoudt, David

    1998-01-01

    Polysiloxanes with different types of polar substituents are excellent membrane materials for nitrite and fluoride selective chemically modified field effect transistors (CHEMFETs). Nitrite selectivity has been introduced by incorporation of a cobalt porphyrin into the membrane; fluoride selectivity

  17. A two-component monooxygenase catalyzes both the hydroxylation of p-nirophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905

    Energy Technology Data Exchange (ETDEWEB)

    Kadiyala, V.; Spain, J.C. [Air Force Research Lab., Tyndall AFB, FL (United States)

    1998-07-01

    Bacteria that metabolize p-nitrophenol (PNP) oxidize the substrate to 3-ketoadipic acid via either hydroquinone or 1,2,4-trihydroxybenzene (THB); however, initial steps in the pathway for PNP biodegradation via THB are unclear. The product of initial hydroxylation of PNP could be either 4-nitrocatechol or 4-nitroresorcinol. Here the authors describe the complete pathway for aerobic PNP degradation by Bacillus sphaericus JS905 that was isolated by selective enrichment from an agricultural soil in India. Washed cells of PNP-grown JS905 released nitrite in stoichiometric amounts from PNP and 4-nitrocatechol. Experiments with extracts obtained from PNP-grown cells revealed that the initial reaction is a hydroxylation of PNP to yield 4-nitrocatechol. 4-nitrocatechol is subsequently oxidized to THB with the concomitant removal of the nitro group as nitrite. The enzyme that catalyzed the two sequential monooxygenations of PNP was partially purified and separated into two components by anion-exchange chromatography and size exclusion chromatography. Both components were required for NADH-dependent oxidative release of nitrite from PNP or 4-nitrocatechol. One of the components was identified as a reductase based on its ability to catalyze the NAD(P)H-dependent reduction of 2,6-dichlorophenolindophenol and nitroblue tetrazolium. Nitrite release from either PNP or 4-nitrocatechol was inhibited by the flavoprotein inhibitor methimazole. Their results indicate that the two monooxygenations of PNP to THB are catalyzed by a single two-component enzyme system comprising a flavoprotein reductase and an oxygenase.

  18. Nitrite maxima in the Northern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Sankaranarayanan, V.N.; DeSousa, S.N.; Fondekar, S.P.

    There are 2 nitrite maxima in the Northern Arabian Sea, one at the thermocline depth and the other at depths between 300 and 500 m. The 2nd maximum is more prominent in the northeastern part of the Arabian Sea. The 1st maximum is associated...

  19. Identification of Multiple Soluble Fe(III Reductases in Gram-Positive Thermophilic Bacterium Thermoanaerobacter indiensis BSB-33

    Directory of Open Access Journals (Sweden)

    Subrata Pal

    2014-01-01

    Full Text Available Thermoanaerobacter indiensis BSB-33 has been earlier shown to reduce Fe(III and Cr(VI anaerobically at 60°C optimally. Further, the Gram-positive thermophilic bacterium contains Cr(VI reduction activity in both the membrane and cytoplasm. The soluble fraction prepared from T. indiensis cells grown at 60°C was found to contain the majority of Fe(III reduction activity of the microorganism and produced four distinct bands in nondenaturing Fe(III reductase activity gel. Proteins from each of these bands were partially purified by chromatography and identified by mass spectrometry (MS with the help of T. indiensis proteome sequences. Two paralogous dihydrolipoamide dehydrogenases (LPDs, thioredoxin reductase (Trx, NADP(H-nitrite reductase (Ntr, and thioredoxin disulfide reductase (Tdr were determined to be responsible for Fe(III reductase activity. Amino acid sequence and three-dimensional (3D structural similarity analyses of the T. indiensis Fe(III reductases were carried out with Cr(VI reducing proteins from other bacteria. The two LPDs and Tdr showed very significant sequence and structural identity, respectively, with Cr(VI reducing dihydrolipoamide dehydrogenase from Thermus scotoductus and thioredoxin disulfide reductase from Desulfovibrio desulfuricans. It appears that in addition to their iron reducing activity T. indiensis LPDs and Tdr are possibly involved in Cr(VI reduction as well.

  20. Electrochemical removal of nitrite in simulated aquaculture wastewater

    African Journals Online (AJOL)

    use

    2011-11-21

    Nov 21, 2011 ... literature on aquaculture wastewater (AW), studies is more replete as AW is contaminated with toxic sub- stances like nitrite and nitrate (Lin and Wu, 1996;. Virkutyte and Jegatheesan, 2009; Virkutyte et al., 2010). The hazardous and toxic nature of nitrite is a major concern. Nitrite results in the wastewater ...

  1. Seasonal Distribution of Nitrate and Nitrite Levels in Eleme Abattoir ...

    African Journals Online (AJOL)

    MICHAEL

    should be periodic evaluation of nitrate and nitrite levels in the area. @ JASEM .... Table 6: Comparison of the levels of Nitrate and Nitrite in Surface and Groundwater in the Dry Season with WHO (1988) Standards. Unaffected ... Table 7: Calculated Ratios of Nitrate and Nitrite to WHO (1988) Guideline values. Season Ratios ...

  2. 40 CFR 721.4740 - Alkali metal nitrites.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in the...

  3. The role of nitrite in nitric oxide homeostasis

    DEFF Research Database (Denmark)

    Jensen, Frank Bo

    2009-01-01

    Nitrite is endogenously produced as an oxidative metabolite of nitric oxide, but it also functions as a NO donor that can be activated by a number of cellular proteins under hypoxic conditions. This article discusses the physiological role of nitrite and nitrite-derived NO in blood flow regulatio...

  4. Production of nano zinc, zinc sulphide and nanocomplex of magnetite zinc oxide by Brevundimonas diminuta and Pseudomonas stutzeri.

    Science.gov (United States)

    Mirhendi, Mansoureh; Emtiazi, Giti; Roghanian, Rasoul

    2013-12-01

    ZnO (Zincite) nanoparticle has many industrial applications and is mostly produced by chemical reactions, usually prepared by decomposition of zinc acetate or hot-injection and heating-up method. Synthesis of semi-conductor nanoparticles such as ZnS (Sphalerite) by ultrasonic was previously reported. In this work, high-zinc tolerant bacteria were isolated and used for nano zinc production. Among all isolated microorganisms, a gram negative bacterium which was identified as Brevundimonas diminuta could construct nano magnetite zinc oxide on bacterial surface with 22 nm in size and nano zinc with 48.29 nm in size. A piece of zinc metal was immersed in medium containing of pure culture of B. diminuta. Subsequently, a yellow-white biofilm was formed which was collected from the surface of zinc. It was dried at room temperature. The isolated biofilm was analysed by X-ray diffractometer. Interestingly, the yield of these particles was higher in the light, with pH 7 at 23°C. To the best of the authors knowledge, this is the first report about the production of nano zinc metal and nano zinc oxide that are stable and have anti-bacterial activities with magnetite property. Also ZnS (sized 12 nm) produced by Pseudomonas stutzeri, was studied by photoluminescence and fluorescent microscope.

  5. Proteomic Assessment of the Expression of Genes Related to Toluene Catabolism and Porin Synthesis in Pseudomonas stutzeri ST-9.

    Science.gov (United States)

    Michael, Esti; Gomila, Margarita; Lalucat, Jorge; Nitzan, Yeshayahu; Pechatnikov, Izabella; Cahan, Rivka

    2017-04-07

    The organization and expression of Pseudomonas stutzeri ST-9 genes related to toluene catabolism and porin synthesis was investigated. Toluene-degrading genes were found to be localized in the chromosome close to a phage-type integrase. A regulatory gene and 21 genes related to an aromatics degradation pathway are organized as a putative operon. These proteins are upregulated in the presence of toluene. Fourteen outer membrane proteins were identified as porins in the ST-9 genome. The identified porins showed that the main detected porins are related to the OmpA and OprD superfamilies. The percentage of porins in the outer membrane protein fraction, as determined by mass spectrometry, was 73% and 54% when the cells were cultured with toluene and with glucose, respectively. Upregulation of OmpA and downregulation of OprD occurred in the presence of toluene. A porin fraction (90% OprD) from both cultures was isolated and examined as a toluene uptake system using the liposome-swelling assay. Liposomes were prepared with the porin fraction from a culture that was grown on toluene (T-proteoliposome) or glucose (G-proteoliposome). There was no significant difference in the permeability rate of the different solutes through the T-proteoliposome and the G-proteoliposome.

  6. Effect of toluene on Pseudomonas stutzeri ST-9 morphology - plasmolysis, cell size, and formation of outer membrane vesicles.

    Science.gov (United States)

    Michael, Esti; Nitzan, Yeshayahu; Langzam, Yakov; Luboshits, Galia; Cahan, Rivka

    2016-08-01

    Isolated toluene-degrading Pseudomonas stutzeri ST-9 bacteria were grown in a minimal medium containing toluene (100 mg·L(-1)) (MMT) or glucose (MMG) as the sole carbon source, with specific growth rates of 0.019 h(-1) and 0.042 h(-1), respectively. Scanning (SEM) as well as transmission (TEM) electron microscope analyses showed that the bacterial cells grown to mid-log phase in the presence of toluene possess a plasmolysis space. TEM analysis revealed that bacterial cells that were grown in MMT were surrounded by an additional "material" with small vesicles in between. Membrane integrity was analyzed by leakage of 260 nm absorbing material and demonstrated only 7% and 8% leakage from cultures grown in MMT compared with MMG. X-ray microanalysis showed a 4.3-fold increase in Mg and a 3-fold increase in P in cells grown in MMT compared with cells grown in MMG. Fluorescence-activated cell sorting (FACS) analysis indicated that the permeability of the membrane to propidium iodide was 12.6% and 19.6% when the cultures were grown in MMG and MMT, respectively. The bacterial cell length increased by 8.5% ± 0.1% and 17% ± 2%, as measured using SEM images and FACS analysis, respectively. The results obtained in this research show that the presence of toluene led to morphology changes, such as plasmolysis, cell size, and formation of outer membrane vesicles. However, it does not cause significant damage to membrane integrity.

  7. Production and Biochemical Characterization of a High Maltotetraose (G4 Producing Amylase from Pseudomonas stutzeri AS22

    Directory of Open Access Journals (Sweden)

    Hana Maalej

    2014-01-01

    Full Text Available Amylase production and biochemical characterization of the crude enzyme preparation from Pseudomonas stutzeri AS22 were evaluated. The highest α-amylase production was achieved after 24 hours of incubation in a culture medium containing 10 g/L potato starch and 5 g/L yeast extract, with initial pH 8.0 at 30°C under continuous agitation at 200 rpm. The optimum temperature and pH for the crude α-amylase activity were 60°C and 8.0, respectively. The effect of different salts was evaluated and it was found that both α-amylase production and activity were Ca2+-dependent. The amylolytic preparation was found to catalyze exceptionally the formation of very high levels of maltotetraose from starch (98%, w/w in the complete absence of glucose since the initial stages of starch hydrolysis (15 min and hence would have a potential application in the manufacturing of maltotetraose syrups.

  8. Mutagenesis breeding research of Lactobacillus brevis of nitrite reduction

    Directory of Open Access Journals (Sweden)

    LI Zeli

    2015-10-01

    Full Text Available The pollution of nitrite in food became one of the focus of food safety issues,the use of biotechnology methods degrading nitrite became hotspot.The primitive strain was Lactobacillus brevis C2,preserved in our laboratory,had the ability to degrade nitrite,through composite mutagenesis of 15 W,254 nm,20 cm ultraviolet mutagenesis (UV for 120 s and 0.8% diethyl sulfate(DES in 37℃ mutation for 40 min,after screening,we successfully obtained high efficient strain of nitrite degradation,named UV6-DS2,relative to the starting strain,under the condition of 400 mg/L nitrite,after 12 h degradation,nitrite degradation rate increased from 92.8% to 97.8%,to explore its application in food was able to effectively reduce concentration of nitrite in food.

  9. Inhibition kinetics of nitritation and half-nitritation of old landfill leachate in a membrane bioreactor.

    Science.gov (United States)

    Li, Yun; Wang, Zhaozhao; Li, Jun; Wei, Jia; Zhang, Yanzhuo; Zhao, Baihang

    2017-04-01

    Nitritation can be used as a pretreatment for anaerobic ammonia oxidation (anammox). Various control strategies for nitritation and half-nitritation of old landfill leachate in a membrane bioreactor were investigated in this study and the inhibition kinetics of substrate, product and old landfill leachate on nitritation were analyzed via batch tests. The results demonstrated that old landfill leachate nitritation in the membrane bioreactor can be achieved by adjusting the influent loading and dissolved oxygen (DO). From days 105-126 of the observation period, the average effluent concentration was 871.3 mg/L and the accumulation rate of [Formula: see text] was 97.2%. Half-nitritation was realized quickly by adjusting hydraulic retention time and DO. A low-DO control strategy appeared to best facilitate long-term and stable operation. Nitritation inhibition kinetic experiments showed that the inhibition of old landfill leachate was stronger than that of the substrate [Formula: see text] or product [Formula: see text] . The ammonia oxidation rate dropped by 22.2% when the concentration of old landfill leachate (calculated in chemical oxygen demand) was 1600.2 mg/L; further, when only free ammonia or free nitrous acid were used as a single inhibition factor, the ammonia oxidation rate dropped by 4.7-6.5% or 14.5-15.9%, respectively. Haldane, Aiba, and a revised inhibition kinetic model were adopted to separately fit the experimental data. The R 2 correlation coefficient values for these three models were 0.982, 0.996, and 0.992, respectively. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Investigation of reduction and tolerance capability of lactic acid bacteria isolated from kimchi against nitrate and nitrite in fermented sausage condition.

    Science.gov (United States)

    Paik, Hyun-Dong; Lee, Joo-Yeon

    2014-08-01

    Lactobacillus brevis KGR3111, Lactobacillus curvatus KGR 2103, Lactobacillus plantarum KGR 5105, and Lactobacillus sakei KGR 4108 isolated from kimchi were investigated for their potential to be used as starter culture for fermented sausages with the capability to reduce and tolerate nitrate/nitrite. The reduction capability of tested strains for nitrate was not dramatic. All tested strains, however, showed the capability to produce nitrite reductase with the reduction amount of 58.46-75.80 mg/l of NO(2)(-). L. brevis and L. plantarum showed nitrate tolerance with the highest number of 8.71 log cfu/ml and 8.81 log cfu/ml, and L. brevis and L. sakei exhibited nitrite tolerance with the highest number of 8.24 log cfu/ml and 8.25 log cfu/ml, respectively. As a result, L. brevis, L. plantarum, and L. sakei isolated from kimchi showed a tolerance against nitrate or nitrite with a good nitrite reduction capability, indicating the satisfaction of one of the selection criteria to be used as starter culture for fermented sausages. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Evidence that biliverdin-IX beta reductase and flavin reductase are identical.

    OpenAIRE

    Shalloe, F; Elliott, G; Ennis, O; Mantle, T J

    1996-01-01

    A search of the database shows that human biliverdin-IX beta reductase and flavin reductase are identical. We have isolated flavin reductase from bovine erythrocytes and show that the activity co-elutes with biliverdin-IX beta reductase. Preparations of the enzyme that are electrophoretically homogeneous exhibit both flavin reductase and biliverdin-IX beta reductase activities; however, they are not capable of catalysing the reduction of biliverdin-IX alpha. Although there is little obvious s...

  12. Physiological Roles for Two Periplasmic Nitrate Reductases in Rhodobacter sphaeroides 2.4.3 (ATCC 17025)▿

    Science.gov (United States)

    Hartsock, Angela; Shapleigh, James P.

    2011-01-01

    The metabolically versatile purple bacterium Rhodobacter sphaeroides 2.4.3 is a denitrifier whose genome contains two periplasmic nitrate reductase-encoding gene clusters. This work demonstrates nonredundant physiological roles for these two enzymes. One cluster is expressed aerobically and repressed under low oxygen while the second is maximally expressed under low oxygen. Insertional inactivation of the aerobically expressed nitrate reductase eliminated aerobic nitrate reduction, but cells of this strain could still respire nitrate anaerobically. In contrast, when the anaerobic nitrate reductase was absent, aerobic nitrate reduction was detectable, but anaerobic nitrate reduction was impaired. The aerobic nitrate reductase was expressed but not utilized in liquid culture but was utilized during growth on solid medium. Growth on a variety of carbon sources, with the exception of malate, the most oxidized substrate used, resulted in nitrite production on solid medium. This is consistent with a role for the aerobic nitrate reductase in redox homeostasis. These results show that one of the nitrate reductases is specific for respiration and denitrification while the other likely plays a role in redox homeostasis during aerobic growth. PMID:21949073

  13. Nitrite-free Asian hot dog sausages reformulated with nitrite replacers.

    Science.gov (United States)

    Ruiz-Capillas, C; Tahmouzi, S; Triki, M; Rodríguez-Salas, L; Jiménez-Colmenero, F; Herrero, A M

    2015-07-01

    This research deals with the application of a global strategy designed to produce a nitrite-free Asian hot dog. Different ingredients such as annatto, cochineal, orange dietary fibre, vitamins E and C, lactate and celery were combined in order to study the appearance (colour), lipid oxidation stability and microbial stability of the nitrite-free formulations. The control sample contained much more (P annatto (RA) had the lowest a* values. Lipid oxidation levels were similar irrespective of formulation. The hot dog reformulated with cochineal (RC) scored higher for overall acceptability than RA, mainly due to its colour.

  14. Comparative analysis of nitrite uptake and hemoglobin-nitrite reactions in erythrocytes: sorting out uptake mechanisms and oxygenation dependencies

    DEFF Research Database (Denmark)

    Jensen, Frank Bo; Rohde, Sabina

    2010-01-01

    (hagfish and lamprey) anion exchanger-1 (AE1) in the membrane, with the aim to unravel the mechanisms and oxygenation dependencies of nitrite transport. Added nitrite rapidly diffused into the RBCs until equilibrium. The distribution ratio of nitrite across the membrane agreed with that expected from HNO2...... diffusion and AE1-mediated facilitated NO2- diffusion. Participation of HNO2 diffusion was emphasized by rapid transmembrane nitrite equilibration also in the natural AE1 knockouts. Following the equilibration, nitrite was consumed by reacting with Hb, which created a continued inward diffusion controlled....... We propose a model for RBC nitrite uptake that involves both HNO2 diffusion and AE1-mediated transport and which explains both the present and previous (sometimes puzzling) results....

  15. Comparative bioavailability of ammonium, nitrate, nitrite and urea to typically harmful cyanobacterium Microcystis aeruginosa.

    Science.gov (United States)

    Li, Jihua; Zhang, Jibiao; Huang, Wei; Kong, Fanlong; Li, Yue; Xi, Min; Zheng, Zheng

    2016-09-15

    Phosphorus is generally considered as the prime limiting nutrient responsible for cyanobacterial blooms. However, recent research is drawing attention to the importance of bioavailable nitrogen (N) in freshwater eutrophication. This study investigated the bioavailability of NO3(-)-N, NO2(-)-N, NH4(+)-N and Urea-N under different concentrations of 1.2, 3.6 and 6.0mgL(-1) to Microcystis aeruginosa. Overall, Urea-N ranked the first in promoting M. aeruginosa growth, followed by NO3(-)-N and NO2(-)-N. However, the algal growth cultured in NH4(+)-N was depressed under test N levels. The bioavailability of N to M. aeruginosa was seriously influenced by both N forms and N concentrations (pUrea-N treatment decreased the fastest, which were corresponding with the μ values of M. aeruginosa. The high enzymic activities of nitrate reductase, nitrite reductase and glutamine synthetase indicated that the decomposition process for urea is effective, which contributed in N assimilation and utilization in M. aeruginosa cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Hypoxia tolerance, nitric oxide, and nitrite

    DEFF Research Database (Denmark)

    Fago, Angela; Jensen, Frank Bo

    2015-01-01

    survival resides in concerted physiological responses, including strong metabolic depression, protection against oxidative damage and – in air breathing animals - redistribution of blood flow. Each of these responses is known to be tightly regulated by nitric oxide (NO) and during hypoxia by its metabolite...... of NO and nitrite signaling in the adaptive response to hypoxia in vertebrate animals.......Among vertebrates able to tolerate periods of oxygen deprivation, the painted and red-eared slider turtles (Chrysemys picta and Trachemys scripta) and the crucian carp (Carassius carassius) are the most extreme and can survive even months of total lack of oxygen during winter. The key to hypoxia...

  17. Global transcriptional analysis of nitrogen fixation and ammonium repression in root-associated Pseudomonas stutzeri A1501

    Directory of Open Access Journals (Sweden)

    Lu Wei

    2010-01-01

    Full Text Available Abstract Background Biological nitrogen fixation is highly controlled at the transcriptional level by regulatory networks that respond to the availability of fixed nitrogen. In many diazotrophs, addition of excess ammonium in the growth medium results in immediate repression of nif gene transcription. Although the regulatory cascades that control the transcription of the nif genes in proteobacteria have been well investigated, there are limited data on the kinetics of ammonium-dependent repression of nitrogen fixation. Results Here we report a global transcriptional profiling analysis of nitrogen fixation and ammonium repression in Pseudomonas stutzeri A1501, a root-associated and nitrogen-fixing bacterium. A total of 166 genes, including those coding for the global nitrogen regulation (Ntr and Nif-specific regulatory proteins, were upregulated under nitrogen fixation conditions but rapidly downregulated as early as 10 min after ammonium shock. Among these nitrogen fixation-inducible genes, 95 have orthologs in each of Azoarcus sp. BH72 and Azotobacter vinelandii AvoP. In particular, a 49-kb expression island containing nif and other associated genes was markedly downregulated by ammonium shock. Further functional characterization of pnfA, a new NifA-σ54-dependent gene chromosomally linked to nifHDK, is reported. This gene encodes a protein product with an amino acid sequence similar to that of five hypothetical proteins found only in diazotrophic strains. No noticeable differences in the transcription of nifHDK were detected between the wild type strain and pnfA mutant. However, the mutant strain exhibited a significant decrease in nitrogenase activity under microaerobic conditions and lost its ability to use nitrate as a terminal electron acceptor for the support of nitrogen fixation under anaerobic conditions. Conclusions Based on our results, we conclude that transcriptional regulation of nif gene expression in A1501 is mediated by the nif

  18. Growth of Campylobacter jejuni Supported by Respiration of Fumarate, Nitrate, Nitrite, Trimethylamine-N-Oxide, or Dimethyl Sulfoxide Requires Oxygen

    Science.gov (United States)

    Sellars, Michael J.; Hall, Stephen J.; Kelly, David J.

    2002-01-01

    The human gastrointestinal pathogen Campylobacter jejuni is a microaerophilic bacterium with a respiratory metabolism. The genome sequence of C. jejuni strain 11168 reveals the presence of genes that encode terminal reductases that are predicted to allow the use of a wide range of alternative electron acceptors to oxygen, including fumarate, nitrate, nitrite, and N- or S-oxides. All of these reductase activities were present in cells of strain 11168, and the molybdoenzyme encoded by Cj0264c was shown by mutagenesis to be responsible for both trimethylamine-N-oxide (TMAO) and dimethyl sulfoxide (DMSO) reduction. Nevertheless, growth of C. jejuni under strictly anaerobic conditions (with hydrogen or formate as electron donor) in the presence of any of the electron acceptors tested was insignificant. However, when fumarate, nitrate, nitrite, TMAO, or DMSO was added to microaerobic cultures in which the rate of oxygen transfer was severely restricted, clear increases in both the growth rate and final cell density compared to what was seen with the control were obtained, indicative of electron acceptor-dependent energy conservation. The C. jejuni genome encodes a single class I-type ribonucleotide reductase (RNR) which requires oxygen to generate a tyrosyl radical for catalysis. Electron microscopy of cells that had been incubated under strictly anaerobic conditions with an electron acceptor showed filamentation due to an inhibition of cell division similar to that induced by the RNR inhibitor hydroxyurea. An oxygen requirement for DNA synthesis can thus explain the lack of anaerobic growth of C. jejuni. The results indicate that strict anaerobiosis is a stress condition for C. jejuni but that alternative respiratory pathways can contribute significantly to energy conservation under oxygen-limited conditions, as might be found in vivo. PMID:12107136

  19. The nitrite oxidizing system of Nitrobacter winogradskyi.

    Science.gov (United States)

    Yamanaka, T; Fukumori, Y

    1988-12-01

    Cytochrome components which participate in the oxidation of nitrite in Nitrobacter winogradskyi have been highly purified and their properties studied in detail. Cytochrome a1c1 is an iron-sulphur molybdoenzyme which has haems a and c and acts as a nitrite-cytochrome c oxidoreductase. Cytochrome c-550 is homologous to eukaryotic cytochrome c and acts as the electron mediator between cytochrome a1c1 and aa3-type cytochrome c oxidase. The oxidase is composed of two kinds of subunits, has two molecules of haem a and two atoms of copper in the molecule, and oxidizes actively eukaryotic ferrocytochrome c as well as its own ferrocytochrome c-550. Further, a flavoenzyme has been obtained which has transhydrogenase activity and catalyses reduction of NADP+ with benzylviologen radical. This enzyme may be responsible for production of NADPH in N. winogradskyi. The electron transfer against redox potential from NO2- to cytochrome c could be pushed through prompt removal by cytochrome aa3 of H+ formed by the dehydrogenation of NO2- + H2O. As cytochrome c in anaerobically kept cell-free extracts is rapidly reduced on addition of NO2-, a membrane potential does not seem necessary for the reduction of cytochrome c by cytochrome a1c1 with NO2- in vivo.

  20. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphism ...

    African Journals Online (AJOL)

    Polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene are associated with abortion, early embryo loss and recurrent spontaneous abortion in human. However, information on the association between MTHFR polymorphism and cow abortion is scarce. In the present study, the effects of MTHFR ...

  1. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata

    Directory of Open Access Journals (Sweden)

    Michael F Cohen

    2015-07-01

    Full Text Available In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated in medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared (SR-FTIR spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. We hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.

  2. Modifying a known gelator scaffold for nitrite detection.

    Science.gov (United States)

    Zurcher, Danielle M; Adhia, Yash J; Romero, Julián Díaz; McNeil, Anne J

    2014-07-25

    The process of selecting and modifying a known gelator scaffold to develop a new nitrite-based sensor is described. Five new azo-sulfonate gelators were discovered and characterized. The most promising scaffold exhibits a stable diazonium intermediate, proceeds in a high yield, and gels nitrite-spiked tap, river, and pond water.

  3. Nitrite enhances liver graft protection against cold ischemia ...

    African Journals Online (AJOL)

    Amani Cherif-Sayadi

    2017-03-30

    Mar 30, 2017 ... 2 h. Control livers were perfused without cold storage. Results: Nitrite effectively protected the rat liver grafts from the onset of cold I/R injury. L-NAME treatment did not abolish the beneficial effects of nitrite. Liver damage, protein oxidation .... phosphatase (PAL) are associated with hepatocellular damage ...

  4. Nitrate and nitrite in biology, nutrition and therapeutics

    NARCIS (Netherlands)

    Lundberg, J.O.; van Faassen, E.E.H.|info:eu-repo/dai/nl/071100938; Gladwin, M.T.; Ahluwalia, A.; Benjamin, N.

    2009-01-01

    Inorganic nitrate and nitrite from endogenous or dietary sources are metabolized in vivo to nitric oxide (NO) and other bioactive nitrogen oxides. The nitrate-nitrite-NO pathway is emerging as an important mediator of blood flow regulation, cell signaling, energetics and tissue responses to hypoxia.

  5. Nitrite as regulator of hypoxic signaling in mammalian physiology

    NARCIS (Netherlands)

    van Faassen, E.E.H.|info:eu-repo/dai/nl/071100938; Bahrami, S.; Feelisch, M.; Hogg, N.; Kelm, M.

    2009-01-01

    In this review we consider the effects of endogenous and pharmacological levels of nitrite under conditions of hypoxia. In humans, the nitrite anion has long been considered as metastable intermediate in the oxidation of nitric oxide radicals to the stable metabolite nitrate. This oxidation cascade

  6. Electrochemical removal of nitrite in simulated aquaculture wastewater

    African Journals Online (AJOL)

    Electrochemical removal of nitrite at a concentration of 10 mg l-1 from synthetic aquaculture wastewater was investigated in this study using a batch reactor. The effects of important operating parameters such as electrode material and applied current density were studied. The highest nitrite removal is achieved with nickel ...

  7. Unraveling the origin of the nitrite-mediated hypoxic vasodilation

    DEFF Research Database (Denmark)

    Fago, Angela; Dalsgaard, T.; Simonsen, U.

    2007-01-01

    Circulating nitrite has recently emerged as an important physiological metabolite that contributes to increase vasodilation during tissue hypoxia. Using a wire myograph, we have investigated how the nitrite-dependent vasodilation in rat aortic rings is controlled by oxygen tension, norepinephrine...

  8. Nitrite and nitrate determinations in plasma: a critical evaluation

    NARCIS (Netherlands)

    Moshage, H.; Kok, B.; Huizenga, J. R.; Jansen, P. L.

    1995-01-01

    Plasma nitrite and nitrate determinations are increasingly being used in clinical chemistry as markers for the activity of nitric oxide synthase and the production of nitric oxide radicals. However, a systematic evaluation of the determination of nitrite and nitrate in plasma has not been performed.

  9. determination of nitrite, nitrate and total nitrogen in vegetable samples

    African Journals Online (AJOL)

    The above colour reaction system has been applied successfully for the determination of nitrite, nitrate and total nitrogen in vegetable samples. Unreduced samples give direct measure for nitrite whilst reduction of samples by copperized-cadmium column gives total nitrogen content and their difference shows nitrate content ...

  10. Amperometric Carbon Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    Science.gov (United States)

    A highly selective needle type solid state amperometric nitrite microsensor based on direct nitrite oxidation on carbon fiber was developed using a simplified fabrication method. The microsensor’s tip diameter was approximately 7 µm, providing a high spatial resolution of at lea...

  11. Occurrence and Toxicological Significance of Nitrate and Nitrite in ...

    African Journals Online (AJOL)

    Aim: To determine and evaluate the levels of nitrate and nitrite in some commercial infant formula in view of the health implications of these factors. Method: Nitrate and nitrite, which may create significant health problems in infants, were determined in four commercial infant formula. The public health and toxicological ...

  12. Time-dependent depletion of nitrite in pork/beef and chicken meat products and its effect on nitrite intake estimation

    OpenAIRE

    Merino, Leonardo; Darnerudc, Per Ola; Toldrá Vilardell, Fidel; Ilbäckc, Nils Gunnar

    2016-01-01

    ABSTRACT The food additive nitrite (E249, E250) is commonly used in meat curing as a food preservation method. Because of potential negative health effects of nitrite, its use is strictly regulated. In an earlier study we have shown that the calculated intake of nitrite in children can exceed the acceptable daily intake (ADI) when conversion from dietary nitrate to nitrite is included. This study examined time-dependent changes in nitrite levels in four Swedish meat products frequently eaten ...

  13. The Pasteurella multocida nrfE gene is upregulated during infection and is essential for nitrite reduction but not for virulence.

    Science.gov (United States)

    Boucher, David J; Adler, Ben; Boyce, John D

    2005-04-01

    Pasteurella multocida is the causative agent of a range of diseases with economic importance in production animals. Many systems have been employed to identify virulence factors of P. multocida, including in vivo expression technology (IVET), signature-tagged mutagenesis, and whole-genome expression profiling. In a previous study in which IVET was used with P. multocida, nrfE was identified as a gene that is preferentially expressed in vivo. In Escherichia coli, nrfE is part of the formate-dependent nitrite reductase system involved in utilizing available nitrite as an electron accepter during growth under anaerobic conditions. In this study, we constructed an isogenic P. multocida strain that was unable to reduce nitrite under either aerobic or anaerobic conditions, thereby demonstrating that P. multocida nrfE is essential for nitrite reduction. However, the nrfE mutant was still virulent in mice. Real-time reverse transcription-PCR analysis indicated that nrfE was regulated independently of nrfABCD by an independent promoter that is likely to be upregulated in vivo.

  14. Increased consumption and vasodilatory effect of nitrite during exercise

    Science.gov (United States)

    Hon, Yuen Yi; Lin, Elaina E.; Tian, Xin; Yang, Yang; Sun, He; Swenson, Erik R.; Taveira-Dasilva, Angelo M.; Gladwin, Mark T.

    2015-01-01

    This study investigated the effects of aerobic-to-anaerobic exercise on nitrite stores in the human circulation and evaluated the effects of systemic nitrite infusion on aerobic and anaerobic exercise capacity and hemodynamics. Six healthy volunteers were randomized to receive sodium nitrite or saline for 70 min in two separate occasions in an exercise study. Subjects cycled on an upright electronically braked cycle ergometer 30 min into the infusion according to a ramp protocol designed to attain exhaustion in 10 min. They were allowed to recover for 30 min thereafter. The changes of whole blood nitrite concentrations over the 70-min study period were analyzed by pharmacokinetic modeling. Longitudinal measurements of hemodynamic and clinical variables were analyzed by fitting nonparametric regression spline models. During exercise, nitrite consumption/elimination rate was increased by ∼137%. Cardiac output (CO), mean arterial pressure (MAP), and pulmonary artery pressure (PAP) were increased, but smaller elevation of MAP and larger increases of CO and PAP were found during nitrite infusion compared with placebo control. The higher CO and lower MAP during nitrite infusion were likely attributed to vasodilation and a trend toward decrease in systemic vascular resistance. In contrast, there were no significant changes in mean pulmonary artery pressures and pulmonary vascular resistance. These findings, together with the increased consumption of nitrite and production of iron-nitrosyl-hemoglobin during exercise, support the notion of nitrite conversion to release NO resulting in systemic vasodilatation. However, at the dosing used in this protocol achieving micromolar plasma concentrations of nitrite, exercise capacity was not enhanced, as opposed to other reports using lower dosing. PMID:26684248

  15. Differential nitrate accumulation, nitrate reduction, nitrate reductase ...

    African Journals Online (AJOL)

    use

    2011-12-07

    Dec 7, 2011 ... biosynthesis. Carbohydrate metabolism produces both the carbon skeletons and ferredoxin for nitrate assimilation. Inhibition of photosynthesis prevents the production of the reduced ferredoxin required for nitrite reduction in chloroplasts, which leads to nitrate and nitrite accumulation (Commichau et al., ...

  16. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    Science.gov (United States)

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  17. Genome-wide investigation and functional characterization of the β-ketoadipate pathway in the nitrogen-fixing and root-associated bacterium Pseudomonas stutzeri A1501

    Directory of Open Access Journals (Sweden)

    Geng Lizhao

    2010-02-01

    Full Text Available Abstract Background Soil microorganisms are mainly responsible for the complete mineralization of aromatic compounds that usually originate from plant products or environmental pollutants. In many cases, structurally diverse aromatic compounds can be converted to a small number of structurally simpler intermediates, which are metabolized to tricarboxylic acid intermediates via the β-ketoadipate pathway. This strategy provides great metabolic flexibility and contributes to increased adaptation of bacteria to their environment. However, little is known about the evolution and regulation of the β-ketoadipate pathway in root-associated diazotrophs. Results In this report, we performed a genome-wide analysis of the benzoate and 4-hydroxybenzoate catabolic pathways of Pseudomonas stutzeri A1501, with a focus on the functional characterization of the β-ketoadipate pathway. The P. stutzeri A1501 genome contains sets of catabolic genes involved in the peripheral pathways for catabolism of benzoate (ben and 4-hydroxybenzoate (pob, and in the catechol (cat and protocatechuate (pca branches of the β-ketoadipate pathway. A particular feature of the catabolic gene organization in A1501 is the absence of the catR and pcaK genes encoding a LysR family regulator and 4-hydroxybenzoate permease, respectively. Furthermore, the BenR protein functions as a transcriptional activator of the ben operon, while transcription from the catBC promoter can be activated in response to benzoate. Benzoate degradation is subject to carbon catabolite repression induced by glucose and acetate in A1501. The HPLC analysis of intracellular metabolites indicated that low concentrations of 4-hydroxybenzoate significantly enhance the ability of A1501 to degrade benzoate. Conclusions The expression of genes encoding proteins involved in the β-ketoadipate pathway is tightly modulated by both pathway-specific and catabolite repression controls in A1501. This strain provides an ideal

  18. Upconversion nanoparticles for ratiometric fluorescence detection of nitrite.

    Science.gov (United States)

    Han, Junfen; Zhang, Cheng; Liu, Fei; Liu, Bianhua; Han, Mingyong; Zou, Wensheng; Yang, Liang; Zhang, Zhongping

    2014-06-21

    We have developed a selective upconversion switching method for the ratiometric fluorescence detection of nitrite using upconversion nanoparticles (UCNPs) and an efficient nitrite reaction. The green emission (λ(em) = 539 nm) of NaYF4:Yb(3+),Er(3+) nanoparticles can be selectively quenched by the neutral red (NR) dye due to the spectral overlap between the emission at 539 nm and the absorption of NR, while its red emission (λ(em) = 654 nm) remains unchanged. Nitrite reacts specifically and strongly with NR to form diazonium salt and lose the diazonium group, which sharply decreases the absorption of NR. Thus, the green emission of NaYF4:Yb(3+),Er(3+) can be recovered by increasing the amount of nitrite, leading to visible color changes from red to orange-yellow and finally green under excitation at 980 nm. The increase in the ratio of emission intensities (I539/I654) is quantitatively correlated to the concentration of nitrite ions. Moreover, the developed method has been successfully applied to nitrite detection in real samples such as drinking water, natural water and meat foods. In particular, the upconversion sensors can efficiently avoid background optical interference and thus show potential for the detection of nitrite salts in complex samples.

  19. Community analysis of ammonia and nitrite oxidizers during start-up of nitritation reactors.

    Science.gov (United States)

    Egli, Konrad; Langer, Christian; Siegrist, Hans-Ruedi; Zehnder, Alexander J B; Wagner, Michael; van der Meer, Jan Roelof

    2003-06-01

    Partial nitrification of ammonium to nitrite under oxic conditions (nitritation) is a critical process for the effective use of alternative nitrogen removal technologies from wastewater. Here we investigated the conditions which promote establishment of a suitable microbial community for performing nitritation when starting from regular sewage sludge. Reactors were operated in duplicate under different conditions (pH, temperature, and dilution rate) and were fed with 50 mM ammonium either as synthetic medium or as sludge digester supernatant. In all cases, stable nitritation could be achieved within 10 to 20 days after inoculation. Quantitative in situ hybridization analysis with group-specific fluorescent rRNA-targeted oligonucleotides (FISH) in the different reactors showed that nitrite-oxidizing bacteria of the genus Nitrospira were only active directly after inoculation with sewage sludge (up to 4 days and detectable up to 10 days). As demonstrated by quantitative FISH and restriction fragment length polymorphism (RFLP) analyses of the amoA gene (encoding the active-site subunit of the ammonium monooxygenase), the community of ammonia-oxidizing bacteria changed within the first 15 to 20 days from a more diverse set of populations consisting of members of the Nitrosomonas communis and Nitrosomonas oligotropha sublineages and the Nitrosomonas europaea-Nitrosomonas eutropha subgroup in the inoculated sludge to a smaller subset in the reactors. Reactors operated at 30 degrees C and pH 7.5 contained reproducibly homogeneous communities dominated by one amoA RFLP type from the N. europaea-N. eutropha group. Duplicate reactors at pH 7.0 developed into diverse communities and showed transient population changes even within the ammonia oxidizer community. Reactors at pH 7.5 and 25 degrees C formed communities that were indistinguishable by the applied FISH probes but differing in amoA RFLP types. Communities in reactors fed with sludge digester supernatant exhibited a

  20. Estimated Dietary Intake of Nitrite and Nitrate in Swedish Children

    OpenAIRE

    2011-01-01

    Abstract This study examined the intake of nitrate and nitrite in Swedish children. Daily intake estimates were based on a nationwide food consumption survey (4-day food diary) and nitrite/nitrate content in vegetables, fruit, cured meat and water. The mean intake of nitrite from cured meat among 2259 children studied was 0.013, 0.010 and 0.007 mg kg-1 body weight day-1 in age groups 4, 8-9 and 11-12, respectively. Among these age groups, three individuals (0.1% of the studied chil...

  1. Evidence that biliverdin-IX beta reductase and flavin reductase are identical.

    Science.gov (United States)

    Shalloe, F; Elliott, G; Ennis, O; Mantle, T J

    1996-01-01

    A search of the database shows that human biliverdin-IX beta reductase and flavin reductase are identical. We have isolated flavin reductase from bovine erythrocytes and show that the activity co-elutes with biliverdin-IX beta reductase. Preparations of the enzyme that are electrophoretically homogeneous exhibit both flavin reductase and biliverdin-IX beta reductase activities; however, they are not capable of catalysing the reduction of biliverdin-IX alpha. Although there is little obvious sequence identity between biliverdin-IX alpha reductase (BVR-A) and biliverdin-IX beta reductase (BVR-B), they do show weak immunological cross-reactivity. Both enzymes bind to 2',5'-ADP-Sepharose. PMID:8687377

  2. [Aldehyde reductase activity and blood aldo-keto reductase spectrum in adolescents with neuroendocrine obesity].

    Science.gov (United States)

    Kuleshova, D K; Davydov, V V; Shvets, V N

    2012-01-01

    Investigation of aldehyde-reductase activity and blood aldo-keto reductase spectrum has been performed in 13-15 and 16-18-years old adolescents with obesity to clear up the mechanisms of neuroendocrine obesity at the age of puberty. It has been established that basal aldehyde reductase activity and blood aldo-keto reductase spectrum of healthy adolescents in early puberty do not differ from those of healthy adolescents in late puberty. A decreased aldehyde reductase activity and some alterations in blood aldo-keto reductase spectrum have been observed in late puberty in adolescents with neuroendocrine obesity. In adolescents with obesity there have been registered some changes in blood aldo-keto reductase spectrum which are not accompanied by any alterations in its aldehyde reductase activity. The results obtained suggest that certain prerequisites are formed in late puberty to complicate the course of neuroendocrine obesity.

  3. Fatty acyl-CoA reductase

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  4. Reevaluation of nitrate and nitrite levels in the human intestine.

    Science.gov (United States)

    Saul, R L; Kabir, S H; Cohen, Z; Bruce, W R; Archer, M C

    1981-06-01

    Analyses of human fecal and ileostomy samples by a method that is insensitive and free from interferences indicate that nitrate and nitrite levels in the intestine are lower than reported previously. Fecal nitrate and nitrite concentrations ranged from 0 to 14 mumol/kg (0 to 0.9 ppm) and 5 to 19 mumol/kg (0.3 to 0.9 ppm), respectively. Ileostomy samples contained from 0 to 7 mumol/kg (0 to 0.4 ppm) and 0 to 15 mumol/kg (0 to 0.7 ppm) for nitrate and nitrite, respectively. We also showed that, when deliberately added to feces samples, nitrate and nitrite were destroyed during a two-hr incubation period in a reaction that depended on the presence of microorganisms. The results suggest that conditions in the lower gastrointestinal tract favor denitrification, not nitrification as had been proposed previously.

  5. Achievement of high nitrite accumulation via endogenous partial denitrification (EPD).

    Science.gov (United States)

    Ji, Jiantao; Peng, Yongzhen; Wang, Bo; Wang, Shuying

    2017-01-01

    This study proposed a novel strategy for achievement of partial denitrification driven by endogenous carbon sources in an anaerobic/anoxic/aerobic activated sludge system. Results showed that in the steady-stage, the nitrate-to-nitrite transformation ratio (NTR) was kept at around 87% without nitrate in the effluent. During the anaerobic period, exogenous carbon sources was completely taken up, accompanied by the consumption of glycogen and production of polyhydroxyalkanoates (PHAs). During the anoxic period, nitrate was reduced to nitrite by using PHAs as carbon sources, followed by the replenishment of glycogen. Thus, the phenotype of denitrifying GAOs was clearly observed and endogenous partial denitrification (EPD) occurred. Furthermore, results showed the nitrate reduction was prior to the nitrite reduction in the presence of nitrate, which led to the high nitrite accumulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Performance of denitrifying microbial fuel cell with biocathode over nitrite

    Directory of Open Access Journals (Sweden)

    Zhao eHuimin

    2016-03-01

    Full Text Available Microbial fuel cell (MFC with nitrite as an electron acceptor in cathode provided a new technology for nitrogen removal and electricity production simultaneously. The influences of influent nitrite concentration and external resistance on the performance of denitrifying MFC were investigated. The optimal effectiveness were obtained with the maximum total nitrogen (TN removal rate of 54.80±0.01 g m-3 d-1. It would be rather desirable for the TN removal than electricity generation at lower external resistance. Denaturing gradient gel electrophoresis suggested that Proteobacteria was the predominant phylum, accounting for 35.72%. Thiobacillus and Afipia might benefit to nitrite removal. The presence of nitrifying Devosia indicated that nitrite was oxidized to nitrate via a biochemical mechanism in the cathode. Ignavibacterium and Anaerolineaceae was found in the cathode as a heterotrophic bacterium with sodium acetate as substrate, which illustrated that sodium acetate in anode was likely permeated through proton exchange membrane to the cathode .

  7. The occurence of a nitrate reductase inactivating factor in extracts of Spirodela polyrrhiza

    Directory of Open Access Journals (Sweden)

    Józef Buczek

    2014-01-01

    Full Text Available NADH-nitrate reductase (NR had a low activity immediately after extraction from 14 day-old cultures of Spirodela polyrrhiza with the basic extraction solution (50 mM K-phosphate buffer, pH 7.5, 5 mM cysteine and 3 mM EDTA whereas nitrite reductase (NiR activity in the same extract was very high. Increasing the EDTA or cysteine concentration or replacing cysteine by dithiothreitol had no effect on the level of NR activity. The addition of 3% bovine serum albumine (BSA and 0.4 mM phenylmethyl sulfonyfluoride (PMSF or 3% BSA and 1.5% polyvinylpolypyrrolidone (PVPP to the extraction solution greatly increased the NR activity. The enzyme activity increased 40 times in the presence of 1.5% PVPP with 3% BSA and 0.4 mM PMSF. The highest NR activity (over 100-fold was found in the presence of 3% caseine. The probable nature of the factor inactivating nitrate reductase in S. polyrrhiza extracts is discussed.

  8. Differential uptake and metabolism of nitrite in normoxic and hypoxic goldfish

    DEFF Research Database (Denmark)

    Jensen, Frank Bo; Hansen, Marie N.

    2011-01-01

    cells (RBCs) and muscle tissue of normoxic than hypoxic goldfish, suggesting that nitrite uptake was augmented by normoxia in spite of a predictable lower gill surface area. Elevation of nitrite was associated with increased concentrations of S-nitroso, N-nitroso and Fe-nitrosyl compounds in both......Nitrite is a physiological important nitric oxide donor at low concentrations but becomes toxic at high concentrations, as develops in freshwater fish exposed to environmental nitrite. We hypothesized that nitrite uptake across the gills differs between normoxic and hypoxic fish and that nitrite...... was converted to non-toxic nitrate. The generation of methemoglobin and nitrosylhemoglobin (assessed by spectral deconvolution) was more pronounced during normoxic nitrite exposure than during hypoxic nitrite exposure, in agreement with the higher nitrite load in normoxic fish. However, at any given nitrite...

  9. Model based evaluation of partial nitritation in a SHARON reactor

    OpenAIRE

    Magrí Aloy, Albert; Solé-Mauri, Francina; Colprim, Jesús; Flotats Ripoll, Xavier

    2007-01-01

    The CLONIC ‘Closing the Nitrogen Cycle from Urban Landfill Leachate by Biological Nitrogen Removal over Nitrite and Thermal Treatment’ project is focused on nitrogen removal through the application of two biological processes: a partial nitritation of ammonia followed by an anaerobic ammonium oxidation (anammox). Finally, a thermal dry treatment closes the cycle. This CLONIC project workshop will present final results and will give researchers the opportunity to share their experiences in ...

  10. Nitrate, Nitrite and ascorbic acid content of commercial and home ...

    African Journals Online (AJOL)

    The contents of nitrate, nitrite and ascorbic acid were determined in four samples of commercial and fifteen samples of home - prepared complementary infant foods common in Nigeria. The nitrate and nitrite values of the commercial food samples ranged from 3.1– 3.9mgNO3- N/100g and 5.0 - 16.0ug N02 - N/100g ...

  11. Oxygen and xenobiotic reductase activities of cytochrome P450.

    NARCIS (Netherlands)

    Goeptar, A.R.; Scheerens, H.; Vermeulen, N.P.E.

    1995-01-01

    The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O

  12. Mutagenicity of some alkyl nitrites used as recreational drugs

    Energy Technology Data Exchange (ETDEWEB)

    Dunkel, V.C.; Cameron, T.P. (National Institute of Health, Bethesda (USA)); Rogers-Back, A.M.; Lawlor, T.E.; Harbell, J.W. (Microbiological Associates Inc., Rockville, MD (USA))

    1989-01-01

    When the AIDS epidemic was in its earliest stages, and prior to identification of HIV as the etiological factor, the use of volatile nitrites by the male homosexual community to enhance sexual activities appeared to have a significant role in this disease. Preliminary observations indicated that that portion of the male homosexual community which developed Kaposi's sarcoma were also heavy nitrite users. These nitrites had been demonstrated to be mutagenic in bacteria and thus it was postulated that they could be responsible for the appearance of the sarcoma. To evaluate further the genotoxic activity of these chemicals, six nitrites, including those most commonly used by homosexuals for sexual gratification, were selected for testing in the mouse lymphoma TK {plus minus} and Salmonell typhimurium mutagenicity assays. One chemical, n-amyl nitrite, was negative in the mouse lymphoma assay, while the other five chemicals, n-butyl, isobutyl, iso-amyl, sec-butyl, and n-propyl nitrite, were positive. All six compounds were positive in the Salmonella assay. The mutagenic and known toxic effects of these chemicals remain a concern because a large population of teenagers and young adults continue to abuse these substances.

  13. Nitrite therapy improves survival postexposure to chlorine gas

    Science.gov (United States)

    Honavar, Jaideep; Doran, Stephen; Oh, Joo-Yeun; Steele, Chad; Matalon, Sadis

    2014-01-01

    Exposure to relatively high levels of chlorine (Cl2) gas can occur in mass-casualty scenarios associated with accidental or intentional release. Recent studies have shown a significant postexposure injury phase to the airways, pulmonary, and systemic vasculatures mediated in part by oxidative stress, inflammation, and dysfunction in endogenous nitric oxide homeostasis pathways. However, there is a need for therapeutics that are amenable to rapid and easy administration in the field and that display efficacy toward toxicity after chlorine exposure. In this study, we tested whether nitric oxide repletion using nitrite, by intramuscular injection after Cl2 exposure, could prevent Cl2 gas toxicity. C57bl/6 male mice were exposed to 600 parts per million Cl2 gas for 45 min, and 24-h survival was determined with or without postexposure intramuscular nitrite injection. A single injection of nitrite (10 mg/kg) administered either 30 or 60 min postexposure significantly improved 24-h survival (from ∼20% to 50%). Survival was associated with decreased neutrophil accumulation in the airways. Rendering mice neutropenic before Cl2 exposure improved survival and resulted in loss of nitrite-dependent survival protection. Interestingly, female mice were more sensitive to Cl2-induced toxicity compared with males and were also less responsive to postexposure nitrite therapy. These data provide evidence for efficacy and define therapeutic parameters for a single intramuscular injection of nitrite as a therapeutic after Cl2 gas exposure that is amenable to administration in mass-casualty scenarios. PMID:25326579

  14. A Review of Nitrate and Nitrite Toxicity in Foods

    Directory of Open Access Journals (Sweden)

    Mir-Jamal Hosseini

    2016-03-01

    Full Text Available Agricultural advancement and population growth have prompted increases in food supplies, and higher crop yields have been made possible through the application of fertilizers. Large quantities of livestock and poultry on farms, along with the accumulation of biomass and agricultural residues, can cause contamination of ground water resources and other water sanitation concerns in both developing and developed countries. Nitrate is mainly used as a fertilizer in agriculture, and because of its high solubility in water, it can create biological problems in the environment. High usage of nitrite in the food industry as a preservative, flavor enhancer, antioxidant, and color stabilizing agent can cause human exposure to this toxic compound. Nitrite is 10 times as toxic as nitrate in humans. Nitrate is converted to nitrite and nitrosamine compounds in the human stomach, which can lead to bladder cancer. In this review, sources of nitrate and nitrite exposure were investigated. Furthermore, the review evaluates standard levels of nitrate and nitrite in different foods, and acceptable daily doses of these compounds in various countries. Finally, we discuss valid methods of nitrate and nitrite identification and removal in foods.

  15. Nitrite therapy improves survival postexposure to chlorine gas.

    Science.gov (United States)

    Honavar, Jaideep; Doran, Stephen; Oh, Joo-Yeun; Steele, Chad; Matalon, Sadis; Patel, Rakesh P

    2014-12-01

    Exposure to relatively high levels of chlorine (Cl₂) gas can occur in mass-casualty scenarios associated with accidental or intentional release. Recent studies have shown a significant postexposure injury phase to the airways, pulmonary, and systemic vasculatures mediated in part by oxidative stress, inflammation, and dysfunction in endogenous nitric oxide homeostasis pathways. However, there is a need for therapeutics that are amenable to rapid and easy administration in the field and that display efficacy toward toxicity after chlorine exposure. In this study, we tested whether nitric oxide repletion using nitrite, by intramuscular injection after Cl₂ exposure, could prevent Cl₂ gas toxicity. C57bl/6 male mice were exposed to 600 parts per million Cl₂ gas for 45 min, and 24-h survival was determined with or without postexposure intramuscular nitrite injection. A single injection of nitrite (10 mg/kg) administered either 30 or 60 min postexposure significantly improved 24-h survival (from ∼20% to 50%). Survival was associated with decreased neutrophil accumulation in the airways. Rendering mice neutropenic before Cl₂ exposure improved survival and resulted in loss of nitrite-dependent survival protection. Interestingly, female mice were more sensitive to Cl₂-induced toxicity compared with males and were also less responsive to postexposure nitrite therapy. These data provide evidence for efficacy and define therapeutic parameters for a single intramuscular injection of nitrite as a therapeutic after Cl₂ gas exposure that is amenable to administration in mass-casualty scenarios. Copyright © 2014 the American Physiological Society.

  16. Nitrogen removal from landfill leachate via the nitrite route

    Directory of Open Access Journals (Sweden)

    D. Kulikowska

    2012-06-01

    Full Text Available The feasibility of removing nitrogen from mature landfill leachate using the nitrite route was investigated in a two-stage SBR system - (1º first stage, short-cut nitrification; second stage, denitrification via nitrite. With a volumetric exchange rate (n of 0.3 d-1 and an oxygen concentration of between 1.2 and 1.3 mg/L, the nitrite accumulation ratio - (NO2-N×100/(NOx-N% - was between 32% and 37%. For the same hydraulic retention time, but lower oxygen concentration - between 0.8 and 0.9 mg/L - nitrite accumulation averaged 96%, indicating that ammonia was removed completely via the nitrite pathway. In the second step, an external carbon source was added to promote denitrification. Complete removal of nitrite was obtained for a carbon dose of 2.4 mg COD/mg NO2-N using acetic acid and 3.8 mg COD/mg NO2-N for butyric acid. Also, a higher denitrification rate - 14.6 mg NO2-N/g VSS∙h - was observed with butyric acid as compared with acetic acid - 9.12 mg NO2-N/g VSS∙h.

  17. Nitrate and nitrite content of human, formula, bovine, and soy milks: implications for dietary nitrite and nitrate recommendations.

    Science.gov (United States)

    Hord, Norman G; Ghannam, Janine S; Garg, Harsha K; Berens, Pamela D; Bryan, Nathan S

    2011-12-01

    Estimation of nitrate and nitrite concentrations of milk sources may provide insight into potential health risks and benefits of these food sources for infants, children, and adults. The World Health Organization and American Academy of Pediatrics recommends exclusive consumption of human milk for the first 6 months of life. Human milk is known to confer significant nutritional and immunological benefits for the infant. Consumption of formula, cow's, and soy milk may be used as alternatives to human milk for infants. We sought to estimate potential exposure to nitrate and nitrite in human, formula, bovine, and soy milk to inform total dietary exposure estimates and recommendations. Using sensitive quantitative methodologies, nitrite and nitrate were analyzed in different samples of milk. Human milk concentrations of colostrum (expressed days 1-3 postpartum; n=12), transition milk (expressed days 3-7 postpartum; n=17), and mature milk (expressed >7 days postpartum; n=50) were 0.08 mg/100 mL nitrite and 0.19 mg/100 mL nitrate, 0.001 mg/100 mL nitrite and 0.52 mg/100 mL nitrate, and 0.001 mg/100 mL nitrite and 0.3 mg/100 mL nitrate, respectively, revealing that the absolute amounts of these anions change as the composition of milk changes. When expressed as a percentage of the World Health Organization's Acceptable Daily Intake limits, Silk® Soy Vanilla (WhiteWave Foods, Broomfield, CO) intake could result in high nitrate intakes (104% of this standard), while intake of Bright Beginnings Soy Pediatric® formula (PBM Nutritionals, Georgia, VT) could result in the highest nitrite intakes (383% of this standard). The temporal relationship between the provision of nitrite in human milk and the development of commensal microbiota capable of reducing dietary nitrate to nitrite supports a hypothesis that humans are adapted to provide nitrite to the gastrointestinal tract from birth. These data support the hypothesis that the high concentrations of

  18. Intermediates detected by visible spectroscopy during the reaction of nitrite with deoxyhemoglobin: the effect of nitrite concentration and diphosphoglycerate.

    Science.gov (United States)

    Nagababu, Enika; Ramasamy, Somasundaram; Rifkind, Joseph M

    2007-10-16

    The reaction of nitrite with deoxyhemoglobin (deoxyHb) results in the reduction of nitrite to NO, which binds unreacted deoxyHb forming Fe(II)-nitrosylhemoglobin (Hb(II)NO). The tight binding of NO to deoxyHb is, however, inconsistent with reports implicating this reaction with hypoxic vasodilation. This dilemma is resolved by the demonstration that metastable intermediates are formed in the course of the reaction of nitrite with deoxyHb. The level of intermediates is quantitated by the excess deoxyHb consumed over the concentrations of the final products formed. The dominant intermediate has a spectrum that does not correspond to that of Hb(III)NO formed when NO reacts with methemoglobin (MetHb), but is similar to metHb resulting in the spectroscopic determinations of elevated levels of metHb. It is a delocalized species involving the heme iron, the NO, and perhaps the beta-93 thiol. The putative role for red cell reacted nitrite on vasodilation is associated with reactions involving the intermediate. (1) The intermediate is less stable with a 10-fold excess of nitrite and is not detected with a 100-fold excess of nitrite. This observation is attributed to the reaction of nitrite with the intermediate producing N2O3. (2) The release of NO quantitated by the formation of Hb(II)NO is regulated by changes in the distal heme pocket as shown by the 4.5-fold decrease in the rate constant in the presence of 2,3-diphosphoglycerate. The regulated release of NO or N2O3 as well as the formation of the S-nitroso derivative of hemoglobin, which has also been reported to be formed from the intermediates generated during nitrite reduction, should be associated with any hypoxic vasodilation attributed to the RBC.

  19. Time-dependent depletion of nitrite in pork/beef and chicken meat products and its effect on nitrite intake estimation.

    Science.gov (United States)

    Merino, Leonardo; Darnerud, Per Ola; Toldrá, Fidel; Ilbäck, Nils-Gunnar

    2016-01-01

    The food additive nitrite (E249, E250) is commonly used in meat curing as a food preservation method. Because of potential negative health effects of nitrite, its use is strictly regulated. In an earlier study we have shown that the calculated intake of nitrite in children can exceed the acceptable daily intake (ADI) when conversion from dietary nitrate to nitrite is included. This study examined time-dependent changes in nitrite levels in four Swedish meat products frequently eaten by children: pork/beef sausage, liver paté and two types of chicken sausage, and how the production process, storage and also boiling (e.g., simmering in salted water) and frying affect the initial added nitrite level. The results showed a steep decrease in nitrite level between the point of addition to the product and the first sampling of the product 24 h later. After this time, residual nitrite levels continued to decrease, but much more slowly, until the recommended use-by date. Interestingly, this continuing decrease in nitrite was much smaller in the chicken products than in the pork/beef products. In a pilot study on pork/beef sausage, we found no effects of boiling on residual nitrite levels, but frying decreased nitrite levels by 50%. In scenarios of time-dependent depletion of nitrite using the data obtained for sausages to represent all cured meat products and including conversion from dietary nitrate, calculated nitrite intake in 4-year-old children generally exceeded the ADI. Moreover, the actual intake of nitrite from cured meat is dependent on the type of meat source, with a higher residual nitrite levels in chicken products compared with pork/beef products. This may result in increased nitrite exposure among consumers shifting their consumption pattern of processed meats from red to white meat products.

  20. Effect of Dry Red Grape Pomace as a Nitrite Substitute on the Microbiological and Physicochemical Properties and Residual Nitrite of Dry-cured Sausage

    Directory of Open Access Journals (Sweden)

    Fatemeh Riazi

    2016-07-01

    Full Text Available Background and Objectives: Sodium nitrite and potassium nitrite have been traditionally used for inhibition of Clostridium botulinum and also as an agent to stabilize the color of meat products; however, usage of these additives at high levels could lead to toxicity and cancer originating from the formation of nitrosamines. Nowadays, application of natural preservatives in order to reduce the nitrite content in meat products is increasing. Thus, we used dry red grape pomace (DRGP as a natural alternative to sodium nitrite. Materials and Methods: The effect of two levels of DRGP (1 and 2% on the proximate composition, microbial counts, pH values and residual nitrite level of the samples formulated with two levels of sodium nitrite (30 and 60 mg/kg, as well as the comparison of these sausages with the blank (nitrite-free  and control (full nitrite added samples on the 1rst, 10th, 20th and 30th days of storage at 3-5 °C were evaluated. Results: The results showed that all chemical compositions were in the ranges reported by other researchers, and nitrite was very effective in preventing the microbial growth. Also about 50 % of the ingoing nitrite could be analyzed in the samples after processing. Moreover, the residual nitrite level declined both during the storage of sausage and after the addition of DRGP. Conclusions: The use of DRGP in combination with nitrite for sausages was more effective in keeping the quality and safety of the refrigerated consumer products as indicated by the lower nitrite levels, microbial count and similar composition as compared to the samples treated with nitrite and without nitrite. Keywords: Dry red grape pomace (DRGP, Sausage, Nitrite, Microbial count

  1. Cytochrome c-based domain modularity governs genus-level diversification of electron transfer to dissimilatory nitrite reduction.

    Science.gov (United States)

    Aas, Finn Erik; Li, Xi; Edwards, James; Hongrø Solbakken, Monica; Deeudom, Manu; Vik, Åshild; Moir, James; Koomey, Michael; Aspholm, Marina

    2015-06-01

    The genus Neisseria contains two pathogenic species (N. meningitidis and N. gonorrhoeae) in addition to a number of commensal species that primarily colonize mucosal surfaces in man. Within the genus, there is considerable diversity and apparent redundancy in the components involved in respiration. Here, we identify a unique c-type cytochrome (cN ) that is broadly distributed among commensal Neisseria, but absent in the pathogenic species. Specifically, cN supports nitrite reduction in N. gonorrhoeae strains lacking the cytochromes c5 and CcoP established to be critical to NirK nitrite reductase activity. The c-type cytochrome domain of cN shares high sequence identity with those localized c-terminally in c5 and CcoP and all three domains were shown to donate electrons directly to NirK. Thus, we identify three distinct but paralogous proteins that donate electrons to NirK. We also demonstrate functionality for a N. weaverii NirK variant with a C-terminal c-type heme extension. Taken together, modular domain distribution and gene rearrangement events related to these respiratory electron carriers within Neisseria are concordant with major transitions in the macroevolutionary history of the genus. This work emphasizes the importance of denitrification as a selectable trait that may influence speciation and adaptive diversification within this largely host-restricted bacterial genus. © 2014 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Carnosine and N-acetyl cysteine protect against sodium nitrite-induced oxidative stress in rat blood.

    Science.gov (United States)

    Ansari, Fariheen Aisha; Mahmood, Riaz

    2017-10-20

    Sodium nitrite (NaNO2 ) is widely used in the food industry as a preservative and colorant in meat and fish products. Industrialization and improper agricultural practices have greatly increased human exposure to high nitrite levels, mainly through contaminated drinking water, causing various health disorders. We have investigated the protective effect of carnosine (CAR) and N-acetyl cysteine (NAC) on NaNO2 -induced toxicity in rat blood. CAR is a bioactive dipeptide found in mammalian muscle while NAC is a synthetic sulfhydryl amino acid and an important precursor of glutathione. Animals were given a single acute oral dose of NaNO2 at 60 mg/kg body weight with or without prior administration of either CAR or NAC. Rats were sacrificed after 24 h, blood was withdrawn and plasma and erythrocytes were isolated. Administration of NaNO2 alone increased methemoglobin levels and methemoglobin reductase activity, decreased the activities of antioxidant defense and metabolic enzymes and significantly weakened the total antioxidant capacity of rat erythrocytes. Similar effects were seen in plasma of NaNO2 -treated rats. In contrast, administration of CAR or NAC, prior to NaNO2 treatment, markedly attenuated the NaNO2 -elicited deleterious effects. Thus, CAR and NAC can mitigate nitrite-induced metabolic alterations and oxidative damage probably due to their intrinsic biochemical antioxidant properties. This study suggests that CAR and NAC can be potentially used as therapeutic/protective agents against NaNO2 toxicity. © 2017 International Federation for Cell Biology.

  3. [A nitrite poisoning event associated with intentional chemical releases].

    Science.gov (United States)

    Li, Gang; Li, Bin; Lin, Lin; Zhang, Mao-tang; Liu, Qu; Huang, Wei; Xie, Xian-qing; Chen, Lin; Zhang, Shun-xiang

    2013-04-01

    To compare the field epidemiological investigation and the criminal investigation on a nitrite poisoning event caused by deliberate contamination. Cases were searched according to the definition of the disease. Information on the histories of onset and diet of all the cases and normal population on site, were investigated face to face. Information as ingredients, processing and sales of foods was also gathered. Samples were collected and nitrite detection were performed. Relevant materials were searched, cases were interviewed and data related to criminal results were collected. Poisoned persons were staff of a big company in Longgang district of Shenzhen. The overall attack rate was 56.25% (63/112), with suspected and confirmed rates as 41.96% and 14.28%, respectively. The fatality rate was 3.17% (2/63). Clinical manifestation and effect of treatment were in accordance with the characteristics of an episode related to acute nitrite food poisoning in terms of factors as the time of onset, involving different age, sex and jobs of the patients. A total of 191 samples, including vomits from patients and seven batches of food and environment samples, were collected, with a positive detected rate of nitrite as 18.84%. Information gathered from the field environment, food distribution and processing supported the assumption that this was an incident of nitrite poisoning event with intention. from the criminal investigation showed that the suspect stemmed from the market management rivalry, bought nitrite, dissolved and spread on food stalls F9 and F10. This event of intentional nitrite release resulting in food contamination which further leading to food poisoning, was completely proved by the joint efforts of the teams and expertise from the field epidemiology survey and the criminal investigation.

  4. Taurine-nitrite interaction as a precursor of alkylation mechanisms.

    Science.gov (United States)

    Arenas-Valgañón, Jorge; Gómez-Bombarelli, Rafael; González-Pérez, Marina; González-Jiménez, Mario; Calle, Emilio; Casado, Julio

    2012-09-15

    Taurine (2-aminoethanesulphonic acid) is an amino acid-like-compound widely used as an ingredient in some nutraceuticals and energy drinks. Here the interaction of taurine (Tau) with nitrite was investigated. The reactions were carried out mimicking the conditions of the stomach lumen. The conclusions drawn are as follows: (i) Nitrite showed nitrosating capacity on Tau. The rate equation was ν(N)=k(obs)[Tau](o)[nitrite](o)(2), this result suggesting that the yield of nitrosation products in the human stomach would increase sharply with higher nitrate/nitrite intakes; (ii) the experimental results suggest a mechanism for the nitrosation, whose rate-limiting step is bimolecular attack by N(2)O(3); (iii) the nitrosation of taurine affords ethanesultone (ES), which displays alkylating capacity on the nucleophile 4-(p-nitrobenzyl)pyridine (NBP), a trap for alkylating agents with nucleophilic characteristics similar to those of DNA bases. Although the NBP alkylation rate for ethanesultone is much higher than those for carcinogenic four-membered ring lactones, resulting in the nitrosation of amino carboxylic acids, the fraction of ES-forming adduct with NBP is much smaller; (iv) in spite of the low risk to human health, since the stomach lumen conditions could be a favourable medium for Tau nitrosation, attention should be paid to potential situations of the concurrence of high contents of taurine and nitrite/nitrate in the diet. Copyright © 2012. Published by Elsevier Ltd.

  5. Sodium nitrite: the "cure" for nitric oxide insufficiency.

    Science.gov (United States)

    Parthasarathy, Deepa K; Bryan, Nathan S

    2012-11-01

    This process of "curing" food is a long practice that dates back thousands of years long before refrigeration or food safety regulations. Today food safety and mass manufacturing are dependent upon safe and effective means to cure and preserve foods including meats. Nitrite remains the most effective curing agent to prevent food spoilage and bacterial contamination. Despite decades of rigorous research on its safety and efficacy as a curing agent, it is still regarded by many as a toxic undesirable food additive. However, research within the biomedical science community has revealed enormous therapeutic benefits of nitrite that is currently being developed as novel therapies for conditions associated with nitric oxide (NO) insufficiency. Much of the same biochemistry that has been understood for decades in the meat industry has been rediscovered in human physiology. This review will highlight the fundamental biochemistry of nitrite in human physiology and highlight the risk benefit evaluation surrounding nitrite in food and meat products. Foods or diets enriched with nitrite can have profound positive health benefits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Nitrite as regulator of hypoxic signaling in mammalian physiology

    Science.gov (United States)

    van Faassen, Ernst E.; Bahrami, Soheyl; Feelisch, Martin; Hogg, Neil; Kelm, Malte; Kim-Shapiro, Daniel B.; Kozlov, Andrey V.; Li, Haitao; Lundberg, Jon O.; Mason, Ron; Nohl, Hans; Rassaf, Tienush; Samouilov, Alexandre; Slama-Schwok, Anny; Shiva, Sruti; Vanin, Anatoly F.; Weitzberg, Eddie; Zweier, Jay; Gladwin, Mark T.

    2009-01-01

    In this review we consider the physiological effects of endogenous and pharmacological levels of nitrite under conditions of hypoxia. In humans, the nitrite anion has long been considered as metastable intermediate in the oxidation of nitric oxide radicals to the stable metabolite nitrate. This oxidation cascade was thought to be irreversible under physiological conditions. However, a growing body of experimental observations attests that the presence of endogenous nitrite regulates a number of signaling events along the physiological and pathophysiological oxygen gradient. Hypoxic signaling events include vasodilation, modulation of mitochondrial respiration, and cytoprotection following ischemic insult. These phenomena are attributed to the reduction of nitrite anions to nitric oxide if local oxygen levels in tissues decrease. Recent research identified a growing list of enzymatic and non-enzymatic pathways for this endogenous reduction of nitrite. Additional direct signaling events not involving free nitric oxide are proposed. We here discuss the mechanisms and properties of these various pathways and the role played by the local concentration of free oxygen in the affected tissue. PMID:19219851

  7. Nitrite therapy prevents chlorine gas toxicity in rabbits.

    Science.gov (United States)

    Honavar, Jaideep; Doran, Stephen; Ricart, Karina; Matalon, Sadis; Patel, Rakesh P

    2017-04-05

    Chlorine (Cl 2 ) gas exposure and toxicity remains a concern in military and industrial sectors. While post-Cl 2 exposure damage to the lungs and other tissues has been documented and major underlying mechanisms elucidated, no targeted therapeutics that are effective when administered post-exposure, and which are amenable to mass-casualty scenarios have been developed. Our recent studies show nitrite administered by intramuscular (IM) injection post-Cl 2 exposure is effective in preventing acute lung injury and improving survival in rodent models. Our goal in this study was to develop a rabbit model of Cl 2 toxicity and test whether nitrite affords protection in a non-rodent model. Exposure of New Zealand White rabbits to Cl 2 gas (600ppm, 45min) caused significant increases in protein and neutrophil accumulation in the airways and ∼35% mortality over 18h. Nitrite administered 30min post Cl 2 exposure by a single IM injection, at 1mg/kg or 10mg/kg, prevented indices of acute lung injury at 6h by up to 50%. Moreover, all rabbits that received nitrite survived over the study period. These data provide further rationale for developing nitrite as post-exposure therapeutic to mitigate against Cl 2 gas exposure injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Nitrite production from urine for sulfide control in sewers.

    Science.gov (United States)

    Zheng, Min; Zuo, Zhiqiang; Zhang, Yizhen; Cui, Yujia; Dong, Qian; Liu, Yanchen; Huang, Xia; Yuan, Zhiguo

    2017-10-01

    Most commonly used methods for sewer sulfide control involves dosing chemical agents to wastewater, which incurs high operational costs. Here, we propose and demonstrate a cost-effective and environmentally attractive approach to sewer sulfide control through urine separation and its subsequent conversion to nitrite prior to intermittent dosage to sewers. Urine collected from a male toilet urinal was fed to laboratory-scale sequencing batch reactors. The reactors stably converted roughly 50% of the nitrogen in urine to nitrite, with high abundance (at 17.46%) of known ammonia-oxidizing bacteria (AOB) of the genus Nitrosomonas, and absence (below detection level) of typical nitrite-oxidizing bacteria of the genus Nitrospira, according to 454 pyrosequencing analysis. The stable nitrite production was achieved at both relatively high (1.0-2.0 mg/L) and low (0.2-0.3 mg/L) dissolved oxygen concentrations. Dosing tests in laboratory-scale sewer systems confirmed the sulfide control effectiveness of free nitrous acid generated from urine. Life cycle assessment indicated that, compared with commodity chemicals, nitrite/free nitrous acid (FNA) production from urine for sulfide control in sewers would lower the operational costs by approximately 2/3 and greenhouse gas (GHG) emissions by 1/3 in 20 years. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Resonance Raman detection of a ferrous five-coordinate nitrosylheme b(3) complex in cytochrome cbb(3) oxidase from Pseudomonas stutzeri.

    Science.gov (United States)

    Pinakoulaki, Eftychia; Stavrakis, Stavros; Urbani, Andrea; Varotsis, Constantinos

    2002-08-14

    Understanding the chemical nature of the nitric oxide (NO) moiety of nitrosylheme copper oxidases is crucial for elucidation of the NO activation process. In the present work, direct resonance Raman spectroscopic observation of both the Fe(2+)-NO and the N-O stretching modes unambiguously establishes the vibrational characteristics of the NO-bound heme moiety in cytochrome cbb(3) from Pseudomonas stutzeri. Addition of NO to fully reduced enzyme causes the rupture of the proximal His-heme b(3) bond resulting in the formation of a five-coordinate heme b(3)(2+)-NO species with nu(Fe-NO) and nu(NO) at 524 and 1679 cm(-1), respectively. The frequencies of the nitrosyl species we detect are very similar to those obtained in other model- and protein heme-NO complexes. To account for this observation, we propose a model describing the oxidation and ligand-binding states in fully reduced cytochrome cbb(3) upon addition of NO.

  10. Identification of the High-affinity Substrate-binding Site of the Multidrug and Toxic Compound Extrusion (MATE) Family Transporter from Pseudomonas stutzeri.

    Science.gov (United States)

    Nie, Laiyin; Grell, Ernst; Malviya, Viveka Nand; Xie, Hao; Wang, Jingkang; Michel, Hartmut

    2016-07-22

    Multidrug and toxic compound extrusion (MATE) transporters exist in all three domains of life. They confer multidrug resistance by utilizing H(+) or Na(+) electrochemical gradients to extrude various drugs across the cell membranes. The substrate binding and the transport mechanism of MATE transporters is a fundamental process but so far not fully understood. Here we report a detailed substrate binding study of NorM_PS, a representative MATE transporter from Pseudomonas stutzeri Our results indicate that NorM_PS is a proton-dependent multidrug efflux transporter. Detailed binding studies between NorM_PS and 4',6-diamidino-2-phenylindole (DAPI) were performed by isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), and spectrofluorometry. Two exothermic binding events were observed from ITC data, and the high-affinity event was directly correlated with the extrusion of DAPI. The affinities are about 1 μm and 0.1 mm for the high and low affinity binding, respectively. Based on our homology model of NorM_PS, variants with mutations of amino acids that are potentially involved in substrate binding, were constructed. By carrying out the functional characterization of these variants, the critical amino acid residues (Glu-257 and Asp-373) for high-affinity DAPI binding were determined. Taken together, our results suggest a new substrate-binding site for MATE transporters. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Reduction of nitrate and nitrite salts under hydrothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Foy, B.R.; Dell`Orco, P.C.; Wilmanns, E.; McInroy, R.; Ely, J.; Robinson, J.M.; Buelow, S.J.

    1994-10-01

    The feasibility of reducing nitrate/nitrite salts under hydrothermal conditions for the treatment of aqueous mixed wastes stored in the underground tanks at the Department of Energy site at Hanford, Washington was studied. The reduction of nitrate and nitrite salts by reaction with EDTA using a tank waste simulant was examined at temperatures between 623K and 800K and pressures between 0.6 and 1.2 kbar. Continuous flow reactors were used to determine kinetics and products of reactions. All reactions were studied under pressures high enough to produce single phase conditions. The reactions are rapid, go to completion in less than a minute, and produce simple products, such as carbonate, nitrogen, and nitrous oxide gases. The experimental results demonstrate the ability of chemical reactions under hydrothermal conditions to reduce the nitrate and nitrite salts and destroy organic compounds in the waste mixtures.

  12. Nebulization of the acidified sodium nitrite formulation attenuates acute hypoxic pulmonary vasoconstriction

    Directory of Open Access Journals (Sweden)

    Surber Mark W

    2010-06-01

    Full Text Available Abstract Background Generalized hypoxic pulmonary vasoconstriction (HPV occurring during exposure to hypoxia is a detrimental process resulting in an increase in lung vascular resistance. Nebulization of sodium nitrite has been shown to inhibit HPV. The aim of this project was to investigate and compare the effects of nebulization of nitrite and different formulations of acidified sodium nitrite on acute HPV. Methods Ex vivo isolated rabbit lungs perfused with erythrocytes in Krebs-Henseleit buffer (adjusted to 10% hematocrit and in vivo anesthetized catheterized rabbits were challenged with periods of hypoxic ventilation alternating with periods of normoxic ventilation. After baseline hypoxic challenges, vehicle, sodium nitrite or acidified sodium nitrite was delivered via nebulization. In the ex vivo model, pulmonary arterial pressure and nitric oxide concentrations in exhaled gas were monitored. Nitrite and nitrite/nitrate were measured in samples of perfusion buffer. Pulmonary arterial pressure, systemic arterial pressure, cardiac output and blood gases were monitored in the in vivo model. Results In the ex vivo model, nitrite nebulization attenuated HPV and increased nitric oxide concentrations in exhaled gas and nitrite concentrations in the perfusate. The acidified forms of sodium nitrite induced higher levels of nitric oxide in exhaled gas and had longer vasodilating effects compared to nitrite alone. All nitrite formulations increased concentrations of circulating nitrite to the same degree. In the in vivo model, inhaled nitrite inhibited HPV, while pulmonary arterial pressure, cardiac output and blood gases were not affected. All nitrite formulations had similar potency to inhibit HPV. The tested concentration of appeared tolerable. Conclusion Nitrite alone and in acidified forms effectively and similarly attenuates HPV. However, acidified nitrite formulations induce a more pronounced increase in nitric oxide exhalation.

  13. Spectrophotometric determination of nitrite by its catalytic effect on ...

    African Journals Online (AJOL)

    Under the optimum experimental conditions (sulfuric acid, 0.3 M; CR, 0.75x10-4 M; potassium bromate, 5x10-4 M and 25 oC), nitrite can be determined in the range of 0.015–0.75 µg mL−1 with the detection limit of 0.006 µg mL−1. The relative standard deviation of five replicate determination of 0.25 µg mL−1 nitrite was ...

  14. Genetics Home Reference: 5-alpha reductase deficiency

    Science.gov (United States)

    ... G. New mutations, hotspots, and founder effects in Brazilian patients with steroid 5alpha-reductase deficiency type 2. ... should consult with a qualified healthcare professional . About Selection Criteria for Links Data Files & API Site Map ...

  15. Methylenetetrahydrofolate Reductase A1298C Polymorphism and ...

    African Journals Online (AJOL)

    Epigenetic alterations in cancer-related genes are recognized to play an important role in BC carcinogenesis. Epidemiological studies have consistently supported that ... Methylenetetrahydrofolate reductase (MTHFR) enzyme is essential for DNA synthesis ...... disease: A common mutation in methylenetetrahydrofolate.

  16. PENGARUH PENAMBAHAN UREA TERHADAP PENINGKATAN PENCEMARAN NITRIT DAN NITRAT DALAM TANAH (Influence of Addition of Urea to Increased Pollution of Nitrite and Nitrate in The Soil

    Directory of Open Access Journals (Sweden)

    Aida Mawaddah

    2016-09-01

    Full Text Available ABSTRAK Nitrat dan nitrit merupakan sumber nitrogen bagi tanaman. Nitrogen sangat diperlukan tanaman untuk pertumbuhan dan perkembangan. Bentuk-bentuk nitrogen di lingkungan mengalami transformasi sebagai bagian dari siklus nitrogen seperti nitrifikasi dan denitrifikasi. Apabila kadar nitrogen dalam tanah rendah, maka urea digunakan sebagai sumber nitrogen. Perubahan urea menjadi nitrit atau nitrat pada beberapa sampel tanah perlu diketahui. Kadar nitrit dan nitrat yang tinggi dapat meningkatkan pencemaran di dalam tanah. Sampel tanah yang digunakan dalam penelitian ini adalah tanah pasir, tanah sawah, tanah pupuk kompos dan tanah pupuk kandang. Analisis nitrit dan nitrat dilakukan dengan menggunakan pereaksi asam p-amino benzoat (PABA yang dikopling dengan N-naftiletilendiamin (NEDA dan reduktor spongy cadmium. Sebelum digunakan untuk analisis nitrit dan nitrat, metode divalidasi terlebih dahulu. Hasil validasi metode analisis nitrit dan nitrat dengan pereaksi PABA/NEDA menunjukkan persentase perolehan kembali masing-masing antara 87,15–100,8% untuk nitrit dan 88,16–105,7% untuk nitrat. Setelah ditambah urea sebesar 0,66 g.kg-1 ke dalam tanah, konsentrasi nitrit dan nitrat pada semua sampel tanah mengalami peningkatan. Dari penelitian ini diketahui bahwa peningkatan kadar nitrit dan nitrat setelah ditambahkan urea sangat dipengaruhi oleh kondisi tanah.   ABSTRACT Nitrate and nitrite were sources of nitrogen for plants. Nitrogen is indispensable for the growth and development of plants. The forms of nitrogen in the environment undergoes a transformation as part of the nitrogen cycle like nitrification and denitrification. If nitrogen level in the soil is low, urea is used as a source of nitrogen. Changes of urea into nitrite or nitrate in some of soil samples need to be known. The levels of nitrite and nitrate are high can increase pollution in the soil. Some of soil samples which is used in this research were sandy soil, paddy soil

  17. Nitrosylation of myoglobin and nitrosation of cysteine by nitrite in a model system simulating meat curing.

    Science.gov (United States)

    Sullivan, Gary A; Sebranek, Joseph G

    2012-02-22

    Demand is growing for meat products cured without the addition of sodium nitrite. Instead of the direct addition of nitrite to meat in formulation, nitrite is supplied by bacterial reduction of natural nitrate often added as vegetable juice/powder. However, the rate of nitrite formation in this process is relatively slow, and the total ingoing nitrite is typically less than in conventional curing processes. The objective of this study was to determine the impact of the rate of addition of nitrite and the amount of nitrite added on nitrosylation/nitrosation reactions in a model meat curing system. Myoglobin was preferentially nitrosylated as no decrease in sulfhydryl groups was found until maximum nitrosylmyoglobin color was achieved. The cysteine-myoglobin model retained more sulfhydryl groups than the cysteine-only model (p 0.05). These data suggest that the amount of nitrite but not the rate of addition impacts the nitrosylation/nitrosation reactions this system.

  18. Nitrite formation from organic nitrogen by Streptomyces antibioticus supporting bacterial cell growth and possible involvement of nitric oxide as an intermediate.

    Science.gov (United States)

    Sasaki, Yasuyuki; Takaya, Naoki; Morita, Ayako; Nakamura, Akira; Shoun, Hirofumi

    2014-01-01

    The actinomycete Streptomyces antibioticus was shown to produce nitrite (NO-(2)) and ammonium (NH+(4)]) when aerobically incubated in an organic nitrogen-rich medium. The production of NO-(2) was synchronized with rapid cell growth, whereas most NH+(4)] was produced after cell proliferation had ceased. Intracellular formation of nitric oxide (NO) was also observed during the incubation. The production of these inorganic nitrogen compounds along with cell growth was prevented by several enzyme inhibitors (of nitric oxide synthase or nitrate reductase) or glucose. Distinct, membrane-bound nitrate reductase was induced in the NO-(2)-producing cells. Tungstate (a potent inhibitor of this enzyme) prevented the NO-(2) production and cell growth, whereas it did not prevent the NO formation. These results revealed the occurrence of novel nitrogen metabolic pathway in S. antibioticus forming NO-(2) from organic nitrogen by which rapid cell growth is possible. NO synthase, NO dioxygenase (flavohemoglobin), and dissimilatory nitrate reductase are possible enzymes responsible for the NO-(2) formation.

  19. Detection of N2O-producing fungi in environment using nitrite reductase gene (nirK)-targeting primers.

    Science.gov (United States)

    Chen, Huaihai; Yu, Fangbo; Shi, Wei

    2016-12-01

    Fungal denitrification has been increasingly investigated, but its community ecology is poorly understood due to the lack of culture-independent tools. In this work, four pairs of nirK-targeting primers were designed and evaluated for primer specificity and efficiency using thirty N2O-producing fungal cultures and an agricultural soil. All primers amplified nirK from fungi and soil, but their efficiency and specificity were different. A primer set, FnirK_F3/R2 amplified ∼80 % of tested fungi, including Aspergillus, Fusarium, Penicillium, and Trichoderma, as compared to ∼40-70 % for other three primers. The nirK fragments of fungal and soil DNA amplified by FnirK_F3/R2 were phylogenetically related to denitrifying fungi in the orders Eurotiales, Hypocreales, and Sordariales; and clone sequences were also distributed in the clusters of Chaetomium, Metarhizium, and Myceliophthora that were uncultured from soil in our previous work. This proved the wide-range capability of primers for amplifying diverse denitrifying fungi from environment. However, our primers and recently-developed other primers amplified bacterial nirK from soil and this co-amplification of fungal and bacterial nirK was theoretically discussed. The FnirK_F3/R2 was further compared with published primers; results from clone libraries demonstrated that FnirK_F3/R2 was more specifically targeted on fungi and had broader taxonomical coverage than some others. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  20. Nitrite Interference with Soluble COD Measurements from Aerobically Treated Wastewater.

    Science.gov (United States)

    Ferraz, Fernanda M; Yuan, Qiuyan

    2017-06-01

      This study aimed to determine the interference of nitrite () with soluble chemical oxygen demand (COD) measurements from the effluent of landfill leachate treated by sequencing batch reactors (SBRs). Synthetic wastewater assimilating young and old landfill leachate was used as influent for SBR1 and SBR2, respectively. A mixture of raw wastewater and landfill leachate was used as influent for SBR3. Due to the high ammonia concentration in the influent, different levels of partial nitrification were observed in all the reactors and was detected in the effluents. Theoretically, when is present in the effluent, 1 mg/L of accounts for 1.1 mg/L of COD (i.e., 1.1 mg COD/mg ) due to the oxidation of to . It was found that the value of 1.1 mg COD/mg was 3 times higher than the values obtained in the experiments with SBR1 and SBR3. In addition, the values obtained in the experiments with SBR2 were much higher than 1.1 mg COD/mg . These results suggest that the theoretical value of 1.1 mg COD/mg cannot be applied to predict the COD values caused by nitrite in the tested wastewaters. To obtain an accurate measurement of soluble COD in samples that contain nitrite, nitrite should be eliminated before the measurements.

  1. Electrochemical removal of nitrite in simulated aquaculture wastewater

    African Journals Online (AJOL)

    use

    2011-11-21

    Nov 21, 2011 ... iridium-modified carbon fiber electrodes with various current densities. Specifically, the mechanism of electrochemical nitrite oxidation was reported to involve ..... recycling with pollution abatement. Aquacult. 3: 61-85. Martinez-Huitle CA, Ferro S (2006). Electrochemical oxidation of organic pollutants for the ...

  2. The effects of nitrogen and phosphorus deficiencies and nitrite ...

    African Journals Online (AJOL)

    The effect of 50% N, 100% N, 50% N plus 50% P and 50% P deficiencies and nitrite addition were treated on Chlorella vulgaris (Chlorophyceae) was studied in laboratory conditions with the aim to determine the effects of the deficient nutrient and different nitrogen sources on lipid and protein contents. Protein and lipid ...

  3. Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems.

    Science.gov (United States)

    Schullehner, Jörg; Stayner, Leslie; Hansen, Birgitte

    2017-03-09

    Accurate assessments of exposure to nitrate in drinking water is a crucial part of epidemiological studies investigating long-term adverse human health effects. However, since drinking water nitrate measurements are usually collected for regulatory purposes, assumptions on (1) the intra-distribution system variability and (2) short-term (seasonal) concentration variability have to be made. We assess concentration variability in the distribution system of nitrate, nitrite, and ammonium, and seasonal variability in all Danish public waterworks from 2007 to 2016. Nitrate concentrations at the exit of the waterworks are highly correlated with nitrate concentrations within the distribution net or at the consumers' taps, while nitrite and ammonium concentrations are generally lower within the net compared with the exit of the waterworks due to nitrification. However, nitrification of nitrite and ammonium in the distribution systems only results in a relatively small increase in nitrate concentrations. No seasonal variation for nitrate, nitrite, or ammonium was observed. We conclude that nitrate measurements taken at the exit of the waterworks are suitable to calculate exposures for all consumers connected to that waterworks and that sampling frequencies in the national monitoring programme are sufficient to describe temporal variations in longitudinal studies.

  4. Seasonal Distribution of Nitrate and Nitrite Levels in Eleme Abattoir ...

    African Journals Online (AJOL)

    The study deals with the seasonal distribution of nitrate (NO3) and nitrite (NO2) levels in Eleme Abattoir environment. Samples of soil, surface water and groundwater were collected from areas unaffected and those affected by abattoir activities. For the soils from the affected area and control points respectively, nitrate levels ...

  5. Hydrogen ion (Ph), ammonia, dissolved oxygen and nitrite ...

    African Journals Online (AJOL)

    Hydrogen ion (pH), dissolved oxygen, ammonia and nitrite concentrations were studied monthly in two systems (re-circulatory and semi-intensive of 3 m2 sizes) each for six months. The systems were each stocked with 200 g of Clarias gariepinus fingerlings. Results showed that all parameters were within acceptable limits ...

  6. 9 CFR 319.2 - Products and nitrates and nitrites.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Products and nitrates and nitrites. 319.2 Section 319.2 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... INSPECTION AND CERTIFICATION DEFINITIONS AND STANDARDS OF IDENTITY OR COMPOSITION General § 319.2 Products...

  7. 21 CFR 862.1510 - Nitrite (nonquantitative) test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitrite (nonquantitative) test system. 862.1510 Section 862.1510 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... diagnosis and treatment of uninary tract infection of bacterial origin. (b) Classification. Class I (general...

  8. Nitrite and nitroso compounds can serve as specific catalase inhibitors.

    Science.gov (United States)

    Titov, Vladimir Yu; Osipov, Anatoly N

    2017-03-01

    We present evidence that nitrite and nitrosothiols, nitrosoamines and non-heme dinitrosyl iron complexes can reversibly inhibit catalase with equal effectiveness. Catalase activity was evaluated by the permanganatometric and calorimetric assays. This inhibition is not the result of chemical transformations of these compounds to a single inhibitor, as well as it is not the result of NO release from these substances (as NO traps have no effect on the extent of inhibition). It was found that chloride and bromide in concentration above 80 mM and thiocyanate in concentration above 20 μM enhance catalase inhibition by nitrite and the nitroso compounds more than 100 times. The inhibition degree in this case is comparable with that induced by azide. We propose that the direct catalase inhibitor is a positively charged NO-group. This group acquires a positive charge in the active center of enzyme by interaction of nitrite or nitroso compounds with some enzyme groups. Halides and thiocyanate protect the NO+ group from hydration and thus increase its inhibition effect. It is probable that a comparatively low chloride concentration in many cells is the main factor to protect catalase from inhibition by nitrite and nitroso compounds.

  9. Presence of nitrites, nitrates, nitrosamines in the eggs of Intensively ...

    African Journals Online (AJOL)

    A spectrophotometric method was used to assay for nitrosamines and their precursors in eggs (n=5 from each farm), entailing separate analysis of each egg yolk and albumen. The three compounds measured, were detected in all the samples. The nitrates and nitrites levels were significantly higher in the yolk than in the ...

  10. Nitrite-selective ISE based on uranyl salophen derivatives

    NARCIS (Netherlands)

    Wroblewski, Wojciech; Brzozka, Zbigniew; Rudkevich, Dmitry M.; Rudkevich, D.M.; Reinhoudt, David

    1996-01-01

    Anion selectivities of membranes based on uranyl salophen derivatives with substituents at the 4-position are presented. Derivative 2 (with 4-nitro substituent) has been applied to design a nitrite-selective ion-selective electrode (ISE) that shows linear response in the range 1¿3 of pNO2¿ with a

  11. Neurotoxicity induced by alkyl nitrites: Impairment in learning/memory and motor coordination.

    Science.gov (United States)

    Cha, Hye Jin; Kim, Yun Ji; Jeon, Seo Young; Kim, Young-Hoon; Shin, Jisoon; Yun, Jaesuk; Han, Kyoungmoon; Park, Hye-Kyung; Kim, Hyung Soo

    2016-04-21

    Although alkyl nitrites are used as recreational drugs, there is only little research data regarding their effects on the central nervous system including their neurotoxicity. This study investigated the neurotoxicity of three representative alkyl nitrites (isobutyl nitrite, isoamyl nitrite, and butyl nitrite), and whether it affected learning/memory function and motor coordination in rodents. Morris water maze test was performed in mice after administrating the mice with varying doses of the substances in two different injection schedules of memory acquisition and memory retention. A rota-rod test was then performed in rats. All tested alkyl nitrites lowered the rodents' capacity for learning and memory, as assessed by both the acquisition and retention tests. The results of the rota-rod test showed that isobutyl nitrite in particular impaired motor coordination in chronically treated rats. The mice chronically injected with isoamyl nitrite also showed impaired function, while butyl nitrite had no significant effect. The results of the water maze test suggest that alkyl nitrites may impair learning and memory. Additionally, isoamyl nitrite affected the rodents' motor coordination ability. Collectively, our findings suggest that alkyl nitrites may induce neurotoxicity, especially on the aspect of learning and memory function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Lead, Zinc and Nitrite Levels of Staple Crop Cultivars in Ameka and ...

    African Journals Online (AJOL)

    BSN

    Nitrite is present naturally in soils, meats, plants and drinking water. However, under unfavorable conditions, nitrite may enter the food chain via microbial reduction of nitrate thereby endangering human health (Sebecic and Vedrina, 1998). Nitrate may be reduced to nitrite when cooking is carried out in aluminum utensils.

  13. Characterization of the quinine reductase activity of the ferrice reductase B protein from Paracoccus denitrificans.

    NARCIS (Netherlands)

    Sedlacek, V.; van Spanning, R.J.M.; Kucera, I.

    2009-01-01

    The ferric reductase B (FerB) protein of Paracoccus denitrificans exhibits activity of an NAD(P)H: Fe(III) chelate, chromate and quinone oxidoreductase. Sequence analysis places FerB in a family of soluble flavin-containing quinone reductases. The enzyme reduces a range of quinone substrates,

  14. Identification and Characterization of the Novel Subunit CcoM in the cbb3-Cytochrome c Oxidase from Pseudomonas stutzeri ZoBell

    Directory of Open Access Journals (Sweden)

    Martin Kohlstaedt

    2016-01-01

    Full Text Available Cytochrome c oxidases (CcOs, members of the heme-copper containing oxidase (HCO superfamily, are the terminal enzymes of aerobic respiratory chains. The cbb3-type cytochrome c oxidases (cbb3-CcO form the C-family and have only the central catalytic subunit in common with the A- and B-family HCOs. In Pseudomonas stutzeri, two cbb3 operons are organized in a tandem repeat. The atomic structure of the first cbb3 isoform (Cbb3-1 was determined at 3.2 Å resolution in 2010 (S. Buschmann, E. Warkentin, H. Xie, J. D. Langer, U. Ermler, and H. Michel, Science 329:327–330, 2010, http://dx.doi.org/10.1126/science.1187303. Unexpectedly, the electron density map of Cbb3-1 revealed the presence of an additional transmembrane helix (TMH which could not be assigned to any known protein. We now identified this TMH as the previously uncharacterized protein PstZoBell_05036, using a customized matrix-assisted laser desorption ionization (MALDI–tandem mass spectrometry setup. The amino acid sequence matches the electron density of the unassigned TMH. Consequently, the protein was renamed CcoM. In order to identify the function of this new subunit in the cbb3 complex, we generated and analyzed a CcoM knockout strain. The results of the biochemical and biophysical characterization indicate that CcoM may be involved in CcO complex assembly or stabilization. In addition, we found that CcoM plays a role in anaerobic respiration, as the ΔCcoM strain displayed altered growth rates under anaerobic denitrifying conditions.

  15. Ammonia stimulates growth and nitrite-oxidizing activity of Nitrobacter winogradskyi

    OpenAIRE

    Ma, Shouguang; Zhang, Demin; Zhang, Wenjun; Wang, Yinong

    2014-01-01

    The aim of this study was to obtain a nitrite-oxidizing bacterium with high nitrite oxidation activity for controlling nitrite levels. A nitrite-oxidizing bacterium, ZS-1, was isolated from the water of a coastal Pseudosciaena crocea-rearing pond. The strain was identified as Nitrobacter winogradskyi based on the phylogenetic analyses of the 16S ribosomal ribonucleic acid gene and nxrA sequence of ZS-1. Under aerobic condition, the nitrite-oxidizing activity of ZS-1 did not change considerabl...

  16. Retention and leaching of nitrite by municipal solid waste incinerator bottom ash under the landfill circumstance.

    Science.gov (United States)

    Yao, Jun; Kong, Qingna; Zhu, Huayue; Long, Yuyang; Shen, Dongsheng

    2015-01-01

    The retention and leaching of nitrite by municipal solid waste incinerator (MSWI) bottom ash could affect its migration in the landfill. In this study, the effect of the dosage of MSWI bottom ash as well as the variation of the landfill environmental parameters including pH, anions and organic matter on the nitrite retention and leaching behavior was investigated by batch experiments. The highest removal percentage (73.0%) of nitrite was observed when the dosage of MSWI bottom ash was 10 g L(-1) in 2 mg L(-1) nitrite solution. Further increase of the dosage would retard the retention, as the nitrite leaching from MSWI bottom ash was enhanced. The optimum retention of nitrite was observed when the pH was 5.0, while the leaching of nitrite showed a consistent reduction with the increase of pH. Besides, the presence of Cl(-), SO4(2)(-) and acetic acid could enhance the leaching of nitrite and mitigate the retention process. However, the retention of nitrite was enhanced by PO4(3)(-), which was probably due to the formation of the apatite, an active material for the adsorption of the nitrite. These results suggested that MSWI bottom ash could affect the migration of nitrite in the landfill, which was related to the variation of the landfill circumstance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Optimization of free ammonia concentration for nitrite accumulation in shortcut biological nitrogen removal process.

    Science.gov (United States)

    Chung, Jinwook; Shim, Hojae; Park, Seong-Jun; Kim, Seung-Jin; Bae, Wookeun

    2006-03-01

    A shortcut biological nitrogen removal (SBNR) utilizes the concept of a direct conversion of ammonium to nitrite and then to nitrogen gas. A successful SBNR requires accumulation of nitrite in the system and inhibition of the activity of nitrite oxidizers. A high concentration of free ammonia (FA) inhibits nitrite oxidizers, but unfortunately decreases the ammonium removal rate as well. Therefore, the optimal range of FA concentration is necessary not only to stabilize nitrite accumulation but also to achieve maximum ammonium removal. In order to derive such optimal FA concentrations, the specific substrate utilization rates of ammonium and nitrite oxidizers were measured. The optimal FA concentration range appeared to be 5-10 mg/L for the adapted sludge. The simulated results from the modified inhibition model expressed by FA and ammonium/nitrite concentrations were shown very similar to the experimental results.

  18. Respiratory arsenate reductase as a bidirectional enzyme

    Science.gov (United States)

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  19. The impact of elevated water nitrite concentration on physiology, growth and feed intake of African catfish Clarias gariepinus (Burchell 1822)

    NARCIS (Netherlands)

    Roques, J.A.C.; Schram, E.; Spanings, T.; Schaik, van T.; Abbink, W.; Boerrigter, J.; Vries, de P.; Vis, van de J.W.; Flik, G.

    2015-01-01

    The nitrite threshold concentration in rearing water of African catfish (Clarias gariepinus) was assessed. African catfish with an initial mean (SD) weight of 219.7 (57.8) g were exposed to an increasing range of water nitrite from 6 (Control) to 928 µM nitrite for 28 days. Mean (SD) plasma nitrite

  20. Two cases of methemoglobinaemia caused by suspected sodium nitrite poisoning

    Directory of Open Access Journals (Sweden)

    Osvaldo Matteucci

    2008-06-01

    Full Text Available Among the causes of acute methemo-globinaemia are the ingestion and inhalation of over 40 oxidising substances, including nitrite, nitrate, carbon monoxide, some medicines, chlorine. The authors describe a case of acute methemoglobinaemia in two people that most probably suffered from food poisoning resulting from the consumption of a preparation of a dish called turkey alla canzanese that contained significant amounts of sodium nitrite. Both subjects who were treated promptly with methylene blue and hyperbaric oxygen therapy room recovered fully. Epidemiological investigations performed to clarify the dynamics of the episode suggested that among the causes of contamination were the swapping of products at the time of sale and the non-compliance to rules for the preparation of foods for human consumption.

  1. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    KAUST Repository

    Balk, Melike

    2015-03-02

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  2. Nitrates and nitrites content of water boreholes and packaged water ...

    African Journals Online (AJOL)

    Nitrate and nitrite levels were determined in forty-three water samples obtained from different locations in Calabar using colorimetric methods. Twenty-three of these samples were packaged water while twenty were borehole water. Nitrate levels were found to be 24.28 ± 9.30μg/ml and 34.57 ± 14.56µ/ml for packaged water ...

  3. Determination of nitrate and nitrite content of Turkish cheeses ...

    African Journals Online (AJOL)

    The levels of nitrate and nitrite were determined in 185 samples of Turkish cheese having high consumption rate. All cheese samples contained nitrate and its level in Turkish white cheese produced from cow's and sheep's milk were found between 0.92 - 22.40 (mean 8.96±4.93) mg/kg and 0.47 - 23.68 (mean 12.35±6.28) ...

  4. Determination of nitrate, nitrite, N- nitrosamines, cyanide and ...

    African Journals Online (AJOL)

    The nitrate, nitrite, N- nitrosamines and ascorbic acid content as well as the levels of cyanide in eight brands of fruit juices and twelve brands of sachet water commonly marketed and consumed in Nigeria were estimated. The mean values of nitrate ranged from 2.29±0.05 to 16.50±1.21 mg/L for the juices and 0.64±0.21 to ...

  5. Nitrite disrupts multiple physiological functions in aquatic animals

    DEFF Research Database (Denmark)

    Jensen, Frank Bo

    2003-01-01

    Hb), compromising blood O2 transport. Other haem proteins are also oxidised. Hyperventilation is observed, and eventually tissue O2 shortage becomes reflected in elevated lactate concentrations. Heart rate increases rapidly, before any significant elevations in metHb or extracellular potassium occur. This suggests...... species and in some cases also within species. Rainbow trout fall into two groups with regard to susceptibility and physiological response. These two groups are not related to sex but show significant different nitrite uptake rates....

  6. Simple methods to decrease sodium and nitrite contents in hams

    Directory of Open Access Journals (Sweden)

    Talia Franco-Avila

    2015-07-01

    Full Text Available Introduction: Ham is a product highly consumed by society; however it contains some elements that make it a non-recommended food. Thus, it has been attempted to eliminate or reduce those components.Material and Methods: Content of sodium, nitrites, peroxides and total coliforms were compared after processes of Washing (W and Simple Cooking (SC in turkey and pork ham in a cross-sectional analytical experimental study. Furthermore, sensory acceptance of thesamples through an acceptance test of five points was evaluated. One-way ANOVA with post hoc Bonferroni were used to assess the mean difference between groups. The value of p≤0.05 was considered statistically significant.Results: Both processes reduced the amount of sodium in both types of ham in statistically significant way (p≤0.001. The major percentage of reduction was presented with SC: 73.4% for turkey ham and 63.5% for pork ham. Likewise, the higher percentage of nitrite reduction was 50.6% in pork ham with SC technique (p≤0.05. Peroxide index decreased with both techniques in both hams without statistical significance. Total coliforms count was kept constant in all samples. Higher sensory acceptance of W concerning SC in all sensory characteristics was observed.Conclusions: W and SC techniques reduce sodium, nitrite and peroxide index without affecting the sanitation of hams. Furthermore, W is accepted in all sensory categories. We recommend using W technique before consumption of the product.

  7. Hypoxia tolerance, nitric oxide, and nitrite: lessons from extreme animals.

    Science.gov (United States)

    Fago, Angela; Jensen, Frank B

    2015-03-01

    Among vertebrates able to tolerate periods of oxygen deprivation, the painted and red-eared slider turtles (Chrysemys picta and Trachemys scripta) and the crucian carp (Carassius carassius) are the most extreme and can survive even months of total lack of oxygen during winter. The key to hypoxia survival resides in concerted physiological responses, including strong metabolic depression, protection against oxidative damage and-in air-breathing animals-redistribution of blood flow. Each of these responses is known to be tightly regulated by nitric oxide (NO) and during hypoxia by its metabolite nitrite. The aim of this review is to highlight recent work illustrating the widespread roles of NO and nitrite in the tolerance to extreme oxygen deprivation, in particular in the red-eared slider turtle and crucian carp, but also in diving marine mammals. The emerging picture underscores the importance of NO and nitrite signaling in the adaptive response to hypoxia in vertebrate animals. ©2015 Int. Union Physiol. Sci./Am. Physiol. Soc.

  8. Characterization of the chlorate reductase from Pseudomonas chloritidismutans

    NARCIS (Netherlands)

    Wolterink, A.F.W.M.; Schiltz, E.; Hagedoorn, P.L.; Hagen, W.R.; Kengen, S.W.M.; Stams, A.J.M.

    2003-01-01

    A chlorate reductase has been purified from the chlorate-reducing strain Pseudomonas chloritidismutans. Comparison with the periplasmic (per)chlorate reductase of strain GR-1 showed that the cytoplasmic chlorate reductase of P. chloritidismutans reduced only chlorate and bromate. Differences were

  9. 21 CFR 864.7375 - Glutathione reductase assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione reductase assay. (a) Identification. A glutathione reductase assay is a device used to determine the...

  10. Ammonia stimulates growth and nitrite-oxidizing activity of Nitrobacter winogradskyi.

    Science.gov (United States)

    Ma, Shouguang; Zhang, Demin; Zhang, Wenjun; Wang, Yinong

    2014-01-02

    The aim of this study was to obtain a nitrite-oxidizing bacterium with high nitrite oxidation activity for controlling nitrite levels. A nitrite-oxidizing bacterium, ZS-1, was isolated from the water of a coastal Pseudosciaena crocea-rearing pond. The strain was identified as Nitrobacter winogradskyi based on the phylogenetic analyses of the 16S ribosomal ribonucleic acid gene and nxrA sequence of ZS-1. Under aerobic condition, the nitrite-oxidizing activity of ZS-1 did not change considerably in the range of pH 7-9, but was strongly inhibited by lower (pH = 6) and higher (pH = 10) pH values. The optimum temperature range is 25-32 °C. Lower temperature made the adaptive phase of ZS-1 longer but did not affect its maximum nitrite oxidization rate. The nitrite-oxidizing activity of ZS-1 started to be inhibited by ammonia and nitrate when the concentrations of ammonia and nitrate reached 25 mg L(-1) and 100 mg L(-1), respectively. The inhibition was stronger with higher concentration of ammonia or nitrate. The nitrite-oxidizing activity of ZS-1, however, was not inhibited by high concentration of nitrite (500 mg L(-1)). The nitrite-oxidizing activity of ZS-1 was increased by low ammonia concentration (1 mg L(-1) to 10 mg L(-1)).

  11. The Hepatoprotective Effect of Sodium Nitrite on Cold Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Wei Li

    2012-01-01

    Full Text Available Liver ischemia-reperfusion injury is a major cause of primary graft non-function or initial function failure post-transplantation. In this study, we examined the effects of sodium nitrite supplementation on liver IRI in either Lactated Ringer's (LR solution or University of Wisconsin (UW solution. The syngeneic recipients of liver grafts were also treated with or without nitrite by intra-peritoneal injection. Liver AST and LDH release were significantly reduced in both nitrite-supplemented LR and UW preservation solutions compared to their controls. The protective effect of nitrite was more efficacious with longer cold preservation times. Liver histological examination demonstrated better preserved morphology and architecture with nitrite treatment. Hepatocellular apoptosis was significantly reduced in the nitrite-treated livers compared their controls. Moreover, liver grafts with extended cold preservation time of 12 to 24 hours demonstrated improved liver tissue histology and function post-reperfusion with either the nitrite-supplemented preservation solution or in nitrite-treated recipients. Interestingly, combined treatment of both the liver graft and recipient did not confer protection. Thus, nitrite treatment affords significant protection from cold ischemic and reperfusion injury to donor livers and improves liver graft acute function post-transplantation. The results from this study further support the potential for nitrite therapy to mitigate ischemia-reperfusion injury in solid organ transplantation.

  12. Nitrite and nitrate concentrations and metabolism in breast milk, infant formula, and parenteral nutrition.

    Science.gov (United States)

    Jones, Jesica A; Ninnis, Janet R; Hopper, Andrew O; Ibrahim, Yomna; Merritt, T Allen; Wan, Kim-Wah; Power, Gordon G; Blood, Arlin B

    2014-09-01

    Dietary nitrate and nitrite are sources of gastric NO, which modulates blood flow, mucus production, and microbial flora. However, the intake and importance of these anions in infants is largely unknown. Nitrate and nitrite levels were measured in breast milk of mothers of preterm and term infants, infant formulas, and parenteral nutrition. Nitrite metabolism in breast milk was measured after freeze-thawing, at different temperatures, varying oxygen tensions, and after inhibition of potential nitrite-metabolizing enzymes. Nitrite concentrations averaged 0.07 ± 0.01 μM in milk of mothers of preterm infants, less than that of term infants (0.13 ± 0.02 μM) (P parenteral nutrition were equivalent to or lower than those of breast milk. Freeze-thawing decreased nitrite concentration ~64%, falling with a half-life of 32 minutes at 37°C. The disappearance of nitrite was oxygen-dependent and prevented by ferricyanide and 3 inhibitors of lactoperoxidase. Nitrite concentrations in breast milk decrease with storage and freeze-thawing, a decline likely mediated by lactoperoxidase. Compared to adults, infants ingest relatively little nitrite and nitrate, which may be of importance in the modulation of blood flow and the bacterial flora of the infant GI tract, especially given the protective effects of swallowed nitrite. © 2013 American Society for Parenteral and Enteral Nutrition.

  13. Assessment of dietary exposure of nitrate and nitrite in France.

    Science.gov (United States)

    Menard, C; Heraud, F; Volatier, J-L; Leblanc, J-C

    2008-08-01

    The aim of this study was to assess the dietary exposure of nitrate and nitrite in France. A total of 13, 657 concentration levels of nitrate and nitrite measured in food, representing 138 and 109 food items, respectively, and coming from French monitoring programmes between 2000 and 2006, were used. Depending on the non-detected and non-quantified analysis treatment, lower and upper concentration mean estimates were calculated for each food item. These were combined with consumption data derived from 1474 adults and 1018 children from the French national individual consumption survey (INCA1), conducted in 1999 and based on a 7-day food record diary. A total of 18% of spinaches, 6% of salads, 10% of cheeses, 8% of meat products and 6% of industrial meat products exceeded the European nitrate maximum level or maximum residual level. A total of 0.4% of industrial meat products and 0.2% of meat products exceeded their European nitrite maximum level or maximum residual level. Nitrate dietary exposure averaged 40% of the acceptable daily intake (ADI; 3.7 mg kg(-1) body weight day(-1)) for adults and 51 - 54% of the ADI for children with the major contributors being, for adults and children, respectively, vegetables (24 and 27% of ADI), potatoes (5 and 11% of ADI), and water (5 and 5% of ADI). The individual nitrate dietary intake of 1.4% (confidence interval (CI(95th)) [0.8; 2.0]) to 1.5% (CI(95th) [0.9; 2.1]) of adults and 7.9% (CI(95th) [6.2; 9.6]) to 8.4% (CI(95th) [6.7; 10.1]) of children were higher than the ADI. Nitrite dietary exposure averaged 33-67% of the ADI (0.06 mg kg(-1) body weight day(-1)) for adults and 67-133% of the ADI for children, with contributions of additive food vectors at 33% of ADI for adults and 50-67% of ADI for children. The individual nitrite dietary intake of 0.7% (CI(95th) [0.3; 1.1]) to 16.4% (CI(95th) [14.5; 18.3]) of adults and 10.5% (CI(95th) [8.6; 12.4]) to 66.2% (CI(95th) [63.3; 69.1]) of children were higher than the ADI.

  14. Methylenetetrahydrofolate reductase gene polymorphism in type 1 ...

    African Journals Online (AJOL)

    In patients with type-I diabetes mellitus folate deficiency is associated with endothelial dysfunction. So, polymorphism in genes involved in folate metabolism may have a role in vascular disease. This study was designed to evaluate the relationship between methylenetetrahydrofolate reductase (MTHFR) gene polymorphism ...

  15. Methylenetetrahydrofolate reductase A1298C polymorphism and ...

    African Journals Online (AJOL)

    Methylenetetrahydrofolate reductase A1298C polymorphism and breast cancer risk: A meta analysis of 33 studies. ... were searched for case‑control studies relating the association between MTHFR A1298C polymorphism and BC risk and estimated summary odds ratios (ORs) with confidence intervals (CIs) for assessment.

  16. Promiscuity and diversity in 3-ketosteroid reductases

    Science.gov (United States)

    Penning, Trevor M.; Chen, Mo; Jin, Yi

    2014-01-01

    Many steroid hormones contain a Δ4-3-ketosteroid functionality that undergoes sequential reduction by 5α- or 5β- steroid reductases to produce 5α- or 5β-dihydrosteroids; and a subsequent 3-keto-reduction to produce a series of isomeric tetrahydrosteroids. Apart from steroid 5α-reductase all the remaining enzymes involved in the two step reduction process in humans belong to the aldo-keto reductase (AKR) superfamily. The enzymes involved in 3-ketosteroid reduction are AKR1C1–AKR1C4. These enzymes are promiscuous and also catalyze 20-keto- and 17-keto-steroid reduction. Interest in these reactions exist since they regulate steroid hormone metabolism in the liver, and in steroid target tissues, they may regulate steroid hormone receptor occupancy. In addition many of the dihydrosteroids are not biologically inert. The same enzymes are also involved in the metabolism of synthetic steroids e.g., hormone replacement therapeutics, contraceptive agents and inhaled glucocorticoids, and may regulate drug efficacy at their cognate receptors. This article reviews these reactions and the structural basis for substrate diversity in AKR1C1–AKR1C4, ketosteroid reductases. This article is part of a Special Issue entitled ‘Steroid/Sterol signaling’. PMID:25500069

  17. Differential nitrate accumulation, nitrate reduction, nitrate reductase ...

    African Journals Online (AJOL)

    Differential nitrate accumulation, nitrate reduction, nitrate reductase activity, protein production and carbohydrate biosynthesis in response to potassium and sodium ... due to the positive effects of potassium on the enzyme activity, sugars transport, water and nutrient transport, protein synthesis and carbohydrate metabolism.

  18. Two Greek siblings with sepiapterin reductase deficiency.

    NARCIS (Netherlands)

    Verbeek, M.M.; Willemsen, M.A.A.P.; Wevers, R.A.; Lagerwerf, A.J.; Abeling, N.G.; Blau, N.; Thony, B.; Vargiami, E.; Zafeiriou, D.I.

    2008-01-01

    BACKGROUND: Sepiapterin reductase (SR) deficiency is a rare inherited disorder of neurotransmitter metabolism; less than 25 cases have been described in the literature so far. METHODS: We describe the clinical history and extensive cerebrospinal fluid (CSF) and urine examination of two Greek

  19. Xylose reductase from the thermophilic fungus Talaromyces ...

    Indian Academy of Sciences (India)

    Given the potential application of xylose reductase enzymes that preferentially utilize the reduced form of nicotinamide adenine dinucleotide (NADH) rather than NADPH in the fermentation of five carbon sugars by genetically engineered microorganisms, the coenzyme selectivity of TeXR was altered by site-directed ...

  20. Clipboard: Lymphohematopoietic licence: Sterol C-14 reductase ...

    Indian Academy of Sciences (India)

    Clipboard: Lymphohematopoietic licence: Sterol C-14 reductase activity of lamin B receptor (Lbr) is essential for neutrophil differentiation. Durgadas P Kasbekar. Volume 37 ... Keywords. Greenberg/HEM dysplasia; lymphohematopoietic progenitor cells; nuclear envelope; Pelger-Huët anomaly; promyelocyte differentiation ...

  1. Methylenetetrahydrofolate reductase gene polymorphism in type 1 ...

    African Journals Online (AJOL)

    Mohammed A AboElAsrar

    2012-05-05

    May 5, 2012 ... Elevated homocysteine is a known risk factor for vascular disease. So the polymorphism in methylenetetrahydrofolate reductase may have detrimental consequences [5]. In patients with type-I diabetes mellitus folate deficiency is associated with endothelial dysfunction and folate supplementa- tion improves ...

  2. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions.

    Directory of Open Access Journals (Sweden)

    Mauro Tiso

    Full Text Available The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in

  3. Formation of genotoxic nitroPAH compounds in fish exposed to ambient nitrite and PAH

    Digital Repository Service at National Institute of Oceanography (India)

    Shailaja, M.S.; Rajamanickam, R.; Wahidullah, S.

    medium were 1 mg l-1 and 1 ? M, respectively. Control fish (n=6) were exposed to equivalent concentrations of nitrite or phenanthrene only. In another set of experiments, O. mossambicus (n=6) were administered a single intra...-peritoneal injection (1 ? g g-1) of phenanthrene dissolved in sunflower oil (100 ? l) and exposed to dissolved nitrite (1 ? M) for 6 days as before. An equal number of control fish received equivalent amounts of phenanthrene without being exposed to nitrite. 4...

  4. Molecular Characterization of Lactobacillus plantarum DMDL 9010, a Strain with Efficient Nitrite Degradation Capacity

    OpenAIRE

    Yong-tao Fei; Dong-mei Liu; Tong-hui Luo; Gu Chen; Hui Wu; Li Li; Yi-gang Yu

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four oth...

  5. Modulation by copper of the products of nitrite respiration in Pseudomonas perfectomarinus.

    OpenAIRE

    Matsubara, T; Frunzke, K; Zumft, W G

    1982-01-01

    A synthetic growth medium was purified with the chelator 1,5-diphenylthiocarbazone to study the effects of copper on partial reactions and product formation of nitrite respiration in Pseudomonas perfectomarinus. This organism grew anaerobically in a copper-deficient medium with nitrate or nitrite as the terminal electron acceptor. Copper-deficient cells had high activity for reduction of nitrate, nitrite, and nitric oxide, but little activity for nitrous oxide reduction. High rates of nitrous...

  6. Nitrite and Nitrate Concentrations and Metabolism in Breast Milk, Infant Formula, and Parenteral Nutrition

    OpenAIRE

    Jones, Jesica A.; Ninnis, Janet R.; Hopper, Andrew O.; Ibrahim, Yomna; Merritt, T. Allen; Wan, Kim-Wah; Power, Gordon G.; Blood, Arlin B.

    2013-01-01

    Dietary nitrate and nitrite are sources of gastric NO, which modulates blood flow, mucus production, and microbial flora. However, the intake and importance of these anions in infants is largely unknown. Nitrate and nitrite levels were measured in breast milk of mothers of preterm and term infants, infant formulas, and parenteral nutrition. Nitrite metabolism in breast milk was measured after freeze-thawing, at different temperatures, varying oxygen tensions, and after inhibition of potential...

  7. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions.

    Science.gov (United States)

    Tiso, Mauro; Schechter, Alan N

    2015-01-01

    The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome

  8. Blood Pressure-Lowering Effect of Orally Ingested Nitrite Is Abolished by a Proton Pump Inhibitor.

    Science.gov (United States)

    Montenegro, Marcelo F; Sundqvist, Michaela L; Larsen, Filip J; Zhuge, Zhengbing; Carlström, Mattias; Weitzberg, Eddie; Lundberg, Jon O

    2017-01-01

    Inorganic nitrate and nitrite from dietary and endogenous sources are metabolized to NO and other bioactive nitrogen oxides that affect blood pressure. The mechanisms for nitrite bioactivation are unclear, but recent studies in rodents suggest that gastric acidity may influence the systemic effects of this anion. In a randomized, double-blind, placebo-controlled crossover study, we tested the effects of a proton pump inhibitor on the acute cardiovascular effects of nitrite. Fifteen healthy nonsmoking, normotensive subjects, aged 19 to 39 years, were pretreated with placebo or esomeprazole (3×40 mg) before ingesting sodium nitrite (0.3 mg kg(-1)), followed by blood pressure monitoring. Nitrite reduced systolic blood pressure by a maximum of 6±1.3 mm Hg when taken after placebo, whereas pretreatment with esomeprazole blunted this effect. Peak plasma nitrite, nitrate, and nitroso species levels after nitrite ingestion were similar in both interventions. In 8 healthy volunteers, we then infused increasing doses of sodium nitrite (1, 10, and 30 nmol kg(-1) min(-1)) intravenously. Interestingly, although plasma nitrite peaked at similar levels as with orally ingested nitrite (≈1.8 µmol/L), no changes in blood pressure were observed. In rodents, esomeprazole did not affect the blood pressure response to the NO donor, DEA NONOate, or vascular relaxation to nitroprusside and acetylcholine, demonstrating an intact downstream NO-signaling pathway. We conclude that the acute blood pressure-lowering effect of nitrite requires an acidic gastric environment. Future studies will reveal if the cardiovascular complications associated with the use of proton pump inhibitors are linked to interference with the nitrate-nitrite-NO pathway. © 2016 American Heart Association, Inc.

  9. Nitrogen removal and electricity production at a double-chamber microbial fuel cell with cathode nitrite denitrification.

    Science.gov (United States)

    Yu, Yangyang; Zhao, Jianqiang; Wang, Sha; Zhao, Huimin; Ding, Xiaoqian; Gao, Kun

    2017-12-01

    Double-chamber microbial fuel cell was applied to investigate the performance of the electricity production and nitrite denitrification through feeding nitrite into the cathode. Factors influencing denitrification performance and power production, such as external resistance, influent nitrite concentration and Nitrite Oxygen Bacteria inhibitors, were studied. The results show that when the concentration of nitrite nitrogen and external resistance were 100 mg L -1 and 10 Ω, respectively, the nitrite denitrification reached the best state. The NaN 3 can inhibit nitrite oxidation effectively; meanwhile, the nitrite denitrification with N 2 O as the final products was largely improved. The [Formula: see text] was reduced to [Formula: see text], causing the cathode denitrification coulombic efficiency to exceed 100%. In chemoautotrophic bio-nitrification, microorganisms may utilize H 2 O to oxidize nitrite under anaerobic conditions. Proteobacteria might play a major role in the process of denitrification in MFC.

  10. The effect of pH and nitrite concentration on the antimicrobial impact of celery juice concentrate compared with conventional sodium nitrite on Listeria monocytogenes.

    Science.gov (United States)

    Horsch, A M; Sebranek, J G; Dickson, J S; Niebuhr, S E; Larson, E M; Lavieri, N A; Ruther, B L; Wilson, L A

    2014-01-01

    The objectives of this study were to evaluate the impact of pH and nitrite from celery juice concentrate (CJ) on the growth of Listeria monocytogenes in broth and on ham slices, and to evaluate the impact of pH and nitrite from CJ on quality attributes of the ham. The pH of both broth and ham were increased by the addition of CJ. The CJ was less effective than conventional nitrite at 100 mg/kg nitrite in broth, but in ham, the CJ treatments at both 100 and 200 mg/kg resulted in growth of L. monocytogenes (p>0.05) similar to that of the conventional nitrite at the same concentrations. Reducing the pH of CJ before addition to the ham had greater impact on L. monocytogenes growth at 200 mg/kg nitrite than at 100 mg/kg. Celery juice concentrate may increase meat product pH which could have implications for the antimicrobial impact of nitrite in some products. © 2013.

  11. METHOD FOR NITRATE DETERMINATION IN WATER IN THE PRESENCE OF NITRITE

    Directory of Open Access Journals (Sweden)

    Maria Sandu

    2014-12-01

    Full Text Available The study relates to determination of nitrate in presence of nitrite in water and can be used in the quality monitoring of natural water (surface and groundwater, drinking water, water from fish farms and public aquaria where autonomous filters is used. The nature and quantity of reagents used have insignificant impact on natural waters and sewages. According to the investigation, the method includes the removal of nitrite from the solution/water with sulfaminic acid, the nitrate ion reduction to nitrite using a reducing mixture that contains Na2SO4 and zinc dust in ratio of 100:5 and determining the nitrite with the Griess reagent.

  12. Total salivary nitrates and nitrites in oral health and periodontal disease.

    Science.gov (United States)

    Sánchez, Gabriel A; Miozza, Valeria A; Delgado, Alejandra; Busch, Lucila

    2014-01-30

    It is well known that nitrites are increased in saliva from patients with periodontal disease. In the oral cavity, nitrites may derive partly from the reduction of nitrates by oral bacteria. Nitrates have been reported as a defence-related mechanism. Thus, the aim of the present study was to determine the salivary levels of total nitrate and nitrite and their relationship, in unstimulated and stimulated saliva from periodontal healthy subjects, and from patients with chronic periodontal disease. Nitrates and nitrites were determined in saliva from thirty healthy subjects and forty-four patients with periodontal disease. A significant increase in salivary nitrates and nitrites was observed. Nitrates and nitrites concentration was related to clinical attachment level (CAL). A positive and significant Pearson's correlation was found between salivary total nitrates and nitrites. Periodontal treatment induced clinical improvement and decreased nitrates and nitrites. It is concluded that salivary nitrates and nitrites increase, in patients with periodontal disease, could be related to defence mechanisms. The possibility that the salivary glands respond to oral infectious diseases by increasing nitrate secretion should be explored further. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Color Developing Capacity of Plasma-treated Water as a Source of Nitrite for Meat Curing.

    Science.gov (United States)

    Jung, Samooel; Kim, Hyun Joo; Park, Sanghoo; Yong, Hae In; Choe, Jun Ho; Jeon, Hee-Joon; Choe, Wonho; Jo, Cheorun

    2015-01-01

    The interaction of plasma with liquid generates nitrogen species including nitrite (NO(-) 2). Therefore, the color developing capacity of plasma-treated water (PTW) as a nitrite source for meat curing was investigated in this study. PTW, which is generated by surface dielectric barrier discharge in air, and the increase of plasma treatment time resulted in increase of nitrite concentration in PTW. The PTW used in this study contains 46 ppm nitrite after plasma treatment for 30 min. To evaluate the effect of PTW on the cured meat color, meat batters were prepared under three different conditions (control, non-cured meat batter; PTW, meat batter cured with PTW; Sodium nitrite, meat batter cured with sodium nitrite). The meat batters were vacuum-packaged and cooked in a water-bath at 80℃ for 30 min. The typical color of cured meat developed in cooked meat batter treated with sodium nitrite or PTW. The lightness (L*) and yellowness (b*) values were similar in all conditions, whereas, the redness (a*) values of cooked meat batter with PTW and sodium nitrite (pcuring process of meat without addition of other nitrite sources.

  14. Nitrite toxicity of Litopenaeus vannamei in water containing low concentrations of sea salt or mixed salts

    Science.gov (United States)

    Sowers, A.; Young, S.P.; Isely, J.J.; Browdy, C.L.; Tomasso, J.R.

    2004-01-01

    The uptake, depuration and toxicity of environmental nitrite was characterized in Litopenaeus vannamei exposed in water containing low concentrations of artificial sea salt or mixed salts. In 2 g/L artificial sea salts, nitrite was concentrated in the hemolymph in a dose-dependent and rapid manner (steady-state in about 2 d). When exposed to nitrite in 2 g/L artificial sea salts for 4 d and then moved to a similar environment without added nitrite, complete depuration occurred within a day. Increasing salinity up to 10 g/L decreased uptake of environmental nitrite. Nitrite uptake in environments containing 2 g/L mixed salts (combination of sodium, potassium, calcium and magnesium chlorides) was similar to or lower than rates in 2 g/L artificial sea salt. Toxicity was inversely related to total dissolved salt and chloride concentrations and was highest in 2 g/L artificial sea salt (96-h medial lethal concentration = 8.4 mg/L nitrite-N). Animals that molted during the experiments did not appear to be more susceptible to nitrite than animals that did not molt. The shallow slope of the curve describing the relationship between toxicity and salinity suggests that management of nitrite toxicity in low-salinity shrimp ponds by addition of more salts may not be practical. ?? Copyright by the World Aquaculture Society 2004.

  15. Effect of Nitrite Inhibitor on the Macrocell Corrosion Behavior of Reinforcing Steel

    Directory of Open Access Journals (Sweden)

    Zhonglu Cao

    2015-01-01

    Full Text Available The effect of nitrite ions on the macrocell corrosion behavior of reinforcing steel embedded in cement mortar was investigated by comparing and analyzing the macrocell corrosion current, macrocell polarization ratios, and slopes of anodic and cathodic steels. Based on the experimental results, the relationship between macrocell potential difference and macrocell current density was analyzed, and the mechanism of macrocell corrosion affected by nitrite ions was proposed. The results indicated that nitrite ions had significant impact on the macrocell polarization ratios of cathode and anode. The presence of nitrite could reduce the macrocell current by decreasing the macrocell potential difference and increasing the macrocell polarization resistance of the anode.

  16. Aqueous Two-Phase Extraction and Spectrophotometric Determination of Nitrite in Food Samples

    Science.gov (United States)

    Liu, Y.; Cai, Q.; Ma, W.

    2015-07-01

    An ethanol-(NH 4 ) 2 SO 4 aqueous two-phase system has been applied to the extraction and spectrophotometric determination of nitrite. The complex formed by nitrite and methyl orange was extracted to the upper ethanol phase and was measured at 432 nm. The concentration of nitrite varies linearly with the absorbance over the range of ~0.5-6.0 mg/l. The proposed method has been applied to the determination of nitrite in food samples. The analytical results obtained by this method and the naphthyl ethylenediamine spectrophotometric method were in good agreement.

  17. Sodium nitrite blocks the activity of aminoglycosides against Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Zemke, Anna C; Gladwin, Mark T; Bomberger, Jennifer M

    2015-01-01

    Sodium nitrite has broad antimicrobial activity at pH 6.5, including the ability to prevent biofilm growth by Pseudomonas aeruginosa on the surfaces of airway epithelial cells. Because of its antimicrobial activity, nitrite is being investigated as an inhaled agent for chronic P. aeruginosa airway infections in cystic fibrosis patients. However, the interaction between nitrite and commonly used aminoglycosides is unknown. This paper investigates the interaction between nitrite and tobramycin in liquid culture, abiotic biofilms, and a biotic biofilm model simulating the conditions in the cystic fibrosis airway. The addition of nitrite prevented killing by aminoglycosides in liquid culture, with dose dependence between 1.5 and 15 mM. The effect was not blocked by the nitric oxide scavenger CPTIO or dependent on efflux pump activity. Nitrite shifted the biofilm minimal bactericidal concentration (MBC-biofilm) from 256 μg/ml to >1,024 μg/ml in an abiotic biofilm model. In a biotic biofilm model, the addition of 50 mM nitrite decreased the antibiofilm activity of tobramycin by up to 1.2 log. Respiratory chain inhibition recapitulated the inhibition of aminoglycoside activity by nitrite, suggesting a potential mechanism of inhibition of energy-dependent aminoglycoside uptake. In summary, sodium nitrite induces resistance to both gentamicin and tobramycin in P. aeruginosa grown in liquid culture, as an abiotic biofilm, or as a biotic biofilm. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. The tetraheme cytochrome CymA is required for anaerobic respiration with dimethyl sulfoxide and nitrite in Shewanella oneidensis.

    Science.gov (United States)

    Schwalb, Carsten; Chapman, Stephen K; Reid, Graeme A

    2003-08-12

    The tetraheme c-type cytochrome, CymA, from Shewanella oneidensis MR-1 has previously been shown to be required for respiration with Fe(III), nitrate, and fumarate [Myers, C. R., and Myers, J. M. (1997) J. Bacteriol. 179, 1143-1152]. It is located in the cytoplasmic membrane where the bulk of the protein is exposed to the periplasm, enabling it to transfer electrons to a series of redox partners. We have expressed and purified a soluble derivative of CymA (CymA(sol)) that lacks the N-terminal membrane anchor. We show here, by direct measurements of electron transfer between the purified proteins, that CymA(sol) efficiently reduces S. oneidensis fumarate reductase. This indicates that no further proteins are required for electron transfer between the quinone pool and fumarate if we assume direct reduction of CymA by quinols. By expressing CymA(sol) in a mutant lacking CymA, we have shown that this soluble form of the protein can complement the defect in fumarate respiration. We also demonstrate that CymA is essential for growth with DMSO (dimethyl sulfoxide) and for reduction of nitrite, implicating CymA in at least five different electron transfer pathways in Shewanella.

  19. Microbial competition among anammox bacteria in nitrite-limited bioreactors

    KAUST Repository

    Zhang, Lei

    2017-08-26

    Phylogenetically diverse anammox bacteria have been detected in most of anoxic natural and engineered ecosystems and thus regarded as key players in the global nitrogen cycle. However, ecological niche differentiation of anammox bacteria remains unresolved despite its ecological and practical importance. In this study, the microbial competitions for a common substrate (nitrite) among three anammox species (i.e. “Candidatus Brocadia sinica”, “Candidatus Jettenia caeni” and “Candidatus Kuenenia stuttgartiensis”) were systematically investigated in nitrite-limited gel-immobilized column reactors (GICR) and membrane bioreactors (MBRs) under different nitrogen loading rates (NLRs). 16 S rRNA gene-based population dynamics revealed that “Ca. J. caeni” could proliferate only at low NLRs, whereas “Ca. B. sinica” outcompeted other two species at higher NLRs in both types of reactors. Furthermore, FISH analysis revealed that “Ca. J. caeni” was mainly present as spherical microclusters at the inner part (low NO2− environment), whereas “Ca. B. sinica” was present throughout the gel beads and granules. This spatial distribution supports the outcomes of the competition experiments. However, the successful competition of “Ca. J. caeni” at low NLR could not be explained with the Monod model probably due to inaccuracy of kinetic parameters such as half saturation constant (Ks) for nitrite and a difference in the maintenance rate (m). In addition, the growth of “Ca. K. stuttgartiensis” could not be observed in any experimental conditions, suggesting possible unknown factor(s) is missing. Taken together, NLR was one of factors determining ecological niche differentiation of “Ca. B. sinica” and “Ca. J. caeni”.

  20. Nitrate ammonification in mangrove soils: A hidden source of nitrite?

    Directory of Open Access Journals (Sweden)

    Melike eBalk

    2015-03-01

    Full Text Available Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests.The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden under the nitrate-limited conditions of most mangrove forest soils.

  1. Steroid 5alpha-reductase inhibitors.

    Science.gov (United States)

    Flores, Eugenio; Bratoeff, Eugene; Cabeza, Marisa; Ramirez, Elena; Quiroz, Alexandra; Heuze, Ivonne

    2003-05-01

    The objective of this study is to synthesize new steroidal compounds based on the progesterone skeleton with a high inhibitory activity for the enzyme 5alpha-reductase. Presently similar compounds are being used for the treatment of androgen dependent diseases such as: hirsutism, androgenic alopecia, bening prostatic hyperplasia and prostate cancer. Dihydrotestosterone 2 (Fig. (1)), a 5alpha-reduced metabolite of testosterone 1 has been implicated as a causative factor in the progression of these diseases, largely through the clinical evaluation of males who are genetically deficient of steroid 5alpha-reductase enzyme. As a result of this study, the inhibition of this enzyme has become a pharmacological strategy for the design and synthesis of new antiandrogenic drugs. The advent of finasteride 8 (Fig. (4)) a 5alpha-reductase inhibitor has grately alleviated the symptoms associated with benign prostatic hyperplasia. In our laboratory we recently synthesized several new 16beta-methyl-pregnadiene-3,20-diones derivatives 27 (Fig.(6)), 38-42 (Fig. (11)), 16beta-phenyl-pregnadiene-3,17a-dione derivatives 32-33 (Fig. (7)), 16beta-phenyl-pregnatriene-3,17a-diones, 30, 31 (Fig. (7)) and 16beta-methyl-pregnatriene-3,20-diones 43-46 (Fig. (11)). These compounds were evaluated as 5alpha-reductase inhibitors in the following biological models: Penicillium crustosum broths, the flank organs of gonadectomized male hamsters, the incorporation of radiolabeled sodium acetate into lipids, the effect of the new steroids on the reduction of the weight of the seminal vesicles and on the in vitro metabolism of [(3)H]T to [(3)H]DHT in seminal vesicles homogenates of gonadectomized male hamsters. All trienones 30, 31, and 43-46 in all biological models showed consistently a higher 5alpha-reductase inhibitory activity than the corresponding dienones 27, 32, 33 and 38-42. We believe that with these compounds the 5alpha-reductase enzyme is inactivated by an irreversible Michael type addition

  2. Inhibitory effects of nitrite on the reactions of bovine carbonic anhydrase II with CO2 and bicarbonate consistent with zinc-bound nitrite.

    Science.gov (United States)

    Nielsen, Per M; Fago, Angela

    2015-08-01

    Carbonic anhydrase (CA) is a zinc enzyme that catalyzes hydration of carbon dioxide (CO2) and dehydration of bicarbonate in red blood cells, thus facilitating CO2 transport and excretion. Bovine CA II may also react with nitrite to generate nitric oxide, although nitrite is a known inhibitor of the CO2 hydration reaction. To address the potential in vivo interference of these reactions and the nature of nitrite binding to the enzyme, we here investigate the inhibitory effect of 10-30 mM nitrite on Michaelis-Menten kinetics of CO2 hydration and bicarbonate dehydration by stopped-flow spectroscopy. Our data show that nitrite significantly affects the apparent dissociation constant KM for CO2 (11 mM) and bicarbonate (221 mM), and the turnover number kcat for the CO2 hydration (1.467 × 10(6) s(-1)) but not for the bicarbonate dehydration (7.927 × 10(5) s(-1)). These effects demonstrate mixed and competitive inhibition for the reaction with CO2 and bicarbonate, respectively, and are consistent with nitrite binding to the active site zinc. The high apparent dissociation constant found here for CO2, bicarbonate and nitrite (16-120 mM) are all overall consistent with published data and reveal a large capacity of free enzyme available for binding each of the three substrates at their in vivo levels, with little or no significant interference among reactions. The low affinity of the enzyme for nitrite suggests that the in vivo interaction between red blood cell CA II and nitrite requires compartmentalization at the anion exchanger protein of the red cell membrane to be physiologically relevant. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Biliverdin reductase: A major physiologic cytoprotectant

    Science.gov (United States)

    Barañano, David E.; Rao, Mahil; Ferris, Christopher D.; Snyder, Solomon H.

    2002-01-01

    Bilirubin, an abundant pigment that causes jaundice, has long lacked any clear physiologic role. It arises from enzymatic reduction by biliverdin reductase of biliverdin, a product of heme oxygenase activity. Bilirubin is a potent antioxidant that we show can protect cells from a 10,000-fold excess of H2O2. We report that bilirubin is a major physiologic antioxidant cytoprotectant. Thus, cellular depletion of bilirubin by RNA interference markedly augments tissue levels of reactive oxygen species and causes apoptotic cell death. Depletion of glutathione, generally regarded as a physiologic antioxidant cytoprotectant, elicits lesser increases in reactive oxygen species and cell death. The potent physiologic antioxidant actions of bilirubin reflect an amplification cycle whereby bilirubin, acting as an antioxidant, is itself oxidized to biliverdin and then recycled by biliverdin reductase back to bilirubin. This redox cycle may constitute the principal physiologic function of bilirubin. PMID:12456881

  4. Excessive nitrite affects zebrafish valvulogenesis through yielding too much NO signaling.

    Directory of Open Access Journals (Sweden)

    Junbo Li

    Full Text Available Sodium nitrite, a common food additive, exists widely not only in the environment but also in our body. Excessive nitrite causes toxicological effects on human health; however, whether it affects vertebrate heart valve development remains unknown. In vertebrates, developmental defects of cardiac valves usually lead to congenital heart disease. To understand the toxic effects of nitrite on valvulogenesis, we exposed zebrafish embryos with different concentrations of sodium nitrite. Our results showed that sodium nitrite caused developmental defects of zebrafish heart dose dependently. It affected zebrafish heart development starting from 36 hpf (hour post fertilization when heart initiates looping process. Comprehensive analysis on the embryos at 24 hpf and 48 hpf showed that excessive nitrite did not affect blood circulation, vascular network, myocardium and endocardium development. But development of endocardial cells in atrioventricular canal (AVC of the embryos at 48 hpf was disrupted by too much nitrite, leading to defective formation of primitive valve leaflets at 76 hpf. Consistently, excessive nitrite diminished expressions of valve progenitor markers including bmp4, has2, vcana and notch1b at 48 hpf. Furthermore, 3', 5'-cyclic guanosine monophosphate (cGMP, downstream of nitric oxide (NO signaling, was increased its level significantly in the embryos exposed with excessive nitrite and microinjection of soluble guanylate cyclase inhibitor ODQ (1H-[1], [2], [4]Oxadiazolo[4,3-a] quinoxalin-1-one, an antagonist of NO signaling, into nitrite-exposed embryos could partly rescue the cardiac valve malformation. Taken together, our results show that excessive nitrite affects early valve leaflet formation by producing too much NO signaling.

  5. Nitrogen Removal over Nitrite by Aeration Control in Aerobic Granular Sludge Sequencing Batch Reactors

    Directory of Open Access Journals (Sweden)

    Samuel Lochmatter

    2014-07-01

    Full Text Available This study investigated the potential of aeration control for the achievement of N-removal over nitrite with aerobic granular sludge in sequencing batch reactors. N-removal over nitrite requires less COD, which is particularly interesting if COD is the limiting parameter for nutrient removal. The nutrient removal performances for COD, N and P have been analyzed as well as the concentration of nitrite-oxidizing bacteria in the granular sludge. Aeration phase length control combined with intermittent aeration or alternate high-low DO, has proven to be an efficient way to reduce the nitrite-oxidizing bacteria population and hence achieve N-removal over nitrite. N-removal efficiencies of up to 95% were achieved for an influent wastewater with COD:N:P ratios of 20:2.5:1. The total N-removal rate was 0.18 kgN·m−3·d−1. With N-removal over nitrate the N-removal was only 74%. At 20 °C, the nitrite-oxidizing bacteria concentration decreased by over 95% in 60 days and it was possible to switch from N-removal over nitrite to N-removal over nitrate and back again. At 15 °C, the nitrite-oxidizing bacteria concentration decreased too but less, and nitrite oxidation could not be completely suppressed. However, the combination of aeration phase length control and high-low DO was also at 15 °C successful to maintain the nitrite pathway despite the fact that the maximum growth rate of nitrite-oxidizing bacteria at temperatures below 20 °C is in general higher than the one of ammonium-oxidizing bacteria.

  6. The role of inorganic nitrate and nitrite in CVD.

    Science.gov (United States)

    Jackson, Jacklyn; Patterson, Amanda J; MacDonald-Wicks, Lesley; McEvoy, Mark

    2017-12-01

    CVD is the leading cause of death worldwide, a consequence of mostly poor lifestyle and dietary behaviours. Although whole fruit and vegetable consumption has been consistently shown to reduce CVD risk, the exact protective constituents of these foods are yet to be clearly identified. A recent and biologically plausible hypothesis supporting the cardioprotective effects of vegetables has been linked to their inorganic nitrate content. Approximately 60-80 % inorganic nitrate exposure in the human diet is contributed by vegetable consumption. Although inorganic nitrate is a relatively stable molecule, under specific conditions it can be metabolised in the body to produce NO via the newly discovered nitrate-nitrite-NO pathway. NO is a major signalling molecule in the human body, and has a key role in maintaining vascular tone, smooth muscle cell proliferation, platelet activity and inflammation. Currently, there is accumulating evidence demonstrating that inorganic nitrate can lead to lower blood pressure and improved vascular compliance in humans. The aim of this review is to present an informative, balanced and critical review of the current evidence investigating the role of inorganic nitrate and nitrite in the development, prevention and/or treatment of CVD. Although there is evidence supporting short-term inorganic nitrate intakes for reduced blood pressure, there is a severe lack of research examining the role of long-term nitrate intakes in the treatment and/or prevention of hard CVD outcomes, such as myocardial infarction and cardiovascular mortality. Epidemiological evidence is needed in this field to justify continued research efforts.

  7. Metabolic fates and effects of nitrite in brown trout under normoxic and hypoxic conditions: blood and tissue nitrite metabolism and interactions with branchial NOS, Na+/K+-ATPase and hsp70 expression

    DEFF Research Database (Denmark)

    Jensen, Frank Bo; Gerber, Lucie; Hansen, Marie Niemann

    2015-01-01

    Nitrite secures essential nitric oxide (NO) bioavailability in hypoxia at low endogenous concentrations, whereas it becomes toxic at high concentrations. We exposed brown trout to normoxic and hypoxic water in the absence and presence of added ambient nitrite to decipher the cellular metabolism...... and effects of nitrite at basal and elevated concentrations under different oxygen regimes. We also tested hypotheses concerning the influence of nitrite on branchial nitric oxide synthase (NOS), Na+/K+-ATPase (nka) and heat shock protein (hsp70) mRNA expression. Basal plasma and erythrocyte nitrite levels...... were higher in hypoxia than normoxia, suggesting increased NOS activity. Nitrite exposure strongly elevated nitrite concentrations in plasma, erythrocytes, heart tissue and white muscle, which was associated with an extensive metabolism of nitrite to nitrate and to iron-nitrosylated and S...

  8. 75 FR 29534 - Inorganic Nitrates-Nitrite, Carbon and Carbon Dioxide, and Sulfur Registration Review; Draft...

    Science.gov (United States)

    2010-05-26

    ...] [FR Doc No: 2010-12591] ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2010-0434; FRL-8826-6] Inorganic... ecological risk assessment for the registration review of inorganic nitrates - nitrites, carbon and carbon... inorganic nitrates- nitrites, carbon and carbon dioxide uses, as well as gas cartridge uses of sulfur. The...

  9. Toxic Effect Of Azo Dyes On Nitrite-N Utilization By Nitrobacter ...

    African Journals Online (AJOL)

    The toxicity of five azo dyes (toxicants) on Nitrobacter was investigated. The index for toxicity was inhibition of rate of nitrite-N utilization. The rate of nitrite-N utilization decreased with increase in concentration of each toxicant at specific exposure time. However, stimulation of utilization was obtained at low concentrations ...

  10. Nitrite in processed meat products in Khartoum, Sudan and dietary intake

    NARCIS (Netherlands)

    Adam, Aziza Hussein Bakheit; Mustafa, Nazik Eltayeb Musa; Rietjens, Ivonne M.C.M.

    2017-01-01

    Nitrite intake from locally processed meat in Khartoum, Sudan was estimated and compared to established safety levels. For this purpose, 90 locally processed meat samples were collected randomly from retail outlets and analysed for nitrite levels according to the British standard 1992 protocol

  11. 77 FR 71006 - Sodium Nitrite Injection and Sodium Thiosulfate Injection Drug Products Labeled for the Treatment...

    Science.gov (United States)

    2012-11-28

    ... HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-1134 Sodium Nitrite Injection and Sodium Thiosulfate Injection Drug Products Labeled for the Treatment of Cyanide Poisoning; Enforcement... products containing sodium nitrite labeled for the treatment of cyanide poisoning and unapproved injectable...

  12. Citrus co-products as technological strategy to reduce residual nitrite content in meat products.

    Science.gov (United States)

    Viuda-Martos, M; Fernández-López, J; Sayas-Barbera, E; Sendra, E; Navarro, C; Pérez-Alvarez, J A

    2009-10-01

    Sodium or potassium nitrite is widely used as a curing agent in cured meat products because it inhibits outgrowth and neurotoxin formation by Clostridium botulinum, delays the development of oxidative rancidity, develops the characteristic flavor of cured meats, and reacts with myoglobin and stabilizes the red meat color. As soon as nitrite is added in the meat formulation, it starts to disappear and the nitrite that has not reacted with myoglobin and it is available corresponds to residual nitrite level. Health concerns relating to the use of nitrates and nitrites in cured meats (cooked and dry cured) trend toward decreased usage to alleviate the potential risk to the consumers from formation of carcinogenic compounds. Recently, some new ingredients principally agro-industrial co-products in general and those from the citrus industry in particular (albedo [with different treatments], dietetic fiber obtained from the whole co-product, and washing water used in the process to obtain the dietetic fiber) are seen as good sources of bio-compounds that may help to reduce the residual nitrite level in meat products. From these co-products, citrus fiber shows the highest potential to reduce the residual nitrite level, followed by the albedo and finally the washing water. The aim of this article is to describe the latest advances concerning the use of citrus co-products in meat products as a potential ingredient to reduce the nitrite level.

  13. Dietary nitrite attenuates oxidative stress and activates antioxidant genes in rat heart during hypobaric hypoxia.

    Science.gov (United States)

    Singh, Manjulata; Arya, Aditya; Kumar, Rajesh; Bhargava, Kalpana; Sethy, Niroj Kumar

    2012-01-01

    The nitrite anion represents the circulatory and tissue storage form of nitric oxide (NO) and a signaling molecule, capable of conferring cardioprotection and many other health benefits. However, molecular mechanisms for observed cardioprotective properties of nitrite remain largely unknown. We have evaluated the NO-like bioactivity and cardioprotective efficacies of sodium nitrite supplemented in drinking water in rats exposed to short-term chronic hypobaric hypoxia. We observed that, nitrite significantly attenuates hypoxia-induced oxidative stress, modulates HIF-1α stability and promotes NO-cGMP signaling in hypoxic heart. To elucidate potential downstream targets of nitrite during hypoxia, we performed a microarray analysis of nitrite supplemented hypoxic hearts and compared with both hypoxic and nitrite supplemented normoxic hearts respectively. The analysis revealed a significant increase in the expression of many antioxidant genes, transcription factors and cardioprotective signaling pathways which was subsequently confirmed by qRT-PCR and Western blotting. Conversely, hypoxia exposure increased oxidative stress, activated inflammatory cytokines, downregulated ion channels and altered expression of both pro- and anti-oxidant genes. Our results illustrate the physiological function of nitrite as an eNOS-independent source of NO in heart profoundly modulating the oxidative status and cardiac transcriptome during hypoxia. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Effect of Electrolytes on the Adsorption of Nitrite and Nitrate from ...

    African Journals Online (AJOL)

    Nitrite and nitrate levels were quantitatively adsorbed to wood-derived activated carbon in aqueous system and the effects of electrolytes investigated in this study using batch sorption process. The data showed that nitrate adsorbed nearly 1.5 times higher than that of nitrite. The adsorption is adequately explained by ...

  15. Nitrite enhances liver graft protection against cold ischemia reperfusion injury through a NOS independent pathway.

    Science.gov (United States)

    Cherif-Sayadi, Amani; Hadj Ayed-Tka, Kaouther; Zaouali, Mohamed Amine; Bejaoui, Mohamed; Hadj-Abdallah, Najet; Bouhlel, Ahlem; Ben Abdennebi, Hassen

    2017-12-01

    Nitrite has been found to protect liver graft from cold preservation injury. However, the cell signaling pathway involved in this protection remains unclear. Here, we attempt to clarify if the NOS pathway by using the NOS inhibitor, L-NAME (L-N(G)-Nitroarginine methyl ester). Rat livers were conserved for 24 h at 4°C in (IGL-1) solution enriched or not with nitrite at 50 nM. In a third group, rats were pretreated with 50 mg/kg of L-NAME before their liver procurement and preservation in IGL-1 supplemented with nitrite (50 nM) and L-NAME (1 mM). After 24 h of cold storage, rat livers were ex-vivo perfused at 37°C during 2 h. Control livers were perfused without cold storage. Nitrite effectively protected the rat liver grafts from the onset of cold I/R injury. L-NAME treatment did not abolish the beneficial effects of nitrite. Liver damage, protein oxidation and lipid peroxidation remained at low levels in both nitrite-treated groups when compared to IGL-1 group. Antioxidant enzyme activities and functional parameters were unchanged after NOS inhibition. Despite NOS inhibition by L-NAME, nitrite can still provide hepatic protection during cold I/R preservation. This suggests that nitrite acts through a NOS-independent pathway.

  16. Nitrite-induced enhancement of toxicity of phenanthrene in fish and its implications for coastal waters

    Digital Repository Service at National Institute of Oceanography (India)

    Shailaja, M.S.; Rodrigues, A.

    the effect of a natural stress such as the presence of nitrite in water on the xenobiotic metabolism in fish, the euryhaline cichlid Oreochromis mossambicus was exposed for up to 9 days to environmentally relevant concentrations of water-borne nitrite...

  17. Effects of different cooking methods and temperatures on residual nitrite content in sausage

    Directory of Open Access Journals (Sweden)

    MGh.Soleimani

    2015-10-01

    Full Text Available Background: Presence of nitrites in meat products is important because they combine with secondary amines and produce nitrosamine carcinogen. Objective: The aim of this study was to determine the effects of different cooking methods and temperatures on residual nitrite content in sausage. Methods: This experimental study was conducted in the Food and Drug Laboratory of Qazvin University of Medical Sciences in 2014. Sausage samples containing 90% meat that were produced under identical conditions in a factory in Qazvin were transferred to the laboratory under suitable conditions and their residual nitrite contents were measured. The residual nitrite content was remeasured three times after using different cooking methods (frying, grilling, and cooking in microwave oven at different temperatures and durations in 39 experiments. Data were analyzed using one-way ANOVA. Findings: Before cooking, the residual nitrite content was 33.57 mg/kg in the sausage samples and reached to 26.46 mg/kg after frying at 120º C for 5 minutes. Mean residual nitrite content was significantly different at other temperatures and cooking durations. The mean residual nitrite content reached to 1.42 and 0 after frying at 220º C for 5 and 10 minutes, respectively. Conclusion: With regards to the results, the greater the temperature and the duration of cooking, the more the reduction in residual nitrite content of the final product.

  18. Nitrate and nitrite content in bottled beverages by ion-pair high-performance liquid chromatography.

    Science.gov (United States)

    Song, Yang; Deng, Gui-Fang; Xu, Xiang-Rong; Chen, Yong-Hong; Chen, Feng; Li, Hua-Bin

    2013-01-01

    Nitrate and nitrite levels in six types of beverages--total of 292 individual samples from 73 brands (four bottles each)--from Guangzhou city in China were evaluated by ion-pair high-performance liquid chromatography. All samples contained nitrate. Nitrate and nitrite ranges were 0.43-46.08 and beverages.

  19. Influence of turkey meat on residual nitrite in cured meat products.

    Science.gov (United States)

    Kilic, B; Cassens, R G; Borchert, L L

    2001-02-01

    A response surface experimental design was employed to estimate residual nitrite level at various initial nitrite concentrations, percent turkey meat in the formula, and heat quantity (F) values using a typical wiener as the test system. Pork and mechanically separated turkey were used as the meat ingredients. Residual nitrite and pH were measured at day 1, 7 days, 14 days, and 49 days after processing. Protein, fat, salt, moisture, and CIE (L*a*b*) color values were also determined. Results showed that the effect of turkey meat on residual nitrite level was significant (P meat in the formula resulted in lower residual nitrite levels at a fixed pH. The residual nitrite level was initially proportional to initial nitrite concentration, but it became a nonsignificant factor during longer storage time. Differences in heat quantity had a significant effect (P meat products at a fixed pH. However, this effect became nonsignificant during longer storage. Reduction of residual nitrite in wieners because of turkey meat addition at a fixed pH was due to characteristics of the turkey tissue, but the mechanism of action remains unknown. It was also established that commercial wieners had a higher pH if poultry meat was included in the formulation.

  20. Low nitrous oxide production in intermittent-feed high performance nitritating reactors

    DEFF Research Database (Denmark)

    Su, Qingxian; Jensen, Malene M.; Smets, Barth F.

    Nitrous oxide (N2O) production from autotrophic nitrogen removal processes, especially nitritating systems, is of growing concern. N2O dynamics were characterized and N2O production factors were quantified in two lab-scale intermittent-feed nitritating SBRs. 93 ± 14% of the oxidized ammonium...

  1. 21 CFR 250.100 - Amyl nitrite inhalant as a prescription drug for human use.

    Science.gov (United States)

    2010-04-01

    ... August 25, 1967 (32 FR 12404), the Commissioner of Food and Drugs received reports of the abuse of this... Board, that amyl nitrite inhalant is a drug with a potentiality for harmful effect and that it should be... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Amyl nitrite inhalant as a prescription drug for...

  2. Bioavailability of sodium nitrite from an aqueous solution in healthy adults.

    NARCIS (Netherlands)

    Hunault, C.C.; van Velzen, A.G.; Sips, A.J.; Schothorst, R.C.; Meulenbelt, J.|info:eu-repo/dai/nl/079479227

    2009-01-01

    Nitrate intake in humans is high through intake of vegetables such as beets, lettuce, and spinach. Nitrate itself is a compound of low toxicity but its metabolite, nitrite, formed by bacteria in the oral cavity and gastrointestinal tract, has been suspected of potential carcinogenic effects. Nitrite

  3. Structural Elucidation of Chalcone Reductase and Implications for Deoxychalcone Biosynthesis

    Science.gov (United States)

    Bomati, Erin K.; Austin, Michael B.; Bowman, Marianne E.; Dixon, Richard A.; Noel, Joseph P.

    2010-01-01

    4,2′,4′,6′-tetrahydroxychalcone (chalcone) and 4,2′,4′-trihydroxychalcone (deoxychalcone) serve as precursors of ecologically important flavonoids and isoflavonoids. Deoxychalcone formation depends on chalcone synthase and chalcone reductase; however, the identity of the chalcone reductase substrate out of the possible substrates formed during the multistep reaction catalyzed by chalcone synthase remains experimentally elusive. We report here the three-dimensional structure of alfalfa chalcone reductase bound to the NADP+ cofactor and propose the identity and binding mode of its substrate, namely the non-aromatized coumaryl-trione intermediate of the chalcone synthase-catalyzed cyclization of the fully extended coumaryl-tetraketide thioester intermediate. In the absence of a ternary complex, the quality of the refined NADP+-bound chalcone reductase structure serves as a template for computer-assisted docking to evaluate the likelihood of possible substrates. Interestingly, chalcone reductase adopts the three-dimensional structure of the aldo/keto reductase superfamily. The aldo/keto reductase fold is structurally distinct from all known ketoreductases of fatty acid biosynthesis, which instead belong to the short-chain dehydrogenase/reductase superfamily. The results presented here provide structural support for convergent functional evolution of these two ketoreductases that share similar roles in the biosynthesis of fatty acids/polyketides. In addition, the chalcone reductase structure represents the first protein structure of a member of the aldo/ketoreductase 4 family. Therefore, the chalcone reductase structure serves as a template for the homology modeling of other aldo/ketoreductase 4 family members, including the reductase involved in morphine biosynthesis, namely codeinone reductase. PMID:15970585

  4. Cloning and nitrate induction of nitrate reductase mRNA

    OpenAIRE

    Cheng, Chi-Lien; Dewdney, Julia; Kleinhofs, Andris; Goodman, Howard M.

    1986-01-01

    Nitrate is the major source of nitrogen taken from the soil by higher plants but requires reduction to ammonia prior to incorporation into amino acids. The first enzyme in the reducing pathway is a nitrate-inducible enzyme, nitrate reductase (EC 1.6.6.1). A specific polyclonal antiserum raised against purified barley nitrate reductase has been used to immunoprecipitate in vivo labeled protein and in vitro translation products, demonstrating that nitrate induction increases nitrate reductase p...

  5. Controls of nitrite oxidation in ammonia-removing biological air filters

    DEFF Research Database (Denmark)

    Juhler, Susanne; Ottosen, Lars Ditlev Mørck; Nielsen, Lars Peter

    2008-01-01

    analysis. Furthermore, the effect of varying air load and water exchange was investigated. Absence of NOB in many filters was explained by the inhibitory effect of Free Ammonia (FA). When first established, NOB induced a self-perpetuating effect through oxidation of nitrite which allowed increased AOB......In biological air filters ammonia is removed due to the action of Ammonia Oxidizing Bacteria (AOB) resulting in nitrite accumulation exceeding 100 mM. Among filters treating exhaust air from pig facilities successful establishment of Nitrite Oxidizing Bacteria (NOB) sometimes occurs, resulting...... in accumulation of nitrate rather than nitrite and a significant decline in pH. As a consequence, ammonia is removed more efficiently, but heterotrophic oxidation of odorous compounds might be inhibited.  To identify the controlling mechanisms of nitrite oxidation, full-scale biological air filters were...

  6. Spectrophotometric and kinetic study of nitrite and formate oxidation in Nitrobacter winogradskyi.

    Science.gov (United States)

    Van Gool, A; Laudelout, H

    1967-01-01

    The reduction levels of cytochrome c and a(1) in intact Nitrobacter cells and cell-free extracts, during and after nitrite or formate oxidation, were examined in combination with the amperometric measurement of oxygen uptake. Quite different reduction patterns were observed when comparing nitrite oxidation by intact cells and cell-free extracts. An inverse relationship was observed between the rate of electron flow and the steady-state reduction level of cytochrome a(1). Parallel observations on nitrite oxidation, by use of formate and reduced nicotinamide adenine dinucleotide as electron donors, showed the influence of the high oxidation-reduction potential of the nitrite-nitrate system on cytochrome reduction. A value for the apparent activation energy of the overall nitrite oxidation process, amounting to 15 kcal, was found in a study of the temperature dependence of cytochrome reduction.

  7. Estimation of nitrite in source-separated nitrified urine with UV spectrophotometry.

    Science.gov (United States)

    Mašić, Alma; Santos, Ana T L; Etter, Bastian; Udert, Kai M; Villez, Kris

    2015-11-15

    Monitoring of nitrite is essential for an immediate response and prevention of irreversible failure of decentralized biological urine nitrification reactors. Although a few sensors are available for nitrite measurement, none of them are suitable for applications in which both nitrite and nitrate are present in very high concentrations. Such is the case in collected source-separated urine, stabilized by nitrification for long-term storage. Ultraviolet (UV) spectrophotometry in combination with chemometrics is a promising option for monitoring of nitrite. In this study, an immersible in situ UV sensor is investigated for the first time so to establish a relationship between UV absorbance spectra and nitrite concentrations in nitrified urine. The study focuses on the effects of suspended particles and saturation on the absorbance spectra and the chemometric model performance. Detailed analysis indicates that suspended particles in nitrified urine have a negligible effect on nitrite estimation, concluding that sample filtration is not necessary as pretreatment. In contrast, saturation due to very high concentrations affects the model performance severely, suggesting dilution as an essential sample preparation step. However, this can also be mitigated by simple removal of the saturated, lower end of the UV absorbance spectra, and extraction of information from the secondary, weaker nitrite absorbance peak. This approach allows for estimation of nitrite with a simple chemometric model and without sample dilution. These results are promising for a practical application of the UV sensor as an in situ nitrite measurement in a urine nitrification reactor given the exceptional quality of the nitrite estimates in comparison to previous studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The redox interplay between nitrite and nitric oxide: From the gut to the brain☆

    Science.gov (United States)

    Pereira, Cassilda; Ferreira, Nuno R.; Rocha, Bárbara S.; Barbosa, Rui M.; Laranjinha, João

    2013-01-01

    The reversible redox conversion of nitrite and nitric oxide (•NO) in a physiological setting is now widely accepted. Nitrite has long been identified as a stable intermediate of •NO oxidation but several lines of evidence support the reduction of nitrite to nitric oxide in vivo. In the gut, this notion implies that nitrate from dietary sources fuels the longstanding production of nitrite in the oral cavity followed by univalent reduction to •NO in the stomach. Once formed, •NO boosts a network of reactions, including the production of higher nitrogen oxides that may have a physiological impact via the post-translational modification of proteins and lipids. Dietary compounds, such as polyphenols, and different prandial states (secreting specific gastric mediators) modulate the outcome of these reactions. The gut has unusual characteristics that modulate nitrite and •NO redox interplay: (1) wide range of pH (neutral vs acidic) and oxygen tension (c.a. 70 Torr in the stomach and nearly anoxic in the colon), (2) variable lumen content and (3) highly developed enteric nervous system (sensitive to •NO and dietary compounds, such as glutamate). The redox interplay of nitrite and •NO might also participate in the regulation of brain homeostasis upon neuronal glutamatergic stimulation in a process facilitated by ascorbate and a localized and transient decrease of oxygen tension. In a way reminiscent of that occurring in the stomach, a nitrite/•NO/ascorbate redox interplay in the brain at glutamatergic synapses, contributing to local •NO increase, may impact on •NO-mediated process. We here discuss the implications of the redox conversion of nitrite to •NO in the gut, how nitrite-derived •NO may signal from the digestive to the central nervous system, influencing brain function, as well as a putative ascorbate-driven nitrite/NO pathway occurring in the brain. PMID:24024161

  9. Nitrite modulates bacterial antibiotic susceptibility and biofilm formation in association with airway epithelial cells.

    Science.gov (United States)

    Zemke, Anna C; Shiva, Sruti; Burns, Jane L; Moskowitz, Samuel M; Pilewski, Joseph M; Gladwin, Mark T; Bomberger, Jennifer M

    2014-12-01

    Pseudomonas aeruginosa is the major pathogenic bacteria in cystic fibrosis and other forms of bronchiectasis. Growth in antibiotic-resistant biofilms contributes to the virulence of this organism. Sodium nitrite has antimicrobial properties and has been tolerated as a nebulized compound at high concentrations in human subjects with pulmonary hypertension; however, its effects have not been evaluated on biotic biofilms or in combination with other clinically useful antibiotics. We grew P. aeruginosa on the apical surface of primary human airway epithelial cells to test the efficacy of sodium nitrite against biotic biofilms. Nitrite alone prevented 99% of biofilm growth. We then identified significant cooperative interactions between nitrite and polymyxins. For P. aeruginosa growing on primary CF airway cells, combining nitrite and colistimethate resulted in an additional log of bacterial inhibition compared to treating with either agent alone. Nitrite and colistimethate additively inhibited oxygen consumption by P. aeruginosa. Surprisingly, whereas the antimicrobial effects of nitrite in planktonic, aerated cultures are nitric oxide (NO) dependent, antimicrobial effects under other growth conditions are not. The inhibitory effect of nitrite on bacterial oxygen consumption and biofilm growth did not require NO as an intermediate as chemically scavenging NO did not block growth inhibition. These data suggest an NO-radical independent nitrosative or oxidative inhibition of respiration. The combination of nebulized sodium nitrite and colistimethate may provide a novel therapy for chronic P. aeruginosa airway infections, because sodium nitrite, unlike other antibiotic respiratory chain "poisons," can be safely nebulized at high concentration in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Remediation of nitrite contamination in ground and surface waters using aquatic macrophytes.

    Science.gov (United States)

    Rawat, S K; Singh, R K; Singh, Rana P

    2012-01-01

    The study was carried out to determine the seasonal variation of nitrite levels in drinking and surface waters of urban, peri-urban and rural areas of Lucknow, during 2007-2008, and to evaluate the nitrite removal and accumulation potential of certain native aquatic macrophytes. Most of the drinking and surface water samples were collected from urbanized region of the city. All drinking water samples detected, showed higher nitrite level in winter, when compared with that in summer and rainy seasons. However, in drinking water samples nitrite level was below the permissible limit i.e. 3.29 mg l(-1) NO2. The surface water showed more than 3 fold higher levels of nitrite over the permissible level i.e. 0.06 mg l(-1), and the level was higher during rainy season than in summer and winterseasons. Eight macrophytes viz. Peltandra virginica, Utricularia vulgaris, Eichhomia crassipes, Trapa natans, Mimulus glabratus, Marsilea quadrifolia, Pistia stratiotes and Polygonum persicaria were studied for phytoremediation potential of nitrite from the water under simulated laboratory conditions. The gradual diminution in the level of nitrite in the water and simultaneously it's increase in the plant tissues was recorded at 5th, 10th and 15th d after plant culture. All the plants selected, removed nitrite from water but Polygonum persicaria, Mimulus glabratus, Trapa natans and Pistia stratiotes were found more efficient and removed nitrite upto 60.91, 58.09, 60.97 and 72.28%, respectively. Observations revealed that Pistia stratiotes can be used forthe effective removal of nitrite from the contaminated water.

  11. Intake assessment of the food additives nitrite (E 249 and E 250) and nitrate (E 251 and E 252)

    NARCIS (Netherlands)

    Sprong RC; Niekerk EM; Beukers MH; VVH; V&Z

    2017-01-01

    Nitrate and nitrite are authorised as preservatives in certain food products, such as salami, ham (nitrite) and cheese (nitrate). They prevent food spoilage and protect the consumer against food-borne pathogens. Next to that, nitrate and nitrite play a role in food colour retention and contribute to

  12. Effects of pulse duration and post-exposure period on the nitrite toxicity to a freshwater amphipod

    NARCIS (Netherlands)

    Alonso, A.; Camargo, J.A.

    2009-01-01

    This research assesses the effects of nitrite pulses and post-exposure periods after nitrite exposures on the survival of the freshwater amphipod Eulimnogammarus toletanus. A toxicity bioassay was performed using three different nitrite concentrations (0.5, 5.0 and 10.0 mg/L NO2-N), four pulse

  13. Addition of nitrite enhances the electrochemical defluorination of 2-fluoroaniline

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Huajun [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012 (China); Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Liang, Yuxiang [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012 (China); Guo, Kun [Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Long, Yuyang [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012 (China); Cong, Yanqing, E-mail: yqcong@hotmail.com [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Shen, Dongsheng [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012 (China)

    2015-12-30

    Highlights: • A method for improving defluorination performance by in situ self-assembly of pollutants was developed. • The mechanisms of 2-FA modification and defluorination are discussed. • Positively-charged diazonium salt is used to weaken the C–F bond. - Abstract: This study introduces a novel approach that uses the interaction of pollutants with added nitrite to produce diazonium salts, which cause in situ self-assembly of the pollutants on carbon electrodes, to improve their 2-fluoroaniline (2-FA) defluorination and removal performance. The 2-FA degradation performance, electrode properties, electrochemical properties and degradation pathway were investigated. The reactor containing NO{sub 2}{sup −} achieved a 2-FA removal efficiency of 90.1% and a defluorination efficiency of 38% within 48 h, 1.4 and 2.3 times higher than the corresponding results achieved without NO{sub 2}{sup −}, respectively. The residual NO{sub 2}{sup −} was less than 0.5 mg/L in the reactor containing added NO{sub 2}{sup −}, which would not cause serious secondary pollution. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results proved that the carbon anode surface was successfully modified with benzene polymer, and electrochemical tests confirmed that the electrochemical activity of the modified anode was enhanced significantly. The C–F bond was weakened by the effect of the positive charge of the benzenediazonium groups, and the high electrochemical activity of the carbon anode enhanced the electrochemical performance of the system to accelerate defluorination. Thus, the present electrical method involving nitrite nitrogen is very promising for the treatment of wastewater containing fluoroaniline compounds.

  14. Characterization of novel nitrate reductase-deficient mutants for transgenic Dunaliella salina systems.

    Science.gov (United States)

    Gao, L J; Jia, Y L; Li, S K; Qiu, L L

    2015-10-27

    The aim of the present study was to isolate and characterize novel nitrate reductase (NR)-deficient mutants, which may be useful for the transgenic manipulation of Dunaliella salina. Three NR-deficient mutants of D. salina, J-1, J-2, and J-3, were successfully isolated by screening for chlorate resistance after chemical mutagenesis with ethylnitrosourea. NR activity was not detected in the mutants and the expression of NR mRNA was significantly decreased. Growth analysis of D. salina strains grown in media containing different nitrogen sources revealed that these mutants were capable of utilizing nitrite and urea, but not nitrate as a nitrogen source, indicating that these mutants are indeed NR-deficient. Mutation analysis of NR cDNA sequences revealed that there were 11 point mutations shared by the J-1, J-2, and J-3 mutants. Furthermore, the results of the functional complementation experiment showed that NR activity of transformant T-1 derived from J-1 was recovered to 48.1 % of that of the wild-type D. salina. The findings of the present study indicate that nitrate may be used as a selective agent rather than antibiotics or herbicides for the isolated NR-deficient mutants in future transgenic D. salina systems.

  15. The effects of lactate on nitrosylmyoglobin formation from nitrite and metmyoglobin in a cured meat system.

    Science.gov (United States)

    McClure, Brooke N; Sebranek, Joseph G; Kim, Yuan H; Sullivan, Gary A

    2011-12-01

    Two experiments were conducted to determine the effects of lactate on nitrite during meat curing. In the first experiment, using a model system, eight reaction components including nitrite and lactate, were used to assess the effect of each component on metmyoglobin reducing activity by excluding one component at a time. Excluding lactate, nicotinamide adenine dinucleotide (NAD), l-lactate dehydrogenase (LDH) or phenazine methosulfate (PMS) resulted in no reducing activity. A second experiment, utilising a meat mixture, investigated the effects of lactate (0%, 2%, 4% or 6%), nitrite (0 or 156ppm), and packaging (oxygen-permeable or vacuum) on residual nitrite, meat colour and pH. Addition of lactate reduced residual nitrite in the meat mixtures. Both experiments support the hypothesis that lactate generates NADH which then reduces metmyoglobin to deoxymyoglobin. The resulting greater concentration of reduced myoglobin subsequently reacted with nitrite to produce more nitric oxide, reducing nitrite concentration and accelerating curing reactions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. The nitritation performance of biofilm reactor for treating domestic wastewater under high dissolved oxygen.

    Science.gov (United States)

    Zheng, Zhaoming; Li, Zebing; Ma, Jing; Du, Jia; Chen, Guanghui; Bian, Wei; Li, Jun; Zhao, Baihang

    2016-04-01

    The objective of this study was to investigate the nitritation performance in a biofilm reactor for treating domestic wastewater. The reactor was operated in continuous feed mode from phases 1 to 3. The dissolved oxygen (DO) was controlled at 3.5-7 mg/L throughout the experiment. The biofilm reactor showed excellent nitritation performance after the inoculation of nitrifying sludge, with the hydraulic retention time being reduced from 24 to 7 hr. Above 90% nitrite accumulation ratio (NAR) was maintained in phase 1. Afterwards, nitratation occurred with the low NH4(+)-N concentration in the reactor. The improvement of NH4(+)-N concentration to 20-35 mg/L had a limited effect on the recovery of nitritation. However, nitritation recovered rapidly when sequencing batch feed mode was adopted in phase 4, with the effluent NH4(+)-N concentration above 7 mg/L. The improvement of ammonia oxidizing bacteria (AOB) activity and the combined inhibition effect of free ammonia (FA) and free nitrous acid (FNA) on the nitrite oxidizing bacteria (NOB) were two key factors for the rapid recovery of nitritation. Sludge activity was obtained in batch tests. The results of batch tests had a good relationship with the long term operation performance of the biofilm reactor. Copyright © 2015. Published by Elsevier B.V.

  17. Cod liver oil in sodium nitrite induced hepatic injury: does it have a potential protective effect?

    Science.gov (United States)

    Sherif, I O; Al-Gayyar, M M

    2015-01-01

    Exposure to sodium nitrites, a food additive, at high levels has been reported to produce reactive nitrogen and oxygen species that cause dysregulation of inflammatory responses and tissue injury. In this work, we examined the impact of dietary cod liver oil on sodium nitrite-induced inflammation in rats. Thirty-two adult male Sprague-Dawely rats were treated with 80 mg/kg sodium nitrite in presence/absence of 5 ml/kg cod liver oil. Liver sections were stained with hematoxylin/eosin. We measured hepatic tumor necrosis factor (TNF)-α, interleukin-1 beta (IL)-1β, C-reactive protein (CRP), transforming growth factor (TGF)-β1, and caspase-3. Cod liver oil reduced sodium nitrite-induced hepatocyte damage. In addition, cod liver oil results in reduction of hepatic TNF-α, IL-1β, CRP, TGF-β1, and caspase-3 when compared with the sodium nitrite group. Cod liver oil ameliorates sodium nitrite-induced hepatic injury via multiple mechanisms including blocking sodium nitrite-induced elevation of inflammatory cytokines, fibrosis mediators, and apoptosis markers.

  18. Nitrogen-Doped Carbon Quantum Dots as Fluorescent Probes for Sensitive and Selective Detection of Nitrite

    Directory of Open Access Journals (Sweden)

    Zhibiao Feng

    2017-11-01

    Full Text Available Nitrites are the upstream precursors of the carcinogenic nitrosamines, which are widely found in the natural environment and many food products. It is important to develop a simple and sensitive sensor for detecting nitrites. In this work, a fluorescence probe based on nitrogen-doped carbon quantum dots (N-CQDs was developed for the sensitive and selective determination of nitrites. At pH 2, the fluorescence of N-CQDs can be selectively quenched by nitrite due to the fact N-nitroso compounds can be formed in the reaction of amide groups with nitrous acid, which results in fluorescence static quenching. Under optimal conditions, fluorescence intensity quenching upon addition of nitrite gives a satisfactory linear relationship covering the linear range of 0.2–20 μM, and the limit of detection (LOD is 40 nM. Moreover, this method has been successfully applied to the determination of nitrites in tap water, which indicates its great potential for monitoring of nitrites in environmental samples.

  19. Ingested nitrate and nitrite and stomach cancer risk: an updated review.

    Science.gov (United States)

    Bryan, Nathan S; Alexander, Dominik D; Coughlin, James R; Milkowski, Andrew L; Boffetta, Paolo

    2012-10-01

    Nitrite and nitrate are naturally occurring molecules in vegetables and also added to cured and processed meats to delay spoilage and pathogenic bacteria growth. Research over the past 15 years has led to a paradigm change in our ideas about health effects of both nitrite and nitrate. Whereas, historically nitrite and nitrate were considered harmful food additives and listed as probable human carcinogens under conditions where endogenous nitrosation could take place, they are now considered by some as indispensible nutrients essential for cardiovascular health by promoting nitric oxide (NO) production. We provide an update to the literature and knowledge base concerning their safety. Most nitrite and nitrate exposure comes from naturally occurring and endogenous sources and part of the cell signaling effects of NO involve nitrosation. Nitrosation must now be considered broadly in terms of both S- and N-nitrosated species, since S-nitrosation is kinetically favored. Protein S-nitrosation is a significant part of the role of NO in cellular signal transduction and is involved in critical aspects of cardiovascular health. A critical review of the animal toxicology literature of nitrite indicates that in the absence of co-administration of a carcinogenic nitrosamine precursor, there is no evidence for carcinogenesis. Newly published prospective epidemiological cohort studies indicate that there is no association between estimated intake of nitrite and nitrate in the diet and stomach cancer. This new and growing body of evidence calls for a reconsideration of nitrite and nitrate safety. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Effect of Ethanolamines on Corrosion Inhibition of Ductile Cast Iron in Nitrite Containing Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. T.; Kim, Y. S. [Andong National University, Andong (Korea, Republic of); Chang, H. Y.; Lim, B. T.; Park, H. B. [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of)

    2016-08-15

    In this work, synergistic corrosion inhibition effect of nitrite and 3 kinds of ethanolamines on ductile cast iron using chemical and electrochemical methods was evaluated. This work attempts to clarify the synergistic effect of nitrite and ethanolamines. The effects of single addition of TEA, DEA, and MEA, and mixed addition of nitrite plus TEA, DEA or MEA on the corrosion inhibition of ductile cast iron in a tap water were evaluated. A huge amount of single addition of ethanolamine was needed. However, the synergistic effect by mixed addition was observed regardless of the combination of nitrite and triethanolamines, but their effects increased in a series of MEA + nitrite > DEA + nitrite > TEA + nitrite. This tendency of synergistic effect was attributed to the film properties and polar effect; TEA addition couldn't form the film showing high film resistance and semiconductive properties, but DEA or MEA could build the film having relatively high film resistance and n-type semiconductive properties. Moreover, it can be explained that this behaviour was closely related to electron attractive group within the ethanolamines, and thus corrosion inhibition power depends upon the number of the electron attractive group of MEA, DEA, and TEA.

  1. Preliminary nitrite, nitrate and colour analysis of Malaysian edible bird’s nest

    Directory of Open Access Journals (Sweden)

    Meei Chien Quek

    2015-05-01

    Full Text Available The high nitrite content in edible bird’s nests is a major concern to the local swiftlet industry. It lowers the price of the edible bird’s nests and it brings severe health hazards to consumers and farmers. This research investigated the nitrite and nitrate contents of eight types of local edible bird’s nests by using ion chromatography system and evaluating its colour using the CIE system in L∗a∗b∗ parameters. The nitrite content obtained ranged from 5.7 μg/g for the house nests to 843.8 μg/g for the cave nests. The nitrate content for the house and cave nests was 98.2 μg/g and 36,999.4 μg/g, respectively. The cave nests with darker and redder colour had higher nitrite and nitrate contents than the brighter and more yellow house nests. This likely suggests that the nitrite and nitrate contents have correlations with edible bird’s nests colour. Correlations studies suggested that the nitrite content had high correlations with colour parameters, L∗a∗b∗ of edible bird’s nests at significant level of P < 0.10. These findings suggest that edible bird’s nests’ colour may be a useful indicator for measuring nitrite and nitrate contaminations.

  2. Measurement of nitrite and nitrate in saliva of children with different caries activity.

    Science.gov (United States)

    Ghasempour, Maryam; Qujeq, Durdi; Rabiee, Maryam; Hamzeh, Mahtab

    2014-09-01

    Recently, there has been growing interest in the role of salivary nitrate and nitrite in caries protection. Nitrate is a natural compound found in fruits and vegetables and when secreted in saliva, is reduced to nitrite through bacterial respiration and subsequently reduced to nitric oxide in acidic condition. Nitric oxide takes part in oral non-specific immune system and prevents bacterial growth. The aim of present study was to determine the concentration of nitrite and nitrate in saliva of children with different caries activity. Ninety three children, 4 to 6 years old, enrolled in this case-control study and were divided into 3 groups; 31 caries free children, 31 with 5 10. Unstimulated saliva was collected and stored in 4°C. Measurement of nitrate and nitrite concentration was performed using Griess reaction. Data were analyzed by T-test, Chi-square, ANOVA and multiple comparisons using SPSS 18. p < 0.05 was considered significant. Mean value of DFS in the first, second and third were 0, 7.12 and 12.61 respectively. Mean value of nitrite and nitrate in the third group was significantly higher than two others (p < 0.05), but the difference between first and second group was not significant. Increase in DFS was associated by increase in salivary nitrite and nitrate concentration. High concentration of nitrate and nitrite is not enough for caries prevention.

  3. Structural and biochemical characterization of cinnamoyl-coa reductases

    Science.gov (United States)

    Cinnamoyl-coenzyme A reductase (CCR) catalyzes the reduction of hydroxycinnamoyl-coenzyme A (CoA) esters using NADPH to produce hydroxycinnamyl aldehyde precursors in lignin synthesis. The catalytic mechanism and substrate specificity of cinnamoyl-CoA reductases from sorghum (Sorghum bicolor), a str...

  4. Role of blood and vascular smooth muscle in the vasoactivity of nitrite.

    Science.gov (United States)

    Liu, Taiming; Schroeder, Hobe J; Barcelo, Lisa; Bragg, Shannon L; Terry, Michael H; Wilson, Sean M; Power, Gordon G; Blood, Arlin B

    2014-10-01

    Recent evidence from humans and rats indicates that nitrite is a vasodilator under hypoxic conditions by reacting with metal-containing proteins to produce nitric oxide (NO). We tested the hypothesis that near-physiological concentrations of nitrite would produce vasodilation in a hypoxia- and concentration-dependent manner in the hind limb of sheep. Anesthetized sheep were instrumented to measure arterial blood pressure and femoral blood flows continuously in both hind limbs. Nitrite was infused into one femoral artery to raise the nitrite concentration in the femoral vein by 10 to 15-fold while the sheep breathed 50%, 14% or 12% oxygen in inspired air. In contrast to reports in humans and rats, the nitrite infusion had no measurable effect on mean femoral blood flows or vascular conductances, regardless of inspired O2 levels. In vitro experiments showed no significant difference in the release of NO from nitrite in sheep and human red blood cells. Further experiments demonstrated nitrite is converted to NO in rat artery homogenates faster than sheep arteries, and that this source of NO production is attenuated in the presence of a heme oxidizer. Finally, western blots indicate that concentrations of the heme-containing protein cytoglobin, but not myoglobin, are markedly lower in sheep arteries compared with rats. Overall, the results demonstrate that nitrite is not a physiological vasodilator in sheep. This is likely due to a lack of conversion of nitrite to NO within the vascular smooth muscle, perhaps due to deficient amounts of the heme-containing protein cytoglobin. Copyright © 2014 the American Physiological Society.

  5. Biliverdin Reductase: a Target for Cancer Therapy?

    Directory of Open Access Journals (Sweden)

    Peter eGibbs

    2015-06-01

    Full Text Available Biliverdin reductase (BVR is a multifunctional protein that is the primary source of the potent antioxidant, bilirubin. BVR regulates activities/functions in the insulin/IGF-1/IRK/PI3K/MAPK pathways. Activation of certain kinases in these pathways is/are hallmark(s of cancerous cells. The protein is a scaffold/bridge and intracellular transporter of kinases that regulate growth and proliferation of cells, including PKCs, ERK and Akt, and their targets including NF-κB, Elk1, HO-1 and iNOS. The scaffold and transport functions enable activated BVR to relocate from the cytosol to the nucleus or to the plasma membrane, depending on the activating stimulus. This enables the reductase to function in diverse signaling pathways. And, its expression at the transcript and protein levels are increased in human tumors and the infiltrating T-cells, monocytes and circulating lymphocytes, as well as the circulating and infiltrating macrophages. These functions suggest that the cytoprotective role of BVR may be permissive for cancer/tumor growth. In this review, we summarize the recent developments that define the pro-growth activities of BVR, particularly with respect to its input into the MAPK signaling pathway and present evidence that BVR-based peptides inhibit activation of protein kinases, including MEK, PKCδ and ERK as well as downstream targets including Elk1 and iNOS, and thus offers a credible novel approach to reduce cancer cell proliferation.

  6. [High throughput screening of active and stereoselective carbonyl reductases].

    Science.gov (United States)

    Zhang, Hang; Chen, Xi; Feng, Jinhui; Bao, Jinku; Wu, Qiaqing; Zhu, Dunming

    2015-02-01

    In this study, a fast carbonyl reductases colorimetric screening method for discovering stereoselective carbonyl reductases was established by combining the reverse alcohol oxidation with the azoreductase-catalyzed reduction of azo dye. When azo dye (Orange I , 4-(4-hydroxy-1-naphthylazo) benzenesulfonic acid) and azoreductase (AzoB) were added into the reaction system of alcohol oxidation catalyzed by carbonyl reductase, the produced NAD(P)H served as electron donor for the azoreductase to reduce the azo dye, resulting the color fade. Hence, the carbonyl reductases can be screened by the obvious color change. When chiral alcohol was used as the substrate, the activity and stereoselectivity of carbonyl reductases can be screened at the same time.

  7. Role of Nitrite in Processed Meat Products and its Degradation during their Storage

    OpenAIRE

    ILIRJANA BOCI; ELDA ZIU; GENTJANA BARDHI

    2014-01-01

    This paper represents the analytical data of nitrite level obtained from the experimental work done on meat processed samples taken from a meat processing plant in Tirana. There has been a long debate and health concern about the nitrite content in meat products. Nitrite is added to e.g. sausages, and hams and other meat products to preserve these products and keep them free from dangerous bacteria. Among the aims are preventing botulism, a dangerous food poison. But also it’s important to us...

  8. Reactions of ferrous neuroglobin and cytoglobin with nitrite under anaerobic conditions

    DEFF Research Database (Denmark)

    Petersen, Morten Gjerning; Dewilde, Sylvia; Fago, Angela

    2008-01-01

    hexacoordinate globins from vertebrates expressed in brain and in a variety of tissues, respectively, also react with nitrite under anaerobic conditions. Using absorption spectroscopy, we find that ferrous neuroglobin and nitrite react with a second-order rate constant similar to that of myoglobin, whereas......Recent evidence suggests that the reaction of nitrite with deoxygenated hemoglobin and myoglobin contributes to the generation of nitric oxide and S-nitrosothiols in vivo under conditions of low oxygen availability. We have investigated whether ferrous neuroglobin and cytoglobin, the two...

  9. [Nitroglycerin and amyl nitrite action on common bile duct during operation for vesicular lithiasis (author's transl)].

    Science.gov (United States)

    Chelly, J; Tannières, M L; Tournay, D; Franchiset, F; Alexandre, J H; Passelecq, J

    1979-01-01

    Eight patients undergoing cholecystectomy received a single injection of nitroglycerin (0,9 mg) and 8 received amyl nitrite, during a cholangio-kinesimetry. The maximum fall in common bile duct pressure was similar in both group; 3.2 +/- 0.3 torr after nitroglycerin (NTG),3.8 +/- 0.6 torr after amyl nitrite (AN). NTG caused a more persistent lowering of pressure than AN; 614 +/- 42 seconds/343 +/- 27 seconds (p < 0.001). This study showed that it is possible to produce a relaxation of biliary tract muscle fibres with an injection of nitroglycerin and then replace amyl nitrite during anesthesia.

  10. Stress Corrosion Cracking of an Austenitic Stainless Steel in Nitrite-Containing Chloride Solutions

    Science.gov (United States)

    Singh Raman, R. K.; Siew, Wai Hoong

    2014-01-01

    This article describes the susceptibility of 316L stainless steel to stress corrosion cracking (SCC) in a nitrite-containing chloride solution. Slow strain rate testing (SSRT) in 30 wt. % MgCl2 solution established SCC susceptibility, as evidenced by post-SSRT fractography. Addition of nitrite to the chloride solution, which is reported to have inhibitive influence on corrosion of stainless steels, was found to increase SCC susceptibility. The susceptibility was also found to increase with nitrite concentration. This behaviour is explained on the basis of the passivation and pitting characteristics of 316L steel in chloride solution. PMID:28788276

  11. Post Chlorine gas exposure administration of nitrite prevents lung injury: effect of administration modality

    Science.gov (United States)

    Samal, Andrey A.; Honavar, Jaideep; Brandon, Angela; Bradley, Kelley M.; Doran, Stephen; Liu, Yanping; Dunaway, Chad; Steele, Chad; Postlethwait, Edward M.; Squadrito, Giuseppe L.; Fanucchi, Michelle V.; Matalon, Sadis; Patel, Rakesh P.

    2012-01-01

    Cl2 gas toxicity is complex and occurs during, and post exposure leading to acute lung injury (ALI) and reactive airway syndrome (RAS). Moreover, Cl2 exposure can occur in diverse situations encompassing mass casualty scenarios underscoring the need for post-exposure therapies that are efficacious and amenable to rapid and easy administration. In this study, we compared the efficacy of a single dose, post (30min) Cl2 exposure administration of nitrite (1mg/kg) via intraperitoneal (IP) or intramuscular (IM) injection in rats, to decrease ALI. Exposure of rats to Cl2 gas (400ppm, 30min) significantly increased ALI and caused RAS 6–24h post exposure as indexed by BAL sampling of lung surface protein, PMN and increased airway resistance and elastance prior to and post methacholine challenge. IP nitrite decreased Cl2 - dependent increases in BAL protein but not PMN. In contrast IM nitrite decreased BAL PMN levels without decreasing BAL protein in a xanthine oxidoreductase independent manner. Histological evaluation of airways 6h post exposure showed significant bronchial epithelium exfoliation and inflammatory injury in Cl2 exposed rats. Both IP and IM nitrite improved airway histology compared to Cl2 gas alone, but more coverage of the airway by cuboidal or columnar epithelium was observed with IM compared to IP nitrite. Airways were rendered more sensitive to methacholine induced resistance and elastance after Cl2 gas exposure. Interestingly, IM nitrite, but not IP nitrite, significantly decreased airway sensitivity to methacholine challenge. Further evaluation and comparison of IM and IP therapy showed a two-fold increase in circulating nitrite levels with the former, which was associated with reversal of post-Cl2 exposure dependent increases in circulating leukocytes. Halving the IM nitrite dose resulted in no effect in PMN accumulation but significant reduction of of BAL protein levels indicating distinct nitrite dose dependence for inhibition of Cl2 dependent

  12. Administration of nitrite after chlorine gas exposure prevents lung injury: effect of administration modality.

    Science.gov (United States)

    Samal, Andrey A; Honavar, Jaideep; Brandon, Angela; Bradley, Kelley M; Doran, Stephen; Liu, Yanping; Dunaway, Chad; Steele, Chad; Postlethwait, Edward M; Squadrito, Giuseppe L; Fanucchi, Michelle V; Matalon, Sadis; Patel, Rakesh P

    2012-10-01

    Cl(2) gas toxicity is complex and occurs during and after exposure, leading to acute lung injury (ALI) and reactive airway syndrome (RAS). Moreover, Cl(2) exposure can occur in diverse situations encompassing mass casualty scenarios, highlighting the need for postexposure therapies that are efficacious and amenable to rapid and easy administration. In this study, we assessed the efficacy of a single dose of nitrite (1 mg/kg) to decrease ALI when administered to rats via intraperitoneal (ip) or intramuscular (im) injection 30 min after Cl(2) exposure. Exposure of rats to Cl(2) gas (400 ppm, 30 min) significantly increased ALI and caused RAS 6-24h postexposure as indexed by BAL sampling of lung surface protein and polymorphonucleocytes (PMNs) and increased airway resistance and elastance before and after methacholine challenge. Intraperitoneal nitrite decreased Cl(2)-dependent increases in BAL protein but not PMNs. In contrast im nitrite decreased BAL PMN levels without decreasing BAL protein in a xanthine oxidoreductase-dependent manner. Histological evaluation of airways 6h postexposure showed significant bronchial epithelium exfoliation and inflammatory injury in Cl(2)-exposed rats. Both ip and im nitrite improved airway histology compared to Cl(2) gas alone, but more coverage of the airway by cuboidal or columnar epithelium was observed with im compared to ip nitrite. Airways were rendered more sensitive to methacholine-induced resistance and elastance after Cl(2) gas exposure. Interestingly, im nitrite, but not ip nitrite, significantly decreased airway sensitivity to methacholine challenge. Further evaluation and comparison of im and ip therapy showed a twofold increase in circulating nitrite levels with the former, which was associated with reversal of post-Cl(2) exposure-dependent increases in circulating leukocytes. Halving the im nitrite dose resulted in no effect in PMN accumulation but significant reduction of BAL protein levels, indicating a distinct

  13. Stress Corrosion Cracking of an Austenitic Stainless Steel in Nitrite-Containing Chloride Solutions

    Directory of Open Access Journals (Sweden)

    R. K. Singh Raman

    2014-12-01

    Full Text Available This article describes the susceptibility of 316L stainless steel to stress corrosion cracking (SCC in a nitrite-containing chloride solution. Slow strain rate testing (SSRT in 30 wt. % MgCl2 solution established SCC susceptibility, as evidenced by post-SSRT fractography. Addition of nitrite to the chloride solution, which is reported to have inhibitive influence on corrosion of stainless steels, was found to increase SCC susceptibility. The susceptibility was also found to increase with nitrite concentration. This behaviour is explained on the basis of the passivation and pitting characteristics of 316L steel in chloride solution.

  14. Stress Corrosion Cracking of an Austenitic Stainless Steel in Nitrite-Containing Chloride Solutions.

    Science.gov (United States)

    Raman, R K Singh; Siew, Wai Hoong

    2014-12-05

    This article describes the susceptibility of 316L stainless steel to stress corrosion cracking (SCC) in a nitrite-containing chloride solution. Slow strain rate testing (SSRT) in 30 wt. % MgCl₂ solution established SCC susceptibility, as evidenced by post-SSRT fractography. Addition of nitrite to the chloride solution, which is reported to have inhibitive influence on corrosion of stainless steels, was found to increase SCC susceptibility. The susceptibility was also found to increase with nitrite concentration. This behaviour is explained on the basis of the passivation and pitting characteristics of 316L steel in chloride solution.

  15. Solubilities of sodium nitrate, sodium nitrite, and sodium aluminate in simulated nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, D.A.; Herting, D.L.

    1984-09-01

    Solubilities were determined for sodium nitrate, sodium nitrite, and sodium aluminate in synthetic nuclear waste liquor. Solubilities were determined as a function of temperature and solution composition (concentrations of sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate). Temperature had the greatest effect on the solubilities of sodium nitrate and sodium nitrite and a somewhat lesser effect on sodium aluminate solubility. Hydroxide had a great effect on the solubilities of all three salts. Other solution components had minor effects. 2 references, 8 figures, 11 tables.

  16. A carbon nanotube/polyvanillin composite film as an electrocatalyst for the electrochemical oxidation of nitrite and its application as a nitrite sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Dongyun [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences (China); Hu Chengguo [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences (China)], E-mail: cghu@whu.edu.cn; Peng Yanfen [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences (China); Hu Shengshui [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences (China)], E-mail: sshu@whu.edu.cn

    2009-08-30

    We report a simple method for the stable dispersion of multi-walled carbon nanotubes (MWNTs) in water by vanillin and controllable surface addition onto carbon fiber microelectrodes (CFE) via electropolymerization. We have characterized these polyvanillin-carbon nanotube (PVN-MWNT) composite films with techniques including scanning electron microscopy (SEM), infrared spectroscopy (IR) and voltammetry. These investigations showed that the films have a uniform porous nanostructure with a large surface area. This PVN-MWNT composite-modified CFE (PVN-MWNT/CFE) exhibited a sensitive response to the electrochemical oxidation of nitrite. Under optimal working conditions, the oxidation peak current of nitrite linearly increased with its concentration in the range of 0.2 {mu}M-3.1 mM, with the system exhibiting a lower detection limit of 50 nM (S/N = 3). We successfully applied the PVN-MWNT/CFE system to the determination of nitrite from lake water. The efficient recovery of nitrite indicated that this electrode was able to detect nitrite in real samples.

  17. Acute, Sub-lethal Cyanide Poisoning in Mice is Ameliorated by Nitrite Alone: Complications Arising from Concomitant Administration of Nitrite and Thiosulfate as an Antidotal Combination

    Science.gov (United States)

    Cambal, Leah K.; Swanson, Megan R.; Yuan, Quan; Weitz, Andrew C.; Li, Hui-Hua; Pitt, Bruce R.; Pearce, Linda L.; Peterson, Jim

    2011-01-01

    Sodium nitrite alone is shown to ameliorate sub-lethal cyanide toxicity in mice when given from ~1 hour before until 20 minutes after the toxic dose as demonstrated by the recovery of righting ability. An optimum dose (12 mg/kg) was determined to significantly relieve cyanide toxicity (5.0 mg/kg) when administered to mice intraperitoneally. Nitrite so administered was shown to rapidly produce NO in the bloodsteam as judged by the dose dependent appearance of EPR signals attributable to nitrosylhemoglobin and methemoglobin. It is argued that antagonism of cyanide inhibition of cytochrome c oxidase by NO is the crucial antidotal activity rather than the methemoglobin-forming action of nitrite. Concomitant addition of sodium thiosulfate to nitrite-treated blood resulted in the detection of sulfidomethemoblobin by EPR spectroscopy. Sulfide is a product of thiosulfate hydrolysis and, like cyanide, is known to be a potent inhibitor of cytochrome c oxidase; the effects of the two inhibitors being essentially additive under standard assay conditions, rather than dominated by either one. The findings afford a plausible explanation for an observed detrimental effect in mice associated with the use of the standard nitrite-thiosulfate combination therapy at sub-lethal levels of cyanide intoxication. PMID:21534623

  18. Combined effects of high hydrostatic pressure and sodium nitrite on color, water holding capacity and texture of frankfurter

    Science.gov (United States)

    Jonas, G.; Csehi, B.; Palotas, P.; Toth, A.; Kenesei, Gy; Pasztor-Huszar, K.; Friedrich, L.

    2017-10-01

    The aim of this study was to investigate the effect of sodium nitrite and high hydrostatic pressure on the color, water holding capacity (WHC) and texture characteristics of frankfurter. Three hundred, 450 and 600 MPa (5 minutes; 20 °C) and 50, 75, 100 and 125 ppm (calculated on weight of meat) sodium nitrite were applied. Parameters were measured right after the pressure treatment. Data were evaluated with two-way analysis of variance (p 0.05) with pressure levels and sodium nitrite amounts as factors. Nitrite reduction significantly increased lightness (L*) and resulted in decreased redness (a*) value. The pressure treatments decreased the lightness at all nitrite concentrations and did not significantly affect the red color of frankfurters. Fifty and 75 ppm nitrite and pressurization at 300 or 450 MPa improved the water holding property of frankfurter. The pressure treatment did not significantly affect the WHC but changing the nitrite amount had significant effect on it. Interactive effect occurred between pressure levels and nitrite concentrations for hardness. The pressure treatment increased and the nitrite reduction decreased hardness. Significant changes were found in cohesiveness at 450 and 600 MPa in frankfurters containing 50 and 75 ppm nitrite: pressure treatment at higher levels and nitrite reduction decreased the value of cohesiveness.

  19. Interaction of "Candidatus Accumulibacter" and nitrifying bacteria to achieve energy-efficient denitrifying phosphorus removal via nitrite pathway from sewage.

    Science.gov (United States)

    Zeng, Wei; Bai, Xinlong; Guo, Yu; Li, Ning; Peng, Yongzhen

    2017-10-01

    To achieve energy-efficient denitrifying phosphorus removal via nitrite pathway from sewage, interaction of "Candidatus Accumulibacter" and nitrifying bacteria was investigated in a continuous-flow process. When nitrite in returned sludge of secondary settler was above 13mg/L, nitrite inhibition on anaerobic P-release of poly-phosphate organisms (PAOs) occurred. Clades IIC and IID were dominant, reaching 3.1%-11.9% of total bacteria. Clade IIC was sensitive to nitrite. Under low concentration of nitrite (<8mg/L), clade IIC primarily contributed to anoxic P-uptake. Clade IID had a strong tolerance to nitrite exposure. At high nitrite level (above 16mg/L), anoxic P-uptake was mainly performed by clade IID due to its strong tolerance to nitrite exposure. Ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and Accumulibacter interacted through variations of nitrite accumulation. High AOB abundance coupled with inhibition of NOB favored denitrifying phosphorus removal by clade IID. All Accumulibacter lineages were sorted into four clades of Type II. The most dominant ppk1 gene homologs were affiliated with clade IID, accounting for 69% of ppk1 clone library, and thus played an important role in denitrifying phosphorus removal via nitrite pathway. Copyright © 2017. Published by Elsevier Inc.

  20. Effect of calcium nitrite on the properties of concrete used in prestressed piles and beams.

    Science.gov (United States)

    1992-01-01

    This study evaluates the concretes in steam-cured prestressed piles and beams containing calcium nitrite as protection against chloride-induced corrosion of the steel strands and assesses their field performance over a 3-year period. Concretes contai...

  1. Aggregate Size and Architecture Determine Microbial Activity Balance for One-Stage Partial Nitritation and Anammox

    DEFF Research Database (Denmark)

    Vlaeminck, S.E.; Terada, Akihiko; Smets, Barth F.

    2010-01-01

    . In this study, three suspended-growth oxygen-limited autotrophic nitrification-denitrification (OLAND) reactors with different inoculation and operation (mixing and aeration) conditions, designated reactors A, B, and C, were used. The test objectives were (i) to quantify the AerAOB and AnAOB abundance...... and the activity balance for the different aggregate sizes and (ii) to relate aggregate morphology, size distribution, and architecture putatively to the inoculation and operation of the three reactors. A nitrite accumulation rate ratio (NARR) was defined as the net aerobic nitrite production rate divided...... by the anoxic nitrite consumption rate. The smallest reactor A, B, and C aggregates were nitrite sources (NARR, > 1.7). Large reactor A and C aggregates were granules capable of autonomous nitrogen removal (NARR, 0.6 to 1.1) with internal AnAOB zones surrounded by an AerAOB rim. Around 50% of the autotrophic...

  2. Structured catalysts and reactors for three phase catalytic reactions: manipulating activity and selectivity in nitrite hydrogenation

    NARCIS (Netherlands)

    Brunet Espinosa, Roger

    2016-01-01

    This work aimed at fabricating structured catalytic reactors for fast multiphase reactions, namely, nitrite hydrogenation and H2O2 decomposition. These reactors allowed a better understanding of these reactions and an improvement in terms of catalytic activity and selectivity.

  3. The kinetics for ammonium and nitrite oxidation under the effect of hydroxylamine.

    Science.gov (United States)

    Wan, Xinyu; Xiao, Pengying; Zhang, Daijun; Lu, Peili; Yao, Zongbao; He, Qiang

    2016-01-01

    The kinetics for ammonium (NH4(+)) oxidation and nitrite (NO2(-)) oxidation under the effect of hydroxylamine (NH2OH) were studied by respirometry using the nitrifying sludge from a laboratory-scale sequencing batch reactor. Modified models were used to estimate kinetics parameters of ammonia and nitrite oxidation under the effect of hydroxylamine. An inhibition effect of hydroxylamine on the ammonia oxidation was observed under different hydroxylamine concentration levels. The self-inhibition coefficient of hydroxylamine oxidation and noncompetitive inhibition coefficient of hydroxylamine for nitrite oxidation was estimated by simulating exogenous oxygen-uptake rate profiles, respectively. The inhibitive effect of NH2OH on nitrite-oxidizing bacteria was stronger than on ammonia-oxidizing bacteria. This work could provide fundamental data for the kinetic investigation of the nitrification process.

  4. Low density lipoprotein inhibits accumulation of nitrites in murine brain endothelial cell cultures.

    Science.gov (United States)

    Bereta, M; Bereta, J; Cohen, S; Cohen, M C

    1992-07-15

    Endothelial cells produce nitric oxide which is considered to serve as a major source of endothelial derived relaxing factor activity. It has been demonstrated that activation of mouse brain endothelium by TNF-alpha and IFN-gamma led to accumulation of nitrite which is presumably formed by oxidation of nitric oxide. A number of studies suggest that reactive oxygen species produced by cytokine-activated cells are involved in the conversion of nitric oxide to nitrites and nitrates. We investigated whether low density lipoprotein (LDL), acting as a radical scavenger, is able to inhibit nitrite accumulation in mouse brain endothelial cell cultures and in a cell-free system in which sodium nitroprusside was used as a source of nitric oxide. A comparison of these two models indicates the active involvement of LDL in suppressing nitrite accumulation in murine endothelial cultures.

  5. Aggregate size and architecture determine biomass activity for one-stage partial nitritation and anammox

    DEFF Research Database (Denmark)

    Vlaeminck, S.; Terada, Akihiko; Smets, Barth F.

    2010-01-01

    In partial nitritation/anammox systems, aerobic and anoxic ammonium-oxidizing bacteria (AerAOB and AnAOB) remove ammonium from wastewater. In this process, large granular microbial aggregates enhance the performance, but little is known about this type of granulation so far. In this study.......e. the net aerobic nitrite production rate divided by the anoxic nitrite consumption rate, with all rates determined in aerobic and anoxic batch tests. The space occupied by extracellular polymeric substances (EPS) was calculated from transmission electron micrographs. All smallest aggregates were flocs...... and nitrite sources (NARR, > 1.7). Large A and C aggregates were granules capable of autonomous nitrogen removal (NARR, 0.6 to 1.1) with internal AnAOB zones surrounded by an AerAOB rim. Around 50% of the autotrophic space in these granules consisted of AerAOB- and AnAOB-specific EPS. Large B aggregates were...

  6. Nitrite Biosensing via Selective Enzymes—A Long but Promising Route

    Directory of Open Access Journals (Sweden)

    M. Gabriela Almeida

    2010-12-01

    Full Text Available The last decades have witnessed a steady increase of the social and political awareness for the need of monitoring and controlling environmental and industrial processes. In the case of nitrite ion, due to its potential toxicity for human health, the European Union has recently implemented a number of rules to restrict its level in drinking waters and food products. Although several analytical protocols have been proposed for nitrite quantification, none of them enable a reliable and quick analysis of complex samples. An alternative approach relies on the construction of biosensing devices using stable enzymes, with both high activity and specificity for nitrite. In this paper we review the current state-of-the-art in the field of electrochemical and optical biosensors using nitrite reducing enzymes as biorecognition elements and discuss the opportunities and challenges in this emerging market.

  7. EVALUASI PENCEMARAN NITRAT-NITRIT PADA AIR MINUM PDAM DI DKI JAKARTA

    Directory of Open Access Journals (Sweden)

    Sukar Sukar

    2012-09-01

    Full Text Available A survey on drinking water quality was conducted in 1990/1991 to evaluate the impact of organic matters particularly of nitrate-nitrite contamination in raw water. Water samples were taken from Water Supply Enterprices (WSE in Jakarta, i.e Pejompongan WSE and Pulogadung WSE. The results showed that the treatment efficiency of Pejompongan WSE to reduce nitrate and nitrite concentration was 5% and 82.1% respectively, and that of Pulogadung WSE were 50.0% and 63.2%. The concentration of nitrate in water the supply from Pejompongan WSE and Pulogadung WSE in general is in accordance with the water quality standard. The nitrite level in the water supply from Pejompongan also met the standard, while from Pulogadung did not. It has been observed that the nitrite concentration in water from Pejompongan distribution pipe is increasing with the distance from water treatment installation.

  8. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira

    DEFF Research Database (Denmark)

    Koch, Hanna; Lücker, Sebastian; Albertsen, Mads

    2015-01-01

    Nitrospira are a diverse group of nitrite-oxidizing bacteria and among the environmentally most widespread nitrifiers. However, they remain scarcely studied and mostly uncultured. Based on genomic and experimental data from Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II...

  9. Increased formation of carcinogenic PAH metabolites in fish promoted by nitrite

    Digital Repository Service at National Institute of Oceanography (India)

    Shailaja, M.S.; Rajamanickam, R.; Wahidullah, S.

    the impact of nitrite (NO2−) on the metabolism of polycyclic aromatic hydrocarbons (PAHs) in fish. In a laboratory experiment, exposure of euryhaline fish, Oreochromis mossambicus to industrial effluents containing PAHs in the presence of NO2− enhanced...

  10. Monodehydroascorbate reductase mediates TNT toxicity in plants.

    Science.gov (United States)

    Johnston, Emily J; Rylott, Elizabeth L; Beynon, Emily; Lorenz, Astrid; Chechik, Victor; Bruce, Neil C

    2015-09-04

    The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. Due to the scale of affected areas, one of the most cost-effective and environmentally friendly means of removing explosives pollution could be the use of plants. However, mechanisms of TNT phytotoxicity have been elusive. Here, we reveal that phytotoxicity is caused by reduction of TNT in the mitochondria, forming a nitro radical that reacts with atmospheric oxygen, generating reactive superoxide. The reaction is catalyzed by monodehydroascorbate reductase 6 (MDHAR6), with Arabidopsis deficient in MDHAR6 displaying enhanced TNT tolerance. This discovery will contribute toward the remediation of contaminated sites. Moreover, in an environment of increasing herbicide resistance, with a shortage in new herbicide classes, our findings reveal MDHAR6 as a valuable plant-specific target. Copyright © 2015, American Association for the Advancement of Science.

  11. Structures of mammalian cytosolic quinone reductases.

    Science.gov (United States)

    Foster, C E; Bianchet, M A; Talalay, P; Faig, M; Amzel, L M

    2000-08-01

    The metabolism of quinone compounds presents one source of oxidative stress in mammals, as many pathways proceed by mechanisms that generate reactive oxygen species as by-products. One defense against quinone toxicity is the enzyme NAD(P)H:quinone oxidoreductase type 1 (QR1), which metabolizes quinones by a two-electron reduction mechanism, thus averting production of radicals. QR1 is expressed in the cytoplasm of many tissues, and is highly inducible. A closely related homologue, quinone reductase type 2 (QR2), has been identified in several mammalian species. QR2 is also capable of reducing quinones to hydroquinones, but unlike QR1, cannot use NAD(P)H. X-ray crystallographic studies of QR1 and QR2 illustrate that despite their different biochemical properties, these enzymes have very similar three-dimensional structures. In particular, conserved features of the active sites point to the close relationship between these two enzymes.

  12. Conversion of nitrite to nitric oxide at zinc via S-nitrosothiols.

    Science.gov (United States)

    Cardenas, Allan Jay P; Abelman, Rebecca; Warren, Timothy H

    2014-01-07

    Nitrite is an important reservoir of nitric oxide activity in the plasma and cells. Using a biomimetic model, we demonstrate the conversion of zinc-bound nitrite in the tris(pyrazolyl)borate complex (iPr2)TpZn(NO2) to the corresponding S-nitrosothiol RSNO and zinc thiolate (iPr2)TpZn-SR via reaction with thiols H-SR. Decomposition of the S-nitrosothiol formed releases nitric oxide gas.

  13. Nitrite-Templated Synthesis of Lanthanide-Containing [2]Rotaxanes for Anion Sensing**

    Science.gov (United States)

    Langton, Matthew J; Blackburn, Octavia A; Lang, Thomas; Faulkner, Stephen; Beer, Paul D

    2014-01-01

    The first anion-templated synthesis of a lanthanide-containing interlocked molecule is demonstrated by utilizing a nitrite anion to template initial pseudorotaxane formation. Subsequent stoppering of the interpenetrated assembly allows for the preparation of a lanthanide-functionalized [2]rotaxane in high yield. Following removal of the nitrite anion template, the europium [2]rotaxane host is demonstrated to recognize and sense fluoride selectively. PMID:24989322

  14. Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria.

    Science.gov (United States)

    Hovanec, T A; Taylor, L T; Blakis, A; Delong, E F

    1998-01-01

    Oxidation of nitrite to nitrate in aquaria is typically attributed to bacteria belonging to the genus Nitrobacter which are members of the alpha subdivision of the class Proteobacteria. In order to identify bacteria responsible for nitrite oxidation in aquaria, clone libraries of rRNA genes were developed from biofilms of several freshwater aquaria. Analysis of the rDNA libraries, along with results from denaturing gradient gel electrophoresis (DGGE) on frequently sampled biofilms, indicated the presence of putative nitrite-oxidizing bacteria closely related to other members of the genus Nitrospira. Nucleic acid hybridization experiments with rRNA from biofilms of freshwater aquaria demonstrated that Nitrospira-like rRNA comprised nearly 5% of the rRNA extracted from the biofilms during the establishment of nitrification. Nitrite-oxidizing bacteria belonging to the alpha subdivision of the class Proteobacteria (e.g., Nitrobacter spp.) were not detected in these samples. Aquaria which received a commercial preparation containing Nitrobacter species did not show evidence of Nitrobacter growth and development but did develop substantial populations of Nitrospira-like species. Time series analysis of rDNA phylotypes on aquaria biofilms by DGGE, combined with nitrite and nitrate analysis, showed a correspondence between the appearance of Nitrospira-like bacterial ribosomal DNA and the initiation of nitrite oxidation. In total, the data suggest that Nitrobacter winogradskyi and close relatives were not the dominant nitrite-oxidizing bacteria in freshwater aquaria. Instead, nitrite oxidation in freshwater aquaria appeared to be mediated by bacteria closely related to Nitrospira moscoviensis and Nitrospira marina.

  15. Color compensation in nitrite-reduced meat batters incorporating paprika or tomato paste.

    Science.gov (United States)

    Bázan-Lugo, Eduardo; García-Martínez, Ignacio; Alfaro-Rodríguez, Rosa Hayde; Totosaus, Alfonso

    2012-06-01

    Nitrite is a key ingredient the manufacture of meat products, forming a stable pink color characteristic of cured products, retarding the development of rancidity and off-odors and flavors during storage, and preventing microbial growth. The negative aspects of nitrite and the demands for healthy foods result in the need to reduce nitrite in cured meat products. Paprika or tomato has been employed as natural pigments in meat products. The objective of this work was to determine the effect of incorporating paprika powder or tomato paste on the texture, rancidity and instrumental and sensory color compensation in nitrite-reduced meat batters. Addition of tomato paste improved moisture content, resulting in harder but less cohesive samples as compared to control and paprika-containing meat batters. Color characteristics of reduced nitrite samples obtained higher a* red coloration (8.9 for paprika and 7.7-8.0 for tomato paste), as compared to control samples (5.65). Instrumental color was low in control samples, with high values for tomato paste and paprika samples. Nonetheless, tomato paste used to compensate color in nitrite-reduced meat batters was ranked closer to the control sample in sensory evaluation. Color characteristics-instrumental and sensory-in these kinds of meat products were enhanced by the addition of 2.5-3.0% of tomato paste, presenting results close to the non-reduced nitrite control. Similarly, antioxidant components of tomato paste or paprika reduced lipid oxidation. Nitrite reduction from 150 to 100 ppm could be achieved employing tomato paste as a natural pigment to improve color and texture. Copyright © 2011 Society of Chemical Industry.

  16. Protection of Steel Corrosion in Concrete Members by the Combination of Galvanic Anode and Nitrite Penetration

    Directory of Open Access Journals (Sweden)

    Minobu Aoyama

    2014-01-01

    Full Text Available Chloride induced-corrosion of steel bars in concrete can make cracks and exfoliation in near-surface regions in reinforced concrete structures. In this paper, we described the basic concept and practice of steel bars corrosion protection method by the combination of galvanic anode (zinc wire and the penetration of nitrite ions from mortar layers containing a large amount of lithium nitrite.

  17. Pemeriksaan Kandungan Nitrit Pada Produk Daging Sapi Olahan Yang Dijual Di Swalayan Kota Medan Tahun 2010

    OpenAIRE

    Waruwu, Faeri Indrani Priliyanti

    2011-01-01

    The processed beef products are the beef that have been processed to be various interesting meats such as corned, sausage beef jerky, shredded, beef burgers, bacon, meatballs and others. Processed meats always use preservative to prevent decomposition of meat. The preservatives used is nitrite which inhibit the growth of Clostridium botulinum. The general objective of this research is to determine the content of nitrite in processed beef products for sale in supermarkets Medan City in 201...

  18. ASPECTS CONCERNING NITRATE AND NITRITE POLLUTION OF GROUNDWATERS

    Directory of Open Access Journals (Sweden)

    A. UNGUREANU

    2011-03-01

    Full Text Available Aspects concerning nitrate and nitrite pollution of groundwaters. Water is a basic natural resource for the good functioning of all thebiological processes in nature. It is very important for life and for the developmentof human activities. The quality of the ground water has begun to degrade moreand more, as a result of the physical, chemical and bacteriological changes.Nitrogen compounds pollution of the underground has increased lately. This hasbeen caused by the excessive and irrational use of nitrogen derived fertilizers, bythe wrong storage of the dejections resulted from zootechnical processes and byother chemical substances discharged into water. Samples were collected fromdifferent wells in order to check whether the well water was drinkable. The resultof the test revealed the existence of high concentrations of nitrates as well asvalues exceeding normal microbiological parameters. The value recorded in thetown of Segarcea, the county of Dolj, showed extremely high concentrations ofnitrates of the drinking water in the wells. Thus, Segarcea is the town with thegreatest number of contaminated wells in the country.

  19. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria.

    Science.gov (United States)

    Ettwig, Katharina F; Butler, Margaret K; Le Paslier, Denis; Pelletier, Eric; Mangenot, Sophie; Kuypers, Marcel M M; Schreiber, Frank; Dutilh, Bas E; Zedelius, Johannes; de Beer, Dirk; Gloerich, Jolein; Wessels, Hans J C T; van Alen, Theo; Luesken, Francisca; Wu, Ming L; van de Pas-Schoonen, Katinka T; Op den Camp, Huub J M; Janssen-Megens, Eva M; Francoijs, Kees-Jan; Stunnenberg, Henk; Weissenbach, Jean; Jetten, Mike S M; Strous, Marc

    2010-03-25

    Only three biological pathways are known to produce oxygen: photosynthesis, chlorate respiration and the detoxification of reactive oxygen species. Here we present evidence for a fourth pathway, possibly of considerable geochemical and evolutionary importance. The pathway was discovered after metagenomic sequencing of an enrichment culture that couples anaerobic oxidation of methane with the reduction of nitrite to dinitrogen. The complete genome of the dominant bacterium, named 'Candidatus Methylomirabilis oxyfera', was assembled. This apparently anaerobic, denitrifying bacterium encoded, transcribed and expressed the well-established aerobic pathway for methane oxidation, whereas it lacked known genes for dinitrogen production. Subsequent isotopic labelling indicated that 'M. oxyfera' bypassed the denitrification intermediate nitrous oxide by the conversion of two nitric oxide molecules to dinitrogen and oxygen, which was used to oxidize methane. These results extend our understanding of hydrocarbon degradation under anoxic conditions and explain the biochemical mechanism of a poorly understood freshwater methane sink. Because nitrogen oxides were already present on early Earth, our finding opens up the possibility that oxygen was available to microbial metabolism before the evolution of oxygenic photosynthesis.

  20. Reduction of Nitrite and Nitrate to Ammonium on Pyrite

    Science.gov (United States)

    Singireddy, Soujanya; Gordon, Alexander D.; Smirnov, Alexander; Vance, Michael A.; Schoonen, Martin A. A.; Szilagyi, Robert K.; Strongin, Daniel R.

    2012-08-01

    An important constraint on the formation of the building blocks of life in the Hadean is the availability of small, activated compounds such as ammonia (NH3) relative to its inert dinitrogen source. Iron-sulfur particles and/or mineral surfaces have been implicated to provide the catalytic active sites for the reduction of dinitrogen. Here we provide a combined kinetic, spectroscopic, and computational modeling study for an alternative source of ammonia from water soluble nitrogen oxide ions. The adsorption of aqueous nitrite (NO{2/-}) and nitrate (NO{3/-}) on pyrite (FeS2) and subsequent reduction chemistry to ammonia was investigated at 22°C, 70°C, and 120°C. Batch geochemical and in situ Attenuated Total Reflection - Fourier Transform Infrared (ATR-FTIR) spectroscopy experiments were used to determine the reduction kinetics to NH3 and to elucidate the identity of the surface complexes, respectively, during the reaction chemistry of NO{2/-} and NO{3/-}. Density functional theory (DFT) calculations aided the interpretation of the vibrational data for a representative set of surface species. Under the experimental conditions used in this study, we detected the adsorption of nitric oxide (NO) intermediate on the pyrite surface. NH3 production from NO{2/-} occurred at 70 and 120°C and from NO{3/-} occurred only at 120°C.

  1. Enhancement of nitrate reductase activity by benzyladenine in Agrostemma githago

    Energy Technology Data Exchange (ETDEWEB)

    Kende, H.; Hahn, H.; Kays, S.E.

    1971-01-01

    Nitrate reductase activity in excised embryos of Agrostemma githago increases in response to both NO/sub 3//sup -/ and cytokinins. Discussed was whether cytokinins affected nitrate reductase activity directly or through NO/sub 3//sup -/, either by amplifying the effect of low endogenous NO/sub 3//sup -/ levels, or by making NO/sub 3//sup -/ available for induction from a metabolically inactive compartment. Nitrate reductase activity was enhanced on the average by 50% after 1 hour of benzyladenine treatment. In some experiments, the cytokinin response was detectable as early as 30 minutes after addition of benzyladenine. Nitrate reductase activity increased linearly for 4 hours and began to decay 13 hours after start of the hormone treatment. When embryos were incubated in solutions containing mixtures of NO/sub 3//sup -/ and benzyladenine, additive responses were obtained. The effects of NO/sub 3//sup -/ and benzyladenine were counteracted by abscisic acid. The increase in nitrate reductase activity was inhibited at lower abscisic acid concentrations in embryos which were induced with NO/sub 3//sup -/, as compared to embryos treated with benzyladenine. Casein hydrolysate inhibited the development of nitrate reductase activity. The response to NO/sub 3//sup -/ was more susceptible to inhibition by casein hydrolysate than the response to the hormone. When NO/sub 3//sup -/ and benzyladenine were withdrawn from the medium after maximal enhancement of nitrate reductase activity, the level of the enzyme decreased rapidly. Nitrate reductase activity increased again as a result of a second treatment with benzyladenine but not with NO/sub 3//sup -/. At the time of the second exposure to benzyladenine, no NO/sub 3//sup -/ was detectable in extracts of Agrostemma embryos. This is taken as evidence that cytokinins enhance nitrate reductase activity directly and not through induction by NO/sub 3//sup -/. 11 references, 5 figures, 3 tables.

  2. [Evaluation of nitrites and nitrates food intake in the students' group].

    Science.gov (United States)

    Wawrzyniak, Agata; Hamułka, Jadwiga; Pankowska, Iwona

    2010-01-01

    The aim of study was to determine the intake of nitrites and nitrates in daily food rations of the students' group in 2008 using 3-day dietary food records method and literature mean values of nitrates and nitrites in food products. Intakes of these compounds were calculated and compared to acceptable daily intake (ADI). The average intake of nitrites was 1.7 mg NaNO2/per person/day (28.0% of ADI), nitrates 77.3 mg NaNO3/per person/day that means 25.4% of ADI. The largest nitrites food intake was noticed for meat products supplied 56.5% of nitrites and cereals (20%). Whereas vegetables and their products supplied 76.1% of nitrates: potatoes 17.1%, cabbage 15.5%, beetroots 13.7%. Calculated nitrites intake for men was 2.4 higher than for women. There were no significant differences of nitrates intake between men and women groups.

  3. Quantitative risk assessment on the dietary exposure of Finnish children and adults to nitrite.

    Science.gov (United States)

    Suomi, Johanna; Ranta, Jukka; Tuominen, Pirkko; Putkonen, Tiina; Bäckman, Christina; Ovaskainen, Marja-Leena; Virtanen, Suvi M; Savela, Kirsti

    2016-01-01

    Nitrite intake from the consumption of cured meat and tap water was estimated for Finnish children of 1, 3 and 6 years as well as Finnish adults of 25-74 years. Nitrite content in the foods was measured by capillary electrophoresis, and was then used together with individual food consumption data from the FINDIET 2007 and DIPP studies in a stochastic exposure assessment by a Monte Carlo Risk Assessment (MCRA) program. Nitrite intake from additive sources and tap water was assessed, and more than every 10th child between the ages 3 and 6 years was estimated to have a nitrite intake exceeding the acceptable daily intake (ADI) of nitrite. The high exposure levels were caused by frequent consumption of large portions of sausages, up to 350 g day(-1) or 750 g in 3 days, among the children. Median nitrite intake from cured meat was 0.016, 0.040, 0.033 and 0.005 mg kg(-1) body weight day(-1) for children of 1, 3 and 6 years and adults, respectively. Bayesian estimation was employed to determine safe consumption levels of sausages and cold cuts for children, and these results gave rise to new national food consumption advice.

  4. Nitrite regulates hypoxic vasodilation via myoglobin-dependent nitric oxide generation.

    Science.gov (United States)

    Totzeck, Matthias; Hendgen-Cotta, Ulrike B; Luedike, Peter; Berenbrink, Michael; Klare, Johann P; Steinhoff, Heinz-Juergen; Semmler, Dominik; Shiva, Sruti; Williams, Daryl; Kipar, Anja; Gladwin, Mark T; Schrader, Juergen; Kelm, Malte; Cossins, Andrew R; Rassaf, Tienush

    2012-07-17

    Hypoxic vasodilation is a physiological response to low oxygen tension that increases blood supply to match metabolic demands. Although this response has been characterized for >100 years, the underlying hypoxic sensing and effector signaling mechanisms remain uncertain. We have shown that deoxygenated myoglobin in the heart can reduce nitrite to nitric oxide (NO·) and thereby contribute to cardiomyocyte NO· signaling during ischemia. On the basis of recent observations that myoglobin is expressed in the vasculature of hypoxia-tolerant fish, we hypothesized that endogenous nitrite may contribute to physiological hypoxic vasodilation via reactions with vascular myoglobin to form NO·. We show in the present study that myoglobin is expressed in vascular smooth muscle and contributes significantly to nitrite-dependent hypoxic vasodilation in vivo and ex vivo. The generation of NO· from nitrite reduction by deoxygenated myoglobin activates canonical soluble guanylate cyclase/cGMP signaling pathways. In vivo and ex vivo vasodilation responses, the reduction of nitrite to NO·, and the subsequent signal transduction mechanisms were all significantly impaired in mice without myoglobin. Hypoxic vasodilation studies in myoglobin and endothelial and inducible NO synthase knockout models suggest that only myoglobin contributes to systemic hypoxic vasodilatory responses in mice. Endogenous nitrite is a physiological effector of hypoxic vasodilation. Its reduction to NO· via the heme globin myoglobin enhances blood flow and matches O(2) supply to increased metabolic demands under hypoxic conditions.

  5. The impairment of learning and memory and synaptic loss in mouse after chronic nitrite exposure.

    Science.gov (United States)

    Chen, Yongfang; Cui, Zhanjun; Wang, Lai; Liu, Hongliang; Fan, Wenjuan; Deng, Jinbo; Deng, Jiexin

    2016-12-01

    The objective of this study is to understand the impairment of learning and memory in mouse after chronic nitrite exposure. The animal model of nitrite exposure in mouse was created with the daily intubation of nitrite in adult healthy male mice for 3 months. Furthermore, the mouse's learning and memory abilities were tested with Morris water maze, and the expression of Synaptophysin and γ-Synuclein was visualized with immunocytochemistry and Western blot. Our results showed that nitrite exposure significantly prolonged the escape latency period (ELP) and decreased the values of the frequency across platform (FAP) as well as the accumulative time in target quadrant (ATITQ) compared to control, in dose-dependent manner. In addition, after nitrite exposure, synaptophysin (SYN) positive buttons in the visual cortex was reduced, in contrast the increase of γ-synuclein positive cells. The results above were supported by Western blot as well. We conclude that nitrite exposure could lead to a decline in mice's learning and memory. The overexpression of γ-synuclein contributed to the synaptic loss, which is most likely the cause of learning and memory impairment. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1720-1730, 2016. © 2015 Wiley Periodicals, Inc.

  6. Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction

    KAUST Repository

    Shuai, Danmeng

    2012-03-06

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment. © 2012 American Chemical Society.

  7. Nitrite in processed meat products in Khartoum, Sudan and dietary intake.

    Science.gov (United States)

    Adam, Aziza Hussein Bakheit; Mustafa, Nazik Eltayeb Musa; Rietjens, Ivonne M C M

    2017-06-01

    Nitrite intake from locally processed meat in Khartoum, Sudan was estimated and compared to established safety levels. For this purpose, 90 locally processed meat samples were collected randomly from retail outlets and analysed for nitrite levels according to the British standard 1992 protocol and 350 purchasers at retail outlets were questioned about their consumption pattern. Nitrite concentrations in all samples were below the Sudanese maximum limit (ML) of 100 mg kg-1 for nitrite in meat products. Dietary exposure to nitrite for adults and children was estimated to be in the range of 0.026-0.128 and 0.107-0.511 mg kg-1 bw day-1, respectively. This implies that nitrite intake for a significant number of consumers, especially children, are likely to exceed the established acceptable daily intake (ADI) of 0-0.07 mg kg-1 bw/day of JECFA, in spite the fact that meat samples collected complied with the current ML.

  8. Energetic Consequences of nitrite stress in Desulfovibrio vulgarisHildenborough, inferred from global transcriptional analysis

    Energy Technology Data Exchange (ETDEWEB)

    He, Qiang; Huang, Katherine H.; He, Zhili; Alm, Eric J.; Fields,Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.; Zhou, Jizhong

    2005-11-03

    Many of the proteins that are candidates for bioenergetic pathways involved with sulfate respiration in Desulfovibrio spp. have been studied, but complete pathways and overall cell physiology remain to be resolved for many environmentally relevant conditions. In order to understand the metabolism of these microorganisms under adverse environmental conditions for improved bioremediation efforts, Desulfovibrio vulgaris Hildenborough was used as a model organism to study stress response to nitrite, an important intermediate in the nitrogen cycle. Previous physiological studies demonstrated that growth was inhibited by nitrite and that nitrite reduction was observed to be the primary mechanism of detoxification. Global transcriptional profiling with whole-genome microarrays revealed coordinated cascades of responses to nitrite in pathways of energy metabolism, nitrogen metabolism, oxidative stress response, and iron homeostasis. In agreement with previous observations, nitrite-stressed cells showed a decrease in the expression of genes encoding sulfate reduction functions in addition to respiratory oxidative phosphorylation and ATP synthase activity. Consequently, the stressed cells had decreased expression of the genes encoding ATP-dependent amino acid transporters and proteins involved in translation. Other genes up-regulated in response to nitrite include the genes in the Fur regulon, which is suggested to be involved in iron homeostasis, and genes in the Per regulon, which is predicted to be responsible for oxidative stress response.

  9. Spectrophotometric determination of nitrite in soil and water using cefixime and central composite design

    Science.gov (United States)

    Shariati-Rad, Masoud; Irandoust, Mohsen; Mohammadi, Shabnam

    2015-10-01

    The present paper seeks to develop a simple method for the spectrophotometric determination of nitrite in soil and water samples and also measure optimum reaction conditions along with other analytical parameters. The method is based on the diazotization-coupling reaction of nitrite with cefixime and 1-naphthylamine in an acidic solution (Griess reaction). The final product that is an azo dye has an orange color with maximum absorption at 360 nm which Beer's Law is obeyed over the concentration range 0.02-15.00 mg L-1 of nitrite. Optimal conditions of the variables affecting the reaction were obtained by central composite design (CCD). A detection limit of 4.3 × 10-3 mg L-1 was obtained for determination of nitrite by the proposed method. The proposed method was successfully applied to determine nitrite in soil and water samples. The molar absorptivity of the product of the reaction and RSD in determination of nitrite in real samples are 4.1 × 103 (L mol-1 cm-1) and lower than 10%, respectively.

  10. Interference of Nitrite with Pyrite under Acidic Conditions: Implications for Studies of Chemolithotrophic Denitrification.

    Science.gov (United States)

    Yan, Ruiwen; Kappler, Andreas; Peiffer, Stefan

    2015-10-06

    Chemolithotrophic denitrification coupled to pyrite oxidation is regarded a key process in the removal of nitrate in aquifers. A common product is nitrite, which is a strong oxidant under acidic conditions. Nitrite may thus interfere with Fe(II) during acidic extraction, a procedure typically used to quantify microbial pyrite oxidation, in overestimating Fe(III) production. We studied the reaction between pyrite (5-125 mM) and nitrite (40-2000 μM) at pH 0, 5.5, and 6.8 in the absence and presence of oxygen. Significant oxidation of pyrite was measured at pH 0 with a yield of 100 μM Fe(III) after 5 mM pyrite was incubated with 2000 μM nitrite for 24 h. Dissolved oxygen increased the rate at pH 0. No oxidation of pyrite was observed at pH 5.5 and 6.8. Our data imply a cyclic model for pyrite oxidation by Fe(III) on the basis of the oxidation of residual Fe(II) by NO and NO2. Interference by nitrite could be avoided if nitrite was removed from the pyrite suspensions through a washing procedure prior to acidic extraction. We conclude that such interferences should be considered in studies on microbially mediated pyrite oxidation with nitrate.

  11. Consistent antioxidant and antihypertensive effects of oral sodium nitrite in DOCA-salt hypertension

    Directory of Open Access Journals (Sweden)

    Jefferson H. Amaral

    2015-08-01

    Full Text Available Hypertension is a common disease that includes oxidative stress as a major feature, and oxidative stress impairs physiological nitric oxide (NO activity promoting cardiovascular pathophysiological mechanisms. While inorganic nitrite and nitrate are now recognized as relevant sources of NO after their bioactivation by enzymatic and non-enzymatic pathways, thus lowering blood pressure, mounting evidence suggests that sodium nitrite also exerts antioxidant effects. Here we show for the first time that sodium nitrite exerts consistent systemic and vascular antioxidant and antihypertensive effects in the deoxycorticosterone-salt (DOCA-salt hypertension model. This is particularly important because increased oxidative stress plays a major role in the DOCA-salt hypertension model, which is less dependent on activation of the renin-angiotensin system than other hypertension models. Indeed, antihypertensive effects of oral nitrite were associated with increased plasma nitrite and nitrate concentrations, and completely blunted hypertension-induced increases in plasma 8-isoprostane and lipid peroxide levels, in vascular reactive oxygen species, in vascular NADPH oxidase activity, and in vascular xanthine oxidoreductase activity. Together, these findings provide evidence that the oral administration of sodium nitrite consistently decreases the blood pressure in association with major antioxidant effects in experimental hypertension.

  12. Plasma nitrite response in older women to a physical function test

    Science.gov (United States)

    Dobrosielski, Devon A.; Presley, Tennille; Perlegas, Andreas; Marsh, Anthony P.; Kim-Shapiro, Daniel; Rejeski, W. Jack

    2013-01-01

    Background and aims Nitric oxide (NO) may play a critical role in facilitating the delivery of blood to active skeletal muscle, ultimately impacting functional health in older adults. Plasma nitrite is a useful marker of vascular NO bioavailability. The aim of the current investigation was to examine the effect of a widely used physical function test on plasma nitrite concentrations in older adults. Methods Venous blood was drawn before, immediately following, and 10 minutes following the completion of a 400-m walk test. Blood samples were added to heparin and frozen for subsequent analysis of nitrite levels using chemiluminescence. Results Twenty six (79±4 yrs) women participated in this study. Plasma nitrite levels decreased approximately 22% from baseline following a 400-m walk. Percent change in plasma nitrite was related to walking speed (r=−0.550, p=0.004). Conclusions These data suggest an alteration in plasma nitrite concentration following a functional test which may impact functional health. PMID:20009500

  13. In silico modeling of the type 2 IDI enzymes of Bacillus licheniformis, Pseudomonas stutzeri, Streptococcus pyogenes, and Staphylococcus aureus for virtual screening of potential inhibitors of this therapeutic target.

    Science.gov (United States)

    Torktaz, Ibrahim; Shahbani Zahiri, Hossein; Akbari Noghabi, Kambiz

    2013-02-01

    Isopentenyl diphosphate isomerase is an essential enzyme in those living organisms such as pathogenic strains of Streptococcus and Staphylococcus genera which rely on the Mevalonate pathway for the production of isoprenoids. The pathogens contain type 2 IDI in contrast to human that contains type 1 IDI. Therefore, the type 2 IDI may be a potential target for the therapy of some infectious diseases. In the current study, a virtual screening by docking was performed among 2000 chemicals from CoCoCo library to find a specific inhibitor for type 2 IDIs. To this end, the structures of the type 2 IDIs of Bacillus licheniformis, Pseudomonas stutzeri, Streptococcus pyogenes, and Staphylococcus aureus were molded using comparative modeling and Hidden Markov Model (HMM) based prediction. The predicted models were evaluated based on Q-mean and Prosa score. Molegro Virtual Docker with MolDock scoring function was used for measuring the binding affinity of the found inhibitor to the active site of the models. Also the inhibition effect of the compound was virtually tested on the crystallography-solved structures of the Sulfolobus shibatae and Thermus thermophilus type 2 IDIs as well as the Escherichia coli type 1 IDI. Finally, the inhibition effect of the found inhibitor was virtually tested on the human type 1 IDI. Interestingly, the results suggest that the inhibitor efficiently binds to and inhibits the bacterial IDIs especially the type 2 IDIs of pathogens while it is not inhibiting the human IDI. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. The Effects of Physicochemical Factors and Cell Density on Nitrite Transformation in a Lipid-Rich Chlorella.

    Science.gov (United States)

    Liang, Fang; Du, Kui; Wen, Xiaobin; Luo, Liming; Geng, Yahong; Li, Yeguang

    2015-12-28

    To understand the effects of physicochemical factors on nitrite transformation by microalgae, a lipid-rich Chlorella with high nitrite tolerance was cultured with 8 mmol/l sodium nitrite as sole nitrogen source under different conditions. The results showed that nitrite transformation was mainly dependent on the metabolic activities of algal cells rather than oxidation of nitrite by dissolved oxygen. Light intensity, temperature, pH, NaHCO3 concentrations, and initial cell densities had significant effects on the rate of nitrite transformation. Single-factor experiments revealed that the optimum conditions for nitrite transformation were light intensity: 300 μmol/m(2); temperature: 30°C; pH: 7-8; NaHCO3 concentration: 2.0 g/l; and initial cell density: 0.15 g/l; and the highest nitrite transformation rate of 1.36 mmol/l/d was achieved. There was a positive correlation between nitrite transformation rate and the growth of Chlorella. The relationship between nitrite transformation rate (mg/l/d) and biomass productivity (g/l/d) could be described by the regression equation y = 61.3x (R(2) = 0.9665), meaning that 61.3 mg N element was assimilated by 1.0 g dry biomass on average, which indicated that the nitrite transformation is a process of consuming nitrite as nitrogen source by Chlorella. The results demonstrated that the Chlorella suspension was able to assimilate nitrite efficiently, which implied the feasibility of using flue gas for mass production of Chlorella without preliminary removal of NOX.

  15. [Fumarate reductase in the mitochondria of the trematode Calicophoron ijimai].

    Science.gov (United States)

    Iarygina, G V; Vykhrestiuk, N P; Burenina, E A

    1983-01-01

    The presence of active fumarate reductase system in mitochondria of the trematode Calicophoron ijimai was shown. Fumarate reductase activities in different collections of C. ijimai vary considerably. Maximum activity accounts for 47.7 +/- 1.0 nM/min/mg protein whereas minimum--for 15.1 +/- 0.1. Some properties of the enzyme were studied. The effect of thiabendazole, bitionol, oxinid and preparations of G-1026 and G-937 on the fumarate reductase activity was investigated. G-1026, G-937 preparations and bitionol have the strongest inhibitory effect on the enzyme. Thiabendazole inhibited but little the fumarate reductase reaction in C. ijimai. The enzyme activity was not affected by oxinid.

  16. Regulation of ribonucleotide reductase by Spd1 involves multiple mechanisms

    DEFF Research Database (Denmark)

    Nestoras, Konstantinos; Mohammed, Asma Hadi; Schreurs, Ann-Sofie

    2010-01-01

    The correct levels of deoxyribonucleotide triphosphates and their relative abundance are important to maintain genomic integrity. Ribonucleotide reductase (RNR) regulation is complex and multifaceted. RNR is regulated allosterically by two nucleotide-binding sites, by transcriptional control, and...

  17. Reduction of Folate by Dihydrofolate Reductase from Thermotoga maritima

    NARCIS (Netherlands)

    Loveridge, E Joel; Hroch, Lukas; Hughes, Robert L; Williams, Thomas; Davies, Rhidian L; Angelastro, Antonio; Luk, Louis Y P; Maglia, Giovanni; Allemann, Rudolf K

    2017-01-01

    Mammalian dihydrofolate reductases (DHFR) catalyse the reduction of folate more efficiently than the equivalent bacterial enzymes, despite typically having similar efficiencies for the reduction of their natural substrate dihydrofolate. In contrast, we show here that DHFR from the hyperthermophilic

  18. Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors

    DEFF Research Database (Denmark)

    Su, Qingxian; Ma, Chun; Domingo-Felez, Carlos

    2017-01-01

    Nitrous oxide (N2O) production from autotrophic nitrogen conversion processes, especially nitritation systems, can be significant, requires understanding and calls for mitigation. In this study, the rates and pathways of N2O production were quantified in two lab-scale sequencing batch reactors...... operated with intermittent feeding and demonstrating long-term and high-rate nitritation. The resulting reactor biomass was highly enriched in ammonia-oxidizing bacteria, and converted ∼93 ± 14% of the oxidized ammonium to nitrite. The low DO set-point combined with intermittent feeding was sufficient...... to maintain high nitritation efficiency and high nitritation rates at 20-26 °C over a period of ∼300 days. Even at the high nitritation efficiencies, net N2O production was low (∼2% of the oxidized ammonium). Net N2O production rates transiently increased with a rise in pH after each feeding, suggesting...

  19. MONITORING KADAR NITRIT DAN NITRAT PADA AIR SUMUR DI DAERAH CATUR TUNGGAL YOGYAKARTA DENGAN METODE SPEKTROFOTOMETRI UV-VIS (Monitoring of Nitrite and Nitrate Content in Ground Water of Catur Tunggal Region of Yogyakarta by UV-VIS Spectrophotometry

    Directory of Open Access Journals (Sweden)

    Setiowati Setiowati

    2016-07-01

    Full Text Available ABSTRAK Metode analisis nitrit dan nitrat perlu dikembangkan untuk memonitor kualitas air minum. Kualitas air sumur untuk parameter nitrit dan nitrat dipengaruhi oleh kondisi lingkungan dan kedalaman air sumur.Penelitian ini bertujuan menganalisis nitrit dan nitrat menggunakan asam p-aminobenzoat (PABA pada air sumur di daerah perkotaan Yogyakarta. Analisis nitrit didasarkan pada reaksi antara ion nitrit dengan PABA yang membentuk senyawa azo dengan panjang gelombang maksimum 546 nm. Kedalaman air sumur di daerah Catur Tunggal rata-rata > 10 m. Kadar nitrit dan nitrat pada air sumur adalah 0,05-0,09 dan 8,22-36,58 mg/L. Kadar nitrit dan nitrat tersebut memenuhi baku mutu dan aman untuk dikonsumsi. Konsentrasi nitrit dan nitrat pada air RO adalah 0,05 dan 2,72-59,57 mg/L. Kadar nitrit pada air RO tidak memenuhi baku mutu sedangkan kadar nitrat memenuhi baku mutu kecuali RO 5. ABSTRACT The method for analysis nitrite and nitrate had to developed to monitor the drinking water quality. The well water quality, especially for nitrite and nitrate were influenced by environmental conditions and depth of well. This study aims to analyze nitrite and nitrate using p-aminobenzoic acid (PABA in ground water at urban areas of Yogyakarta. The analysis was based on the reaction between nitrite ions with PABA which form azo compounds with a maximum wavelength of 546 nm. The depth of wells at Catur Tunggal were more than 10 m. Concentration of nitrite and nitrate in well water were 0.05 to 0.09 and 8.22 to 36.58 mg / L. The concentrations met the standard for drinking water quality and was safe for consumption. The concentration of nitrite and nitrate in reverse osmosis (RO water were 0.05 and 2.72 to 59.57 mg / L. The concentration of nitrite did not meet the standard for drinking water quality while the concentration of nitrate met the standard for drinking water quality except RO 5.

  20. Acute toxicity of nitrate and nitrite to sensitive freshwater insects, mollusks, and a crustacean.

    Science.gov (United States)

    Soucek, D J; Dickinson, A

    2012-02-01

    Both point- and nonpoint-sources of pollution have contributed to increased inorganic nitrogen concentrations in freshwater ecosystems. Although numerous studies have investigated the toxic effects of ammonia on freshwater species, relatively little work has been performed to characterize the acute toxicity of the other two common inorganic nitrogen species: nitrate and nitrite. In particular, to our knowledge, no published data exist on the toxicity of nitrate and nitrite to North American freshwater bivalves (Mollusca) or stoneflies (Insecta, Plecoptera). We conducted acute (96-h) nitrate and nitrite toxicity tests with two stonefly species (Allocapnia vivipara and Amphinemura delosa), an amphipod (Hyalella azteca), two freshwater unionid mussels (Lampsilis siliquoidea and Megalonaias nervosa), a fingernail clam (Sphaerium simile), and a pond snail (Lymnaea stagnalis). Overall, we did not observe a particularly wide degree of variation in sensitivity to nitrate, with median lethal concentrations ranging from 357 to 937 mg NO(3)-N/l; furthermore, no particular taxonomic group appeared to be more sensitive to nitrate than any other. In our nitrite tests, the two stoneflies tested were by far the most sensitive, and the three mollusks tested were the least sensitive. In contrast to what was observed in the nitrate tests, variation among species in sensitivity to nitrite spanned two orders of magnitude. Examination of the updated nitrite database, including previously published data, clearly showed that insects tended to be more sensitive than crustaceans, which were in turn more sensitive than mollusks. Although the toxic mechanism of nitrite is generally thought to be the conversion of oxygen-carrying pigments into forms that cannot carry oxygen, our observed trend in sensitivity of broad taxonomic groups, along with information on respiratory pigments in those groups, suggests that some other yet unknown mechanism may be even more important.

  1. Histological alterations in gills of Macrobrachium amazonicum juveniles exposed to ammonia and nitrite.

    Science.gov (United States)

    Dutra, Fabrício Martins; Rönnau, Milton; Sponchiado, Dircelei; Forneck, Sandra Carla; Freire, Carolina Arruda; Ballester, Eduardo Luis Cupertino

    2017-06-01

    Aquaculture has shown great growth in the last decades. Due to the restrictions on water use, production systems are becoming increasingly more intensive, raising concerns about the production water quality. Macrobrachium amazonicum is among the freshwater prawn species with favorable characteristics for production and possibility of intensification. Nitrogen compounds such as ammonia and nitrite affect the health of aquatic organisms since they quickly reach toxic concentrations. These compounds can also cause damage to the gill structure, leading to hypoxia in tissues, affecting acid-base balance, osmoregulation (salt absorption) and ammonia excretion, decreasing the immune capacity of the animal and, in extreme cases, cause death. The aim of this study was to assess histological changes in the gills of Macrobrachium amazonicum juveniles subjected to different concentrations of total ammonia and nitrite. The prawns were subjected to different concentrations of those compounds and their gills were removed and preserved for histological analysis. The gills were assessed for changes according to the Organ Index (Iorg) and, for each change, an importance factor (w) was attributed according to the degree of reversibility and applied according to the degree of extension or frequency of the damage. The damage to the gills in the treatments with 100% mortality, both for ammonia and nitrite, corresponded to the high occurrence of progressive, regressive, circulatory, and inflammation damages. The other treatments (which caused less mortality) had mainly inflammation and regressive damages, whose occurrence increased according to the increase in ammonia and nitrite concentration. The histological analysis confirmed that the higher the total ammonia and nitrite concentrations, the larger the damages caused to the gill structure and that lower nitrite concentrations caused similar damages to those caused by higher total ammonia concentrations, which reflects the lower

  2. Inhibitory Effects of Nitrite on Acid Production in Dental Plaque in Children.

    Science.gov (United States)

    Yamamoto, Yuji; Washio, Jumpei; Shimizu, Koichi; Igarashi, Koei; Takahashi, Nobuhiro

    To assess the inhibitory effects of nitrite on plaque acidogenicity and its relationship with caries experience. Plaque (2 μl) was collected from 76 children (age 5.8 ± 2.6 years, dmft 2.9 ± 3.5, DMTF 0.6 ± 1.4) and mixed with nitrite solution (final concentration = 0.63 mM) or distilled water (control). The initial pH (pH-0) of each sample was measured using a portable pH meter. The samples were incubated for 10 min, then their pH (pH-1) was measured again. Next, glucose (final concentration = 0.67%) was added to the samples, which were then incubated for a further 10 min before their pH was assessed for a third time (pH-2). The pH-0, pH-1, and pH-2 values of the control samples were 7.25 ± 0.16, 6.07 ± 0.44, and 5.11 ± 0.48, respectively, and those of the nitrite-treated samples were 7.26 ± 0.16, 6.37 ± 0.45, and 5.34 ± 0.48, respectively. The pH-1 and pH-2 values of the nitrite-treated samples were higher than those of the control samples (p plaque acid production was associated with stronger inhibition of plaque acid production by nitrite (p plaque acid production. Nitrite inhibited acid production more markedly in plaque that exhibited greater acid production, suggesting that nitrite might be effective at preventing caries, as it contributes to pH homeostasis in plaque by countering excess acidification.

  3. Safety and feasibility of long-term intravenous sodium nitrite infusion in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Ryszard M Pluta

    Full Text Available BACKGROUND: Infusion of sodium nitrite could provide sustained therapeutic concentrations of nitric oxide (NO for the treatment of a variety of vascular disorders. The study was developed to determine the safety and feasibility of prolonged sodium nitrite infusion. METHODOLOGY: Healthy volunteers, aged 21 to 60 years old, were candidates for the study performed at the National Institutes of Health (NIH; protocol 05-N-0075 between July 2007 and August 2008. All subjects provided written consent to participate. Twelve subjects (5 males, 7 females; mean age, 38.8±9.2 years (range, 21-56 years were intravenously infused with increasing doses of sodium nitrite for 48 hours (starting dose at 4.2 µg/kg/hr; maximal dose of 533.8 µg/kg/hr. Clinical, physiologic and laboratory data before, during and after infusion were analyzed. FINDINGS: The maximal tolerated dose for intravenous infusion of sodium nitrite was 267 µg/kg/hr. Dose limiting toxicity occurred at 446 µg/kg/hr. Toxicity included a transient asymptomatic decrease of mean arterial blood pressure (more than 15 mmHg and/or an asymptomatic increase of methemoglobin level above 5%. Nitrite, nitrate, S-nitrosothiols concentrations in plasma and whole blood increased in all subjects and returned to preinfusion baseline values within 12 hours after cessation of the infusion. The mean half-life of nitrite estimated at maximal tolerated dose was 45.3 minutes for plasma and 51.4 minutes for whole blood. CONCLUSION: Sodium nitrite can be safely infused intravenously at defined concentrations for prolonged intervals. These results should be valuable for developing studies to investigate new NO treatment paradigms for a variety of clinical disorders, including cerebral vasospasm after subarachnoid hemorrhage, and ischemia of the heart, liver, kidney and brain, as well as organ transplants, blood-brain barrier modulation and pulmonary hypertension. CLINICAL TRIAL REGISTRATION INFORMATION: http

  4. Detection and Diversity of Fungal Nitric Oxide Reductase Genes (p450nor) in Agricultural Soils.

    Science.gov (United States)

    Higgins, Steven A; Welsh, Allana; Orellana, Luis H; Konstantinidis, Konstantinos T; Chee-Sanford, Joanne C; Sanford, Robert A; Schadt, Christopher W; Löffler, Frank E

    2016-05-15

    Members of the Fungi convert nitrate (NO3 (-)) and nitrite (NO2 (-)) to gaseous nitrous oxide (N2O) (denitrification), but the fungal contributions to N loss from soil remain uncertain. Cultivation-based methodologies that include antibiotics to selectively assess fungal activities have limitations, and complementary molecular approaches to assign denitrification potential to fungi are desirable. Microcosms established with soils from two representative U.S. Midwest agricultural regions produced N2O from added NO3 (-) or NO2 (-) in the presence of antibiotics to inhibit bacteria. Cultivation efforts yielded 214 fungal isolates belonging to at least 15 distinct morphological groups, 151 of which produced N2O from NO2 (-) Novel PCR primers targeting the p450nor gene, which encodes the nitric oxide (NO) reductase responsible for N2O production in fungi, yielded 26 novel p450nor amplicons from DNA of 37 isolates and 23 amplicons from environmental DNA obtained from two agricultural soils. The sequences shared 54 to 98% amino acid identity with reference P450nor sequences within the phylum Ascomycota and expand the known fungal P450nor sequence diversity. p450nor was detected in all fungal isolates that produced N2O from NO2 (-), whereas nirK (encoding the NO-forming NO2 (-) reductase) was amplified in only 13 to 74% of the N2O-forming isolates using two separate nirK primer sets. Collectively, our findings demonstrate the value of p450nor-targeted PCR to complement existing approaches to assess the fungal contributions to denitrification and N2O formation. A comprehensive understanding of the microbiota controlling soil N loss and greenhouse gas (N2O) emissions is crucial for sustainable agricultural practices and addressing climate change concerns. We report the design and application of a novel PCR primer set targeting fungal p450nor, a biomarker for fungal N2O production, and demonstrate the utility of the new approach to assess fungal denitrification potential in

  5. Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression

    OpenAIRE

    Cunningham-Bussel, Amy; Zhang, Tuo; Nathan, Carl F.

    2013-01-01

    Most people infected with Mycobacterium tuberculosis (Mtb) suppress the pathogen’s replication without eradicating it. It is unknown how Mtb survives for decades in a hostile host environment. Respiration of nitrate to nitrite could help Mtb survive in hypoxic tissues but was not thought to be significant at physiologic oxygen tensions, nor was the resultant nitrite considered consequential to Mtb’s physiology. We found that Mtb infecting human macrophages in vitro produces copious nitrite at...

  6. Influence of nitrite accumulation on "Candidatus Accumulibacter" population structure and enhanced biological phosphorus removal from municipal wastewater.

    Science.gov (United States)

    Zeng, Wei; Li, Boxiao; Wang, Xiangdong; Bai, Xinlong; Peng, Yongzhen

    2016-02-01

    A modified University of Cape Town (MUCT) process was used to treat real municipal wastewater with low carbon to nitrogen ratio (C/N). To our knowledge, this is the first study where the influence of nitrite accumulation on "Candidatus Accumulibacter" clade-level population structure was investigated during nitritation establishment and destruction. Real time quantitative PCR assays were conducted using the polyphosphate kinase 1 gene (ppk1) as a genetic marker. Abundances of total "Candidatus Accumulibacter", the relative distributions and population structure of the five "Candidatus Accumulibacter" clades were characterized. Under complete nitrification, clade I using nitrate as electron acceptor was below 5% of total "Candidatus Accumulibacter". When the reactor was transformed into nitritation, clade I gradually disappeared. Clade IID using nitrite as electron acceptor for denitrifying phosphorus (P) removal was always the dominant "Candidatus Accumulibacter" throughout the operational period. This clade was above 90% on average in total "Candidatus Accumulibacter", even up to nearly 100%, which was associated with good performance of denitrifying P removal via nitrite pathway. The nitrite concentrations affected the abundance of clade IID. The P removal was mainly completed by anoxic P uptake of about 88%. The P removal efficiency clearly had a positive correlation with the nitrite accumulation ratio. Under nitritation, the P removal efficiency was 30% higher than that under complete nitrification, suggesting that nitrite was appropriate as electron acceptor for denitrifying P removal when treating carbon-limited wastewater. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Methylenetetrahydrofolate Reductase Activity and Folate Metabolism

    Directory of Open Access Journals (Sweden)

    Nursen Keser

    2014-04-01

    Full Text Available Folate is a vital B vitamin which is easily water-soluble. It is a natural source which is found in the herbal and animal foods. Folate has important duties in the human metabolism, one of them is the adjustment of the level of plasma homocysteine. Reduction in MTHFR (methylenetetrahydrofolate reductase,which is in charge of the metabolism of homocysteine activity affects the level of homocysteine. Therefore MTHFR is an important enzyme in folate metabolism. Some of the mutations occurring in the MTHFR gene is a risk factor for various diseases and may be caused the hyperhomocysteinemia or the homocystinuria, and they also may lead to metabolic problems. MTHFR is effective in the important pathways such as DNA synthesis, methylation reactions and synthesis of RNA. C677T and A1298C are the most commonly occurring polymorphisms in the gene of MTHFR. The frequency of these polymorphisms show differences in the populations. MTHFR, folate distribution, metabolism of homocysteine and S-adenosylmethionine, by the MTHFR methylation the genetic defects have the potential of affecting the risk of disease in the negative or positive way.

  8. Aldose reductase mediates retinal microglia activation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J. Mark, E-mail: mark.petrash@ucdenver.edu

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1{sup GFP} mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR{sup WT} background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. - Highlights: • AR inhibition prevents retinal microglial activation. • Endotoxin-induced ocular cytokine production is reduced in AR null mice. • Overexpression of AR spontaneously induces retinal microglial activation.

  9. Inactivation of nitrate reductase alters metabolic branching of carbohydrate fermentation in the cyanobacterium Synechococcus sp. strain PCC 7002.

    Science.gov (United States)

    Qian, Xiao; Kumaraswamy, G Kenchappa; Zhang, Shuyi; Gates, Colin; Ananyev, Gennady M; Bryant, Donald A; Dismukes, G Charles

    2016-05-01

    To produce cellular energy, cyanobacteria reduce nitrate as the preferred pathway over proton reduction (H2 evolution) by catabolizing glycogen under dark anaerobic conditions. This competition lowers H2 production by consuming a large fraction of the reducing equivalents (NADPH and NADH). To eliminate this competition, we constructed a knockout mutant of nitrate reductase, encoded by narB, in Synechococcus sp. PCC 7002. As expected, ΔnarB was able to take up intracellular nitrate but was unable to reduce it to nitrite or ammonia, and was unable to grow photoautotrophically on nitrate. During photoautotrophic growth on urea, ΔnarB significantly redirects biomass accumulation into glycogen at the expense of protein accumulation. During subsequent dark fermentation, metabolite concentrations--both the adenylate cellular energy charge (∼ATP) and the redox poise (NAD(P)H/NAD(P))--were independent of nitrate availability in ΔnarB, in contrast to the wild type (WT) control. The ΔnarB strain diverted more reducing equivalents from glycogen catabolism into reduced products, mainly H2 and d-lactate, by 6-fold (2.8% yield) and 2-fold (82.3% yield), respectively, than WT. Continuous removal of H2 from the fermentation medium (milking) further boosted net H2 production by 7-fold in ΔnarB, at the expense of less excreted lactate, resulting in a 49-fold combined increase in the net H2 evolution rate during 2 days of fermentation compared to the WT. The absence of nitrate reductase eliminated the inductive effect of nitrate addition on rerouting carbohydrate catabolism from glycolysis to the oxidative pentose phosphate (OPP) pathway, indicating that intracellular redox poise and not nitrate itself acts as the control switch for carbon flux branching between pathways. © 2015 Wiley Periodicals, Inc.

  10. A case study of nitrification and nitrite isotope fractionation in a eutrophic temperate river system

    Science.gov (United States)

    Jacob, Juliane; Dähnke, Kirstin; Sanders, Tina

    2014-05-01

    Stable isotopes of nitrate are often used to assess processing of nitrate in the water column of oceans, estuaries, and rivers. In all these environments, nitrate regeneration via nitrification is an important source of new nitrate. The bulk isotope effect of nitrification is hard to predict: It is a two-step-process by distinct groups of microorganisms oxidizing ammonium to nitrate via nitrite. Both processes have divergent isotope effects, and it is even more difficult to unravel these effects in natural environments, because nitrite usually does not accumulate and isotope analysis is not possible. During our routine sampling scheme at the River Elbe an exceptional flood occurred in June 2013, and nitrite and ammonium accumulated, allowing us to investigate isotope fractionation of nitrification in a natural river system. We measured nutrient concentrations, dual nitrate isotopes, δ15N-NO2, and, where possible, δ15N-NH4. Nitrate leached from catchment area, and δ15N-NO3 and δ18O-NO3 decreased from typical spring bloom values (9.0 o and 3.5 o respectively) to winter nitrate background values (7.4 o and 2.1 o respectively). This indicates that riverine assimilation was minimal during the flood. Ammonium and nitrite concentrations increased to 12.5 μM and 5.7 μM, respectively, which likely was due to remineralization and nitrification in the water column. Ammonium δ15N-NH4 values increased up to 12 o and nitrite δ15N-NO2 values ranged from -4.8 o and -14.2 ‰Nitrite oxidation and decreasing concentrations were coupled with a fractionation factor 15ɛ of -8.6 o following normal, and not inverse, isotope fractionation. This deviates from findings in pure cultures of nitrite-oxidizing bacteria. We assume that the mechanisms responsible for inverse fractionation apply in natural environment as well, but that the resulting trend in δ15N-NO2 is masked by dilution with fresh nitrite stemming from ammonium oxidation. Our data are a first approximation of the

  11. Molecular Characterization of Lactobacillus plantarum DMDL 9010, a Strain with Efficient Nitrite Degradation Capacity

    Science.gov (United States)

    Fei, Yong-tao; Liu, Dong-mei; Luo, Tong-hui; Chen, Gu; Wu, Hui; Li, Li; Yu, Yi-gang

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (PLactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity. PMID:25423449

  12. Molecular characterization of Lactobacillus plantarum DMDL 9010, a strain with efficient nitrite degradation capacity.

    Directory of Open Access Journals (Sweden)

    Yong-tao Fei

    Full Text Available Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010 was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (P<0.001. Based on 16S rDNA sequencing and sequence comparison, Lactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively of the L-lactate dehydrogenase 1 (L-ldh1 gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity.

  13. A new system for the spectrophotometric determination of trace amounts of nitrite in environmental samples

    Directory of Open Access Journals (Sweden)

    Cherian Tom

    2006-01-01

    Full Text Available A selective and rapid spectrophotometric method for the determination of nitrite is presented. It is based on the reaction of nitrite with p-nitroaniline in acid medium to form diazonium ion, which is coupled with ethoxyethylenemaleic ester or ethylcyanoacetate in basic medium to form azo dyes, showing absorption maxima at 439 and 465 nm respectively. The method obeys Beer's law in the concentration range of 0.5-16 µg mL-1 of nitrite with ethoxyethylenemaleic ester and 0.2-18 µg mL-1 of nitrite with ethylcyanoacetate. The molar absorptivity and Sandell's sensitivity of p-nitroaniline-ethoxyethylenemaleic ester and p-nitroaniline-ethylcyanoacetate azo dyes are 5.04 X 10(4 L mol-1cm-1, 0.98 X 10-2 µg cm-2 and 1.21 X 10(4 L mol-1 cm-1, 0.98 X 10-2 µg cm-2 respectively. The optimum reaction conditions and other analytical parameters were evaluated. The method was successfully applied to the determination of nitrite in various water samples and soil samples.

  14. Molecular characterization of Lactobacillus plantarum DMDL 9010, a strain with efficient nitrite degradation capacity.

    Science.gov (United States)

    Fei, Yong-tao; Liu, Dong-mei; Luo, Tong-hui; Chen, Gu; Wu, Hui; Li, Li; Yu, Yi-gang

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (PDMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity.

  15. Association of nitrate, nitrite, and total organic carbon (TOC) in drinking water and gastrointestinal disease.

    Science.gov (United States)

    Khademikia, Samaneh; Rafiee, Zahra; Amin, Mohammad Mehdi; Poursafa, Parinaz; Mansourian, Marjan; Modaberi, Amir

    2013-01-01

    We aimed to investigate the amounts of nitrate, nitrite, and total organic carbon (TOC) in two drinking water sources and their relationship with some gastrointestinal diseases. This cross-sectional study was conducted in 2012 in Iran. Two wells located in residential areas were selected for sampling and measuring the TOC, nitrate (NO3(-)), and nitrite (NO2(-)). This water is used for drinking as well as for industrial and agricultural consumption. Nitrate and nitrite concentrations of water samples were analyzed using DR 5000 spectrophotometer. The information of patients was collected from the records of the main referral hospital of the region for gastrointestinal diseases. In both areas under study, the mean water nitrate and nitrite concentrations were higher in July than in other months. The mean TOC concentrations in areas 1 and 2 were 2.29 ± 0.012 and 2.03 ± 0.309, respectively. Pollutant concentration and gastrointestinal disease did not show any significant relationship (P > 0.05). Although we did not document significant association of nitrite, nitrate, and TOC content of water with gastrointestinal diseases, it should be considered that such health hazards may develop over time, and the quality of water content should be controlled to prevent different diseases.

  16. Nitrite is a positive modulator of the Frank-Starling response in the vertebrate heart.

    Science.gov (United States)

    Angelone, Tommaso; Gattuso, Alfonsina; Imbrogno, Sandra; Mazza, Rosa; Tota, Bruno

    2012-06-01

    Evidence from both mammalian and nonmammalian vertebrates indicates that intracardiac nitric oxide (NO) facilitates myocardial relaxation, ventricular diastolic distensibility, and, consequently, the Frank-Starling response, i.e., the preload-induced increase of cardiac output. Since nitrite ion (NO(2)(-)), the major storage pool of bioactive NO, recently emerged as a cardioprotective endogenous modulator, we explored its influence on the Frank-Starling response in eel, frog, and rat hearts, used as paradigms of fish, amphibians, and mammals, respectively. We demonstrated that, like NO, exogenous nitrite improves the Frank-Starling response in all species, as indicated by an increase of stroke volume and stroke work (eel and frog) and of left ventricular (LV) pressure and LVdP/dt max (rat), used as indexes of inotropism. Unlike in frog and rat, in eel, the positive influence of nitrite appeared to be dependent on NO synthase inhibition. In all species, the effect was sensitive to NO scavengers, independent on nitroxyl anion, and mediated by a cGMP/PKG-dependent pathway. Moreover, the nitrite treatment increased S-nitrosylation of lower-molecular-weight proteins in cytosolic and membrane fractions. These results suggest that nitrite acts as a physiological source of NO, modulating through different species-specific mechanisms, the stretch-induced intrinsic regulation of the vertebrate heart.

  17. Reverse polarity capillary zone electrophoresis analysis of nitrate and nitrite in natural water samples

    Energy Technology Data Exchange (ETDEWEB)

    Metcalf, S.G.

    1998-06-11

    This paper describes the application of reverse polarity capillary zone electrophoresis (RPCE) for rapid and accurate determination of nitrate and nitrite in natural water samples. Using hexamethonium bromide (HMB) as an electroosmotic flow modifier in a borate buffer at pH 9.2, the resolution of nitrate and nitrite was accomplished in less than 3 minutes. RPCE was compared with ion chromatographic (IC) and cadmium reduction flow injection analysis (Cd-FIA) methods which are the two most commonly used standard methods for the analysis of natural water samples for nitrate and nitrite. When compared with the ion chromatographic method for the determination of nitrate and nitrite, RPCE reduced analysis time, decreased detection limits by a factor of 10, cut laboratory wastes by more than two orders of magnitude, and eliminated interferences commonly associated with IC. When compared with the cadmium reduction method, RPCE had the advantage of simultaneous determination of nitrate and nitrite, could be used in the presence of various metallic ions that normally interfere in cadmium reduction, and decreased detection limits by a factor of 10.

  18. Enhancement of Nitrite Oxidation by Heat-Treated Cobalt Phthalocyanine Supported on High Area Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Bong Yong; Kim, Sung Hyun [Konkuk University, Seoul (Korea, Republic of); Kwag, Gwang Hoon [Kumho Chemical Laboratories, Daejeon (Korea, Republic of)

    2006-02-15

    We have shown that the higher catalytic activity of heat-treated CoPc toward the nitrite oxidation comes from both Co-N{sub x} structure and highly dispersed cobalt metal ion characteristics. This result can be compared with FePc case in which the Fe-N{sub x} structure existed even after heat-treatment at 1000 .deg. C. However, almost entire CoPc molecules were converted to metallic Co. Therefore, the best electrocatalyst could be prepared by any means to give Co-N{sub x} characteristics and high degree of dispersion of Co metal atoms. Our ongoing effort is to develop efficient electrocatalysts and sensors for nitrite detection. Nitrite is one of the major components of wastewater from nuclear power production and involved in the corrosion and bacterial process known as the nitrogen cycle. It also plays important physiological roles in the form of NO, for example, as an intra- and intercellular messenger, a neurotransmitter, and an immune system mediator. The detection of nitrite, therefore, is important from an environmental and biological point of view. We have been utilizing transition-metal (particularly Fe and Co) phthalocyanines and porphyrins for this purpose as they often display catalytic activities toward many important electrochemical reactions such as oxygen reduction and CO oxidation. We found that iron phthalocyanine (FePc) is a very effective catalyst for nitrite reduction, undergoing structural changes on the surface as a function of the redox state.

  19. Practical Use of Nitrite and Basis for Dosage in the Manufacture of Meat Products

    DEFF Research Database (Denmark)

    Adler-Nissen, Jens; Ekgreen, Maria Helbo; Risum, Jørgen

    The use of nitrite (NaNO2) in the manufacture of salted (cured) meat products has a long tradition in the industry, dating back to the early twentieth century. Nitrite serves several technological purposes, primarily by the formation of a stable red colour in the meat and the inhibition of the gr......The use of nitrite (NaNO2) in the manufacture of salted (cured) meat products has a long tradition in the industry, dating back to the early twentieth century. Nitrite serves several technological purposes, primarily by the formation of a stable red colour in the meat and the inhibition...... number of experiments were conducted in Denmark in collaboration with the Danish meat manufacturing industry in 1981-1983. Wiltshire bacon and certain canned products largely for export were not investigated in this study, however. The adverse effects of nitrite can mainly be ascribed to the risk...... sausages. Arguments for maintaining this high level are lacking in the available literature, and on the basis of what can be deduced with respect to the manufacturing processes for these products, it is hard to conceive of substantial arguments for the high level of 180 mg/kg. For other heat...

  20. A coupled system of half-nitritation and ANAMMOX for mature landfill leachate nitrogen removal.

    Science.gov (United States)

    Li, Yun; Li, Jun; Zhao, Baihang; Wang, Xiujie; Zhang, Yanzhuo; Wei, Jia; Bian, Wei

    2017-09-01

    A coupled system of membrane bioreactor-nitritation (MBR-nitritation) and up-flow anaerobic sludge blanket-anaerobic ammonium oxidation (UASB-ANAMMOX) was employed to treat mature landfill leachate containing high ammonia nitrogen and low C/N. MBR-nitritation was successfully realized for undiluted mature landfill leachate with initial concentrations of 900-1500 mg/L [Formula: see text] and 2000-4000 mg/L chemical oxygen demand. The effluent [Formula: see text] concentration and the [Formula: see text] accumulation efficiency were 889 mg/L and 97% at 125 d, respectively. Half-nitritation was quickly realized by adjustment of hydraulic retention time and dissolved oxygen (DO), and a low DO control strategy could allow long-term stable operation. The UASB-ANAMMOX system showed high effective nitrogen removal at a low concentration of mature landfill leachate. The nitrogen removal efficiency was inhibited at excessive influent substrate concentration and the nitrogen removal efficiency of the system decreased as the concentration of mature landfill leachate increased. The MBR-nitritation and UASB-ANAMMOX processes were coupled for mature landfill leachate treatment and together resulted in high effective nitrogen removal. The effluent average total nitrogen concentration and removal efficiency values were 176 mg/L and 83%, respectively. However, the average nitrogen removal load decreased from 2.16 to 0.77 g/(L d) at higher concentrations of mature landfill leachate.

  1. Isolation and characterization of cDNAs encoding leucoanthocyanidin reductase and anthocyanidin reductase from Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    Full Text Available Proanthocyanidins (PAs contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR are two key enzymes of the PA biosynthesis that produce the main subunits: (+-catechin and (--epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05 in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus.

  2. Purification and Properties of an NADPH-Aldose Reductase (Aldehyde Reductase) from Euonymus japonica Leaves

    Science.gov (United States)

    Negm, Fayek B.

    1986-01-01

    The enzyme aldose (aldehyde) reductase was partially purified (142-fold) and characterized from Euonymus japonica leaves. The reductase, a dimer, had an average molecular weight of 67,000 as determined by gel filtration on Sephadex G-100. The enzyme was NADPH specific and reduced a broad range of substrates including aldoses, aliphatic aldehydes, and aromatic aldehydes. Maximum activity was observed at pH 8 in phosphate and Tris-HCl buffers and at pH 8.6 to 9.0 in glycine-NaOH buffer using dl-glyceraldehyde or 3-pyridinecarboxaldehyde as substrate. NADP was a competitive inhibitor with respect to NADPH with a Ki of 60 micromolar. Glycerol was an uncompetitive inhibitor to dl-glyceraldehyde (K′i = 460 millimolar). The Euonymus enzyme was inhibited by sulfhydryl inhibitor, phenobarbital, and high concentrations of Li2SO4. Pyrazol and metal chelating agents inhibited the enzyme slightly. Enzyme activity was detected in the leaves and berries of Celastrus orbiculatus and several species of Euonymus. Probable function of this enzyme is to reduce d-galactose to galactitol, a characteristic metabolite in phloem sap of members of the Celastraceae family. Images Fig. 1 PMID:16664750

  3. 5α-reductases in human physiology: an unfolding story.

    Science.gov (United States)

    Traish, Abdulmaged M

    2012-01-01

    5α-reductases are a family of isozymes expressed in a wide host of tissues including the central nervous system (CNS) and play a pivotal role in male sexual differentiation, development and physiology. A comprehensive literature search from 1970 to 2011 was made through PubMed and the relevant information was summarized. 5α reductases convert testosterone, progesterone, deoxycorticosterone, aldosterone and corticosterone into their respective 5α-dihydro-derivatives, which serve as substrates for 3α-hydroxysteroid dehydrogenase enzymes. The latter transforms these 5α-reduced metabolites into a subclass of neuroactive steroid hormones with distinct physiological functions. The neuroactive steroid hormones modulate a multitude of functions in human physiology encompassing regulation of sexual differentiation, neuroprotection, memory enhancement, anxiety, sleep and stress, among others. In addition, 5α -reductase type 3 is also implicated in the N-glycosylation of proteins via formation of dolichol phosphate. The family of 5α-reductases was targeted for drug development to treat pathophysiological conditions, such as benign prostatic hyperplasia and androgenetic alopecia. While the clinical use of 5α-reductase inhibitors was well established, the scope and the magnitude of the adverse side effects of such drugs, especially on the CNS, is still unrecognized due to lack of knowledge of the various physiological functions of this family of enzymes, especially in the CNS. There is an urgent need to better understand the function of 5α-reductases and the role of neuroactive steroids in human physiology in order to minimize the potential adverse side effects of inhibitors targeting 5α-reductases to treat benign prostatic hyperplasia and androgenic alopecia.

  4. Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils

    DEFF Research Database (Denmark)

    Priemé, Anders; Braker, Gesche; Tiedje, James M.

    2002-01-01

    marsh clones and all upland clones. Only a few of the nirK clone sequences branched with those of known denitrifying bacteria. The nirS clones formed two major clusters with several subclusters, but all nirS clones showed less than 80% identity to nirS sequences from known denitrifying bacteria. Overall...... pattern was found in both soils and in each soil two dominant groups comprised >35% of all clones. No dominance and few redundant patterns were seen among the nirS clones. Phylogenetic analysis of deduced amino acids grouped the nirK sequences into five major clusters, with one cluster encompassing most...

  5. Influence of induction conditions on the expression of carbazole dioxygenase components (CarAa, CarAc, and CarAd) from Pseudomonas stutzeri in recombinant Escherichia coli using experimental design.

    Science.gov (United States)

    Larentis, Ariane Leites; Sampaio, Haryana de Cássia Cunha; Martins, Orlando Bonifácio; Rodrigues, Maria Isabel; Alves, Tito Lívio Moitinho

    2011-08-01

    Carbazole 1,9a-dioxygenase (CarA), the first enzyme in the carbazole degradation pathway used by Pseudomonas sp., was expressed in E. coli under different conditions defined by experimental design. This enzyme depends on the coexistence of three components containing [2Fe-2S] clusters: CarAa, CarAc, and CarAd. The catalytic site is present in CarAa. The genes corresponding to components of carbazole 1,9a-dioxygenase from P. stutzeri were cloned and expressed by salt induction in E. coli BL21-SI (a host that allows the enhancement of overexpressed proteins in the soluble fraction), using the vector pDEST™14. The expression of these proteins was performed under different induction conditions (cell concentration, temperature, and time), with the help of two-level factorial design. Cell concentration at induction (measured by absorbance at 600 nm) was tested at 0.5 and 0.8. After salt induction, expression was performed at 30 and 37°C, for 4 h and 24 h. Protein expression was evaluated by densitometry analysis. Expression of CarAa was enhanced by induction at a lower cell concentration and temperature and over a longer time, according to the analysis of the experimental design results. The results were validated at Abs (ind) = 0.3, 25°C, and 24 h, at which CarAa expression was three times higher than under the standard condition. The behavior of CarAc and CarAd was the inverse, with the best co-expression condition tested being the standard one (Abs (ind) = 0.5, T = 37°C, and t = 4 h). The functionality of the proteins expressed in E. coli was confirmed by the degradation of 20 ppm carbazole.

  6. Survey the effects of dietary sodium nitrite on the histological changes of the aortic artery in the adult male rats

    Directory of Open Access Journals (Sweden)

    Saeaid Khatamsaz

    2016-05-01

    Full Text Available Background: Because of high consumption of nitrite in processed (fast foods and high level of nitrite in water, soil and ecosystem, nitrite can endanger humans health. In this study the effects of sodium nitrite on aorta was examined in adult male rats. Materials and Methods : In the present study, 30 Wistar adult male rats were randomly divided into three groups of 10, including; control group. First experimental group that received low dose of sodium nitrite (175 mg/kg.bw, second experimental group that received high dose of sodium nitrite (350 mg/kg.bw. They were examined for 60 days. The rats got sodium nitrite through drinking water. At the end of the experiment the rats were taken to the anesthesia jar and based on ether principles, they anesthetized with ether and their blood samples were collected from their hearts. Then their aorta were extracted from their bodies and the tissue sections were prepared for testing tissue changes. Features such as histological features of aorta (morphometric and morphologic features were analyzed. The samples were stained with masson trichrome and Hematoxylin- Eosin methods. The internal media layer was measured with Image tool software. Then the amount of nitrite oxide in their blood were tested. At the end results were analyzed by 17 version of SPSS software and ANOVA test was run. Results: The results of this study showed that thickness of medial layer in two experimental group that received low and high dose of sodium nitrite compared with the control group decreased (p 0.05, and the group that received of high dose of sodium nitrite showed irregular and non- uniform state in aortic media layer. Conclusion: The finding of this study indicated that consumption of sodium nitrite in long term can induce damage in artries tissue.

  7. Comparative transcriptome analysis reveals molecular strategies of oriental river prawn Macrobrachium nipponense in response to acute and chronic nitrite stress.

    Science.gov (United States)

    Xu, Zhixin; Li, Tongyu; Li, Erchao; Chen, Ke; Ding, Zhili; Qin, Jian G; Chen, Liqiao; Ye, Jinyun

    2016-01-01

    Macrobrachium nipponense is an economically and nutritionally important species threatened by ambient superfluous nitrite. De novo RNA-Seq was used to explore the molecular mechanism in M. nipponense exposed to the acute nitrite stress (26.05 mg/L nitrite-N) for 24 h and the chronic nitrite stress (1.38 mg/L nitrite-N) for 28 d A total of 175.13 million reads were obtained and assembled into 58,871 unigenes with an average length of 1028.7 bp and N50 of 1294 bp. Under the acute and chronic nitrite stress trials, 2824 and 2610 unigenes were significantly expressed. In GO analysis and KEGG pathway analysis, 30 pathways were significantly different between the two treatments while four pathways were in common and the markedly altered pathways were divided into four sections as immunity, metabolism, cell and others. The immunity section revealing the different depth of immunity provoked by nitrite stress contained the most pathways including the important pathways as phagosome, folate biosynthesis, glycerolipid metabolism, glycine, serine and threonine metabolism, amino sugar and nucleotide sugar metabolism under the acute nitrite stress, and lysosome, alanine, aspartate and glutamate metabolism, arginine and proline metabolism under the chronic nitrite stress. This is the first report of responses of M. nipponense under acute and chronic nitrite stress through de novo transcriptome sequencing on the transcriptome level. The results of transcriptome analysis improve our understanding on the underlying molecular mechanisms coping with nitrite stress in crustacean species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Nitrite sensing based on the carbon dots-enhanced chemiluminescence from peroxynitrous acid and carbonate.

    Science.gov (United States)

    Lin, Zhen; Dou, Xiangnan; Li, Haifang; Ma, Yuan; Lin, Jin-Ming

    2015-01-01

    In this work, chemiluminescence (CL) from peroxynitrous acid (ONOOH)-carbonate system greatly amplified by carbon dots was observed. The CL mechanism of the ONOOH-carbonate-carbon dots system has been investigated and the results reveal that the carbon dots could serve as the energy acceptor, which gives us new insight into the optical properties of the new emerging carbon nanomaterial. There is a good linear relationship between the CL signal and the concentration of the nitrite using for ONOOH formation, which provides us a nitrite sensing method with sensitivity as high as 5.0×10(-9) M (S/N=3). The method has been successfully applied to the determination of nitrite in tap water with the recovery of 98%. The standard deviations are within 2.5%. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Invasion of nitrite oxidizer dominated communities: interactions between propagule pressure and community composition

    DEFF Research Database (Denmark)

    Kinnunen, Marta; Dechesne, Arnaud; Albrechtsen, Hans-Jørgen

    Managing invasion of microbial communities by new members can be a powerful tool in microbial resource management. Abundant studies have examined how resource availability and resident community diversity affect invasion success. Yet, a more rigorous approach towards studying invasion would...... reported. The objective of this study was to determine the effect of propagule pressure on invasion success in microbial communities, shaped by varying degrees of stochasticity and determinism. The experimental system consisted of nitrite oxidizing bacterial enrichments, developed in replicate flow......-through biofilm reactors using drinking water as inoculum and continuous feeding with nitrite a sole energy source. Different nitrite loading rates were applied, as these were previously shown to influence nitrifying guild composition and stochasticity [1]. After 6 weeks, the reactors were invaded for 24 hours...

  10. Partial replacement of nitrite by annatto as a colour additive in sausage.

    Science.gov (United States)

    Zarringhalami, S; Sahari, M A; Hamidi-Esfehani, Z

    2009-01-01

    For decreasing the use of nitrite in sausage in industrial conditions, annatto (Bixa orellana L.) powder (1% norbixin) was used in two different formulations of sausage (with 55% and 70% of meat) as a replacement for 20%, 40%, 60%, 80% and 100% nitrite. Then the qualitative characteristics of the samples such as colour (L(∗), a(∗) and b(∗)), microbial contamination and sensory tests (flavour and odour) were compared with the control (without annatto and with 100% nitrite) after 2, 10, 20 and 30 days from production and under the refrigerated condition. The Statistical comparison showed that in both formulations of sausage, the sample containing 60% annatto was the best sample for its colour (for higher a(∗) and lower b(∗)); yet, this sample also did not show any significant differences from the control for microbial contamination and sensory properties.

  11. Adaptability as the key to success for the ubiquitous marine nitrite oxidizer Nitrococcus.

    Science.gov (United States)

    Füssel, Jessika; Lücker, Sebastian; Yilmaz, Pelin; Nowka, Boris; van Kessel, Maartje A H J; Bourceau, Patric; Hach, Philipp F; Littmann, Sten; Berg, Jasmine; Spieck, Eva; Daims, Holger; Kuypers, Marcel M M; Lam, Phyllis

    2017-11-01

    Nitrite-oxidizing bacteria (NOB) have conventionally been regarded as a highly specialized functional group responsible for the production of nitrate in the environment. However, recent culture-based studies suggest that they have the capacity to lead alternative lifestyles, but direct environmental evidence for the contribution of marine nitrite oxidizers to other processes has been lacking to date. We report on the alternative biogeochemical functions, worldwide distribution, and sometimes high abundance of the marine NOB Nitrococcus. These largely overlooked bacteria are capable of not only oxidizing nitrite but also reducing nitrate and producing nitrous oxide, an ozone-depleting agent and greenhouse gas. Furthermore, Nitrococcus can aerobically oxidize sulfide, thereby also engaging in the sulfur cycle. In the currently fast-changing global oceans, these findings highlight the potential functional switches these ubiquitous bacteria can perform in various biogeochemical cycles, each with distinct or even contrasting consequences.

  12. Pancreaticobiliary cancers with deficient methylenetetrahydrofolate reductase genotypes.

    Science.gov (United States)

    Matsubayashi, Hiroyuki; Skinner, Halcyon G; Iacobuzio-Donahue, Christine; Abe, Tadayoshi; Sato, Norihiro; Riall, Taylor Sohn; Yeo, Charles J; Kern, Scott E; Goggins, Michael

    2005-08-01

    Methyl group deficiency might promote carcinogenesis by inducing DNA breaks and DNA hypomethylation. We hypothesized that deficient methylenetetrahydrofolate reductase (MTHFR) genotypes could promote pancreatic cancer development. First, we performed a case-control study of germline MTHFR polymorphisms (C677T, A1298C) in 303 patients with pancreatic cancer and 305 matched control subjects. Pancreatic neoplasms frequently lose an MTHFR allele during tumorigenesis; we hypothesized that such loss could promote carcinogenesis. We therefore evaluated the cancer MTHFR genotypes of 82 patients with pancreaticobiliary cancers and correlated them to genome-wide measures of chromosomal deletion by using 386 microsatellite markers. Finally, MTHFR genotypes were correlated with global DNA methylation in 68 cancer cell lines. Germline MTHFR polymorphisms were not associated with an increased likelihood of having pancreatic cancer. Fractional allelic loss (a measure of chromosomal loss) trended higher in cancers with 677T genotypes than in cancers with other genotypes (P = .055). Among cancers with loss of an MTHFR allele, cancers with 677T MTHFR alleles had more deletions at folate-sensitive fragile sites (36.9%) and at tumor suppressor gene loci (68.5%) than 677C cancers (28.7% and 47.8%, P = .079 and .014, respectively). LINE1 methylation was lower in cancers with less functional 677T/TT genotypes (24.4%) than in those with 677CT (26.0%) and CC/C genotypes (32.5%) (P = .014). Cancers with defective MTHFR genotypes have more DNA hypomethylation and more chromosomal losses. Deficient MTHFR function due to loss of an MTHFR allele by an evolving neoplasm might, by promoting chromosomal losses, accelerate cancer development.

  13. Role of nitrite, urate and pepsin in the gastroprotective effects of saliva

    Directory of Open Access Journals (Sweden)

    Bárbara S. Rocha

    2016-08-01

    Full Text Available Dietary nitrate is now recognized as an alternative substrate for nitric oxide (•NO production in the gut. This novel pathway implies the sequential reduction of nitrate to nitrite, •NO and other bioactive nitrogen oxides but the physiological relevance of these oxidants has remained elusive. We have previously shown that dietary nitrite fuels an hitherto unrecognized nitrating pathway at acidic gastric pH, through which pepsinogen is nitrated in the gastric mucosa, yielding a less active form of pepsin in vitro. Here, we demonstrate that pepsin is nitrated in vivo and explore the functional impact of protein nitration by means of peptic ulcer development. Upon administration of pentagastrin and human nitrite-rich saliva or sodium nitrite to rats, nitrated pepsin was detected in the animal's stomach by immunoprecipitation. •NO was measured in the gastric headspace before and after nitrite instillation by chemiluminescence. At the end of each procedure, the stomach's lesions, ranging from gastric erosions to haemorrhagic ulcers, were scored. Nitrite increased gastric •NO by 200-fold (p<0.05 and nitrated pepsin was detected both in the gastric juice and the mucosa (p<0.05. Exogenous urate, a scavenger of nitrogen dioxide radical, blunted •NO detection and inhibited pepsin nitration, suggesting an underlining free radical-dependent mechanism for nitration. Functionally, pepsin nitration prevented the development of gastric ulcers, as the lesions were only apparent when pepsin nitration was inhibited by urate. In sum, this work unravels a novel dietary-dependent nitrating pathway in which pepsin is nitrated and inactivated in the stomach, preventing the progression of gastric ulcers.

  14. Investigation of the photocatalytic effect of zinc oxide nanoparticles in the presence of nitrite

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Min; Abbood, Hayder A. [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 (China); Institute of Inorganic Chemistry and Chemical Biology, Hubei key Laboratory of Bioinorganic Chemistry and Medicine, 1037 Luoyu Road, Wuhan 430074 (China); Zhu, Zhening [National Center for Nanoscience and Technology, No.11 ZhongGuanCun BeiYiTiao Road, Beijing 100190 (China); Li, Hailing [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 (China); Institute of Inorganic Chemistry and Chemical Biology, Hubei key Laboratory of Bioinorganic Chemistry and Medicine, 1037 Luoyu Road, Wuhan 430074 (China); Gao, Zhonghong, E-mail: zhgao144@mail.hust.edu.cn [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074 (China); Institute of Inorganic Chemistry and Chemical Biology, Hubei key Laboratory of Bioinorganic Chemistry and Medicine, 1037 Luoyu Road, Wuhan 430074 (China)

    2013-01-15

    Highlights: ► Nitrite enhanced the photo-damage by ZnO nanoparticles to BSA and HaCaT cells. ► Protein nitration was induced by nitrite in photo-damaged BSA and HaCaT cells. ► The effects of photo-damage on BSA were affected by various factors. ► 50-nm ZnO induced more apoptosis than 90-nm ZnO in HaCaT cells. -- Abstract: Zinc oxide nanoparticles are widely used in sunscreen products because of their chemical stability and capability of blocking harmful ultraviolet rays. However, zinc oxide nanoparticles can also generate reactive species under ultraviolet irradiation. Because nitrite can form reactive nitrogen species under oxidative stress and because it exists in perspiration and cosmetics, we studied the effects of nitrites on the photocatalytic damage of zinc oxide nanoparticles (50 nm and 90 nm) to bovine serum albumin and human keratinocyte cells under ultraviolet irradiation (365 nm and 254 nm). The results indicate that nitrite plays an enhancing role in photocatalytic damage by breaking amino acid residues and promoting protein oxidation and nitration. The concentrations of zinc oxide and nitrite, the irradiation light and duration, and the pH of the medium are important factors influencing this photocatalytic damage. Size effects of ZnO nanoparticles on bovine serum albumin and keratinocyte cells are different. It is speculated that the extent of photo-damage is partially dependent on the aggregation of zinc oxide. These findings may be valuable for understanding potential risks of applying zinc oxide nanoparticle-containing sunscreens to human skin under sunlight exposure.

  15. Nitrite Regulates Hypoxic Vasodilation via Myoglobin–Dependent Nitric Oxide Generation

    Science.gov (United States)

    Totzeck, Matthias; Hendgen-Cotta, Ulrike B.; Luedike, Peter; Berenbrink, Michael; Klare, Johann P.; Steinhoff, Heinz-Juergen; Semmler, Dominik; Shiva, Sruti; Williams, Daryl; Kipar, Anja; Gladwin, Mark T.; Schrader, Juergen; Kelm, Malte; Cossins, Andrew R.; Rassaf, Tienush

    2012-01-01

    Background Hypoxic vasodilation is a physiological response to low oxygen (O2) tension that increases blood supply to match metabolic demands. While this response has been characterized for more than 100 years, the underlying hypoxic sensing and effector signaling mechanisms remain uncertain. We have shown that deoxygenated myoglobin (deoxyMb) in the heart can reduce nitrite to nitric oxide (NO˙) and thereby contribute to cardiomyocyte NO˙ signaling during ischemia. Based on recent observations that Mb is expressed in the vasculature of hypoxia-tolerant fish, we hypothesized that endogenous nitrite may contribute to physiological hypoxic vasodilation via reactions with vascular Mb to form NO˙. Methods and Results We here show that Mb is expressed in vascular smooth muscle and contributes significantly to nitrite-dependent hypoxic vasodilation in vivo and ex vivo. The generation of NO˙ from nitrite reduction by deoxyMb activates canonical soluble guanylate cyclase (sGC)/cyclic guanosine monophosphate (cGMP) signaling pathways. In vivo and ex vivo vasodilation responses, the reduction of nitrite to NO˙ and the subsequent signal transduction mechanisms were all significantly impaired in mice without myoglobin (Mb−/−). Hypoxic vasodilation studies in Mb, endothelial and inducible NO synthase knockout models (eNOS−/−, iNOS−/−) suggest that only Mb contributes to systemic hypoxic vasodilatory responses in mice. Conclusions Endogenous nitrite is a physiological effector of hypoxic vasodilation. Its reduction to NO˙ via the heme globin Mb enhances blood flow and matches O2 supply to increased metabolic demands under hypoxic conditions. PMID:22685116

  16. The stability of accumulating nitrite from Swine wastewater in a sequencing batch reactor.

    Science.gov (United States)

    Wang, Liang; Zhu, Jun; Miller, Curtis

    2011-02-01

    Shortcut nitrification is the first step of shortcut nitrogen removal from swine wastewater. Stably obtaining an effluent with a significant amount of nitrite is the premise for the subsequent shortcut denitrification. In this paper, the stability of nitrite accumulation was investigated using a 1.5-day hydraulic retention time in a 10-L (working volume) activated sludge sequencing batch reactor (SBR) with an 8-h cycle consisted of 4 h 38 min aerobic feeding, 1 h 22 min aerobic reaction, 30 min settling, 24 min withdrawal, and 1 h 6 min idle. The nitrite production stability was tested using four different ammonium loading rates, 0.075, 0.062, 0.053, and 0.039 g NH(4)-N/g (mixed liquid suspended solid, MLSS) day in a 2-month running period. The total inorganic nitrogen composition in the effluent was not affected when the ammonium load was between 0.053 and 0.075 g NH(4)-N/g MLSS · day (64% NO(2)-N, 16% NO(3)-N, and 20% NH(4)-N). Under 0.039 g NH(4)-N/g MLSS · day, more NO(2)-N was transformed to NO(3)-N with an effluent of 60% NO(2)-N, 20% NO(3)-N, and 20% NH(4)-N. The reducing load test was able to show the relationship between a declining free nitrous acid (FNA) concentration and the decreasing nitrite production, indicating that the inhibition of FNA on nitrite oxidizing bacteria depends on its levels and an ammonium loading rate around 0.035 g NH(4)-N/g MLSS · day is the lower threshold for producing a nitrite dominance effluent in the activated sludge SBR under the current settings.

  17. Investigation of Ammonium and Nitrite Removal by Zeolite Material Synthesized on Red Mud Base

    Directory of Open Access Journals (Sweden)

    Pham Thi Mai Huong

    2017-07-01

    Full Text Available The zeolite with the unit formula of Na8(Al6Si6O24S.4H2O was synthesized directly on red mud base with addition of single silicon (signed as RH-ZeO-Si and both silicon and aluminum portions (signed as RM-ZeO-SiAl to original Tan Rai (Vietnam red mud. The structure of the zeolite was studied by X-Ray difration and FT-IR absorption spectra. The synthesized materials were studied on their adsorption ability of ammonium and nitrite ions. The results showed that, the adsorption of ammonium cation was mostly allowing ion-exchange mechanism and the zeolite crystaline forms played predominantly role besids minor one of single metal oxides. For nitrite anions, it is otherwise, the adsorption mechanism was mostly leant to electrostatic attraction between nitrite anions and electropositive effect of the hematite surface in light acidic condition. The adsorption isotherms of all ammonium and nitrite ions on both synthesized materials were nearly conformable with Freundlich model than Langmuir model. Those showed that, both materials have unhomogeneous adsorption surface. The maximum adsorption capacity of ammonium and nitrite on RM-ZeO-Si was 5.71 mg/g and 2.73 mg/g respectively, and on RM-ZeO-SiAl was 5.61 mg/g and 3.12 mg/g respectively. The initial test of competitive ions influencing on adsorption ability showed that, for all cases the competition of cations to ammonium ion was more significance than those of anions to nitrite ion in the same conditions.

  18. Researches concerning nitrates and nitrites accumulation in carrots, along of the vegetation stages

    Directory of Open Access Journals (Sweden)

    Monica NEGREA

    2008-05-01

    Full Text Available The presented paper deals with the determination of nitrates and nitrites content in carrots, in different vegetation stages of the carrot culture. High nitrates and nitrites concentration in vegetables is mainly due to excessive nitrogen content in the soil system, thus deteriorating the nutritional and hygienic values of products and complicating the processing and storage. The determination was tested on carrot samples assayed from an experimental field set up near Timisoara. In experimental field, to the carrot culture was administrated different doses of fertilizers (NPK and the samples for analysis were assayed in different phases of vegetation. The obtained results indicated that the highest level of nitrate in carrots was found to the variant b3 (N150P90K90 in experimental field, who was above maximum limit allowed (LMA. Maximum limit allowed for nitrates in carrots, in accordance with ORDER No. 293/640/2001-1/2002 regarding security and quality conditions for vegetables and fresh fruits for human consumption is 400 ppm. For all other samples of carrots the nitrates level was below of LMA. The nitrite content grows in case of fertilizer administration during the whole vegetation stages of the plant. In variant N150P90K90 the nitrite content was above (LMA in carrot samples in all stages of vegetation. The nitrite content in carrots should not exceed 1-2 ppm. Nitrate and nitrite content in carrots was done with the help of High Performance Liquid Chromatography (HPLC in the Laboratory for the Measurement of Residues of the Department of Agro-techniques of the U.S.A-V.M.B in Timisoara.

  19. Modeling nitrogen removal with partial nitritation and anammox in one floc-based sequencing batch reactor.

    Science.gov (United States)

    Ni, Bing-Jie; Joss, Adriano; Yuan, Zhiguo

    2014-12-15

    Full-scale application of partial nitritation and anammox in a single floc-based sequencing batch reactor (SBR) has been achieved for high-rate nitrogen (N) removal, but mechanisms resulting in reliable operation are not well understood. In this work, a mathematical model was calibrated and validated to evaluate operating conditions that lead to out-competition of nitrite oxidizers (NOB) from the SBRs and allow to maintain high anammox activity during long-term operation. The validity of the model was tested using experimental data from two independent previously reported floc-based full-scale SBRs for N-removal via partial nitritation and anammox, with different aeration strategies at aeration phase (continuous vs. intermittent aeration). The model described the SBR cycle profiles and long-term dynamic data from the two SBR plants sufficiently and provided insights into the dynamics of microbial population fractions and N-removal performance. Ammonium oxidation and anammox reaction could occur simultaneously at DO range of 0.15-0.3 mg O2 L(-1) at aeration phase under continuous aeration condition, allowing simplified process control compared to intermittent aeration. The oxygen supply beyond prompt depletion by ammonium oxidizers (AOB) would lead to the growth of NOB competing with anammox for nitrite. NOB could also be washed out of the system and high anammox fractions could be maintained by controlling sludge age higher than 40 days and DO at around 0.2 mg O2 L(-1). Furthermore, the results suggest that N-removal in SBR occurs via both alternating nitritation/anammox and simultaneous nitritation/anammox, supporting an alternative strategy to improve N-removal in this promising treatment process, i.e., different anaerobic phases can be implemented in the SBR-cycle configuration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effects of Nitrite and Erythorbate on Clostridium perfringens Growth during Extended Cooling of Cured Ham.

    Science.gov (United States)

    Osterbauer, Katie J; King, Amanda M; Seman, Dennis L; Milkowksi, Andrew L; Glass, Kathleen A; Sindelar, Jeffrey J

    2017-10-01

    To control the growth of Clostridium perfringens in cured meat products, the meat and poultry industries commonly follow stabilization parameters outlined in Appendix B, "Compliance Guidelines for Cooling Heat-Treated Meat and Poultry Products (Stabilization)" ( U.S. Department of Agriculture, Food Safety and Inspection Service [USDA-FSIS], 1999 ) to achieve cooling (54.4 to 4.4°C) within 15 h after cooking. In this study, extended cooling times and their impact on C. perfringens growth were examined. Phase 1 experiments consisted of cured ham with 200 mg/kg ingoing sodium nitrite and 547 mg/kg sodium erythorbate following five bilinear cooling profiles: a control (following Appendix B guidelines: stage A cooling [54.4 to 26.7°C] for 5 h, stage B cooling [26.7 to 4.4°C] for 10 h), extended stage A cooling for 7.5 or 10 h, and extended stage B cooling for 12.5 or 15 h. A positive growth control with 0 mg/kg nitrite added (uncured) was also included. No growth was observed in any treatment samples except the uncured control (4.31-log increase within 5 h; stage A). Phase 2 and 3 experiments were designed to investigate the effects of various nitrite and erythorbate concentrations and followed a 10-h stage A and 15-h stage B bilinear cooling profile. Phase 2 examined the effects of nitrite concentrations of 0, 50, 75, 100, 150, and 200 mg/kg at a constant concentration of erythorbate (547 mg/kg). Results revealed changes in C. perfringens populations for each treatment of 6.75, 3.59, 2.43, -0.38, -0.48, and -0.50 log CFU/g, respectively. Phase 3 examined the effects of various nitrite and erythorbate concentrations at 100 mg/kg nitrite with 0 mg/kg erythorbate, 100 with 250, 100 with 375, 100 with 547, 150 with 250, and 200 with 250, respectively. The changes in C. perfringens populations for each treatment were 4.99, 2.87, 2.50, 1.47, 0.89, and -0.60 log CFU/g, respectively. Variability in C. perfringens growth for the 100 mg/kg nitrite with 547 mg/kg erythorbate

  1. The reactivity of cesium nickel ferrocyanide towards nitrate and nitrite salts

    Energy Technology Data Exchange (ETDEWEB)

    Burger, L.L.; Scheele, R.D.

    1991-09-01

    Beginning in late 1988, the Pacific Northwest Laboratory (PNL) began an experimental program at the request of Westinghouse Hanford Company (WHC) to investigate the effects of temperature on the oxidation reaction between synthetic nickel cesium ferrocyanide (FeCN) and nitrates and nitrites representative of materials present in some of the Hanford single-shell tanks (SSTs). After completing a preliminary series of experiments in 1988, the program was expanded to include five tasks to evaluate the effect of selected compositional and operational parameters on the reaction and explosion temperatures of FeCN and nitrate and/or nitrite mixtures. 10 refs., 4 figs., 6 tabs.

  2. Nitrite: A physiological store of nitric oxide and modulator of mitochondrial function

    Directory of Open Access Journals (Sweden)

    Sruti Shiva

    2013-01-01

    Full Text Available Nitrite, long considered a biologically inert metabolite of nitric oxide (NO oxidation, is now accepted as a physiological storage pool of NO that can be reduced to bioactive NO in hypoxic conditions to mediate a spectrum of physiological responses in blood and tissue. This graphical review will provide a broad overview of the role of nitrite in physiology, focusing on its formation and reduction to NO as well as its regulation of the mitochondrion—an emerging subcellular target for its biological actions in tissues.

  3. Comparative Behaviour of Nitrite and Nitrate for the Protection of Rebar Corrosion

    Science.gov (United States)

    Ahmad, Altaf; Kumar, Anil

    2017-10-01

    Corrosion of rebar steel due to environmental causes has been studied through various approaches, and among the protection techniques use of inhibitors has gained encouragement. Nitrites and nitrates of sodium have gained sufficient scientific coverage. Recently, nitrites and nitrates of calcium have been verified in some studies, which, however, needs further experimentation through different angles. Simple polarization technique has been utilized in the present study to compare inhibitive efficiency of these salts of sodium and calcium, which indicate that calcium salts are more efficient.

  4. Reductive cleavage of nitrite to form terminal uranium mono-oxo complexes.

    Science.gov (United States)

    Lewis, Andrew J; Carroll, Patrick J; Schelter, Eric J

    2013-01-09

    Uranium terminal mono-oxo complexes are prepared with a unique activation of nitrite following reductive cleavage of an N-O bond with loss of nitric oxide. The thermodynamic driving force of U═O bond formation differentiates this reactivity from known mechanisms of nitrite reduction, which are typically mediated by proton transfer. Mechanistic details are explored by DFT supporting a simple homolytic cleavage pathway from a κ(1)-ONO bound intermediate. Complexes of the formula U(VI)OX[N(SiMe(3))(2)](3) are formed providing a trigonal bipyramidal framework into which ligands trans to the U═O bond may be installed.

  5. Analisa Perubahan Kandungan Nitrit (NO2-) dalam Rebusan Sayur Bayam Hijau dengan Metode Spektrofotometri

    OpenAIRE

    Manalu, Haposan

    2015-01-01

    The research has been carried out on the changing of nitrite (NO2-) content in a vegetable stew of green spinach. Vegetable spinach were obtained from Kebun Baru Village farmers, Kecamatan Hamparan Perak, Kabupaten Deli Serdang. Content of nitrite were determined at vegetable spinach and the water of boiled vegetable spinach using spectrophotometric methods. From the results of the research it was obtained with variations in time 0, 1, 2, 3, 4, and 5 hours were 4,159; 5,319; 7,239; 8,719; 10,...

  6. Substrate channeling between the human dihydrofolate reductase and thymidylate synthase.

    Science.gov (United States)

    Wang, Nuo; McCammon, J Andrew

    2016-01-01

    In vivo, as an advanced catalytic strategy, transient non-covalently bound multi-enzyme complexes can be formed to facilitate the relay of substrates, i. e. substrate channeling, between sequential enzymatic reactions and to enhance the throughput of multi-step enzymatic pathways. The human thymidylate synthase and dihydrofolate reductase catalyze two consecutive reactions in the folate metabolism pathway, and experiments have shown that they are very likely to bind in the same multi-enzyme complex in vivo. While reports on the protozoa thymidylate synthase-dihydrofolate reductase bifunctional enzyme give substantial evidences of substrate channeling along a surface "electrostatic highway," attention has not been paid to whether the human thymidylate synthase and dihydrofolate reductase, if they are in contact with each other in the multi-enzyme complex, are capable of substrate channeling employing surface electrostatics. This work utilizes protein-protein docking, electrostatics calculations, and Brownian dynamics to explore the existence and mechanism of the substrate channeling between the human thymidylate synthase and dihydrofolate reductase. The results show that the bound human thymidylate synthase and dihydrofolate reductase are capable of substrate channeling and the formation of the surface "electrostatic highway." The substrate channeling efficiency between the two can be reasonably high and comparable to that of the protozoa. © 2015 The Protein Society.

  7. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.

    2013-09-13

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  8. Impact of nitrite on aerobic phosphorus uptake by poly-phosphate accumulating organisms in enhanced biological phosphorus removal sludges.

    Science.gov (United States)

    Zeng, Wei; Li, Boxiao; Yang, Yingying; Wang, Xiangdong; Li, Lei; Peng, Yongzhen

    2014-02-01

    Impact of nitrite on aerobic phosphorus (P) uptake of poly-phosphate accumulating organisms (PAOs) in three different enhanced biological phosphorus removal (EBPR) systems was investigated, i.e., the enriched PAOs culture fed with synthetic wastewater, the two lab-scale sequencing batch reactors (SBRs) treating domestic wastewater for nutrient removal through nitrite-pathway nitritation and nitrate-pathway nitrification, respectively. Fluorescence in situ hybridization results showed that PAOs in the three sludges accounted for 72, 7.6 and 6.5% of bacteria, respectively. In the enriched PAOs culture, at free nitrous acid (FNA) concentration of 0.47 × 10(-3) mg HNO₂-N/L, aerobic P-uptake and oxidation of intercellular poly-β-hydroxyalkanoates were both inhibited. Denitrifying phosphorus removal under the aerobic conditions was observed, indicating the existence of PAOs using nitrite as electron acceptor in this culture. When the FNA concentration reached 2.25 × 10(-3) mg HNO2-N/L, denitrifying phosphorus removal was also inhibited. And the inhibition ceased once nitrite was exhausted. Corresponding to both SBRs treating domestic wastewater with nitritation and nitrification pathway, nitrite inhibition on aerobic P-uptake by PAOs did not occur even though FNA concentration reached 3 × 10(-3) and 2.13 × 10(-3) mg HNO₂-N/L, respectively. Therefore, PAOs taken from different EBPR activated sludges had different tolerance to nitrite.

  9. The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases.

    Science.gov (United States)

    Li, Tianpei; Xu, Gang; Rong, Junfeng; Chen, Hui; He, Chenliu; Giordano, Mario; Wang, Qiang

    2016-05-20

    Nitrogen oxides (NOx) are the components of fossil flue gas that give rise to the greatest environmental concerns. This study evaluated the ability of the green algae Chlorella to acclimate to high level of NOx and the potential utilization of Chlorella strains in biological NOx removal (DeNOx) from industrial flue gases. Fifteen Chlorella strains were subject to high-level of nitrite (HN, 176.5 mmolL(-1) nitrite) to simulate exposure to high NOx. These strains were subsequently divided into four groups with respect to their ability to tolerate nitrite (excellent, good, fair, and poor). One strain from each group was selected to evaluate their photosynthetic response to HN condition, and the nitrite adaptability of the four Chlorella strains were further identified by using chlorophyll fluorescence. The outcome of our experiments shows that, although high concentrations of nitrite overall negatively affect growth and photosynthesis of Chlorella strains, the degree of nitrite tolerance is a strain-specific feature. Some Chlorella strains have an appreciably higher ability to acclimate to high-level of nitrite. Acclimation is achieved through a three-step process of restrict, acclimate, and thriving. Notably, Chlorella sp. C2 was found to have a high tolerance and to rapidly acclimate to high concentrations of nitrite; it is therefore a promising candidate for microalgae-based biological NOx removal. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Dramatic increase of nitrite levels in hearts of anoxia-exposed crucian carp supporting a role in cardioprotection

    DEFF Research Database (Denmark)

    Sandvik, Guro K.; Nilsson, Göran E.; Jensen, Frank Bo

    2012-01-01

    Nitrite (NO2-) functions as an important nitric oxide (NO) donor under hypoxic conditions.Both nitrite and NO have been found to protect the mammalian heart and other tissues against ischemia(anoxia)-reoxygenation injury by interacting with mitochondrial electron transport complexes and limiting ...

  11. Investigating quality attributes and consumer acceptance of uncured, no-nitrate/nitrite-added commercial hams, bacons, and frankfurters.

    Science.gov (United States)

    Sindelar, J J; Cordray, J C; Olson, D G; Sebranek, J G; Love, J A

    2007-10-01

    Increasing demands for natural, organic, and/or preservative-free foods have resulted in the consumer availability of uncured, no-nitrate/nitrite-added processed meat and poultry products. A comprehensive understanding about the quality and sensory attributes of commercially available uncured products is unclear. The objective of this study was to determine if quality and sensory differences exist between uncured and cured meat products. Five different commercial brands (Brands A to E; 4 uncured, no-nitrate/nitrite-added, and 1 nitrite-added) of 3 product types (hams, frankfurters, and bacons) were obtained from retail supermarkets. The samples were evaluated for color, pigment content, pH, lipid oxidation, residual nitrate and nitrite content, and consumer acceptance. All brands from all product types evaluated, except for 1 bacon (Brand B), had cured color, aroma, and flavor attributes similar to the nitrite-added control (Brand E). All product types and brands contained residual nitrate and residual nitrite except for Brands B and D bacons (brands within each product type were similar to the control. Consumer sensory ratings for surface/lean color, aroma, flavor, texture, and overall acceptance determined that variation existed. Brand E (nitrite-added control) and 1 uncured, no-nitrate/nitrite-added brand for each product type were not different (P > 0.05) for overall acceptance and received higher scores (P brands within each product type.

  12. NarK is a nitrite-extrusion system involved in anaerobic nitrate respiration by Escherichia coli

    NARCIS (Netherlands)

    Rowe, John J.; Ubbink-Kok, Trees; Molenaar, Douwe; Konings, Wilhelmus; Driessen, Arnold J.M.

    Escherichia coli can use nitrate as a terminal electron acceptor for anaerobic respiration. A polytopic membrane protein, termed NarK, has been implicated in nitrate uptake and nitrite excretion and is thought to function as a nitrate/nitrite antiporter. The longest-lived radioactive isotope of

  13. Sustained release nitrite therapy results in myocardial protection in a porcine model of metabolic syndrome with peripheral vascular disease

    OpenAIRE

    Bradley, Jessica M.; Islam, Kazi N.; Polhemus, David J.; Donnarumma, Erminia; Brewster, Luke P.; Tao, Ya-Xiong; Goodchild, Traci T.; Lefer, David J.

    2015-01-01

    In a clinically relevant porcine model of metabolic syndrome and peripheral vascular disease, treatment with a novel sustained-release nitrite formulation restored cardiac endothelial nitric oxide synthase, enhancing myocardial nitrite levels, reduced oxidative stress, and improved ex vivo coronary vascular function via endothelium-independent vasodilation mechanism in obese Ossabaw swine.

  14. Polymeric membrane electrodes with high nitrite selectivity based on rhodium(III) porphyrins and salophens as ionophores.

    Science.gov (United States)

    Pietrzak, Mariusz; Meyerhoff, Mark E

    2009-05-01

    Several porphyrin and salophen complexes with Rh(III) are examined as ionophores to prepare nitrite selective polymeric membrane electrodes. All ionophores tested exhibit preferred selectivity toward nitrite anion. Enhanced potentiometric nitrite selectivity is observed in the presence of either lipophilic anionic as well as cationic sites within the membranes, suggesting that the ionophores can function via either a charged or a neutral carrier response mechanism. Among a range of complexes and membrane formulations examined, optimal nitrite selectivity and reversible response down to 5 x 10(-6) M is achieved using Rh(III)-tetra(t-butylphenylporphyrin) as the ionophore in the presence of lipophilic cationic sites in plasticized poly(vinyl chloride) membrane. Response times are substantially longer than typical membrane electrodes apparently because of a slow nitrite ligation reaction with Rh(III); however, a significant improvement in dynamic EMF response can be realized by optimizing the membrane formulation and increasing the temperature. The selectivity observed with these membranes is greater than the best nitrite selective electrodes reported to date in the literature based on lipophilic Co(III)-corrin complexes, allowing the new nitrite electrodes to be utilized to determine the level of nitrite in meats with good correlation to the colorimetric Griess assay method.

  15. Does amyl nitrite have a role in the management of pre-hospital mass casualty cyanide poisoning?

    Science.gov (United States)

    Lavon, Ophir; Bentur, Yedidia

    2010-07-01

    Amyl nitrite has been recommended as a cyanide antidote for several decades. Its antidotal properties were initially attributed to induction of methemoglobin and later to a nitric oxide mediated hemodynamic effect. The ease of administration and alleged rapid clinical effect would recommend its wide use in the pre-hospital management of mass casualty cyanide poisoning; yet there are concerns regarding the use of amyl nitrite for this indication. Review the data on amyl nitrite in cyanide poisoning and evaluate its efficacy and safety in mass casualty cyanide poisoning. A literature search utilizing PubMed, Toxnet, textbooks in toxicology and pharmacology, and the bibliographies of the articles retrieved identified 17 experimental studies and human reports on the use of amyl nitrite in cyanide poisoning, and 40 additional articles on amyl nitrite's properties and adverse effects. One paper was excluded as it was a conference abstract with limited data. The antidotal properties of amyl nitrite were attributed initially to induction of methemoglobinemia and later to nitric oxide mediated vasodilation. Animal studies on the use of amyl nitrite in cyanide poisoning are limited, and their results are inconsistent, which makes their extrapolation to humans questionable. Clinical reports are limited in number and the part played by amyl nitrite relative to the other treatments administered (e.g. life support, sodium nitrite, and sodium thiosulfate) is unclear. Amyl nitrite can be associated with potentially serious adverse reactions such as hypotension, syncope, excessive methemoglobinemia, and hemolysis in G6PD deficient patients. These effects are more pronounced in young children, in the elderly, and in patients with cardiac and pulmonary disorders. Dose regimen. The method of administration of amyl nitrite (breaking pearls into gauze or a handkerchief and applying it intermittently to the victim's nose and mouth for a few minutes) is not easily controlled, might result

  16. Differential abilities of nitrogen dioxide and nitrite to nitrate proteins in thylakoid membranes isolated from Arabidopsis leaves.

    Science.gov (United States)

    Takahashi, Misa; Shigeto, Jun; Shibata, Tatsuo; Sakamoto, Atsushi; Morikawa, Hiromichi

    2016-10-02

    Exposure of Arabidopsis leaves to nitrogen dioxide (NO2) results in nitration of specific chloroplast proteins. To determine whether NO2 itself and/or nitrite derived from NO2 can nitrate proteins, Arabidopsis thylakoid membranes were isolated and treated with NO2-bubbled or potassium nitrite (KNO2) buffer, followed by protein extraction, electrophoresis, and immunoblotting using an anti-3-nitrotyrosine (NT) antibody. NO2 concentrations in the NO2-bubbled buffer were calculated by numerically solving NO2 dissociation kinetic equations. The two buffers were adjusted to have identical nitrite concentrations. Both treatments yielded an NT-immunopositive band that LC/MS identified as PSBO1. The difference in the band intensity between the 2 treatments was designated nitration by NO2. Both NO2 and nitrite mediated nitration of proteins, and the nitration ability per unit NO2 concentration was ∼100-fold greater than that of nitrite.

  17. Current perspectives and challenges in understanding the role of nitrite as an integral player in nitric oxide biology and therapy.

    Science.gov (United States)

    Vitturi, Dario A; Patel, Rakesh P

    2011-08-15

    Beyond an inert oxidation product of nitric oxide (NO) metabolism, current thinking posits a key role for nitrite as a mediator of NO signaling, especially during hypoxia. This concept has been discussed in the context of nitrite serving a role as an endogenous modulator of NO homeostasis, but also from a novel clinical perspective whereby nitrite therapy may replenish NO signaling and prevent ischemic tissue injury. Indeed, the relatively rapid translation of studies delineating mechanisms of action to ongoing and planned clinical trials has been critical in fuelling interest in nitrite biology, and several excellent reviews have been written on this topic. In this article we limit our discussions to current concepts and what we feel are questions that remain unanswered within the paradigm of nitrite being a mediator of NO biology. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Sulfite Reductase Activity in Extracts of Various Photosynthetic Bacteria

    Science.gov (United States)

    Peck, H. D.; Tedro, S.; Kamen, M. D.

    1974-01-01

    Extracts of representative bacterial strains from the various families of photosynthetic prokaryotes are demonstrated to possess significant levels of sulfite reductase [EC 1.8.99.1; hydrogen-sulfide: (acceptor)oxidoreductase] activity with reduced methyl viologen as electron donor, but not NADPH2. The enzyme is localized primarily in the soluble fraction of the extracts, in contrast to adenylysulfate reductase [EC 1.8.99.2; AMP, sulfite: (acceptor) oxidoreductase], which is bound normally in the membrane fractions of those bacteria in which it is found. Assignment of the sulfite reductase activities to the biosynthetic (“assimilatory”) pathway is suggested by levels of specific activity noted and ready solubility. PMID:4526215

  19. The Drosophila carbonyl reductase sniffer is an efficient 4-oxonon-2-enal (4ONE) reductase.

    Science.gov (United States)

    Martin, Hans-Jörg; Ziemba, Marta; Kisiela, Michael; Botella, José A; Schneuwly, Stephan; Maser, Edmund

    2011-05-30

    Studies with the fruit-fly Drosophila melanogaster demonstrated that the enzyme sniffer prevented oxidative stress-induced neurodegeneration. Mutant flies overexpressing sniffer had significantly extended life spans in a 99.5% oxygen atmosphere compared to wild-type flies. However, the molecular mechanism of this protection remained unclear. Sequence analysis and database searches identified sniffer as a member of the short-chain dehydrogenase/reductase superfamily with a 27.4% identity to the human enzyme carbonyl reductase type I (CBR1). As CBR1 catalyzes the reduction of the lipid peroxidation products 4HNE and 4ONE, we tested whether sniffer is able to metabolize these lipid derived aldehydes by carbonyl reduction. To produce recombinant enzyme, the coding sequence of sniffer was amplified from a cDNA-library, cloned into a bacterial expression vector and the His-tagged protein was purified by Ni-chelate chromatography. We found that sniffer catalyzed the NADPH-dependent carbonyl reduction of 4ONE (K(m)=24±2 μM, k(cat)=500±10 min(-1), k(cat)/K(m)=350 s(-1) mM(-1)) but not that of 4HNE. The reaction product of 4ONE reduction by sniffer was mainly 4HNE as shown by HPLC- and GC/MS analysis. Since 4HNE, though still a potent electrophile, is less neurotoxic and protein reactive than 4ONE, one mechanism by which sniffer exerts its neuroprotective effects in Drosophila after oxidative stress may be enzymatic reduction of 4ONE. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase.

    Science.gov (United States)

    Liu, Yi; Shi, Zi; Maximova, Siela; Payne, Mark J; Guiltinan, Mark J

    2013-12-05

    The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo.

  1. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    Directory of Open Access Journals (Sweden)

    William D. Leavitt

    2015-12-01

    Full Text Available The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR. Here we provide the only direct observation of the major (34S/32S and minor (33S/32S, 36S/32S sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB. Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB to be 15.3±2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150±0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3 to 0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr-p = 16.1‰ (r – p indicates reactant versus product, n = 648. This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4-H2S = 17.3±1.5‰ and in modern marine sediments (34εSO4-H2S = 17.3±3.8‰. Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in modern

  2. Mitochondrial Thioredoxin-Glutathione Reductase from Larval Taenia crassiceps (Cysticerci

    Directory of Open Access Journals (Sweden)

    Alberto Guevara-Flores

    2010-01-01

    Full Text Available Mitochondrial thioredoxin-glutathione reductase was purified from larval Taenia crassiceps (cysticerci. The preparation showed NADPH-dependent reductase activity with either thioredoxin or GSSG, and was able to perform thiol/disulfide exchange reactions. At 25∘C specific activities were 437  ±  27 mU mg-1 and 840  ±  49 mU mg-1 with thioredoxin and GSSG, respectively. Apparent Km values were 0.87  ±  0.04  μM, 41  ±  6  μM and 19  ±  10  μM for thioredoxin, GSSG and NADPH, respectively. Thioredoxin from eukaryotic sources was accepted as substrate. The enzyme reduced H2O2 in a NADPH-dependent manner, although with low catalytic efficiency. In the presence of thioredoxin, mitochondrial TGR showed a thioredoxin peroxidase-like activity. All disulfide reductase activities were inhibited by auranofin, suggesting mTGR is dependent on selenocysteine. The reductase activity with GSSG showed a higher dependence on temperature as compared with the DTNB reductase activity. The variation of the GSSG- and DTNB reductase activities on pH was dependent on the disulfide substrate. Like the cytosolic isoform, mTGR showed a hysteretic kinetic behavior at moderate or high GSSG concentrations, but it was less sensitive to calcium. The enzyme was able to protect glutamine synthetase from oxidative inactivation, suggesting that mTGR is competent to contend with oxidative stress.

  3. Implications of Decreased Nitrite Concentrations on Clostridium perfringens Outgrowth during Cooling of Ready-to-Eat Meats.

    Science.gov (United States)

    Myers, Megan I; Sebranek, Joseph G; Dickson, James S; Shaw, Angela M; Tarté, Rodrigo; Adams, Kristin R; Neibuhr, Steve

    2016-01-01

    Increased popularity of natural and organic processed meats can be attributed to the growing consumer demand for preservative-free foods, including processed meats. To meet this consumer demand, meat processors have begun using celery juice concentrate in place of sodium nitrite to create products labeled as no-nitrate or no-nitrite-added meat products while maintaining the characteristics unique to conventionally cured processed meats. Because of flavor limitations, natural cures with celery concentrate typically provide lower ingoing nitrite concentrations for ready-to-eat processed meats than do conventional cures, which could allow for increased growth of pathogens, such as Clostridium perfringens, during cooked product cooling such as that required by the U.S. Department of Agriculture. The objective of this study was to investigate the implications associated with reduced nitrite concentrations for preventing C. perfringens outgrowth during a typical cooling cycle used for cooked products. Nitrite treatments of 0, 50, and 100 ppm were tested in a broth system inoculated with a three-strain C. perfringens cocktail and heated with a simulated product thermal process followed by a typical cooling-stabilization process. The nitrite concentration of 50 ppm was more effective for preventing C. perfringens outgrowth than was 0 ppm but was not as effective as 100 ppm. The interaction between nitrite and temperature significantly affected (P perfringens outgrowth in both total population and number of vegetative cells. Both temperature and nitrite concentration significantly affected (P perfringens spore survival, but the interaction between nitrite and temperature did not have a significant effect (P > 0.05) on spore outgrowth. Results indicate that decreased nitrite concentrations (50 ppm) have increased potential for total C. perfringens population outgrowth during cooling and may require additional protective measures, such as faster chilling rates.

  4. Plasmid-encoded diacetyl (acetoin) reductase in Leuconostoc pseudomesenteroides

    DEFF Research Database (Denmark)

    Rattray, Fergal P; Myling-Petersen, Dorte; Larsen, Dianna

    2003-01-01

    ) reductases reported previously. Downstream of the butA gene of L. pseudomesenteroides, but coding in the opposite orientation, a putative DNA recombinase was identified. A two-step PCR approach was used to construct FPR02, a butA mutant of the wild-type strain, CHCC2114. FPR02 had significantly reduced......A plasmid-borne diacetyl (acetoin) reductase (butA) from Leuconostoc pseudomesenteroides CHCC2114 was sequenced and cloned. Nucleotide sequence analysis revealed an open reading frame encoding a protein of 257 amino acids which had high identity at the amino acid level to diacetyl (acetoin...

  5. NITRATE REDUCTASE ACTIVITY DURING HEAT SHOCK IN WINTER WHEAT

    Directory of Open Access Journals (Sweden)

    Klimenko S.B.

    2006-03-01

    Full Text Available Nitrates are the basic source of nitrogen for the majority of plants. Absorption and transformation of nitrates in plants are determined by external conditions and, first of all, temperature and light intensity. The influence of the temperature increasing till +40 0С on activity of nitrate reductase was studied. It is shown, that the rise of temperature was accompanied by sharp decrease of activity nitrate reductase in leaves of winter wheat, what, apparently, occurred for the account deactivations of enzyme and due to its dissociation.

  6. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation

    NARCIS (Netherlands)

    Pachiadaki, M.G.; Sintes, E.; Bergauer, K.; Brown, J.M.; Record, N.R.; Swan, B.K.; Mathyer, M.E.; Hallam, S.J.; López-Garcìa, P.; Takaki, Y.; Nunoura, T.; Woyke, T.; Herndl, G.J.; Stepanauskas, R.

    2017-01-01

    Carbon fixation by chemoautotrophic microorganisms in the dark ocean has a major impact on global carbon cycling and ecological relationships in the ocean’s interior, but the relevant taxa and energy sources remain enigmatic.We show evidence that nitrite-oxidizing bacteria affiliated with the

  7. Draft Genome Sequence of Nitrobacter vulgaris Strain Ab1, a Nitrite-Oxidizing Bacterium.

    Science.gov (United States)

    Mellbye, Brett L; Davis, Edward W; Spieck, Eva; Chang, Jeff H; Bottomley, Peter J; Sayavedra-Soto, Luis A

    2017-05-04

    Here, we present the 3.9-Mb draft genome sequence of Nitrobacter vulgaris strain Ab1, which was isolated from a sewage system in Hamburg, Germany. The analysis of its genome sequence will contribute to our knowledge of nitrite-oxidizing bacteria and acyl-homoserine lactone quorum sensing in nitrifying bacteria. Copyright © 2017 Mellbye et al.

  8. Draft Genome Sequence of Nitrobacter vulgaris Strain Ab1, a Nitrite-Oxidizing Bacterium

    OpenAIRE

    Brett L. Mellbye; Davis, Edward W.; Spieck, Eva; Jeff H Chang; Bottomley, Peter J.; Sayavedra-Soto, Luis A.

    2017-01-01

    ABSTRACT Here, we present the 3.9-Mb draft genome sequence of Nitrobacter vulgaris strain Ab1, which was isolated from a sewage system in Hamburg, Germany. The analysis of its genome sequence will contribute to our knowledge of nitrite-oxidizing bacteria and acyl-homoserine lactone quorum sensing in nitrifying bacteria.

  9. Carbon nano-fiber based membrane reactor for selective nitrite hydrogenation

    NARCIS (Netherlands)

    Brunet Espinosa, Roger; Rafieian, D.; Lammertink, Rob G.H.; Lefferts, Leonardus

    2016-01-01

    Catalytic hydrogenation of nitrite in drinking water demands control over the selectivity towards nitrogen, minimizing the formation of ammonia. This selectivity is strongly influenced by the H/N ratio of reaction intermediates at the catalyst surface. Therefore, we fabricated a membrane reactor

  10. Impact of temperature on ammonium and nitrite removal rates in RAS moving bed biofilters

    DEFF Research Database (Denmark)

    Kinyage, John Peter Hewa; Pedersen, Lars-Flemming

    2016-01-01

    by using moving bed bio-elements from a freshwater RAS in steady state operated at 18 °C. The impact of temperature on ammonium and nitrite oxidation rates was evaluated by transferring the colonized bio elements to six liter batch reactors (triplicated setup). Each reactor was acclimatized for 24 h...

  11. Intake of nitrate and nitrite and the risk of gastric cancer: A prospective cohort study

    NARCIS (Netherlands)

    Loon, A.J.M. van; Botterweck, A.A.M.; Goldbohm, R.A.; Brants, H.A.M.; Klaveren, J.D. van; Brandt, P.A. van den

    1998-01-01

    The association between the intake of nitrate or nitrite and gastric cancer risk was investigated in a prospective cohort study started in 1986 in the Netherlands, of 120,852 men and women aged 55-69 years. At baseline, data on dietary intake, smoking habits and other covariates were collected by

  12. Effect of Electrolytes on the Adsorption of Nitrite and Nitrate from ...

    African Journals Online (AJOL)

    Michael Horsfall

    derived activated carbon in aqueous system and the effects of electrolytes investigated in this study using batch sorption process. The data showed that nitrate adsorbed nearly 1.5 times higher than that of nitrite. The adsorption is adequately ...

  13. Reduced iron associated with secondary nitrite maxima in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Moffetta, J.W.; Goepferta, T.J.; Naqvi, S.W.A.

    Dissolved iron and Fe(II) were measured in the oxygen minimum zone (OMZ) of the Arabian Sea in September 2004. The OMZ is a well-demarcated feature characterized by high rates of denitrification, and a deep nitrite maximum coinciding with oxygen...

  14. Full-scale partial nitritation/anammox experiences : An application survey

    NARCIS (Netherlands)

    Lackner, S.; Gilbert, E.M.; Vlaeminck, S.E.; Joss, A.; Horn, H.; Van Loosdrecht, M.C.M.

    2014-01-01

    Partial nitritation/anammox (PN/A) has been one of the most innovative developments in biological wastewater treatment in recent years. With its discovery in the 1990s a completely new way of ammonium removal from wastewater became available. Over the past decade many technologies have been

  15. 21 CFR 170.60 - Nitrites and/or nitrates in curing premixes.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Nitrites and/or nitrates in curing premixes. 170.60 Section 170.60 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... oils, disodium inosinate, disodium guanylate, hydrolysates of animal or plant origin (such as...

  16. Spectrophotometric determination of nitrite by its catalytic effect on the oxidation of congo red with bromate

    Directory of Open Access Journals (Sweden)

    Zenovia Moldovan

    2012-08-01

    Full Text Available A novel simple, sensitive and rapid kinetic-spectrophotometric method for the determination of trace amounts of nitrite is proposed. The method is based on its catalytic effect on the oxidation of congo red (CR by potassium bromate in acidic solution. The oxidation reaction is monitored spectrophotometrically by measuring the decrease in the absorbance of CR at a suitable λmax = 570 nm for the first 10–40 s from the start of the reaction. Under the optimum experimental conditions (sulfuric acid, 0.3 M; CR, 0.75Χ10-4 M; potassium bromate, 5Χ10-4 M and 25 oC, nitrite can be determined in the range of 0.015–0.75 µg mL−1 with the detection limit of 0.006 µg mL−1. The relative standard deviation of five replicate determination of 0.25 µg mL−1 nitrite was 2.5%. The proposed method was applied satisfactorily to the determination of nitrite in spiked drinking water samples.DOI: http://dx.doi.org/10.4314/bcse.v26i2.1

  17. Photolysis of Nitrate and Nitrite in Artificial Snow and Artificial Ice

    Science.gov (United States)

    Shi, W.; Green, S. A.

    2003-12-01

    It is well known that nitrate and nitrite undergo photolysis in aqueous solution. Recent studies show that these reactions are likely to occur in natural snow as well. Therefore it is of interest to measure rates of photolysis of nitrate and nitrite in snow and ice. In this study artificial snow was made by spraying a solution onto the wall of a reservoir containing liquid nitrogen. Artificial snow and ice were irradiated in a sealed quartz tube with a UV lamp and production of hydroxyl radicals was quantified. Hydroxyl radicals produced in these processes react with dimethyl sulfoxide to release methyl radicals, which were trapped by 3-amino-2,2,5,5-tetramethyl-1-pyrrolidinyloxy free radical (3AP). The 3AP-CH3 compound was later derivatized to produce a highly fluorescent adduct, which was measured by HPLC. Snow produced the highest yield of hydroxyl radicals and ice the lowest. Nitrite had higher yield than nitrate. The calculation of photolysis rates for nitrate and nitrite in snow and ice is discussed.

  18. An Assessment of the Levels of Heavy Metals, Nitrates and Nitrites ...

    African Journals Online (AJOL)

    kg and was within the safe limit (< 3.70 mg/kg) as recommended by (FAO)/WHO Expert Committee on food additives while nitrite was not detected. In conclusion, monitoring of vegetables for toxic heavy metals is essential for food safety in ...

  19. analysis of nitrates and nitrit es in subsoil and ground water samples ...

    African Journals Online (AJOL)

    2004-08-08

    ANALYSIS OF NITRATES AND NITRIT ES IN SUBSOIL AND GROUND WATER. SAMPLES IN SWAZILAND. A.O. Fadiran: W.F. Mdlulie and BK. Simelane. Department of Chemistry, University of Swaziland, P/Bag 4, Kwaluseni, Swaziland. (Received August 8, 2004; revised October 4, 2004). ABSTRACT. The concentrations ...

  20. Potential rates of ammonium oxidation, nitrite oxidation, nitrate reduction and denitrification in the young barley rhizosphere

    DEFF Research Database (Denmark)

    Højberg, Ole; Binnerup, S. J.; Sørensen, Jan

    1996-01-01

    Potential activities (enzyme contents) of ammonium (NH4+) oxidizing, nitrite (NO2-) oxidizing, nitrate (NO3-) reducing and denitrifying bacteria were measured in bulk and rhizosphere soil obtained from young barley plants in the field. The activities as well as pools of inorganic N (NH4+, NO2...

  1. Nitrite and Nitrate Content in Meat Products and Estimated Intake in Denmark From 1998 to 2006

    DEFF Research Database (Denmark)

    Leth, Torben; Fagt, Sisse; Nielsen, S.

    2008-01-01

    The content of nitrite and nitrate in cured meat products has been monitored in Denmark seven times between 1995 and 2006. The maximum permitted added amounts of sodium nitrite in Denmark (60 mg kg(-1) for most products up to 150 mg kg(-1) for special products) have not been exceeded, except...... period with levels varying between 6 and 20 mg sodium nitrite kg(-1) with sausages, meat for open sandwiches and salami-type sausages being the greatest contributors. The mean intake of sodium nitrate was around 1 mg day(-1), which is very low compared with the total intake of 61 mg day(-1). The mean...... for a few samples back in 2002. The intake, mean and intake distribution of sodium nitrite have been calculated from 1998 to 2006 with data from the Danish dietary survey conducted in 2000-02 on Danes from four to 75 years of age. The amounts used by industry have been relatively stable through the whole...

  2. Simultaneous Voltammetric/Amperometric Determination of Sulfide and Nitrite in Water at BDD Electrode

    Directory of Open Access Journals (Sweden)

    Anamaria Baciu

    2015-06-01

    Full Text Available This work reported new voltammetric/amperometric-based protocols using a commercial boron-doped diamond (BDD electrode for simple and fast simultaneous detection of sulfide and nitrite from water. Square-wave voltammetry operated under the optimized working conditions of 0.01 V step potential, 0.5 V modulation amplitude and 10 Hz frequency allowed achieving the best electroanalytical parameters for the simultaneous detection of nitrite and sulfide. For practical in-field detection applications, the multiple-pulsed amperometry technique was operated under optimized conditions, i.e., −0.5 V/SCE for a duration of 0.3 s as conditioning step, +0.85 V/SCE for a duration of 3 s that assure the sulfide oxidation and +1.25 V/SCE for a duration of 0.3 s, where the nitrite oxidation occurred, which allowed the simultaneously detection of sulfide and nitrite without interference between them. Good accuracy was found for this protocol in comparison with standardized methods for each anion. Also, no interference effect was found for the cation and anion species, which are common in the water matrix.

  3. A Comparison of the Treatment of Cyanide Poisoning in the Cynomolgus Monkey with Sodium Nitrite of 4-Dimethylaminophenol (4-DMAP), with and without Sodium Thiosulfate

    Science.gov (United States)

    1994-02-01

    Chen et al, 1934), amyl nitrite (Pedigo, 1888; Chen et al, 1933; Klimmek et a, 1988 a and b; Paulet, 1954), sodium nitrite (Hug and Marenzi , 1933; Chen...nitrite de sodium et du sulfure de sodium. Comp. Rend. Soc. Biol. Ses FRI. 111, 89-90. Hug, E., and Marenzi , A.D. (1933). Mecanisme de r’action

  4. Using saliva nitrite and nitrate levels as a biomarker for drug induced gingival overgrowth

    Directory of Open Access Journals (Sweden)

    Erkan eSukuroglu

    2015-12-01

    Full Text Available Aim: Drug-induced gingival overgrowth has a multifactorial nature and the pathogenesis is still uncertain. It has been suggested that Nitric Oxide (NO might play a role in the pathogenesis of drug-induced gingival overgrowth due to the contribution of NO to immune response and matrix degradation. NO levels in biological fluids have been used as a diagnostic biomarker in many diseases. The aim of this study is to determine whether NO levels in plasma, saliva and gingival crevicular fluid (GCF can serve as a potential biomarker for the evaluation of drug-induced gingival overgrowth risk. Material and Methods: A total of 104 patients, receiving cyclosporine A (n=35, phenytoin (n=25, nifedipine (n=26 or diltiazem (n=18 participated in the study. The amount of gingival overgrowth was evaluated with two indices and was given as percentage. Periodontal clinical parameters including plaque index (PI, gingival index (GI, gingival bleeding time index (GBTI and probing depth (PD were also assessed. Saliva, GCF and plasma samples were obtained from each participants. Nitrite and nitrate levels in saliva, GCF and plasma were analyzed by Griess reagent. Results: Salivary nitrite and nitrate levels in responders were significantly higher than those in non-responders in only phenytoin group (p˂0.05. Nitrite and nitrate levels of gingival crevicular fluid and plasma did not significantly differ between responders and non-responders in all study groups (p˃0.05. Salivary nitrite levels exhibited a significant correlation with PD, GBTI, severity of gingival overgrowth (%GO and GCF volume (p˂0.05. Additionally, a strong positive correlation was detected between saliva and plasma nitrate levels (p˂0.005. However, both nitrite and nitrate levels in GCF and plasma demonstrated no significant correlation with clinical parameters, GO severity and GCF volume (p˃0.05.Conclusion: Salivary nitrite and nitrate levels could be used as periodontal disease biomarkers in

  5. The genome of Nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer

    Directory of Open Access Journals (Sweden)

    Sebastian eLuecker

    2013-02-01

    Full Text Available In marine systems, nitrate is the major reservoir of inorganic fixed nitrogen. The only known biological nitrate-forming reaction is nitrite oxidation, but despite its importance, our knowledge of the organisms catalyzing this key process in the marine N-cycle is very limited. The most frequently encountered marine NOB are related to Nitrospina gracilis, an aerobic chemolithoautotrophic bacterium isolated from ocean surface waters. To date, limited physiological and genomic data for this organism were available and its phylogenetic affiliation was uncertain. In this study, the draft genome sequence of Nitrospina gracilis strain 3/211 was obtained. Unexpectedly for an aerobic organism, N. gracilis lacks classical reactive oxygen defense mechanisms and uses the reductive tricarboxylic acid cycle for carbon fixation. These features indicate microaerophilic ancestry and are consistent with the presence of Nitrospina in marine oxygen minimum zones. Fixed carbon is stored intracellularly as glycogen, but genes for utilizing external organic carbon sources were not identified. N. gracilis also contains a full gene set for oxidative phosphorylation with oxygen as terminal electron acceptor and for reverse electron transport from nitrite to NADH. A novel variation of complex I may catalyze the required reverse electron flow to low-potential ferredoxin. Interestingly, comparative genomics indicated a strong evolutionary link between Nitrospina, the nitrite-oxidizing genus Nitrospira, and anaerobic ammonium oxidizers, apparently including the horizontal transfer of a periplasmically oriented nitrite oxidoreductase and other key genes for nitrite oxidation at an early evolutionary stage. Further, detailed phylogenetic analyses using concatenated marker genes provided evidence that Nitrospina forms a novel bacterial phylum, for which we propose the name Nitrospinae.

  6. Zn-porphyrin formation in cured meat products: Effect of added salt and nitrite.

    Science.gov (United States)

    Adamsen, Christina E; Møller, Jens K S; Laursen, Kristoffer; Olsen, Karsten; Skibsted, Leif H

    2006-04-01

    Zn-porphyrin (Zn-pp) was quantified by fluorescence spectroscopy in the cured and dry cured meat products: Parma ham, Iberian ham, dry-cured ham with added nitrite, cooked ham with added nitrite, raw ham meat, raw bacon and Karree-Speck. The highest amount of Zn-pp was found in dry-cured Parma ham and Iberian ham, while the use of nitrite as curing agent was found to inhibit completely the formation of Zn-pp in meat products. A positive correlation between both Zn content and Fe content and the logarithmic transformed Zn-pp content (measured as fluorescence intensity I(fl)) was found for the different cured and dry cured meat products, with correlation coefficients of 0.79 (p<0.001) and 0.71 (p<0.01), respectively. Log I(fl) correlates best with the Zn content, indicating that the formation of Zn-pp is proportional to the Zn content. A model system with vacuum packed pork in brine with different added levels of sodium chloride with or without nitrite and Zn acetate was investigated in order to further elucidate the mechanism of Zn-pp formation. Zn-pp increased with time (up to 42 days investigated) in non-cured meat and for meat cured solely with NaCl lower than 9%. Addition of nitrite or Zn(II) in the curing brine was found to inhibit formation of Zn-pp confirming the observations from the various cured meat products. It is suggested that a chloride anion assisted dissociation of iron from myoglobin could be rate-determining for Zn-pp formation in meat products.

  7. Oxidative stress and nitrite dynamics under maximal load in elite athletes: relation to sport type.

    Science.gov (United States)

    Cubrilo, Dejan; Djordjevic, Dusica; Zivkovic, Vladimir; Djuric, Dragan; Blagojevic, Dusko; Spasic, Mihajlo; Jakovljevic, Vladimir

    2011-09-01

    Maximal workload in elite athletes induces increased generation of reactive oxygen/nitrogen species (RONS) and oxidative stress, but the dynamics of RONS production are not fully explored. The aim of our study was to examine the effects of long-term engagement in sports with different energy requirements (aerobic, anaerobic, and aerobic/anaerobic) on oxidative stress parameters during progressive exercise test. Concentrations of lactates, nitric oxide (NO) measured through stabile end product-nitrites (NO(2) (-)), superoxide anion radical (O(2) (•-)), and thiobarbituric reactive substances (TBARS) as index of lipid peroxidation were determined in rest, after maximal workload, and at 4 and 10th min of recovery in blood plasma of top level competitors in rowing, cycling, and taekwondo. Results showed that sportmen had similar concentrations of lactates and O(2) (•-) in rest. Nitrite concentrations in rest were the lowest in taekwondo fighters, while rowers had the highest levels among examined groups. The order of magnitude for TBARS level in the rest was bicycling > taekwondo > rowing. During exercise at maximal intensity, the concentration of lactate significantly elevated to similar levels in all tested sportsmen and they were persistently elevated during recovery period of 4 and 10 min. There were no significant changes in O(2) (•-), nitrite, and TBARS levels neither at the maximum intensity of exercise nor during the recovery period comparing to the rest period in examined individuals. Our results showed that long term different training strategies establish different basal nitrites and lipid peroxidation levels in sportmen. However, progressive exercise does not influence basal nitrite and oxidative stress parameters level neither at maximal load nor during the first 10 min of recovery in sportmen studied.

  8. Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Calfuman, Karla [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile); Aguirre, Maria Jesus [Facultad de Quimica y Biologia, Departamento de Quimica de los Materiales, Universidad de Santiago de Chile, Santiago (Chile); Canete-Rosales, Paulina; Bollo, Soledad [Facultad de Ciencias Quimicas y Farmaceuticas, Departamento de Quimica Farmacologica y Toxicologica, Universidad de Chile, Santiago (Chile); Llusar, Rosa [Departamento de Quimica Fisica y Analitica, Universidad de Jaume I, Castellon (Spain); Isaacs, Mauricio, E-mail: misaacs@uchile.cl [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile)

    2011-10-01

    Highlights: > Preparation and characterization of modified electrodes with M(II) Tetraruthenated porphyrins onto a Nafion film. > The electrodes were characterized by SEM, TEM, AFM and SECM techniques. > The modified electrodes are active in the electrochemical reduction of nitrite at -660 mV vs Ag/AgCl. > GC/Nf/CoTRP modified electrode is more electrochemically active than their Ni and Zn analogues. - Abstract: This paper describes the electrochemical reduction of nitrite ion in neutral aqueous solution mediated by tetraruthenated metalloporphyrins (Co(II), Ni(II) and Zn(II)) electrostatically assembled onto a Nafion film previously adsorbed on glassy carbon or ITO electrodes. Scanning electron microscope (SEM-EDX) and transmission electron microscopy (TEM) results have shown that on ITO electrodes the macrocycles forms multiple layers with a disordered stacking orientation over the Nafion film occupying hydrophobic and hydrophilic sites in the polyelectrolyte. Atomic force microscopy (AFM) results demonstrated that the Nafion film is 35 nm thick and tetraruthenated metalloporphyrins layers 190 nm thick presenting a thin but compacted morphology. Scanning electrochemical microscopy (SECM) images shows that the Co(II) tetraruthenated porphyrins/Nf/GC modified electrode is more electrochemically active than their Ni and Zn analogues. These modified electrodes are able to reduce nitrite at -660 mV showing enhanced reduction current and a decrease in the required overpotential compared to bare glassy carbon electrode. Controlled potential electrolysis experiments verify the production of ammonia, hydrazine and hydroxylamine at potentials where reduction of solvent is plausible demonstrating some selectivity toward the nitrite ion. Rotating disc electrode voltammetry shows that the factor that governs the kinetics of nitrite reduction is the charge propagation in the film.

  9. Nitrogen isotope fractionation during archaeal ammonia oxidation: Coupled estimates from isotopic measurements of ammonium and nitrite

    Science.gov (United States)

    Mooshammer, Maria; Stieglmeier, Michaela; Bayer, Barbara; Jochum, Lara; Melcher, Michael; Wanek, Wolfgang

    2014-05-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous in marine and terrestrial environments and knowledge about the nitrogen (N) isotope effect associated with their ammonia oxidation activity will allow a better understanding of natural abundance isotope ratios, and therefore N transformation processes, in the environment. Here we examine the kinetic isotope effect for ammonia oxidation in a pure soil AOA culture (Ca. Nitrososphaera viennensis) and a marine AOA enrichment culture. We estimated the isotope effect from both isotopic signatures of ammonium and nitrite over the course of ammonia oxidation. Estimates of the isotope effect based on the change in the isotopic signature of ammonium give valuable insight, because these estimates are not subject to the same concerns (e.g., accumulation of an intermediate) as estimates based on isotopic measurements of nitrite. Our results show that both the pure soil AOA culture and a marine AOA enrichment culture have similar but substantial isotope effect during ammonia consumption (31-34 per mill; based on ammonium) and nitrite production (43-45 per mill; based on nitrite). The 15N fractionation factors of both cultures tested fell in the upper range of the reported isotope effects for archaeal and bacterial ammonia oxidation (10-41 per mill) or were even higher than those. The isotope fractionation for nitrite production was significantly larger than for ammonium consumption, indicating that (1) some intermediate (e.g., hydroxylamine) of ammonia oxidation accumulates, allowing for a second 15N fractionation step to be expressed, (2) a fraction of ammonia oxidized is lost via gaseous N forms (e.g., NO or N2O), which is 15N-enriched or (3) a fraction of ammonium is assimilated into AOA biomass, biomass becoming 15N-enriched. The significance of these mechanisms will be explored in more detail for the soil AOA culture, based on isotope modeling and isotopic measurements of biomass and N2O.

  10. Kinetic Constants for Biological Ammonium and Nitrite Oxidation Processes Under Sulfide Inhibition.

    Science.gov (United States)

    Bejarano-Ortiz, Diego Iván; Huerta-Ochoa, Sergio; Thalasso, Frédéric; Cuervo-López, Flor de María; Texier, Anne-Claire

    2015-12-01

    Inhibition of nitrification by sulfide was assessed using sludge obtained from a steady-state nitrifying reactor. Independent batch activity assays were performed with ammonium and nitrite as substrate, in order to discriminate the effect of sulfide on ammonium and nitrite oxidation. In the absence of sulfide, substrate affinity constants (K S,NH4  = 2.41 ± 0.11 mg N/L; K s, NO2  = 0.74 ± 0.03 mg N/L) and maximum specific rates (q max,NH4  = 0.086 ± 0.008 mg N/mg microbial protein h; q max,NO2  = 0.124 ± 0.001 mg N/mg microbial protein h) were determined. Inhibition of ammonium oxidation was no-competitive (inhibition constant (K i , NH4 ) of 2.54 ± 0.12 mg HS(-)-S/L) while inhibition of nitrite oxidation was mixed (competitive inhibition constant (K' i , NO2 ) of 0.22 ± 0.03 mg HS(-)-S/L and no-competitive inhibition constant (K i , NO2 ) of 1.03 ± 0.06 mg HS(-)-S/L). Sulfide has greater inhibitory effect on nitrite oxidation than ammonium oxidation, and its presence in nitrification systems should be avoided to prevent accumulation of nitrite. By simulating the effect of sulfide addition in a continuous nitrifying reactor under steady-state operation, it was shown that the maximum sulfide concentration that the sludge can tolerate without affecting the ammonium consumption efficiency and nitrate yield is 1 mg HS(-)-S/L.

  11. Combined exposure to ambient UVB radiation and nitrite negatively affects survival of amphibian early life stages

    Energy Technology Data Exchange (ETDEWEB)

    Macias, Guadalupe [Donana Biological Station, CSIC, Spanish Council for Scientific Research. P.O. Box 1056, Sevilla 41013 (Spain); Marco, Adolfo [Donana Biological Station, CSIC, Spanish Council for Scientific Research. P.O. Box 1056, Sevilla 41013 (Spain)], E-mail: amarco@ebd.csic.es; Blaustein, Andrew R. [Department of Zoology, Oregon State University, Corvallis, Oregon, 97331 (United States)

    2007-10-15

    Many aquatic species are sensitive to ambient levels of ultraviolet-B radiation (UVB) and chemical fertilizers. However, recent studies indicate that the interaction among multiple stressors acting simultaneously could be contributing to the population declines of some animal species. Therefore, we tested the potential synergistic effects between ambient levels of UVB and a contaminant, sodium nitrite in the larvae of two amphibian species, the common European toad Bufo bufo and the Iberian green frog Rana perezi. We studied R. perezi from both mountain and coastal populations to examine if populations of the same species varied in their response to stressors in different habitats. Both species were sensitive to the two stressors acting alone, but the interaction between the two stressors caused a multiplicative impact on tadpole survival. For B. bufo, the combination of UVB and nitrite was up to seven times more lethal than mortality for each stressor alone. In a coastal wetland, the combination of UVB and nitrite was four times more toxic for R. perezi than the sum of the effect on mortality for each stressor alone. One mg/L of nitrite killed half the population of R. perezi at Gredos Mountains at day 10 in the absence of UVB. In the presence of UVB, 50% of the tadpoles from the same experiment died at day 7. Similar toxic response were found for R. perezi in two highly contrasted environments suggesting this synergistic interaction can be a widespread phenomenon. The interaction of excess chemical fertilizers and manure with ambient UVB radiation could be contributing to the global decline of some amphibian species. We suggest that potential exposure to UVB radiation be accounted for when assessing water quality criteria regarding nitrite pollution.

  12. Combined exposure to ambient UVB radiation and nitrite negatively affects survival of amphibian early life stages.

    Science.gov (United States)

    Macías, Guadalupe; Marco, Adolfo; Blaustein, Andrew R

    2007-10-15

    Many aquatic species are sensitive to ambient levels of ultraviolet-B radiation (UVB) and chemical fertilizers. However, recent studies indicate that the interaction among multiple stressors acting simultaneously could be contributing to the population declines of some animal species. Therefore, we tested the potential synergistic effects between ambient levels of UVB and a contaminant, sodium nitrite in the larvae of two amphibian species, the common European toad Bufo bufo and the Iberian green frog Rana perezi. We studied R. perezi from both mountain and coastal populations to examine if populations of the same species varied in their response to stressors in different habitats. Both species were sensitive to the two stressors acting alone, but the interaction between the two stressors caused a multiplicative impact on tadpole survival. For B. bufo, the combination of UVB and nitrite was up to seven times more lethal than mortality for each stressor alone. In a coastal wetland, the combination of UVB and nitrite was four times more toxic for R. perezi than the sum of the effect on mortality for each stressor alone. One mg/L of nitrite killed half the population of R. perezi at Gredos Mountains at day 10 in the absence of UVB. In the presence of UVB, 50% of the tadpoles from the same experiment died at day 7. Similar toxic response were found for R. perezi in two highly contrasted environments suggesting this synergistic interaction can be a widespread phenomenon. The interaction of excess chemical fertilizers and manure with ambient UVB radiation could be contributing to the global decline of some amphibian species. We suggest that potential exposure to UVB radiation be accounted for when assessing water quality criteria regarding nitrite pollution.

  13. Dietary nitrite supplementation attenuates cardiac remodeling in l-NAME-induced hypertensive rats.

    Science.gov (United States)

    Sonoda, Kunihiro; Ohtake, Kazuo; Uchida, Hiroyuki; Ito, Junta; Uchida, Masaki; Natsume, Hideshi; Tamada, Hazuki; Kobayashi, Jun

    2017-07-01

    Loss of nitric oxide (NO) bioavailability underlies the development of hypertensive heart disease. We investigated the effects of dietary nitrite on N(G)-nitro-l-arginine methyl ester (l-NAME)-induced hypertension. Sprague-Dawley rats were divided into five groups: an untreated control group, an l-NAME-treated group, and three other l-NAME-treated groups supplemented with 10 mg/L or 100 mg/L of nitrite or 100 mg/L of captopril in drinking water. After the 8-week experimental period, mean arterial blood pressure was measured, followed by sampling of blood and heart tissue for assessment of nitrite/nitrate levels in the plasma and heart, the plasma level of angiotensin II (AT II), and the heart transcriptional levels of AT II type 1 receptor (AT1R), transforming growth factor-β1 (TGF-β1), and connective tissue proteins such as type 1 collagen and fibronectin. Heart tissue was analyzed by histopathological morphometry, including assessments of ventricular and coronary vascular hypertrophy and fibrosis, as well as immunohistochemistry analyses of myocardial expression of AT1R. l-NAME treatment reduced the plasma nitrate level and led to the development of hypertension, with increased plasma levels of AT II and increased heart transcriptional levels of AT1R and TGF-β1-mediated connective tissue proteins, showing myocardial and coronary arteriolar hypertrophy and fibrosis. However, dietary nitrite supplementation inhibited TGF-β1-mediated cardiac remodeling by suppressing AT II and AT1R. These results suggest that dietary nitrite levels achievable via a daily high-vegetable diet could improve hypertensive heart disease by inhibiting AT II-AT1R-mediated cardiac remodeling. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The acid-catalyzed interaction of melanin with nitrite ions. An EPR investigation

    Directory of Open Access Journals (Sweden)

    Matuszak Zenon

    2015-07-01

    Full Text Available The interaction of synthetic dihydroxyphenylalanine (DOPA melanin (DM with nitrite ions, NO2−, in the pH 3.6–7.0 range, has been investigated using electron paramagnetic resonance (EPR. We found that especially at pH <5.5 (from ca. 5.5 to 3.6 the reaction of DM with nitrite generated large quantities of new melanin radicals, which implies the involvement of nitrous acid, HNO2, in the radical formation process. Measurements carried out at constant pH of 3.6 showed that the melanin signal increased together with nitrite concentration, reaching a plateau level which was more than fourfold larger compared to the initial signal amplitude observed in a nitrite-free buffer of the same pH. The effects of nitrite and DM concentrations on the melanin-free radical content were also investigated. It is proposed that the radicals are generated by one electron oxidation of melanin ortho-hydroquinone groups to ortho-semiquinones by HNO2 or related nitrogen oxides such as NO2• radicals. The possible involvement of nitric oxide (•NO and peroxynitrite (ONOO− in DM oxidation was also examined. In air-free solutions, nitric oxide per se did not generate melanin radicals; however, in the presence of oxygen a marked increase in the melanin EPR signal intensity was observed. This result is interpreted in terms of the generation of radicals via the oxidation of DM by peroxynitrite. Our findings suggest that melanin can function as a natural scavenger of nitrous acid and some nitrous acid-derived species. This property may be relevant to physiological functions of melanin pigments in vivo.

  15. PLASMA NITRITE FLUX PREDICTS EXERCISE PERFORMANCE IN PERIPHERAL ARTERIAL DISEASE FOLLOWING 3 MONTHS OF EXERCISE TRAINING

    Science.gov (United States)

    Allen, Jason D; Stabler, Thomas; Kenjale, Aarti; Ham, Katherine L.; Robbins, Jennifer.L.; Duscha, Brian D; Dobrosielski, Devon A; Annex, Brian H

    2010-01-01

    Plasma nitrite is a major oxidation product of nitric oxide. It has also recently been suggested to perform an endocrine-like function as a nitric oxide donor in hypoxic tissues, allowing vasodilation. Exercise performance is limited in peripheral arterial disease due to an inadequate blood supply to working tissues. We hypothesized that exercise training in peripheral arterial disease subjects will demonstrate improved “plasma nitrite flux” and endothelial function, to accompany increased exercise performance. Peripheral arterial disease subjects were tested at baseline and following 3 months supervised or home exercise training. Venous blood (arm) was drawn at rest and 10min following a maximal graded treadmill test. Samples were added to heparin, centrifuged and plasma snap frozen for analysis by reductive chemiluminescence. Brachial artery endothelial function was measured in response to a hyperemic stimulus (flow-mediated dilation). At 3 months the peripheral arterial disease-supervised exercise group showed increases in claudication onset pain time (+138sec, p≤0.05) peak walking time (+260sec, p≤0.01), VO2peak (1.3ml/kg/min, p≤0.05), brachial artery flow-mediated dilation (+2%, p≤0.05) and plasma nitrite flux (+33% p≤0.05). There were no changes in the peripheral arterial disease-home exercise group. The change in plasma nitrite flux predicted the change in claudication onset pain (r2=0.59, p≤0.01). These findings suggest changes in plasma nitrite are related to endothelial function and predict exercise performance in peripheral arterial disease. PMID:20620208

  16. A novel marine nitrite-oxidizing Nitrospira species from Dutch coastal North Sea water

    Directory of Open Access Journals (Sweden)

    Suzanne Caroline Marianne Haaijer

    2013-03-01

    Full Text Available Marine microorganisms are important for the global nitrogen cycle, but marine nitrifiers, especially aerobic nitrite-oxidizers, remain largely unexplored. To increase the number of cultured representatives of marine nitrite-oxidizing bacteria (NOB, a bioreactor cultivation approach was adopted to first enrich nitrifiers and ultimately nitrite oxidizers from Dutch coastal North Sea water. With solely ammonia as the substrate an active nitrifiying community consisting of novel marine Nitrosomonas aerobic ammonia oxidizers (AOB and Nitrospina and Nitrospira NOB was obtained which converted a maximum of 2 mmoles of ammonia per liter per day. Switching the feed of the culture to nitrite as a sole substrate resulted in a Nitrospira NOB dominated community (approximately 80% of the total microbial community based on FISH and metagenomic data converting a maximum of 3 mmoles of nitrite per liter per day. Phylogenetic analyses based on the 16S rRNA gene indicated that the Nitrospira enriched from the North Sea is a novel Nitrospira species with Nitrospira marina as the next taxonomically described relative (94% 16S rRNA sequence identity. Transmission electron microscopy analysis revealed a cell plan typical for Nitrospira species. The cytoplasm contained electron light particles that might represent glycogen storage. A large periplasmic space was present which was filled with electron dense particles. Nitrospira-targeted PCR analyses demonstrated the presence of the enriched Nitrospira species in a time series of North Sea genomic DNA samples. The availability of this new Nitrospira species enrichment culture facilitates further in-depth studies such as determination of physiological constraints, and comparison to other NOB species.

  17. Ingested nitrate and nitrite, disinfection by-products, and pancreatic cancer risk in postmenopausal women.

    Science.gov (United States)

    Quist, Arbor J L; Inoue-Choi, Maki; Weyer, Peter J; Anderson, Kristin E; Cantor, Kenneth P; Krasner, Stuart; Freeman, Laura E Beane; Ward, Mary H; Jones, Rena R

    2018-01-15

    Nitrate and nitrite are precursors of N-nitroso compounds (NOC), probable human carcinogens that cause pancreatic tumors in animals. Disinfection by-products (DBP) exposures have also been linked with digestive system cancers, but few studies have evaluated relationships with pancreatic cancer. We investigated the association of pancreatic cancer with these drinking water contaminants and dietary nitrate/nitrite in a cohort of postmenopausal women in Iowa (1986-2011). We used historical monitoring and treatment data to estimate levels of long-term average nitrate and total trihalomethanes (TTHM; the sum of the most prevalent DBP class) and the duration exceeding one-half the maximum contaminant level (>½ MCL; 5 mg/L nitrate-nitrogen, 40 µg/L TTHM) among participants on public water supplies (PWS) >10 years. We estimated dietary nitrate and nitrite intakes using a food frequency questionnaire. We computed hazard ratios (HR) and 95% confidence intervals (CI) using Cox regression and evaluated nitrate interactions with smoking and vitamin C intake. We identified 313 cases among 34,242 women, including 152 with >10 years PWS use (N = 15,710). Multivariable models of average nitrate showed no association with pancreatic cancer (HRp95vs. Q1  = 1.16, 95% CI: 0.51-2.64). Associations with average TTHM levels were also null (HRQ4vs. Q1  = 0.70, 95% CI:0.42-1.18). We observed no trend with increasing years of exposure to either contaminant at levels >½ MCL. Positive associations were suggested in the highest dietary nitrite intake from processed meat (HRp95vs. Q1  = 1.66, 95% CI 1.00-2.75;ptrend  = 0.05). We found no interactions of nitrate with known modifiers of endogenous NOC formation. Our results suggest that nitrite intake from processed meat may be a risk factor for pancreatic cancer. 2017 UICC.

  18. Molecular Cloning and Expression of Bacterial Mercuric Reductase ...

    African Journals Online (AJOL)

    In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr) Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and finally mer operon ...

  19. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    2016-10-26

    Oct 26, 2016 ... The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the.

  20. Sepiapterin reductase deficiency : A Treatable Mimic of Cerebral Palsy

    NARCIS (Netherlands)

    Friedman, Jennifer; Roze, Emmanuel; Abdenur, Jose E.; Chang, Richard; Gasperini, Serena; Saletti, Veronica; Wali, Gurusidheshwar M.; Eiroa, Hernan; Neville, Brian; Felice, Alex; Parascandalo, Ray; Zafeiriou, Dimitrios I.; Arrabal-Fernandez, Luisa; Dill, Patricia; Eichler, Florian S.; Echenne, Bernard; Gutierrez-Solana, Luis G.; Hoffmann, Georg F.; Hyland, Keith; Kusmierska, Katarzyna; Tijssen, Marina A. J.; Lutz, Thomas; Mazzuca, Michel; Penzien, Johann; Bwee Tien Poll-The, [No Value; Sykut-Cegielska, Jolanta; Szymanska, Krystyna; Thoeny, Beat; Blau, Nenad

    Objective: Sepiapterin reductase deficiency (SRD) is an under-recognized levodopa-responsive disorder. We describe clinical, biochemical, and molecular findings in a cohort of patients with this treatable condition. We aim to improve awareness of the phenotype and available diagnostic and

  1. Xylose reductase from the thermophilic fungus Talaromyces emersonii

    Indian Academy of Sciences (India)

    Prakash

    National University of Ireland, Galway, University Road, Galway, Ireland. 2Shannon Applied Biotechnology Centre, Limerick Institute Technology, Moylish Park, Limerick, Ireland. *Corresponding authors (Fax, 0035361208208; Email, patrick.murray@lit.ie). Xylose reductase is involved in the first step of the fungal pentose ...

  2. Dizygotic twinning is not associated with methylenetetrahydrofolate reductase haplotypes

    NARCIS (Netherlands)

    Montgomery, GW; Zhao, Z.Z.; Morley, K.I.; Marsh, A.J.; Boomsma, D.I.; Martin, N.G.; Duffy, DL

    2003-01-01

    Background: Folate metabolism is critical to embryonic development, influencing neural tube defects (NTD) and recurrent early pregnancy loss. Polymorphisms in 5,10-methylenetetrahydrofolate reductase (MTHFR) have been associated with dizygotic (DZ) twinning through pregnancy loss. Methods: The C677T

  3. Bioinformatic analysis of dihydrofolate reductase predicted in the ...

    African Journals Online (AJOL)

    olayemitoyin

    Bioinformatic analysis of dihydrofolate reductase predicted in the genome sequence of Lactobacillus pentosus KCA1. *Kingsley C. Anukam. 1 and Uche Oge. 2. 1TWAS Genomic Research Unit, Department of Medical Laboratory Science, 2Department of Physiology,. School of Basic Medical Sciences, University of Benin, ...

  4. Bioinformatic analysis of dihydrofolate reductase predicted in the ...

    African Journals Online (AJOL)

    The genome has open reading frames coding for the complete genes required for folate biosynthesis. Our previous study shows that rats fed with L. pentosus KCA1 led to enhancement of haematological parameters. Bioinformatic tool such as ClustalW algorithm was used to analyze dihydrofolate reductase (folA/dfrA) ...

  5. Optimum conditions for cotton nitrate reductase extraction and ...

    African Journals Online (AJOL)

    Conditions of nitrate reductase extraction and activity measurement should be adapted to plant species, and to the organs of the same plant, because of extreme weaknesses and instabilities of the enzyme. Different extraction and reaction media have been compared in order to define the best conditions for cotton callus ...

  6. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the ZmNR1, ZmNR2, ...

  7. Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania

    Science.gov (United States)

    Zuccotto, Fabio; Martin, Andrew C. R.; Laskowski, Roman A.; Thornton, Janet M.; Gilbert, Ian H.

    1998-05-01

    Dihydrofolate reductase has successfully been used as a drug target in the area of anti-cancer, anti-bacterial and anti-malarial chemotherapy. Little has been done to evaluate it as a drug target for treatment of the trypanosomiases and leishmaniasis. A crystal structure of Leishmania major dihydrofolate reductase has been published. In this paper, we describe the modelling of Trypanosoma cruzi and Trypanosoma brucei dihydrofolate reductases based on this crystal structure. These structures and models have been used in the comparison of protozoan, bacterial and human enzymes in order to highlight the different features that can be used in the design of selective anti-protozoan agents. Comparison has been made between residues present in the active site, the accessibility of these residues, charge distribution in the active site, and the shape and size of the active sites. Whilst there is a high degree of similarity between protozoan, human and bacterial dihydrofolate reductase active sites, there are differences that provide potential for selective drug design. In particular, we have identified a set of residues which may be important for selective drug design and identified a larger binding pocket in the protozoan than the human and bacterial enzymes.

  8. Cloning and expression analysis of dihydroxyflavonol 4-reductase ...

    African Journals Online (AJOL)

    Dihydroflavonol 4-reductase (DFR) gene is a key gene of anthocyanins biosynthesis pathway, which represent an importance pathway for orchid flower. In this study, cloning and expression analysis of DFR gene in Ascocenda spp. were carried out. Nucleotide analysis revealed that the Ascocenda DFR gene was 1,056 bp ...

  9. Aldose Reductase Inhibitory and Antiglycation Activities of Four ...

    African Journals Online (AJOL)

    Thonn., Punica granatum L., and Stevia rebaudiana Bertoni) standardized extracts and their major constituents (morusin, phyllanthin, punicalagin and stevioside) in the treatment of long-term diabetic complications by inhibition of aldose reductase (AR) enzyme and advanced glycation end products (AGEs) formation.

  10. Analysis of the monitoring status of residual nitrite in meat products in China from 2000 to 2011.

    Science.gov (United States)

    Zhang, Hongchao; Sun, Changbao; Han, Wanjun; Zhang, Jiaxiu; Hou, Juncai

    2018-02-01

    The aim of this article was to analyze the monitoring status of nitrite in meat products consumed from 2000 to 2011 in 24 provinces, autonomous regions or direct-controlled municipalities in China. Statistical analyses were performed on the monitoring status including number, proportion, and distribution of 13,316 samples, of which 11,320 (85%) contained up to 2808.2mg/kg nitrite and 1996 (15%) contained no nitrite. A total of 10,299 samples (77%) qualified for GB/T 5009.33-2003, 2003; however, 3017 samples (23%) contained nitrite at levels higher than the national standard. The districts with high percentage of samples with no nitrite were Shanghai (49%), Beijing (47%), and Liaoning (30%). While the districts with high percentage of meat products containing nitrite at levels exceeding the national standard were Jiangxi (49%), Jiangsu (33%), Shandong (29%) and Sichuan (29%). Therefore, the status of residue nitrite in meat products is of concern. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Acute Toxicity of Nitrite to Various Life Stages of the Amazon River Prawn, Macrobrachium amazonicum, Heller, 1862.

    Science.gov (United States)

    Dutra, Fabrício Martins; Freire, Carolina Arruda; Vaz Dos Santos, André Martins; Forneck, Sandra Carla; Brazão, Claudia Caramelo; Ballester, Eduardo Luis Cupertino

    2016-11-01

    This study determined the effects of nitrite on different life stages of the Amazon river prawn Macrobrachium amazonicum. Prawns of each life stage (postlarvae, juveniles and adults) were stocked in 24 experimental units (n = 10 prawns), under a complete randomized design. Individuals were exposed to nitrite (0, 1, 2, 4, 8 and 16 mg L-1). The median lethal concentration after 96 h (96 h LC50) was calculated through the Weibull I. The mortality results showed that M. amazonicum is slightly less tolerant to nitrite than other species of Macrobrachium. The 96 h LC50 for postlarvae, juveniles and adults of M. amazonicum were of 1.49, 2.36 and 2.34 mg nitrite/L, respectively. Nitrite intoxication risk quotient suggest moderated risk to low risk to the species. Usually in production systems nitrite values are lower than safe levels suggested in this study (0.1 mg L-1 to postlarvae and 0.2 mg L-1 nitrite to juvenile and adults), which makes our results appropriate for the production of this species.

  12. Haematological and ion regulatory effects of nitrite in the air-breathing snakehead fish Channa striata

    DEFF Research Database (Denmark)

    Lefevre, Sjannie; Jensen, Frank Bo; Huong, Do T.T.

    2012-01-01

    M. Effects of sub-lethal exposures to nitrite (0 mM, 1.4 mM, and 3.0 mM) were determined during a 7-day exposure period. Plasma nitrite increased, but the internal concentration remained well below ambient levels. Extracellular nitrate rose by several mM, indicating that a large proportion of the nitrite...... taken up was converted to nitrate. Nitrite reacted with erythrocyte haemoglobin (Hb) causing methaemoglobin (metHb) to increase to 30% and nitrosylhaemoglobin (HbNO) to increase to 10% of total Hb. Both metHb and HbNO stabilised after 4 days, and functional Hb levels accordingly never fell below 60......% of total Hb. Haematocrit and total Hb were unaffected by nitrite. Although the effects of nitrite exposure seemed minor in terms of plasma nitrite and metHb increases, ion balance was strongly affected. In the high exposure group, total osmolality decreased from 320 mOsm to 260 mOsm, and plasma sodium from...

  13. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash.

    Science.gov (United States)

    Govoni, Mirco; Jansson, Emmelie A; Weitzberg, Eddie; Lundberg, Jon O

    2008-12-01

    Recent studies surprisingly show that dietary inorganic nitrate, abundant in vegetables, can be metabolized in vivo to form nitrite and then bioactive nitric oxide. A reduction in blood pressure was recently noted in healthy volunteers after dietary supplementation with nitrate; an effect consistent with formation of vasodilatory nitric oxide. Oral bacteria have been suggested to play a role in bioactivation of nitrate by first reducing it to the more reactive anion nitrite. In a cross-over designed study in seven healthy volunteers we examined the effects of a commercially available chlorhexidine-containing antibacterial mouthwash on salivary and plasma levels of nitrite measured after an oral intake of sodium nitrate (10mg/kg dissolved in water). In the control situation the salivary and plasma levels of nitrate and nitrite increased greatly after the nitrate load. Rinsing the mouth with the antibacterial mouthwash prior to the nitrate load had no effect on nitrate accumulation in saliva or plasma but abolished its conversion to nitrite in saliva and markedly attenuated the rise in plasma nitrite. We conclude that the acute increase in plasma nitrite seen after a nitrate load is critically dependent on nitrate reduction in the oral cavity by commensal bacteria. The removal of these bacteria with an antibacterial mouthwash will very likely attenuate the NO-dependent biological effects of dietary nitrate.

  14. Impact of nitrite on detection of Listeria monocytogenes in selected ready-to-eat (RTE) meat and seafood products.

    Science.gov (United States)

    Nyachuba, D G; Donnelly, C W; Howard, A B

    2007-09-01

    The impact of sodium nitrite (NaNO2) on detection and recovery of Listeria monocytogenes from select ready-to-eat (RTE) foods including smoked salmon, smoked ham, beef frankfurters, and beef bologna was assessed. Nitrite-containing (NC; 100 to 200 ppm NaNO2) or nitrite-free (NF) foods were inoculated with a 5-strain cocktail of L. monocytogenes by immersion into Butterfield's buffer solution containing 5.4 to 7.4 x 10(3) L. monocytogenes per milliliter. Inoculated products were vacuum-packaged and stored at 5 degrees C. A weekly comparative analysis was performed for presence of L. monocytogenes using 5 detection methods on products held at 5 degrees C for up to 8 wk. L. monocytogenes initially present at Listeria-positive food samples and were consistently superior to and significantly different (P Listeria from NC samples. Data show that nitrite-induced injury adversely affects detection and recovery of L. monocytogenes from NC food, confirming earlier findings that nitrite-induced injury masks L. monocytogenes detection in NC RTE food products. Nitrite-injured Listeria can subsequently repair upon nitrite depletion and grow to high levels over extended refrigerated storage.

  15. The Polymorphisms in Methylenetetrahydrofolate Reductase, Methionine Synthase, Methionine Synthase Reductase, and the Risk of Colorectal Cancer

    Science.gov (United States)

    Zhou, Daijun; Mei, Qiang; Luo, Han; Tang, Bo; Yu, Peiwu

    2012-01-01

    Polymorphisms in genes involved in folate metabolism may modulate the risk of colorectal cancer (CRC), but data from published studies are conflicting. The current meta-analysis was performed to address a more accurate estimation. A total of 41 (17,552 cases and 26,238 controls), 24(8,263 cases and 12,033 controls), 12(3,758 cases and 5,646 controls), and 13 (5,511 cases and 7,265 controls) studies were finally included for the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1289C, methione synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G polymorphisms and the risk of CRC, respectively. The data showed that the MTHFR 677T allele was significantly associated with reduced risk of CRC (OR = 0.93, 95%CI 0.90-0.96), while the MTRR 66G allele was significantly associated with increased risk of CRC (OR = 1.11, 95%CI 1.01-1.18). Sub-group analysis by ethnicity revealed that MTHFR C677T polymorphism was significantly associated with reduced risk of CRC in Asians (OR = 0.80, 95%CI 0.72-0.89) and Caucasians (OR = 0.84, 95%CI 0.76-0.93) in recessive genetic model, while the MTRR 66GG genotype was found to significantly increase the risk of CRC in Caucasians (GG vs. AA: OR = 1.18, 95%CI 1.03-1.36). No significant association was found between MTHFR A1298C and MTR A2756G polymorphisms and the risk of CRC. Cumulative meta-analysis showed no particular time trend existed in the summary estimate. Probability of publication bias was low across all comparisons illustrated by the funnel plots and Egger's test. Collectively, this meta-analysis suggested that MTHFR 677T allele might provide protection against CRC in worldwide populations, while MTRR 66G allele might increase the risk of CRC in Caucasians. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results. PMID:22719222

  16. Sustained release nitrite therapy results in myocardial protection in a porcine model of metabolic syndrome with peripheral vascular disease.

    Science.gov (United States)

    Bradley, Jessica M; Islam, Kazi N; Polhemus, David J; Donnarumma, Erminia; Brewster, Luke P; Tao, Ya-Xiong; Goodchild, Traci T; Lefer, David J

    2015-07-15

    Metabolic syndrome (MetS) reduces endothelial nitric oxide (NO) bioavailability and exacerbates vascular dysfunction in patients with preexisting vascular diseases. Nitrite, a storage form of NO, can mediate vascular function during pathological conditions when endogenous NO is reduced. The aims of the present study were to characterize the effects of severe MetS and obesity on dyslipidemia, myocardial oxidative stress, and endothelial NO synthase (eNOS) regulation in the obese Ossabaw swine (OS) model and to examine the effects of a novel, sustained-release formulation of sodium nitrite (SR-nitrite) on coronary vascular reactivity and myocardial redox status in obese OS subjected to critical limb ischemia (CLI). After 6 mo of an atherogenic diet, obese OS displayed a MetS phenotype. Obese OS had decreased eNOS functionality and NO bioavailability. In addition, obese OS exhibited increased oxidative stress and a significant reduction in antioxidant enzymes. The efficacy of SR-nitrite therapy was examined in obese OS subjected to CLI. After 3 wk of treatment, SR-nitrite (80 mg · kg(-1) · day(-1) bid po) increased myocardial nitrite levels and eNOS function. Treatment with SR-nitrite reduced myocardial oxidative stress while increasing myocardial antioxidant capacity. Ex vivo assessment of vascular reactivity of left anterior descending coronary artery segments demonstrated marked improvement in vasoreactivity to sodium nitroprusside but not to substance P and bradykinin in SR-nitrite-treated animals compared with placebo-treated animals. In conclusion, in a clinically relevant, large-animal model of MetS and CLI, treatment with SR-nitrite enhanced myocardial NO bioavailability, attenuated oxidative stress, and improved ex vivo coronary artery vasorelaxation.

  17. Urinary Excretion of N-Nitroso Compounds in Rats Fed Sodium Nitrite and/or Hot Dogs

    OpenAIRE

    Zhou, Lin; Anwar, Muhammad M.; Zahid, Muhammad; Shostrom, Valerie; Mirvish, Sidney S

    2014-01-01

    Nitrite-treated meat is a reported risk factor for colon cancer. Mice that ingested sodium nitrite (NaNO2) or hot dogs (a nitrite-treated product) showed increased fecal excretion of apparent N-nitroso compounds (ANC). Here, we investigated for the first time whether rats excrete increased amounts of ANC in their urine after they are fed NaNO2 and/or hot dogs. Rats were treated for 7 days with NaNO2 in drinking water or were fed hot dogs. Their 24 h urine samples were analyzed for ANC by ther...

  18. Rapid monitoring of intermediate states and mass balance of nitrogen during denitrification by means of cavity enhanced Raman multi-gas sensing

    Energy Technology Data Exchange (ETDEWEB)

    Keiner, Robert [Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena 07743 (Germany); Leibniz Institute of Photonic Technology, Jena 07745 (Germany); Herrmann, Martina; Küsel, Kirsten [Institute of Ecology, Friedrich Schiller University Jena, Jena 07743 (Germany); German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig, Leipzig 04103 (Germany); Popp, Jürgen [Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena 07743 (Germany); Leibniz Institute of Photonic Technology, Jena 07745 (Germany); InfectoGnostics Forschungscampus, Zentrum für Angewandte Forschung, Jena 07743 (Germany); Abbe School of Photonics, Friedrich Schiller University, Jena (Germany); Frosch, Torsten, E-mail: torsten.frosch@uni-jena.de [Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena 07743 (Germany); Leibniz Institute of Photonic Technology, Jena 07745 (Germany); InfectoGnostics Forschungscampus, Zentrum für Angewandte Forschung, Jena 07743 (Germany)

    2015-03-15

    Highlights: • CERS is a versatile new analytical methodology. • Continuous online quantification of reduction of {sup 15}N-labelled nitrate by P. stutzeri was demonstrated. • The total nitrogen element budget was monitored online for the first time. • Sterile online acquisition of the pH changes in the P. stutzeri culture was demonstrated. • An increased slope of the pH value coincided with a temporary accumulation of N{sub 2}O. - Abstract: The comprehensive investigation of changes in N cycling has been challenging so far due to difficulties with measuring gases such as N{sub 2} and N{sub 2}O simultaneously. In this study we introduce cavity enhanced Raman gas spectroscopy as a new analytical methodology for tracing the stepwise reduction of {sup 15}N-labelled nitrate by the denitrifying bacteria Pseudomonas stutzeri. The unique capabilities of Raman multi-gas analysis enabled real-time, continuous, and non-consumptive quantification of the relevant gases ({sup 14}N{sub 2}, {sup 14}N{sub 2}O, O{sub 2}, and CO{sub 2}) and to trace the fate of {sup 15}N-labeled nitrate substrate ({sup 15}N{sub 2}, {sup 15}N{sub 2}O) added to a P. stutzeri culture with one single measurement. Using this new methodology, we could quantify the kinetics of the formation and degradation for all gaseous compounds (educts and products) and thus study the reaction orders. The gas quantification was complemented with the analysis of nitrate and nitrite concentrations for the online monitoring of the total nitrogen element budget. The simultaneous quantification of all gases also enabled the contactless and sterile online acquisition of the pH changes in the P. stutzeri culture by the stoichiometry of the redox reactions during denitrification and the CO{sub 2}-bicarbonate equilibrium. Continuous pH monitoring – without the need to insert an electrode into solution – elucidated e.g. an increase in the slope of the pH value coinciding with an accumulation of nitrite, which in

  19. Ammonia Oxidation and Nitrite Reduction in the Verrucomicrobial Methanotroph Methylacidiphilum fumariolicum SolV

    Directory of Open Access Journals (Sweden)

    Sepehr S. Mohammadi

    2017-09-01

    Full Text Available The Solfatara volcano near Naples (Italy, the origin of the recently discovered verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV was shown to contain ammonium (NH4+ at concentrations ranging from 1 to 28 mM. Ammonia (NH3 can be converted to toxic hydroxylamine (NH2OH by the particulate methane monooxygenase (pMMO, the first enzyme of the methane (CH4 oxidation pathway. Methanotrophs rapidly detoxify the intermediate NH2OH. Here, we show that strain SolV performs ammonium oxidation to nitrite at a rate of 48.2 nmol NO2-.h−1.mg DW−1 under O2 limitation in a continuous culture grown on hydrogen (H2 as an electron donor. In addition, strain SolV carries out nitrite reduction at a rate of 74.4 nmol NO2-.h−1.mg DW−1 under anoxic condition at pH 5–6. This range of pH was selected to minimize the chemical conversion of nitrite (NO2- potentially occurring at more acidic pH values. Furthermore, at pH 6, we showed that the affinity constants (Ks of the cells for NH3 vary from 5 to 270 μM in the batch incubations with 0.5–8% (v/v CH4, respectively. Detailed kinetic analysis showed competitive substrate inhibition between CH4 and NH3. Using transcriptome analysis, we showed up-regulation of the gene encoding hydroxylamine dehydrogenase (haoA cells grown on H2/NH4+ compared to the cells grown on CH4/NO3- which do not have to cope with reactive N-compounds. The denitrifying genes nirk and norC showed high expression in H2/NH4+ and CH4/NO3- grown cells compared to cells growing at μmax (with no limitation while the norB gene showed downregulation in CH4/NO3- grown cells. These cells showed a strong upregulation of the genes in nitrate/nitrite assimilation. Our results demonstrate that strain SolV can perform ammonium oxidation producing nitrite. At high concentrations of ammonium this may results in toxic effects. However, at low oxygen concentrations strain SolV is able to reduce nitrite to N2O to cope with this toxicity.

  20. Effect of betaine supplementation on plasma nitrate/nitrite in exercise-trained men

    Directory of Open Access Journals (Sweden)

    McCarthy Cameron G

    2011-03-01

    Full Text Available Abstract Background Betaine, beetroot juice, and supplemental nitrate have recently been reported to improve certain aspects of exercise performance, which may be mechanistically linked to increased nitric oxide. The purpose of the present study was to investigate the effect of betaine supplementation on plasma nitrate/nitrite, a surrogate marker or nitric oxide, in exercise-trained men. Methods We used three different study designs (acute intake of betaine at 1.25 and 5.00 grams, chronic intake of betaine at 2.5 grams per day for 14 days, and chronic [6 grams of betaine per day for 7 days] followed by acute intake [6 grams], all involving exercise-trained men, to investigate the effects of orally ingested betaine on plasma nitrate/nitrite. Blood samples were collected before and at 30, 60, 90, and 120 min after ingestion of 1.25 and 5.00 grams of betaine (Study 1; before and after 14 days of betaine supplementation at a dosage of 2.5 grams (Study 2; and before and after 7 days of betaine supplementation at a dosage of 6 grams, followed by acute ingestion of 6 grams and blood measures at 30 and 60 min post ingestion (Study 3. Results In Study 1, nitrate/nitrite was relatively unaffected and no statistically significant interaction (p = 0.99, dosage (p = 0.69, or time (p = 0.91 effects were noted. Similar findings were noted in Study 2, with no statistically significant interaction (p = 0.57, condition (p = 0.98, or pre/post intervention (p = 0.17 effects noted for nitrate/nitrite. In Study 3, no statistically significant changes were noted in nitrate/nitrite between collection times (p = 0.97. Conclusion Our data indicate that acute or chronic ingestion of betaine by healthy, exercise-trained men does not impact plasma nitrate/nitrite. These findings suggest that other mechanisms aside from increasing circulating nitric oxide are likely responsible for any performance enhancing effect of betaine supplementation.