WorldWideScience

Sample records for studying polymerization reactions

  1. Oligonucleotides as probes for studying polymerization reactions in dilute aqueous solution

    Science.gov (United States)

    Kolb, V.; Orgel, L. E.; Miller, S. L. (Principal Investigator)

    1994-01-01

    We have prepared a [32P]-labled oligonucleotide probe carrying a free primary amine at its 3'-terminus. This probe is used to initiate polymerization of aziridine (ethyleneimine) in aqueous solution. The nature of the oligomeric products and the kinetics of their formation are then monitored by gel electrophoresis. Our results are generally consistent with those obtained using conventional techniques. We have also investigated the effect of polyanionic templates on the rate of oligomerization of aziridine. We find that water-soluble polyanions generally accelerate the polymerization. The sodium salt of polymethacrylic acid is the most effective of the templates that we studied. The methods introduced in this paper should be applicable to a variety of polymerization reactions in aqueous solution. They should greatly simplify the screening of potentially prebiotic polymerization reactions.

  2. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions

    Science.gov (United States)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  3. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions.

    Science.gov (United States)

    Coari, Kristin M; Martin, Rebecca C; Jain, Kopal; McGown, Linda B

    2017-09-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  4. Studies on the runaway reaction of ABS polymerization process

    International Nuclear Information System (INIS)

    Hu, K.-H.; Kao, C.-S.; Duh, Y.-S.

    2008-01-01

    Taiwan has the largest acrylonitrile-butadiene-styrene (ABS) copolymer production in the world. Preventing on unexpected exothermic reactions and related emergency relief hazard is essential in the safety control of ABS emulsion polymerization. A VSP2 (Vent Sizing Package 2) apparatus is capable of studying both normal and abnormal conditions (e.g., cooling failure, mischarge, etc.) of industrial process. In this study, the scenarios were verified from the following abnormal conditions: loss of cooling, double charge of initiator, overcharge of monomer, without charge of solvent, and external fire. An external fire with constant heating will promote higher self-heat rate and this is recommended as the worst case scenario of emulsion polymerization on butadiene. Cooling failure coupled with bulk system of reactant was determined to be the credible worst case in ABS emulsion polymerization. Finally, the emergency vent sizing based on thermokinetics from VSP associated with DIERS methodology were used for evaluating the vent sizing and compared to that of the industrial plants

  5. Comparison of techniques for the determination of conversion during suspension polymerization reactions

    Directory of Open Access Journals (Sweden)

    J. C. Santos

    2008-06-01

    Full Text Available The determination of conversion during suspension polymerization reactions is not an easy task due to the heterogeneity of the reaction medium and the tendency of particles to agglomerate rapidly when stirring is stopped. Usually, bulk polymerization in ampoules is employed to study the kinetics of suspension polymerization reactions. In this work, a comparison of different techniques for the determination of conversion during suspension polymerization reactions is presented. Results showed a good agreement between the conversion obtained by gravimetry during styrene suspension polymerization and on-line conversion monitoring data using fiber-optic based Raman Spectroscopy. Nevertheless, the polymerization rate of styrene bulk polymerization carried out in ampoules was higher than the real reaction rate of styrene suspension polymerization due to slightly higher reaction temperatures. Simulation results using the experimental temperature data in a mathematical model confirmed these results.

  6. Study of aniline polymerization reactions through the particle size formation in acidic and neutral medium

    Science.gov (United States)

    Aribowo, Slamet; Hafizah, Mas Ayu Elita; Manaf, Azwar; Andreas

    2018-04-01

    In the present paper, we reported particle size kinetic studies on the conducting polyaniline (PANI) which synthesized through a chemical oxidative polymerization technique from aniline monomer. PANI was prepared using ammonium persulfate (APS) as oxidizing agent which carried out in acidic and neutral medium at various batch temperatures of respectively 20, 30 and 50 °C. From the studies, it was noticed that the complete polymerization reaction progressed within 480 minutes duration time. The pH of the solution during reaction kinetic reached values 0.8 - to 1.2 in acidic media, while in the neutral media the pH value reached values 3.8 - 4.9. The batch temperature controlled the polymerization reaction in which the reaction progressing, which followed by the temperature rise of solution above the batch temperature before settled down to the initial temperature. An increment in the batch temperature gave highest rise in the solution temperature for the two media which cannot be more than 50 °C. The final product of polymerization reaction was PANI confirmed by Fourier Transform Infra-Red (FTIR) spectrophotometer for molecule structure identification. The averages particle size of PANI which carried out in the two different media is evidently similar in the range 30 - 40 μm and insensitive to the batch temperature. However, the particle size of PANI which obtained from the polymerization reaction at a batch temperature of 50 °C under acidic condition reached ˜53.1 μm at the tip of the propagation stage which started in the first 5 minutes. The size is obviously being the largest among the batch temperatures. Whereas, under neutral condition the particle size is much larger which reached the size 135 μm at the batch temperature of 20 °C. It is concluded that the particle size formation during the polymerization reaction being one of the important parameter to determine particle growing of polymer which indicated the reaction kinetics mechanism of synthesize

  7. RADIOCHEMICAL YIELDS OF GRAFT POLYMERIZATION REACTIONS OF CELLULOSE

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Jr, J C; Blouin, F A

    1963-12-15

    The preparation of radioinduced graft polymers of cotton cellulose, while retaining the fibrous nature and high molecular weight of the cellulose, depended primarily on the radiochemical yields of cellulose reactions and of graft polymerization reactions. Yields of the initial major molecular changes in cellulosic polymer indicated that, in the case of scission of the molecule and carboxyl group formation, chain reactions were not initiated by radiation; however, in the case of carbonyl group formation chain reactions were initiated but quickly terminated. Generally, experimental procedures, used in graft polymerization reactions, were: simultaneous irradiation reactions, that is, application of monomers or solutions of monomers to cellulose or chemically modified celluloses, then irradiation; and post-irradiation reactions, that is, irradiation of cellulose or chemically modified celluloses, then after removal from the field of radiation, contacting the irradiated cellulose with monomer. Some of the most important factors influencing the radiochemical yields of graft polymerization reactions, of styrene and acrylonitrile onto cellulose were: concentration of monomer in treating solution; solvent; ratio of monomer solution to cellulose; prior chemical modification of cellulose; and absence of oxygen, particularly in post-irradiation reactions. Experimental data are presented, and the direct and indirect effects of Co/sup 60/ gamma radiation on these reactions are discussed. (auth)

  8. Vinyl Chloride Emulsion Polymerization Reaction: Effect of Various Formulations

    Directory of Open Access Journals (Sweden)

    Seyed Mehrdad Jalilian

    2013-01-01

    Full Text Available A mixture  of  sodium  lauryl  sulfate  (SLS  as  ionic  emulsifer  and  stearyl alcohol as non-ionic emulsifer was employed in a vinyl chloride emulsion polymerization  reaction  to  study  the  infuence  of  various  interactive parameters involved in the reaction system. It was found that the particle size was dependent on the amount and type of emulsifer. The average particle size of polyvinyl chloride was dropped by higher amount of emulsifying agents.  At the gel point, more heat was generated by higher amount of vinyl chloride fed into the reaction system. The molecular weight of the polymer was decreased by increases in reaction temperature while,  it  increased by augmenting  the amount of emulsifer. According to the 13C NMR and FTIR spectroscopic data no defect was detected in the chain structure of synthetic polyvinylchloride product. An optimization of polymerization reaction condition was reached based on ultimate particle size desired for its favorable distribution in plastisols.

  9. Vapor phase reactions in polymerization plasma for divinylsiloxane-bis-benzocyclobutene film deposition

    International Nuclear Information System (INIS)

    Kinoshita, Keizo; Nakano, Akinori; Kawahara, Jun; Kunimi, Nobutaka; Hayashi, Yoshihiro; Kiso, Osamu; Saito, Naoaki; Nakamura, Keiji; Kikkawa, Takamaro

    2006-01-01

    Vapor phase reactions in plasma polymerization of divinylsiloxane-bis-benzocyclobutene (DVS-BCB) low-k film depositions on 300 mm wafers were studied using mass spectrometry, in situ Fourier transform infrared, and a surface wave probe. Polymerization via Diels-Alder cycloaddition reaction was identified by the detection of the benzocyclohexene group. Hydrogen addition and methyl group desorption were also detected in DVS-BCB monomer and related large molecules. The dielectric constant k of plasma polymerized DVS-BCB with a plasma source power range up to 250 W was close to ∼2.7 of thermally polymerized DVS-BCB, and increased gradually over 250 W. The electron density at 250 W was about 1.5x10 10 cm -3 . The increase of the k value at higher power was explained by the decrease of both large molecular species via multistep dissociation and incorporation of silica components into the polymer. It was found that the reduction of electron density as well as precursor residence time is important for the plasma polymerization process to prevent the excess dissociation of the precursor

  10. Stochastic simulation of biological reactions, and its applications for studying actin polymerization.

    Science.gov (United States)

    Ichikawa, Kazuhisa; Suzuki, Takashi; Murata, Noboru

    2010-11-30

    Molecular events in biological cells occur in local subregions, where the molecules tend to be small in number. The cytoskeleton, which is important for both the structural changes of cells and their functions, is also a countable entity because of its long fibrous shape. To simulate the local environment using a computer, stochastic simulations should be run. We herein report a new method of stochastic simulation based on random walk and reaction by the collision of all molecules. The microscopic reaction rate P(r) is calculated from the macroscopic rate constant k. The formula involves only local parameters embedded for each molecule. The results of the stochastic simulations of simple second-order, polymerization, Michaelis-Menten-type and other reactions agreed quite well with those of deterministic simulations when the number of molecules was sufficiently large. An analysis of the theory indicated a relationship between variance and the number of molecules in the system, and results of multiple stochastic simulation runs confirmed this relationship. We simulated Ca²(+) dynamics in a cell by inward flow from a point on the cell surface and the polymerization of G-actin forming F-actin. Our results showed that this theory and method can be used to simulate spatially inhomogeneous events.

  11. Stochastic simulation of biological reactions, and its applications for studying actin polymerization

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhisa; Suzuki, Takashi; Murata, Noboru

    2010-01-01

    Molecular events in biological cells occur in local subregions, where the molecules tend to be small in number. The cytoskeleton, which is important for both the structural changes of cells and their functions, is also a countable entity because of its long fibrous shape. To simulate the local environment using a computer, stochastic simulations should be run. We herein report a new method of stochastic simulation based on random walk and reaction by the collision of all molecules. The microscopic reaction rate P r is calculated from the macroscopic rate constant k. The formula involves only local parameters embedded for each molecule. The results of the stochastic simulations of simple second-order, polymerization, Michaelis–Menten-type and other reactions agreed quite well with those of deterministic simulations when the number of molecules was sufficiently large. An analysis of the theory indicated a relationship between variance and the number of molecules in the system, and results of multiple stochastic simulation runs confirmed this relationship. We simulated Ca 2+ dynamics in a cell by inward flow from a point on the cell surface and the polymerization of G-actin forming F-actin. Our results showed that this theory and method can be used to simulate spatially inhomogeneous events

  12. Estimation of the Polymerization Rate of Liquid Propylene Using Adiabatic Reaction Calorimetry and Reaction Dilatometry

    NARCIS (Netherlands)

    Al-haj Ali, Mohammad; Betlem, Ben; Roffel, Brian; Weickert, Günter

    2007-01-01

    The use of pressure-drop and constant-pressure dilatometry for obtaining rate data for liquid propylene polymerization in filled batch reactors was examined. The first method uses reaction temperature and pressure as well as the compressibility of the reactor contents to calculate the polymerization

  13. NATO Advanced Study Institute on Ring-opening Metathesis Polymerization of Olefins and Polymerization of Alkynes

    CERN Document Server

    1998-01-01

    The first NATO Advanced Study Institute on Olefin Metathesis and Polymerization Catalysts was held on September 10-22, 1989 in Akcay, Turkey. Based on the fundamental research of RRSchrock, RGrubbs and K.B.Wagener in the field of ring opening metathesis polymerization (ROMP), acyclic diene metathesis (ADMET) and alkyne polymerization, these areas gained growing interest within the last years. Therefore the second NATO-ASI held on metathesis reactions was on Ring Opening Metathesis Po­ lymerization of Olefins and Polymerization of Alkynes on September 3-16, 1995 in Akcay, Turkey. The course joined inorganic, organic and polymer chemists to exchange their knowledge in this field. This volume contains the main and short lectures held in Akcay. To include ADMET reactions better into the title of this volume we changed it into: Metathesis Polymerization of Olefins and Alkyne Polymerization. This volume is addressed to research scientists, but also to those who start to work in the area of olefin metathesis and al...

  14. Coarse-grained molecular dynamics simulations of polymerization with forward and backward reactions.

    Science.gov (United States)

    Krajniak, Jakub; Zhang, Zidan; Pandiyan, Sudharsan; Nies, Eric; Samaey, Giovanni

    2018-06-11

    We develop novel parallel algorithms that allow molecular dynamics simulations in which byproduct molecules are created and removed because of the chemical reactions during the molecular dynamics simulation. To prevent large increases in the potential energy, we introduce the byproduct molecules smoothly by changing the non-bonded interactions gradually. To simulate complete equilibrium reactions, we allow the byproduct molecules attack and destroy created bonds. Modeling of such reactions are, for instance, important to study the pore formation due to the presence of e.g. water molecules or development of polymer morphology during the process of splitting off byproduct molecules. Another concept that could be studied is the degradation of polymeric materials, a very important topic in a recycling of polymer waste. We illustrate the method by simulating the polymerization of polyethylene terephthalate (PET) at the coarse-grained level as an example of a polycondensation reaction with water as a byproduct. The algorithms are implemented in a publicly available software package and are easily accessible using a domain-specific language that describes chemical reactions in an input configuration file. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  15. Studies on radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Omichi, Hideki

    1978-09-01

    Radiation-induced graft polymerization is used extensively to improve physical properties of polymers, but few processes are now commercialized. The reason for this is partly inadequate basic research on the reaction and partly the difficulty in developing the grafting process with large radiation source. Firstly, new techniques are proposed of studying kinetics of the graft polymerization in heterogeneous system. Based on the grafting yield, the molecular weight of graft chains, and the amount of radicals given by ESR and activation analysis, kinetic parameters are obtained and the reaction mechanism of grafting process is discussed. Secondly, the development of grafting process of poly (vinyl chloride)-butadiene is described. By study of the reaction, process design, construction and operation of the pilot plant, and economic analysis of the process, this process with 60 Co gamma ray sources is shown to be industrially promising. (author)

  16. Competition Between Hydrotreating and Polymerization Reactions During Pyrolysis Oil Hydrodeoxygenation

    NARCIS (Netherlands)

    Mercader, F. De Miguel; Koehorst, P. J. J.; Heeres, H. J.; Kersten, S. R. A.; Hogendoorn, J. A.

    2011-01-01

    Hydrodeoxygenation (HDO) of pyrolysis oil is an upgrading step that allows further coprocessing of the oil product in (laboratory-scale) standard refinery units to produce advanced biofuels. During HDO, desired hydrotreating reactions are in competition with polymerization reactions that can lead to

  17. Diffusion-controlled reaction. V. Effect of concentration-dependent diffusion coefficient on reaction rate in graft polymerization

    International Nuclear Information System (INIS)

    Imre, K.; Odian, G.

    1979-01-01

    The effect of diffusion on radiation-initiated graft polymerization has been studied with emphasis on the single- and two-penetrant cases. When the physical properties of the penetrants are similar, the two-penetrant problems can be reduced to the single-penetrant problem by redefining the characteristic parameters of the system. The diffusion-free graft polymerization rate is assumed to be proportional to the upsilon power of the monomer concentration respectively, and, in which the proportionality constant a = k/sub p/R/sub i//sup w//k/sub t//sup z/, where k/sub p/ and k/sub t/ are the propagation and termination rate constants, respectively, and R/sub i/ is the initiation rate. The values of upsilon, w, and z depend on the particular reaction system. The results of earlier work were generalized by allowing a non-Fickian diffusion rate which predicts an essentially exponential dependence on the monomer concentration of the diffusion coefficient, D = D 0 [exp(deltaC/M)], where M is the saturation concentration. A reaction system is characterized by the three dimensionless parameters, upsilon, delta, and A = (L/2)[aM/sup (upsilon--1)//D 0 ]/sup 1/2/, where L is the polymer film thickness. Graft polymerization tends to become diffusion controlled as A increases. Larger values of delta and ν cause a reaction system to behave closer to the diffusion-free regime. Transition from diffusion-free to diffusion-controlled reaction involves changes in the dependence of the reaction rate on film thickness, initiation rate, and monomer concentration. Although the diffusion-free rate is w order in initiation rate, upsilon order in monomer, and independent of film thickness, the diffusion-controlled rate is w/2 order in initiator rate and inverse first-order in film thickness. Dependence of the diffusion-controlled rate on monomer is dependent in a complex manner on the diffusional characteristics of the reaction system. 11 figures, 4 tables

  18. Reaction of Acetylenedicarboxylic Acid Made Easy: High-Pressure Route for Polymerization

    DEFF Research Database (Denmark)

    Delori, Amit; Hutchison, Ian B.; Bull, Craig L.

    2018-01-01

    A breakthrough has been achieved in improving the efficiency of solid-state polymerization of acetylenedicarboxylic acid (ADCA). Traditional solid-state polymerization of ADCA is marked by long exposure times of γ-radiation (>10 days) and very low yields (around 5.5%). We have been able to perform...... a reaction to an n = 8 oligomer, as confirmed by matrix-assisted laser desorption/ionization-time of flight, in less than 2 min by employing ∼6 GPa of pressure. We have determined the crystal structure of ADCA on increasing pressure to (5.2 GPa) to provide insight into the process of polymerization...... with Pixel calculations supporting our evaluation of the polymerization process....

  19. Numerical Analysis Of Hooke Jeeves-Runge Kutta To Determine Reaction Rate Equation In Pyrrole Polymerization

    International Nuclear Information System (INIS)

    Gunawan, Indra; Sulistyo, Harry; Rochmad

    2001-01-01

    The numerical analysis of Hooke Jeeves Methods combined with Runge Kutta Methods is used to determine the exact model of reaction rate equation of pyrrole polymerization. Chemical polymerization of pyrrole was conducted with FeCI 3 / pyrrole solution at concentration ratio of 1.62 mole / mole and 2.18 mole / mole with varrying temperature of 28, 40, 50, and 60 o C. FeCl 3 acts as an oxidation agent to form pyrrole cation that will polymerize. The numerical analysis was done to examine the exact model of reaction rate equation which is derived from reaction equation of initiation, propagation, and termination. From its numerical analysis, it is found that the pyrrole polymerization follows third order of pyrrole cation concentration

  20. System Identification for Experimental Study for Polymerization Catalyst Reaction in Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Ahmmed Saadi Ibrehem

    2011-11-01

    Full Text Available In this work, system identification method is used to capture the reactor characteristics of production rate of polyethylene (PE based on published experimental data. The identification method is used to measure the percentage effect on the production rate of PE by measuring the effect of input factors of temperature of reaction, hydrogen concentration, and [Al]/[Ti] molar catalyst ratio. Temperature of reaction has big effects equal 52.4 % on the output of the system and 47.6 % on interaction of the system's parameters compare to other two factors. Also, hydrogen concentration has big effect equal 45.66 % on the output of the system and 14.7 % on interaction of the system's parameters. [Al]/[Ti] molar catalyst ratio has big effect on interaction of the system equal 28.6 and 1.94 % on the output of the system but less than the reaction temperature and hydrogen concentration. All these results depend on experiment results and these results are very important in industrial plants. ©2011 BCREC UNDIP. All rights reserved(Received: 13rd May 2011; Revised: 27th July 2011; Accepted: 22th September 2011[How to Cite: Ahmmed S. Ibrehem. (2011. System Identification for Experimental Study for Polymerization Catalyst Reaction in Fluidized Bed. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 137-146. doi:10.9767/bcrec.6.2.874.137-146][How to Link / DOI: http://dx,doi.org/10.9767/bcrec.6.2.874.137-146 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/874 ] | View in 

  1. Studies on the polymerization of acrolein oxime, 6

    International Nuclear Information System (INIS)

    Masuda, Seizo; Tamai, Harumi; Ota, Tadatoshi; Torii, Munetomo; Tanaka, Masami.

    1979-01-01

    Radiation-induced polymerization and copolymerization of acrolein oxime are investigated in different solvents and at a wide range of temperature for obtaining information on the reaction mechanism. Acrolein oxime is polymerized ionically, irrespective of dryness of the sample. Arrhenius plots for the polymerization rate, which do not yield a linear relation, can be adequately approximated by two straight lines. An anionic mechanism is operative above the room temperature, while a cationic mechanism predominates below -23 0 C. The reaction in the intermediate temperature range proceeds by a competitive mechanism, and the rate of the anionic and cationic polymerizations becomes equal at the temperature near -5 0 C. The reaction rate is proportional to the square root of dose rate at room temperature and -23 0 C. On the basis of these data, it is proposed that the polymerization of acrolein oxime by γ-irradiation proceeds by free-ionic mechanisms. (author)

  2. Reaction kinetics and modeling of photoinitiated cationic polymerization of an alicyclic based diglycidyl ether

    International Nuclear Information System (INIS)

    Harikrishna, R.; Ponrathnam, S.; Tambe, S.S.

    2014-01-01

    Highlights: • Photocationic polymerization of alicyclic based diglycidyl ether was carried out. • Kinetic parameters were influenced by gelation and diffusional restrictions. • Applicability of autocatalytic model was established by nonlinear regression. • System showed higher activation energy than cycloaliphatic and aromatic diepoxides. -- Abstract: Photoinitiated cationic polymerization of cycloaliphatic diepoxides had received tremendous attention, while studies with lesser polymerizable diglycidyl ethers are comparatively less reported. The present work deals with the photoinitiated cationic polymerization of cyclohexane dimethanol diglycidyl ether followed by estimation of kinetic parameters. The effects of concentration of photoinitiator and temperature on curing performance were studied using photo differential scanning calorimeter or photo DSC with polychromatic radiation. It was observed that the rate of polymerization as well as ultimate conversion increased with increasing concentration of photoinitiator and temperature. The influences of gelation as well as diffusional restrictions have remarkable effect on cure performance. The kinetic parameters as per autocatalytic kinetic model were studied by Levenberg–Marquardt nonlinear regression method instead of conventional linear method for obtaining more accurate values of apparent rate constant. It was observed that the model fits with data from initial stages to almost towards the end of the reaction. The activation energy was found to be higher than the values reported for more reactive cycloaliphatic diepoxides. The value of pre-exponential factor increased with increase in activation energy showing influence of gelation at early stages of reaction

  3. MALDI MS-based Composition Analysis of the Polymerization Reaction of Toluene Diisocyanate (TDI) and Ethylene Glycol (EG).

    Science.gov (United States)

    Ahn, Yeong Hee; Lee, Yeon Jung; Kim, Sung Ho

    2015-01-01

    This study describes an MS-based analysis method for monitoring changes in polymer composition during the polyaddition polymerization reaction of toluene diisocyanate (TDI) and ethylene glycol (EG). The polymerization was monitored as a function of reaction time using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). The resulting series of polymer adducts terminated with various end-functional groups were precisely identified and the relative compositions of those series were estimated. A new MALDI MS data interpretation method was developed, consisting of a peak-resolving algorithm for overlapping peaks in MALDI MS spectra, a retrosynthetic analysis for the generation of reduced unit mass peaks, and a Gaussian fit-based selection of the most prominent polymer series among the reconstructed unit mass peaks. This method of data interpretation avoids errors originating from side reactions due to the presence of trace water in the reaction mixture or MALDI analysis. Quantitative changes in the relative compositions of the resulting polymer products were monitored as a function of reaction time. These results demonstrate that the mass data interpretation method described herein can be a powerful tool for estimating quantitative changes in the compositions of polymer products arising during a polymerization reaction.

  4. Radical-Mediated Enzymatic Polymerizations

    Science.gov (United States)

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  5. Modification of Clays by Sol-Gel Reaction and Their Use in the Ethylene In Situ Polymerization for Obtaining Nanocomposites

    Directory of Open Access Journals (Sweden)

    E. Moncada

    2012-01-01

    Full Text Available The nanocomposites formation by in situ polymerization used a metallocene catalyst (butyl-2-cyclopentadienyl zirconium 2-chlorines and a hectorite synthetic clay type which is discussed. This research was carried out in two phases. The first phase consisted of mixing the components of the metallocenic polymerization reaction (metallocene-methylaluminoxane-ethylene with clay in a reactor. In the second phase, the metallocenic catalytic system was supported by clay particles and then a polymerization reaction was made. In this second phase, the clay particles were modified using a sol-gel reaction with different pH values: pH = 3, pH = 8, and pH = 12. The results were compared in terms of the catalytic activity in the different systems (phase 1 and phase 2 and the nanoparticle morphology of nanocomposites generated in this study.

  6. Ring-Expansion/Contraction Radical Crossover Reactions of Cyclic Alkoxyamines: A Mechanism for Ring Expansion-Controlled Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Atsushi Narumi

    2018-06-01

    Full Text Available Macrocyclic polymers present an important class of macromolecules, displaying the reduced radius of gyration or impossibility to entangle. A rare approach for their synthesis is the ring expansion-controlled radical “vinyl” polymerization, starting from a cyclic alkoxyamine. We here describe ring-expansion radical crossover reactions of cyclic alkoxyamines which run in parallel to chain-propagation reactions in the polymerization system. The radical crossover reactions extensively occurred at 105–125 °C, eventually producing high molecular weight polymers with multiple inherent dynamic covalent bonds (NOC bonds. A subsequent ring-contraction radical crossover reaction and the second ring-expansion radical crossover reaction are also described. The major products for the respective three stages were shown to possess cyclic morphologies by the molecular weight profiles and the residual ratios for the NOC bonds (φ in %. In particular, the high φ values ranging from ca. 80% to 98% were achieved for this cyclic alkoxyamine system. This result verifies the high availability of this system as a tool demonstrating the ring-expansion “vinyl” polymerization that allows them to produce macrocyclic polymers via a one-step vinyl polymerization.

  7. Molecular extinction coefficients of lead sulfide and polymerized diaminobenzidine as final reaction products of histochemical phosphatase reactions

    NARCIS (Netherlands)

    van Noorden, C. J.; Jonges, G. N.

    1992-01-01

    Molar extinction coefficients of precipitated lead sulfide (PbS) and polymerized diaminobenzidine (polyDAB) have been determined at wavelengths of 450 nm and 480 nm, respectively, for quantitative histochemical analysis of phosphatase reactions. These values are essential for the conversion of

  8. The Nanoconfined Free Radical Polymerization: Reaction Kinetics and Thermodynamics

    Science.gov (United States)

    Zhao, Haoyu; Simon, Sindee

    The reaction kinetics and thermodynamics of nanoconfined free radical polymerizations are investigated for methyl methacrylate (MMA) and ethyl methacrylate (EMA) monomers using differential scanning calorimetry. Controlled pore glass is used as the confinement medium with pore diameters as small as 7.5 nm; the influence of both hydrophobic (silanized such that trimethylsilyl groups cover the surface) and hydrophilic (native silanol) surfaces is investigated. Propagation rates increase when monomers are reacted in the hydrophilic pores presumably due to the specific interactions between the carbonyl and silanol groups; however, the more flexible EMA monomer shows weaker effects. On the other hand, initial rates of polymerization in hydrophobic pores are unchanged from the bulk. In both pores, the onset of autoacceleration occurs earlier due to the reduced diffusivity of confined chains, which may be compensated at high temperatures. In addition to changes in kinetics, the reaction thermodynamics can be affected under nanoconfinement. Specifically, the ceiling temperature (Tc) is shifted to lower temperatures in nanopores, with pore surface chemistry showing no significant effects; the equilibrium conversion is also reduced at high temperatures below Tc. These observations are attributed to a larger negative change in entropy on propagation for the confined system, with the MMA system again showing greater effects. Funding from ACS PRF is gratefully acknowledged.

  9. Gas phase polymerization of propylene. Reaction kinetics and molecular weight distribution

    NARCIS (Netherlands)

    Meier, G.B.; Weickert, G.; van Swaaij, Willibrordus Petrus Maria

    2001-01-01

    Gas-phase polymerizations have been executed at different temperatures, pressures, and hydrogen concentrations using Me2Si[Ind]2ZrCl2 / methylaluminoxane / SiO2(Pennsylvania Quarts) as a catalyst. The reaction rate curves have been described by a kinetic model, which takes into account the initially

  10. Effect of degree of polymerization and of temperature on the reactivity of poly(vinyl alcohol) by applying T-for-H exchange reaction

    International Nuclear Information System (INIS)

    Imaizumi, Hiroshi; Imai, Kazunari

    1999-01-01

    In order to reveal the effect of the degree of polymerization and of temperature on the reactivity of functional polymers, the hydrogen-isotope exchange reaction between poly(vinyl alcohol) (PVA) having each degree of polymerization and tritiated water vapor (HTO vapor) was dynamically observed at 35-80 deg C in a gas-solid system. The reason of the observation at 35 deg C is to clarify the possibility of the T-for-H exchange reaction at a temperature near the environment. The degree of polymerization of PVA used in this work was 500, 1000, 2000, 2800, or 3500. Applying the A''-McKay plot method to the data obtained in each observation, the rate constant (k) for each PVA in the reaction was calculated. Moreover, the Arrhenius plot for each PVA was made by using the k values. Comparing the k values and the results obtained previously, the following six matters have been clarified. In the temperature range of 35-80 deg C, the T-for-H exchange reaction between HTO vapor and each PVA occurred, and in this case, the atoms participating in the reaction are the H atoms in the OH groups in PVA and T atoms in HTO vapor. The reactivity of each PVA increases with rising temperature, and decreases with increasing the degree of polymerization. The rate of the decreasing of k with increasing the degree of polymerization changes at near the degree of polymerization of 1000, and the rate is fairly large under the degree of 1000. Under the degree of polymerization of 1000, the reactivity of PVA is more affected by the effect of the degree of polymerization than by the effect of temperature, and the reactivity is large when the degree of polymerization is small. Over the degree of polymerization of 1000, the reactivity of PVA is affected by both the degree of polymerization and temperature, and the reactivity is large when temperature is high. For the T-for-H exchange reaction in a gas-solid system, the reaction form is unchanged in the range of 35-80 deg C, and the reactivity at 35

  11. Kinetic advantages of using microwaves in the emulsion polymerization of MMA

    Energy Technology Data Exchange (ETDEWEB)

    Costa, C. [Departamento de Engenharia Quimica, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-900, Florianopolis, SC (Brazil); Santos, A.F.; Fortuny, M. [Programa de Mestrado em Engenharia de Processos, Universidade Tiradentes, Instituto de Tecnologia e Pesquisa, Av. Murilo Dantas, 300, CEP: 49032-490, Aracaju, SE (Brazil); Araujo, P.H.H. [Departamento de Engenharia Quimica, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-900, Florianopolis, SC (Brazil); Sayer, C. [Departamento de Engenharia Quimica, Universidade Federal de Santa Catarina, Campus Universitario, CEP: 88040-900, Florianopolis, SC (Brazil)], E-mail: csayer@enq.ufsc.br

    2009-03-01

    Microwave irradiation has been an interesting alternative for heating systems and several chemical reactions. In polymerization processes, microwaves can enhance reaction rates or improve specific characteristics of the formed polymer. In this work, the use of microwave irradiation in emulsion polymerization reactions has been studied, using a commercial microwave reactor, which is able to perform syntheses under controlled conditions of temperature and power. Methyl methacrylate emulsion polymerization reactions were faster, resulting in smaller polymer particles, in comparison to the conventional heating method (reactions in a jacketed reactor). Different effects were observed in the emulsion polymerization of butyl acrylate. To study the effect of high power microwave irradiation upon the emulsion polymerization, a pulsed irradiation strategy was developed, in which the samples were repeatedly heated within short intervals of time (about 27 s) at the maximum microwave power. A significant reduction of the total time of irradiation was observed in reactions carried out under the pulsed scheme, showing the kinetic advantages of using microwaves in emulsion polymerization processes.

  12. Survey and research on precision polymerization polymeric materials; Seimitsu jugo kobunshi zairyo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Survey and research on the precision control of primary structure of polymeric materials and the precision evaluation technology have been conducted to develop advanced polymeric materials. It is proposed that the three basic processes of polymer synthesis, i.e., addition, condensation, and biomimesis, in forming the precision polymerization skeleton are to be covered through a centralized joint research effort with participation of industry, academia, and the government institute and under the leadership of researchers from academic institutions as the team leaders. For the study of technology trends, international conferences held in UK, Germany, and Hawaii are introduced, and domestic meetings, i.e., Annual Polymer Congress and Polymer Conference, are summarized. In addition, Precision Polymerization Forum and International Workshop on Precision Polymerization were held. The basic studies include a quantum-chemical elucidation of the elementary process in polymerization reaction, time-resolved analysis of polymerization process and polymer properties, synthesis of polymers with controlled microstructures by coordination polymerization using metal complexes, synthesis of polymer with controlled microstructures by precision polycondensation, molecular recognition in catalyst-reaction site, and synthesis of imprinting polymers. 246 refs., 117 figs., 14 tabs.

  13. Study of n-Butyl Acrylate Self-Initiation Reaction Experimentally and via Macroscopic Mechanistic Modeling

    Directory of Open Access Journals (Sweden)

    Ahmad Arabi Shamsabadi

    2016-04-01

    Full Text Available This paper presents an experimental study of the self-initiation reaction of n-butyl acrylate (n-BA in free-radical polymerization. For the first time, the frequency factor and activation energy of the monomer self-initiation reaction are estimated from measurements of n-BA conversion in free-radical homo-polymerization initiated only by the monomer. The estimation was carried out using a macroscopic mechanistic mathematical model of the reactor. In addition to already-known reactions that contribute to the polymerization, the model considers a n-BA self-initiation reaction mechanism that is based on our previous electronic-level first-principles theoretical study of the self-initiation reaction. Reaction rate equations are derived using the method of moments. The reaction-rate parameter estimates obtained from conversion measurements agree well with estimates obtained via our purely-theoretical quantum chemical calculations.

  14. Condensed tannins. Base-catalysed reactions of polymeric procyanidins with phloroglucinol: Intramolecular rearrangements

    Science.gov (United States)

    Peter E. Laks; Richard W. Hemingway; Anthony H. Conner

    1987-01-01

    Reactions of polymeric procyanidins with phloroglucinol at pH 12.0 and temperatures of 23 or 50°C gave epicatechin-(4β)-phloroglucinol (7), by cleavage of the interflavanoid bond between procyanidin units with subsequent addition of phloroglucinol, and (+)-catechin from the terminal unit. The phloroglucinol adduct (7) rearranged to an enolic form of 8-(3,4-...

  15. Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions.

    Science.gov (United States)

    Easter, Quinn T; Blum, Suzanne A

    2017-10-23

    Multiple active individual molecular ruthenium catalysts have been pinpointed within growing polynorbornene, thereby revealing information on the reaction dynamics and location that is unavailable through traditional ensemble experiments. This is the first single-turnover imaging of a molecular catalyst by fluorescence microscopy and allows detection of individual monomer reactions at an industrially important molecular ruthenium ring-opening metathesis polymerization (ROMP) catalyst under synthetically relevant conditions (e.g. unmodified industrial catalyst, ambient pressure, condensed phase, ca. 0.03 m monomer). These results further establish the key fundamentals of this imaging technique for characterizing the reactivity and location of active molecular catalysts even when they are the minor components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Experimental study of living free radical polymerization using trifunctional initiator and polymerization mediated by nitroxide

    International Nuclear Information System (INIS)

    Galhardo, Eduardo; Lona, Liliane M.F.

    2009-01-01

    Controlled free radical polymerization or living free radical polymerization has received increasing attention as a technique for the production of polymers with microstructure highly controlled. In particular, narrow molecular weight distributions are obtained with polydispersity very close to one. In this research it was investigate the controlled polymerization mediated by nitroxide, using a cyclic trifunctional peroxide. As long as we know, there are only publications in literature dealing with NMRP using mono- and bi-functional initiators. It was believed that the trifunctional peroxide can increase the rate of polymerization, since more free radicals are generated, if compared with initiators with lower functionality. Furthermore, the fact of the initiator be cyclic means that branches are not generated in the chains, which theoretically prevents an increase in polydispersity of the polymer. The effect of the dissociation constant of the trifunctional initiator in the velocity of the reaction was analyzed. (author)

  17. On reactions of polymerization of p-element hydroxides in aqueous solutions

    International Nuclear Information System (INIS)

    Tikavyj, V.F.; Lesnikovich, A.I.

    1978-01-01

    The tendency of p-element hydroxides towards polymerization in aqueous solutions has been considered with respect to their location in the Periodic Table. Stable hydroxides of d-elements are practically all polymerized; among s-elements only berillium and magnesium hydroxides polymerize as the least dissociated ones. Hydroxides of the elements located to the right of the 4 Group and above the 5-th Period do not polymerize in aqueous solutions. The structure and tendency towards polymerization of In, Te, and I compounds have been studied. The tendency to polymerization of all hydroxides of p-elements located below the 4-th Period is explained from the standpoint of electron structure and the simplest thermodynamic analysis (entropy, enthalpy)

  18. CONCERNING CHAIN GROWTH SPECIFIC REACTION RATE AS A PART OF THE PROCESS OF METHYL METHACRYLATE MASS RADICAL POLYMERIZATION

    Directory of Open Access Journals (Sweden)

    A. A. Sultanova

    2017-02-01

    Full Text Available It is the chain growth specific reaction rate that was determined for the process of methyl methacrylate mass radical polymerization within the temperature range of 40–900 С in quasi-steady approximation by means of Monte Carlo method. The theoretical model of radical polymerization was developed taking the gel effect into account. Computer software was developed that enables to imitate radical polymerization process taking gel effect into account within the minimum run time. The programme was tested on asymptotic examples as well as was applied for methyl methacrylate mass radical polymerization. The programme makes it possible to calculate monomer conversion, molecular mass variation, molecular-mass distribution, etc.

  19. Continuous enzyme reactions with immobilized enzyme tubes prepared by radiation cast-polymerization

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao

    1986-01-01

    Immobilized glucose oxidase tubes were prepared by radiation cast-polymerization of 2-hydroxyethyl methacrylate and tetraethyleneglycol diacrylate monomer at low temperatures. The immobilized enzyme tubes which were spirally set in a water bath were used as reactor, in which the enzyme activity varied with tube size and flow rate of the substrate. The conversion yield of the substrate in continuous enzyme reaction was about 80%. (author)

  20. Mechanocatalytic polymerization and cross-linking in a polymeric matrix

    NARCIS (Netherlands)

    Jakobs, R.T.M.; Ma, Shuang; Sijbesma, R.P.

    2013-01-01

    A latent olefin metathesis catalyst, bearing two polymeric NHC ligands, was embedded in a semicrystalline polymer matrix containing cyclic olefins. The catalyst was activated by straining the solid material under compression, resulting in polymerization and cross-linking reactions of the monomers in

  1. Twin screw extruders as polymerization reactors for a free radical homo polymerization

    NARCIS (Netherlands)

    Ganzeveld, K.J.; Janssen, L.P.B.M.

    The bulk polymerization of n-butylmethacrylate was investigated in a counter-rotating twin screw extruder. It appeared that the gel effect, occurring with bulk polymerizations, affected the polymerization progress very strongly. Due to this effect the conversion of the reaction is independent of the

  2. Nanoparticles from a controlled polymerization process

    International Nuclear Information System (INIS)

    Tirumala, V.R.; Caneba, G.T.; Dar, Y.; Wang, H.-H.; Mancini, D.C.

    2003-01-01

    Free-radical retrograde precipitation polymerization process in the past has shown excellent control characteristics over reaction rate, molecular weight, and in the entrapment of live radicals for the generation of block copolymers. The same principle has now been extended to study the reaction confinement to a nanoscale region. Nanosized polymer particles have been reported to form from block copolymers, conventional precipitation polymerization methods, or through emulsion polymerization approaches. In this work, we present a new method of generating nanosized polymer particles by polymerizing the monomer in an environment that precipitates the polymer above the lower critical solution temperature. The nanoparticles have been characterized by both tapping-mode atomic force microscopy observations and in situ synchrotron time-resolved small-angle X-ray scattering analysis. The results from both the techniques showed the formation of nanoparticles in the size range of 15-30 nm, directly from the polymerization process.

  3. Studies on the polymerization of acrolein oxime, 13

    International Nuclear Information System (INIS)

    Ota, Tadatoshi; Mori, Yoshikazu; Tamai, Harumi; Masuda, Seizo; Tanaka, Masami.

    1980-01-01

    The radiation-induced polymerization of acrolein oxime was carried out at temperatures ranging from room temperature to -78 0 C, and the resulting low molecular products were analyzed by gas chromatography-mass spectrometry. Acetaldoxime, propionaldoxime, propenylhydroxylamines, dioximes etc. were obtained. Initial processes of the polymerization are discussed on the basis of these reaction products. The present work offers further corroborating evidence for the already-described postulation that an anionic mechanism is operative above room temperature, and a cationic mechanism is predominant below -23 0 C. (author)

  4. Initiation of the microgene polymerization reaction with non-repetitive homo-duplexes

    International Nuclear Information System (INIS)

    Itsko, Mark; Zaritsky, Arieh; Rabinovitch, Avinoam; Ben-Dov, Eitan

    2008-01-01

    Microgene Polymerization Reaction (MPR) is used as an experimental system to artificially simulate evolution of short, non-repetitive homo-duplex DNA into multiply-repetitive products that can code for functional proteins. Blunt-end ligation by DNA polymerase is crucial in expansion of homo-duplexes (HDs) into head-to-tail multiple repeats in MPR. The propagation mechanism is known, but formation of the initial doublet (ID) by juxtaposing two HDs and polymerization through the gap has been ambiguous. Initiation events with pairs of HDs using Real-Time PCR were more frequent at higher HD concentrations and slightly below the melting temperature. A process molecularity of about 3.1, calculated from the amplification efficiency and the difference in PCR cycles at which propagation was detected at varying HD concentrations, led to a simple mechanism for ID formation: the gap between two HDs is bridged by a third. Considering thermodynamic aspects of the presumed intermediate 'nucleation complex' can predict relative propensity for the process with other HDs

  5. Polymerization of N-(fluoro phenyl) maleimides

    International Nuclear Information System (INIS)

    Barrales-Rienda, J.M.; Ramos, J.G.; Chaves, M.S.

    1979-01-01

    Poly(N-aryl maleimide)s of characteristic structures have been synthesized and some of their physical properties studied. The polymerization of N-(fluoro phenyl) maleimides by free-radical initiation in bulk or in solution and by anionic catalyst have been studied to compare the characteristics of polymerization by γ-ray irradiation with that by free-radical initiation. The polymers were characterized by elemental analysis, intrinsic viscosity, spectroscopy (IR and NMR), programmed thermogravimetric analysis, and x-ray diffraction. Spectra of polymers prepared by radiation and anionic polymerization were nearly identical with those of polymers prepared by free-radical polymerization initiated by azobisisobutyronitrile in bulk or in solution and by the self-initiated thermal polymerization. A variety of reaction conditions were tried, but all attempts to change the molecular structure of the polymers were unsuccessful. Rates of thermal degradation for poly[N-(fluoro phenyl) maleimide]s have been analyzed by using a multiple-heating-rate procedure. Overall activation energy, order of reaction, and frequency factor have been evaluated. 6 figures, 8 tables

  6. Visible lights induced polymerization reactions: interactions between rose bengal and iron aren complex

    International Nuclear Information System (INIS)

    Burget, D.; Grotzinger, C.; Jacques, P.; Fouassier, J.P.

    1999-01-01

    The present paper is devoted to an investigation of the interactions between Rose Bengal (RB) and an Iron aren (Irg(+)) complex that are usable in visible light induced polymerization reactions. Steady state and flash photolysis experiments were performed in order to elucidate the nature of the intermediates formed after light excitation. A complete scheme of evolution of the excited states is discussed

  7. The Effects of Reaction Variables on Solution Polymerization of Vinyl Acetate and Molecular Weight of Poly(vinyl alcohol Using Taguchi Experimental Design

    Directory of Open Access Journals (Sweden)

    M.H. Navarchian

    2009-12-01

    Full Text Available Poly(vinyl acetate is synthesized via solution polymerization, and then it is converted to poly(vinyl alcohol by alkaline alcoholysis. The aim of the work study was to investigate statistically the  influence of reaction variables in vinyl acetate polymerization, the conversion of this monomer to polymer, degree of branching of acetyl group in poly(vinyl acetate, as well as the molecular weight of poly(vinyl alcohol, using Taguchi experimental design approach. The reaction variables were polymerization time, molar ratio of initiator to monomer, and volume ratio of monomer to solvent. The statistical analysis of variance of the results revealed that all factors have significantly influenced the conversion and degree of branching. Volume ratio of monomer to solvent is the only factor affecting the molecular weight of poly(vinyl alcohol, and has the greatest influence on all responses. By increasing this ratio, the conversion, degree of branching of acetyl group in poly(vinyl acetate, and molecular weight of poly(vinyl alcohol were increased.

  8. Online observation of emulsion polymerization by fluorescence technique

    CERN Document Server

    Rudschuck, S; Fuhrmann, J

    1999-01-01

    An online observation of local polarity via fluorescence spectroscopy was used to study the formation and growth of polymer particles during an emulsifier-free heterogeneous polymerization. The reaction mixture consisted of styrene dispersed in water and the polymerization was initiated by a macro-initiator (hydrolyzed propene-maleic acid copolymer with t-butyl perester groups). Pyrenyl probes were attached to the backbone of the initiator to analyze the heterogeneous reaction. The experimental results allow a clear distinction of different time regions during the heterogeneous polymerization. Information about the heating period, the latex formation, the particle growth and the final stage of the polymerization process (gel point) were obtained. (11 refs).

  9. Carboxyl-Functionalized Polymeric Microspheres Prepared by One-Stage Photoinitiated RAFT Dispersion Polymerization

    Directory of Open Access Journals (Sweden)

    Jianbo Tan

    2017-12-01

    Full Text Available Herein, we report a photoinitiated reversible addition-fragmentation chain transfer (RAFT dispersion copolymerization of methyl methacrylate (MMA and methyl methacrylic (MAA for the preparation of highly monodisperse carboxyl-functionalized polymeric microspheres. High rates of polymerization were observed, with more than 90% particle yields being achieved within 3 h of UV irradiation. Effects of reaction parameters (e.g., MAA concentration, RAFT agent concentration, photoinitiator concentration, and solvent composition were studied in detail, and highly monodisperse polymeric microspheres were obtained in most cases. Finally, silver (Ag composite microspheres were prepared by in situ reduction of AgNO3 using the carboxyl-functionalized polymeric microspheres as the template. The obtained Ag composite microspheres were able to catalyze the reduction of methylene blue (MB with NaBH4 as a reductant.

  10. Simultaneous measurement of polymerization stress and curing kinetics for photo-polymerized composites with high filler contents.

    Science.gov (United States)

    Wang, Zhengzhi; Landis, Forrest A; Giuseppetti, Anthony A M; Lin-Gibson, Sheng; Chiang, Martin Y M

    2014-12-01

    Photopolymerized composites are used in a broad range of applications with their performance largely directed by reaction kinetics and contraction accompanying polymerization. The present study was to demonstrate an instrument capable of simultaneously collecting multiple kinetics parameters for a wide range of photopolymerizable systems: degree of conversion (DC), reaction exotherm, and polymerization stress (PS). Our system consisted of a cantilever beam-based instrument (tensometer) that has been optimized to capture a large range of stress generated by lightly-filled to highly-filled composites. The sample configuration allows the tensometer to be coupled to a fast near infrared (NIR) spectrometer collecting spectra in transmission mode. Using our instrument design, simultaneous measurements of PS and DC are performed, for the first time, on a commercial composite with ≈80% (by mass) silica particle fillers. The in situ NIR spectrometer collects more than 10 spectra per second, allowing for thorough characterization of reaction kinetics. With increased instrument sensitivity coupled with the ability to collect real time reaction kinetics information, we show that the external constraint imposed by the cantilever beam during polymerization could affect the rate of cure and final degree of polymerization. The present simultaneous measurement technique is expected to provide new insights into kinetics and property relationships for photopolymerized composites with high filler content such as dental restorative composites. Published by Elsevier Ltd.

  11. Study on the effects of temperature, time and policy of pre polymerization on particle morphology in propylene slurry polymerization with heterogeneous ziegler-Natta catalysts

    International Nuclear Information System (INIS)

    Pircheraghi, G.; Pourmahdian, S.; Vatankhah, M.

    2008-01-01

    The effects of temperature, time and the strategy of pre polymerization were studied on the morphology of polypropylene particles. Propylene polymerization was carried out in slurry phase using fourth generation of Ziegler-Natta Catalyst, cyclohexylmethyl dimethoxysilane as external electron donor, and triethyl aluminum as co-catalyst. Pre polymerizations were carried out based on two strategies: isothermal and non-isothermal conditions. Particle imaging using SEM, bulk density, and particle size distribution was used to analyse the particle morphology. It was found that the variation of initial condition together with the change in the mechanism of particle fracture has a dominant effect on particle morphology. Each combination between the temperature and reaction time causes to have a special effect on the product particle morphology. It has become clear that in isothermal pre polymerization, spherical particles with identical properties were produced. In low temperature experiments particles with porous surface were observed. At increasing temperature, however, the pores disappeared. Non-isothermal pre polymerization produced different morphological types. In all experiments core shell structures were observed that seemed to be related to the structure of catalysts

  12. Electrocatalytic reduction of oxygen at vapor phase polymerized ...

    African Journals Online (AJOL)

    We successfully polymerized poly(3,4-ethylenedioxidethiophene) by vapor phase polymerization technique on rotating glassy carbon disk electrode. The catalytic activity of this electrode towards oxygen reduction reaction was investigated and showed remarkable activity. Rotating disk voltammetry was used to study the ...

  13. Polymerization of Alkylsilanes on ZIF-8 to Hierarchical Siloxane Microspheres and Microflowers

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2017-03-01

    Full Text Available The use of metal-organic frameworks (MOFs in the polymerization field remains comparatively rare up to now, let alone studies on the fabrication of polymer microstructures through a MOFs-catalyzed assembly process. Zeolitic imidazolate framework-8 (ZIF-8, a well-known MOF for its chemical and thermal stabilities, was used to induce a polymerization reaction of saturated alkylsilanes for the first time. The reaction temperature was found to be critical for morphology control of the polymerized ZIF-siloxane composites. The polymerization of alkylsilanes by ZIF-8 at room temperature resulted in siloxane microspheres while rose petal-like microstructures were obtained at higher temperature. The effects of the reaction time on the structures of the polymerization products were also investigated and the polymerization reaction process was proposed. This work expands the field of MOFs’ applications and develops a reasonable method for the multidimensional assembly of MOFs building blocks into required structures or platforms for designing new kinds of hierarchical morphologies, which to our knowledge has not been previously investigated.

  14. Synthesis of imine bond containing insoluble polymeric ligand and its transition metal complexes, structural characterization and catalytic activity on esterification reaction.

    Science.gov (United States)

    Gönül, İlyas; Ay, Burak; Karaca, Serkan; Saribiyik, Oguz Yunus; Yildiz, Emel; Serin, Selahattin

    2017-01-01

    In this study, synthesis of insoluble polymeric ligand (L) and its transition metal complexes [Cu(L)Cl 2 ]·2H 2 O (1) , [Co(L)Cl 2 (H 2 O) 2 ] (2) and [Ni(L)Cl 2 (H 2 O) 2 ] (3) , having the azomethine groups, were synthesized by the condensation reactions of the diamines and dialdehydes. The structural properties were characterized by the analytical and spectroscopic methods using by elemental analysis, Fourier Transform Infrared, Thermo Gravimetric Analysis, Powder X-ray Diffraction, magnetic susceptibility and Inductively Coupled Plasma. The solubilities of the synthesized polymeric materials were also investigated and found as insoluble some organic and inorganic solvents. Additionally, their catalytic performance was carried out for the esterification reaction of acetic acid and butyl acetate. The highest conversion rate is 75.75% by using catalyst 1 . The esterification of butanol gave butyl acetate with 100% selectivity.

  15. 13C Kinetic isotopic effect of polymerization on monomers with multiple bond

    International Nuclear Information System (INIS)

    Berman, E.L.; Polyakov, V.B.; Makovetskij, K.L.; Golenko, T.G.; Galimov, Eh.M.; AN SSSR, Moscow. Inst. Organicheskoj Khimii; AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii)

    1988-01-01

    13 C kinetic isotopic effect (KIE) of anionic and radical polymerization and metathesis reaction of monomers with multiple bonds are studied and correlation between the found KIE values of polymerization and the structure of transition state is established. 13 C KIE of polymerization reactions are investigated using monomers with natural content of the isotope. Polymerization was carried out using high-vacuum equipment: radical polymerization of methyl acrylate (MA) and vinyl acetate in benzene solution under the effect of benzoyl peroxide (60 deg C); anionic polymerization of MA, initiated by potassium butyl cellosolvolate, was realized in mass at 25 deg C; cyclopentene metathesis reaction was conducted in benzene under the effect of initiating system WCl 6 - (C 3 H 5 ) 2 Si(CH 3 ) 2 at -30 deg C; phenylacetylene polymers were prepared by polymerization in benzene solution at 20 deg C under the effect of WCl 6 . It is ascertained that 13 C KIE of radical and anionic polymerization of olefins and cycloolefin metathesis constitutes 2.0 -2.4%. Polymerization of compound with ternary bond is accompanied by a lower value of 13 C KIE (<1%), which is explained by double bond of reacting bond in transition state

  16. Highly efficient and selective pressure-assisted photon-induced polymerization of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Jiwen [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Song, Yang, E-mail: yang.song@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7 (Canada)

    2016-06-07

    The polymerization process of condensed styrene to produce polystyrene as an industrially important polymeric material was investigated using a novel approach by combining external compression with ultraviolet radiation. The reaction evolution was monitored as a function of time and the reaction products were characterized by in situ Fourier transform infrared spectroscopy. By optimizing the loading pressures, we observed highly efficient and selective production of polystyrene of different tacticities. Specifically, at relatively low loading pressures, infrared spectra suggest that styrene monomers transform to amorphous atactic polystyrene (APS) with minor crystalline isotactic polystyrene. In contrast, APS was found to be the sole product when polymerization occurs at relatively higher loading pressures. The time-dependent reaction profiles allow the examination of the polymerization kinetics by analyzing the rate constant and activation volume as a function of pressure. As a result, an optimized pressure condition, which allows a barrierless reaction to proceed, was identified and attributed to the very desirable reaction yield and kinetics. Finally, the photoinitiated reaction mechanism and the growth geometry of the polymer chains were investigated from the energy diagram of styrene and by the topology analysis of the crystal styrene. This study shows strong promise to produce functional polymeric materials in a highly efficient and controlled manner.

  17. A model of frontal polymerization using complex initiation

    Directory of Open Access Journals (Sweden)

    P. M. Goldfeder

    1999-01-01

    Full Text Available Frontal polymerization is a process in which a spatially localized reaction zone propagates into a monomer, converting it into a polymer. In the simplest case of free-radical polymerization, a mixture of monomer and initiator is placed in a test tube. A reaction is then initiated at one end of the tube. Over time, a self-sustained thermal wave, in which chemical conversion occurs, is produced. This phenomenon is possible because of the highly exothermic nature of the polymerization reactions.

  18. A pulse radiolysis study of emulsion polymerization

    International Nuclear Information System (INIS)

    McAskill, N.A.

    1976-01-01

    The emulsion polymerisation of slightly water soluble monomers such as styrene occurs initially in micelles of surfactant swollen with monomer and later in larger particles consisting of polymer swollen with monomer and stabilized with an outer layer of surfactant. There is considerable controversy on whether the reaction sites of polymerization are inside or on the surface of the particle or micelle. The relative amounts of micelle and particles present at various stages of the polymerization are also nuclear. In the present study the OH radical formed by pulse radiolysis has been used as a probe to investigate the site of solubilization of styrene in various surfactant micelles. Two products can be distinguished by UV spectrometry, a benzyl type radical formed by OH addition to the side chain of styrene and a cyclohexadienyl type radical formed by addition to the ring. Wide differences in the relative amounts of each product were observed suggesting that in some surfactants the styrene ring is buried inside the micelle whilst in other systems the styrene appears to be so solubilized at the interface leaving both the ring and the side chain open to attack by the OH radical. (author)

  19. Radiation chemistry of polymeric system

    International Nuclear Information System (INIS)

    Machi, Sueo; Ishigaki, Isao

    1978-01-01

    Among wide application of radiation in the field of polymer chemistry, practices of polymerization, graft polymerization, bridging, etc. are introduced hereinafter. As for the radiation sources of radiation polymerization, in addition to the 60 Co-γ ray with long permeation distance which has been usually applied, electron beam accelerators with high energy, large current and high reliability have come to be produced, and the liquid phase polymerization by electron beam has attracted attention industrially. Concerning polymerizing reactions, explanations were given to electron beam polymerization under high dose rate, the polymerization in supercooling state or under high pressure, and emulsifying polymerization. As for radiation bridging, radiation is applied for the bridging of hydrogel, acceleration of bridging and improvement of radiation resistance. It is also utilized for reforming membranes by graft polymerization, and synthesis of polymers for medical use. Application of fixed enzymes in the medical field has been investigated by fixing various enzymes by low temperature γ-ray polymerization with glassy monomers such as HEMA. (Kobatake, H.)

  20. LC-MS/MS analysis of uncommon paracetamol metabolites derived through in vitro polymerization and nitration reactions in liquid nitrogen.

    Science.gov (United States)

    Trettin, Arne; Jordan, Jens; Tsikas, Dimitrios

    2014-09-01

    Paracetamol (acetaminophen, APAP) is a commonly used analgesic drug. Known paracetamol metabolites include the glucuronide, sulfate and mercapturate. N-Acetyl-benzoquinonimine (NAPQI) is considered the toxic intermediate metabolite of paracetamol. In vitro and in vivo studies indicate that paracetamol is also metabolized to additional poorly characterized metabolites. For example, metabolomic studies in urine samples of APAP-treated mice revealed metabolites such as APAP-sulfate-APAP and APAP-S-S-APAP in addition to the classical phase II metabolites. Here, we report on the development and application of LC-MS and LC-MS/MS approaches to study reactions of unlabelled and (2)H-labelled APAP with unlabelled and (15)N-labelled nitrite in aqueous phosphate buffers (pH 7.4) upon their immersion into liquid nitrogen (-196°C). In mechanistic studies, these reactions were also studied in aqueous buffer prepared in (18)O-labelled water. LC-MS and LC-MS/MS analyses were performed on a reverse-phase material (C18) using gradient elution (2mM ammonium acetate/acetonitrile), in positive and negative electrospray mode. We identified a series of APAP metabolites including di-, tri- and tetra-APAP, mono- and di-nitro-APAP and nitric ester of di-APAP. Our study indicates that nitrite induces oxidation, i.e., polymerization and nitration of APAP, when buffered APAP/nitrite solutions are immersed into liquid nitrogen. These reactions are specific for nitrite with respect to nitrate and do not proceed via intermediate formation of NAPQI. Potassium ions and physiological saline but not thiols inhibit nitrite- and shock-freeze-induced reactions of paracetamol. The underlying mechanism likely involves in situ formation of NO2 radicals from nitrite secondary to profound pH reduction (down to pH 1) and disproportionation. Polymeric paracetamol species can be analyzed as pentafluorobenzyl derivatives by LC-MS but not by GC-MS. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Condensed tannins: Base-catalysed reactions of polymeric procyanidins with toluene-α-thiol, liability of the interflavanoid bond and pyran ring

    Science.gov (United States)

    Peter E. Laks; Richard W. Hemingway

    1987-01-01

    Reaction of polymeric procyanidins (condensed tannins) with toluene-α-thiol at pH 12.0 and 23°C gave predominantly one stereoisomer of 1.3-bisbenzylthio-1-(3,4-dihydroxyphenyl)-3-(2,4,6-trihydroxyphenyl) propan-2-ol (10) by stereoselective reaction at C-4 and C-2 of the Quinone methide derived from the upper 2,3-cis procyanidin units....

  2. Unraveling the role of entropy in tuning unimolecular vs . bimolecular reaction rates: The case of olefin polymerization catalyzed by transition metals

    KAUST Repository

    Falivene, Laura

    2018-04-24

    Olefin polymerization catalyzed by Group 4 transition metals is studied here as test case to reveal the entropy effects when bimolecular and unimolecular reactions are computed for processes occurring in solution. Catalytic systems characterized by different ligand frameworks, metal, and growing polymeric chain for which experimental data are available have been selected in order to validate the main approaches to entropy calculation. Applying the “standard” protocol results in a strong disagreement with the experimental results and the methods introducing a direct correction of the translational entropy term based on a single experimental parameter emerge as the most reliable. The general and powerful computational tool achieved in this study can represent a further step towards the “catalyst design” to control and predict the molecular mass of the resulting polymers.

  3. Studies in reactive extrusion processing of biodegradable polymeric materials

    Science.gov (United States)

    Balakrishnan, Sunder

    Various reaction chemistries such as Polymerization, Polymer cross-linking and Reactive grafting were investigated in twin-screw extruders. Poly (1,4-dioxan-2-one) (PPDX) was manufactured in melt by the continuous polymerization of 1,4-dioxan-2-one (PDX) monomer in a twin-screw extruder using Aluminum tri-sec butoxide (ATSB) initiator. Good and accurate control over molecular weight was obtained by controlling the ratio of monomer to initiator. A screw configuration consisting of only conveying elements was used for the polymerization. The polymerization reaction was characterized by a monomer-polymer dynamic equilibrium, above the melting temperature of the polymer, limiting the equilibrium conversion to 78-percent. Near complete (˜100-percent) conversion was obtained on co-polymerizing PDX monomer with a few mol-percent (around 8-percent) Caprolactone (CL) monomer in a twin-screw extruder using ATSB initiator. The co-polymers exhibited improved thermal stability with reduction in glass transition temperature. The extruder was modeled as an Axial Dispersed Plug Flow Reactor for the polymerization of CL monomer using Residence Time Distribution (RTD) Analysis. The model provided a good fit to the experimental RTD and conversion data. Aliphatic and aliphatic-aromatic co-polyesters, namely Polycaprolactone (PCL) and Poly butylenes (adipate-co-terephthalate) (Ecoflex) were cross-linked in a twin-screw extruder using radical initiator to form micro-gel reinforced biodegradable polyesters. Cross-linked Ecoflex was further extrusion blended with talc to form blends suitable to be blown into films. A screw configuration consisting of conveying and kneading elements was found to be effective in dispersion of the talc particles (5--10 microns) in the polyester matrix. While the rates of crystallization increased for the talc filled polyester blends, overall crystallinity reduced. Mechanical, tear and puncture properties of films made using the talc filled polyester blends

  4. Study of radiation-induced polymerization of vinyl monomers adsorbed on inorganic substances. VIII. Polymerization of styrene and methyl methacrylate adsorbed on aerosil

    International Nuclear Information System (INIS)

    Fukano, K.; Kageyama, E.

    1976-01-01

    Aerosol is silica having a purity which is very high compared with that of silica gel and having, unlike silica gel, no micropores. To investigate the effects of impurities and micropores on the radiation-induced polymerization of styrene and methyl methacrylate adsorbed on silica gel, the radiation-induced polymerization of styrene and methyl methacrylate adsorbed on Aerosil was carried out. The results of both the styrene--Aerosil 300 system and the methyl methacrylate--Aerosil 300 system were similar to those of the styrene-silica gel and methyl methacrylate-silica gel systems, respectively. This suggests that in the radiation-induced polymerization of both styrene--silica gel and methyl methacrylate--silica gel systems the impurities and the presence of micropores have almost no effect on the reaction mechanism. The effect of aluminum as an impurity was investigated on the styrene--Aerosil MOX 170 system. It was found that aluminum accelerated the cationic polymerization

  5. Radiation-induced polymerization and radiation effect on polymers

    International Nuclear Information System (INIS)

    Seguchi, Tadao

    1977-12-01

    The processes of radiation-induced polymerization of monomers and also radiation effects on polymers have been studied by instrumental analyses of electron spin resonance (ESR), nuclear magnetic resonance (NMR) and electron microscopy. In radiation-induced polymerization, graft-copolymerization and absorbed state polymerization were taken up. For graft-copolymerization, monomers such as methylmethacrylate and butadiene were made to react with irradiated polyethylene, and behaviors of the initiating radicals and propagating radicals were followed under the reaction by ESR. For absorbed state polymerization, acrylonitrile/zeolite and methylmethacrylate/zeolite were chosen. Absorbed monomers were irradiated at 77 0 K and polymerized at room temperature. Active species and the concentrations were measured by ESR and the yields of polymer were observed by NMR. In radiation effect on polymers, polyvinylfluoride, polyvinylidenfluoride and polytetrafluoroethylene were taken up. Active species trapped in the polymer matrixes were identified and decay and reactivity of the species were also studied. On the basis of information from the electron microscopy and x-ray analysis, radiation effects on these polymers are described. In polytetrafluoroethylene produced by radiation polymerization, the relation between morphology and polymerization conditions and also the process of crystallization during polymerization were studied. (auth.)

  6. Chain-growth cycloaddition polymerization via a catalytic alkyne [2 + 2 + 2] cyclotrimerization reaction and its application to one-shot spontaneous block copolymerization.

    Science.gov (United States)

    Sugiyama, Yu-ki; Kato, Rei; Sakurada, Tetsuya; Okamoto, Sentaro

    2011-06-29

    A cobalt-catalyzed alkyne [2 + 2 + 2] cycloaddition reaction has been applied to polymerizations yielding linear polymers via selective cross-cyclotrimerization of yne-diyne monomers, which occurs in a chain-growth manner. Additionally, through control of the alkyne reactivity of the two monomers, this method was efficiently applied to the spontaneous block copolymerization of their mixture. Here we present the proposed mechanism of the catalyst transfer process of this cycloaddition polymerization.

  7. Metal nanoparticles/ionic liquid/cellulose: polymeric membrane for hydrogenation reactions

    Directory of Open Access Journals (Sweden)

    Marcos Alexandre Gelesky

    2014-01-01

    Full Text Available Rhodium and platinum nanoparticles were supported in polymeric membranes with 10, 20 and 40 µm thickness. The polymeric membranes were prepared combining cellulose acetate and the ionic liquid (IL 1-n-butyl-3-methylimidazolium bis(trifluoromethane sulfonylimide (BMI.(NTf2. The presence of metal nanoparticles induced an increase in the polymeric membrane surface areas. The increase of the IL content resulted in an improvement of elasticity and decrease in tenacity and toughness, whereas the stress at break was not affected. The presence of IL probably causes an increase in the separation between the cellulose molecules that result in a higher flexibility and processability of the polymeric membrane. The CA/IL/M(0 combinations exhibit an excellent synergistic effect that enhances the activity and durability of the catalyst for the hydrogenation of cyclohexene. The CA/IL/M(0 polymeric membrane displays higher catalytic activity (up to 7.353 h-1 for the 20 mm of CA/IL/Pt(0 and stability than the nanoparticles dispersed only in the IL.

  8. Grafting study of polysulfone polymeric membranes by gamma ray irradiation

    International Nuclear Information System (INIS)

    Furtado Filho, Acacio A.M.; Gomes, Ailton de S.

    2011-01-01

    Radiation-induced grafting of styrene poli sulfone films were investigated by simultaneous method in solution using gamma-ray from a radio nuclide 60 Co source. The gamma-ray energy of high intensity induced breaking of chemical bonds leading to free radical formation. The radical start a conventional polymerization sequence comparable with that obtained with a chemical catalyst acting as initiator. The effects of grafting conditions such as irradiation total dose, dose rate and addition of cross linking agent, were studied by means of morphology analysis, thermal degradation and crystallinity. After the grafting reaction, the membranes were submitted to an exhaustive extraction with solvent to remove the polystyrene homopolymer formed. The degree of grafting (DOG) was analyzed by percentage of weight increase. As a result, the reaction always follows the same pattern: DOG increases rapidly initially whilst propagation is the main reaction, then more slowly as termination becomes more frequent. (author)

  9. Synthesis of Isotactic-block-Syndiotactic Poly(methyl Methacrylate via Stereospecific Living Anionic Polymerizations in Combination with Metal-Halogen Exchange, Halogenation, and Click Reactions

    Directory of Open Access Journals (Sweden)

    Naoya Usuki

    2017-12-01

    Full Text Available Isotactic (it- and syndiotactic (st- poly(methyl methacrylates (PMMAs form unique crystalline stereocomplexes, which are attractive from both fundamental and application viewpoints. This study is directed at the efficient synthesis of it- and st-stereoblock (it-b-st- PMMAs via stereospecific living anionic polymerizations in combination with metal-halogen exchange, halogenation, and click reactions. The azide-capped it-PMMA was prepared by living anionic polymerization of MMA, which was initiated with t-BuMgBr in toluene at –78 °C, and was followed by termination using CCl4 as the halogenating agent in the presence of a strong Lewis base and subsequent azidation with NaN3. The alkyne-capped st-PMMA was obtained by living anionic polymerization of MMA, which was initiated via an in situ metal-halogen exchange reaction between 1,1-diphenylhexyl lithium and an α-bromoester bearing a pendent silyl-protected alkyne group. Finally, copper-catalyzed alkyne-azide cycloaddition (CuAAC between these complimentary pairs of polymers resulted in a high yield of it-b-st-PMMAs, with controlled molecular weights and narrow molecular weight distributions. The stereocomplexation was evaluated in CH3CN and was affected by the block lengths and ratios.

  10. Effect of Graphene Oxide on the Reaction Kinetics of Methyl Methacrylate In Situ Radical Polymerization via the Bulk or Solution Technique

    Directory of Open Access Journals (Sweden)

    Ioannis S. Tsagkalias

    2017-09-01

    Full Text Available The synthesis of nanocomposite materials based on poly(methyl methacrylate and graphene oxide (GO is presented using the in situ polymerization technique, starting from methyl methacrylate, graphite oxide, and an initiator, and carried out either with (solution or without (bulk in the presence of a suitable solvent. Reaction kinetics was followed gravimetrically and the appropriate characterization of the products took place using several experimental techniques. X-ray diffraction (XRD data showed that graphite oxide had been transformed to graphene oxide during polymerization, whereas FTIR spectra revealed no significant interactions between the polymer matrix and GO. It appears that during polymerization, the initiator efficiency was reduced by the presence of GO, resulting in a reduction of the reaction rate and a slight increase in the average molecular weight of the polymer formed, measured by gel permeation chromatography (GPC, along with an increase in the glass transition temperature obtained from differential scanning calorimetry (DSC. The presence of the solvent results in the suppression of the gel-effect in the reaction rate curves, the synthesis of polymers with lower average molecular weights and polydispersities of the Molecular Weight Distribution, and lower glass transition temperatures. Finally, from thermogravimetric analysis (TG, it was verified that the presence of GO slightly enhances the thermal stability of the nano-hybrids formed.

  11. Radiation polymerization of tetrafluoroethylene

    International Nuclear Information System (INIS)

    Kadoi, H.; Lugao, A.B.; Oikawa, H.

    1984-01-01

    Tetrafluoroethylene (TFE) monomer was obtained by means of the pyrolysis of chlorodifluoromethane (R-22). The experiments were carried out in quartz tube with temperature between 700 0 and 800 0 C. The principal reaction of the pyrolysis is considered to be: 2CHClF2 ----> C 2 F 4 +2HCl. However, by-products such as HF, C 3 F 6 , C 2 HClF 4 , C 4 F 8 etc are also produced in the pyrolysis process. The conversions of R-22 varied from 30 to 50%, depending upon the temperature, pressure and flow rate of R-22 in the furnace. Finally the TFE monomer of purity higher than 99.98% was obtained by fractional distillation in low temperatures ranging from -10 0 to -30 0 C. The bulk polymerization of this monomer induced by γ-rays from 3000Ci cobalt-60 source was studied at various temperatures (room temperature, 0 0 , -23 0 and -78 0 C). The monomers were introduced into stainless steel vessels of 15 and 60 ml volume under vacuum. The control of polymerization reaction was rather hard at temperatures higher than -23 0 C due to the difficulty of removing the heat of reaction. However, the polymerization at -78 0 C was very easy to control. The white polymer particles were obtained in agglomerated state. The IR spectra of the polymers were consistent with those of commercial products. The melting points of samples were between 326 0 and 331 0 C. (Author) [pt

  12. Oxidative polymerization of lignins by laccase in water-acetone mixture.

    Science.gov (United States)

    Fiţigău, Ionița Firuța; Peter, Francisc; Boeriu, Carmen Gabriela

    2013-01-01

    The enzymatic oxidative polymerization of five technical lignins with different molecular properties, i.e. Soda Grass/Wheat straw Lignin, Organosolv Hardwood Lignin, Soda Wheat straw Lignin, Alkali pretreated Wheat straw Lignin, and Kraft Softwood was studied. All lignins were previously fractionated by acetone/water 50:50 (v/v) and the laccase-catalyzed polymerization of the low molecular weight fractions (Mw Reactivity of lignin substrates in laccase-catalyzed reactions was determined by monitoring the oxygen consumption. The oxidation reactions in 50% acetone in water mixture proceed with high rate for all tested lignins. Polymerization products were analyzed by size exclusion chromatography, FT-IR, and (31)P-NMR and evidence of important lignin modifications after incubation with laccase. Lignin polymers with higher molecular weight (Mw up to 17500 g/mol) were obtained. The obtained polymers have potential for applications in bioplastics, adhesives and as polymeric dispersants.

  13. Polymerization Simulator for Introductory Polymer and Material Science Courses

    Science.gov (United States)

    Chirdon, William M.

    2010-01-01

    This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…

  14. Mannich reactions of alkynes: the role of sub-stoichiometric amounts of stable polymeric alkynylcopper (I) compounds in the catalytic cycle (abstract)

    International Nuclear Information System (INIS)

    Khan, A.N.; Buckley, B.R.; Heaney, H.

    2011-01-01

    The rapid development of the use of organocopper reagents and catalysts in organic synthesis since the middle of the last century has been comprehensively documented. The advantages of using heterogeneous catalysts include ease of work-up and purification, reduction in waste disposal, and the ability to recycle catalysts. Reactions of terminal alkynes that involve copper(I) catalysts have been widely studied, in particular as a result of the search for atom efficiency. Ligand associated alkynylcopper(I) derivatives have been reported many times, for example in copper(I) catalysed alkyne-azide cycloaddition (CuAAC) reactions. Our interest in Mannich reactions, and also in alkynylcopper(I) pre-catalysts, prompted this study of reactions of alkynes with secondary amines with aldehydes. Early studies of Mannich reactions involving alkynes almost always involved formaldehyde, exceptions included imines and derivatives of glyoxylic esters. An efficient one-pot three-component coupling of an aldehyde, alkyne, and amine to generate propargyl amines has been effected by microwave heating in water using a polymeric alkynylcopper(I) complex as catalyst (Scheme 1). This reaction utilizes water as a solvent which provides a green-approach for such reactions. This method has proved to be applicable to a wide range of substrates. (author)

  15. Primary processes of the radiation-induced cationic polymerization of aromatic olefins studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Brede, O.; Boes, J.; Helmstreit, W.; Mehnert, R.

    1982-01-01

    By pulse radiolysis of solutions of aromatic olefins (styrene, 1-methylstyrene, 1,1-diphenylethylene) in non-polar solvents (cyclohexane, carbon tetrachloride, n-butylchloride) the mechanism and kinetics of primary processes of radiation-induced cationic polymerization were investigated. In cyclohexane, radical cations of the olefins are generated by charge transfer from solvent cations. These cations dimerize in a diffusion-controlled reaction. The next step of chain-growth is slower by 3 to 4 orders of magnitude. In carbon tetrachloride and in n-butyl chloride growing olefin cations are produced by a reaction of radical cations with solvent as well as by addition of solvent carbonium ions to the monomer. In strongly acidic aqueous solution of olefins radical cations produced indirectly from hydroxycyclohexadienyl radicals dimerize and react in a subsequent step by deprotonation forming non-saturated dimer radicals. The reaction mechanism established shows that in the case of radiation-induced cationic polymerization it is not possible to define a uniform first step of the chain reaction. (author)

  16. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization reactor, it is the best way to avoid any termination of living polymers during the number of steps for the synthesis of polymers with complex structure. In this chapter, we describe the different polymerization reactors and HVTs for the purification of monomers, solvents, and other reagents for anionic polymerization as well as few model reactions for the synthesis of polymers with simple to complex structure.

  17. Experimental conditions affecting the kinetics of aqueous HCN polymerization as revealed by UV-vis spectroscopy.

    Science.gov (United States)

    Marín-Yaseli, Margarita R; Moreno, Miguel; de la Fuente, José L; Briones, Carlos; Ruiz-Bermejo, Marta

    2018-02-15

    HCN polymerization is one of the most important and fascinating reactions in prebiotic chemistry, and interest in HCN polymers in the field of materials science is growing. However, little is known about the kinetics of the HCN polymerization process. In the present study, a first approach to the kinetics of two sets of aqueous HCN polymerizations, from NH 4 CN and NaCN, at middle temperatures between 4 and 38°C, has been carried out. For each series, the presence of air and salts in the reaction medium has been systematically explored. A previous kinetic analysis was conducted during the conversion of the insoluble black HCN polymers obtained as gel fractions in these precipitation polymerizations for a reaction of one month, where a limit conversion was achieved at the highest polymerization temperature. The kinetic description of the gravimetric data for this complex system shows a clear change in the linear dependence with the polymerization temperature for the reaction from NH 4 CN, besides a relevant catalytic effect of ammonium, in comparison with those data obtained from the NaCN series. These results also demonstrated the notable influence of air, oxygen, and the saline medium in HCN polymer formation. Similar conclusions were reached when the sol fractions were monitored by UV-vis spectroscopy, and a Hill type correlation was used to describe the polymerization profiles obtained. This technique was chosen because it provides an easy, prompt and fast method to follow the evolution of the liquid or continuous phase of the process under study. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Highly efficient reversible addition-fragmentation chain-transfer polymerization in ethanol/water via flow chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Piaoran [Case Western Reserve Univ., Cleveland, OH (United States); Cao, Peng -Fei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Su, Zhe [Case Western Reserve Univ., Cleveland, OH (United States); Advincula, Rigoberto [Case Western Reserve Univ., Cleveland, OH (United States)

    2017-03-23

    Here, utilization of a flow reactor under high pressure allows highly efficient polymer synthesis via reversible addition–fragmentation chain-transfer (RAFT) polymerization in an aqueous system. Compared with the batch reaction, the flow reactor allows the RAFT polymerization to be performed in a high-efficiency manner at the same temperature. The adjustable pressure of the system allows further elevation of the reaction temperature and hence faster polymerization. Other reaction parameters, such as flow rate and initiator concentration, were also well studied to tune the monomer conversion and the molar mass dispersity (Ð) of the obtained polymers. Gel permeation chromatography, nuclear magnetic resonance (NMR), and Fourier transform infrared spectroscopies (FTIR) were utilized to monitor the polymerization process. With the initiator concentration of 0.15 mmol L–1, polymerization of poly(ethylene glycol) methyl ethermethacrylate with monomer conversion of 52% at 100 °C under 73 bar can be achieved within 40 min with narrow molar mass dispersity (D) Ð (<1.25). The strategy developed here provides a method to produce well-defined polymers via RAFT polymerization with high efficiency in a continuous manner.

  19. Radiation Induced Polymerization of Pyrrole

    International Nuclear Information System (INIS)

    Sarada Idris; Ratnam, C.T.; Ahmad Ashrif Abu Bakar

    2016-01-01

    We demonstrate the polymerization of pyrrole by gamma irradiation. The pyrrole films were exposed to gamma ray from cobalt 60 source at doses ranging from 0 to 150 kGy. The films were subjected to structural and morphological analyses by using FTIR, SEM and AFM techniques. Similar studies were also made on pristine pyrrole film which serve as control. Results revealed that pyrrole has been successfully polymerized through irradiation induced reactions. The SEM images depicted the formation of cauliflower shape upon gamma irradiation. The structural changes of pyrrole also evidenced by FTIR spectra. Surface topography and roughness of pyrrole before and after gamma irradiation found to show significant differences. (author)

  20. Recent progress of atomic layer deposition on polymeric materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hong Chen; Ye, Enyi [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Li, Zibiao, E-mail: lizb@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Han, Ming-Yong [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Loh, Xian Jun, E-mail: lohxj@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 (Singapore); Singapore Eye Research Institute, 20 College Road, Singapore 169856 (Singapore)

    2017-01-01

    As a very promising surface coating technology, atomic layer deposition (ALD) can be used to modify the surfaces of polymeric materials for improving their functions and expanding their application areas. Polymeric materials vary in surface functional groups (number and type), surface morphology and internal structure, and thus ALD deposition conditions that typically work on a normal solid surface, usually do not work on a polymeric material surface. To date, a large variety of research has been carried out to investigate ALD deposition on various polymeric materials. This paper aims to provide an in-depth review of ALD deposition on polymeric materials and its applications. Through this review, we will provide a better understanding of surface chemistry and reaction mechanism for controlled surface modification of polymeric materials by ALD. The integrated knowledge can aid in devising an improved way in the reaction between reactant precursors and polymer functional groups/polymer backbones, which will in turn open new opportunities in processing ALD materials for better inorganic/organic film integration and potential applications. - Highlights: • ALD deposition on different natural and synthetic polymer materials • Reaction mechanism based on the surface functional groups of polymers • Application of ALD-modified polymers in different fields.

  1. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing

    2015-10-27

    Based on Monte Carlo simulation technology, we proposed a hybrid routine which combines reaction mechanism together with coarse-grained molecular simulation to study the kinetics of free radical polymerization. By comparing with previous experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight, and polydispersity etc. are readily calculated from Monte Carlo simulation. The kinetic constants such as polymerization rate k p is determined in the simulation without of “steady-state” hypothesis. We explored the mechanism for the variation of polymerization kinetics those observed in previous studies, as well as polymerization-induced phase separation. Our Monte Carlo simulation scheme is versatile on studying polymerization kinetics in batch and semi-batch processes.

  2. Magnetic Levitation To Characterize the Kinetics of Free-Radical Polymerization.

    Science.gov (United States)

    Ge, Shencheng; Semenov, Sergey N; Nagarkar, Amit A; Milette, Jonathan; Christodouleas, Dionysios C; Yuan, Li; Whitesides, George M

    2017-12-27

    This work describes the development of magnetic levitation (MagLev) to characterize the kinetics of free-radical polymerization of water-insoluble, low-molecular-weight monomers that show a large change in density upon polymerization. Maglev measures density, and certain classes of monomers show a large change in density when monomers covalently join in polymer chains. MagLev characterized both the thermal polymerization of methacrylate-based monomers and the photopolymerization of methyl methacrylate and made it possible to determine the orders of reaction and the Arrhenius activation energy of polymerization. MagLev also made it possible to monitor polymerization in the presence of solids (aramid fibers, and carbon fibers, and glass fibers). MagLev offers a new analytical technique to materials and polymer scientists that complements other methods (even those based on density, such as dilatometry), and will be useful in investigating polymerizations, evaluating inhibition of polymerizations, and studying polymerization in the presence of included solid materials (e.g., for composite materials).

  3. Scale-up of microwave-assisted polymerizations in continuous-flow mode : cationic ring-opening polymerization of 2-ethyl-2-oxazoline

    NARCIS (Netherlands)

    Paulus, R.M.; Erdmenger, T.; Becer, C.R.; Hoogenboom, R.; Schubert, U.S.

    2007-01-01

    Microwave-assisted polymerizations is a growing field of interest because the use of microwave irradiation instead of thermal heating was demonstrated to result in faster, cleaner, and higher yielding reactions. To overcome the one-at-a-time nature of preparing polymerizations in single microwave

  4. Polymerization of Acetonitrile via a Hydrogen Transfer Reaction from CH3 to CN under Extreme Conditions.

    Science.gov (United States)

    Zheng, Haiyan; Li, Kuo; Cody, George D; Tulk, Christopher A; Dong, Xiao; Gao, Guoying; Molaison, Jamie J; Liu, Zhenxian; Feygenson, Mikhail; Yang, Wenge; Ivanov, Ilia N; Basile, Leonardo; Idrobo, Juan-Carlos; Guthrie, Malcolm; Mao, Ho-Kwang

    2016-09-19

    Acetonitrile (CH3 CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. It is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH3 to CN along the CH⋅⋅⋅N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed sp(2) and sp(3) bonded carbon. Finally, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A qualitative chemometric study of resin composite polymerization

    Directory of Open Access Journals (Sweden)

    Regina Ferraz Mendes

    2008-01-01

    Full Text Available Objective: An experiment was carried out to assess the effect produced by different polymerization techniques on resin composite color after it has been immersed in coffee. Methods: Samples were manufactured using TPH Spectrum composite. It was polymerized for 10 or 40 seconds, with the light tip at one or zero millimeters from the resin surface, and afterwards the samples were immersed in coffee for 24 hours or 7 days. Ten different evaluators classified the samples according to their degree of staining. Results: The samples that were polymerized for 10 seconds were more susceptible to staining than the ones polymerized by 40 seconds. Samples immersed in coffee for 7 days were more susceptible to staining than the ones immersed for 24 hours. Conclusion: The variables polymerization time and immersion time were determinant in the staining susceptibility of the studied composite by coffee. However, there was no significant difference, irrespective of whether the resin was polymerized 10 or zero millimeters away from the resin surface.

  6. Allylthioketone Mediated Free Radical Polymerization of Methacrylates

    Directory of Open Access Journals (Sweden)

    Feng Zhong

    2017-11-01

    Full Text Available By combination of high trapping free radical efficiency of the thioketone and resonance of the allylic radical, a new type of mediating agent, 1,3,3-triphenylprop-2-ene-1-thione (TPPT has been successfully synthesized, and then is used to study controlled free radical polymerization of methacrylates. Very stable TPPT radicals at the end of poly(methyl methacrylate (PMMA are detected in the polymerization of MMA using TPPT and AIBN as the control agent and initiator. The MALDI-TOF MS spectra are used to identify terminal groups of the resultant poly(glycidyl methacrylate (PGMA, and major component of the obtained polymer has the structure, (CH32(CNC-PGMA-C7H9O3. Chain extension reaction tests ascertain formation of the dead polymers during the polymer storage and purification process of the polymers. Owing to very slow fragmentation reaction of the TPPT-terminated polymethacrylate radical and addition reaction of this radical with a primary radical, the growing chain radicals are difficult to be regenerated, leading to an unobvious change of the molecular weight with monomer conversion. The molecular weights of polymers can be controlled by the ratios of monomer/initiator and TPPT/initiator. However, the first order kinetics of the polymerization and the polymers with narrow polydispersity are obtained, and these phenomena are discussed. This study provides useful information on how to design a better controlling agent.

  7. Study on the immobilization of alpha-amylase by radiation-induced polymerization at low-temperature, (2)

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Kumakura, Minoru; Kaetsu, Isao

    1975-07-01

    The immobilization α-amylase in low concentration (50-250μg) by radiation induced polymerization at low temperature, with HEMA has been studied. The immobilization was performed in the temperature range of -196 0 C to +40 0 C. Activity of the immobilized enzyme decreases at temperatures above 0 0 C. The optimum temperatures for immobilization of α-amylase are -78 0 C - -24 0 C, where only the polymerization by irradiation is effective. HEMA is a suitable monomer as the immobilization carrier, because of its high polymerization rate of 100% in the temperature range. The suitable concentration of HEMA is less than 30%, and above this concentration the activity of enzyme decreases considerably. The optimum irradiation dose for immobilization is 1 x 10 6 R, and the activity of enzyme decreases at 5 x 10 6 R. The polymerization composition is porous gel structure, so the enzymatic reaction can be carried out merely by introducing a substrate to the composition. The activity attained in the immobilized enzyme is 75-80% that of the native α-amylase. The immobilized enzyme is more heat-resistant than the native one. (auth.)

  8. Lactic Acid Yield Using Different Bacterial Strains, Its Purification, and Polymerization through Ring-Opening Reactions

    Directory of Open Access Journals (Sweden)

    F. G. Orozco

    2014-01-01

    Full Text Available Laboratory-scale anaerobic fermentation was performed to obtain lactic acid from lactose, using five lactic acid bacteria: Lactococcus lactis, Lactobacillus bulgaricus, L. delbrueckii, L. plantarum, and L. delbrueckii lactis. A yield of 0.99 g lactic acid/g lactose was obtained with L. delbrueckii, from which a final concentration of 80.95 g/L aqueous solution was obtained through microfiltration, nanofiltration, and inverse osmosis membranes. The lactic acid was polymerized by means of ring-opening reactions (ROP to obtain poly-DL-lactic acid (PDLLA, with a viscosity average molecular weight (Mv of 19,264 g/mol.

  9. STUDY ON THE POLYMERIZATION KINETICS AND STABILITY OF P(UA)/MMA MICROEMULSION

    Institute of Scientific and Technical Information of China (English)

    Hong-tao Zhang; Tian-bin Ren; Zhao-hui Yin

    2001-01-01

    Urethane acrylate anionomer (APUA) as a kind of new type polymerizable emulsifier was synthesized using 2,4-toluene diisocyanate (TDI), polypropylene glycol (PPG), 2-hydroxyethyl methacrylate (HEMA) and dimethylolpropionic acid (DMPA). The critical micelle concentration (CMC) of APUA was measured by the methods of conductance and surface tension. The comparative studies between polymerizable emulsifier AUPA and conventional emulsifier sodium dodecyl sulfate (SDS) were carried out in the emulsion polymerization of methyl methacrylate (MMA). Polymerization kinetics,stability, size and morphology of the latex particles were investigated. It was found that in APUA both water soluble initiator potassium persulfate (KPS) and oil soluble initiator 2,2'-azobisisobutyronitrile (AIBN) can start the reaction of MMA, and the polymerization rate and yield were very high. On using AIBN as an initiator, the conversion-time behavior of MMA with APUA as emulsifier was different to that of SDS as emulsifier, signifying a different nucleation mechanism of the polymer latex particle. The average size of the two kinds of particles is about 50 nm. The particle size decreases with increasing emulsifier concentration. On using KPS as the initiator, APUA as emulsifier, cross-linking hydrogel of PMMA would be formed, but SDS was used as emulsifier and the hydrogel of PMMA was not present.

  10. AZIDE-ALKYNE CLICK POLYMERIZATION: AN UPDATE

    Institute of Scientific and Technical Information of China (English)

    Hong-kun Li; Jing-zhi Sun; An-jun Qin; Ben Zhong Tang

    2012-01-01

    The great achievements of click chemistry have encouraged polymer scientists to use this reaction in their field.This review assembles an update of the advances of using azide-alkyne click polymerization to prepare functional polytriazoles (PTAs) with linear and hyperbranched structures.The Cu(Ⅰ)-mediated click polymerization furnishes 1,4-regioregular PTAs,whereas,the metal-free click polymerization of propiolates and azides produces PTAs with 1,4-regioisomer contents up to 90%.The PTAs display advanced functions,such as aggregation-induced emission,thermal stability,biocompatibility and optical nonlinearity.

  11. Polypropylene/graphite nanocomposites by in situ polymerization

    International Nuclear Information System (INIS)

    Milani, Marceo A.; Galland, Giselda B.; Quijada, Raul

    2011-01-01

    This work presents the synthesis of nanocomposites of polypropylene/graphite by in situ polymerization using metallocene catalyst and graphene nanosheets. Initially was analyzed which of the metallocene catalysts rac-Et(Ind) 2 ZrCl 2 or rac-Me 2 Si(Ind) 2 ZrCl 2 produces polypropylene with mechanical properties more relevant. Then it were performed the in situ polymerization reactions to obtain the nanocomposites. The polymeric materials were characterized by XRD, DSC, GPC and DMTA. (author)

  12. Metal-catalyzed living radical polymerization and radical polyaddition for precision polymer synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, M; Satoh, K [Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kamigaito, M, E-mail: kamigait@apchem.nagoya-u.ac.j

    2009-08-01

    The metal-catalyzed radical addition reaction can be evolved into two different polymerization mechanisms, i.e.; chain- and step-growth polymerizations, while both the polymerizations are based on the same metal-catalyzed radical formation reaction. The former is a widely employed metal-catalyzed living radical polymerization or atom transfer radical polymerization of common vinyl monomers, and the latter is a novel metal-catalyzed radical polyaddition of designed monomer with an unconjugated C=C double bond and a reactive C-Cl bond in one molecule. The simultaneous ruthenium-catalyzed living radical polymerization of methyl acrylate and radical polyaddition of 3-butenyl 2-chloropropionate was achieved with Ru(Cp*)Cl(PPh{sub 3}){sub 2} to afford the controlled polymers, in which the homopolymer segments with the controlled chain length were connected by the ester linkage.

  13. GAMMA RADIATION INITIATED POLYMERIZATION OF FLUOROMONOMERS. II. COPOLYMER OF CHLOROTRIFLUOROETHYLENE AND ETHYLENE

    Energy Technology Data Exchange (ETDEWEB)

    Manno, P. J.

    1963-06-15

    The radioinduced copolymerization of chlorotrifluoro ethylene and ethylene was studied. The polymerization rate increased with time and radiation intensity, and the Gvalues after 50% polymerization varied from 13,000 at 10/sup 5/ rep/hr to 25,000 at 6 x 10/sup 3/ rep/hr. The polymerization rate is proportional to the 0.7 or 0.8th power of the radiation intensity. The polymerization reaction is highly exothermic, and the optimum conditions for the best polymer properties occurred in a stirred autoclave cooled to 0 deg C containing a monomer-- water mixture and irradiated at 10/sup 4/ rep/hr. Catalytic polymerization was also studied, and the economics of or the preparation of the copolymer by catalytic and radiation processes is discussed briefly. (D.L.C.)

  14. Polyacrylamide grafting of modified graphene oxides by in situ free radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Xu, Xiaoyang, E-mail: xiaoyangxu2012@163.com [School of Science, Tianjin University, Tianjin 30072 (China); Wu, Tao [School of Science, Tianjin University, Tianjin 30072 (China); Zhang, Sai; Li, Xianxian [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Li, Yi, E-mail: liyi@tju.edu.cn [School of Science, Tianjin University, Tianjin 30072 (China)

    2014-12-15

    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide.

  15. Polyacrylamide grafting of modified graphene oxides by in situ free radical polymerization

    International Nuclear Information System (INIS)

    Tang, Mingyi; Xu, Xiaoyang; Wu, Tao; Zhang, Sai; Li, Xianxian; Li, Yi

    2014-01-01

    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide

  16. Chain chemical reactions during matrix devitrification

    International Nuclear Information System (INIS)

    Barkalov, I.M.

    1980-01-01

    Investigation results of chain reaction mechanisms, proceeding at devitrification of glass-like matrices under the effect of γ-irradiation are summarized. Peculiarities of kinetics and mechanism of chain reactions proceeding at devitrification are considered: hydrocarbon chlorination, polymerization of vinyl monomers, copolymerization and graft polymerization. Possible application aspects of the chain reaction conducting during matrix devitrification are also considered

  17. Primary processes of the radiation-induced cationic polymerization of aromatic olefins studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Brede, O.; Boes, J.; Helmstreit, W.; Mehnert, R.

    1981-01-01

    By pulse radiolysis of solutions of aromatic olefins (styrene, 1-methylstyrene, 1,1-diphenylethylene) in nonpolar solvents (cyclohexane, carbon tetrachloride, n-butyl chloride) the mechanism and kinetics of primary processes of radiation-induced cationic polymerization were investigated. In cyclohexane, radical cations of the olefins are generated by charge transfer from solvent cations (k about 10 11 l mol -1 s -1 ). These cations dimerize in a diffusion-controlled reaction (k approximately 10 10 l mol -1 s -1 ). The next step of chain-growth is slower by 3 to 4 orders of magnitude. Furthermore, in carbon tetrachloride and in n-butyl chloride growing olefin cations are produced by a reaction of the radical cations with the solvent as well as by addition of solvent carbonium ions to the monomer. In strongly acidic aqueous solution of olefins radical cations produced indirectly from hydroxycyclohexadienyl radicals dimerize and react in a subsequent step by deprotonation forming non-saturated dimer radicals. The established reaction mechanism shows that in the case of radiation-induced cationic polymerization it is not possible to define a uniform first step of the chain reaction. (author)

  18. The effect of ethanol on the γ radiation induced polymerization of styrene

    International Nuclear Information System (INIS)

    Zhang Xujia; Ha Hongfei; Wu Jilan

    1990-01-01

    The γ radiation induced polymerization of styrene in the presence of ethanol was studied at dose rate of 5 x 10 17 eV/ml min. The result showed that the radiation induced polymerization of styrene was sensitized by ethanol. The experimental results were in agreement with the theoretical calculation of WAS equation. The mechanism of sensitization was proposed as proton transfer reaction

  19. Pre-irradiation induced emulsion graft polymerization of acrylonitrile onto polyethylene nonwoven fabric

    International Nuclear Information System (INIS)

    Liu Hanzhou; Yu Ming; Deng Bo; Li Linfan; Jiang Haiqing; Li Jingye

    2012-01-01

    Acrylonitrile has been widely used in the modification of polymers by graft polymerization. In the present work, pre-irradiation induced emulsion graft polymerization method is used to introduce acrylonitrile onto PE nonwoven fabric instead of the traditional reaction in organic solvents system. The degree of grafting (DG) is measured by gravimetric method and the kinetics of the graft polymerization is studied. The existence of the graft chains is proven by Fourier transform infrared spectroscopy (FT-IR) analysis. Thermal stability of the grafted polymer is measured by Thermogravimetric analysis (TGA). - Highlights: → Acrylonitrile is grafted onto pre-irradiated polyethylene (PE) nonwoven fabrics. → Emulsion system is applied, for the graft polymerization avoids organic solvent. → Kinetic of the pre-irradiation induced graft polymerization is studied. → Optimal condition is determined at the temperature below the b.p. of acrylonitrile.

  20. electrocatalytic reduction of oxygen at vapor phase polymerized poly ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. We successfully polymerized poly(3,4-ethylenedioxidethiophene) by vapor phase polymerization technique on rotating glassy carbon disk electrode. The catalytic activity of this electrode towards oxygen reduction reaction was investigated and showed remarkable activity. Rotating disk voltammetry was used to ...

  1. Polymerization of Polar Monomers from a Theoretical Perspective

    KAUST Repository

    Alghamdi, Miasser

    2016-10-11

    Density functional theory calculations have been used to investigate catalytic mechanism of polymer formation containing polar groups, from the synthesis of the monomer to the synthesis of the macromolecule. In the spirit of a sustainable and green chemistry, we initially focused attention on the coupling of CO2 as economically convenient and recyclable C1 source with C2H4 to form acrylate and/or butirro-lactone, two important polar monomers. In this process formation of a mettallolactone via oxidative coupling of CO2 and C2H4 is an important intermediate. Given this background, we explored in detail (chapter-3) several Ni based catalysts for CO2 coupling with C2H4 to form acrylate. In this thesis we report on the competitive reaction mechanisms (inner vs outer sphere) for the oxidative coupling of CO2 and ethylene for a set of 11 Ni-based complexes containing bisphosphine ligands. In another effort, considering incorporation of a C=C bond into a metal-oxygen-Functional-Group moiety is a challenging step in several polymerization reactions, we explored the details of this reaction (chapter4) using two different catalysts that are capable to perform this reaction in the synthesis of heterocycles. Specifically, the [Rh]-catalyzed intramolecular alkoxyacylation ([Rh] = [RhI(dppp)+] (dppp, 1,3-Bis-diphenylphosphino-propane), and the [Pd]/BPh3 intramolecular alkoxyfunctionalizations. Rest of the thesis we worked on understanding the details of the polymerization of polar monomers using organocatalysts based on N-heterocyclic carbenes (NHC) or N-heterocyclic olefins (NHO). In particular (chapter-5) we studied the polymerization of N-methyl N-carboxy- anhydrides, towards cyclic poly(N-substituted glycine)s, promoted by NHC catalysts. In good agreement with the experimental findings, we demonstrated that NHC promoted ring opening polymerization of N-Me N-Carboxyanhydrides may proceed via two different catalytic pathways. In a similar effort we studied polymerization of

  2. Reactivity of polymeric proanthocyanidins toward salivary proteins and their contribution to young red wine astringency.

    Science.gov (United States)

    Sun, Baoshan; de Sá, Marta; Leandro, Conceição; Caldeira, Ilda; Duarte, Filomena L; Spranger, Isabel

    2013-01-30

    Recent studies have indicated the presence of significant amount of highly polymerized and soluble proanthocyanidins in red wine and such compounds interacted readily with proteins, suggesting that they might be particularly astringent. Thus, the objective of this work was to verify the astringency of polymeric proanthocyanidins and their contribution to red wine astringency. The precipitation reactions of the purified oligomeric procyanidins (degree of polymerization ranging from 2 to 12-15) and polymeric procyanidins (degree of polymerization ranging from 12-15 to 32-34) with human salivary proteins were studied; salivary proteins composition changes before and after the reaction was verified by SDS-PAGE and procyanidins composition changes by spectrometric, direct HPLC and thiolysis-HPLC methods. The astringency intensity of these two procyanidin fractions was evaluated by a sensory analysis panel. For verifying the correlation between polymeric proanthocyanidins and young red wine astringency, the levels of total oligomeric and total polymeric proanthocyanidins and other phenolic composition in various young red wines were quantified and the astringency intensities of these wines were evaluated by a sensory panel. The results showed that polymeric proanthocyanidins had much higher reactivity toward human salivary proteins and higher astringency intensity than the oligomeric ones. Furthermore, young red wine astringency intensities were highly correlated to levels of polymeric proanthocyanidins, particularly at low concentration range (correlation coefficient r = 0.9840) but not significant correlated to total polyphenols (r = 0.2343) or other individual phenolic compounds (generally r wine astringency and the levels of polymeric polyphenols in red wines may be used as an indicator for its astringency.

  3. STUDIES ON VINYL POLYMERIZATION WITH INITIATION SYSTEM CONTAINING AMINE DERIVATIVES

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; ZHANG Jingyi; FENG Xinde(S. T. Voong)

    1983-01-01

    Two main types of amine-containing initiation systems were studied in this work. In the case of MMA polymerization initiated by BPO-amine (DMT, DHET, DMA) redox systems, it was found that the polymerization rate and colour stability of the polymer for different amine systems were in the following order: DMT≈DHET>DMA. Accordingly, BPO-DMT and BPO-DHET are effective initiators. In the case of MEMA polymerization by amine (DMT, DHET, DMA) alone, it was found that the polymerization rate and the percentage of conversion for these different amine systems were in the following order: DMT≥DHET>DMA. The polymerization rate and the percentage of conversion also increased with the increase of DMT concentration. From the kinetic investigation the rate equation of Rp=K [DMT]1/2 [MEMA]3/2 was obtained, and the overall activation energy of polymerization was calculated to be 34.3 KJ/mol (8.2 Kcal/mol). Moreover, the polymerization of MEMA in the presence of DMT was strongly inhibited by hydroquinone, indicating the polymerization being free radical in nature. From these results, the mechanism of MEMA polymerization initiated by amine was proposed.

  4. Kinetics of vinyl acetate emulsion polymerization in a pulsed tubular reactor: comparison between experimental and simulation results

    Directory of Open Access Journals (Sweden)

    Sayer C.

    2002-01-01

    Full Text Available A new reactor, the pulsed sieve plate column (PSPC, was developed to perform continuous emulsion polymerization reactions. This reactor combines the enhanced flexibility of tubular reactors with the mixing behavior provided by sieved plates and by the introduction of pulses that is important to prevent emulsion destabilization. The main objective of this work is to study the kinetics of vinyl acetate (VA emulsion polymerization reactions performed in this PSPC. Therefore, both experimental studies and reaction simulations were performed. Results showed that it is possible to obtain high conversions with rather low residence times in the PSPC.

  5. On-demand photoinitiated polymerization

    Science.gov (United States)

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2013-12-10

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  6. Radical polymerization by a supramolecular catalyst: cyclodextrin with a RAFT reagent

    Directory of Open Access Journals (Sweden)

    Kohei Koyanagi

    2016-11-01

    Full Text Available Supramolecular catalysts have received a great deal of attention because they improve the selectivity and efficiency of reactions. Catalysts with host molecules exhibit specific reaction properties and recognize substrates via host–guest interactions. Here, we examined radical polymerization reactions with a chain transfer agent (CTA that has α-cyclodextrin (α-CD as a host molecule (α-CD-CTA. Prior to the polymerization of N,N-dimethylacrylamide (DMA, we investigated the complex formation of α-CD with DMA. Single X-ray analysis demonstrated that α-CD includes DMA inside its cavity. When DMA was polymerized in the presence of α-CD-CTA using 2,2'-azobis[2-(2-imidazolin-2-ylpropane dihydrochloride (VA-044 as an initiator in an aqueous solution, poly(DMA was obtained in good yield and with narrow molecular weight distribution. In contrast, the polymerization of DMA without α-CD-CTA produced more widely distributed polymers. In the presence of 1,6-hexanediol (C6 diol which works as a competitive molecule by being included in the α-CD cavity, the reaction yield was lower than that without C6 diol.

  7. Imidazoline and imidazolidine nitroxides as controlling agents in nitroxide-mediated pseudoliving radical polymerization

    Science.gov (United States)

    Edeleva, M. V.; Marque, S. R. A.; Bagryanskaya, E. G.

    2018-04-01

    Controlled, or pseudoliving, radical polymerization provides unique opportunities for the synthesis of structurally diverse polymers with a narrow molecular-weight distribution. These reactions occur under relatively mild conditions with broad tolerance to functional groups in the monomers. The nitroxide-mediated pseudoliving radical polymerization is of particular interest for the synthesis of polymers for biomedical applications. This review briefly describes one of the mechanisms of controlled radical polymerization. The studies dealing with the use of imidazoline and imidazolidine nitroxides as controlling agents for nitroxide-mediated pseudoliving radical polymerization of various monomers are summarized and analyzed. The publications addressing the key steps of the controlled radical polymerization in the presence of imidazoline and imidazolidine nitroxides and new approaches to nitroxide-mediated polymerization based on protonation of both nitroxides and monomers are considered. The bibliography includes 154 references.

  8. Aza‐Michael addition reaction: Post‐polymerization modification and preparation of PEI/PEG‐based polyester hydrogels from enzymatically synthesized reactive polymers

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Stuparu, Mihaiela C.; Daugaard, Anders Egede

    2015-01-01

    The utility of aza‐Michael addition chemistry for post‐polymerization functionalization of enzymatically prepared polyesters is established. For this, itaconate ester and oligoethylene glycol are selected as monomers. A Candida Antarctica lipase B catalyzed polycondensation reaction between the two...... monomers provides the polyesters, which carry an activated carbon‐carbon double bond in the polymer backbone. These electron deficient alkenes represent suitable aza‐Michael acceptors and can be engaged in a nucleophilic addition reaction with small molecular mono‐amines (aza‐Michael donors) to yield...... functionalized linear polyesters. Employing a poly‐amine as the aza‐Michael donor, on the other hand, results in the formation of hydrophilic polymer networks....

  9. Curing reactions of bismaleimide resins catalyzed by triphenylphosphine. High resolution solid-state 13C NMR study

    International Nuclear Information System (INIS)

    Shibahara, Sumio; Enoki, Takashi; Yamamoto, Takahisa; Motoyoshiya, Jiro; Hayashi, Sadao.

    1996-01-01

    The curing reactions of bismaleimide resins consisted of N,N'-4,4'-diphenylmethanebismaleimide (BMI) and o,o'-diallylbisphenol-A (DABA) in the presence of triphenylphosphine (TPP) as a catalyst were investigated. DSC measurements showed that the catalytic effect of TPP on the curing reaction of BMI was more in the presence of DABA than in its absence. In order to explore this curing reaction, N-phenylmaleimide (PMI) and o-allylphenol (AP) were selected as model compounds. The products of the PMI/TPP system were oligomers and polymers of PMI, whereas the main product of the PMI/AP/TPP system was the PMI trimer which had the five-membered ring formed via the phosphonium ylide intermediate. In these model reactions, 13 C NMR was found to be useful to distinguish between trimerization and polymerization of PMI. On the basis of the results of the model reactions, the curing reactions of bismaleimide resins were investigated by high resolution solid state 13 C NMR techniques. In the BMI/TPP system, maleimides polymerize above 175degC, but the polymerization does not proceed at 120degC. On the other hand, maleimides trimerize above 120degC in the presence of DABA and TPP. The mechanism of the trimerization is briefly discussed. (author)

  10. Kinetics of Vinyl Polymerization of Methyl Methacrylate Initiated by Ce(IV-Vanillin Redox System

    Directory of Open Access Journals (Sweden)

    M. Palanivelu

    2012-01-01

    Full Text Available The kinetics of polymerization of methyl methacrylate initiated by Ce(IV-Vanillin redox system was studied in aqueous solution of sulfuric acid at 40°C. The rate of polymerization (Rp and the reaction orders with respect to monomer, initiator and ligand have been determined and found to be 1.5, 0.5 and 0.5 respectively. The effect of concentration of sulfuric acid on the polymerization was also studied. The rate of polymerization was found to increase with increasing temperature 30–60°C and decreases at higher temperature (>60°C. The overall activation energy (Ea was found to be 36.7 kJ/mol. A suitable kinetic scheme has been proposed.

  11. Study of the effect of external heating and internal temperature build-up during polymerization on the morphology of porous polymethacrylate adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Chan Yi, E-mail: vicchanyiwei@hotmail.com; Ongkudon, Clarence M., E-mail: clarence@ums.edu.my; Kansil, Tamar, E-mail: tamarkansil87@gmail.com [Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah (Malaysia)

    2015-07-22

    Modern day synthesis protocols of methacrylate monolithic polymer adsorbent are based on existing polymerization blueprint without a thorough understanding of the dynamics of pore structure and formation. This has resulted in unproductiveness of polymer adsorbent consequently affecting purity and recovery of final product, productivity, retention time and cost effectiveness of the whole process. The problems magnified in monolith scaling-up where internal heat buildup resulting from external heating and high exothermic polymerization reaction was reflected in cracking of the adsorbent. We believe that through careful and precise control of the polymerization kinetics and parameters, it is possible to prepare macroporous methacrylate monolithic adsorbents with controlled pore structures despite being carried out in an unstirred mould. This research involved the study of the effect of scaling-up on pore morphology of monolith, in other words, porous polymethacrylate adsorbents that were prepared via bulk free radical polymerization process by imaging the porous morphology of polymethacrylate with scanning electron microscope.

  12. Simulation of styrene polymerization reactors: kinetic and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    A. S. Almeida

    2008-06-01

    Full Text Available A mathematical model for the free radical polymerization of styrene is developed to predict the steady-state and dynamic behavior of a continuous process. Special emphasis is given for the kinetic and thermodynamic models, where the most sensitive parameters were estimated using data from an industrial plant. The thermodynamic model is based on a cubic equation of state and a mixing rule applied to the low-pressure vapor-liquid equilibrium of polymeric solutions, suitable for modeling the auto-refrigerated polymerization reactors, which use the vaporization rate to remove the reaction heat from the exothermic reactions. The simulation results show the high predictive capability of the proposed model when compared with plant data for conversion, average molecular weights, polydispersity, melt flow index, and thermal properties for different polymer grades.

  13. Controlled radical polymerization of acrylates by {gamma}-irradiation in the presence of 1,1-diphenylethene

    Energy Technology Data Exchange (ETDEWEB)

    Wu Zongtao [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang Zhicheng [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)]. E-mail: zczhang@ustc.edu.cn

    2005-12-15

    Poly (butyl acrylate) and poly (methyl acrylate) were successfully prepared in the presence of 1,1-diphenylethene (DPE) by {gamma}-irradiation-induced polymerization in both bulk and solution. The influences of polymerization time, amounts of DPE in system on conversion, molecular weight (MW) and its distribution (M{sub w}/M{sub n}) were studied. The results indicate that the polymerization initiated by {gamma}-irradiation in the presence of DPE shows the character of living radical reaction.

  14. NATO Advanced Research Workshop on Frontiers in Polymerization Catalysis and Polymer Synthesis

    CERN Document Server

    Guyot, A

    1987-01-01

    Due to their specific properties, polymers with well-defined structures have been receiving increasing attention over the last several years. Owing to the wide variability of their properties, these specialty polymers have been used in various areas from biomedical engineering to electronics or energy applications. The synthesis of such polymers necessi­ tates the use of new methods of polymerization which derived from an insight into the mechanism of polymerization reactions. A NATO Advanced Research Workshop on "Frontiers in Polymerization Catalysis and Polymer Synthesis" was held in BANDOl (FRANCE) in February 1987. Its aim was to assess the new polymerization methods, as well as the latest advances in the mechanisms of conventional polymerization reactions together with their applications to the synthesis of new macromolecular structures. The financial support from the NATO Scientific Affairs Division which covered the "lecturers' accomodation and travel expenses as well as the organization charges of th...

  15. Biocompatible Polymeric Materials Intended for Drug Delivery and Therapeutic Applications

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Javakhishvili, Irakli; Bednarek, Melania

    2007-01-01

    of polymer blocks by “click chemistry”. An all polymerization strategy would imply preparing polymers by living/controlled techniques in such a manner that one block after polymerization can be converted to a macroinitiator enabling the second block to polymerize. The coupling strategy invariably inserts...... a linking unit, 1,4-triazol, resulting from the catalyzed, irreversible 1,3-dipolar cycloaddition reaction between an alkyne and an azide. Thus, this strategy necessitates the proper end functionalization of the polymeric building blocks. Fortunately the 1,4-triazol unit is FDA approved already existing...

  16. Deposition of a thin electro-polymerized organic film on iron surface

    International Nuclear Information System (INIS)

    Lecayon, Gerard

    1980-01-01

    We use an electrochemical method to prepare a polymerized thin film, obtained from acrylonitrile in a solution of acetonitrile and tetraethylammonium perchlorate. The films are deposited on oxidized iron electrodes, with a surface area varying from a few mm to several cm, their thickness ranges from ten A to thousand A. This result is obtained by controlling the evolution of reactions: duplication, hydrogenation, polymerization which occur during the electrochemical reduction of acrylonitrile. The choice of suitable experimental conditions enhances the polymerization and increases the adherence of the polymer on the electrode. The usual methods of surface studies: S.E.M., A.E.S., S.I.M.S., permit the characterization of the electrode surface and the chemical composition of the deposit films. The molecular structure of polymer, and its evolution under aging or heating was studied by infrared multi-reflection spectroscopy. Very good correlation exists between the electrochemical characteristic: I = f(t), the initial surface state of the electrodes, and the homogeneity of the electro-polymerized films. Diagrams corresponding to mechanisms of different stages of electro-polymerization are proposed. (author) [fr

  17. Transglycosylation reactions, a main mechanism of phenolics incorporation in coffee melanoidins: Inhibition by Maillard reaction.

    Science.gov (United States)

    Moreira, Ana S P; Nunes, Fernando M; Simões, Cristiana; Maciel, Elisabete; Domingues, Pedro; Domingues, M Rosário M; Coimbra, Manuel A

    2017-07-15

    Under roasting conditions, polysaccharides depolymerize and also are able to polymerize, forming new polymers through non-enzymatic transglycosylation reactions (TGRs). TGRs can also occur between carbohydrates and aglycones, such as the phenolic compounds present in daily consumed foods like coffee. In this study, glycosidically-linked phenolic compounds were quantified in coffee melanoidins, the polymeric nitrogenous brown-colored compounds formed during roasting, defined as end-products of Maillard reaction. One third of the phenolics present were in glycosidically-linked form. In addition, the roasting of solid-state mixtures mimicking coffee beans composition allowed the conclusion that proteins play a regulatory role in TGRs extension and, consequently, modulate melanoidins composition. Overall, the results obtained showed that TGRs are a main mechanism of phenolics incorporation in melanoidins and are inhibited by amino groups through Maillard reaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Studies on Rate Enhancement of Polymerization in NMRP

    Institute of Scientific and Technical Information of China (English)

    HUANG Jian-ying; XU Miao-qing; YAN Ming-fa; CHEN Yi-hong; CHU Jia-yan; ZHUANG Jia-ming; DAI Li-zong; ZOU You-si

    2005-01-01

    In NMRP, the polymerization of MMA, the polymerization of St and the copolymerization of MMA with St were distinctly accelerated by the addition of a small amount of MN. The polymerization proceeds in a living fashion as indicated by the increase in molecular weight with the increase of time and conversion and a relatively low polydispersity. It has been found that the addition of MN results in a nearly one hundred times higher rate of the polymerization of MMA, a nearly twenty times higher rate of the polymerization of St and a nearly fifteen times higher rate of the copolymerization of St and MMA.

  19. Novel polymeric materials from triglycerides

    Science.gov (United States)

    Triglycerides are good platforms for new polymeric products that can substitute for petroleum-based materials. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a number of reactions in efforts to produce a wide range of value-added products. In this ...

  20. Synthesis and Characterization of Polyethylene/Starch Nanocomposites: A Spherical Starch-Supported Catalyst and In Situ Ethylene Polymerization.

    Science.gov (United States)

    Zhanga, Hao; Xi, Shixia; Wang, Shuwei; Liu, Jingsheng; Yoon, Keun-Byoung; Lee, Dong-Ho; Zhang, Hexin; Zhang, Xuequan

    2017-01-01

    In the present article, a novel spherical starch-supported vanadium (V)-based Ziegler-Natta catalyst was synthesized. The active centers of the obtained catalyst well dispersed in the starch through the SEM-EDX analysis. The effects of reaction conditions on ethylene polymerization were studied. The synthesized catalyst exhibited high activity toward ethylene polymerization in the presence of ethylaluminium sesquichloride (EASC) cocatalyst. Interestingly, the fiber shape PE was obtained directly during the polymerization process.

  1. NATO Advanced Study Institute on Advances in Chemical Reaction Dynamics

    CERN Document Server

    Capellos, Christos

    1986-01-01

    This book contains the formal lectures and contributed papers presented at the NATO Advanced Study Institute on. the Advances in Chemical Reaction Dynamics. The meeting convened at the city of Iraklion, Crete, Greece on 25 August 1985 and continued to 7 September 1985. The material presented describes the fundamental and recent advances in experimental and theoretical aspects of, reaction dynamics. A large section is devoted to electronically excited states, ionic species, and free radicals, relevant to chemical sys­ tems. In addition recent advances in gas phase polymerization, formation of clusters, and energy release processes in energetic materials were presented. Selected papers deal with topics such as the dynamics of electric field effects in low polar solutions, high electric field perturbations and relaxation of dipole equilibria, correlation in picosecond/laser pulse scattering, and applications to fast reaction dynamics. Picosecond transient Raman spectroscopy which has been used for the elucidati...

  2. Detection of human papilloma virus (HPV and human immunodeficiency virus (HIV in oral squamous cell carcinoma: A polymerized chain reaction (PCR study

    Directory of Open Access Journals (Sweden)

    Suresh Dirasantchu

    2015-01-01

    Full Text Available Aims and Objectives: Certain strains of human papillomavirus (HPV have been shown to be etiologically related to the development of uterine, cervical, and other genital cancers, but their role in the development of malignancies at other sites is less well established. Previous studies have shown HPV in tumors of the head and neck, but its prevalence has varied depending on the detection methods and the types of tumor and/or tissue examined. This study was undertaken for the detection of high-risk HPV types 16 and 18 and human immunodeficiency virus (HIV in oral squamous cell carcinoma. Materials and Methods: Twenty-five patients histologically diagnosed with oral squamous cell carcinoma and 10 apparently normal persons as controls were selected for the present study. Two biopsy specimens were removed surgically by incision biopsy for histopathological examination and polymerized chain reaction (PCR study. Results: Out of 25 oral squamous cell carcinoma subjects, 8 were found to be HPV positive in PCR. Out of these eight subjects, four had HPV 16 and the other four had other genotypes, and one subject was HIV positive. Conclusion: The conclusion drawn from the present study was that well-defined risk factors like HPV may play a prominent role in the development of oral squamous cell carcinomas, in addition to other risk factors. Further studies with a larger sample size are necessary to arrive at conclusions and to explore the relationship of HPV and HIV in oral squamous cell carcinoma.

  3. Optimal control of batch emulsion polymerization of vinyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Damslora, Andre Johan

    1998-12-31

    The highly exothermic polymerization of vinyl chloride (VC) is carried out in large vessels where the heat removal represents a major limitation of the production rate. Many emulsion polymerization reactors are operated in such a way that a substantial part of the heat transfer capacity is left unused for a significant part of the total batch time. To increase the reaction rate so that it matches the heat removal capacity during the course of the reaction, this thesis proposes the use of a sufficiently flexible initiator system to obtain a reaction rate which is high throughout the reaction and real-time optimization to compute the addition policy for the initiator. This optimization based approach provides a basis for an interplay between design and control and between production and research. A simple model is developed for predicting the polymerization rate. The model is highly nonlinear and open-loop unstable and may serve as an interesting case for comparison of nonlinear control strategies. The model is fitted to data obtained in a laboratory scale reactor. Finally, the thesis discusses optimal control of the emulsion polymerization reactor. Reduction of the batch cycle time is of major economic importance, as long as the quality parameters are within their specifications. The control parameterization had a major influence on the performance. A differentiable spline parameterization was applied and the optimization is illustrated in a number of cases. The best performance is obtained when the reactor temperature is obtained when the optimization is combined with some form of closed-loop control of the reactor temperature. 112 refs., 48 figs., 4 tabs.

  4. A novel headspace gas chromatographic method for in situ monitoring of monomer conversion during polymerization in an emulsion environment.

    Science.gov (United States)

    Chai, Xin-Sheng; Zhong, Jin-Feng; Hu, Hui-Chao

    2012-05-18

    This paper describes a novel multiple-headspace extraction/gas chromatographic (MHE-GC) technique for monitoring monomer conversion during a polymerization reaction in a water-based emulsion environment. The polymerization reaction of methyl methacrylate (MMA) in an aqueous emulsion is used as an example. The reaction was performed in a closed headspace sample vial (as a mini-reactor), with pentane as a tracer. In situ monitoring of the vapor concentration of the tracer, employing a multiple headspace extraction (sampling) scheme, coupled to a GC, makes it possible to quantitatively follow the conversion of MMA during the early stages of polymerization. Data on the integrated amount of the tracer vapor released from the monomer droplet phase during the polymerization is described by a mathematic equation from which the monomer conversion can be calculated. The present method is simple, automated and economical, and provides an efficient tool in the investigation of the reaction kinetics and effects of the reaction conditions on the early stage of polymerization. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Radiation polymerization of butyl acrylate for using as organic compounds recovery system from waste water

    International Nuclear Information System (INIS)

    Kattan, M.; Al-Kassiri, H.

    2008-02-01

    In this work, radiation polymerization of butyl acrylate using 60 Co gamma rays was studied. The effects of different parameters, such as the irradiation dose, dose rate and the temperature of irradiation on the polymerization were investigated. The relationship between polymerization yield with the dose rate and the temperature found to be linear. The kinetic of irradiation polymerization at 10 kGy/h was studied. The activation energy of reaction was calculated and it was E=9.27 j/mol. The thermal properties and the effect of irradiation dose on the glass transition were investigated. The application of this polymer in the field of environment treatment such as extraction of organics compounds dissolved in water was studied. The swelling in several organic compounds was studied, the weight percentages of both the swelling and the liberation were calculated. (author)

  6. Tunable, Quantitative Fenton-RAFT Polymerization via Metered Reagent Addition.

    Science.gov (United States)

    Nothling, Mitchell D; McKenzie, Thomas G; Reyhani, Amin; Qiao, Greg G

    2018-05-10

    A continuous supply of radical species is a key requirement for activating chain growth and accessing quantitative monomer conversions in reversible addition-fragmentation chain transfer (RAFT) polymerization. In Fenton-RAFT, activation is provided by hydroxyl radicals, whose indiscriminate reactivity and short-lived nature poses a challenge to accessing extended polymerization times and quantitative monomer conversions. Here, an alternative Fenton-RAFT procedure is presented, whereby radical generation can be finely controlled via metered dosing of a component of the Fenton redox reaction (H 2 O 2 ) using an external pumping system. By limiting the instantaneous flux of radicals and ensuring sustained radical generation over tunable time periods, metered reagent addition reduces unwanted radical "wasting" reactions and provides access to consistent quantitative monomer conversions with high chain-end fidelity. Fine tuning of radical concentration during polymerization is achieved simply via adjustment of reagent dose rate, offering significant potential for automation. This modular strategy holds promise for extending traditional RAFT initiation toward more tightly regulated radical concentration profiles and affords excellent prospects for the automation of Fenton-RAFT polymerization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Facile synthesis of polymeric fluorescent organic nanoparticles based on the self-polymerization of dopamine for biological imaging.

    Science.gov (United States)

    Shi, Yingge; Jiang, Ruming; Liu, Meiying; Fu, Lihua; Zeng, Guangjian; Wan, Qing; Mao, Liucheng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-08-01

    Polymeric fluorescent organic nanoparticles (polymer-FONs) have raised considerable research attention for biomedical applications owing to their advantages as compared with fluorescent inorganic nanoparticles and small organic molecules. In this study, we presented an efficient, facile and environment-friendly strategy to produce polymer-FONs, which relied on the self-polymerization of dopamine and polyethyleneimine (PEI) in rather mild conditions. To obtain the final polymer-FONs, aldehyde group-containing copolymers (named as poly(UA-co-PEGMA)) were synthesized by reversible addition-fragmentation chain-transfer polymerization using polyethylene glycol methyl ether methacrylate (PEGMA) and 1-undecen-10-al (UA) as monomers. The dopamine was conjugated onto poly(UA-co-PEGMA) through a multicomponent reaction between UA and dopamine to obtain poly(UA-co-PEGMA)-DA, which was further utilized for preparation of polymer-FONs through self-polymerization of dopamine and PEI. 1 H nuclear magnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy and fluorescence spectroscopy were employed to characterize the structure, morphology, compositions and optical properties of these polymer-FONs. Cell viability and cell uptake behavior results suggested that these polymer-FONs possess good biocompatibility and can be potentially utilized for biomedical applications. More importantly, the method can be also applied to fabricate many other multifunctional polymer-FONs with great potential for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Molecular weight control in emulsion polymerization by catalytic chain transfer : a reaction engineering approach

    NARCIS (Netherlands)

    Smeets, N.M.B.; Meda, U.S.; Heuts, J.P.A.; Keurentjes, J.T.F.; Herk, van A.M.; Meuldijk, J.

    2007-01-01

    For the application of catalytic chain transfer in (mini)emulsion polymerization, catalyst partitioning and deactivation are key parameters that govern the actual catalyst concentration at the locus of polymerization and consequently the final molecular weight distribution. A global model, based on

  9. About the activity and selectivity of less well-known metathesis catalysts during ADMET polymerizations

    Directory of Open Access Journals (Sweden)

    Hatice Mutlu

    2010-12-01

    Full Text Available We report on the catalytic activity of commercially available Ru-indenylidene and “boomerang” complexes C1, C2 and C3 in acyclic diene metathesis (ADMET polymerization of a fully renewable α,ω-diene. A high activity of these catalysts was observed for the synthesis of the desired renewable polyesters with molecular weights of up to 17000 Da, which is considerably higher than molecular weights obtained using the same monomer with previously studied catalysts. Moreover, olefin isomerization side reactions that occur during the ADMET polymerizations were studied in detail. The isomerization reactions were investigated by degradation of the prepared polyesters via transesterification with methanol, yielding diesters. These diesters, representing the repeat units of the polyesters, were then quantified by GC-MS.

  10. Monte Carlo simulation of non-linear free radical polymerization using a percolation kinetic gelation model (I): free radical homo polymerization

    International Nuclear Information System (INIS)

    Ghiass, M.; Dabir, B.; Nikazar, M.; Rey, A.D.; Mirzadeh, H.

    2001-01-01

    A kinetic gelation model that incorporates the kinetics of free radical homo polymerization is implemented to determine the effects of kinetics on polymerization statistics and microstructures. The simulation is performed on a simple cubic lattice that has 100 sites in each direction. A new algorithm for random selecting of the next step in a self-avoiding random walk and very efficient mechanisms of mobility of components are introduced to improve the generality of the predictions by removing commonly accruing deficiencies due to early trapping of radicals. A first order kinetics is considered for decomposition of initiator that enables us to consider the effect of temperature on polymerization reaction. Better understanding of microstructural evolution during polymerization and providing a framework to produce a realistic system of highly packed random chains within polymer network are among the benefits of model

  11. Numerical study of the thermal degradation of isotropic and anisotropic polymeric materials

    Energy Technology Data Exchange (ETDEWEB)

    Soler, E. [Departamento de Lenguajes y Ciencias de la Computacion, ETSI Informatica, Universidad de Malaga, 29071 Malaga (Spain); Ramos, J.I. [Room I-320-D, ETS Ingenieros Industriales, Universidad de Malaga, Plaza El Ejido, s/n, 29013 Malaga (Spain)

    2005-08-01

    The thermal degradation of two-dimensional isotropic, orthotropic and anisotropic polymeric materials is studied numerically by means of a second-order accurate (in both space and time) linearly implicit finite difference formulation which results in linear algebraic equations at each time step. It is shown that, for both isotropic and orthotropic composites, the monomer mass diffusion tensor plays a role in initiating the polymerization kinetics, the formation of a polymerization kernel and the initial front propagation, whereas the later stages of the polymerization are nearly independent of the monomer mass diffusion tensor. In anisotropic polymeric composites, it has been found that the monomer mass diffusion tensor plays a paramount role in determining the initial stages of the polymerization and the subsequent propagation of the polymerization front, the direction and speed of propagation of which are found to be related to the principal directions of both the monomer mass and the heat diffusion tensors. It is also shown that the polymerization time and temperatures depend strongly on the anisotropy of the mass and heat diffusion tensors. (authors)

  12. Polymerization of methyl methacrylate by diphenylamido bis (methylcyclopentadienyl) ytterbium complex

    Institute of Scientific and Technical Information of China (English)

    WANG, Yao-Rong(王耀荣); SHEN, Qi(沈琪); MA, Jia-Le(马家乐); ZHAO, Qun(赵群)

    2000-01-01

    Methyl methacrylate (MMA) was effectively polymerized by diphenylamido bis(methyicyclopentadienyl) ytterbium complex (MeCp)2YbNPh2(THF). Tne reaction can be carried out over a range of polymerization temperature from - 40℃ to 40℃ and gives the polyMMA with high molecular weights.The initiation mechanism was demonstrated by diphenylamidoterminated methyl methacrylate oligomer.

  13. In situ polymerization of L-Lactide in the presence of fumed silica

    International Nuclear Information System (INIS)

    Prebe, A.; Alcouffe, P.; Cassagnau, Ph.; Gerard, J.F.

    2010-01-01

    Chemiorheology, i.e. rheological changes during the polymerization, of a biosourced monomer, i.e. L-Lactide, containing fumed silica have been studied. For that purpose, the reaction was proceeded in situ between the plates of a dynamic rheometer. The polymerization kinetics was followed from the variation of the complex shear modulus versus reaction time. Moreover, at temperatures lower than the crystallization temperature, it was possible to follow the crystallization process while the polymerization takes place. Adding fumed silica particles into the monomer leads to the formation of a physical (percolated) network from particle-particle interactions, i.e. silica, in the L-Lactide probably hydrophilic interactions. The gel-like structure was kept while the polymerization as long as the strain remains low indicating that the silica particle network remains weak. Furthermore, the mechanism of the break down of the gel structure under large deformation as well as the recovery was discussed. It seems that the non-linearity effect of the nanocomposites stems in the silica inter-particle interactions. It was found that silica particles do not have any effect on the temperature of crystallization - molar mass relation but could act as nucleating agent. In situ polymerization of L-Lactide in the presence of 5 wt.% of modified fumed silica was carried out in a reactor. It was found that fumed hydrophilic silica leaded to a microcomposite with highly dense agglomerates in the polymer matrix whereas with a less hydrophilic silica it was possible to decrease the size of the agglomerates increasing the dispersion. The finest dispersion state was achieved with the 'initiating' functionalized silica leading to a 'grafting from' polymerization of the L-Lactide. Such functionalized silica leads to a nanoscale dispersion in a one-step bulk polymerization with only a few small agglomerates.

  14. In situ polymerization of L-Lactide in the presence of fumed silica

    Energy Technology Data Exchange (ETDEWEB)

    Prebe, A. [Universite de Lyon, F-69361, Lyon (France); CNRS, UMR 5223, Ingenierie des Materiaux Polymeres, F-69622, Villeurbanne (France); Universite Claude Bernard Lyon 1, F-69622, Villeurbanne (France); INSA Lyon, F-69621, Villeurbanne (France); Alcouffe, P. [Universite de Lyon, F-69361, Lyon (France); CNRS, UMR 5223, Ingenierie des Materiaux Polymeres, F-69622, Villeurbanne (France); Universite Claude Bernard Lyon 1, F-69622, Villeurbanne (France); Cassagnau, Ph., E-mail: philippe.cassagnau@univ-lyon1.fr [Universite de Lyon, F-69361, Lyon (France); CNRS, UMR 5223, Ingenierie des Materiaux Polymeres, F-69622, Villeurbanne (France); Universite Claude Bernard Lyon 1, F-69622, Villeurbanne (France); Gerard, J.F. [Universite de Lyon, F-69361, Lyon (France); CNRS, UMR 5223, Ingenierie des Materiaux Polymeres, F-69622, Villeurbanne (France); INSA Lyon, F-69621, Villeurbanne (France)

    2010-11-01

    Chemiorheology, i.e. rheological changes during the polymerization, of a biosourced monomer, i.e. L-Lactide, containing fumed silica have been studied. For that purpose, the reaction was proceeded in situ between the plates of a dynamic rheometer. The polymerization kinetics was followed from the variation of the complex shear modulus versus reaction time. Moreover, at temperatures lower than the crystallization temperature, it was possible to follow the crystallization process while the polymerization takes place. Adding fumed silica particles into the monomer leads to the formation of a physical (percolated) network from particle-particle interactions, i.e. silica, in the L-Lactide probably hydrophilic interactions. The gel-like structure was kept while the polymerization as long as the strain remains low indicating that the silica particle network remains weak. Furthermore, the mechanism of the break down of the gel structure under large deformation as well as the recovery was discussed. It seems that the non-linearity effect of the nanocomposites stems in the silica inter-particle interactions. It was found that silica particles do not have any effect on the temperature of crystallization - molar mass relation but could act as nucleating agent. In situ polymerization of L-Lactide in the presence of 5 wt.% of modified fumed silica was carried out in a reactor. It was found that fumed hydrophilic silica leaded to a microcomposite with highly dense agglomerates in the polymer matrix whereas with a less hydrophilic silica it was possible to decrease the size of the agglomerates increasing the dispersion. The finest dispersion state was achieved with the 'initiating' functionalized silica leading to a 'grafting from' polymerization of the L-Lactide. Such functionalized silica leads to a nanoscale dispersion in a one-step bulk polymerization with only a few small agglomerates.

  15. Anionic PPV polymerization from the sulfinyl precursor route : Block copolymer formation from sequential addition of monomers

    NARCIS (Netherlands)

    Cosemans, Inge; Vandenbergh, Joke; Voet, Vincent S. D.; Loos, Katja; Lutsen, Laurence; Vanderzande, Dirk; Junkers, Thomas

    2013-01-01

    The sulfinyl precursor route for the synthesis of poly(p-phenylene vinylene) (PPV) materials via an anionic polymerization procedure employing dedicated initiators is evaluated in depth. Reaction kinetics are investigated to gain more control over the polymerization, since polymerization proceeds to

  16. Nuclear magnetic resonance applied to the study of polymeric nano composites

    International Nuclear Information System (INIS)

    Tavares, Maria Ines Bruno

    2011-01-01

    Polymers and nanoparticles based nano composites were prepared by intercalation by solution. The obtained nano composites were characterized mainly by the nuclear magnetic spectroscopy (NMR), applying the analysis of carbon-13 (polymeric matrix), silicon-29 (nanoparticle), and by determination of spin-lattice relaxation of the hydrogen nucleus (T 1 H) (polymeric matrix). The NMR have presented a promising technique in the characterization of the nano charge dispersion in the studied polymeric matrixes.

  17. Stereoselectivity in metallocene-catalyzed coordination polymerization of renewable methylene butyrolactones: From stereo-random to stereo-perfect polymers

    KAUST Repository

    Chen, Xia; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene You Xian

    2012-01-01

    Coordination polymerization of renewable α-methylene-γ-(methyl) butyrolactones by chiral C 2-symmetric zirconocene catalysts produces stereo-random, highly stereo-regular, or perfectly stereo-regular polymers, depending on the monomer and catalyst structures. Computational studies yield a fundamental understanding of the stereocontrol mechanism governing these new polymerization reactions mediated by chiral metallocenium catalysts. © 2012 American Chemical Society.

  18. Stereoselectivity in metallocene-catalyzed coordination polymerization of renewable methylene butyrolactones: From stereo-random to stereo-perfect polymers

    KAUST Repository

    Chen, Xia

    2012-05-02

    Coordination polymerization of renewable α-methylene-γ-(methyl) butyrolactones by chiral C 2-symmetric zirconocene catalysts produces stereo-random, highly stereo-regular, or perfectly stereo-regular polymers, depending on the monomer and catalyst structures. Computational studies yield a fundamental understanding of the stereocontrol mechanism governing these new polymerization reactions mediated by chiral metallocenium catalysts. © 2012 American Chemical Society.

  19. Synthesis of nanosized (polymerization in miniemulsion employing in situ surfactant formation.

    Science.gov (United States)

    Guo, Yi; Zetterlund, Per B

    2011-10-18

    A novel method for synthesis of ultrafine polymeric nanoparticles of diameters less than 20 nm has been developed. The method is based on miniemulsion polymerization exploiting combination of the in situ surfactant generation approach (whereby the surfactant is formed at the oil-water interface by reaction between an organic acid and a base) and ultrasonication. Conventional radical polymerization and nitroxide-mediated radical polymerization of styrene have been conducted in miniemulsion using oleic acid/potassium hydroxide, demonstrating that particles with diameters less than 20 nm can be obtained by this approach at surfactant contents much lower than traditionally required in microemulsion polymerizations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Olefin metathesis and metathesis polymerization

    CERN Document Server

    Ivin, K J

    1997-01-01

    This book is a follow-up to Ivins Olefin Metathesis, (Academic Press, 1983). Bringing the standard text in the field up to date, this Second Edition is a result of rapid growth in the field, sparked by the discovery of numerous well-defined metal carbene complexes that can act as very efficient initiators of all types of olefin metathesis reaction, including ring-closing metathesis of acyclic dienes, enynes, and dienynes; ring-opening metathesis polymerizationof cycloalkenes, acyclic diene metathesis polymerization; and polymerization of alkynes, as well as simple olefin metathesis. Olefin Metathesis and Metathesis Polymerization provides a broad, up-to-date account of the subject from its beginnings in 1957 to the latest applications in organic synthesis. The book follows the same format as the original, making it useful toteachers and to researchers, and will be of particular interest to those working in the fields of organic chemistry, polymer chemistry, organometallic chemistry, catalysis, materials scien...

  1. POLYMERIC MATERIALS FOR SOLAR ENERGY UTILIZATION: A COMPARATIVE EXPERIMENTAL STUDY AND ENVIRONMENTAL ASPECTS

    Directory of Open Access Journals (Sweden)

    Alexander Doroshenko

    2016-08-01

    Full Text Available Full-scale metal solar collectors and solar collectors fabricated from polymeric materials are studied in present research. Honeycomb multichannel plates made from polycarbonate were chosen to create a polymeric solar collector. Polymeric collector is 67.8% lighter than metal solar collector. It was experimentally shown that the efficiency of a polymeric collector is 7–14% lower than a traditional collector. An ecologically based Life Cycle Assessment showed the advantages of the application of polymeric materials in the construction of solar collectors.

  2. A Kinetic Study of the Emulsion Polymerization of Vinyl Acetate

    DEFF Research Database (Denmark)

    Friis, N.; Nyhagen, L.

    1973-01-01

    The emulsion polymerization of vinyl acetate was studied at 50°C. It was found that the rate of polymerization was proportional to the 0.5 power of the initiator concentration and the 0.25 power of the number of particles. The number of particles was proportional to the power 0.5 ± 0.......05 of the emulsifier concentration, but independent of the initiator concentration. The limiting viscosity number of the polymers produced was independent of the initiator concentration and number of polymer particles. It is suggested that the mechanism of vinyl acetate emulsion polymerization is similar...

  3. Role of β-h elimination in rhodium-mediated carbene insertion polymerization

    NARCIS (Netherlands)

    Finger, M.; Reek, J.N.H.; de Bruin, B.

    2011-01-01

    The importance of β-H elimination as a possible mechanism to induce chain termination/transfer and/or the formation of stereodefects in the Rh(diene)-mediated oligomerization and polymerization of carbenes has been studied by means of different approaches. As a remarkable feature, this reaction is

  4. Polymerization of 5-alkyl δ-lactones catalyzed by diphenyl phosphate and their sequential organocatalytic polymerization with monosubstituted epoxides

    KAUST Repository

    Zhao, Junpeng

    2015-02-04

    Organocatalytic ring-opening polymerization (ROP) reactions of three renewable 5-alkyl δ-lactones, namely δ-hexalactone (HL), δ-nonalactone (NL) and δ-decalactone (DL), using diphenyl phosphate (DPP) were investigated. Room temperature, together with a relatively high monomer concentration (≥3 M), was demonstrated to be suitable for achieving a living ROP behavior, a high conversion of the lactone, a controlled molecular weight and a low dispersity of the polyester. HL, containing a 5-methyl substituent, showed a much higher reactivity (polymerization rate) and a slightly higher equilibrium conversion than the compounds with longer alkyl substituents (NL and DL). The effectiveness of DPP-catalyzed ROP of 5-alkyl δ-lactones facilitated the one-pot performance following the t-BuP4-promoted ROP of monosubstituted epoxides. It has been shown in an earlier study that substituted polyethers acted as "slow initiators" for non-substituted lactones. However, efficient initiations were observed in the present study as substituted lactones were polymerized from the substituted polyethers. Therefore, this reinforces the previously developed "catalyst switch" strategy, making it a more versatile tool for the synthesis of well-defined polyether-polyester block copolymers from a large variety of epoxide and lactone monomers. © The Royal Society of Chemistry 2015.

  5. Reaction kinetics of polybutylene terephthalate polycondensation reaction

    NARCIS (Netherlands)

    Darda, P. J.; Hogendoorn, J. A.; Versteeg, G. F.; Souren, F.

    2005-01-01

    The kinetics of the forward polycondensation reaction of polybutylene terephthalate (PBT) has been investigated using thermogravimetric analysis (TGA). PBT - prepolymer with an initial degree of polymerization of 5.5 was used as starting material. The PBT prepolymer was prepared from dimethyl

  6. EXPLORING THE POTENTIAL FORMATION OF ORGANIC SOLIDS IN CHONDRITES AND COMETS THROUGH POLYMERIZATION OF INTERSTELLAR FORMALDEHYDE

    International Nuclear Information System (INIS)

    Kebukawa, Yoko; Cody, George D.; David Kilcoyne, A. L.

    2013-01-01

    Polymerization of interstellar formaldehyde, first through the formose reaction and then through subsequent condensation reactions, provides a plausible explanation for how abundant and highly chemically complex organic solids may have come to exist in primitive solar system objects. In order to gain better insight on the reaction, a systematic study of the relationship of synthesis temperature with resultant molecular structure was performed. In addition, the effect of the presence of ammonia on the reaction rate and molecular structure of the product was studied. The synthesized formaldehyde polymer is directly compared to chondritic insoluble organic matter (IOM) isolated from primitive meteorites using solid-state 13 C nuclear magnetic resonance, Fourier transform infrared, and X-ray absorption near edge structure spectroscopy. The molecular structure of the formaldehyde polymer is shown to exhibit considerable similarity at the functional group level with primitive chondritic IOM. The addition of ammonia to the solution enhances the rate of polymerization reaction at lower temperatures and results in substantial incorporation of nitrogen into the polymer. Morphologically, the formaldehyde polymer exists as submicron to micron-sized spheroidal particles and spheroidal particle aggregates that bare considerable similarity to the organic nanoglobules commonly observed in chondritic IOM. These spectroscopic and morphological data support the hypothesis that IOM in chondrites and refractory organic carbon in comets may have formed through the polymerization of interstellar formaldehyde after planetesimal accretion, in the presence of liquid water, early in the history of the solar system.

  7. EXPLORING THE POTENTIAL FORMATION OF ORGANIC SOLIDS IN CHONDRITES AND COMETS THROUGH POLYMERIZATION OF INTERSTELLAR FORMALDEHYDE

    Energy Technology Data Exchange (ETDEWEB)

    Kebukawa, Yoko; Cody, George D. [Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, DC 20015 (United States); David Kilcoyne, A. L., E-mail: ykebukawa@ciw.edu, E-mail: yoko@ep.sci.hokudai.ac.jp [Advanced Light Source, Lawrence Berkeley National Laboratory, Mail Stop 7R0222, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2013-07-01

    Polymerization of interstellar formaldehyde, first through the formose reaction and then through subsequent condensation reactions, provides a plausible explanation for how abundant and highly chemically complex organic solids may have come to exist in primitive solar system objects. In order to gain better insight on the reaction, a systematic study of the relationship of synthesis temperature with resultant molecular structure was performed. In addition, the effect of the presence of ammonia on the reaction rate and molecular structure of the product was studied. The synthesized formaldehyde polymer is directly compared to chondritic insoluble organic matter (IOM) isolated from primitive meteorites using solid-state {sup 13}C nuclear magnetic resonance, Fourier transform infrared, and X-ray absorption near edge structure spectroscopy. The molecular structure of the formaldehyde polymer is shown to exhibit considerable similarity at the functional group level with primitive chondritic IOM. The addition of ammonia to the solution enhances the rate of polymerization reaction at lower temperatures and results in substantial incorporation of nitrogen into the polymer. Morphologically, the formaldehyde polymer exists as submicron to micron-sized spheroidal particles and spheroidal particle aggregates that bare considerable similarity to the organic nanoglobules commonly observed in chondritic IOM. These spectroscopic and morphological data support the hypothesis that IOM in chondrites and refractory organic carbon in comets may have formed through the polymerization of interstellar formaldehyde after planetesimal accretion, in the presence of liquid water, early in the history of the solar system.

  8. Exploring the Potential Formation of Organic Solids in Chondrites and Comets through Polymerization of Interstellar Formaldehyde

    Science.gov (United States)

    Kebukawa, Yoko; Kilcoyne, A. L. David; Cody, George D.

    2013-07-01

    Polymerization of interstellar formaldehyde, first through the formose reaction and then through subsequent condensation reactions, provides a plausible explanation for how abundant and highly chemically complex organic solids may have come to exist in primitive solar system objects. In order to gain better insight on the reaction, a systematic study of the relationship of synthesis temperature with resultant molecular structure was performed. In addition, the effect of the presence of ammonia on the reaction rate and molecular structure of the product was studied. The synthesized formaldehyde polymer is directly compared to chondritic insoluble organic matter (IOM) isolated from primitive meteorites using solid-state 13C nuclear magnetic resonance, Fourier transform infrared, and X-ray absorption near edge structure spectroscopy. The molecular structure of the formaldehyde polymer is shown to exhibit considerable similarity at the functional group level with primitive chondritic IOM. The addition of ammonia to the solution enhances the rate of polymerization reaction at lower temperatures and results in substantial incorporation of nitrogen into the polymer. Morphologically, the formaldehyde polymer exists as submicron to micron-sized spheroidal particles and spheroidal particle aggregates that bare considerable similarity to the organic nanoglobules commonly observed in chondritic IOM. These spectroscopic and morphological data support the hypothesis that IOM in chondrites and refractory organic carbon in comets may have formed through the polymerization of interstellar formaldehyde after planetesimal accretion, in the presence of liquid water, early in the history of the solar system.

  9. Modeling intraparticle transports during propylene polymerizations using supported metallocene and dual function metallocene as catalysts: Single particle model

    Directory of Open Access Journals (Sweden)

    Li Hua-Rong

    2014-01-01

    Full Text Available Two improved multigrain models (MGMs for preparing homopolypropylene and long chain branched polypropylene via propylene polymerization using silica-supported metallocene or dual function metallocene as catalysts are presented in this paper. The presented models are used to predict the intraparticle flow fields involved in the polymerizations. The simulation results show that the flow field distributions involve dare basically identical. The results also show that both the two polymerization processes have an initiation stage and the controlling step for them is reaction-diffusion-reaction with the polymerization proceeding. Furthermore, the simulation results show that the intra particle mass transfer resistance has significant effect on the polymerization but the heat transfer resistance can be ignored.

  10. Development and characterization of polymeric membranes for water desalination

    International Nuclear Information System (INIS)

    Bresciani, Danusa; Guimaraes, Danilo H.; Santos, Diego K.M.; Brioude, Michel M.; Jose, Nadia M.; Prado, Luis A.S.A.

    2009-01-01

    This work reports a development of polymeric membranes for water desalination by reverse osmosis. The polyester was synthesized by the reaction between glycerol, and dicarboxylic acids, and was coded PAF. Cellulose acetate/PAF blends containing 10% and 30% of polyester PAF blends were prepared using compression molding. The materials were characterized by DRX, DSC, TGA and SEM techniques. The results blends showed good thermal resistance and thermal events due to the individual components of the blends. The membranes exhibited a good performance in comparison to the neat cellulose acetate membrane. The addition of PAF in the polyester composition of the polymeric blends caused a significant increase of the salt retention of the studied samples. (author)

  11. The study of polymeric hydro-gels with unique properties obtained by polymerization with gamma radiation processing

    International Nuclear Information System (INIS)

    Dragusin, M.

    1995-01-01

    This thesis presents the work carried out on polymeric hydro-gels obtained by radiation processing using 60 Co gamma rays from the irradiation facility IETI-10.000 (10 k Ci), and on the polymeric hydro-gels obtained by irradiation with the electron beams from a linear accelerator (6 MeV). The aim of the study was to determine the effect of the rate dose and total dose absorbed in the materials. There are presented the preparation methods of homo- and co-polymer hydro-gels (acrylics, namely anionic and neutral monomers (acrylamide, acrylic acid, vinyl acetate) and cationic monomers (di-methyl di-allyl ammonium chloride)) such as floculants, additives, absorbers, etc. Concerning with these we have analysed the preparation methods, the mechanical, thermal, diffusivity, and swelling properties of polymeric hydro-gels in a large variety of gels of type I or II. The technological aspects and end use were studied in connection with the characteristics of the radiation processing of these hydro-gels as a function of chemical composition rate and absorbed dose, swelling degree (low and very high hydro-soluble), mechanical and diffusional properties. (author) 33 figs., 12 tabs., 101 refs

  12. Study on irradiated polymerization of acrylonitrile by NMR

    International Nuclear Information System (INIS)

    Zhao Xin; Lin Hao

    1999-01-01

    Sup 13 C CP/MAS spectra and nuclear Overhauser effects (NOE) at room temperature have been measured for acrylonitrile (AN) in homophase irradiated polymerization. With the increase of radiation dose the chemical shift of cracking peaks and NOE are variation. This implies that the polymerized mechanism of AN were changed with the variation of irradiated doses and dose rate. There is the stronger affinity electron group (-CN) in acrylonitrile monomer. It may be polymerized by various ways and mechanism and be gained the polymer of difference structures and molecular weight of polyacrylonitrile (PAN). Starmicarbon and Starker obtained higher molecular weight of polyacrylonitrile by peroxysulfate-pyrosulfite in oxidation-reduction system. The superhigh molecular weight of PAN was synthesized chemically according to the method of Wu et. al. by suspension polymerization. In this paper we discussed that the relative concentrations of steric dyads and triads in the chain structure in PAN and the irradiation polymerized mechanism of acrylonitrile monomer in room temperature by different dose and dose rate

  13. Study on the immobilization of alpha-amylase by radiation-induced polymerization at low-temperature, (4)

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Kumakura, Minoru; Kaetsu, Isao

    1975-07-01

    The immobilization of α-amylase by radiation-induced polymerization at low-temperature in the presence of an adsorbent has been studied. In the previous method, part of the enzyme escapes from the immobilized composition of HEMA polymer with a few enzyme reactions. This is prevented, however, by the present method in which the adsorbent-HEMA-α-amylase mixtures is immobilized by the polymerization with HEMA. Anhydride of an inorganic salt such as calcium carbonate, sodium acetate, calcium acetate, or DRIERETE (composed mainly of calcium sulfate) is especially useful as the adsorbent. Use of an inorganic ion such as Ca ++ or Na + improves remarkably heat-stability of the immobilized composition. The most effective composition for immobilization is 200 μg of α-amylase, 1 ml of 30% HEMA solution (in 0.02M phosphate buffer solution, pH 6.9) and 0.3g of DRIERETE. Frozen and irradiated with γ-rays of Co-60 to a total dose 1 x 10 6 R at -24 0 C, the immobilized enzyme has the activity about 93% that of the native one. (auth.)

  14. Reversible and Irreversible Binding of Nanoparticles to Polymeric Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang H. Binder

    2009-01-01

    Full Text Available Reversible and irreversible binding of CdSe-nanoparticles and nanorods to polymeric surfaces via a strong, multiple hydrogen bond (= Hamilton-receptor/barbituric acid is described. Based on ROMP-copolymers, the supramolecular interaction on a thin polymer film is controlled by living polymerization methods, attaching the Hamilton-receptor in various architectures, and concentrations. Strong binding is observed with CdSe-nanoparticles and CdSe-nanorods, whose surfaces are equipped with matching barbituric acid-moieties. Addition of polar solvents, able to break the hydrogen bonds leads to the detachment of the nanoparticles from the polymeric film. Irreversible binding is observed if an azide/alkine-“click”-reaction is conducted after supramolecular recognition of the nanoparticles on the polymeric surface. Thus reversible or irreversible attachment of the nanosized objects can be achieved.

  15. Methodology study for fixation of radioactive iodine in polymeric substrate for brachytherapy sources

    International Nuclear Information System (INIS)

    Rodrigues, Bruna T.; Rostelato, Maria Elisa C.M.; Souza, Carla D.; Tiezzi, Rodrigo; Souza, Daiane B. de; Benega, Marcos A.G.; Souza, Anderson S. de; Peleias Junior, Fernando S.; Zeituni, Calos A.; Fernandes, Vagner; Melo, Emerson Ronaldo de; Camargo, Anderson Rogerio de

    2015-01-01

    Cancer is now the second leading cause of death by disease in several countries, including Brazil. Prostate cancer is the most common among men. Brachytherapy is a modality of radiotherapy in which radioactive seeds are placed inside or in contact with the organ to be treated. The most widely used radioisotope in prostate brachytherapy is Iodine-125 which is presented fixated on a silver substrate that is subsequently placed inside a titanium capsule. A large dose of radiation is released only in the targeted tumor protecting healthy surrounding tissues. The technique requires the application of 80 - 120 seeds per patient. The implants of seeds have low impact and non-surgical procedures. Most patients can return to normal life within three days with little or no pain. This work proposes an alternative to the seeds that have already been developed, in order to reduce the cost by obtaining a better efficiency on fixing the radioactive iodine onto the epoxy resin. Methods have been developed to perform the fixation of Iodine-125 onto polymeric substrates. The parameters analyzed were the immersion time, type of static or dynamic reaction, concentration of the adsorption solution, the specific activity of the radioactive source, the need for carrier and chemical form of the radioactive Iodine. These experiments defined the most effective method to fixate the Iodine onto the polymeric material (epoxy resin), the Iodine activity in the polymeric substrate, the activity of the distribution of variation in a plot of polymeric cores and the efficiency of the epoxy resin to seal the seed. (author)

  16. Modeling of branching density and branching distribution in low-density polyethylene polymerization

    NARCIS (Netherlands)

    Kim, D.M.; Iedema, P.D.

    2008-01-01

    Low-density polyethylene (ldPE) is a general purpose polymer with various applications. By this reason, many publications can be found on the ldPE polymerization modeling. However, scission reaction and branching distribution are only recently considered in the modeling studies due to difficulties

  17. Design and synthesis of structurally well-defined functional polypropylenes via transition metal-mediated olefin polymerization chemistry

    Institute of Scientific and Technical Information of China (English)

    Dong Jinyong

    2006-01-01

    Functionalization of polyolefins is an industrially important yet scientifically challenging research subject.This paper summarizes our recent effort to access structurally well-defined functional polypropylenes via transition metal-mediated olefin polymerization.In one approach,polypropylenes containing side chain functional groups of controlled concentrations were obtained by Ziegler-Natta-catalyzed copolymerization of propylene in combination with either living anionic or controlled radical polymerization of polar monomers.The copolymerization of propylene with 1,4-divinylbenzene using an isospecific MgC12-supported TIC14 catalyst yielded potypropylenes containing pendant styrene moieties.Both metalation reaction with n-butyllithium and hydrochlorination reaction with dry hydrogen chloride selectively and quantitatively occurred at the pendant reactive sites,generating polymeric benzyllithium and 1-chloroethylbenzene species.These species initiated living anionic polymerization of styrene(S)and atom transfer radical polymerization(in the presence of CuC1 and pentamethyldiethylenetriamine) of methyl methacrylate(MMA),respectively,resulting in functional polypropylene graft copolymers(PP-g-PS and PP-g-PMMA)with controllable graft lengths.In another approach,chain end-functionalized polypropylenes containing a terminal OH-group with controlled molecular weights were directly prepared by propylene polymerization with a metaUocene catalyst through a selective aluminum chain transfer reaction.Both approaches proved to be desirable polyolefin functionalization routes in terms of efficiency and polymer structure controllability.

  18. Effect of the exothermal polymerization reaction on polymer gel dosimetric measurements

    International Nuclear Information System (INIS)

    Sedaghat, Mahbod; Bujold, Rachel; Lepage, Martin

    2010-01-01

    Discrepancies in polymer gel dosimetric measurements have been observed between containers of different sizes receiving the same radiation dose. We hypothesized that these deviations are caused by a change in the rate of polymerization due to internal heat increase in the gel containers resulting from the exothermic polymerization of monomers. Here, we test this hypothesis in a polyacrylamide gel dosimeter by recording the temperature in glass phantoms of different sizes during and after irradiation. The dose response of the samples was determined with magnetic resonance imaging. The difference of R 2 values along the depth of the containers was below ±1%. We discuss that this small difference can be attributed to variations in the rate of gelatin cooling during manufacture rather than to the measured heat increase during irradiation.

  19. Neutral Polymeric Micelles for RNA Delivery

    Science.gov (United States)

    Lundy, Brittany B.; Convertine, Anthony; Miteva, Martina; Stayton, Patrick S.

    2013-01-01

    RNA interference (RNAi) drugs have significant therapeutic potential but delivery systems with appropriate efficacy and toxicity profiles are still needed. Here, we describe a neutral, ampholytic polymeric delivery system based on conjugatable diblock polymer micelles. The diblock copolymer contains a hydrophilic poly[N-(2-hydroxypropyl) methacrylamide-co-N-(2-(pyridin-2- yldisulfanyl)ethyl)methacrylamide) (poly[HPMA-co-PDSMA]) segment to promote aqueous stability and facilitate thiol-disulfide exchange reactions, and a second ampholytic block composed of propyl acrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The poly[(HPMA-co-PDSMA)-b-(PAA-co-DMAEMA-co-BMA)] was synthesized using Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization with an overall molecular weight of 22,000 g/mol and a PDI of 1.88. Dynamic light scattering and fluorescence measurements indicated that the diblock copolymers self-assemble under aqueous conditions to form polymeric micelles with a hydrodynamic radius and critical micelle concentration of 25 nm and 25 μg/mL respectively. Red blood cell hemolysis experiments show that the neutral hydrophilic micelles have potent membrane destabilizing activity at endosomal pH values. Thiolated siRNA targeting glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was directly conjugated to the polymeric micelles via thiol exchange reactions with the pyridal disulfide groups present in the micelle corona. Maximum silencing activity in HeLa cells was observed at a 1:10 molar ratio of siRNA to polymer following a 48 h incubation period. Under these conditions 90 % mRNA knockdown and 65 % and protein knockdown of at 48 h was achieved with negligible toxicity. In contrast the polymeric micelles lacking a pH-responsive endosomalytic segment demonstrated negligible mRNA and protein knockdown under these conditions. The potent mRNA knockdown and excellent biocompatibility of the neutral siRNA conjugates

  20. SIMULTANEOUS MEASUREMENT OF FREE RADICAL DECAY IN POLYMERIZATION OF MMA INITIATED BY AIBN USING ESR AND ITS KINETIC MODEL

    Institute of Scientific and Technical Information of China (English)

    Ping Xia; Qing-song Hu; Xiao-lan Qian; Xul-in Jiang; De-yue Yan

    2001-01-01

    The kinetics of free radical decay in the polymerization of MMA initiated by AIBN was studied by means of ESR spectroscopy. It was found that the curves of radical decay are strongly associated with the reaction temperature, the initiator concentration and the solvent. In the case of the radical polymerization carried out at high temperature or in solution, the radical concentration first reached a maximum, then declined monotonously with reaction time. It was also found that the greater the amount of initiator or the higher the temperature, the more rapidly the radicals decay. When the bulk polymerization was implemented at a relatively low temperature, the curves of radical decay became more complicated, i.e.,the radical concentration rapidly rose to a maximum, then dropped to a minimum, finally increased again with reaction time.Taking into account the diffusion effect, a semi-empirical equation is suggested to describe the kinetics of propagating radical decay.

  1. In situ and real-time small-angle neutron scattering studies of living anionic polymerization process and polymerization-induced self-assembly of block copolymers

    International Nuclear Information System (INIS)

    Tanaka, H.; Yamauchi, K.; Hasegawa, H.; Miyamoto, N.; Koizumi, S.; Hashimoto, T.

    2006-01-01

    We have studied a simultaneous living anionic polymerization process of isoprene and deuterated styrene in deuterated benzene with sec-buthyl lithium as an initiator into polyisoprene-block-poly(styrene-d 8 ) and the polymerization-induced self-assembling process. This polymerization-induced self-assembling process was directly observed by an in situ and real-time small-angle neutron scattering (SANS) experiment. The time-resolved SANS studies enabled us to explore a time evolution of hierarchical structures induced by a time evolution of the primary structure (linear sequential connection of two monomers)

  2. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.

    2012-06-24

    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  3. Developing thin-film-composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization

    KAUST Repository

    Wang, Kaiyu; Chung, Tai Shung Neal; Amy, Gary L.

    2011-01-01

    A new scheme has been developed to fabricate high-performance forward osmosis (FO) membranes through the interfacial polymerization reaction on porous polymeric supports. p-Phenylenediamine and 1,3,5-trimesoylchloride were adopted as the monomers

  4. Pressure-induced polymerization in substituted acetylenes

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa, Raja S.; Dattelbaum, Dana M.; Sheffield, Stephen; Robbins, David (LANL)

    2012-04-10

    A fundamental understanding of shock-induced chemical reactions in organics is still lacking and there are limited studies devoted to determining reaction mechanisms, evolution of bonding, and effect of functional group substitutions. The fast timescale of reactions occurring during shock compression create significant experimental challenges (diagnostics) to fully quantify the mechanisms involved. Static compression combined with temperature provides a complementary route to investigate the equilibrium phase space and metastable intermediates under extreme P-T conditions. In this study, we present our results from our ongoing high pressure in situ synchrotron x-ray diffraction experiments on substituted acetylenes: tert-butyl acetylene [TBA: (CH{sub 3}){sub 3}-C=CH] and ethynyl trimethylsilane [ETMS: (CH{sub 3}){sub 3}-SiC=CH]. We observed that the onset pressure of chemical reactions (at room temperature) in these compounds is higher under static compression (TBA: 12 GPa and ETMS: 17.6 GPa) when compared to shock input pressures (TBA: 6.1 GPa and ETMS: 6.6 GPa). At elevated temperatures, reactivity was observed to occur at pressures comparable to shock conditions. The products were polymeric in nature, recovered to ambient conditions with little degradation.

  5. Introduction to chemical reaction engineering

    International Nuclear Information System (INIS)

    Kim, Yeong Geol

    1990-10-01

    This deals with chemical reaction engineering with thirteen chapters. The contents of this book are introduction on reaction engineering, chemical kinetics, thermodynamics and chemical reaction, abnormal reactor, non-isothermal reactor, nonideal reactor, catalysis in nonuniform system, diffusion and reaction in porosity catalyst, design catalyst heterogeneous reactor in solid bed, a high molecule polymerization, bio reaction engineering, reaction engineering in material process, control multi-variable reactor process using digital computer.

  6. Surface Chemistry Dependence of Mechanochemical Reaction of Adsorbed Molecules-An Experimental Study on Tribopolymerization of α-Pinene on Metal, Metal Oxide, and Carbon Surfaces.

    Science.gov (United States)

    He, Xin; Kim, Seong H

    2018-02-20

    Mechanochemical reactions between adsorbate molecules sheared at tribological interfaces can induce association of adsorbed molecules, forming oligomeric and polymeric products often called tribopolymers). This study revealed the role or effect of surface chemistry of the solid substrate in mechanochemical polymerization reactions. As a model reactant, α-pinene was chosen because it was known to readily form tribopolymers at the sliding interface of stainless steel under vapor-phase lubrication conditions. Eight different substrate materials were tested-palladium, nickel, copper, stainless steel, gold, silicon oxide, aluminum oxide, and diamond-like carbon (DLC). All metal substrates and DLC were initially covered with surface oxide species formed naturally in air or during the oxidative sample cleaning. It was found that the tribopolymerization yield of α-pinene is much higher on the substrates that can chemisorb α-pinene, compared to the ones on which only physisorption occurs. From the load dependence of the tribopolymerization yield, it was found that the surfaces capable of chemisorption give a smaller critical activation volume for the mechanochemical reaction, compared to the ones capable of physisorption only. On the basis of these observations and infrared spectroscopy analyses of the adsorbed molecules and the produced polymers, it was concluded that the mechanochemical reaction mechanisms might be different between chemically reactive and inert surfaces and that the chemical reactivity of the substrate surface greatly influences the tribochemical polymerization reactions of adsorbed molecules.

  7. Computational study of chain transfer to monomer reactions in high-temperature polymerization of alkyl acrylates.

    Science.gov (United States)

    Moghadam, Nazanin; Liu, Shi; Srinivasan, Sriraj; Grady, Michael C; Soroush, Masoud; Rappe, Andrew M

    2013-03-28

    This article presents a computational study of chain transfer to monomer (CTM) reactions in self-initiated high-temperature homopolymerization of alkyl acrylates (methyl, ethyl, and n-butyl acrylate). Several mechanisms of CTM are studied. The effects of the length of live polymer chains and the type of monoradical that initiated the live polymer chains on the energy barriers and rate constants of the involved reaction steps are investigated theoretically. All calculations are carried out using density functional theory. Three types of hybrid functionals (B3LYP, X3LYP, and M06-2X) and four basis sets (6-31G(d), 6-31G(d,p), 6-311G(d), and 6-311G(d,p)) are applied to predict the molecular geometries of the reactants, products and transition sates, and energy barriers. Transition state theory is used to estimate rate constants. The results indicate that abstraction of a hydrogen atom (by live polymer chains) from the methyl group in methyl acrylate, the methylene group in ethyl acrylate, and methylene groups in n-butyl acrylate are the most likely mechanisms of CTM. Also, the rate constants of CTM reactions calculated using M06-2X are in good agreement with those estimated from polymer sample measurements using macroscopic mechanistic models. The rate constant values do not change significantly with the length of live polymer chains. Abstraction of a hydrogen atom by a tertiary radical has a higher energy barrier than abstraction by a secondary radical, which agrees with experimental findings. The calculated and experimental NMR spectra of dead polymer chains produced by CTM reactions are comparable. This theoretical/computational study reveals that CTM occurs most likely via hydrogen abstraction by live polymer chains from the methyl group of methyl acrylate and methylene group(s) of ethyl (n-butyl) acrylate.

  8. High-pressure synthesis of CuBa2Ca3Cu4O10+δ superconductor from precursors prepared by a polymerized complex method

    International Nuclear Information System (INIS)

    Aoba, Tomoya; Bizen, Takeshi; Suzuki, Tsuneo; Nakayama, Tadachika; Suematsu, Hisayuki; Niihara, Koichi; Katsumata, Tetsuhiro; Inaguma, Yoshiyuki

    2011-01-01

    Samples of a CuBa 2 Ca 3 Cu 4 O 10+ δ superconductor were synthesized under a high pressure of 5 GPa at 1100-1200degC for 30 min using precursors produced by solid-state reaction and polymerized complex methods. Compared with the precursors prepared by the solid-state reaction method, the precursors produced by the polymerized complex method have low grain sizes. The superconductive transition temperature of the samples prepared using precursors made by the polymerized complex method was found to be 113 K. The volume fractions of the superconducting phase in the samples prepared using precursors made by the solid-state reaction and polymerized complex methods were 49 and 36%, respectively. From these results, precursors made by the polymerized complex method can be used in the high-pressure synthesis of superconductors similarly to those made by the solid-state reaction method. (author)

  9. Ionic polymerization of p-methoxystyrene and other styrene derivatives by radiation. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K; Pepper, D C [Trinity Coll., Dublin (Ireland)

    1976-01-01

    Polymerization of p-methoxystyrene by radiation was studied in bulk. Upon drying the monomer, the rate of polymerization, Rsub(p), became greater, changing its dose rate dependence from 0.5 to 1. The molecular weight distribution of the obtained polymers failed to give a bimodal curve; however, the peak molecular weight increased with higher Rsub(p). These kinetic features can be explained by a coexistence of radical and cationic mechanisms, as has been established in styrene, though there remain ambiguities about the effects of additives. Copolymerizations with styrene and 2-chloroethyl vinyl ether also showed a cationic nature for the reaction. A survey of possibilities of ionic polymerization by radiation was also carried out in ten ring-substituted styrene derivatives.

  10. Fluorescent polymeric nanocomposite films generated by surface-mediated photoinitiation of polymerization

    International Nuclear Information System (INIS)

    Avens, Heather J.; Chang, Erin L.; May, Allison M.; Berron, Brad J.; Seedorf, Gregory J.; Balasubramaniam, Vivek; Bowman, Christopher N.

    2011-01-01

    Incorporation of nanoparticles (NPs) into polymer films represents a valuable strategy for achieving a variety of desirable physical, optical, mechanical, and electrical attributes. Here, we describe and characterize the creation of highly fluorescent polymer films by entrapment of fluorescent NPs into polymer matrices through surface-mediated eosin photoinitiation reactions. Performing surface-mediated polymerizations with NPs combines the benefits of a covalently anchored film with the unique material properties afforded by NPs. The effects of monomer type, crosslinker content, NP size, and NP surface chemistry were investigated to determine their impact on the relative amount of NPs entrapped in the surface-bound films. The density of entrapped NPs was increased up to 6-fold by decreasing the NP diameter. Increasing the crosslinking agent concentration enabled a greater than 2-fold increase in the amount of NPs entrapped. Additionally, the monomer chemistry played a significant role as poly(ethylene glycol) diacrylate (PEGDA)-based monomer formulations entrapped a 10-fold higher density of carboxy-functionalized NPs than did acrylamide/bisacrylamide formulations, though the latter formulations ultimately immobilized more fluorophores by generating thicker films. In the context of a polymerization-based microarray biodetection platform, these findings enabled tailoring of the monomer and NP selection to yield a 200-fold improvement in sensitivity from 31 (±1) to 0.16 (±0.01) biotinylated target molecules per square micron. Similarly, in polymerization-based cell staining applications, appropriate monomer and NP selection enabled facile visualization of microscale, sub-cellular features. Careful consideration of monomer and NP selection is critical to achieve the desired properties in applications that employ surface-mediated polymerization to entrap NPs.

  11. Studies on entrapping of enzymes and drugs in matrices by radiation-induced polymerization at low temperatures and their capabilities

    International Nuclear Information System (INIS)

    Yoshida, Masaru

    1980-03-01

    The author has studied a immobilization method for enzymes and drugs by means of radiation-induced polymerization at low temperatures in a supercooled state using glass-forming monomers. The proposed technique using glass-forming monomer has features as follows. (1) Inactivation of the bio-component by heat and radiation is almost eliminated due to the low temperature treatment. (2) Moulding or shaping of the mixture of monomer and bio-component in difference forms and sizes of polymerized composite is easy due to high viscosity of the supercooled monomer. (3) The carrier matrix may be selected from a wide range of hydrophilic and hydrophobic vinyl monomers and polymers. (4) No impurities such as a polymerization catalyst are introduced in the system. (5) A bio-component can be easily distributed in high stability, either concentrated on surface of the monomer or homogeneously within the monomer, due to large viscosity of the monomer. Furthermore, the author attempted practical usage of the technique in such as enzyme fixation for long continuous or repeated application (PART I) and controlled slow release of medicine in efficient and durable without secondary reaction (PART II). (author)

  12. Pressure-induced polymerization of phenoxyethyl acrylate

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, K; Wrzalik, R; Paluch, M; Ziolo, J [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland); Roland, C M [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States)

    2008-06-18

    Polymerization of phenoxyethyl acrylate was induced without catalyst or initiators by the application of hydrostatic pressure at elevated temperature. Broadband dielectric and infrared spectroscopy were employed to follow the course of the reaction, which reached a degree of conversion of 60%. The structure of the obtained polymer was determined from density functional theory calculations.

  13. Polymeric reaction between aldehyde group in furfural and phenolic derivatives from liquefaction of oil palm empty fruit bunch fiber as phenol-furfural resin

    Science.gov (United States)

    Masli, M. Z.; Zakaria, S.; Chia, C. H.; Roslan, R.

    2016-11-01

    Resinification of liquefied empty fruit bunch with furfural (LEFB-Fu) was performed. During the resinification process, the samples were taken every hour up to 4 hours. FTIR analysis of the samples was conducted to understand the progress of the reaction. It showed that the bands of 1512 cm-1 and 1692 cm-1 evolving and diminishing respectively, indicating the consumption of furfural. The postulation of polymerization was also proven as the increasing extent of substitution of aromatic ring observed.

  14. Dynamic bioactive stimuli-responsive polymeric surfaces

    Science.gov (United States)

    Pearson, Heather Marie

    This dissertation focuses on the design, synthesis, and development of antimicrobial and anticoagulant surfaces of polyethylene (PE), polypropylene (PP), and poly(tetrafluoroethylene) (PTFE) polymers. Aliphatic polymeric surfaces of PE and PP polymers functionalized using click chemistry reactions by the attachment of --COOH groups via microwave plasma reactions followed by functionalization with alkyne moieties. Azide containing ampicillin (AMP) was synthesized and subsequently clicked into the alkyne prepared PE and PP surfaces. Compared to non-functionalized PP and PE surfaces, the AMP clicked surfaces exhibited substantially enhanced antimicrobial activity against Staphylococcus aureus bacteria. To expand the biocompatibility of polymeric surface anticoagulant attributes, PE and PTFE surfaces were functionalized with pH-responsive poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) polyelectrolyte tethers terminated with NH2 and COOH groups. The goal of these studies was to develop switchable stimuli-responsive polymeric surfaces that interact with biological environments and display simultaneous antimicrobial and anticoagulant properties. Antimicrobial AMP was covalently attached to --COOH terminal ends of protected PAA, while anticoagulant heparin (HEP) was attached to terminal --NH2 groups of P2VP. When pH 5.5, they collapse while the PAA segments extend. Such surfaces, when exposed to Staphylococcus aureus, inhibit bacterial growth due to the presence of AMP, as well as are effective anticoagulants due to the presence of covalently attached HEP. Comparison of these "dynamic" pH responsive surfaces with "static" surfaces terminated with AMP entities show significant enhancement of longevity and surface activity against microbial film formation. The last portion of this dissertation focuses on the covalent attachment of living T1 and Φ11 bacteriophages (phages) on PE and PTFE surface. This was accomplished by carbodiimide coupling between --COOH

  15. Radiation-induced in-source polymerization of acrylonitrile in urea canal complex

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Abe, Toshihiko; Kobayashi, Yasushi.

    1975-01-01

    Effect of reaction conditions on the radiation-induced in-source polymerization of acrylonitrile in urea canal complex and the properties of obtained polyacrylonitriles were investigated. The results were discussed in comparison with previously reported of the post-polymerization experiments. 1) Rate of polymerization and viscosity (eta sub(sp)/C) were the highest when the molar ratio of acrylonitrile to urea in canal complex was unity. Similar results were also obtained in the post-polymerization. However, eta sub(sp)/C exhibited different behavior on polymerization time in comparison with post-polymerization. 2) The initial rate (Rsub(p)) of polymerization is proportional to the dose rate (I) at low dose rate, but at high dose rates (above 2x10 5 r/hr) makes Rsub(p) proportional to Isup(0.5). 3) Molecular weight distribution become broader with increasing polymerization time and is broad as compared with those obtained by the post-polymerization. G-value of initiation of polymerization decreased with increasing polymerization time. These value was larger than the that obtained in the post-polymerization. 4) The stereoregularity of the polyacrylonitriles was independent of the molar ratio of acrylonitrile to urea in the canal complex and conversion. 5) The appearance of the polyacrylonitriles observed by the scanning electron microscope changed from curled string to extended one as the polymerization proceed. 6) Infrared spectrum revealed the ketenimine and cyclization structure in the polyacrylonitriles obtained below -100 0 C. The content of these abnormal structures increased with increasing conversion. (auth.)

  16. A Near-Infrared Photothermal Effect-Responsive Drug Delivery System Based on Indocyanine Green and Doxorubicin-Loaded Polymeric Micelles Mediated by Reversible Diels-Alder Reaction.

    Science.gov (United States)

    Li, Hui; Li, Junjie; Ke, Wendong; Ge, Zhishen

    2015-10-01

    Near-infrared light (NIR) possesses great advantages for light-responsive controllable drug release, such as deep tissue penetration and low damage to healthy tissues. Herein, a NIR-responsive drug delivery system is developed based on a NIR dye, indocyanine green (ICG), and anticancer drug, doxorubicin (DOX)-loaded thermoresponsive block copolymer micelles, in which the drug release can be controlled via NIR irradiation. First, block copolymers, poly(oligo(ethylene glycol) methacrylate)-block-poly(furfuryl methacrylate) (POEGMA-b-PFMA), are synthesized by sequential reversible addition-fragmentation chain-transfer (RAFT) polymerization, followed by modification with N-octyl maleimide through Diels-Alder (DA) reaction to produce POEGMA-b-POMFMA. The self-assembly of POEGMA-b-POMFMA by nano-precipitation in aqueous solution affords the polymeric micelles which are used to simultaneously encapsulate ICG and DOX. Upon irradiation by NIR light (805 nm), the loaded DOX is released rapidly from the micelles due to partial retro DA reaction and local temperature increase-induced faster drug diffusion by the photothermal effect. Cytotoxicity evaluation and intracellular distribution observation demonstrate significant synergistic effects of NIR-triggered drug release, photothermal, and chemotherapy toward cancer cells under NIR irradiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator.

  18. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun

    2016-01-01

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator

  19. Measurement of in vitro microtubule polymerization by turbidity and fluorescence.

    Science.gov (United States)

    Mirigian, Matthew; Mukherjee, Kamalika; Bane, Susan L; Sackett, Dan L

    2013-01-01

    Tubulin polymerization may be conveniently monitored by the increase in turbidity (optical density, or OD) or by the increase in fluorescence intensity of diamidino-phenylindole. The resulting data can be a quantitative measure of microtubule (MT) assembly, but some care is needed in interpretation, especially of OD data. Buffer formulations used for the assembly reaction significantly influence the polymerization, both by altering the critical concentration for polymerization and by altering the exact polymer produced-for example, by increasing the production of sheet polymers in addition to MT. Both the turbidity and the fluorescence methods are useful for demonstrating the effect of MT-stabilizing or -destabilizing additives. 2013 Published by Elsevier Inc.

  20. A DFT study on the effect of hydrogen in ethylene and propylene polymerization using a Ti-based heterogeneous Ziegler–Natta catalyst

    KAUST Repository

    Bahri-Laleh, Naeimeh

    2012-11-01

    Hydrogenolysis of a series of model Ziegler-Natta (Z-N) catalysts to form Ti-H bond was studied within DFT. We focused our efforts on Ti species attached to the (110) lateral cut of MgCl 2 which exist as different centres including Ti-C 2H 5, Ti-CH 2CH(CH 3) 2, and Ti-CH(CH 3)CH 2CH 3 in ethylene and propylene polymerization. In the next step, reactivity of Ti-H bond towards ethylene and propylene (1,2- and 2,1-) insertion was investigated. Results showed that insertion of ethylene and propylene into Ti-H bond has less barrier, in comparison with their insertion in Ti-C bond, however, ethylene and propylene 2,1- insertion lead to Ti-C 2H 5 and Ti-CH(CH 3) 2 centres respectively, which were stable due to strong β-agostic interactions. Finally, by considering different possible reactions of active centre, activity depression in ethylene polymerization and activity increase in propylene polymerization were explained in detail. © 2012 Elsevier B.V.

  1. Polymerization of epoxidized triglycerides with fluorosulfonic acid

    Science.gov (United States)

    The use of triglycerides as agri-based renewable raw materials for the development of new products is highly desirable in view of uncertain future petroleum prices. A new method of polymerizing epoxidized soybean oil has been devised with the use of fluorosulfonic acid. Depending on the reaction con...

  2. Polymerization of epoxy resins studied by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T. [Radiation Science Center, High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Hayashi, T. [Fine Chemical Research Lab., Sumitomo Chemical, Tsukuba (Japan); Ito, Y. [Research Center for Nuclear Science and Technology, Univ. of Tokyo (Japan)

    2001-04-01

    Positron annihilation lifetime spectroscopy (PALS) has been applied to study polymerization of epoxy resins of cresole novolac with a hardener of phenol novolac. PALS uses positrons to probe the microstructure of a nanometer (nm) size. Using PALS polymerization can be followed through three states: powder (monomer), liquid and solid. PALS is a unique method for the detection of intermolecular spaces, hence polymerization was followed from the point of view of free spaces (inter-molecular spaces) between polymer networks. The glass transition temperature (T{sub g}) was determined from the temperature dependence of the positronium (Ps) lifetime. Although Tg determined by PALS is usually lower than that determined by a mechanical analysis (TMA), it was observed that T{sub g} approached the value determined by TMA after long curing. Ps can form bubbles in a liquid, and the surface tension of a mixture of the resin and the hardener was calculated from a simple empirical formula using the Ps lifetime; the resulting value is similar to that of the bisphenol-A epoxy resin. Gelation was observed as an increase in the intensity of Ps and a sharp decrease in the lifetime. (orig.)

  3. A KIND OF FLUORESCENCE PROBE TO STUDY THE KINETICS OF POLYMERIZATION PROCESS

    Institute of Scientific and Technical Information of China (English)

    YANG Guoqiang; WU Shikang

    1994-01-01

    Fluorescence properties of 1-phenyl-3-(4'-nitrophenyl) pyrazoline (PNP) were studied in bulk polymerization process of methylmethacrylate (MMA). The fluorescence intensity of PNP was enhanced and the emission maximum was blue shifted with the polymerization progress. In the period of auto-acceleration of the polymerization the enhancement of fluorescence intensity and blue shift of peak wavelength in spectra could be observed evidently. This means that the solvatochromic properties of PNP are influenced not only by the solvent polarity but also by the viscosity of the medium(especially by the phase transition). In solid state PNP emits from the charge transfer excited state without solvent relaxation. The transient emission spectra and the results from Bakhshiev model of solvent relaxation coincide with that from the polymerization experiment.

  4. Catalytic olefin polymerization with early transition metal compounds

    NARCIS (Netherlands)

    Eshuis, Johan Jan Willem

    1991-01-01

    The catalysis of organic reactions by soluble metal complexes has become a major tool in synthesis, both in the laboratory and in the chemical industry. Processes catalyzed by transition metal complexes include carbonylation, olefin polymerization, olefin addition, olefin oxidation and alkane and

  5. Modeling of free radical polymerization up to high conversion. II. Development of a mathematical model.

    NARCIS (Netherlands)

    Tefera shibeshe, N.; Tefera, N.; Weickert, G.; Westerterp, K.R.

    1997-01-01

    In free radical polymerization diffusion-controlled processes take place simultaneously to the normal chemical reactions. Despite extensive efforts to model such processes a consistent model for the design of a polymerization reactor has not yet been established. In this article a semiempirical

  6. CAMPHORQUINONE AS A PHOTOINITIATOR IN THE POLYMERIZATION OF 2-HYDROXYETHYL METHACRYLATE IN AQUEOUS SOLUTION: A KINETIC STUDY

    Directory of Open Access Journals (Sweden)

    Iqbal Ahmad

    2017-06-01

    Full Text Available The photoinitiated polymerization of 2-hydroxyethyl methacrylate (HEMA (1-3 M using camphorquinone (CQ \\ triethanolamine (TEOHA system has been studied in the pH range 6.0-9.0. The kinetics of the reaction has been evaluated during the initial stages causing about 5% HEMA conversion to avoid the effects of any variation in the volume of the solution. The change in the concentration of HEMA during polymerization has been determined by a UV spectrometric method at 208 nm with a precision of 3%. The apparent first-order rate constants (kobs for the polymerization of HEMA by CQ in the presence of 0.01 M TEOHA, carried out up to 100 s, range from 3.35-7.78 (1 M, 2.72-6.78 (2 M and 2.33`5.89x104 s-1(3 M. The second-order rate constants for the interaction of TEOHA radicals with HEMA (1-3 M range from 2.33-7.78x10-2 M 1 s-lat pH 6.0-9.0 indicating an increase in the reactivity of TEOHA radicals with an increase in the pH of the solution. There is a linear relation between kobs (1-3 M HEMA and inverse of solution viscosity suggesting the quenching of CQ excited state with an increase in the viscosity of the medium.

  7. Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources.

    Science.gov (United States)

    Lalevée, Jacques; Mokbel, Haifaa; Fouassier, Jean-Pierre

    2015-04-20

    Photoinitiators (PI) or photoinitiating systems (PIS) usable in light induced cationic polymerization (CP) and free radical promoted cationic polymerization (FRPCP) reactions (more specifically for cationic ring opening polymerization (ROP)) together with the involved mechanisms are briefly reviewed. The recent developments of novel two- and three-component PISs for CP and FRPCP upon exposure to low intensity blue to red lights is emphasized in details. Examples of such reactions under various experimental conditions are provided.

  8. Modular in situ-Functionalization Strategy: Multicomponent Polymerization via Palladium/Norbornene Cooperative Catalysis.

    Science.gov (United States)

    Yoon, Ki-Young; Dong, Guangbin

    2018-05-23

    Herein, we report the palladium/norbornene cooperatively catalyzed polymerization, which simplifies synthesis of functional aromatic polymers, including conjugated polymers. Specifically, an A2B2C-type multicomponent polymerization is developed using ortho-amination/ipso-alkynylation reaction for preparing various amine-functionalized arylacetylene-containing polymers. Within a single catalytic cycle, the amine side-chains are site-selectively installed in situ via C-H activation during the polymerization process, which represents a major difference from conventional cross-coupling polymerizations. This in situ-functionalization strategy enables modular incorporation of functional side-chains from simple monomers, thereby conveniently affording a diverse range of functional polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Comparative Theoretical Study of the Ring-Opening Polymerization of Caprolactam vs Caprolactone Using QM/MM Methods

    Energy Technology Data Exchange (ETDEWEB)

    Elsasser, Brigitta M.; Schoenen, Iris; Fels, Gregor

    2013-06-07

    Candida antarctica lipase B (CALB) efficiently catalyzes the ring-opening polymerization of lactones to high molecular weight products in good yield. In contrast, an efficient enzymatic synthesis of polyamides has so far not been described in the literature. This obvious difference in enzyme catalysis is the subject of our comparative study of the initial steps of a CALB catalyzed ring-opening polymerization of ε- caprolactone and ε-caprolactam. We have applied docking tools to generate the reactant state complex and performed quantum mechanical/molecular mechanical (QM/MM) calculations at the density functional theory (DFT) PBE0 level of theory to simulate the acylation of Ser105 by the lactone and the lactam, respectively, via the corresponding first tetrahedral intermediates. We could identify a decisive difference in the accessibility of the two substrates in the ring-opening to the respective acyl enzyme complex as the attack of ε-caprolactam is hindered because of an energetically disfavored proton transfer during this part of the catalytic reaction while ε-caprolactone is perfectly processed along the widely accepted pathway using the catalytic triade of Ser105, His224, and Asp187. Since the generation of an acylated Ser105 species is the crucial step of the polymerization procedure, our results give an explanation for the unsatisfactory enzymatic polyamide formation and opens up new possibilities for targeted rational catalyst redesign in hope of an experimentally useful CALB catalyzed polyamide synthesis.

  10. Highly Defined Multiblock Copolypeptoids: Pushing the Limits of Living Nucleophilic Ring-Opening Polymerization

    KAUST Repository

    Fetsch, Corinna

    2012-06-05

    Advanced macromolecular engineering requires excellent control over the polymerization reaction. Living polymerization methods are notoriously sensitive to impurities, which makes a practical realization of such control very challenging. Reversible-deactivation radical polymerization methods are typically more robust, but have other limitations. Here, we demonstrate by repeated (ge;10 times) chain extension the extraordinary robustness of the living nucleophilic ring-opening polymerization of N-substituted glycine N-carboxyanhydrides, which yields polypeptoids. We observe essentially quantitative end-group fidelity under experimental conditions that are comparatively easily managed. This is employed to synthesize a pentablock quinquiespolymer with high definition. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Highly Defined Multiblock Copolypeptoids: Pushing the Limits of Living Nucleophilic Ring-Opening Polymerization

    KAUST Repository

    Fetsch, Corinna; Luxenhofer, Robert

    2012-01-01

    Advanced macromolecular engineering requires excellent control over the polymerization reaction. Living polymerization methods are notoriously sensitive to impurities, which makes a practical realization of such control very challenging. Reversible-deactivation radical polymerization methods are typically more robust, but have other limitations. Here, we demonstrate by repeated (ge;10 times) chain extension the extraordinary robustness of the living nucleophilic ring-opening polymerization of N-substituted glycine N-carboxyanhydrides, which yields polypeptoids. We observe essentially quantitative end-group fidelity under experimental conditions that are comparatively easily managed. This is employed to synthesize a pentablock quinquiespolymer with high definition. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase.

    Science.gov (United States)

    Yang, Dongjie; Wu, Xiaolei; Qiu, Xueqing; Chang, Yaqi; Lou, Hongming

    2014-03-01

    Alkali lignin (AL) was employed as raw materials in the present study. Sulfomethylation was conducted to improve the solubility of AL, while sulfomethylated alkali lignin (SAL) was further polymerized by horseradish peroxidase (HRP). HRP modification caused a significant increase in molecular weight of SAL which was over 20 times. It was also found to increase the amount of sulfonic and carboxyl groups while decrease the amount of phenolic and methoxyl groups in SAL. The adsorption quantity of self-assembled SAL film was improved after HRP modification. Sulfonation and HRP modification were mutually promoted. The polymerization reactivity of SAL in HRP modification was increased with its sulfonation degree. Meanwhile, HRP modification facilitated SAL's radical-sulfonation reaction. Copyright © 2014. Published by Elsevier Ltd.

  13. Unique effects of microwave heating on polymerization kinetics of poly(methyl methacrylate) composites

    Energy Technology Data Exchange (ETDEWEB)

    Spasojević, Pavle [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Jovanović, Jelena, E-mail: jelenaj@ffh.bg.ac.rs [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11001 Belgrade (Serbia); Adnadjevic, Borivoj [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11001 Belgrade (Serbia)

    2013-09-16

    The effects of heating mode (conventional and microwave) on the kinetics of isothermal polymerization of MMA composite materials were investigated. Isothermal kinetics curves at temperature range from 343 K to 363 K for both conventional (CH) and microwave heating (MWH) were determined. It was found that the polymerization of MMA composite materials was kinetically elementary reaction for both CH and MWH. The kinetics of CH polymerization can be described by the model of phase-boundary controlled process (contracting volume), whereas the kinetics of MWH polymerization can be described by the model of first-order chemical reaction. The kinetics parameters (E{sub a} and ln A) of the polymerization under microwave heating are lower than for conventional heating. The established decreases in the activation energy and pre-exponential factor under the MWH compared to the CH is explained with the increase in the energy of ground vibrational level of the C–O valence vibrations (ν = 987 cm{sup −1}) in methyl methacrylate molecule and with the decrease in its anharmonicity factor which is caused with the selective resonant transfer of energy from the energetic reservoir to the oscillators in methyl methacrylate molecules. - Graphical abstract: Display Omitted - Highlights: • The MWH speeds the MMA material polymerization and changes the kinetics model. • A novel concept of MWH action based on activation complexes formation is presented. • The Selective Energy Transfer model is used to explain the effects of MWH. • The kinetics parameters under MWH are lower than for CH. • The activation energy for both MWH and CH polymerization is quantized.

  14. PHOTOINITIATED POLYMERIZATION BY ARYLIODONIUM SALT/BENZOPHENONE / TERTIARY AMINE BINARY PHOTOSENSITIZATION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    HE Junhui; WANG Erjian

    1990-01-01

    A novel binary photosensitization system composed of benzophenone (BP) /diphenyliodonium chloride ( DPIOC )/triethylamine (TEA), exhibiting a good photoresponse at near UV and visible light regions, was used as the initiator for photopolymerization of MMA. The radical photogeneration in the binary system consists mainly of two parallel reactions, i. e., BP/TEA photohydrogen-abstraction and DPIOC/TEA complex photodecomposition, but the latter is more active than the former. The results of comparative study indicate that the rate of polymerization induced by the binary system (BDT) is remarkably higher than those by the corresponding single systems The polymerization rates are proportional to[BP] 0. 16, [ DPIOC] 0.32, [ TEA ] 0.45 and [MMA ] . The mechanism is also discussed.

  15. Methyleneation of peptides by N,N,N,N-tetramethylethylenediamine (TEMED) under conditions used for free radical polymerization: a mechanistic study.

    Science.gov (United States)

    Shirangi, Mehrnoosh; Sastre Toraño, Javier; Sellergren, Börje; Hennink, Wim E; Somsen, Govert W; van Nostrum, Cornelus F

    2015-01-21

    Free radical polymerization is often used to prepare protein and peptide-loaded hydrogels for the design of controlled release systems and molecular imprinting materials. Peroxodisulfates (ammonium peroxodisulfates (APS) or potassium peroxodisulfates (KPS)) with N,N,N,N-tetramethylethylenediamine (TEMED) are frequently used as initiator and catalyst. However, exposure to these free radical polymerization reagents may lead to modification of the protein and peptide. In this work, we show the modification of lysine residues by ammonium peroxodisulfate (APS)/TEMED of the immunostimulant thymopentin (TP5). Parallel studies on a decapeptide and a library of 15 dipeptides were performed to reveal the mechanism of modification. LC-MS of APS/TEMED-exposed TP5 revealed a major reaction product with an increased mass (+12 Da) with respect to TP5. LC-MS(2) and LC-MS(3) were performed to obtain structural information on the modified peptide and localize the actual modification site. Interpretation of the obtained data demonstrates the formation of a methylene bridge between the lysine and arginine residue in the presence of TEMED, while replacing TEMED with a sodium bisulfite catalyst did not show this modification. Studies with the other peptides showed that the TEMED radical can induce methyleneation on peptides when lysine is next to arginine, proline, cysteine, aspargine, glutamine, histidine, tyrosine, tryptophan, and aspartic acid residues. Stability of peptides and protein needs to be considered when using APS/TEMED in in situ polymerization systems. The use of an alternative catalyst such as sodium bisulfite may preserve the chemical integrity of peptides during in situ polymerization.

  16. Click polymerization for the synthesis of reduction-responsive polymeric prodrug

    Science.gov (United States)

    Zhang, Xiaojin; Wang, Hongquan; Dai, Yu

    2018-05-01

    Click polymerization is a powerful polymerization technique for the construction of new macromolecules with well-defined structures and multifaceted functionalities. Here, we synthesize reduction-responsive polymeric prodrug PEG- b-(PSS- g-MTX)- b-PEG containing disulfide bonds and pendant methotrexate (MTX) via two-step click polymerization followed by conjugating MTX to pendant hydroxyl. MTX content in polymeric prodrug is 13.5%. Polymeric prodrug is able to form polymeric micelles by self-assembly in aqueous solution. Polymeric micelles are spherical nanoparticles with tens of nanometers in size. Of note, polymeric micelles are reduction-responsive due to disulfide bonds in the backbone of PEG- b-(PSS- g-MTX)- b-PEG and could release pendant drugs in the presence of the reducing agents such as dl-dithiothreitol (DTT).

  17. Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources

    Directory of Open Access Journals (Sweden)

    Jacques Lalevée

    2015-04-01

    Full Text Available Photoinitiators (PI or photoinitiating systems (PIS usable in light induced cationic polymerization (CP and free radical promoted cationic polymerization (FRPCP reactions (more specifically for cationic ring opening polymerization (ROP together with the involved mechanisms are briefly reviewed. The recent developments of novel two- and three-component PISs for CP and FRPCP upon exposure to low intensity blue to red lights is emphasized in details. Examples of such reactions under various experimental conditions are provided.

  18. Pulsed-laser polymerization in compartmentalized liquids. 1. Polymerization in vesicles

    NARCIS (Netherlands)

    Jung, M.; Casteren, van I.A.; Monteiro, M.J.; Herk, van A.M.; German, A.L.

    2000-01-01

    Polymerization in vesicles is a novel type of polymerization in heterogeneous media, leading to parachute-like vesicle-polymer hybrid morphologies. To explore the kinetics of vesicle polymerizations and to learn more about the actual locus of polymerization we applied the pulsed-laser polymerization

  19. Atom transfer radical polymerization of n-butyl acrylate catalyzed by atom transfer radical polymerization of n-butyl acrylate catalyzed by

    NARCIS (Netherlands)

    Zhang, H.; Linde, van der R.

    2002-01-01

    The homogeneous atom transfer radical polymerization (ATRP) of n-butyl acrylate with CuBr/N-(n-hexyl)-2-pyridylmethanimine as a catalyst and ethyl 2-bromoisobutyrate as an initiator was investigated. The kinetic plots of ln([M]0/[M]) versus the reaction time for the ATRP systems in different

  20. Novel Zinc-Catalytic Systems for Ring-Opening Polymerization of ε-Caprolactone

    Directory of Open Access Journals (Sweden)

    Karolina Żółtowska

    2015-02-01

    Full Text Available Polycaprolactone (PCL is a biodegradable synthetic polymer that is currently widely used in many pharmaceutical and medical applications. In this paper we describe the coordination ring-opening polymerization of ε-caprolactone in the presence of two newly synthesized catalytic systems: diethylzinc/gallic acid and diethylzinc/propyl gallate. The chemical structures of the obtained PCLs were characterized by 1H- or 13C-NMR, FTIR spectroscopy and MALDI TOF mass spectrometry. The average molecular weight of the resulting polyesters was analysed by gel permeation chromatography and a viscosity method. The effects of temperature, reaction time and type of catalytic system on the polymerization process were examined. Linear PCLs with defined average molecular weight were successfully obtained. Importantly, in some cases the presence of macrocyclic products was not observed during the polymerization process. This study provides an effective method for the synthesis of biodegradable polyesters for medical and pharmaceutical applications due to the fact that gallic acid/propyl gallate are commonly used in the pharmaceutical industry.

  1. short communication synthesis and crystal structure of a polymeric

    African Journals Online (AJOL)

    Preferred Customer

    A new polymeric zinc(II) complex, [ZnL2(PDA)]n, has been prepared by the reaction of zinc sulfate ... complex has been characterized by single-crystal X-ray diffraction. .... Molecular structure of the complex at 30% probability displacement.

  2. Direct surface PEGylation of nanodiamond via RAFT polymerization

    International Nuclear Information System (INIS)

    Shi, Yingge; Liu, Meiying; Wang, Ke; Huang, Hongye; Wan, Qing; Tao, Lei; Fu, Lihua; Zhang, Xiaoyong; Wei, Yen

    2015-01-01

    Graphical abstract: In this paper, we describe an efficient, practical and novel method to modify ND via direct immobilization of chain transfer agent for RAFT polymerization. - Highlights: • Surface PEGylation of ND via RAFT polymerization. • ND with high water dispersibility and excellent biocompatibility. • Controlled living polymerization. - Abstract: Nanodiamond (ND) is a novel class of carbon nanomaterials, which has been extensively investigated for biomedical applications because of its small size, high surface area and excellent biocompatibility. However, the biomedical applications of unmodified ND are still largely restricted because of their poor dispersibility in both aqueous and organic medium. In this work, we reported a novel strategy for the surface modification of ND via reversible addition fragmentation chain transfer (RAFT) polymerization. For preparation of the PEGylated ND (pPEGMA-ND), chain transfer agent (CTA) was immobilized onto ND through reaction between the hydroxyl group of ND and the carboxyl group of CTA, which was used as the initiator for surface-initiated RAFT polymerization. The successful preparation of pPEGMA-ND was characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectra and thermal gravimetric analysis in detail. Results demonstrated that pPEGMA-ND exhibited enhanced water dispersibility and desirable biocompatibility, making it promising for biomedical applications.

  3. Direct surface PEGylation of nanodiamond via RAFT polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yingge [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Liu, Meiying [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Huang, Hongye; Wan, Qing [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Tao, Lei [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Fu, Lihua [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2015-12-01

    Graphical abstract: In this paper, we describe an efficient, practical and novel method to modify ND via direct immobilization of chain transfer agent for RAFT polymerization. - Highlights: • Surface PEGylation of ND via RAFT polymerization. • ND with high water dispersibility and excellent biocompatibility. • Controlled living polymerization. - Abstract: Nanodiamond (ND) is a novel class of carbon nanomaterials, which has been extensively investigated for biomedical applications because of its small size, high surface area and excellent biocompatibility. However, the biomedical applications of unmodified ND are still largely restricted because of their poor dispersibility in both aqueous and organic medium. In this work, we reported a novel strategy for the surface modification of ND via reversible addition fragmentation chain transfer (RAFT) polymerization. For preparation of the PEGylated ND (pPEGMA-ND), chain transfer agent (CTA) was immobilized onto ND through reaction between the hydroxyl group of ND and the carboxyl group of CTA, which was used as the initiator for surface-initiated RAFT polymerization. The successful preparation of pPEGMA-ND was characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectra and thermal gravimetric analysis in detail. Results demonstrated that pPEGMA-ND exhibited enhanced water dispersibility and desirable biocompatibility, making it promising for biomedical applications.

  4. Syntheses and Post-Polymerization Modifications of Well-Defined Styrenic Polymers Containing Three-Membered Heterocyclic Functionalities

    Science.gov (United States)

    McLeod, David Charles

    Macromolecules that contain electrophilic moieties, such as benzyl halides, activated esters, and epoxides, will readily undergo efficient nucleophilic substitution reactions with a wide variety of compounds under mild conditions, and are therefore ideally suited to act as "universal" precursors to functional materials. Epoxide-containing polymers derived from the radical polymerization of commercially-available glycidyl methacrylate are often employed in this role; however, methacrylic polymers suffer from certain limitations as a result of the incorporated ester groups, which are not stabile in the presence of strong nucleophiles, acids, bases, or esterase enzymes. Styrenic polymers that do not contain labile carbonyl moieties are usually the precursors of choice when high chemical stability is desired in the end product, but the production of functional materials from epoxide-containing styrenic polymers is relatively unexplored. In this dissertation, improved methods were developed for synthesizing 4-vinylphenyloxirane (4VPO) and 4-vinylphenyl glycidyl ether (4VPGE), two of the better-known epoxide-containing styrenic monomers, in high-yield and purity. Well-defined, epoxide-containing styrenic polymers with targeted molecular weights, narrow molecular weight distributions, and controlled architectures (specifically, linear and star-shaped homopolymers, as well as linear block copolymers with styrene) were produced from 4VPO and 4VPGE for the first time using reversible-deactivation radical polymerization techniques, such as low-catalyst-concentration atom transfer radical polymerization (LCC ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization. The robust nature and utility of poly4VPO and poly4VPGE were then demonstrated by the efficient, ring-opening modification of the pendant epoxide groups with a structurally- and functionally-diverse array of alcohols under acidic conditions at ambient temperature. The macromolecular

  5. Crosslinking polymerization of tetraethylene glycol dimethacrylate under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, K; Paluch, M; Ziolo, J [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland); Bogoslovov, R; Roland, C M [Chemistry Division, Code 6120, Naval Research Laboratory, Washington DC 20375-5342 (United States)], E-mail: kaminski@us.edu.pl

    2008-07-15

    The polymerization reaction of tetraethylene glycol dimethacrylate was induced by application of high pressure. Broadband dielectric spectroscopy was employed to investigate dielectric properties of the produced polymers. Additionally swelling experiment was performed to determine the degree of crossliniking of the polymers.

  6. Investigations in the field of solid-state polymerization Pt. 37

    International Nuclear Information System (INIS)

    Mahr, L.; Cser, F.; Kovacs, G.; Hardy, Gy.

    1978-01-01

    Chloranil (CA) and bromanil (BA) which have otherwise similar radiation-chemical properties affect the solid state polymerization of acenaphthylene (ACN) in different manner. CA decreases the rate of polymerization proportionally to its concentration and besides, it also decreases the conversion limit and the molecular weight of the product. BA does not influence the reaction up to a conversion of 20%, but soon afterwards the conversion limit of the polymerization is reached. This limit, above 8M% BA content, is independent of the BA concentration. The reason for the different behaviour is that while BA forms an ideal eutectics with ACN, CA forms a solid solution of limited miscibility at the temperature of the experiments. Both pairs of compounds give charge transfer complex in solid state. The charge transfer complex of BA exists merely at the boundary layer of the crystals, but that of CA is within the crystal lattice of ACN as in a solid solvent. In none of the studied cases could be detected the charge transfer complex with its own specific crystal structure. The effect of CA on the solid state polymerization of ACN is discussed on the basis of the results obtained by PPP and CNDO/2 calculations on ACN and CA. (author)

  7. Radiation polymerization of tetrafluoroethylene in freon-22

    International Nuclear Information System (INIS)

    Schnautz, N.G.; Thompson, J.C.

    1979-02-01

    The radiation-induced solution-polymerization of tetrafluoroethylene in Freon-22 has been investigated over a temperature range of - 62 degrees celcius to 0 degrees celcius. The rate of polymerization for the in-source process was found to be directly propertional to monomer concentration and an activation energy of only 7,66 kj/mole was calculated. The number-average molecular mass of the product PTFE ranged from 2X10 4 to 6X10 4 and was relatively independent of the usual reaction parameters. The rate of postpolymerization was also found to be directly proportional to monomer concentration. The postpolyerization process did not result in any enchancement of the initial PTFE molecular mass [af

  8. 21 CFR 175.300 - Resinous and polymeric coatings.

    Science.gov (United States)

    2010-04-01

    ... descriptions: (1) Coatings cured by oxidation. (2) Coatings cured by polymerization, condensation, and/or cross... condensation product formed by the reaction of hydrogenated castor oil with polyamide derived from...-oil emulsion, high- or low-fat. B. Oil-in-water emulsion, high- or low-fat. V. Low moisture fats and...

  9. Macromolecular crowding gives rise to microviscosity, anomalous diffusion and accelerated actin polymerization.

    Science.gov (United States)

    Rashid, Rafi; Chee, Stella Min Ling; Raghunath, Michael; Wohland, Thorsten

    2015-04-30

    Macromolecular crowding (MMC) has been used in various in vitro experimental systems to mimic in vivo physiology. This is because the crowded cytoplasm of cells contains many different types of solutes dissolved in an aqueous medium. MMC in the extracellular microenvironment is involved in maintaining stem cells in their undifferentiated state (niche) as well as in aiding their differentiation after they have travelled to new locations outside the niche. MMC at physiologically relevant fractional volume occupancies (FVOs) significantly enhances the adipogenic differentiation of human bone marrow-derived mesenchymal stem cells during chemically induced adipogenesis. The mechanism by which MMC produces this enhancement is not entirely known. In the context of extracellular collagen deposition, we have recently reported the importance of optimizing the FVO while minimizing the bulk viscosity. Two opposing properties will determine the net rate of a biochemical reaction: the negative effect of bulk viscosity and the positive effect of the excluded volume, the latter being expressed by the FVO. In this study we have looked more closely at the effect of viscosity on reaction rates. We have used fluorimetry to measure the rate of actin polymerization and fluorescence correlation spectroscopy (FCS) to measure diffusion of various probes in solutions containing the crowder Ficoll at physiological concentrations. Similar to its effect on collagen, Ficoll enhanced the actin polymerization rate despite increasing the bulk viscosity. Our FCS measurements reveal a relatively minor component of anomalous diffusion. In addition, our measurements do suggest that microviscosity becomes relevant in a crowded environment. We ruled out bulk viscosity as a cause of the rate enhancement by performing the actin polymerization assay in glycerol. These opposite effects of Ficoll and glycerol led us to conclude that microviscosity becomes relevant at the length scale of the reacting

  10. Macromolecular crowding gives rise to microviscosity, anomalous diffusion and accelerated actin polymerization

    Science.gov (United States)

    Rashid, Rafi; Chee, Stella Min Ling; Raghunath, Michael; Wohland, Thorsten

    2015-05-01

    Macromolecular crowding (MMC) has been used in various in vitro experimental systems to mimic in vivo physiology. This is because the crowded cytoplasm of cells contains many different types of solutes dissolved in an aqueous medium. MMC in the extracellular microenvironment is involved in maintaining stem cells in their undifferentiated state (niche) as well as in aiding their differentiation after they have travelled to new locations outside the niche. MMC at physiologically relevant fractional volume occupancies (FVOs) significantly enhances the adipogenic differentiation of human bone marrow-derived mesenchymal stem cells during chemically induced adipogenesis. The mechanism by which MMC produces this enhancement is not entirely known. In the context of extracellular collagen deposition, we have recently reported the importance of optimizing the FVO while minimizing the bulk viscosity. Two opposing properties will determine the net rate of a biochemical reaction: the negative effect of bulk viscosity and the positive effect of the excluded volume, the latter being expressed by the FVO. In this study we have looked more closely at the effect of viscosity on reaction rates. We have used fluorimetry to measure the rate of actin polymerization and fluorescence correlation spectroscopy (FCS) to measure diffusion of various probes in solutions containing the crowder Ficoll at physiological concentrations. Similar to its effect on collagen, Ficoll enhanced the actin polymerization rate despite increasing the bulk viscosity. Our FCS measurements reveal a relatively minor component of anomalous diffusion. In addition, our measurements do suggest that microviscosity becomes relevant in a crowded environment. We ruled out bulk viscosity as a cause of the rate enhancement by performing the actin polymerization assay in glycerol. These opposite effects of Ficoll and glycerol led us to conclude that microviscosity becomes relevant at the length scale of the reacting

  11. Chemical Reactor Automation as a way to Optimize a Laboratory Scale Polymerization Process

    Science.gov (United States)

    Cruz-Campa, Jose L.; Saenz de Buruaga, Isabel; Lopez, Raymundo

    2004-10-01

    The automation of the registration and control of variables involved in a chemical reactor improves the reaction process by making it faster, optimized and without the influence of human error. The objective of this work is to register and control the involved variables (temperatures, reactive fluxes, weights, etc) in an emulsion polymerization reaction. The programs and control algorithms were developed in the language G in LabVIEW®. The designed software is able to send and receive RS232 codified data from the devices (pumps, temperature sensors, mixer, balances, and so on) to and from a personal Computer. The transduction from digital information to movement or measurement actions of the devices is done by electronic components included in the devices. Once the programs were done and proved, chemical reactions of emulsion polymerization were made to validate the system. Moreover, some advanced heat-estimation algorithms were implemented in order to know the heat caused by the reaction and the estimation and control of chemical variables in-line. All the information gotten from the reaction is stored in the PC. The information is then available and ready to use in any commercial data processor software. This work is now being used in a Research Center in order to make emulsion polymerizations under efficient and controlled conditions with reproducible results. The experiences obtained from this project may be used in the implementation of chemical estimation algorithms at pilot plant or industrial scale.

  12. Surface Initiated Polymerizations via e-ATRP in Pure Water

    Directory of Open Access Journals (Sweden)

    Seyed Schwan Hosseiny

    2013-10-01

    Full Text Available Here we describe the combined process of surface modification with electrochemical atom transfer radical polymerization (e-ATRP initiated from the surface of a modified gold-electrode in a pure aqueous solution without any additional supporting electrolyte. This approach allows for a very controlled growth of the polymer chains leading towards a steady increase in film thickness. Electrochemical quartz crystal microbalance displayed a highly regular increase in surface confined mass only after the addition of the pre-copper catalyst which is reduced in situ and transformed into the catalyst. Even after isolation and washing of the modified electrode surface, reinitiation was achieved with retention of the controlled electrochemical ATRP reaction. This reinitiation after isolation proves the livingness of the polymerization. This approach has interesting potential for smart thin film materials and offers also the possibility of post-modification via additional electrochemical induced reactions.

  13. Conductive cotton prepared by polyaniline in situ polymerization using laccase.

    Science.gov (United States)

    Zhang, Ya; Dong, Aixue; Wang, Qiang; Fan, Xuerong; Cavaco-Paulo, Artur; Zhang, Ying

    2014-09-01

    The high-redox-potential catalyst laccase, isolated from Aspergillus, was first used as a biocatalyst in the oxidative polymerization of water-soluble conductive polyaniline, and then conductive cotton was prepared by in situ polymerization under the same conditions. The polymerization of aniline was performed in a water dispersion of sodium dodecylbenzenesulfonate (SDBS) micellar solution with atmospheric oxygen serving as the oxidizing agent. This method is ecologically clean and permits a greater degree of control over the kinetics of the reaction. The conditions for polyaniline synthesis were optimized. Characterizations of the conducting polyaniline and cotton were carried out using Fourier transform infrared spectroscopy, UV-vis spectroscopy, cyclic voltammetry, the fabric induction electrostatic tester, and the far-field EMC shielding effectiveness test fixture.

  14. Facile graft polystyrene onto multi-walled carbon nanotubes via in situ thermo-induced radical polymerization

    International Nuclear Information System (INIS)

    Liu Peng

    2009-01-01

    A facile procedure was developed for the grafting of polystyrene onto the surfaces of multi-walled carbon nanotubes (MWNTs) via the in situ thermo-induced bulk radical polymerization of styrene at the different polymerizing temperatures, in the presence of MWNTs without any initiator added. The grafting products were validated by the dispersibility, TEM, TGA, FT-IR, and Raman analysis. The TGA results also showed the lower polymerizing temperature was propitious to the free radical addition reactions.

  15. Carbonyl-Olefin Exchange Reaction: Present State and Outlook

    Science.gov (United States)

    Kalinova, Radostina; Jossifov, Christo

    The carbonyl-olefin exchange reaction (COER) is a new reaction between carbonyl group and olefin double bond, which has a formal similarity with the olefin metathesis (OM) - one carbon atom in the latter is replaced with an oxygen atom. Till now the new reaction is performed successfully only when the two functional groups (carbonyl group and olefin double bond) are in one molecule and are conjugated. The α, β-unsaturated carbonyl compounds (substituted propenones) are the compounds with such a structure. They polymerize giving substituted polyacetylenes. The chain propagation step of this polymerization is in fact the COER. The question arises: is it possible the COER to take place when the two functional groups are not in one molecule and are not conjugated, and could this reaction became an alternative of the existing carbonyl olefination reactions?

  16. Effects of different reaction mediums on ring opening polymerization ...

    African Journals Online (AJOL)

    This work examined the effects of reaction conditions on ring opening ... of this study was to observe molecular weight distribution, conversion rates, and thermal ... M monomer and 0.56 M solvent), 10 mg lipase were used in the experiments.

  17. Novel sol–gel methodology to produce LaCoO3 by acrylamide polymerization assisted by γ-irradiation

    International Nuclear Information System (INIS)

    Carabalí, G.; Chavira, E.; Castro, I.; Bucio, E.; Huerta, L.; Jiménez-Mier, J.

    2012-01-01

    In this paper we report the synthesis of LaCoO 3 (LCO) nano-particles with two methodologies: the conventional sol–gel reaction of acrylamide (AA) polymerization using a cross-linking agent (methylenebisacrylamide or MBA) with the activation of the polymerization reaction by thermo-chemical initiator (azobisisobutyrnitrile or AIBN). The second was a novel sol–gel methodology in which the polymerization of AA monomers was done without MBA and the initiation was achieved by gamma radiation. With thermochemical initiator a xerogel with a foam and porous structure was obtained, while the gamma-irradiation of the mixture leads to the formation of a compact resin with entrapped cations. X-ray diffraction (XRD) shows that formation of the product begins around 500 °C and according to analysis of microscopy images of powders calcined in 700 °C the average sizes of particles are 20 nm and 42 nm for samples obtained using γ-irradiation and AIBN as initiators, respectively. TEM images also show differences in particle morphology. Those synthesized using AIBN as initiator are dispersed, while those with γ-irradiation are in aggregates. - Highlights: ► LaCoO 3 nano-crystallites were synthesized by two different polyacrylamide sol–gel processes. ► Acrylamide polymerization reaction initiated by gamma irradiation and by thermo-chemical agent. ► Polymerization reaction with thermo-chemical initiator produces a porous gel. ► Xerogel obtained using gamma radiation is compact resin. ► LaCoO 3 powders produced by both methods differ in the size and morphology of particles.

  18. Kinetics of Waterborne Alkyd/Acrylic Hybrid Resin Free Radical Polymerization by Two Systems of Redox and Thermal Initiators

    OpenAIRE

    shirin Madadi; ali akbar Yousefi; elham Keshmirizadeh

    2012-01-01

    Kinetics of radical polymerizations of waterborne alkyd/acrylic hybrid resin via batch mini-emulsion technique was studied using redox initiators (TBHP/Fe2+/EDTA/AsAc  and  TBHP/Fe2+/EDTA/SFS) at relatively low temperatures and thermal initiators (BPO, KPS and AIBN) at higher temperatures to seek the most suitable initiator system. At the end of all reactions the unreacted monomer content was reduced using post-polymerization technique; consequently, leading to increased monomer conversion an...

  19. Nanoscale control of reversible chemical reaction between fullerene C60 molecules using scanning tunneling microscope.

    Science.gov (United States)

    Nakaya, Masato; Kuwahara, Yuji; Aono, Masakazu; Nakayama, Tomonobu

    2011-04-01

    The nanoscale control of reversible chemical reactions, the polymerization and depolymerization between C60 molecules, has been investigated. Using a scanning tunneling microscope (STM), the polymerization and depolymerization can be controlled at designated positions in ultrathin films of C60 molecules. One of the two chemical reactions can be selectively induced by controlling the sample bias voltage (V(s)); the application of negative and positive values of V(s) results in polymerization and depolymerization, respectively. The selectivity between the two chemical reactions becomes extremely high when the thickness of the C60 film increases to more than three molecular layers. We conclude that STM-induced negative and positive electrostatic ionization are responsible for the control of the polymerization and depolymerization, respectively.

  20. Effect of homopolymer in polymerization-induced microphase separation process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongmin; Saba, Stacey A.; Hillmyer, Marc A.; Kang, Dong-Chang; Seo, Myungeun (IBS-Korea); (KAIST); (UMMN)

    2017-09-01

    We report on the phase separation behaviors of polymerization mixtures containing a polylactide macro-chain transfer agent (PLA-CTA), styrene, divinylbenzene, hydroxyl-terminated PLA (PLA-OH), and a molecular chain transfer agent which enable the ability to tune the pore size of a cross-linked polymer monolith in a facile manner. Cross-linked monoliths were produced from the mixtures via reversible addition-fragmentation chain transfer (RAFT) polymerization and converted into cross-linked porous polymers by selective removal of PLA while retaining the parent morphology. We demonstrate that pore sizes are tunable over a wide range of length scales from the meso- to macroporous regimes by adjusting the ratio of PLA-CTA to PLA-OH in the reaction mixture which causes the phase separation mechanism to change from polymerization-induced microphase separation to polymerization-induced phase separation. The possibility of increasing porosity and inducing simultaneous micro- and macrophase separation was also realized by adjustments in the molar mass of PLA which enabled the synthesis of hierarchically meso- and macroporous polymers.

  1. Role of radiolytically generated species in radiation induced polymerization of sodium p-styrene sulphonate (SSS) in aqueous solution: Steady state and pulse radiolysis study

    International Nuclear Information System (INIS)

    Bhardwaj, Y.K.; Mohan, H.; Sabharwal, S.; Majali, A.B.

    2000-01-01

    Radiation induced polymerization of sodium p-styrene sulphonate (SSS) in aqueous solution has been investigated by steady state and pulse radiolysis techniques. Effect of dose, dose rate, monomer concentration, pH and ambient conditions on polymerization was investigated. The reactions of primary radicals of water radiolysis such as OH radical, e - aq , H atom, O· - and some oxidizing radicals like N· 3 , Cl· - 2 ,Br· - 2 , and reducing specie like CO· - 2 with SSS have also been investigated. SSS reacts with OH radical with a rate constant of 5.9x10 9 dm 3 mol -1 s -1 at pH 6.3. The results indicate that ∼83% of OH radicals undergo electron transfer reaction resulting in a cation radical species while remaining ∼17% react via addition reaction. The hydrated electron reacts with SSS with a rate constant 1.3x10 10 dm 3 mol -1 s -1 to form an anion that undergoes fast protonation to form H-adduct at pH 6.3. At high pH (>10) the anion is able to transfer electron to methyl vilogen and p-nitro aceto phenone (p-NAP) where as H-adduct is unable to transfer electron. At pH ∼1 H atom reaction with SSS is diffusion controlled with a rate constant of 5x10 9 dm 3 mol -1 s -1 and results in formation of H adduct. It was seen that anion reacts with solute an order faster than cation generated radiolytically indicating anionic initiation of polymerization of SSS. Molecular weight of the polymer formed by radiation polymerization, determined by viscosity measurement, are of the order of 10 7 and higher molecular weight polymers are obtained at lower dose rates. In presence of a crosslinking agent gelation of polymer is much faster than the monomer and a polymer concentration ∼20% is most efficiently crosslinked. (author)

  2. Microwave-assisted Polymerization of D, L-Lactide with Stannous Octanoate as Catalyst

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Poly (lactic acid) (PLA) was synthesized by microwave-assisted ring-opening poly- merization of D, L-lactide with stannous octanoate (SnOct2) as catalyst. Its weight-average molar mass (Mw) ranged from 39000 to 67000 and the polydispersity index from 1.3 to 1.7. The polymerization rate was much faster than that of the conventional thermal polymerization. A degradation of newly formed PLA in reaction mixture by microwave irradiation was observed.

  3. Biodegradable Polyelectrolyte Obtained by Radiation Polymerization

    International Nuclear Information System (INIS)

    Craciun, G.; Martin, D.; Manaila, E.; Nemtanu, M.; Brasoveanu, M.; Ighigeanu, D.

    2009-01-01

    Poly electrolytes are water-soluble polymers carrying ionic charge along the polymer chain. Depending upon the charge, these polymers are anionic or cationic. The inherent solid - liquid separating efficiency makes these poly electrolytes a unique class of polymers which find extensive application in potable water, industrial raw and process water, municipal sewage treatment, mineral processing and metallurgy, oil drilling and recovery, etc. Also, due to their ability to produce advanced induced coagulation, a considerable amount of bacteria and viruses are precipitated together with the suspended solids. Especially the acrylamide polymers are very efficacious for water treatment but acrylamide is a toxic monomer and therefore their use are governed by international standards that provide the residual acrylamide monomer content (RAMC) in them be less than 0.05%. Under these circumstances our attention was focused on the following research steps that are presented in this paper: 1) Preparation of a special class of poly electrolytes, named Pn, with very low RAMC values, based on electron beam (EB), microwave (MW) and EB + MW induced co-polymerization of aqueous solutions containing appropriate mixtures of acrylamide (AMD) and acrylic acid (AA) monomers (AMD - AA co-polymers). The Pn were obtained by radiation technology with very small RAMC (under 0.01%) as well as in a wide range of molecular weights and charge densities. Very low AMD monomer content of Pn is due to the major advantages of radiation induced polymerization in aqueous solution containing monomers. Due to water presence in the EB irradiated system, irradiated water radicals facilitate the polymerization process and increase rate and level of monomers conversion in co-polymers. Also, once again, by the presence of water, which absorbs MW energy very strongly, the MW polymerization reaction rate is much enhanced resulting in a reaction time about 50-100 times lowers than by conventional heating. Also

  4. The first experimental confirmation of the fractional kinetics containing the complex-power-law exponents: Dielectric measurements of polymerization reactions

    Science.gov (United States)

    Nigmatullin, R. R.; Arbuzov, A. A.; Salehli, F.; Giz, A.; Bayrak, I.; Catalgil-Giz, H.

    2007-01-01

    For the first time we achieved incontestable evidence that the real process of dielectric relaxation during the polymerization reaction of polyvinylpyrrolidone (PVP) is described in terms of the fractional kinetic equations containing complex-power-law exponents. The possibility of the existence of the fractional kinetics containing non-integer complex-power-law exponents follows from the general theory of dielectric relaxation that has been suggested recently by one of the authors (R.R.N). Based on the physical/geometrical meaning of the fractional integral with complex exponents there is a possibility to develop a general theory of dielectric relaxation based on the self-similar (fractal) character of the reduced (averaged) microprocesses that take place in the mesoscale region. This theory contains some essential predictions related to existence of the non-integer power-law kinetics and the results of this paper can be considered as the first confirmation of existence of the kinetic phenomena that are described by fractional derivatives with complex-power-law exponents. We want to stress here that with the help of a new complex fitting function for the complex permittivity it becomes possible to describe the whole process for real and imaginary parts simultaneously throughout the admissible frequency range (30 Hz-13 MHz). The fitting parameters obtained for the complex permittivity function for three temperatures (70, 90 and 110 °C) confirm in general the picture of reaction that was known qualitatively before. They also reveal some new features, which improve the interpretation of the whole polymerization process. We hope that these first results obtained in the paper will serve as a good stimulus for other researches to find the traces of the existence of new fractional kinetics in other relaxation processes unrelated to the dielectric relaxation. These results should lead to the reconsideration and generalization of irreversibility and kinetic phenomena that

  5. Activation and deactivation of neutral palladium(II) phosphinesulfonato polymerization catalysts

    KAUST Repository

    Rünzi, Thomas

    2012-12-10

    13C-Labeled ethylene polymerization (pre)catalysts [κ2-(anisyl)2P,O]Pd(13CH3)(L) (1-13CH3-L) (L = pyridine, dmso) based on di(2-anisyl)phosphine benzenesulfonate were used to assess the degree of incorporation of 13CH3 groups into the formed polyethylenes. Polymerizations of variable reaction time reveal that ca. 60-85% of the 13C-label is found in the polymer after already 1 min polymerization time, which provides evidence that the pre-equilibration between the catalyst precursor 1-13CH3-L and the active species 1-13CH3-(ethylene) is fast with respect to chain growth. The fraction of 1-13CH3-L that initiates chain growth is likely higher than the 60-85% determined from the 13C-labeled polymer chain ends since (a) chain walking results in in-chain incorporation of the 13C-label, (b) irreversible catalyst deactivation by formation of saturated (and partially volatile) alkanes diminishes the amount of 13CH3 groups incorporated into the polymer, and (c) palladium-bound 13CH3 groups, and more general palladium-bound alkyl(polymeryl) chains, partially transfer to phosphorus by reductive elimination. NMR and ESI-MS analyses of thermolysis reactions of 1-13CH3-L provide evidence that a mixture of phosphonium salts (13CH3)xP+(aryl)4-x (2-7) is formed in the absence of ethylene. In addition, isolation and characterization of the mixed bis(chelate) palladium complex [κ2-(anisyl)2P,O]Pd[κ2-(anisyl) (13CH3)P,O] (11) by NMR and X-ray diffraction analyses from these mixtures indicate that oxidative addition of phosphonium salts to palladium(0) species is also operative. The scrambling of palladium-bound carbyls and phosphorus-bound aryls is also relevant under NMR, as well as preparative reactor polymerization conditions exemplified by the X-ray diffraction analysis of [κ2-(anisyl)2P,O] Pd[κ2-(anisyl)(CH2CH3)P,O] (12) and [κ2-(anisyl)2P,O]Pd[κ2-(anisyl) ((CH2)3CH3)P,O] (13) isolated from pressure reactor polymerization experiments. In addition, ESI-MS analyses of reactor

  6. Mechanistic Studies of Hafnium-Pyridyl Amido-Catalyzed 1-Octene Polymerization and Chain Transfer Using Quench-Labeling Methods.

    Science.gov (United States)

    Cueny, Eric S; Johnson, Heather C; Anding, Bernie J; Landis, Clark R

    2017-08-30

    Chromophore quench-labeling applied to 1-octene polymerization as catalyzed by hafnium-pyridyl amido precursors enables quantification of the amount of active catalyst and observation of the molecular weight distribution (MWD) of Hf-bound polymers via UV-GPC analysis. Comparison of the UV-detected MWD with the MWD of the "bulk" (all polymers, from RI-GPC analysis) provides important mechanistic information. The time evolution of the dual-detection GPC data, concentration of active catalyst, and monomer consumption suggests optimal activation conditions for the Hf pre-catalyst in the presence of the activator [Ph 3 C][B(C 6 F 5 ) 4 ]. The chromophore quench-labeling agents do not react with the chain-transfer agent ZnEt 2 under the reaction conditions. Thus, Hf-bound polymeryls are selectively labeled in the presence of zinc-polymeryls. Quench-labeling studies in the presence of ZnEt 2 reveal that ZnEt 2 does not influence the rate of propagation at the Hf center, and chain transfer of Hf-bound polymers to ZnEt 2 is fast and quasi-irreversible. The quench-label techniques represent a means to study commercial polymerization catalysts that operate with high efficiency at low catalyst concentrations without the need for specialized equipment.

  7. The Effect of the Chain Length on MMA Free Radicl Polymerization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the polymerization process of methyl methacrylate (MMA), the Arrhenius parameters (activation energy and frequency factor) of propagating reaction monotonically decrease with increasing monomer conversion. At the beginning and middle stage of the propagating reaction, the increase of radical chain length is the main reason of above mentioned change. And at the end stage, the sharp decrease of kp indicates that the activation energy is approximately incline to zero and the propagating reaction is controlled by molecular diffusion motion.

  8. Scale-up of the Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization Using Continuous Flow Processing

    Directory of Open Access Journals (Sweden)

    Nenad Micic

    2014-01-01

    Full Text Available A controlled radical polymerization process using the Reversible Addition-Fragmentation Chain Transfer (RAFT approach was scaled up by a factor of 100 from a small laboratory scale of 5 mL to a preparative scale of 500 mL, using batch and continuous flow processing. The batch polymerizations were carried out in a series of different glass vessels, using either magnetic or overhead stirring, and different modes of heating: Microwave irradiation or conductive heating in an oil bath. The continuous process was conducted in a prototype tubular flow reactor, consisting of 6 mm ID stainless steel tubing, fitted with static mixers. Both reactor types were tested for polymerizations of the acid functional monomers acrylic acid and 2-acrylamido-2-methylpropane-1-sulfonic acid in water at 80 °C with reaction times of 30 to 40 min. By monitoring the temperature during the exothermic polymerization process, it was observed that the type and size of reactor had a significant influence on the temperature profile of the reaction.

  9. Some regularities of separate and simultaneous radiation polymerization of vinyl acetate and acrylonitrile in adsorption layer on aerosil surface

    International Nuclear Information System (INIS)

    Mund, S.L.; Bruk, M.A.; Abkin, A.D.

    1976-01-01

    The kinetics has been studied of initial stage radiation copolymerization and separate radiation polymerization of aerosil adsorbed vinylacetate (VA) and acrylonitrile (AN). The monomers were irradiated using a Co 60 gamma source or a RUP-400 X-ray unit. Infrared spectroscopy, nuclear magnetic resonance and gravimetry were used in the study. It has been found that in the dose rate interval studied (over 60-450 rad./sec) the break of kinetic chains during the polymerization of VA and its mixtures with AN is due to the reaction of degenerate transfer of the chains to the surface hydroxyl groups. When AN is polymerized, biomolecular break of chains prevails. The effective activation energy of polymerization is 1.5 kcal/mol for VA and 2.5 kcal/mol for AN. The order of polymerization rates by the concentration of adsorbed monomers at 50 deg, as well as by the irradiation dose rate is equal to 1 and 1 for VA and 3/2 and 0.7 for AN, respectively. The calculated values of copolymerization constants coincide with those characteristic of their radical polymerization in liquid phase. Isotherms for adsorption of VA and AN on aerosil at 30, 50 and 70 deg have been studied [ru

  10. Radiation-induced polymerization of hydrogen cyanide

    International Nuclear Information System (INIS)

    Mozhaev, P.S.; Kichigina, G.A.; Kiryukhin, D.P.

    1995-01-01

    The chain reaction of HCN polymerization in a γ-radiation field does not occur at 77 K. When irradiated HCN is warmed up to ambient temperature, a polymer is formed. The heat of polymerization of HCN is 44.0±6.0 kJ/mol and the polymer yield reaches 2.5% for a dose of 725 kGy. Amorphous polymer products (with yields increasing up to 33.5%) and needle crystals (presumably HCN tetramer) are formed upon storage of irradiated HCN at room temperature. The polymer is stable below 700 K, has a conductivity of 3x10 -5 Ω -1 cm -f1 , and displays an EPR spectrum typical of polyconjugated systems. A radical mechanism of the formation of conjugated chain -C=N-C=N- is suggested. The tetramer is produced by a combination of aminocyanocarbene biradicals

  11. Tamoxifen-loaded polymeric micelles: preparation, physico-chemical characterization and in vitro evaluation studies.

    Science.gov (United States)

    Cavallaro, Gennara; Maniscalco, Laura; Licciardi, Mariano; Giammona, Gaetano

    2004-11-20

    Several samples of polymeric micelles, formed by amphiphilic derivatives of PHEA, obtained by grafting into polymeric backbone of PEGs and/or hexadecylamine groups (PHEA-PEG-C(16) and PHEA-C(16)) and containing different amount of Tamoxifen, were prepared. All Tamoxifen-loaded polymeric micelles showed to increase drug water solubility. TEM studies provided evidence of the formation of supramolecular core/shell architectures containing drug, in the nanoscopic range and with spherical shape. Samples with different amount of encapsulated Tamoxifen were subjected to in vitro cytotoxic studies in order to evaluate the effect of Tamoxifen micellization on cell growth inhibition. All samples of Tamoxifen-loaded polymeric micelles showed a significantly higher antiproliferative activity in comparison with free drug, probably attributable to fluidification of cellular membranes, caused by amphiphilic copolymers, that allows a higher penetration of the drug into tumoral cells. To gain preliminary information about the potential use of prepared micelles as Tamoxifen drug delivery systems, studies evaluating drug release ability of micelle systems in media mimicking biological fluids (buffer solutions at pH 7.4 and 5.5) and in human plasma were carried out. These studies, performed evaluating the amount of Tamoxifen that remains in solution as a function of time, showed that at pH 7.4, as well as in plasma, PHEA-C(16) polymeric micelles were able to release lower drug amounts than PHEA-PEG(5000)-C(16) ones, while at pH 5.5, the behavior difference between two kind of micelles was less pronounced.

  12. Polymerization of Various Lignins via Immobilized Myceliophthora thermophila Laccase (MtL

    Directory of Open Access Journals (Sweden)

    Daniela Huber

    2016-08-01

    Full Text Available Enzymatic polymerization of lignin is an environmentally-friendly and sustainable method that is investigated for its potential in opening-up new applications of one of the most abundant biopolymers on our planet. In this work, the laccase from Myceliophthora thermophila was successfully immobilized onto Accurel MP1000 beads (67% of protein bound to the polymeric carrier and the biocatalyzed oxidation of Kraft lignin (KL and lignosulfonate (LS were carried out. Fluorescence intensity determination, phenol content analysis and size exclusion chromatography were performed in order to elucidate the extent of the polymerization reaction. The collected results show an 8.5-fold decrease of the LS samples’ fluorescence intensity after laccase-mediated oxidation and a 12-fold increase of the weight average molecular weight was obtained.

  13. Microfluidic Fabrication of Porous Polymer Microspheres: Dual Reactions in Single Droplets

    KAUST Repository

    Gong, Xiuqing

    2009-06-16

    We report the microfluidic fabrication of macroporous polymer microspheres via the simultaneous reactions within single droplets, induced by LTV irradiation. The aqueous phase of the reaction is the decomposition of H 2O2 to yield oxygen, whereas the organic phase is the polymerization of NO A 61, ethylene glycol dimethacrylate (EGDMA), and tri (propylene glycol) diacrylate (TPGDA) precursors. We first used a liquid polymer precursor to encapsulate a multiple number of magnetic Fe3O 4 colloidal suspension (MCS) droplets in a core-shell structure, for the purpose of studying the number of such encapsulated droplets that can be reliably controlled through the variation of flow rates. It was found that the formation of one shell with one, two, three, or more encapsulated droplets is possible. Subsequently, the H2O2 solution was encapsulated in the same way, after which we investigated its decomposition under UV irradiation, which simultaneously induces the polymerization of the encapsulating shell. Because the H2O2 decomposition leads to the release of oxygen, porous microspheres were obtained from a combined H2O2 decomposition/polymer precursor polymerization reaction. The multiplicity of the initially encapsulated H2O 2 droplets ensures the homogeneous distribution of the pores. The pores inside the micrometer-sized spheres range from several micrometers to tens of micrometers, and the maximum internal void volume fraction can attain 70%, similar to that of high polymerized high internal phase emulsion (polyHIPE). © 2009 American Chemical Society.

  14. Self-Propagating Frontal Polymerization in Water at Ambient Pressure

    Science.gov (United States)

    Olten, Nesrin; Kraigsley, Alison; Ronney, Paul D.

    2003-01-01

    Advances in polymer chemistry have led to the development of monomers and initiation agents that enable propagating free-radical polymerization fronts to exist. These fronts are driven by the exothermicity of the polymerization reaction and the transport of heat from the polymerized product to the reactant monomer/solvent/initiator solution. The thermal energy transported to the reactant solution causes the initiator to decompose, yielding free radicals, which start the free radical polymerization process as discussed in recent reviews. The use of polymerization processes based on propagating fronts has numerous applications. Perhaps the most important of these is that it enables rapid curing of polymers without external heating since the polymerization process itself provides the high temperatures necessary to initiate and sustain polymerization. This process also enables more uniform curing of arbitrarily thick samples since it does not rely on heat transfer from an external source, which will necessarily cause the temperature history of the sample to vary with distance from the surface according to a diffusion-like process. Frontal polymerization also enables filling and sealing of structures having cavities of arbitrary shape without having to externally heat the structure. Water at atmospheric pressure is most convenient solvent to employ and the most important for practical applications (because of the cost and environmental issues associated with DMSO and other solvents). Nevertheless, to our knowledge, steady, self-propagating polymerization fronts have not been reported in water at atmospheric pressure. Currently, polymerization fronts require a high boiling point solvent (either water at high pressures or an alternative solvent such as dimethyl sulfoxide (DMSO) (boiling point 189 C at atmospheric pressure.) Early work on frontal polymerization, employed pressures up to 5000 atm in order to avoid boiling of the monomer/solvent/initiator solution. High

  15. STUDY ON THE KINETICS OF POLYMERIZATION OF MMA BY COPPER(Ⅱ) CHELATING RESINS

    Institute of Scientific and Technical Information of China (English)

    WangHongzuo; JiangYuanzhang; 等

    1993-01-01

    The polymerization of MMA initiated by copper(Ⅱ) chelating resins/CCl4 system was studied.From the kinetic data,the kinetic equation of polymerization can be expressed as Rp=Ke-56400/RT[MMA]1.57[CCl4]m[RESIN-Cu]0.18 where m:3-4.5,when[CCl4] 0.1-6.93M.The free radical polymerization mechanism is proposed.The primary radicals are formed by the process of complexation-chlorine transformation among the copper(Ⅱ) chelating resin,CCl4 and methacrylate.

  16. Sonolytic and Silent Polymerization of Methacrlyic Acid Butyl Ester Catalyzed by a New Onium Salt with bis-Active Sites in a Biphasic System — A Comparative Investigation

    Directory of Open Access Journals (Sweden)

    Perumberkandgai A. Vivekanand

    2013-02-01

    Full Text Available Currently, ingenious new analytical and process experimental techniques which are environmentally benign techniques, viz., ultrasound irradiation, have become immensely popular in promoting various reactions. In this work, a novel soluble multi-site phase transfer catalyst (PTC viz., 1,4-bis-(propylmethyleneammounium chloridebenzene (BPMACB was synthesized and its catalytic efficiency was assessed by observing the kinetics of sonolytic polymerization of methacrylic acid butyl ester (MABE using potassium persulphate (PPS as an initiator. The ultrasound–multi-site phase transfer catalysis (US-MPTC-assisted polymerization reaction was compared with the silent (non-ultrasonic polymerization reaction. The effects of the catalyst and various reaction parameters on the catalytic performance were in detail investigated by following the kinetics of polymerization of MABE in an ethyl acetate-water biphasic system. From the detailed kinetic investigation we propose a plausible mechanism. Further the kinetic results demonstrate clearly that ultrasound-assisted phase-transfer catalysis significantly increased the reaction rate when compared to silent reactions. Notably, this environmentally benign and cost-effective process has great potential to be applied in various polymer industries.

  17. STUDIES ON RADICAL POLYMERIZATION OF METHYL METHACRYLATE INITIATED WITH ORGANIC PEROXIDE-AMINE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; SHUI Li; FENG Xinde

    1984-01-01

    Radical polymerization of methyl methacrylate (MMA) initiated with various diacyl peroxideamine systems was studied. Benzoyl peroxide (BPO) and lauroyl peroxide (LPO) were used as diacyl peroxide component, N,N-dimethyl aniline (DMA) and its para substituted derivatives, i.e., N,N-dimethyl-p-toluidine (DMT), p-hydroxymethyl-N,N-dimethyl aniline (HDMA), p-nitro-N,N-dimethyl aniline (NDMA) and p-dimethylamino benzaldehyde (DMAB) were used as amine components. It was found that the peroxide-DMT systems give higher rates of bulk polymerization Rp of MMA than the organic hydroperoxide-DMT systems with the following descending order BPO-DMT>LPO-DMT>CHP (cumene hydroperoxide)-DMT>TBH (tert-butyl hydroperoxide)-DMT.The aromatic tertiary amines possess obvious structural effect on the Rp values in the diacyl peroxideamine system. The overall activation energy of MMA polymerization was determined and the kinetics of polymerization of MMA initiated with BPO-DMT system was investigated.

  18. Preparation of poly(vinyl alcohol)-grafted graphene oxide/poly(vinyl alcohol) nanocomposites via in-situ low-temperature emulsion polymerization and their thermal and mechanical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shengchang; Liu, Pengqing, E-mail: liupq@scu.edu.cn; Zhao, Xiangsen; Xu, Jianjun, E-mail: xujj@scu.edu.cn

    2017-02-28

    Highlights: • In-situ emulsion polymerization and alcoholysis reaction is a good method to prepare GO/PVA nanocomposites. • Surface chemical grafting modification of GO with PVA chains was also carried out during the in-situ emulsion polymerization and alcoholysis reaction. • The surface chemical grafting modification of GO by in-situ polymerization and alcoholysis reaction could not only improve the dispersion of fillers in matrix, but also the interfacial interactions between fillers and matrix. • The thermal and mechanical properties of PVA-g-GO/PVA nanocompistes were also studied. - Abstract: An in-situ polymerization combined with chemical grafting modification method for preparing Poly(vinyl alcohol)-grafted graphene oxide/Poly(vinyl alcohol) (PVA-g-GO/PVA) nanocomposites was reported. Firstly, Poly(vinyl acetate)-grafted graphene oxide/Poly(vinyl acetate) nanocomposites were prepared, and then the PVA-g-GO/PVA nanocomposites could be obtained through alcoholysis reaction. X-ray photoelectron spectrometer and fourier-transform infrared spectrometer confirmed that the PVAc or PVA chains were successfully grafted to GO sheets during in-situ polymerization and alcoholysis. And the results from transmission electron microscopy, scanning electron microscopy and X-ray diffraction showed that the well compatibility and homogenous dispersion of PVA-g-GO in PVA matrix could be achieved. Differential scanning calorimetric, thermogravimetry analysis and tensile test were employed to study the thermal and mechanical properties of the PVA-g-GO/PVA nanocomposites. The results indicated that a 53% improvement of tensile strength and a 36% improvement of Young’s modulus were achieved by addition of 0.5 wt% of GO sheets. And the glass transition temperature of PVA-g-GO/PVA nanocomposites was increased, and their thermal stability and crystallization degree were both decreased. Due to well dispersion of fillers and strong interfacial interactions at the filler

  19. Preparation of poly(vinyl alcohol)-grafted graphene oxide/poly(vinyl alcohol) nanocomposites via in-situ low-temperature emulsion polymerization and their thermal and mechanical characterization

    International Nuclear Information System (INIS)

    Zhang, Shengchang; Liu, Pengqing; Zhao, Xiangsen; Xu, Jianjun

    2017-01-01

    Highlights: • In-situ emulsion polymerization and alcoholysis reaction is a good method to prepare GO/PVA nanocomposites. • Surface chemical grafting modification of GO with PVA chains was also carried out during the in-situ emulsion polymerization and alcoholysis reaction. • The surface chemical grafting modification of GO by in-situ polymerization and alcoholysis reaction could not only improve the dispersion of fillers in matrix, but also the interfacial interactions between fillers and matrix. • The thermal and mechanical properties of PVA-g-GO/PVA nanocompistes were also studied. - Abstract: An in-situ polymerization combined with chemical grafting modification method for preparing Poly(vinyl alcohol)-grafted graphene oxide/Poly(vinyl alcohol) (PVA-g-GO/PVA) nanocomposites was reported. Firstly, Poly(vinyl acetate)-grafted graphene oxide/Poly(vinyl acetate) nanocomposites were prepared, and then the PVA-g-GO/PVA nanocomposites could be obtained through alcoholysis reaction. X-ray photoelectron spectrometer and fourier-transform infrared spectrometer confirmed that the PVAc or PVA chains were successfully grafted to GO sheets during in-situ polymerization and alcoholysis. And the results from transmission electron microscopy, scanning electron microscopy and X-ray diffraction showed that the well compatibility and homogenous dispersion of PVA-g-GO in PVA matrix could be achieved. Differential scanning calorimetric, thermogravimetry analysis and tensile test were employed to study the thermal and mechanical properties of the PVA-g-GO/PVA nanocomposites. The results indicated that a 53% improvement of tensile strength and a 36% improvement of Young’s modulus were achieved by addition of 0.5 wt% of GO sheets. And the glass transition temperature of PVA-g-GO/PVA nanocomposites was increased, and their thermal stability and crystallization degree were both decreased. Due to well dispersion of fillers and strong interfacial interactions at the filler

  20. In Situ Monitoring of RAFT Polymerization by Tetraphenylethylene-Containing Agents with Aggregation-Induced Emission Characteristics.

    Science.gov (United States)

    Liu, Shunjie; Cheng, Yanhua; Zhang, Haoke; Qiu, Zijie; Kwok, Ryan T K; Lam, Jacky W Y; Tang, Ben Zhong

    2018-05-22

    A facile and efficient approach is demonstrated to visualize the polymerization in situ. A group of tetraphenylethylene (TPE)-containing dithiocarbamates were synthesized and screened as agents for reversible addition fragmentation chain transfer (RAFT) polymerizations. The spatial-temporal control characteristics of photochemistry enabled the RAFT polymerizations to be ON and OFF on demand under alternating visible light irradiation. The emission of TPE is sensitive to the local viscosity change owing to its aggregation-induced emission characteristic. Quantitative information could be easily acquired by the naked eye without destroying the reaction system. Furthermore, the versatility of such a technique was well demonstrated by 12 different polymerization systems. The present approach thus demonstrated a powerful platform for understanding the controlled living radical polymerization process. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Influence of gamma irradiation on polymerization of pyrrole and glucose oxidase immobilization onto poly (pyrrole)/poly (vinyl alcohol) matrix

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Sarada, E-mail: sarada@nuclearmalaysia.gov.my [Department of Radiation Technology, Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600 (Malaysia); Bakar, Ahmad Ashrif A., E-mail: ashrif@ukm.edu.my [Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600 (Malaysia); Thevy Ratnam, Chantara [Department of Radiation Technology, Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Kamaruddin, Nur Hasiba [Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, 43600 (Malaysia); Shaari, Sahbudin [Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, 43600 (Malaysia)

    2017-04-01

    Graphical abstract: The illustration of pyrrole polymerization, PVA crosslinking and immobilization of GOx onto polymer matrix. - Highlights: • Immobilization of glucose oxidase onto polymer matrices by gamma irradiation is proposed. • Crosslinking and grafting of polymers implies the immobilization reaction. • The mechanisms relies on gamma irradiation doses. • A simple single step process of polymerization, cross linking and immobilization by mean of gamma irradiation as was shown in Graphical abstract. - Abstract: This paper describes the immobilization of glucose oxidase, GOx onto polymer matrix comprising of poly(pyrrole), PPy and poly(vinyl alcohol), PVA using gamma irradiation technique. Py/PVA-GOx film was prepared by spreading PVA:GOx, 1:1 solution onto dried pyrrole film and exposed to gamma irradiation from cobalt 60 source at doses ranging from 0 to 60 kGy. The films were subjected to structural and morphological analyses by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Field emission scanning electron microscope (FESEM) and Atomic-force microscopy (AFM) techniques. Similar studies were also made on pristine pyrrole film which served as control. The SEM and FTIR spectra of Py/PVA-GOx film revealed that pyrrole has been successfully polymerized through irradiation-induced reactions. The results on the morphological properties of the samples characterize using FESEM, SEM and AFM further confirmed the occurrence of radiation-induced modification of Py/PVA-GOx film. The FTIR spectra showed the existence of intermolecular interaction between polymer matrix and GOx indicating that GOx had been successfully immobilized onto Ppy/PVA matrix by radiation-induced reactions. Results revealed that radiation induced reactions such as polymerization of pyrrole, crosslinking of PVA, grafting between the adjacent PVA and pyrrole molecules as well as immobilization of GOx onto Ppy

  2. Influence of gamma irradiation on polymerization of pyrrole and glucose oxidase immobilization onto poly (pyrrole)/poly (vinyl alcohol) matrix

    International Nuclear Information System (INIS)

    Idris, Sarada; Bakar, Ahmad Ashrif A.; Thevy Ratnam, Chantara; Kamaruddin, Nur Hasiba; Shaari, Sahbudin

    2017-01-01

    Graphical abstract: The illustration of pyrrole polymerization, PVA crosslinking and immobilization of GOx onto polymer matrix. - Highlights: • Immobilization of glucose oxidase onto polymer matrices by gamma irradiation is proposed. • Crosslinking and grafting of polymers implies the immobilization reaction. • The mechanisms relies on gamma irradiation doses. • A simple single step process of polymerization, cross linking and immobilization by mean of gamma irradiation as was shown in Graphical abstract. - Abstract: This paper describes the immobilization of glucose oxidase, GOx onto polymer matrix comprising of poly(pyrrole), PPy and poly(vinyl alcohol), PVA using gamma irradiation technique. Py/PVA-GOx film was prepared by spreading PVA:GOx, 1:1 solution onto dried pyrrole film and exposed to gamma irradiation from cobalt 60 source at doses ranging from 0 to 60 kGy. The films were subjected to structural and morphological analyses by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Field emission scanning electron microscope (FESEM) and Atomic-force microscopy (AFM) techniques. Similar studies were also made on pristine pyrrole film which served as control. The SEM and FTIR spectra of Py/PVA-GOx film revealed that pyrrole has been successfully polymerized through irradiation-induced reactions. The results on the morphological properties of the samples characterize using FESEM, SEM and AFM further confirmed the occurrence of radiation-induced modification of Py/PVA-GOx film. The FTIR spectra showed the existence of intermolecular interaction between polymer matrix and GOx indicating that GOx had been successfully immobilized onto Ppy/PVA matrix by radiation-induced reactions. Results revealed that radiation induced reactions such as polymerization of pyrrole, crosslinking of PVA, grafting between the adjacent PVA and pyrrole molecules as well as immobilization of GOx onto Ppy

  3. Development and Implementation of an Automatic Continuous Online Monitoring and Control Platform for Polymerization Reactions to Sharply Boost Energy and Resource Efficiency in Polymer Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Wayne [Tulane Univ., New Orleans, LA (United States); Drenski, Michael [Tulane Univ., New Orleans, LA (United States); Romagnoli, Jose [Tulane Univ., New Orleans, LA (United States)

    2017-10-16

    The project goal was to create an energy saving paradigm shift in how polymers are manufactured in the 21st century. It used Automatic Continuous Online Monitoring of Polymerization reactions (ACOMP) integrated for the first time with automatic active control to create the innovative ‘ACOMP/Control Interface’, or ‘ACOMP/CI’. ACOMP/CI will begin the transformation from old, inefficient processes into highly evolved, energy and resource efficient ones. The ACOMP platform is broadly applicable to many types of reactions and processes throughout the vast polymer industry. The industry provides materials for sectors such as automotive, aerospace, oil recovery, agriculture, paints, resins, adhesives, pharmaceuticals and therapeutic proteins, optics, electronics, lightweight building materials, and many more. The U.S. chemical industry is one of the last major sectors in which the U.S. has top global stature. It consumes 24% of all U.S. manufacturing energy, produces over $800B of product annually, supports 25% of the U.S. GDP and employs over 6 million people. It is also a major source of GHG emissions. Polymers make up approximately 30% of this sector. It is estimated that annually 60 TBtu of energy could be saved and 3 million tons less of GHG emissions produced by optimizing production in the polyolefin manufacturing sector alone. The project scope included first time design and prototyping of an ACOMP/CI, creation of active reaction controllers, and demonstration of control capabilities on ideal, low concentration polymerization reactions. All these elements of the scope were met, including advances and findings not originally anticipated. Extensions to more complex reactions, beyond the reactor capabilities of the current project ACOMP/CI, such as polyolefins and other high pressure/high temperature reactions, are being proposed in Fall 2017 to CESMII, a DoE based NNMI. The initial proposal was for a three year funded project, but this was reduced to a two

  4. Functional bio-based polyesters by enzymatic polymerization

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hoffmann, Christian; Andersen, Christian

    During recent years enzymatic polymerization has become increasingly popular as an alternative to classical polyesterification processes. The high regioselectivity observed for lipases permits preparation of novel polyesters with a high number of functional groups.1 This is particularly interesting...... polymerization was applied to prepare functional water soluble polyesters based on dimethyl itaconate and poly(ethyleneglycol).2 The monomer permits postfunctionalization using thiol-ene chemistry or aza-michael additions, which was used to illustrate the possibilites of preparing functional hydrogels. Hydrogels...... based on the polyesters were shown to be degradable and could be prepared either from the pure polyester or from prefunctionalized polyesters, though the thiol-ene reactions were found to be less effective. Since then a new monomer, trans-2,5-dihydroxy-3-pentenoic acid methyl ester (DPM) has been...

  5. Comparative study of pressure-induced polymerization in C60 nanorods and single crystals

    International Nuclear Information System (INIS)

    Hou Yuanyuan; Liu Bingbing; Wang Lin; Yu Shidan; Yao Mingguang; Chen Ao; Liu Dedi; Zou Yonggang; Li Zepeng; Zou Bo; Cui Tian; Zou Guangtian; Iwasiewicz-Wabnig, Agnieszka; Sundqvist, Bertil

    2007-01-01

    In this paper, we report a comparative study of pressure-induced polymerization in C 60 nanorods and bulk single crystals, treated simultaneously under various pressures and temperatures in the same experiment. For both materials, orthorhombic, tetragonal and rhombohedral phases have been produced under high pressure and high temperature. The structures have been identified and compared between the two sample types by Raman and photoluminescence spectroscopy. There are differences between the Raman and photoluminescence spectra from the two types of materials for all polymeric phases, but especially for the tetragonal phase. From the comparison between nanorods and bulk samples, we tentatively assign photoluminescence peaks for various polymeric phases

  6. Visual detection of glial cell line-derived neurotrophic factor based on a molecular translator and isothermal strand-displacement polymerization reaction.

    Science.gov (United States)

    Zhang, Li-Yong; Xing, Tao; Du, Li-Xin; Li, Qing-Min; Liu, Wei-Dong; Wang, Ji-Yue; Cai, Jing

    2015-01-01

    Glial cell line-derived neurotrophic factor (GDNF) is a small protein that potently promotes the survival of many types of neurons. Detection of GDNF is vital to monitoring the survival of sympathetic and sensory neurons. However, the specific method for GDNF detection is also un-discovered. The purpose of this study is to explore the method for protein detection of GDNF. A novel visual detection method based on a molecular translator and isothermal strand-displacement polymerization reaction (ISDPR) has been proposed for the detection of GDNF. In this study, a molecular translator was employed to convert the input protein to output deoxyribonucleic acid signal, which was further amplified by ISDPR. The product of ISDPR was detected by a lateral flow biosensor within 30 minutes. This novel visual detection method based on a molecular translator and ISDPR has very high sensitivity and selectivity, with a dynamic response ranging from 1 pg/mL to 10 ng/mL, and the detection limit was 1 pg/mL of GDNF. This novel visual detection method exhibits high sensitivity and selectivity, which is very simple and universal for GDNF detection to help disease therapy in clinical practice.

  7. Radiation induced emulsion polymerization

    International Nuclear Information System (INIS)

    Stannett, V.T.; Stahel, E.P.

    1990-01-01

    High energy radiation is particularly favored for the initiation of emulsion polymerization. The yield of free radicals, for example, from the radiolysis of the aqueous phase, is high; G(radical) values of 5-7. In addition, the rather special kinetics associated with emulsion polymerization lead, in general, to very large kinetic chain lengths, even with 'non-ideal' monomers such as vinyl acetate. Together, high polymerization rates at low doses become possible. There are some important advantages of radiation polymerization compared with chemical initiators, such as potassium persulfate. Perhaps the most important among them is the temperature independence of the initiation step. This makes low temperature polymerization very accessible. With monomers such as vinyl acetate, where chain termination to monomer is predominant, low temperatures lead to often highly desirable higher molecular weights. With styrene, the classical ideally behaved monomer, there are the advantages such as, for example, the feasibility of using cationic monomers. These and some attendant disadvantages are discussed in detail, including pilot plant studies

  8. Surface modification of silica nanoparticles by UV-induced graft polymerization of methyl methacrylate.

    Science.gov (United States)

    Kim, Sooyeon; Kim, Eunhye; Kim, Sungsoo; Kim, Woosik

    2005-12-01

    In this study we modified the surface of silica nanoparticles with methyl methacrylate by UV-induced graft polymerization. It is a surface-initiated polymerization reaction induced by ultraviolet irradiation. The resulting organic-inorganic nanocomposites were near-monodisperse and fabricated without homopolymerization of the monomer. Substantial increase in mean particle size was observed by SEM image analysis after UV-induced grafting of methyl methacrylate onto pure silica particles. FT-Raman spectroscopy and X-ray photoelectron spectroscopy studies of these materials revealed the successful grafting of methyl methacrylate onto the silica surface. The formation of a covalent bond between the grafted PMMA chains and silica surface was indicated by FT-Raman spectra. Thermogravimetric analysis of the PMMA-grafted silica particles indicated the polymer contents in good agreement with SEM photographs.

  9. The Research on Modeling and Simulation of TFE Polymerization Process

    Directory of Open Access Journals (Sweden)

    Jing Gao Sun

    2014-01-01

    Full Text Available PTFE (polytetrafluoroethylene is the fluorinated straight-chain polymer, made by the polymerization of tetrafluoroethylene monomer; it is used widely because of its excellent performance and can be obtained by the polymerization of body, solutions, suspensions, and emulsions. But only the last two are the main ways. This research paper makes simulation based on Polymer Plus. It uses the emulsion polymerization method at background to carry out a semibatch reactor system. Upon the actual production conditions, simulation process under the steady state conditions is used to analyze the effects of the changes on operating conditions; the corresponding dynamic model is created to analyze the impact of the changes of conditions on the entire system. Moreover, the amount of APS which plays an important part in this reaction is discussed for getting the most suitable amount of initiator. Because of less research work on this job, it is so difficult to find the related data from the literature. Therefore, this research will have a great significance for the process of the tetrafluoroethylene emulsion polymerization in the future.

  10. Polymeric membrane studied using slow positron beam

    International Nuclear Information System (INIS)

    Hung, W.-S.; Lo, C.-H.; Cheng, M.-L.; Chen Hongmin; Liu Guang; Chakka, Lakshmi; Nanda, D.; Tung, K.-L.; Huang, S.-H.; Lee, Kueir-Rarn; Lai, J.-Y.; Sun Yiming; Yu Changcheng; Zhang Renwu; Jean, Y.C.

    2008-01-01

    A radioisotope slow positron beam has been built at the Chung Yuan Christian University in Taiwan for the research and development in membrane science and technology. Doppler broadening energy spectra and positron annihilation lifetime have been measured as a function of positron energy up to 30 keV in a polyamide membrane prepared by the interfacial polymerization between triethylenetetraamine (TETA) and trimesoyl chloride (TMC) on modified porous polyacrylonitrile (PAN) asymmetric membrane. The multilayer structures and free-volume depth profile for this asymmetric membrane system are obtained. Positron annihilation spectroscopy coupled with a slow beam could provide new information about size selectivity of transporting molecules and guidance for molecular designs in polymeric membranes

  11. Hydrolysis of 4-Acetoxystyrene Polymers Prepared by Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Chen, Xianyi; Jankova, Katja; Kops, Jørgen

    1999-01-01

    Hydrolysis of 4-acetoxystyrene polymers prepared by atom transfer radical polymerization was carried out under various reaction conditions. It was found that hydrazinolysis of 4-acetoxystyrene homopolymers, random and block copolymers with styrene in 1,4-dioxane, afforded the corresponding narrow...

  12. Probing Stereoselectivity in Ring-Opening Metathesis Polymerization Mediated by Cyclometalated Ruthenium-Based Catalysts: A Combined Experimental and Computational Study

    OpenAIRE

    Rosebrugh, L. E.; Ahmed, T. S.; Marx, V. M.; Hartung, J.; Liu, P.; López, J. G.; Houk, K. N.; Grubbs, R. H.

    2016-01-01

    The microstructures of polymers produced by ring-opening metathesis polymerization (ROMP) with cyclometalated Ru-carbene metathesis catalysts were investigated. A strong bias for a cis,syndiotactic microstructure with minimal head-to-tail bias was observed. In instances where trans errors were introduced, it was determined that these regions were also syndiotactic. Furthermore, hypothetical reaction intermediates and transition structures were analyzed computationally. Combined experimental a...

  13. Pressure induced graft-co-polymerization of acrylonitrile onto ...

    Indian Academy of Sciences (India)

    WINTEC

    The natural fibre (S. cilliare) (0⋅5 g) was masticated to create active sites onto the polymeric backbone and was then immersed in a known amount of distilled water for. 24 h. A known amount of initiator (FAS–KPS) and monomer (AN) were then added to the flask containing fibre at suitable pH and the reaction was carried ...

  14. Mercuric iodide semiconductor detectors encapsulated in polymeric resin

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Joao F. Trencher; Santos, Robinson A. dos; Ferraz, Caue de M.; Oliveira, Adriano S.; Velo, Alexandre F.; Mesquita, Carlos H. de; Hamada, Margarida M., E-mail: mmhamada@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Disch, Christian; Fiederle, Michael [Albert-Ludwigs Universität Freiburg - UniFreibrug, Freiburg Materials Research Center - FMF, Freiburg (Germany)

    2015-07-01

    The development of new semiconductor radiation detectors always finds many setback factors, such as: high concentration of impurities in the start materials, poor long term stability, the surface oxidation and other difficulties discussed extensively in the literature, that limit their use. In this work was studied, the application of a coating resin on HgI2 detectors, in order to protect the semiconductor crystal reactions from atmospheric gases and to isolate electrically the surface of the crystals. Four polymeric resins were analyzed: Resin 1: 50% - 100%Heptane, 10% - 25% methylcyclohexane, <1% cyclohexane; Resin 2: 25% - 50% ethanol, 25% - 50% acetone, <2,5% ethylacetate; Resin 3: 50% - 100% methylacetate, 5% - 10% n-butylacetate; Resin 4: 50% - 100% ethyl-2-cyanacrylat. The influence of the polymeric resin type used on the spectroscopic performance of the HgI{sub 2} semiconductor detector is, clearly, demonstrated. The better result was found for the detector encapsulated with Resin 3. An increase of up to 26 times at the stability time was observed for the detectors encapsulated compared to that non-encapsulated detector. (author)

  15. In situ polymerization process of polypyrrole ultrathin films

    International Nuclear Information System (INIS)

    Onoda, Mitsuyoshi; Tada, Kazuya; Shinkuma, Akira

    2006-01-01

    A novel thin film processing technique has been developed for the fabrication of ultrathin films of conducting polymers with molecular-level control over thickness and multilayer architecture. This new self-assembly process opens up vast possibilities in applications which require large area, ultrathin films of conducting polymers and more importantly in applications that can take advantage of the unique interactions achievable in the complex, supermolecular architectures of multilayer films. In in situ polymerized polypyrrole (PPy), the deposition process strongly depends on the nature of the substrate surface. That is, for a surface that is negatively charged, there is a linear correspondence between dipping time and the amount of PPy deposited on the substrate. However, in the case of a positively charged surface, there is an apparent rest period of approximately 10-20 min, during which no PPy is deposited. From optical absorption spectroscopy and photoelectron emission studies etc., it became clear that oligomers of pyrrole were adsorbed on the positively charged surface during the rest period, as a result the polymerization reaction of PPy could proceed

  16. Elektroaktive polymerer

    DEFF Research Database (Denmark)

    West, K.

    Traditionelt tænker vi på polymerer (plastik) som elektrisk isolerende materialer - det som er udenpå ledningerne. I dag kender vi imidlertid også polymerer med intrinsisk elektrisk ledningsevne, og plast er på vej ind i anvendelser, der tidligereudelukkende var baseret på metaller og uorganiske...... halvledere. Hertil kommer, at en del af de ledende polymerer kan stimuleres til at skifte mellem en ledende og en halvledende tilstand, hvorved de ændret både form og farve. I foredraget gives der enrække eksempler på anvendelse af polymerer som elektriske komponenter - rækkende fra polymer elektronik over...

  17. Amino-Functionalized Multiwalled Carbon Nanotubes Lead to Successful Ring-Opening Polymerization of Poly(ε-caprolactone): Enhanced Interfacial Bonding and Optimized Mechanical Properties.

    Science.gov (United States)

    Roumeli, Eleftheria; Papageorgiou, Dimitrios G; Tsanaktsis, Vasilios; Terzopoulou, Zoe; Chrissafis, Konstantinos; Avgeropoulos, Apostolos; Bikiaris, Dimitrios N

    2015-06-03

    In this work, the synthesis, structural characteristics, interfacial bonding, and mechanical properties of poly(ε-caprolactone) (PCL) nanocomposites with small amounts (0.5, 1.0, and 2.5 wt %) of amino-functionalized multiwalled carbon nanotubes (f-MWCNTs) prepared by ring-opening polymerization (ROP) are reported. This method allows the creation of a covalent-bonding zone on the surface of nanotubes, which leads to efficient debundling and therefore satisfactory dispersion and effective load transfer in the nanocomposites. The high covalent grafting extent combined with the higher crystallinity provide the basis for a significant enhancement of the mechanical properties, which was detected in the composites with up to 1 wt % f-MWCNTs. Increasing filler concentration encourages intrinsic aggregation forces, which allow only minor grafting efficiency and poorer dispersion and hence inferior mechanical performance. f-MWCNTs also cause a significant improvement on the polymerization reaction of PCL. Indeed, the in situ polymerization kinetics studies reveal a significant decrease in the reaction temperature, by a factor of 30-40 °C, combined with accelerated the reaction kinetics during initiation and propagation and a drastically reduced effective activation energy.

  18. Reporter-free potentiometric sensing of boronic acids and their reactions by using quaternary ammonium salt-functionalized polymeric liquid membranes.

    Science.gov (United States)

    Wang, Xuewei; Yue, Dengfeng; Lv, Enguang; Wu, Lei; Qin, Wei

    2014-02-18

    The tremendous applications of boronic acids (BAs) in chemical sensing, medical chemistry, molecular assembly, and organic synthesis lead to an urgent demand for developing effective sensing methods for BAs. This paper reports a facile and sensitive potentiometric sensor scheme for heterogeneous detection of BAs based on their unexpected potential responses on quaternary ammonium salt-doped polymeric liquid membranes. (11)B NMR data reveal that a quaternary ammonium chloride can trigger the hydrolysis of an electrically neutral BA in an aprotic solvent. Using the quaternary ammonium salt as the receptor, the BA molecules can be extracted from the sample solution into the polymeric membrane phase and undergo the concomitant hydrolysis. Such salt-triggered hydrolysis generates H(+) ions, which can be coejected into the aqueous phase with the counterions (e.g., Cl(-)) owing to their high hydrophilicities. The perturbation on the ionic partition at the sample-membrane interface changes the phase boundary potential and thus enables the potentiometric sensing of BAs. In contrast to other transduction methods for BAs, for which labeled or separate reporters are exclusively required, the present heterogeneous sensing scheme allows the direct detection of BAs without using any reporter molecules. This technique shows superior detection limits for BAs (e.g., 1.0 × 10(-6) M for phenylboronic acid) as compared to previously reported methods based on colorimetry, fluorimetry, and mass spectrometry. The proposed sensing strategy has also been successfully applied to potentiometric indication of the BA reactions with hydrogen peroxide and saccharides, which allows indirect and sensitive detection of these important species.

  19. RAFT polymerization and some of its applications.

    Science.gov (United States)

    Moad, Graeme; Rizzardo, Ezio; Thang, San H

    2013-08-01

    Reversible addition-fragmentation chain transfer (RAFT) is one of the most robust and versatile methods for controlling radical polymerization. With appropriate selection of the RAFT agent for the monomers and reaction conditions, it is applicable to the majority of monomers subject to radical polymerization. The process can be used in the synthesis of well-defined homo-, gradient, diblock, triblock, and star polymers and more complex architectures, which include microgels and polymer brushes. In this Focus Review we describe how the development of RAFT and RAFT application has been facilitated by the adoption of continuous flow techniques using tubular reactors and through the use of high-throughput methodology. Applications described include the use of RAFT in the preparation of polymers for optoelectronics, block copolymer therapeutics, and star polymer rheology control agents. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Copolymer Synthesis and Characterization by Post-Polymerization Modification

    Science.gov (United States)

    Galvin, Casey James

    This PhD thesis examines the physical behavior of surface-grafted polymer assemblies (SGPAs) derived from post-polymerization modification (PPM) reactions in aqueous and vapor enriched environments, and offers an alternative method of creating SGPAs using a PPM approach. SGPAs comprise typically polymer chains grafted covalently to solid substrates. These assemblies show promise in a number of applications and technologies due to the stability imparted by the covalent graft and ability to modify interfacial properties and stability. SGPAs also offer a set of rich physics to explore in fundamental investigations as a result of confining macromolecules to a solid substrate. PPM reactions (also called polymer analogous reactions) apply small molecule organic chemistry reactions to the repeat units of polymer chains in order to generate new chemistries. By applying a PPM strategy to SGPAs, a wide variety of functional groups can be introduced into a small number of well-studied and well-behaved model polymer systems. This approach offers the advantage of holding constant other properties of the SGPA (e.g., molecular weight, MW, and grafting density, sigma) to isolate the effect of chemistry on physical behavior. Using a combination of PPM and fabrication methods that facilitate the formation of SPGAs with position-dependent gradual variation of sigma on flat impenetrable substrate, the influence of polymer chemistry and sigma is examined on the stability of weak polyelectrolyte brushes in aqueous environments at different pH levels. Degrafting of polymer chains in SGPAs exhibits a complex dependence on side chain chemistry, sigma, pH and the charge fraction (alpha) within the brush. Results of these experiments support a proposed mechanism of degrafting, wherein extension of the grafted chains away from the substrate generates tension along the polymer backbone, which activates the grafting chemistry for hydrolysis. The implications of these findings are important in

  1. Effect of γ-ray irradiation on polystyrene, poly (methyl methacrylate), and their copolymer prepared by cast polymerization

    International Nuclear Information System (INIS)

    Tsukame, Takahiro; Kutsuzawa, Michio; Saitoh, Hideki; Shibasaki, Yoshio

    1998-01-01

    Effect of γ-ray irradiation on polystyrene (PS), poly(methyl methacrylate) (PMMA), and their copolymer prepared by cast polymerization was studied using size exclusion chromatography. The main chemical reactions in irradiated polymers were crosslinking and scission. Conversion of all irradiated samples increased regardless of the concentration of initiator (AIBN) used for cast polymerization. On γ-ray irradiation, the molecular weight of PS increased and its distribution broadened, whereas the molecular weight of PMMA decreased. These phenomena should be attributable to the competitive occurrence of scission and crosslinking in PS by γ-ray irradiation, whereas scission occurred mainly in PMMA. (author)

  2. Constructing Functional Ionic Membrane Surface by Electrochemically Mediated Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Fen Ran

    2016-01-01

    Full Text Available The sodium polyacrylate (PAANa contained polyethersulfone membrane that was fabricated by preparation of PES-NH2 via nonsolvent phase separation method, the introduction of bromine groups as active sites by grafting α-Bromoisobutyryl bromide, and surface-initiated electrochemically atom transfer radical polymerization (SI-eATRP of sodium acrylate (AANa on the surface of PES membrane. The polymerization could be controlled by reaction condition, such as monomer concentration, electric potential, polymerization time, and modifier concentration. The membrane surface was uniform when the monomer concentration was 0.9 mol/L, the electric potential was −0.12 V, the polymerization time was 8 h, and the modifier concentration was 2 wt.%. The membrane showed excellent hydrophilicity and blood compatibility. The water contact angle decreased from 84° to 68° and activated partial thromboplastin increased from 51 s to 84 s after modification of the membranes.

  3. Synthesis of 2D polymeric dicyanamide bridged hexa-coordinated Cu(II) complex: Structural characterization, spectral studies and TDDFT calculation

    Science.gov (United States)

    Konar, Saugata; Saha, Urmila; Dolai, Malay; Chatterjee, Sudipta

    2014-10-01

    A rare 2D polymeric dicyanamide bridged hexa-coordinated copper(II) complex [Cu(L1‧)(μ1,5-dca)2]n (1) (L1‧ = 2-carboxypyrazine) has been synthesized from the reaction of Cu(NO3)2ṡ6H2O, 2-pyrazinecarbonitrile (L1) and sodium dicyanamide (Nadca) in methanolic medium. Single crystal X-ray analysis reveals that the complex has a 2D infinite zigzag chain structure in which copper(II) ions are bridged by single dicyanamide ligand in an end-to-end fashion. Such 2-carboxypyrazine can be obtained on the way of metal-assisted nitrile hydrolysis which well connected with Cu(NO3)2ṡ6H2O and dicyanamide (dca) to give rare 2D Cu(II) polymeric complex due to the flexibility in the coordination ability of the copper(II) ions within the polymeric chain. The geometry of the asymmetric unit of the complex was optimized in singlet state by DFT method with multilayer ONIOM model at doublet spin state accordance with repeating asymmetric unit only. The electronic spectrum of the complex is explained using TDDFT calculation.

  4. Unlocking the Structure and Dynamics of Thin Polymeric Films

    Science.gov (United States)

    2016-11-13

    fundamental polymerization chemistry and the physical chemistry of reaction mixtures. 2) Surface properties of partly-fluorinated polymers Fluorine...13/2016 DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific Research (AFOSR)/ IOA Arlington, Virginia 22203 Air Force...adhesives, and in more advanced technologies such as functional microfluidic devices, batteries, displays and in the manufacture of integrated circuits

  5. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  6. Gamma irradiation effect on acrylated-epoxidized soybean oil: polymerization and characterization

    International Nuclear Information System (INIS)

    Hernandez-lopez, S.; Sanchez-Mendieta, V.; Vigueras-Santiago, E.; Martin Del Campo-Lopez, E.; Urena-Nunez, F.

    2006-01-01

    In this work we present the gamma-irradiation dose effect on acrylated-epoxidized soybean oil (AESO). AESO started to polymerize at 12 kGy and at higher doses (24, 110 and 340 kGy) there is an increase in cross-linking reaction without degradation, thermal or structural changes. Polymeric products were glassy, thermosetting, insoluble, which no longer melt upon heating, and no Tg was observed between -30 to 300 deg C. These polymers were obtained with a specific shape and different properties in comparison with the thermal PolyAESO (rubber) due to higher cross-linking achieved by gamma irradiation. NMR, FT-IR and DSC techniques evidenced these facts. Friction and scratching properties were dependent of irradiation dose. Due to an increase in cross-linking density, lower friction values, reached at high doses (110 and 340 kGy), were accompanied by a lower scratching penetration depth in these polymers. Gamma-ray polymerization could be an alternative and efficient method for in situ synthesis of thermosetting polymers, copolymers and composites with given shapes, controlled polymerization degrees and optimized properties

  7. Spin Label Studies of the Hemoglobin-Membrane Interaction During Sickle Hemoglobin Polymerization

    International Nuclear Information System (INIS)

    Falcon Dieguez, Jose E.; Rodi, Pablo; Lores Guevara, Manuel A.; Gennaro, Ana Maria

    2009-12-01

    An enhanced hemoglobin-membrane association has been previously documented in Sickle Cell Anemia. However, it is not known how this interaction is modified during the hemoglobin S polymerization process. In this work, we use a model of reconstituted erythrocytes from ghost membranes whose cytoskeleton proteins had been previously labeled with the 4-maleimido Tempo spin label, and that were subsequently resealed with hemoglobin S or A solutions. Using EPR spectroscopy, we studied the time dependence of the spectral W/S parameter, indicative of the conformational state of cytoskeleton proteins (mainly spectrin) under spontaneous deoxygenation, with the aim of detecting the eventual effects due to hemoglobin S polymerization. The differences observed in the temporal behaviour of W/S in erythrocytes reconstituted with both hemoglobins were considered as experimental evidence of an increment in hemoglobin S-membrane interaction, as a result of the polymerization process of hemoglobin S under spontaneous deoxygenation. (author)

  8. The inhibition mechanisms of quinones and phenols present in wood for the vinyl polymerization

    International Nuclear Information System (INIS)

    Nobashi, Kenzo; Yokota, Tokuo

    1977-01-01

    The inhibitory effects and mechanisms of the quinones and phenols present in wood for the vinyl polymerization initiated with γ-rays and other initiation systems were investigated. The results obtained are summarized as follows; (1) Although phenolic compounds like isotaxiresinol inhibit the γ-ray initiated polymerization of methyl methacrylate (MMA) under the presence of air, they have no inhibitory effects in vacuo. On the other hand, o-benzoquinone and mansonones show strong inhibitory or retarding effects in vacuo. These facts indicate that oxygen may be important for the phenols to inhibit the vinyl polymerization. (2) It is shown qualitatively that there is a relationship between the strength of inhibitory action of quinones and their normal redox potentials. (3) PMMA produced under the presence of o-benzoquinone is found to include the fraction having extremely large chain length based on gel permeation chromatogram. (4) Based on the reaction products of orthoquinones and azobisisobutyronitrile, which was assumed as a model of polymer radicals, the inhibition reaction with polymer chain radical is concluded to take place upon the oxygen atoms of the quinones. (auth.)

  9. Micellar polymerization: Computer simulations by dissipative particle dynamics.

    Science.gov (United States)

    Shupanov, Ruslan; Chertovich, Alexander; Kos, Pavel

    2018-07-15

    Nowadays, micellar polymerization is widely used in different fields of industry and research, including modern living polymerization technique. However, this process has many variables and there is no comprehensive model to describe all features. This research presents simulation methodology which describes key properties of such reactions to take a guide through a variety of their modifications. Dissipative particle dynamics is used in addition to Monte Carlo scheme to simulate initiation, propagation, and termination events. Influence of initiation probability and different termination processes on final conversion and molecular-weight distribution are presented. We demonstrate that prolonged initiation leads to increasing in polymer average molecular weight, and surface termination events play major role in conversion limitation, in comparison with recombination. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  10. Polymerization of impregnated monomer in wood by microwave irradiation

    International Nuclear Information System (INIS)

    Kawase, Kaoru; Hayakawa, Kiyoshi

    1976-01-01

    The manufacturing of a wood-plastic combination (WPC) by irradiation of microwave (2,450 and 915 +- 50 MHz) or gamma-ray was carried out. After the impregnation of dry woods (Hinoki: Chamaecyparis obtusa Endl., Buna: Acer mono Maxim., and Kaede: Fagus crenata Blume) with the mixture of the vinyl monomers and chemical reagents, the monomer in wood was polymerized by irradiation. In case of polymerization with microwave (2,450 MHz) the effect of oxygen was not recognized, but in the case of gamma-ray the rate of polymerization remarkably decreased in the presence of oxygen. The polymerization of various monomers was carried out also in the air, and the conversions of styrene, methyl-, ethyl-, n-propyl-, and n-butyl-methacrylate were 51.8 -- 89.1%, but that of vinyl acetate was lower (4.3 -- 8.2%). The conversion of monomers with irradiation of 915 MHz microwave was very low (2.6 -- 33.5%). The conversion of monomers increased when toluylene diisocyanate was added in the monomers. The percentage of extraction with hot benzene of WPC (chip) decreased by the addition of toluylene diisocyanate. It was concluded from C.H.N. analyses that the reaction took place among the wood, toluylene diisocyanate and methyl methacrylate. (auth.)

  11. In situ, Cr K-edge XAS study on the Phillips catalyst : activation and ethylene polymerization

    NARCIS (Netherlands)

    Groppo, E.; Prestipino, C.; Cesano, F.; Bonino, F.; Bordiga, S.; Lamberti, C.; Thuene, P.C.; Niemantsverdriet, J.W.; Zecchina, A.

    2005-01-01

    In this in situ EXAFS and XANES study on the Phillips ethylene-polymerization Cr/SiO2 catalyst, two polymerization routes are investigated and compared. The first mimics that adopted in industrial plants, where ethylene is dosed directly on the oxidized catalyst, while in the second the oxidized

  12. THE EFFECTS OF N-2-HYDROXYETHYL-N-METHYL-P-TOLUIDINE ON METHYL METHACRYLATE RADICAL POLYMERIZATION AND ACRYLONITRILE PHOTOINDUCED POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; ZHANG Zhanghua; FENG Xinde

    1992-01-01

    The effects of N-2-hydroxyethyl-N-methyl-p-toluidine (HMT) on MMA polymerization using organic peroxide as an initiator and on AN photoinduced polymerization have been investigated respectively. The kinetics of polymerization and the overall activation energy of polymerization were determined. Based on kinetics study and the end group analysis of the polymer obtained by UV spectrum method, the initiation mechanism is proposed.

  13. Preparation of Dimethylaminoethylmethacrylate Grafted Polymeric Adsorbent by Using Radiation-Induced Grafting Technique for Removal of Anions

    International Nuclear Information System (INIS)

    Kavakli, P. A.

    2006-01-01

    The development of efficient separation and purification techniques is very important from industrial, environmental and economic points of view. Polymeric materials having polyfunctional groups such as carboxylic, amide, nitrile, iminodiacetic acid, amidoxime, and ammonium groups, etc., not only possess good hydrophilic properties, but also have good ion exchange properties which make them suitable for metal recovery from aqueous solutions. Radiation induced grafting is a powerful technique capable of controlling the introduction of various functional groups to the polymeric materials, keeping the original properties and especially the mechanical strength of the base material, and thus, allowing the synthesis of more stable polymeric adsorbents. The main objective of this study was to develop special polymeric adsorbents to remove NOx and PO 4 anions from aqueous systems. For this purpose, a novel nonwoven fabric was prepared by radiation-induced graft polymerization of imethylaminoethylmethacrylate (DMAEMA) onto polypropylene coated polyethylene nonwoven fabric. The trunk polymer was irradiated by electron beam at a voltage of 2 MeV and a current of 3 mA in a nitrogen atmosphere at dry-ice temperature at different doses. The degree of grafting was determined as a function of the total dose, monomer concentration, temperature, and reaction time. It was found that the degree of grafting of grafted polymer was greatly affected by reaction conditions. Grafting conditions were optimized, and about 150 % degree of grafting samples was used for further experiments. DMAEMA grafted polymer was later protonated by using acid solution to prepare adsorbent for the removal of anions. Adsorption experiments were performed in column mode for removal of phosphate. Approximately 2000 bed volumes of phosphate-free water can be produced from 10 ppb phosphate solution at high space velocity

  14. Characteristics of plastic scintillators fabricated by a polymerization reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Kim, Tae Hoon; Kim, Yong Kyun [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2017-04-15

    Three plastic scintillators of 4.5 cm diameter and 2.5-cm length were fabricated for comparison with commercial plastic scintillators using polymerization of the styrene monomer 2.5-diphenyloxazole (PPO) and 1,4-bis benzene (POPOP). Their maximum emission wavelengths were determined at 426.06 nm, 426.06 nm, and 425.00 nm with a standard error of 0.2% using a Varian spectrophotometer (Agilent, Santa Clara, CA, USA). Compton edge spectra were measured using three gamma ray sources [i.e., cesium 137 ({sup 137}Cs), sodium 22 ({sup 22}Na), and cobalt 60 ({sup 60}Co)]. Energy was calibrated by analyzing the Compton edge spectra. The fabricated scintillators possessed more than 99.7% energy linearity. Light output was comparable to that of the BC-408 scintillator (Saint-Gobain, Paris, France). The fabricated scintillators showed a light output of approximately 59–64% of that of the BC-408 scintillator.

  15. Synthesis of polystyrene with high melting temperature through BDE/CuCl catalyzed polymerization

    Institute of Scientific and Technical Information of China (English)

    WAN; Xiaolong

    2001-01-01

    [1]Ewen, J. A., Novel method for plastic production, Science (in Chinese), 1997, 9: 34.[2]Brintzinger, H. H., Fischer, D., Waymouth, R. M. et al., Stereospecific olefin polymerization with chiral metallocene catalysts, Angewandte Chemie International Edition in English, 1995, 34(11): 1143.[3]Matyjaszewski, K., Atom transfer radical polymerization, role of various components and reaction conditions, Polym. Prep., 1997, 38(2): 736.[4]Wang, J. S., Matyjaszewski, K., Controlled/"living" radical polymerization, atom transfer radical polymerization in the presence of transition-metal complex, J. Am. Soc., 1995, 117: 5614.[5]Wang, J. S., Matyjaszewski, K., Controlled/"living" radical polymerization, halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process, Macromolecules, 1995, 28: 7901.[6]Koto, M., Kamigaito, M., Sawamoto, M. et al., Polymerization of methyl methacrylate with the carbon tetrachloride/dichloro-tris(triphenyphosphine) ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possible of living radical polymerization, Macromolecules, 1995, 28: 1721.[7]Ando, T., Kato, M., Living radical polymerization of methyl methacrylate with Ruthenium complex: formation of polymers with controlled molecular weights and very narrow distributions, Macromolecules, 1996, 29: 1070.[8]Granel, C., Dubios, P., Jerome, R. et al., Controlled radical polymerization of methacrylic monomers in the presence of a bis(ortho-chelated) arylnickel(II) complex and different activated alkyl halides, Macromolecules, 1996, 29: 8576.[9]Granel, C., Moineau, G., Lecome, P. et al., (Meth)acrylates pseudo-living radical polymerization in the presence of transition metal complexes: the kharasch reaction revisited, Polym. Prep., 1997, 38(1): 450.[10]Ando, T., Kamigaito, M., Sawamoto, M., Iron(II) chloride complex for living radical polymerization of methyl methacrylate, Macromolecules, 1997, 30: 4507.[11

  16. Active Ester Containing Surfmer for One-Stage Polymer Nanoparticle Surface Functionalization in Mini-Emulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Vanessa L. Albernaz

    2018-04-01

    Full Text Available Functional surface active monomers (surfmers are molecules that combine the functionalities of surface activity, polymerizability, and reactive groups. This study presents an improved pathway for the synthesis of the active ester containing surfmer p-(11-acrylamidoundecanoyloxyphenyl dimethylsulfonium methyl sulfate (AUPDS. Further, the preparation of poly(methyl methacrylate and polystyrene nanoparticles (NPs by mini-emulsion polymerization using AUPDS is investigated, leading to NPs with active ester groups on their surface. By systematically varying reaction parameters and reagent concentrations, it was found that AUPDS feed concentrations between 2–4 mol% yielded narrowly distributed and stable spherical particles with average sizes between 83 and 134 nm for non-cross-linked NPs, and up to 163 nm for cross-linked NPs. By basic hydrolysis of the active ester groups in aqueous dispersion, the positive ζ-potential (ZP was converted into a negative ZP and charge quantities determined by polyelectrolyte titrations before and after hydrolysis were in the same range, indicating that the active ester groups were indeed accessible in aqueous suspension. Increasing cross-linker amounts over 10 mol% also led to a decrease of ZP of NPs, probably due to internalization of the AUPDS during polymerization. In conclusion, by using optimized reaction conditions, it is possible to prepare active ester functionalized NPs in one stage using AUPDS as a surfmer in mini-emulsion polymerization.

  17. Evaluation of polymerization shrinkage, polymerization shrinkage stress, wear resistance, and compressive strength of a silorane-based composite: A finite element analysis study

    Directory of Open Access Journals (Sweden)

    Suresh Mitthra

    2017-01-01

    Full Text Available Background: Understanding the mechanical properties is important in predicting the clinical behavior of composites. Finite element analysis (FEA evaluates properties of materials replicating clinical scenario. Aim: This study evaluated polymerization shrinkage and stress, wear resistance (WR, and compressive strength (CS of silorane in comparison with two methacrylate resins. Settings and Design: This study design was a numerical study using FEA. Materials and Methods: Three-dimensional (3D models of maxillary premolar with Class I cavities (2 mm depth, 4 mm length, and 2.5 mm width created and restored with silorane, nanohybrid, and microhybrid; Groups I, II, and III, respectively. Loads of 200–600 N were applied. Polymerization shrinkage was first determined by displacement produced in the X, Y, and Z planes. Maximum stress distribution due to shrinkage was calculated using AN SYS software. 3D cube models of composite resins were simulated with varying filler particle size. Similar loads were applied. WR and compressive stress were calculated: K W L/H and load/cross-sectional area, respectively. Statistical analysis done using one-way ANOVA, Kruskal–Wallis, and Tukey's honestly significant difference test (P < 0.05. Results: Polymerization shrinkage (0.99% and shrinkage stress (233.21 Mpa of silorane were less compared to microhybrid (2.14% and 472.43 Mpa and nanohybrid (2.32% and 464.88 Mpa. Silorane (7.92×/1011 μm/mm3 and nanohybrid (7.79×/1011 showed superior WR than microhybrid (1.113×/1017. There was no significant difference in compressive stress among the groups. Conclusion: Silorane exhibited less polymerization shrinkage and shrinkage stress compared to methacrylates. Silorane and nanohybrid showed greater WR compared to microhybrid. CS of all groups was similar.

  18. Tubulin polymerization-stimulating activity of Ganoderma triterpenoids.

    Science.gov (United States)

    Kohno, Toshitaka; Hai-Bang, Tran; Zhu, Qinchang; Amen, Yhiya; Sakamoto, Seiichi; Tanaka, Hiroyuki; Morimoto, Satoshi; Shimizu, Kuniyoshi

    2017-04-01

    Tubulin polymerization is an important target for anticancer therapies. Even though the potential of Ganoderma triterpenoids against various cancer targets had been well documented, studies on their tubulin polymerization-stimulating activity are scarce. This study was conducted to evaluate the effect of Ganoderma triterpenoids on tubulin polymerization. A total of twenty-four compounds were investigated using an in vitro tubulin polymerization assay. Results showed that most of the studied triterpenoids exhibited microtuble-stabilizing activity to different degrees. Among the investigated compounds, ganoderic acid T-Q, ganoderiol F, ganoderic acid S, ganodermanontriol and ganoderic acid TR were found to have the highest activities. A structure-activity relationship (SAR) analysis was performed. Extensive investigation of the SAR suggests the favorable structural features for the tubulin polymerization-stimulating activity of lanostane triterpenes. These findings would be helpful for further studies on the potential mechanisms of the anticancer activity of Ganoderma triterpenoids and give some indications on the design of tubulin-targeting anticancer agents.

  19. FLUIDDYNAMIC ASPECTS OF GAS-PHASE ETHYLENE POLYMERIZATION REACTOR DESIGN

    Directory of Open Access Journals (Sweden)

    Guardani R.

    1998-01-01

    Full Text Available The relative importance of design variables affecting the fluiddynamic behavior of a fluidized bed reactor for the gas-phase ethylene polymerization is discussed, based on mathematical modeling. The three-phase bubbling fluidized bed model is based on axially distributed properties for the bubble, cloud and emulsion phases, combined with correlations for population balance and entrainment. Under the operating conditions adopted in most industrial processes, the reactor performance is affected mainly by the reaction rate and solids entrainment. Simulation results indicate that an adequate design of the freeboard and particle collecting equipment is of primary importance in order to produce polymeric particles with the desired size distribution, as well as to keep entrainment and catalyst feed rates at adequate levels.

  20. Kinetics of reaction of 1,10- decanedioland dimeric fatty acid C36

    International Nuclear Information System (INIS)

    Falah, A.

    2013-01-01

    Kinetic studies were carried out on the reaction between 1,10- Decanedioland dimeric fatty acid C 3 6 in melt phase. The reaction was performed at 140, 150, 160, 170, and 185 o C and followed by determining the acid value of the product. The polyesterfication reaction was found to be of overall second order with an activation energy of 39,91kj/mol up to (50, 44, 55,42, 63)% conversion at (140, 150, 160, 170, 185) o C and overall third order with an activation energy of 71.17 k j/ mol above (50, 44, 55, 42, 63)% conversion at (140, 150, 160, 170, 185) o C. The Degree of Polymerization, number average molecular weight and weight average molecular weight have been calculated during different times, the relationships between Degree of Polymerization, number average molecular weight, weight average molecular weight and the times is linear until, (50, 44, 55, 42, 63)%conversion at (140, 150, 160, 170, 185) o C. (author)

  1. Anionic Polymerization of Styrene and 1,3-Butadiene in the Presence of Phosphazene Superbases

    KAUST Repository

    Ntetsikas, Konstantinos

    2017-10-23

    The anionic polymerization of styrene and 1,3-butadiene in the presence of phosphazene bases (t-BuP4, t-BuP2 and t-BuP1), in benzene at room temperature, was studied. When t-BuP1 was used, the polymerization proceeded in a controlled manner, whereas the obtained homopolymers exhibited the desired molecular weights and narrow polydispersity (Ð < 1.05). In the case of t-BuP2, homopolymers with higher than the theoretical molecular weights and relatively low polydispersity were obtained. On the other hand, in the presence of t-BuP4, the polymerization of styrene was uncontrolled due to the high reactivity of the formed carbanion. The kinetic studies from the polymerization of both monomers showed that the reaction rate follows the order of [t-BuP4]/[sec-BuLi] >>> [t-BuP2]/[sec-BuLi] >> [t-BuP1]/[sec-BuLi] > sec-BuLi. Furthermore, the addition of t-BuP2 and t-BuP1 prior the polymerization of 1,3-butadiene allowed the synthesis of polybutadiene with a high 1,2-microstructure (~45 wt %), due to the delocalization of the negative charge. Finally, the one pot synthesis of well-defined polyester-based copolymers [PS-b-PCL and PS-b-PLLA, PS: Polystyrene, PCL: Poly(ε-caprolactone) and PLLA: Poly(L-lactide)], with predictable molecular weights and a narrow molecular weight distribution (Ð < 1.2), was achieved by sequential copolymerization in the presence of t-BuP2 and t-BuP1.

  2. Acrylate intercalation and in situ polymerization in iron-, cobalt-, or manganese-substituted nickel hydroxides.

    Science.gov (United States)

    Vaysse, C; Guerlou-Demourgues, L; Duguet, E; Delmas, C

    2003-07-28

    A chimie douce route based on successive redox and exchange reactions has allowed us to prepare new hybrid organic-inorganic materials, composed of polyacrylate macromolecules intercalated into layered double hydroxides (LDHs), deriving from Ni(OH)(2). Monomer intercalation and in situ polymerization mechanisms have appeared to be strongly dependent upon the nature of the substituting cation in the slabs. In the case of iron-based LDHs, a phase containing acrylate monomeric intercalates has been isolated and identified by X-ray diffraction and infrared spectroscopy. Second, interslab free-radical polymerization of acrylate anions has been successfully initiated using potassium persulfate. In cobalt- or manganese-based LDHs, one-step polymerization has been observed, leading directly to a material containing polyacrylate intercalate.

  3. Polymerization of phenol by using discharged plasma under hydrothermal state

    Energy Technology Data Exchange (ETDEWEB)

    Mitsugi, M; Yoshida, A; Watanabe, H; Kiyan, T; Takade, M; Miyaji, K; Kuwahara, Y; Akiyama, H; Hara, M; Sasaki, M [Graduate School of Science and Technology, Kumamoto University (Japan); Namihira, T; Goto, M, E-mail: mgoto@kumamoto-u.ac.j [Bioelectrics Research Center, Kumamoto University 2-39-1 Kurokami, Kumamoto 865-8555 Japan (Japan)

    2010-03-01

    Supercritical fluid with plasma is a type of green processing media because this technique does not use catalyst and toxic solvents. In this study, we carried out experiments of organic materials in the presence of discharged plasma in sub- and supercritical water to evaluate the possibility for new reactions. For this purpose, we used SUS316 reactor that generates plasma at temperature and pressure up to 573K and 30MPa, respectively. 100 mmol/L aqueous phenol solution was used as starting material. The reactions were carried out at temperature of 523K and under pressure of 25MPa. After a series of reactions, water-soluble, water-insoluble (oily products), solid residue and gaseous product were obtained. For the analysis of these products, HPLC, GC-MS, TOC, GC-TCD and TOF-MS were used. The highest phenol conversion was 16.96% obtained at 523K, 25MPa and with 4000 times discharged plasma. Polymerized phenol was obtained as a product.

  4. Polymerization of phenol by using discharged plasma under hydrothermal state

    International Nuclear Information System (INIS)

    Mitsugi, M; Yoshida, A; Watanabe, H; Kiyan, T; Takade, M; Miyaji, K; Kuwahara, Y; Akiyama, H; Hara, M; Sasaki, M; Namihira, T; Goto, M

    2010-01-01

    Supercritical fluid with plasma is a type of green processing media because this technique does not use catalyst and toxic solvents. In this study, we carried out experiments of organic materials in the presence of discharged plasma in sub- and supercritical water to evaluate the possibility for new reactions. For this purpose, we used SUS316 reactor that generates plasma at temperature and pressure up to 573K and 30MPa, respectively. 100 mmol/L aqueous phenol solution was used as starting material. The reactions were carried out at temperature of 523K and under pressure of 25MPa. After a series of reactions, water-soluble, water-insoluble (oily products), solid residue and gaseous product were obtained. For the analysis of these products, HPLC, GC-MS, TOC, GC-TCD and TOF-MS were used. The highest phenol conversion was 16.96% obtained at 523K, 25MPa and with 4000 times discharged plasma. Polymerized phenol was obtained as a product.

  5. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies.

    Science.gov (United States)

    Mandal, Abhirup; Bisht, Rohit; Rupenthal, Ilva D; Mitra, Ashim K

    2017-02-28

    Effective intraocular drug delivery poses a major challenge due to the presence of various elimination mechanisms and physiological barriers that result in low ocular bioavailability after topical application. Over the past decades, polymeric micelles have emerged as one of the most promising drug delivery platforms for the management of ocular diseases affecting the anterior (dry eye syndrome) and posterior (age-related macular degeneration, diabetic retinopathy and glaucoma) segments of the eye. Promising preclinical efficacy results from both in-vitro and in-vivo animal studies have led to their steady progression through clinical trials. The mucoadhesive nature of these polymeric micelles results in enhanced contact with the ocular surface while their small size allows better tissue penetration. Most importantly, being highly water soluble, these polymeric micelles generate clear aqueous solutions which allows easy application in the form of eye drops without any vision interference. Enhanced stability, larger cargo capacity, non-toxicity, ease of surface modification and controlled drug release are additional advantages with polymeric micelles. Finally, simple and cost effective fabrication techniques render their industrial acceptance relatively high. This review summarizes structural frameworks, methods of preparation, physicochemical properties, patented inventions and recent advances of these micelles as effective carriers for ocular drug delivery highlighting their performance in preclinical studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Catalytic olefin polymerization with early transition metal compounds

    OpenAIRE

    Eshuis, Johan Jan Willem

    1991-01-01

    The catalysis of organic reactions by soluble metal complexes has become a major tool in synthesis, both in the laboratory and in the chemical industry. Processes catalyzed by transition metal complexes include carbonylation, olefin polymerization, olefin addition, olefin oxidation and alkane and arene oxidation. Traditionally, heterogeneous catalysts have been used for the production of large-scale commodity chemicals such as methanol and ammonia and in the production of high octane gasoline...

  7. Phenomenon of quantum low temperature limit of chemical reaction rates

    Energy Technology Data Exchange (ETDEWEB)

    Gol' danskii, V I [AN SSSR, Moscow. Inst. Khimicheskoj Fiziki

    1975-12-01

    The influence of quantum-mechanical effects on one of the fundamental laws of chemical kinetics - the Arrhenius Law - is considered. Criteria characterising the limits of the low-temperature region where the extent of quantum-mechanical tunnelling transitions exceeds exponentially the transitions over the barrier are quoted. Studies of the low-temperature tunnelling of electrons and hydrogen atoms are briefly mentioned and the history of research on low-temperature radiation-induced solid-phase polymerization, the development of which led to the discovery of the phenomenon of the low-temperature quantum-mechanical limit for the rates of chemical reactions in relation to the formaldehyde polymerization reaction, is briefly considered. The results of experiments using low-inertia calorimeters, whereby it is possible to determine directly the average time (tau/sub 0/) required to add one new link to the polymer chain of formaldehyde during its polymerization by radiation and during postpolymerization and to establish that below 80K the increase of tau/sub 0/ slows down and that at T approximately equal to 10-4K the time tau/sub 0/ reaches a plateau (tau/sub 0/ approximately equals 0.01s), are described. Possible explanations of the observed low-temperature limit for the rate of a chemical reaction are critically examined and a semiquantitative explanation is given for this phenomenon, which may be particularly common in combined electronic-confirmational transitions in complex biological molecules and may play a definite role in chemical and biological evolution (cold prehistory of life).

  8. The polymeric nanofilm of triazinedithiolsilane fabricated by self-assembled technique on copper surface. Part 2: Characterization of composition and morphology

    International Nuclear Information System (INIS)

    Wang, Yabin; Liu, Zhong; Huang, Yudong; Qi, Yutai

    2015-01-01

    Highlights: • The chemical reactions between copper and triazinedithiolsilane were revealed. • The structure of triazinedithiolsilane's polymeric nanofilm was demonstrated. • The morphology and microstructure of the polymeric nanofilm was observed. - Abstract: In the first part, a novel design route for metal protection against corrosion was proposed, and a class of triazinedithiolsilane compounds was conceived as protector for copper. The protective capability of the polymeric nanofilm, fabricated by self-assembling one representative (abbreviated as TESPA) of triazinedithiolsilane compounds onto copper surface, has been investigated and evaluated by electrochemical tests. The results show that the polymeric nanofilm significantly inhibits copper corrosion. This study, on the one hand, concentrates on the chemical composition of the TESPA polymeric nanofilm by means of X-ray photoelectron spectroscopy (XPS). The XPS results reveal that the chemical bonds between copper and TESPA monomers, three dimensional disulfide units and siloxane networks are responsible for the satisfactory protection of TESPA polymeric nanofilm against copper corrosion. On the other hand, scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS) are utilized to reveal the morphology and the uniformity of the TESPA polymeric nanofilm. The SEM-EDS results demonstrate that the copper surfaces are uniformly covered with TESPA self-assembled monolayer and the polymeric nanofilm. The TESPA-covered copper surfaces turn out to be smoother than that of the bare copper surface.

  9. Comparative study of kinetic reaction of 4,4′-Methylenebis (2-m ethel cyclo hexyl amine) with dimeric fatty acid c36 by use of a catalyst of phosphoric acid and dioxide manganese

    International Nuclear Information System (INIS)

    Al-Mohanna, N.; Al-Mohammad, H.

    2015-01-01

    Kinetic study was carried out on the reaction between 4,4′-Methylenebis (2-methylcyclohexylamine and dimeric fatty acid C 3 6 in molten state by use a catalyst of phosphoric acid and dioxide manganese the reaction was performed at 150 o C, and followed by determining the acid value of the product the polyamidation reaction was found to be of overall a second order until equilibrium state moreover the reaction was faster in the presence of the dioxide manganese polyamidation reaction was automatic where the value of free energy was negative the kinetics of thermal degradation was studied by use of thermogravimetric analysis (TGA) and was found to be of overall a second order and was followed by determining the thermodynamic constants of the thermal degradation reaction melting points and transitional glass in the presence of the catalyst were determined by use of differential calorimetry scanning (DSC) and was found to be close the degree of polymerization number average molecular weight and weight average molecular weight have been calculated during different times we noticed that the relationship between degree of polymerization and number average molecular weight, weight average molecular weight with time is linear until equilibrium state the prepared polyamide involve crystallization and amorphous area this was shown by XRD spectra. (author)

  10. Hydrophobic Coatings on Cotton Obtained by in Situ Plasma Polymerization of a Fluorinated Monomer in Ethanol Solutions.

    Science.gov (United States)

    Molina, Ricardo; Teixidó, Josep Maria; Kan, Chi-Wai; Jovančić, Petar

    2017-02-15

    Plasma polymerization using hydrophobic monomers in the gas phase is a well-known technology to generate hydrophobic coatings. However, synthesis of functional hydrophobic coatings using plasma technology in liquids has not yet been accomplished. This work is consequently focused on polymerization of a liquid fluorinated monomer on cotton fabric initiated by atmospheric plasma in a dielectric barrier discharge configuration. Functional hydrophobic coatings on cotton were successfully achieved using in situ atmospheric plasma-initiated polymerization of fluorinated monomer dissolved in ethanol. Gravimetric measurements reveal that the amount of polymer deposited on cotton substrates can be modulated with the concentration of monomer in ethanol solution, and cross-linking reactions occur during plasma polymerization of a fluorinated monomer even without the presence of a cross-linking agent. FTIR and XPS analysis were used to study the chemical composition of hydrophobic coatings and to get insights into the physicochemical processes involved in plasma treatment. SEM analysis reveals that at high monomer concentration, coatings possess a three-dimensional pattern with a characteristic interconnected porous network structure. EDX analysis reveals that plasma polymerization of fluorinated monomers takes place preferentially at the surface of cotton fabric and negligible polymerization takes place inside the cotton fabric. Wetting time measurements confirm the hydrophobicity of cotton coatings obtained although equilibrium moisture content was slightly decreased. Additionally, the abrasion behavior and resistance to washing of plasma-coated cotton has been evaluated.

  11. A New Role for CO2: Controlling Agent of the Anionic Ring-Opening Polymerization of Cyclic Esters

    KAUST Repository

    Varghese, Jobi K.

    2017-08-15

    Conventional anionic ring-opening of polymerization (AROP) of cyclic esters suffers from the nonselective and concomitant attack of the monomer and of the polymer chains by the growing active species, which results in polyester samples with uncontrolled molar masses and broad polydispersity due to the competition between propagation and transesterification reactions. In this report, we describe a new AROP system mediated by a controlled amount of CO2 which prevents transesterification reactions from occurring. Using lithium monomethyl diethylene glycoxide (MEEOLi) as initiator and 1.5 equiv of CO2, ε-caprolactone could be polymerized under truly “living” conditions in dichloromethane (DCM) at 70 °C, as evidenced by the control of molar masses, the narrow polydispersity indexes (Mn up to ∼40 kg/mol, Đ < 1.16), and also successful chain extension experiments. Lithium carbonate used as initiator in the presence of 0.5 equiv of CO2 afforded similar polymerization results. Experiments carried out with other alkoxide salts and solvents demonstrate that CO2 is indispensable as well as lithium and noncoordinating solvents for the suppression of transesterifications. A similar strategy was applied for the AROP of l-lactide (LLA). At −20 °C, LLA could be polymerized under living conditions with undetectable level of transesterification as demonstrated by MALDI-ToF analysis. To account for the polymerization mechanism occurring in the presence of a slight excess of CO2, we resorted to computational studies. It appears that a fast equilibrium takes place between two tetrameric aggregates, one dormant comprising four carbonates (RCO3Li)4, and an active one involving three carbonates and one alkoxide (RCO3Li)3(ROLi). The latter is shown to selectively ring-open cyclic ester without indulging in transesterifications like (ROLi)4 precursors.

  12. A New Role for CO2: Controlling Agent of the Anionic Ring-Opening Polymerization of Cyclic Esters

    KAUST Repository

    Varghese, Jobi K.; Goncalves, Theo; Huang, Kuo-Wei; Hadjichristidis, Nikolaos; Gnanou, Yves; Feng, Xiaoshuang

    2017-01-01

    Conventional anionic ring-opening of polymerization (AROP) of cyclic esters suffers from the nonselective and concomitant attack of the monomer and of the polymer chains by the growing active species, which results in polyester samples with uncontrolled molar masses and broad polydispersity due to the competition between propagation and transesterification reactions. In this report, we describe a new AROP system mediated by a controlled amount of CO2 which prevents transesterification reactions from occurring. Using lithium monomethyl diethylene glycoxide (MEEOLi) as initiator and 1.5 equiv of CO2, ε-caprolactone could be polymerized under truly “living” conditions in dichloromethane (DCM) at 70 °C, as evidenced by the control of molar masses, the narrow polydispersity indexes (Mn up to ∼40 kg/mol, Đ < 1.16), and also successful chain extension experiments. Lithium carbonate used as initiator in the presence of 0.5 equiv of CO2 afforded similar polymerization results. Experiments carried out with other alkoxide salts and solvents demonstrate that CO2 is indispensable as well as lithium and noncoordinating solvents for the suppression of transesterifications. A similar strategy was applied for the AROP of l-lactide (LLA). At −20 °C, LLA could be polymerized under living conditions with undetectable level of transesterification as demonstrated by MALDI-ToF analysis. To account for the polymerization mechanism occurring in the presence of a slight excess of CO2, we resorted to computational studies. It appears that a fast equilibrium takes place between two tetrameric aggregates, one dormant comprising four carbonates (RCO3Li)4, and an active one involving three carbonates and one alkoxide (RCO3Li)3(ROLi). The latter is shown to selectively ring-open cyclic ester without indulging in transesterifications like (ROLi)4 precursors.

  13. A study of polymerization of aspen (Populus) wood lipophilic extractives by SEC and Py-GC/MS

    CSIR Research Space (South Africa)

    Sithole, Bruce

    2013-03-01

    Full Text Available ) Orig inal manuscript received 13 June 2012, revision accepted 31 October 2012 Vol 66 No 1 January - March 2013 1 PEER REVIEWED A study of polymerization of aspen (Populus) wood lipophilic extractives by SEC and Py-GC/MS BRUCE SITHOLE1*, LUC... of polymerized wood resin that will be difficult to remove if present in pulp and paper products. On the other hand, these problems may be minor compared to using unseasoned wood. KEYWORDS: Aspen, extractives, polymerization, size exclusion chromatography, Py...

  14. Thermally Self-Healing Polymeric Materials : The Next Step to Recycling Thermoset Polymers?

    NARCIS (Netherlands)

    Zhang, Youchun; Broekhuis, Antonius A.; Picchioni, Francesco

    2009-01-01

    We developed thermally self-healing polymeric materials on the basis of furan-functionalized, alternating thermosetting polyketones (PK-furan) and bis-maleimide by using the Diels-Alder (DA) and Retro-Diels-Alder (RDA) reaction sequence. PK-furan can be easily obtained under mild conditions by the

  15. Smart polymeric materials in forms of fiber and film

    International Nuclear Information System (INIS)

    Sugo, Takanobu

    1998-01-01

    Chemical grafting: graft polymerization is a powerful technology to append novel functionality to base fibers, clothes, felts, films and others, while maintaining their original properties. As shown in Figure 1, while a gardener may use a pair of shears to cut the branch, to cut the molecular branch of a polymeric material, one can utilize the radiation energy. Effective utilization of the radiation energy can proceed to a novel reaction that is impossible for other conventional methods and develop a new material bearing outstanding functions. This technology is named radiation-induced graft polymerization (RIGP). In this article, the present research and development of novel functional polymeric materials by radiation-induced graft polymerization is described. The felt of intertwined fibers has been widely used as a filter to remove particles from air but not toxic gaseous compounds. However, by RIGP, one can transform the felt into a high functional filter that will absorb the toxic gaseous compounds while removing particles simultaneously. As a result, the RIGP technology, which is impossible by conventional technology, has enabled the development of a novel functional material that produce highly pure air. Commercialization of this filter for applications in a semiconductor manufacturing facility and as an air purifier is under process. Moreover, this filter can also be used to produce highly purified water by removing toxic heavy metals. Commercially available polyethylene films are also been transform into conductive separators by RIGP to increase the lifetime of a battery by more than five-fold. (J.P.N)

  16. Developing thin-film-composite forward osmosis membranes on the PES/SPSf substrate through interfacial polymerization

    KAUST Repository

    Wang, Kaiyu

    2011-04-22

    A new scheme has been developed to fabricate high-performance forward osmosis (FO) membranes through the interfacial polymerization reaction on porous polymeric supports. p-Phenylenediamine and 1,3,5-trimesoylchloride were adopted as the monomers for the in-situ polycondensation reaction to form a thin aromatic polyamide selective layer of 150 nm in thickness on the substrate surface, a lab-made polyethersulfone (PES)/sulfonated polysulfone (SPSf)-alloyed porous membrane with enhanced hydrophilicity. Under FO tests, the FO membrane achieved a higher water flux of 69.8 LMH when against deionized water and 25.2 LMH when against a model 3.5 wt % NaCl solution under 5.0 M NaCl as the draw solution in the pressure-retarded osmosis mode. The PES/SPSf thin-film-composite (TFC)-FO membrane has a smaller structural parameter S of 238 μm than those reported data. The morphology and topology of substrates and TFC-FO membranes have been studied by means of atomic force microscopy and scanning electronic microscopy. © 2011 American Institute of Chemical Engineers (AIChE).

  17. The pH dependence of polymerization and bundling by the essential bacterial cytoskeletal protein FtsZ.

    Directory of Open Access Journals (Sweden)

    Raúl Pacheco-Gómez

    Full Text Available There is a growing body of evidence that bacterial cell division is an intricate coordinated process of comparable complexity to that seen in eukaryotic cells. The dynamic assembly of Escherichia coli FtsZ in the presence of GTP is fundamental to its activity. FtsZ polymerization is a very attractive target for novel antibiotics given its fundamental and universal function. In this study our aim was to understand further the GTP-dependent FtsZ polymerization mechanism and our main focus is on the pH dependence of its behaviour. A key feature of this work is the use of linear dichroism (LD to follow the polymerization of FtsZ monomers into polymeric structures. LD is the differential absorption of light polarized parallel and perpendicular to an orientation direction (in this case that provided by shear flow. It thus readily distinguishes between FtsZ polymers and monomers. It also distinguishes FtsZ polymers and less well-defined aggregates, which light scattering methodologies do not. The polymerization of FtsZ over a range of pHs was studied by right-angled light scattering to probe mass of FtsZ structures, LD to probe real-time formation of linear polymeric fibres, a specially developed phosphate release assay to relate guanosine triphosphate (GTP hydrolysis to polymer formation, and electron microscopy (EM imaging of reaction products as a function of time and pH. We have found that lowering the pH from neutral to 6.5 does not change the nature of the FtsZ polymers in solution--it simply facilitates the polymerization so the fibres present are longer and more abundant. Conversely, lowering the pH to 6.0 has much the same effect as introducing divalent cations or the FtsZ-associated protein YgfE (a putative ZapA orthologue in E. coli--it stabilizes associations of protofilaments.

  18. Study of the Thermal Polymerization of Linseed and Passion Fruit Oils

    Science.gov (United States)

    Lopes, R. V. V.; Loureiro, N. P. D.; Fonseca, P. S.; Macedo, J. L.; Santos, M. L.; Sales, M. J.

    2008-08-01

    Researches involving ecofriendliness materials are growing up, as well as, a current interest in developing materials from inexpensive and renewable resources. Vegetable oils show a number of excellent properties, which could be utilized to produce valuable polymeric materials. In this work is described the synthesis of polymeric materials from linseed oil (Linum usitatissimum L.) and passion fruit oil (Passiflora edulis) and their characterization by thermogravimetry (TG), differential scanning calorimetry (DSC) and Raman spectroscopy. The TG curve shows that those polymeric materials present two stages of decomposition. DSC plots of the vegetable oils showed some endothermic and exothermic transitions which are not present in the DSC curves corresponding to oil-based polymers. The Raman spectra of the polymers indicate declining of absorbance in the region of C = C stretching (˜1600 cm-1). This absorption was used to estimate the degree of polymerization (79% and 67.5% for linseed and passion fruit oils, respectively)

  19. STUDIES ON HIGH SOLID CONTENT AND STABLE EMULSIFIER—FREE EMULSION POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    TangGuangliang; HaoGuangjie; 等

    1998-01-01

    In this article,AHPS(3-allyloxy-2-hydroxy-1-propanesulfonate salt) was synthesized to use in emulsifier-free emulsion polymerization of BA/BMA/MMA system for high solid content latexes.Storage stability,flow behavior of the latexes,morphology of the obtained latex particles,dynamic viscoelastic behavior,tensile strength and water resistance properties of the resulted copolymers were investigated.The experimental results show that with the addition of AHPS,stability of the emulsion is greatly improved that there appears no apparent precipitation during the polymerization and storage at room temperature for 6 months and at -10℃ for four months.Flow of the latexes follows the Bingham body laws,diameter of the latex particles is about 0.6μm,of which is larger than that of by conventional emulsion polymerization(0.12μm).In addition,not only water resistance of the copolymers obtained by emulsifier-free emulstion polymerization is greatly improved,but also tensile strength is obviously enhanced.

  20. POLYMERIZATION OF METHYL METHACRYLATE WITH ETHYLENE BRIDGED HETERODINUCLEAR METALLOCENE OF SAMARIUM AND TITANIUM-STUDY ON SYNERGISM AND KINETICS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Comparison of MMA polymerization results with samarocene chloride, titanocene chloride and the title heterodinuclear (Sm-Ti) catalyst, respectively, showed synergism in the Sm-Ligand-Ti system, which ob viously influenced the polymerization behaviors, for example, of yielding higher activity and higher molecular weight polymer. Kinetic studies on polymerization of MMA with ethylene bridged samarocene and titanocene chloride/M(i-Bu) 3 showed that the polymerization rate was first-order on the catalyst concentration, and 1.9- order on the monomer. The overall activation energy measured was 52.8 kJ/mol.

  1. Precision Synthesis of Functional Polysaccharide Materials by Phosphorylase-Catalyzed Enzymatic Reactions

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2016-04-01

    Full Text Available In this review article, the precise synthesis of functional polysaccharide materials using phosphorylase-catalyzed enzymatic reactions is presented. This particular enzymatic approach has been identified as a powerful tool in preparing well-defined polysaccharide materials. Phosphorylase is an enzyme that has been employed in the synthesis of pure amylose with a precisely controlled structure. Similarly, using a phosphorylase-catalyzed enzymatic polymerization, the chemoenzymatic synthesis of amylose-grafted heteropolysaccharides containing different main-chain polysaccharide structures (e.g., chitin/chitosan, cellulose, alginate, xanthan gum, and carboxymethyl cellulose was achieved. Amylose-based block, star, and branched polymeric materials have also been prepared using this enzymatic polymerization. Since phosphorylase shows a loose specificity for the recognition of substrates, different sugar residues have been introduced to the non-reducing ends of maltooligosaccharides by phosphorylase-catalyzed glycosylations using analog substrates such as α-d-glucuronic acid and α-d-glucosamine 1-phosphates. By means of such reactions, an amphoteric glycogen and its corresponding hydrogel were successfully prepared. Thermostable phosphorylase was able to tolerate a greater variance in the substrate structures with respect to recognition than potato phosphorylase, and as a result, the enzymatic polymerization of α-d-glucosamine 1-phosphate to produce a chitosan stereoisomer was carried out using this enzyme catalyst, which was then subsequently converted to the chitin stereoisomer by N-acetylation. Amylose supramolecular inclusion complexes with polymeric guests were obtained when the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of the guest polymers. Since the structure of this polymeric system is similar to the way that a plant vine twines around a rod, this polymerization system has been named

  2. Emulsion Polymerization of Tung Oil-Based Latexes with Asolectin as a Biorenewable Surfactant

    Directory of Open Access Journals (Sweden)

    Ashley Johns

    2016-11-01

    Full Text Available Bio-based vesicles, with potential application in drug delivery and/or catalyst encapsulation, have been prepared by the free radical emulsion co-polymerization of tung oil, divinylbenzene (DVB, n-butyl methacrylate (BMA, and asolectin in a xylene/water mixture. The free radical polymerization was initiated by di-tert-butyl peroxide (DTBP at 100 °C in a convection oven. Molecular weights of approximately 11,000 Da were measured by Matrix-assisted Laser Desorption/Ionization-Time of Flight (Maldi-TOF for tung oil-asolectin copolymers, verifying that significant polymerization occurs under the cure conditions employed. The cure of the co-monomer mixture employed in this work was monitored by Dielectric Analysis (DEA, while changes in the Raman spectrum of all co-monomers before and after the cure, along with differential scanning calorimetry (DSC analysis, have been used to verify the need of a post-cure step and completion of the polymerization reaction. Scanning Transmission Electron Microscopy (STEM images of the emulsion after polymerization indicate that vesicles were formed, and vesicle size distribution of samples prepared with different amounts of tung oil were determined using a Zetasizer.

  3. Antimicrobial and Antifouling Polymeric Agents for Surface Functionalization of Medical Implants.

    Science.gov (United States)

    Zeng, Qiang; Zhu, Yiwen; Yu, Bingran; Sun, Yujie; Ding, Xiaokang; Xu, Chen; Wu, Yu-Wei; Tang, Zhihui; Xu, Fu-Jian

    2018-05-09

    Combating implant-associated infections is an urgent demand due to the increasing numbers in surgical operations such as joint replacements and dental implantations. Surface functionalization of implantable medical devices with polymeric antimicrobial and antifouling agents is an efficient strategy to prevent bacterial fouling and associated infections. In this work, antimicrobial and antifouling branched polymeric agents (GPEG and GEG) were synthesized via ring-opening reaction involving gentamicin and ethylene glycol species. Due to their rich primary amine groups, they can be readily coated on the polydopamine-modified implant (such as titanium) surfaces. The resultant surface coatings of Ti-GPEG and Ti-GEG produce excellent in vitro antibacterial efficacy toward both Staphylococcus aureus and Escherichia coli, while Ti-GPEG exhibit better antifouling ability. Moreover, the infection model with S. aureus shows that implanted Ti-GPEG possessed excellent antibacterial and antifouling ability in vivo. This study would provide a promising strategy for the surface functionalization of implantable medical devices to prevent implant-associated infections.

  4. Polythiophene films obtained by polymerization under atmospheric pressure plasma conditions

    Energy Technology Data Exchange (ETDEWEB)

    Teslaru, T.; Topala, I., E-mail: ionut.topala@uaic.ro; Dobromir, M.; Pohoata, V.; Curecheriu, L.; Dumitrascu, N.

    2016-02-01

    The present work describes the experimental arrangement used to initiate polymerization reactions of thiophene monomer based on a dielectric barrier discharge with plane – parallel geometry, working at atmospheric pressure in argon, in turn to obtain conductive polymeric films for different applications. The resulting plasma polymerized polythiophene (pPTh) film was characterized by FT-IR, UV–Vis, XPS spectroscopy, AFM and contact angle measurements. Characterization of pPTh films showed a higher hydrophobic character and roughness, as compared with films obtained by chemical methods, and the thickness is depending on polymerization duration. Also it can conclude that our samples represent oxidised state of pPTh. As a possible application, it analysed in situ the iodine absorption phenomenon in the pPTh matrix and its time evolution by UV–Vis spectroscopy. The presence of iodine 3d{sub 5/2} and 3d{sub 3/2} peaks in the pPTh sample after absorption was identified by XPS spectroscopy. The hydrophobic pPTh film is transformed in a super hydrophilic film after absorption of iodine vapors. - Highlights: • We obtained polythiophene films (pPTh) by atmospheric pressure plasma technique. • The pPTh films showed a hydrophobic character and conducting properties. • The pPTh films were used as sensor for iodine vapors in biological environment.

  5. New method to access hyperbranched polymers with uniform structure via one-pot polymerization of inimer in microemulsion.

    Science.gov (United States)

    Min, Ke; Gao, Haifeng

    2012-09-26

    A facile approach is presented for successful synthesis of hyperbranched polymers with high molecular weight and uniform structure by a one-pot polymerization of an inimer in a microemulsion. The segregated space in the microemulsion confined the inimer polymerization and particularly the polymer-polymer reaction within discrete nanoparticles. At the end of polymerization, each nanoparticle contained one hyperbranched polymer that had thousands of inimer units and low polydispersity. The hyperbranched polymers were used as multifunctional macroinitiators for synthesis of "hyper-star" polymers. When a degradable inimer was applied, the hyper-stars showed fast degradation into linear polymer chains with low molecular weight.

  6. Study on non-ionic membrane prepared by radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Hegazy, E.-S.A.; Mokhtar, S.M.; Osman, M.B.S.; Mostafa, A.E.-K.B.

    1990-01-01

    The preparation of good hydrogel supported on polymeric material was carried out by means of direct radiation-induced graft polymerization of N-vinyl-2-pyrrolidone (NVP) onto low density polyethylene films (LDPE). The optimum conditions were determined, at which the grafting process occurred and suitable degrees of grafting were obtained with a homogeneous distribution of the graft chains throughout the polymer. The effect of different inhibitors, addition of ZnCl 2 and monomer concentration on the grafting yield was also studied. Some investigations and characterization on the prepared graft copolymer were investigated and the possibility of its practical use was discussed. Mechanical properties, thermal and chemical stability and hydrophilic properties of such prepared grafted films showed a great promise in some practical applications. (author)

  7. Wood-polymer composites from Philippine tree plantation species by radiation polymerization I. Uptake and irradiation parameters

    International Nuclear Information System (INIS)

    Dela Rosa, A.M.; Castaneda, S.S.; Real, M.P.N.; Sta Ana, L.P.; Mosteiro, A.P.; Bauza, E.; Carandang, J.P.

    1993-01-01

    Radiation catalyzed polymerization of methyl methacrylate (MMA) in various Philippine tree plantation species were investigated. Wood samples measuring 1x6cm were impregnated with monomer at reduced pressure and gamma irradiated for various doses at a dose rate of 0.53 kGy/h. The parameters used to assess the polymerization reaction were the uptake of monomer by the wood samples, monomer conversion, and polymer loading in the irradiated samples. The uptake and polymerization data indicate that coconut wood, rubber wood, bagras, and Moluccan sau could be potential raw materials for the production of wood-polymer composites (WPC). (author). 6 refs.; 2 figs.; 1 tab

  8. KINETICS OF POLYMERIZATION OF METHYL METHACRYLATE INITIATED BY COPPER POLYPROPYLENE-BASED POLYAMIDOXIME-SODIUM SULFITE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    WU Jinyuan; YANG Yiguang; YANG Chaoxiong

    1992-01-01

    The aqueous polymerization of methyl methacrylate initiated by copper polypropylene-based polyamidoxime ( PPAO - Cu ) - sodium sulfite system was investigated . The overall rate of polymerization (Rp) is Rp=9.7 × 1012 e-21, 200/RT [MMA]0.88 [ Na2 SO 3 ]0.50 The length of the induction period (τ) is inversely proportional to the concentration of sodium sulfite and independent of the amount of polymer supported copper and the concentration of monomer. It could be expressed as follows:1τ=1.2× 1012e-15,600/RT[ Na2SO3] =KτRi The polymerization is initiated by a primary radical generated from the redox reaction rather than induced by "coordination-proton transfer" mechanism.

  9. Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery

    Science.gov (United States)

    Babu, Keshak; Pal, Nilanjan; Bera, Achinta; Saxena, V. K.; Mandal, Ajay

    2015-10-01

    New synthesized polymeric surfactants have immensely attracted the researchers for further development of chemical enhanced oil recovery method particularly in surfactant flooding. Contact angle and interfacial tension measurement tests are the effective ways to identify proper chemicals/surfactants for enhanced oil recovery by chemical/surfactant flooding. In the present study a new polymeric surfactant was synthesized from pre-synthesized sodium methyl ester sulfonate (surfactant) and acrylamide for application in chemical enhanced oil recovery. The synthesized surfactant and polymeric surfactant were used to measure interfacial tension between their aqueous phase and crude oil phase to investigate the efficiency of the surfactants in reduction of interfacial tension. The synthesized polymeric surfactant has also ability to control the mobility because of its viscous nature in aqueous solution. Contact angles of solid-crude oil-surfactant interface were also measured to study the effect of the synthesized surfactant and polymeric surfactant on wettability alteration mechanism. Synergistic effect was studied by using NaCl and synthesized surfactants on interfacial tension. Dynamic interfacial tensions of the surfactant and polymeric surfactant solutions with crude oil were measured at different NaCl concentrations. Interfacial tension was found to be lowered up to 10-2 to 10-3 mN/m which is effective for oil recovery. Measurement of contact angle indicates the wettability change of the quartz surface. Comparative studies on efficiencies of synthesized sodium methyl ester sulfonate surfactant and polymeric surfactant were also carried out with respect to interfacial tension reduction and contact angle change.

  10. Studies on the immobilization of biofunctional components by radiation polymerization and their applications

    International Nuclear Information System (INIS)

    Kaetsu, I.; Kumakura, M.; Fujimura, T.; Yoshida, M.; Asano, M.; Kasai, N.; Tamada, M.

    1986-01-01

    The recent progress on the studies of immobilization of various biofunctional components mainly by means of radiation polymerization as well as their practical applications to biomedical and biochemical fields were reviewed. The immobilization of drugs for the controlled release and targetting, the immobilization of antigens and antibodies for the immunodiagnosis, and the immobilization of microorganisms and tissue cells for the cell culture and the biomass conversion were the main topics in this review. The new findings on the enhanced immobilization methods and the polymeric carriers for immobilization were also attached. (author)

  11. An amplified graphene oxide-based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling for bioassays.

    Science.gov (United States)

    Hu, Kun; Liu, Jinwen; Chen, Jia; Huang, Yong; Zhao, Shulin; Tian, Jianniao; Zhang, Guohai

    2013-04-15

    An amplified graphene oxide (GO) based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling is developed for bioassays. The dye-labeled single-strand DNA (aptamer hairpin) was adsorbed on the surface of GO, which result in the fluorescence quenching of dye, and exhibiting minimal background fluorescence. Upon the target, primer and polymerase, the stem of the aptamer hairpin was opened, and binds with the primer to triggers the circular target strand-displacement polymerization reaction, which produces huge amounts of duplex helixes DNA and lead to strong fluorescence emission due to shielding of nucelobases within its double-helix structure. During the polymerization reaction, the primer was extended, and target was displaced. And the displaced target recognizes and hybridizes with another hairpin probe, triggering the next round of polymerization reaction, and the circle process induces fluorescence signal amplification for the detection of analyte. To test the feasibility of the aptasensor systems, interferon-gamma (IFN-γ) was employed as a model analyte. A detection limit as low as 1.5 fM is obtained based on the GO aptasensor with a linear range of three orders of magnitude. The present method was successfully applied for the detection of IFN-γ in human plasma. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Is it true that polymerization of vegetable oil occurs through Diels-Alder reaction?

    Science.gov (United States)

    Diels-Alder reaction mechanism is known to be one of the major reaction mechanisms to produce dimers and polymers during heating process of vegetable oil. However, our NMR study showed no evidence for Diels-Alder products. Soybean oil oxidized at 180 °C for 24 hrs with 1.45 surface area-to-volume ...

  13. Polymerization of acrylamide initiated with Ce(IV- and KMnO4–mercaptosuccinic acid redox systems in acid-aqueous medium

    Directory of Open Access Journals (Sweden)

    2007-03-01

    Full Text Available By using mercaptosuccinic acid-cerium(IV sulfate and mercaptosuccinic acid-KMnO4 redox systems in acid aqueous medium, the polymerization of acrylamide monomer was performed at room temperatures. Water soluble acrylamide polymers which contain mercaptosuccinic acid end-groups were synthesized. The dependence of polymerization yield and the molecular weight of polymer on the initiator concentration(nMSA=nCe(IV at different acid concentrations, polymerization time, temperature, and concentration of sulfuric acid was investigated. The decrease in the initiator concentration resulted in an increase in the molecular weights but a decrease in the yield. The increase of reaction temperature from 20 to 60°C resulted in an increase in the molecular weights and slight decrease of the yield of polymer. Cerium and manganese ions are reduced to Ce(III and Mn(II ions respectively in polymerization reaction. The existence of Ce(III ion bound to polymer was investigated by UV-visible spectrometry and fluorescence measurements. The amount of Mn(II which is incorporated to the polymer was determined.

  14. Simultaneous FT-NIR and ESR analysis to study of the kinetics of photo induced polymerization of vinyl radical polymers

    International Nuclear Information System (INIS)

    Le, T.T.; Hill, D.J.T.; Pomery, P.J.

    2000-01-01

    Full text:The rate parameters for free vinyl radical polymerizations are difficult to determine accurately over the whole range of conversion. For systems which polymerize rapidly and for networks, this is a particular problem, because small differences in polymerization conditions, e.g., temperature, initiator concentration, photon flux, etc., can cause a large change in the time evolution of the concentration of carbon double bonds and radicals if these are monitored in separate experiments. The IUPAC Working Party on the Modeling of kinetics and processes of polymerization has the role of recommending the 'best' values for the kinetic parameters, using pulsed-laser polymerization (PLP) in conjunction with molar mass distribution (MMD) to determine k p as a function of temperature (T deg C) for bulk free-radical polymerization of methyl methacrylate at low conversions and ambient temperature. The vinyl radical polymers used in this study were methyl methacrylate and ethylene glycol dimethacrylate. In the past kinetic studies of vinyl photo-polymerization required the time dependence of the monomer and radical concentrations to be monitored separately by using FT-NIR spectroscopy and ESR spectroscopy, respectively. For the systems which polymerize rapidly, small differences in the conditions for two measurements, e.g. temperature and light intensity, can introduce significant errors. Hyphenated experiments involving in-situ ESR and FT-NIR spectroscopies using fibre optic, can overcome these problems. In this paper, the radical and monomer concentrations were measured under the same experimental conditions using the above techniques. The results obtained were used to evaluate the kinetic parameters for free radical vinyl polymerizations

  15. Effect of tamoxifen in RAFT miniemulsion polymerization during the synthesis of polymer nanoparticles

    Directory of Open Access Journals (Sweden)

    Tailane Sant'Anna Moreira

    2014-01-01

    Full Text Available Tamoxifen (TXF is currently the only hormonal agent used for treatment of breast cancer. Although very effective, TXF presents low solubility in water, which affects its absorption and bioavailability. A common strategy to overcome this barrier is the formulation of a drug delivery system (DDS in order to increase the drug stability and improve the treatment effectiveness. Reversible addition-fragmentation chain transfer (RAFT polymerization is the most versatile method of controlled/living radical polymerization (CLRP, allowing for synthesis of well-defined polymers and being adapted to a wide range of polymerization systems. Miniemulsion polymerization is a dispersed system that is commonly used to prepare nanoparticles (NP with 50 to 500 nm of diameter. The aim of this work was to evaluate the effect of the in situ incorporation of TXF during miniemulsion conventional and RAFT polymerizations, using methyl methacrylate (MMA as monomer. Although the in situ addition of TXF promoted a slight reduction of the reaction rate, it did not affect the final particle size distribution of the latex or the molecular weight control exerted by the RAFT agent. The obtained results suggest that in situ incorporation of TXF during the synthesis of polymer NP via RAFT polymerization allows for production of a polymer DDS for different uses, such as the breast cancer treatment.

  16. Synthesis of Conductive Polymeric Nanocomposites for Applications in Responsive Materials

    Science.gov (United States)

    Chavez, Jessica

    The development of next generation "smart" textiles has emerged with significant interest due to the immense demand for high-performance wearable technology. The economic market for wearable technologies is predicted to increase significantly in both volume and value. In the next four years, the wearable technology market will be valued at $34 billion. This large demand has opened up a new research area involving smart wearable devices and conductive fabrics. Many research groups have taken various paths to study and ultimately fabricate wearable devices. Due to the limiting capabilities of conventional conductors, researchers have centered their research on the integration of conductive polymers into textile materials for applications involving responsive material. Conducive polymers are very unique organic molecules that have the ability to transfer electrons across their molecular structure due to the excess presence of pi-electrons. Conductive polymers are favored over conventional conductors because they can be easily manipulated and integrated into flexible material. Two very common conductive polymers are polyaniline (PANI) and polypyrrole (PPY) because of their large favorability in literature, high conductance values, and environmental stability. Common commercial fibers were coated via the chemical polymerization of PANI or PPY. A series of reactions were done to study the polymerization process of each polymer. The conductive efficiency of each conducting polymer is highly dependent on the type of reactants used, the acidic nature of the reaction, and the temperature of the reaction. The coated commercial fiber nanocomposites produced higher conductivity values when the polymerization reaction was run using ammonium peroxydisulfate (APS) as the oxidizing agent, run in an acidic environment, and run at very low temperatures. Other factors that improved the overall efficiency of the coated commercial fiber nanocomposites was the increase in polymer

  17. The Emulsion Polymerization of Each of Vinyl Acetate and Butyl Acrylate Monomers Using bis (2-ethylhexyl) Maleate for Improving the Physicomechanical Properties of Paints and Adhesive Films

    International Nuclear Information System (INIS)

    Shaffei, K.A.; Moustafa, A.B.; Hamed, A.I.

    2009-01-01

    Improving the water sensitivity of polyvinyl acetate PVAc films as well as pressure sensitivity, adhesion and washability of poly butyl acrylate were achieved by using bis (2-ethylhexyl) maleate (BEHM). The emulsion polymerization kinetics of vinyl acetate and butyl acrylate in presence of BEHM was studied. The order of the polymerization reaction with respect to the BEHM in presence of each of vinyl acetate and butyl acrylate was studied. The physicomechanical properties of the polyvinyl acetate films and vinyl acetate-butyl acrylate copolymer films were studied in presence of BEHM and the obtained results were matched with those prepared in the presence of pluronic F 108 and showed superior values. The obtained mean average molecular weights were found to be smaller in presence of BEHM assuring the presence of chain transfer reaction.

  18. The Emulsion Polymerization of Each of Vinyl Acetate and Butyl Acrylate Monomers Using bis (2-ethylhexyl Maleate for Improving the Physicomechanical Properties of Paints and Adhesive Films

    Directory of Open Access Journals (Sweden)

    K. A. Shaffei

    2009-01-01

    Full Text Available Improving the water sensitivity of polyvinyl acetate PVAc films as well as pressure sensitivity, adhesion and washability of polybutyl acrylate were achieved by using bis (2-ethylhexyl maleate (BEHM. The emulsion polymerization kinetics of vinyl acetate and butyl acrylate in presence of BEHM was studied. The order of the polymerization reaction with respect to the BEHM in presence of each of vinyl acetate and butyl acrylate was studied. The physicomechanical properties of the polyvinyl acetate films and vinyl acetate-butyl acrylate copolymer films were studied in presence of BEHM and the obtained results were matched with those prepared in the presence of pluronic F 108 and showed superior values. The obtained mean average molecular weights were found to be smaller in presence of BEHM assuring the presence of chain transfer reaction.

  19. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  20. One-Pot Synthesis of Charged Amphiphilic Diblock and Triblock Copolymers Via High-Throughput Cu(0-Mediated Polymerization

    Directory of Open Access Journals (Sweden)

    Lenny Voorhaar

    2017-07-01

    Full Text Available Block copolymers containing functionalized monomers, for example those containing charged groups, can be used for many purposes, one of which is the design of polymeric supramolecular materials based on electrostatic interactions. In this paper the synthesis of diblock copolymers and ABA-triblock copolymers containing poly(n-butyl acrylate as a first or middle block and poly(2-(dimethylaminoethyl acrylate, poly(1-ethoxyethyl acrylate and poly(1-ethoxyethyl-2-carboxyethyl acrylate as second or outer blocks, resulting in block copolymers that can contain positive or negative charges, is reported. The polymerizations were performed and optimized via one-pot sequential monomer addition reactions via Cu(0-mediated polymerization using an automated parallel synthesizer. Different initiators, monomer concentrations and polymerization times were tested. While a bromide-containing initiator led to the best results for most monomers, when polymerizing 2-(dimethylaminoethyl acrylate the use of a chloride-containing initiator was necessary. Due to the slower polymerization using this initiator, a longer polymerization time was needed before addition of the second monomer. Using the optimized conditions, the diblock and triblock copolymers could be synthesized with good control over molecular weight and dispersities around 1.1 were obtained.

  1. STUDY ON OIL WASTEWATER TREATMENT WITH POLYMERIC REAGENTS

    Directory of Open Access Journals (Sweden)

    RODICA BUCUROIU

    2016-04-01

    Full Text Available Used the polymeric reagents in oil wastewater treatment is an effective method of eliminate hydrocarbons. The present study aims to finding reagents that lead to lowering of extractible (EXT, suspended solids (SS and chemical oxygen demand (COD of industrial wastewater from washing cars in loading ramps petroleum products. For this purpose five reagents were tested, namely: polyamines, cationic polyacrylamides, polydiallydimethyl ammonium chloride (PolyDADMAC, melamine formaldehyde polymer resin and polydicyandiamide polymer resin. Obtaining removal degrees over 80 % justifies using this method in the industrial practice.

  2. Polymerizations of beta-substituted allylic arsonium ylides with catalytic amounts of organoboron compounds

    International Nuclear Information System (INIS)

    Mondiere, R.

    2004-01-01

    My Ph.D. work consisted in the generalization and optimization of a new polymerization reaction involving allylic arsonium ylides and catalytic amounts of various boron compounds. Thus, various β-substituted allylic arsonium salts were produced according to synthetic strategies that depended on the nature of the functional group born by the salt. These salts were converted in situ to the corresponding arsonium ylides which were then treated with boron compounds to yield polymers. Our new method of polymerization afforded either non conjugated polyenes that are functionalized every three atoms of carbon, or statistic copolymers, depending on the nature of the group R born on the β position of the ylide. These new polymers cannot be synthesized by usual methods of polymerization. Initial molar ratios of reactants were found to give molar mass control of the synthesized polymers. This controlled polymerization allowed us to produce several bloc copolymers. All the polymers were characterized by NMR techniques, by size exclusion chromatography and, for some of them, by mass spectrometry. Investigation of their physicochemical properties will need additional experiments. (author)

  3. Chain propagation and termination mechanisms for polymerization of conjugated polar alkenes by [Al]-based frustrated Lewis pairs

    KAUST Repository

    He, Jianghua

    2014-11-25

    A combined experimental and theoretical study on mechanistic aspects of polymerization of conjugated polar alkenes by frustrated Lewis pairs (FLPs) based on N-heterocyclic carbene (NHC) and Al(C6F5)3 pairs is reported. This study consists of three key parts: structural characterization of active propagating intermediates, propagation kinetics, and chain-termination pathways. Zwitterionic intermediates that simulate the active propagating species in such polymerization have been generated or isolated from the FLP activation of monomers such as 2-vinylpyridine and 2-isopropenyl-2-oxazoline-one of which, IMes+-CH2C(Me)=(C3H2NO)Al(C6F5)3 - (2), has been structurally characterized. Kinetics performed on the polymerization of 2-vinylpyridine by ItBu/Al(C6F5)3 revealed that the polymerization follows a zero-order dependence on monomer concentration and a first-order dependence on initiator (ItBu) and activator [Al(C6F5)3] concentrations, indicating a bimolecular, activated monomer propagation mechanism. The Lewis pair polymerization of conjugate polar alkenes such as methacrylates is accompanied by competing chain-termination side reactions; between the two possible chain-termination pathways, the one that proceeds via intramolecular backbiting cyclization involving nucleophilic attack of the activated ester group of the growing polymer chain by the O-ester enolate active chain end to generate a six-membered lactone (δ-valerolactone)-terminated polymer chain is kinetically favored, but thermodynamically disfavored, over the pathway leading to the -ketoester-terminated chain, as revealed by computational studies.

  4. New approach in synthesis, characterization and release study of pH-sensitive polymeric micelles, based on PLA-Lys-b-PEGm, conjugated with doxorubicin

    International Nuclear Information System (INIS)

    Efthimiadou, E. K.; Tapeinos, C.; Bilalis, P.; Kordas, G.

    2011-01-01

    Amphiphilic block copolymers are well established as building blocks for the preparation of micellar drug carriers. The functional polymer micelles possess several advantages, such as high drug efficiency, targeted delivery, and minimized cytotoxicity. The synthesis of block copolymers using nano-structured templates has emerged as a useful and versatile approach for preparing drug carriers. Here, we report the synthesis of a smart polymeric compound of a diblock PLA-Lys-b-PEG copolymer containing doxorubicin. We have synthesized functionalized diblock copolymers, with lysinol, poly(lactide) and monomethoxy poly(ethylene glycol) via thermal ring-opening polymerization and a subsequent six-step substitution reaction. A variety of spectroscopic methods were employed here to verify the product of our synthesis. 1 H-Nuclear magnetic resonance and Fourier transform infrared studies validated the expected synthesis of copolymers. Doxorubicin is chemically loaded into micelles, and the ex vitro release can be evaluated either in weak acidic or in SBF solution by UV–vis spectroscopy. Dynamic light scattering, thermo gravimetric analysis, and size exclusion chromatography have also been used.

  5. Effect of water temperature on the fit of provisional crown margins during polymerization: An in vitro study

    Directory of Open Access Journals (Sweden)

    Vivekanandan Ramkumar

    2012-01-01

    Full Text Available Aim: To evaluate the effect of water temperature on the marginal fit of bis-acrylic composite provisional crown during resin polymerization. Materials and Methods: Precisely machined 10 brass master dies were designed to simulate molar teeth. Five brass dies were selected and precisely machined to simulate all ceramic crown preparation. An acrylic jaw replica was made in which brass dies were arranged equidistant from each other. A custom-made metallic tray was fabricated on the acrylic jaw replica to make polyvinyl siloxane impression matrix. Bis-acrylic composite resin provisional crowns were made using polyvinyl siloxane impression matrix. Provisional crowns were polymerized at room temperature (Group I direct technique, on dental stone cast; Group I indirect technique crowns and at different water temperatures (Group II direct technique crowns. The vertical marginal gap between all the provisional crown margins and the finish line of brass dies was measured using a Research Stereomicroscope System. Results: The results were statistically analyzed using one-way analysis of variance (ANOVA test and Newman-Keul′s test. The results showed that crowns polymerized in 20°C and 30°C water had marginal gap approximately three times smaller than those polymerized in 30°C air, due to the reduced polymerization shrinkage. Conclusion: This study shows that crowns polymerized in 20°C and 30°C water had mean vertical marginal gap approximately three times smaller than those polymerized in 30°C air. It was approximately closer to that of crowns fabricated by indirect technique. Warmer water also supposedly hastens polymerization.

  6. Effect of water temperature on the fit of provisional crown margins during polymerization: An in vitro study.

    Science.gov (United States)

    Ramkumar, Vivekanandan; Sangeetha, Arunachalam; Kumar, Vinaya

    2012-08-01

    To evaluate the effect of water temperature on the marginal fit of bis-acrylic composite provisional crown during resin polymerization. Precisely machined 10 brass master dies were designed to simulate molar teeth. Five brass dies were selected and precisely machined to simulate all ceramic crown preparation. An acrylic jaw replica was made in which brass dies were arranged equidistant from each other. A custom-made metallic tray was fabricated on the acrylic jaw replica to make polyvinyl siloxane impression matrix. Bis-acrylic composite resin provisional crowns were made using polyvinyl siloxane impression matrix. Provisional crowns were polymerized at room temperature (Group I direct technique, on dental stone cast; Group I indirect technique crowns) and at different water temperatures (Group II direct technique crowns). The vertical marginal gap between all the provisional crown margins and the finish line of brass dies was measured using a Research Stereomicroscope System. The results were statistically analyzed using one-way analysis of variance (ANOVA) test and Newman-Keul's test. The results showed that crowns polymerized in 20°C and 30°C water had marginal gap approximately three times smaller than those polymerized in 30°C air, due to the reduced polymerization shrinkage. This study shows that crowns polymerized in 20°C and 30°C water had mean vertical marginal gap approximately three times smaller than those polymerized in 30°C air. It was approximately closer to that of crowns fabricated by indirect technique. Warmer water also supposedly hastens polymerization.

  7. Effect of Mn doped-titania on the activity of metallocene catalyst by in situ ethylene polymerization

    KAUST Repository

    Abdul Kaleel, S. H.

    2012-09-01

    Ethylene polymerization was carried out using highly active metallocene catalysts (Cp 2ZrCl 2 and Cp 2TiCl 2) in combination with methylalumoxane. Titanium(IV) oxide containing 1% Mn as dopant was used as nanofillers. The influence of filler concentration, reaction temperature and pressure on the catalytic activity and polymer properties was investigated. There was a fourfold increase in the activity of zirconocene catalyst by addition of doped-titania. The morphology indicates that the doped-titania nanoparticles have a nucleus effect on the polymerization and caused a homogeneous PE shell around them. The optimum condition for polymerization was found to be 30°C. © 2012 The Korean Society of Industrial and Engineering Chemistry.

  8. Gamma Radiation-Induced Template Polymerization Technique

    International Nuclear Information System (INIS)

    Siyam, T.

    2005-01-01

    Gamma radiation induced copolymerization of acrylamide sodiumacrylate (AM-AANa) in the presence and absence of the polymer additive was studied at low monomer concentration(1.4M/l). The results showed that the exponents of the dose rate for the polymerization rate was found to be 1.3 and 1.4 in the absence and in the presence of the polymer additive respectively. The molecular weight of the formed polymer increased by addition of the polymer to the system. In the presence of the polymer the comonomers polymerize on the added polymer. In the absence of the added polymer the comonomers polymerize according to the copolymerization process at the initial stage of the copolymerization. While at high conversion the residual comonomers polymerize on the formed macromolecular chains of the produced polymer. These studies showed that the copolymerization in the presence of added polymer is completely template copolymerization while in the absence of the polymer the copolymerization process is only template process with a high conversion

  9. Volumetric polymerization shrinkage of contemporary composite resins

    OpenAIRE

    Nagem Filho, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill ...

  10. In vivo polymerization of poly(3,4-ethylenedioxythiophene) in the living rat hippocampus does not cause a significant loss of performance in a delayed alternation task

    Science.gov (United States)

    Ouyang, Liangqi; Shaw, Crystal L.; Kuo, Chin-chen; Griffin, Amy L.; Martin, David C.

    2014-04-01

    After extended implantation times, traditional intracortical neural probes exhibit a foreign-body reaction characterized by a reactive glial sheath that has been associated with increased system impedance and signal deterioration. Previously, we have proposed that the local in vivo polymerization of an electronically and ionically conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), might help to rebuild charge transport pathways across the glial scar between the device and surrounding parenchyma (Richardson-Burns et al 2007 J. Neural Eng. 4 L6-13). The EDOT monomer can be delivered via a microcannula/electrode system into the brain tissue of living animals followed by direct electrochemical polymerization, using the electrode itself as a source of oxidative current. In this study, we investigated the long-term effect of local in vivo PEDOT deposition on hippocampal neural function and histology. Rodent subjects were trained on a hippocampus-dependent task, delayed alternation (DA), and implanted with the microcannula/electrode system in the hippocampus. The animals were divided into four groups with different delay times between the initial surgery and the electrochemical polymerization: (1) control (no polymerization), (2) immediate (polymerization within 5 min of device implantation), (3) early (polymerization within 3-4 weeks after implantation) and (4) late (polymerization 7-8 weeks after polymerization). System impedance at 1 kHz was recorded and the tissue reactions were evaluated by immunohistochemistry. We found that under our deposition conditions, PEDOT typically grew at the tip of the electrode, forming an ˜500 µm cloud in the tissue. This is much larger than the typical width of the glial scar (˜150 µm). After polymerization, the impedance amplitude near the neurologically important frequency of 1 kHz dropped for all the groups; however, there was a time window of 3-4 weeks for an optimal decrease in impedance. For all surgery-polymerization

  11. Solid state polymerization: its action on thermal and rheological properties of PET/PC reactive blends

    Directory of Open Access Journals (Sweden)

    Luis C. Mendes

    2013-01-01

    Full Text Available The solid state polymerization (SSP of PET/PC reactive extrusion blends - with and without cobalt catalyst - at different polymer ratios was studied. Thermal and rheological evaluations were performed. DSC results showed changes in the PET's Tg, Tch, Tm and Xc.. The melt flow rate (MFR decreased for PET and the blends. The intrinsic viscosity increased. The variation in calorimetric and rheological properties might be attributed to the PET's chain extension reactions - esterification and transesterification. These reactions led to an increase in the PET's molar mass, consequently shifting the PET's Tg to lower temperature and PET's crystallization, besides reducing the blend miscibility and flowability.

  12. Neutron is a marvelous probe to see the living things as it is alive. Real time and in-situ observation on living polymerization

    International Nuclear Information System (INIS)

    Koizumi, Satoshi

    2011-01-01

    Small-angle neutron scattering was employed in order to perform a real time and in-situ observation on a polymerization-induced self-assembly process in in-vivo or in-vitro systems; precise living anionic polymerization of poly-styrene-b-polyisoprene, pre-irradiation radical polymerization of polystyrene onto a polytetrafluoroethylene film, and microbial or enzymatic polymerization of cellulose. The aim of these studies is to clarify self-organizations of macro-molecular assemblies appeared in open non-equilibrium systems, which are exposed to external energy and mass flows induced by chemical reactions. The open non-equilibrium systems are believed to be important for understanding pattern formations not only in materials processing in industry but also in living things. Small-angle scattering observed for the systems was investigated according to the methods established for condensed matter physics (fractal and computational analyses), bridging with synthetic chemistry and molecular biology. (author)

  13. Initiator Systems Effect on Particle Coagulation and Particle Size Distribution in One-Step Emulsion Polymerization of Styrene

    Directory of Open Access Journals (Sweden)

    Baijun Liu

    2016-02-01

    Full Text Available Particle coagulation is a facile approach to produce large-scale polymer latex particles. This approach has been widely used in academic and industrial research owing to its higher polymerization rate and one-step polymerization process. Our work was motivated to control the extent (or time of particle coagulation. Depending on reaction parameters, particle coagulation is also able to produce narrowly dispersed latex particles. In this study, a series of experiments were performed to investigate the role of the initiator system in determining particle coagulation and particle size distribution. Under the optimal initiation conditions, such as cationic initiator systems or higher reaction temperature, the time of particle coagulation would be advanced to particle nucleation period, leading to the narrowly dispersed polymer latex particles. By using a combination of the Smoluchowski equation and the electrostatic stability theory, the relationship between the particle size distribution and particle coagulation was established: the earlier the particle coagulation, the narrower the particle size distribution, while the larger the extent of particle coagulation, the larger the average particle size. Combined with the results of previous studies, a systematic method controlling the particle size distribution in the presence of particle coagulation was developed.

  14. Hydrolysis of fish protein by Bacillus megaterium cells immobilized in radiation induced polymerized wood

    International Nuclear Information System (INIS)

    Ghosh, S.; Alur, M.D.; Nerkar, D.P.

    1992-01-01

    The immobilization of Bacillus megaterium cells in radiation-induced polymerized wood was studied for hydrolysis of trash fish protein. The optimum conditions and reaction kinetics for hydrolysis of protein by free and immobilized cells were found to be similar. Maximum hydrolysis occurred at 50 o C and at pH 7.5 with 15-20% (w/v) of immobilized matrix. The soluble content of the resultant hydrolysate about 2.4% (w/v). (author). 10 refs., 4 figs

  15. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    , external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous......In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode...... plasma. In this study, we are presenting the surface modification"pf polymers by plasma polymerization using Softplasma™. Softplasma™ can be used for two major types of polymerization: polymerization of vinyl monomers, where plasma acts as initiator; chemical vapour deposition, where plasma acts...

  16. Nuclear reaction studies

    International Nuclear Information System (INIS)

    Alexander, J.M.; Lacey, R.A.

    1994-01-01

    Research focused on the statistical and dynamical properties of ''hot'' nuclei formed in symmetric heavy-ion reactions. Theses included ''flow'' measurements and the mechanism for multifragment disassembly. Model calculations are being performed for the reactions C+C, Ne+Al, Ar+Sc, Kr+Nb, and Xe+La. It is planned to study 40 Ar reactions from 27 to 115 MeV/nucleon. 2 figs., 41 refs

  17. 2013 Gordon Research Conference, Inorganic reaction mechanisms, Galveston, TX, March 3-8 2013

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Omar, Mahdi M. [Purdue Univ., West Lafayette, IN (United States)

    2012-12-08

    The 2013 Gordon Conference on Inorganic Reaction Mechanisms will present cutting-edge research on the molecular aspects of inorganic reactions involving elements from throughout the periodic table and state-of-the art techniques that are used in the elucidation of reaction mechanisms. The Conference will feature a wide range of topics, such as homogeneous and heterogeneous catalysis, metallobiochemistry, electron-transfer in energy reactions, polymerization, nitrogen fixation, green chemistry, oxidation, solar conversion, alkane functionalization, organotransition metal chemistry, and computational chemistry. The talks will cover themes of current interest including energy, materials, and bioinorganic chemistry. Sections cover: Electron-Transfer in Energy Reactions; Catalytic Polymerization and Oxidation Chemistry; Kinetics and Spectroscopy of Heterogeneous Catalysts; Metal-Organic Chemistry and its Application in Synthesis; Green Energy Conversion;Organometallic Chemistry and Activation of Small Molecules; Advances in Kinetics Modeling and Green Chemistry; Metals in Biology and Disease; Frontiers in Catalytic Bond Activation and Cleavage.

  18. Basic and engineering studies of radiation induced reactions in the liquid phase. Final technical report, June 1, 1970-May 31, 1974

    International Nuclear Information System (INIS)

    1978-06-01

    Laboratory studies reported on are ionic polymerization under superdry conditions, emulsion polymerization, and vinyl chloride polymerization. Engineering studies include the effect of moisture level on radiation-induced solution polymerization, effect of dose rate on radiation-induced emulsion polymerization of styrene, the effect of soap exchange in styrene emulsion polymerization, pilot plant studies of radiation induced emulsion polymerization of vinyl chloride, pilot plant studies of radiation-induced emulsion copolymerization of vinyl chloride with vinyl acetate, pilot plant study of radiation-induced graft emulsion polymerization of styrene onto polyvinyl chloride and poly(vinyl chloride-vinyl acetate), and radiation-induced precipitation polymerization of vinyl chloride in a flow reactor

  19. Vinylimidazole-Based Asymmetric Ion Pair Comonomers: Synthesis, Polymerization Studies and Formation of Ionically Crosslinked PMMA

    NARCIS (Netherlands)

    Jana, S.; Vasantha, V.A.; Stubbs, L.P.; Parthiban, A.; Vancso, Gyula J.

    2013-01-01

    Vinylimidazole-based asymmetric ion pair comonomers (IPCs) which are free from nonpolymerizable counter ions have been synthesized, characterized and polymerized by free radical polymerization (FRP), atom transfer radical polymerization (ATRP), and reversible addition-fragmentation chain transfer

  20. Studies on Development of Polymeric Materials Using Gamma Irradiation for Contact and Intraocular Lenses

    Directory of Open Access Journals (Sweden)

    Pranshu Chhabra

    2009-01-01

    Full Text Available For the development of materials for contact lenses and intraocular lenses, the selection criteria is based on the (i capacity to absorb and retain water, (ii hydrophilicity and hydrophobicity, (iii refractive index and (iv hardness besides the other essential properties. Various monomers are being studied to develop suitable materials for such applications. Selection of suitable monomers that can be converted into optical materials of desired characteristics is the most essential step. In the present paper, an attempt has been made to develop suitable optical polymers based on 2-hydroxy ethyl methacrylate (HEMA, N-vinyl pyrrolidone (NVP, methyl methacrylate (MMA, methacrylic acid (MAA, and styrene. Compositions were prepared in such a way that polymers of varying hydrophilicity or hydrophobicity could be obtained keeping HEMA as the base (main monomer. For polymerization, gamma irradiation (Co-60 as a source was used. The results of the study showed that: (i an increase in NVP and MAA content brought in an increase in hydrophilicity of polymerized HEMA (pHEMA, while the addition of styrene and MMA decreased hydrophilicity of polymerized HEMA (pHEMA, (ii polymers for contact lenses with water retention capacity as high as >50 wt.% and as low as <10 wt% with varying content of suitable comonomers can be designed, (iii polymeric materials for contact lenses can be made by using radiation processing such as Co-60 and (iv a dose of 40 kGy was found to be ideal for purpose.

  1. Enhanced removal of aqueous acetaminophen by a laccase-catalyzed oxidative coupling reaction under a dual-pH optimization strategy.

    Science.gov (United States)

    Wang, Kaidong; Huang, Ke; Jiang, Guoqiang

    2018-03-01

    Acetaminophen is one kind of pharmaceutical contaminant that has been detected in municipal water and is hard to digest. A laccase-catalyzed oxidative coupling reaction is a potential method of removing acetaminophen from water. In the present study, the kinetics of radical polymerization combined with precipitation was studied, and the dual-pH optimization strategy (the enzyme solution at pH7.4 being added to the substrate solution at pH4.2) was proposed to enhance the removal efficiency of acetaminophen. The reaction kinetics that consisted of the laccase-catalyzed oxidation, radical polymerization and precipitation were studied by UV in situ, LC-MS and DLS (dynamic light scattering) in situ. The results showed that the laccase-catalyzed oxidation is the rate-limiting step in the whole process. The higher rate of enzyme-catalyzed oxidation under a dual-pH optimization strategy led to much faster formation of the dimer, trimer and tetramer. Similarly, the formation of polymerized products that could precipitate naturally from water was faster. Under the dual-pH optimization strategy, the initial laccase activity was increased approximately 2.9-fold, and the activity remained higher for >250s, during which approximately 63.7% of the total acetaminophen was transformed into biologically inactive polymerized products, and part of these polymerized products precipitated from the water. Laccase belongs to the family of multi-copper oxidases, and the present study provides a universal method to improve the activity of multi-copper oxidases for the high-performance removal of phenol and its derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Research and development of a technology to create original high-function materials in fiscal 1998 (development of precision structure controlling materials by improving petroleum refining). Report on achievements in research and development of precision catalytic polymerization; 1998 nendo dokusoteki kokino zairyo sosei gijutsu no kenkyu kaihatsu seika hokokusho. Sekiyu seisei kodoka seimitsu kozo seigyo zairyo kaihatsu (seimitsu shokubai jugo no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Research and development on precision catalytic polymerization aims at developing polymerizing catalysts that can control arbitrarily the molecular weight and three-dimensional regularity by which rapid enhancement can be expected in performance of additional polymerization type polymers, and the primary structure of terminal groups. Works are being done on two sub-themes of ultimate additional polymerization and orientation catalyst polymerization. The research and development of the ultimate additional polymerization included structural control in polymerization reaction in vinyl chloride, vinylester and acrylic monomers, radical polymerization with precision orientation control, anionic polymerization with precision structural control, and precision polymerization utilizing asymmetric metal porphyrin complexes. In the research and development of the orientation catalyst polymerization, the orientation catalyst polymerization was researched and developed, elementary reaction of metallocene was elucidated, high-performance carrier catalysts were developed, advanced function polymers were synthesized at high precision based on metathesis, and improvement of functions of polyolefin was researched and developed. Surveys and studies were carried out on fundamental technologies common to the above two themes re-commissioned to five universities. (NEDO)

  3. Kinetics of Waterborne Alkyd/Acrylic Hybrid Resin Free Radical Polymerization by Two Systems of Redox and Thermal Initiators

    Directory of Open Access Journals (Sweden)

    shirin Madadi

    2012-12-01

    Full Text Available Kinetics of radical polymerizations of waterborne alkyd/acrylic hybrid resin via batch mini-emulsion technique was studied using redox initiators (TBHP/Fe2+/EDTA/AsAc  and  TBHP/Fe2+/EDTA/SFS at relatively low temperatures and thermal initiators (BPO, KPS and AIBN at higher temperatures to seek the most suitable initiator system. At the end of all reactions the unreacted monomer content was reduced using post-polymerization technique; consequently, leading to increased monomer conversion and flm formation with improved properties. The kinetics of mini-emulsion polymerization showed that in all redox initiator systems (Fe2+ catalyst + EDTA chelating agent, the radials are produced at relatively low temperature with more effcient control of the reactor temperature. It was found that at 45°C TBHP/Fe2+/EDTA/SFS redox initiator system leads to 98% monomer conversion, a much higher rate than that of systems involved thermal initiators.

  4. Melting and crystallization of in-situ polymerized cyclic butylene terephthalates with and without organoclay: a modulated DSC study

    Directory of Open Access Journals (Sweden)

    2007-02-01

    Full Text Available The polymerization of cyclic butylene terephthalate oligomers (CBT were studied in presence (in 5 wt.% and absence of an organoclay (Cloisite® 30B by modulated DSC (MDSC. The organoclay containing samples were produced by dry and melt blending, respectively. The first heating, causing the polymerization of the CBT catalyzed by an organotin compound, was followed by cooling prior to the second heating. The MDSC scans covered the temperature interval between 0 and 260°C. The aim of this protocol was to study the crystallization and melting behavior of the resulting polybutylene terephthalate (pCBT and its organoclay modified nanocomposites. It was found that the thermal behaviors of the polymerizing and polymerized CBT (pCBT were strongly affected by the sample preparation. The organoclay suppressed the crystallization of the pCBT produced during the first heating. However, results from the second heating suggest that more perfect crystallites were formed in the organoclay modified pCBT variants. The organoclay also affected the conversion and mean molecular mass of the resulting pCBT which were slightly lower than those of the plain pCBT polymerized under identical conditions.

  5. Controlled radical polymerization of an acrylamide containing L-alanine moiety via ATRP.

    Science.gov (United States)

    Rafiee, Zahra

    2016-02-01

    Homopolymerization of an optically active acrylamide having an amino acid moiety in the side chain, N-acryloyl-L-alanine (AAla) was carried out via atom transfer radical polymerization (ATRP) at room temperature using 2-hydroxyethyl-2'-methyl-2'-bromopropionate (HMB) or sodium-4-(bromomethyl)benzoate (SBB) as initiator in pure water, methanol/water mixture and pure methanol solvents. The polymerization reaction resulted in the optically active biocompatible amino acid-based homopolymer in good yield with narrow molecular weight distribution. The number average molecular weight increased with conversion and polydispersity was low. The structure and molecular weight of synthesized polymer were characterized by (1)H NMR, FT-IR spectroscopic techniques and size-exclusion chromatography.

  6. Synthesis, spectral characterization thermal stability, antimicrobial studies and biodegradation of starch–thiourea based biodegradable polymeric ligand and its coordination complexes with [Mn(II), Co(II), Ni(II), Cu(II), and Zn(II)] metals

    OpenAIRE

    Nahid Nishat; Ashraf Malik

    2016-01-01

    A biodegradable polymer was synthesized by the modification reaction of polymeric starch with thiourea which is further modified by transition metals, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). All the polymeric compounds were characterized by (FT-IR) spectroscopy, 1H NMR spectroscopy, 13C NMR spectroscopy, UV–visible spectra, magnetic moment measurements, thermogravimetric analysis (TGA) and antibacterial activities. Polymer complexes of Mn(II), Co(II) and Ni(II) show octahedral geometry, wh...

  7. Studies on surface graft polymerization of acrylic acid onto PTFE film by remote argon plasma initiation

    International Nuclear Information System (INIS)

    Wang Chen; Chen Jierong

    2007-01-01

    The graft polymerization of acrylic acid (AAc) was carried out onto poly(tetrafluoroethylene) (PTFE) films that had been pretreated with remote argon plasma and subsequently exposed to oxygen to create peroxides. Peroxides are known to be the species responsible for initiating the graft polymerization when PTFE reacts with AAc. We chose different parameters of remote plasma treatment to get the optimum condition for introducing maximum peroxides (2.87 x 10 -11 mol/cm 2 ) on the surface. The influence of grafted reaction conditions on the grafting degree was investigated. The maximum grafting degree was 25.2 μg/cm 2 . The surface microstructures and compositions of the AAc grafted PTFE film were characterized with the water contact angle meter, Fourier-transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Contact angle measurements revealed that the water contact angle decreased from 108 o to 41 o and the surface free energy increased from 22.1 x 10 -5 to 62.1 x 10 -5 N cm -1 by the grafting of the AAc chains. The hydrophilicity of the PTFE film surface was greatly enhanced. The time-dependent activity of the grafted surface was better than that of the plasma treated film

  8. Polymeric micelles for drug targeting.

    Science.gov (United States)

    Mahmud, Abdullah; Xiong, Xiao-Bing; Aliabadi, Hamidreza Montazeri; Lavasanifar, Afsaneh

    2007-11-01

    Polymeric micelles are nano-delivery systems formed through self-assembly of amphiphilic block copolymers in an aqueous environment. The nanoscopic dimension, stealth properties induced by the hydrophilic polymeric brush on the micellar surface, capacity for stabilized encapsulation of hydrophobic drugs offered by the hydrophobic and rigid micellar core, and finally a possibility for the chemical manipulation of the core/shell structure have made polymeric micelles one of the most promising carriers for drug targeting. To date, three generations of polymeric micellar delivery systems, i.e. polymeric micelles for passive, active and multifunctional drug targeting, have arisen from research efforts, with each subsequent generation displaying greater specificity for the diseased tissue and/or targeting efficiency. The present manuscript aims to review the research efforts made for the development of each generation and provide an assessment on the overall success of polymeric micellar delivery system in drug targeting. The emphasis is placed on the design and development of ligand modified, stimuli responsive and multifunctional polymeric micelles for drug targeting.

  9. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng

    2015-09-01

    In the recent rise of metal-free polymerization techniques, organic phosphazene superbases have shown their remarkable strength as promoter/catalyst for the anionic polymerization of various types of monomers. Generally, the complexation of phosphazene base with the counterion (proton or lithium cation) significantly improves the nucleophilicity of the initiator/chain end resulting in highly enhanced polymerization rates, as compared with conventional metalbased initiating systems. In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges and perspectives being pointed out.

  10. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  11. A comparative study to determine strength of autopolymerizing acrylic resin and autopolymerizing composite resin influenced by temperature during polymerization: An In Vitro study

    Directory of Open Access Journals (Sweden)

    Anuj Chhabra

    2017-01-01

    Full Text Available Aim: Temporary coverage of a prepared tooth is an important step during various stages of the fixed dental prosthesis. Provisional restorations should satisfy proper mechanical requirements to resist functional and nonfunctional loads. A few studies are carried out regarding the comparison of the effect of curing environment, air and water, on mechanical properties of autopolymerizing acrylic and composite resin. Hence, the aim of this study was to compare the transverse strength of autopolymerizing acrylic resin and autopolymerizing composite resin as influenced by the temperature of air and water during polymerization. Materials and Methods: Samples of autopolymerizing acrylic resin and composite resin were prepared by mixing as per manufacturer's instructions and were placed in a preformed stainless steel mold. The mold containing the material was placed under different controlled conditions of water temperature and air at room temperature. Polymerized samples were then tested for transverse strength using an Instron universal testing machine. Results: Alteration of curing condition during polymerization revealed a significant effect on the transverse strength. The transverse strength of acrylic resin specimens cured at 60°C and composite resin specimens cured at 80°C was highest. Polymerizing the resin in cold water at 10°C reduced the mechanical strength. Conclusions: Polymerization of the resin in hot water greatly increased its mechanical properties. The method of placing resin restoration in hot water during polymerization may be useful for improving the mechanical requirements and obtaining long-lasting performance.

  12. Metathesis Polymerization Reactions Induced by the Bimetallic Complex (Ph4P2[W2(μ-Br3Br6

    Directory of Open Access Journals (Sweden)

    Despoina Chriti

    2015-12-01

    Full Text Available The reactivity of the bimetallic complex (Ph4P2[W2(μ-Br3Br6] ({W 2.5 W}7+, a′2e3 towards ring opening metathesis polymerization (ROMP of norbornene (NBE and some of its derivatives, as well as the mechanistically related metathesis polymerization of phenylacetylene (PA, is presented. Our results show that addition of a silver salt (AgBF4 is necessary for the activation of the ditungsten complex. Polymerization of PA proceeds smoothly in tetrahydrofuran (THF producing polyphenylacetylene (PPA in high yields. On the other hand, the ROMP of NBE and its derivatives is more efficient in CH2Cl2, providing high yields of polymers. 13C Cross Polarization Magic Angle Spinning (CPMAS spectra of insoluble polynorbornadiene (PNBD and polydicyclopentadiene (PDCPD revealed the operation of two mechanisms (metathetic and radical for cross-linking, with the metathesis pathway prevailing.

  13. Radiation-induced controlled polymerization of acrylic acid by RAFT and RAFT-MADIX methods in protic solvents

    Science.gov (United States)

    Sütekin, S. Duygu; Güven, Olgun

    2018-01-01

    The kinetic investigation of one-pot synthesis of poly(acrylic acid) (PAA) prepared via gamma radiation induced controlled polymerization was reported. PAA homopolymers were prepared by Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization in the presence of trithiocarbonate-based chain transfer agent (CTA) 2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) and also by Reversible Addition-Fragmentation/Macromolecular Design by Inter-change of Xanthates (RAFT/MADIX) polymerization in the presence of a xanthate based CTA O-ethyl-S-(1-methoxycarbonyl) ethyl dithiocarbonate (RA1). The polymerizations were performed at room temperature by the virtue of ionizing radiation. Protic solvents were used for the RAFT polymerization of AA considering environmental profits. The linear first-order kinetic plot, close control of molecular weight by the monomer/CTA molar ratio supported that the polymerization proceeds in a living fashion. The linear increase in molecular weight with conversion monitored by Size Exclusion Chromatography (SEC) is another proof of controlling of polymerization. [Monomer]/[RAFT] ratio and conversion was controlled to obtain PAA in the molecular weight range of 6900-35,800 with narrow molecular weight distributions. Reaction kinetics and effect of the amount of RAFT agent were investigated in detail. Between two different types of CTA, trithiocarbonate based DDMAT was found to be more efficient in terms of low dispersity (Đ) and linear first-order kinetic behavior for the radiation induced controlled synthesis of PAA homopolymers.

  14. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...

  15. A comparison of three dimensional change in maxillary complete dentures between conventional heat polymerizing and microwave polymerizing techniques

    Directory of Open Access Journals (Sweden)

    Shinsuke Sadamori

    2007-03-01

    Full Text Available The purpose of this study was to measure and compare two different polymerizing processes, heat polymerizing (HP and microwave polymerizing (MP, on the three dimensional changes in the fitting surface and artificial teeth of maxillary complete dentures. A threedimensional coordinate measurement system was used to record distortion of the specimens. The distortion of the fitting surface was measured from the reference plane on the fitting side from which a coordinate system was set, and the movement of the artificial teeth and the distortion of the polished surface was measured from the reference plane of the artificial tooth side, from which a coordinate system was set. It was clearly showed that various distortions of denture specimens after polymerization process can be measured with this three-coordinate measuring machine. The study showed that the overall distortion of the fitting surface in HP specimens was shown to be larger than in MP ones.

  16. Real time in situ spectroscopic characterization of radiation induced cationic polymerization of glycidyl ethers

    International Nuclear Information System (INIS)

    Mascioni, Matteo; Sands, James M.; Palmese, Giuseppe R.

    2003-01-01

    Radiation curable polymeric materials suffer from relatively poor mechanical properties. Moreover, the curing behavior of such systems (i.e. the exact relationship between chemical kinetics and key processing variables) is not fully understood. In order to design improved epoxy based electron beam (EB) curable systems, and in order to develop appropriate process models, a detailed knowledge of the kinetics of epoxy cationic polymerization induced by ultraviolet (UV) or EB irradiation is required. In this work, we present our development of a technique based on real time near infrared (RTIR) spectroscopy for performing in situ kinetic analysis of radiation induced cationic polymerization of epoxy systems. To our knowledge this is the first time such data have been collected and presented for high-energy EB (10 MeV) induced polymerization. A demonstration of the technique for deterministic evaluation of degree of cure is shown using model glycidyl ether (phenyl glycidyl ether and diglycidyl ether of bisphenol A) resins and isothermal curing conditions. The impact of initiation rate on polymerizations with UV and EB for the cationic initiator is directly evident by comparative analysis. The sensitivity of the RTIR method and ability to produce quantitative data evidence of reaction mechanisms is demonstrated. The type of data presented in this work forms the basis for cure models being developed

  17. Fabrication of high-capacity polyelectrolyte brush-grafted porous AAO-silica composite membrane via RAFT polymerization.

    Science.gov (United States)

    Song, Cunfeng; Wang, Meijie; Liu, Xin; Wang, He; Chen, Xiaoling; Dai, Lizong

    2017-09-01

    Surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization has been utilized to fabricate high-capacity strong anion-exchange (AEX) membrane for the separation of protein. By means of RAFT polymerization, quaternized poly(3-(methacrylamidomethyl)-pyridine) brushes formed 3-dimensional nanolayers on the surface of porous anodic aluminum oxide (AAO)-silica composite membrane. The surface properties of the membranes were analyzed by SEM, water contact angle, ATR-FTIR, XPS and TGA. To investigate the adsorption performance, the new AEX membranes were applied to recover a model protein, ovalbumin (OVA). High adsorption capacities of 95.8mg/g membranes (static) and 65.3mg/g membranes (dynamic) were obtained at ambient temperature. In the further studies, up to 90% of the adsorbed OVA was efficiently eluted by using phosphate buffer-1M NaCl as elution medium. The successful separation of OVA with high purity from a mixture protein solution was also achieved by using the AEX membranes. The present study demonstrated that under mild reaction condition, RAFT polymerization can be used to fabricate ion-exchange membrane which has many remarkable features, such as high capacity and selectivity, easy elution and so on. Copyright © 2017. Published by Elsevier B.V.

  18. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  19. Effective Interfacially Polymerized Polyester Solvent Resistant Nanofiltration Membrane from Bioderived Materials

    KAUST Repository

    Abdellah, Mohamed H.

    2018-05-18

    Utilization of sustainable and environmentally friendly solvents for the preparation of membranes has attracted growing interest in recent years. In this work, a polyester thin film composite solvent resistant nanofiltration (SRNF) membrane is prepared by interfacial polymerization on a cellulose support. The cellulose support is prepared by nonsolvent‐induced phase separation from a dope solution containing an ionic liquid as an environmentally friendly solvent (negligible vapor pressure). The polyester film is formed via the interfacial reaction between quercetin, a plant‐derived polyphenol, and terephthaloyl chloride. Alpha‐pinene is used as a green alternative solvent to dissolve terephthaloyl chloride (TPC) while quercetin is dissolved in a 0.2 m NaOH solution. The interfacial polymerization reaction is successfully confirmed by Fourier transform infrared and X‐ray photoelectron spectroscopy while scanning electron and atomic force microscopy are used to characterize the membrane structure. The composite membrane shows an outstanding performance with a molecular weight cut‐off around 330 Da combined with a dimethylformamide (DMF) permeance up to 2.8 L m−2 bar−1 h−1. The membrane is stable in strong aprotic solvents such as DMF offering potential application in the pharmaceutical and petrochemical industries.

  20. Radiation-induced cationic polymerization of limonene oxide, α-pinene oxide, and β-pinene oxide

    International Nuclear Information System (INIS)

    Aikins, J.A.; Williams, F.

    1984-01-01

    After suitable drying, the subject monomers in the form of neat liquids undergo radiation-induced polymerization with no apparent side reactions and high conversions to precipitatable polymers of low molecular weight. A cationic mechanism is evidenced by the strongly retarding effect of tri-n-propylamine on the polymerization rate. At 25 0 C, limonene oxide gives the highest polymerization rates, an average conversion of 36% per Mrad being obtained in comparison with values of 5.7 and 7.3% per Mrad for the α-pinene and β-pinene oxides, respectively. Similarly, the average anti DP/sub n/ decreases from 11.8 for the limonene oxide polymer to 5.6 and 4.0 for the α-pinene oxide and β-pinene oxide polymers, respectively. A high frequency of chain transfer to monomer is indicated in each case by the fact that the kinetic chain lengths are estimated to be on the order of a hundred times larger than the anti DP/sub n/ values. Structural characterization of the limonene oxide polymer by 1 H and 13 C NMR spectroscopy provides conclusive evidence that the polymerization proceeds by the opening of the epoxide ring to yield a 1,2-trans polyether. Similar NMR studies on the polymers formed from the α-pinene and β-pinene oxides show that in the polymerization of these monomers, the opening of the epoxide ring is generally accompanied by the concomitant ring opening of the cyclobutane ring structure to yield a gem-dimethyl group in the main chain. The detection of isopropenyl end groups in the pinene oxide polymers is also consistent with this mode of propagation being followed by chain (proton) transfer to monomer

  1. A new polymeric adsorbent developing for uranium recovering and richment from aqueous media

    International Nuclear Information System (INIS)

    Gueler, H.; Aycik, G. A.; Sahiner, N.; Gueven, O.

    1997-01-01

    Using adsorbents is thought to be the most effective method for recovering the low concentrations of uranium in the aqueous media because of their fast and selective uptake of uranium, a sufficient adsorption capacity and high physical and chemical stability against the media. In this study, a new polymeric adsorbent bearing both hydrophilic groups providing swelling in water and amidoxime groups for chelating with uranyl ions (UO 2 ''2+) has been developed and its adsorptive ability for uranium from aqueous media has been investigated. The polymers obtained by irradiating the solution of polyethylene glycol (PEG) in acrylonitrile (AN) are defined as Interpenetrating Polymer Networks (IPNs) and the adsorbent has been obtained by applying the amidoximation reaction to the IPNs with a conversion of % 60 approximately. Kinetics of the conversion reaction of nitrile (CN) group to amidoxime (HONCNH 2 ) group has been studied by reacting with hydroxylamine (NH 2 OH) solution at a molar ratio of NH 2 OH/CN=1.25 in aqueous media at different temperatures, 30,40,50''0C, for 3-4 days. The degree of amidoximation was determined by UO 2 ''2+ ion adsorption and FTIR spectrometer and the UO 2 ''2+ ion adsorption values were found by both UV and gamma spectrometry and also by gravimetry. It was found that the polymeric adsorbent has a very high adsorption ability for uranium (∼ 540 mg U/g IPN/day)

  2. Pressure-Induced Polymerization of Acetylene: Structure-Directed Stereoselectivity and a Possible Route to Graphane.

    Science.gov (United States)

    Sun, Jiangman; Dong, Xiao; Wang, Yajie; Li, Kuo; Zheng, Haiyan; Wang, Lijuan; Cody, George D; Tulk, Christopher A; Molaison, Jamie J; Lin, Xiaohuan; Meng, Yufei; Jin, Changqing; Mao, Ho-Kwang

    2017-06-01

    Geometric isomerism in polyacetylene is a basic concept in chemistry textbooks. Polymerization to cis-isomer is kinetically preferred at low temperature, not only in the classic catalytic reaction in solution but also, unexpectedly, in the crystalline phase when it is driven by external pressure without a catalyst. Until now, no perfect reaction route has been proposed for this pressure-induced polymerization. Using in situ neutron diffraction and meta-dynamic simulation, we discovered that under high pressure, acetylene molecules react along a specific crystallographic direction that is perpendicular to those previously proposed. Following this route produces a pure cis-isomer and more surprisingly, predicts that graphane is the final product. Experimentally, polycyclic polymers with a layered structure were identified in the recovered product by solid-state nuclear magnetic resonance and neutron pair distribution functions, which indicates the possibility of synthesizing graphane under high pressure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Stabilization of extracellular polymeric substances (Bacillus subtilis) by adsorption to and coprecipitation with Al forms

    NARCIS (Netherlands)

    Mikutta, R.; Zang, U.; Chorover, J.; Haumaier, L.; Kalbitz, K.

    2011-01-01

    Extracellular polymeric substances (EPS) are continuously produced by bacteria during their growth and metabolism. In soils, EPS are bound to cell surfaces, associated with biofilms, or released into solution where they can react with other solutes and soil particle surfaces. If such reaction

  4. Effect of the Degree of Polymerization of Inulin on the Rate of Hydrolysis Using Immobilized Inulinase

    Directory of Open Access Journals (Sweden)

    Emanuele Ricca

    2014-01-01

    Full Text Available The present paper addresses two crucial features in the industrial development of fructose production by enzymatic hydrolysis of inulin: the use of immobilized biocatalyst in the hydrolysis of crude extracts of chicory roots and the evaluation of the effect of degree of polymerization of inulin on the overall reaction rate. The immobilized biocatalyst consisted of inulinase covalently bound to Sepabeads® supports. It was demonstrated that its catalytic activity towards crude inulin extract (real substrate was much higher than that exhibited towards pure inulin (synthetic solution. Experiments revealed that, in applications of practical interest with real substrate, the activity of immobilized enzyme was as high as 63 % of that of free enzyme in homogeneous solution. This certainly was a driving force to potential industrial application of this immobilized enzyme preparation. Therefore, the effect of pure and crude substrates on the kinetics of the reaction catalysed by the immobilized enzyme was investigated. The kinetic analysis revealed a Michaelis-Menten dependence of the reaction rate on substrate concentration for both pure (high molecular mass and crude (low molecular mass inulin. Interesting results were derived from the comparison of Km and vmax values in the two cases. In particular, it was found that increasing degree of polymerization of the substrate caused vmax decrease and Km increase. After evaluation of mass transport effects, this was mainly associated with a different substrate/ enzyme affinity when exploiting inulin characterized by different (low or high degree of polymerization.

  5. Supramolecular intermediates in the synthesis of polymeric carbon nitride from melamine cyanurate

    International Nuclear Information System (INIS)

    Dante, Roberto C.; Sánchez-Arévalo, Francisco M.; Chamorro-Posada, Pedro; Vázquez-Cabo, José; Huerta, Lazaro; Lartundo-Rojas, Luis; Santoyo-Salazar, Jaime

    2015-01-01

    The adduct of melamine and cyanuric acid (MCA) was used in past research to produce polymeric carbon nitride and precursors. The reaction yield was considerably incremented by the addition of sulfuric acid. The polymeric carbon nitride formation occurs around 450 °C at temperatures above the sublimation of the adduct components, which occurs around 400 °C. In this report the effect of sulfuric acid on MCA was investigated. It was found that the MCA rosette supramolecular channel structures behave as a solid solvent able to host small molecules, such as sulfuric acid, inside these channels and interact with them. Therefore, the sulfuric acid effect was found to be close to that of a solute that causes a temperature increment of the “solvent sublimation” enough to allowing the formation of polymeric carbon nitride to occur. Sulfate ions are presumably hosted in the rosette channels of MCA as shown by simulations. - Graphical abstract: The blend of melamine cyanurate and sulfuric acid behaves like a solution so that melamine cyanurate decomposition is shifted to temperatures high enough to react and form polymeric carbon nitride. - Highlights: • The adduct of melamine and cyanuric acid behaves as a solid solvent. • The blend of sulfuric acid and melamine cyanurate behaves like a solution. • Melamine cyanurate decomposition is shifted to higher temperatures by sulfuric acid. • The formation of polymeric carbon nitride occurs for these higher temperatures

  6. Supramolecular intermediates in the synthesis of polymeric carbon nitride from melamine cyanurate

    Energy Technology Data Exchange (ETDEWEB)

    Dante, Roberto C., E-mail: rcdante@yahoo.com [Facultad de Mecánica, Escuela Politécnica Nacional (EPN), Ladrón de Guevara E11-253, Quito (Ecuador); Sánchez-Arévalo, Francisco M. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de Mexico, Apdo. Postal 70-360, Cd. Universitaria, Mexico D.F. 04510 (Mexico); Chamorro-Posada, Pedro [Dpto. de Teoría de la Señal y Comunicaciones e IT, Universidad de Valladolid, ETSI Telecomunicación, Paseo Belén 15, 47011 Valladolid (Spain); Vázquez-Cabo, José [Dpto. de Teoría de la Señal y Comunicaciones, Universidad de Vigo, ETSI Telecomunicación, Lagoas Marcosende s/n, Vigo (Spain); Huerta, Lazaro [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de Mexico, Apdo. Postal 70-360, Cd. Universitaria, Mexico D.F. 04510 (Mexico); Lartundo-Rojas, Luis [Centro de Nanociencias y Micro y Nanotecnologías—IPN, Luis Enrique Erro s/n, U. Prof. Adolfo López Mateos, 07738 Ciudad de Mexico, Distrito Federal (Mexico); Santoyo-Salazar, Jaime [Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CINVESTAV-IPN, Apdo. Postal 14-740, Mexico D.F. 07360 (Mexico); and others

    2015-03-15

    The adduct of melamine and cyanuric acid (MCA) was used in past research to produce polymeric carbon nitride and precursors. The reaction yield was considerably incremented by the addition of sulfuric acid. The polymeric carbon nitride formation occurs around 450 °C at temperatures above the sublimation of the adduct components, which occurs around 400 °C. In this report the effect of sulfuric acid on MCA was investigated. It was found that the MCA rosette supramolecular channel structures behave as a solid solvent able to host small molecules, such as sulfuric acid, inside these channels and interact with them. Therefore, the sulfuric acid effect was found to be close to that of a solute that causes a temperature increment of the “solvent sublimation” enough to allowing the formation of polymeric carbon nitride to occur. Sulfate ions are presumably hosted in the rosette channels of MCA as shown by simulations. - Graphical abstract: The blend of melamine cyanurate and sulfuric acid behaves like a solution so that melamine cyanurate decomposition is shifted to temperatures high enough to react and form polymeric carbon nitride. - Highlights: • The adduct of melamine and cyanuric acid behaves as a solid solvent. • The blend of sulfuric acid and melamine cyanurate behaves like a solution. • Melamine cyanurate decomposition is shifted to higher temperatures by sulfuric acid. • The formation of polymeric carbon nitride occurs for these higher temperatures.

  7. Time-resolved small-angle neutron scattering study on soap-free emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Motokawa, Ryuhei [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Koizumi, Satoshi [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan)]. E-mail: koizumi@neutrons.tokai.jaeri.go.jp; Hashimoto, Takeji [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Nakahira, Takayuki [Department of Applied Chemistry and Biotechnology, Chiba University, Chiba-shi, Chiba 263-8522 (Japan); Annaka, Masahiko [Department of Chemistry, Kyushu University, Fukuoka 812-8581 (Japan)

    2006-11-15

    We investigated an aqueous soap-free emulsion polymerization process of Poly(N-isopropylacrylamide)-block-poly(ethylene glycol) by ultra-small-angle and time-resolved small-angle neutron scattering methods. The results indicate that the compartmentalization of chain end radicals into solid-like micelle cores crucially leads to the quasi-living behavior of the radical polymerization by prohibiting recombination process.

  8. The tempered polymerization of human neuroserpin.

    Directory of Open Access Journals (Sweden)

    Rosina Noto

    Full Text Available Neuroserpin, a member of the serpin protein superfamily, is an inhibitor of proteolytic activity that is involved in pathologies such as ischemia, Alzheimer's disease, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB. The latter belongs to a class of conformational diseases, known as serpinopathies, which are related to the aberrant polymerization of serpin mutants. Neuroserpin is known to polymerize, even in its wild type form, under thermal stress. Here, we study the mechanism of neuroserpin polymerization over a wide range of temperatures by different techniques. Our experiments show how the onset of polymerization is dependent on the formation of an intermediate monomeric conformer, which then associates with a native monomer to yield a dimeric species. After the formation of small polymers, the aggregation proceeds via monomer addition as well as polymer-polymer association. No further secondary mechanism takes place up to very high temperatures, thus resulting in the formation of neuroserpin linear polymeric chains. Most interesting, the overall aggregation is tuned by the co-occurrence of monomer inactivation (i.e. the formation of latent neuroserpin and by a mechanism of fragmentation. The polymerization kinetics exhibit a unique modulation of the average mass and size of polymers, which might suggest synchronization among the different processes involved. Thus, fragmentation would control and temper the aggregation process, instead of enhancing it, as typically observed (e.g. for amyloid fibrillation.

  9. Effect of composite resin polymerization modes on temperature rise in human dentin of different thicknesses: an in vitro study

    International Nuclear Information System (INIS)

    Baggio Aguiar, Flavio Henrique; Kanda Peres Barros, Gisele; Alves Nunes Leite Lima, Debora; Bovi Ambrosano, Glaucia Maria; Lovadino, Jose Roberto

    2006-01-01

    The aim of this in vitro study was to evaluate the effect of different polymerization modes on temperature rise in human dentin of different thicknesses, and to evaluate the relation between dentin thickness and temperature rise (TR). For this purpose, 60 specimens were assigned into 20 groups (n = 3): five polymerization modes (1-conventional; 2-soft-start; 3-high intensity; 4-ramp cure: progressive and high intensity; 5-high intensity with the tip of the light-curing unit at a distance of 1.3 cm for 10 s and the tip leaning on the sample) at four dentin thicknesses (0, 1, 2, 3 mm). During composite sample polymerization (2 mm), the temperature was measured by a digital laser thermometer (CMSS2000-SL/SKF). The statistical analyses were conducted by ANOVA (p = 0.05) and post-hoc Tukey's test. There were statistical differences of TR among polymerization modes and dentin thicknesses. The temperature rise was dependent on the polymerization mode and the dentin thickness: the thicker the dentin and the lower the polymerization mode energy, the lower the temperature rise

  10. Synthesis of α-Bromine- Terminated Polystyrene Macroinitiator and Its Initiation of MMA Polymerization by ATRP

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In the present paper the synthesis of block copolymers via the transformation from living anionic polymerization (LAP) to atom transfer radical polymerization (ATRP) was described. Α-Bromine-terminated polystyrenes(PStBr) in the LAP step was prepared by using n-BuLi as initiator, tetrahydrofuran (THF) as the activator, α-methylstyrene (α-MeSt) as the capping group and liquid bromine (Br2) as the bromating agent. The effects of reaction conditions such as the amounts of α-MeSt, THF, and Br2 as well as molecular weight of polystyrene on the bromating efficiency (BE) and coupling extent (CE) were examined. The present results show that the yield of PStBr obtained was more than 93.8% and the coupling reaction was substantially absent. PStBr was further used as the macroinitiator in the polymerization of methyl-methacrylate(MMA) in the presence of copper(Ⅰ) halogen and 2,2-bipyridine(bpy) complexes. It was found that the molecular weight of the resulted PSt-b-PMMA increased linearly with the increase of the conversion of MMA and the polydispersity was 1.2-1.6. The structures of PStBr and P(St-b-MMA) were characterized by 1H NMR spectra.

  11. The Synthesis of Cellulose Graft Copolymers Using Cu(0)-Mediated Polymerization

    Science.gov (United States)

    Donaldson, Jason L.

    Cellulose is the most abundant renewable polymer on the planet and there is great interest in expanding its use beyond its traditional applications. However, its hydrophilicity and insolubility in most common solvent systems are obstacles to its widespread use in advanced materials. One way to counteract this is to attach hydrophobic polymer chains to cellulose: this allows the properties of the copolymer to be tailored by the molecular weight, density, and physical properties of the grafts. Two methods were used here to synthesize the graft copolymers: a 'grafting-from' approach, where synthetic chains were grown outward from bromoester moieties on cellulose (Cell-BiB) via Cu(0)-mediated polymerization; and a 'grafting-to' approach, where fully formed synthetic chains with terminal sulfide functionality were added to cellulose acetate with methacrylate functionality (CA-MAA) via thiol-ene Michael addition. The Cell-BiB was synthesized in the ionic liquid 1-butyl-3-methylimidazolium chloride and had a degree of substitution of 1.13. Polymerization from Cell-BiB proceeded at similar but slightly slower rate than an analogous non-polymeric initiator (EBiB). The average graft density of poly(methyl acrylate) chains was 0.71 chains/ring, with a maximum of 1.0 obtained. The graft density when grafting poly(methyl methacrylate) was only 0.15, and this appeared to be due to the slow initiation of BiB groups. Using EBiB to model the reaction and improve the design should allow this to be overcome. Chain extension experiments demonstrated the living behaviour of the polymer. The CA-MAA was synthesized by esterification with methacrylic acid. Reactions of CA-MAA with thiophenol and dodecanethiol resulted in quantitative addition of the thiol to the alkene. The grafts were synthesized by Cu(0)-mediated polymerization from a bifunctional initiator containing a disulfide bond, followed by reduction to sulfides. The synthetic polymers were successfully grafted to CA-MAA but the

  12. Graft polymerization of styrene onto starch by simultaneous cobalt-60 irradiation

    International Nuclear Information System (INIS)

    Fanta, G.F.; Burr, R.C.; Doane, W.M.; Russell, C.R.

    1977-01-01

    Starch-g-polystyrene copolymers have been prepared by the simultaneous 60 Co irradiation of starch--styrene mixtures, and copolymers have been characterized with respect to weight per cent polystyrene (% add-on) and also the molecular weight and molecular weight distribution of polystyrene grafts. In a typical polymerization, 4g each of starch and styrene were blended with 1 ml water and 1.5 ml of an organic solvent; the resulting semisolid paste was irradiated to a total dose of 1 Mrad. With ethylene glycol, acetonitrile, ethanol, methanol, acetone, and dimethylformamide as the organic solvent, values for % add-on ranged from 24% to 29%. The highest % add-on (43%) and the highest conversion of styrene to grafted polymer (76%) were obtained when the organic solvent was omitted, and water alone was used. When water was also omitted, polymerization of styrene was negligible; however, graft copolymer was formed in the absence of water when either ethylene glycol or ethanol was added. Attempts were unsuccessful to achieve a % add-on greater than 43% by doubling the amount of styrene in the polymerization recipe. Mixtures of equal weights of starch and styrene are relatively nonviscous, but these mixtures thicken when either water or ethylene glycol is blended in. Reasons for this thickening action and the possible influence of thickening on the graft polymerization reaction were explored

  13. Study of sodium clay modification through polyaniline polymerization

    International Nuclear Information System (INIS)

    Saade, Wesley; Pinto, Camila P.; Becker, Daniela; Dalmolin, Carla

    2015-01-01

    The synthesis of hybrids nanocomposites, such as polyaniline/montmorillonite (Pani/MMT), combines the processability and electrical conductivity of this polymer with the mechanical properties of a ceramic material bringing a multitude of new possibilities for use in high-tech, consumer and industry. With this in mind, we sought to characterize and modify sodium clay through polymerization of polyaniline. The characterization was carried out by X-ray diffraction, infrared spectroscopy by Fourier transformed (FTIR) and spectroscopy by impedance. Through the XRD analysis, it could be inferred that there was a interplanar displacement from 12,4Å (pure sodium montmorillonite) to 15,6Å due to the cation exchange of Na + ions by the anilinium ions, allowing the polymerization interspersed with Pani MMT platelets. By FTIR analysis, presences of the characteristic functional groups of both compounds are detected in the synthesized nanocomposite. Through conductivity and impedance tests it is concluded that the addition of polyaniline decreases the resistive behavior of clay and the electrical conduction becomes possible. (author)

  14. Thermal polymerization of Moringa oleifera oil

    International Nuclear Information System (INIS)

    Melo, Tania M.S.; Novack, Katia M.; Leandro, Cristiano

    2011-01-01

    It is increasingly clear both for society and the scientific community, that is necessary to find alternatives to reduce the use of polymeric materials because of their damage to the environment. One way to minimize the environmental problems related to the use of polymers is try to make them quickly degradable. In this study it was obtained a material with polymeric appearance derived from heating of the vegetable oil extracted from seeds of Moringa oleifera. The resulting product is an interesting alternative to obtain polymeric materials that may have biodegradable characteristics, coming from a renewable source and low cost. Moringa oil can be used since it has a high content of unsaturated fatty acids, and its main constituent oleic acid. All samples were characterized by FTIR, NMR and GPC. It was obtained a polymeric material, malleable, high viscosity, with some elasticity, low crystallinity and no unpleasant odor. (author)

  15. First-principles study of pollutant molecules absorbed on polymeric adsorbents using the vdW-DF2 functional

    Science.gov (United States)

    Zhu, Jinguo; Wang, Yapeng; Tian, Ting; Zhang, Qianfan

    2018-03-01

    Polymeric adsorbents have been attracting increasing attention because of their favorable structrual properties and effectiveness of solving small molecules contaminants. However, due to the absence of deep insight into the adsorption mechanism of polymeric adsorbents, researches on new polymeric adsorbents can only be carried out by repeated experiments and tests, which is extremely inefficient. Therefore, investigating the adsorption process of polymeric adsorbents, especially the mechanism of adsorbing various air pollutant molecules by materials modelling and simulation, is of great significance. Here in this work, we systematically studied the adsorption mechanism by first-principles computation with van der Waals interaction. It demonstrates that the adsorption between them was pure physisorption originating from the hydrogen bond and intermolecular forces consisting of Keesom force, Debye force and London dispersion force. The proportions of these forces varied according to different adsorption systems. The adsorption effects were determined by the polymers’ dipole moment and polarizability. The adsorption performance of some polymers with special structures was also investigated to explore their possibility as potential adsorbents. The results of our simulation can provide some guidance for developing new polymeric adsorbents with better performance.

  16. THE MODELING OF COUNTER-ROTATING TWIN-SCREW EXTRUDERS AS REACTORS FOR SINGLE-COMPONENT REACTIONS

    NARCIS (Netherlands)

    GANZEVELD, KJ; CAPEL, JE; VANDERWAL, DJ; JANSSEN, LPBM

    Numerical models are useful to study the behaviour of the extruder as a polymerization reactor. With a correct numerical model a theoretical analysis of the influence of several reaction and extruder parameters can be made, the limitations of the use of the extruder reactor can be determined and the

  17. Nonperturbative Renormalization Group Approach to Polymerized Membranes

    Science.gov (United States)

    Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique

    2014-03-01

    Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.

  18. Synthesis of Well-Defined Three-Arm Star-Branched Polystyrene through Arm-First Coupling Approach by Atom Transfer Radical Polymerization

    OpenAIRE

    Shahabuddin, Syed; Hamime Ismail, Fatem; Mohamad, Sharifah; Muhamad Sarih, Norazilawati

    2015-01-01

    Here we describe a simple route to synthesize three-arm star-branched polystyrene. Atom transfer radical polymerization technique has been utilized to yield branched polystyrene involving Williamson coupling strategy. Initially a linear polymeric chain of predetermined molecular weight has been synthesized which is further end-functionalized into a primary alkyl bromide moiety, a prime requisition for Williamson reaction. The end-functionalized polymer is then coupled using 1,1,1-tris(4-hydro...

  19. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  20. Elucidation of the Key Role of [Ru(bpy)3 ](2+) in Photocatalyzed RAFT Polymerization.

    Science.gov (United States)

    Christmann, Julien; Ibrahim, Ahmad; Charlot, Vincent; Croutxé-Barghorn, Céline; Ley, Christian; Allonas, Xavier

    2016-08-04

    Photocatalysis reactions using [Ru(II) (bpy)3 ](2+) were studied on the example of visible-light-sensitized reversible addition-fragmentation chain transfer (RAFT) polymerization. Although both photoinduced electron- and energy-transfer mechanisms are able to describe this interaction, no definitive experimental proof has been presented so far. This paper investigates the actual mechanism governing this reaction. A set of RAFT agents was selected, their redox potentials measured by cyclic voltammetry, and relaxed triplet energies calculated by quantum mechanics. Gibbs free-energy values were calculated for both electron- and energy-transfer mechanisms. Quenching rate constants were determined by laser flash photolysis. The results undoubtedly evidence the involvement of a photoinduced energy-transfer reaction. Controlled photopolymerization experiments are discussed in the light of the primary photochemical process and photodissociation ability of RAFT agent triplet states. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. In situ self-polymerization of unsaturated metal methacrylate and its dispersion mechanism in rubber-based composites

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Shipeng; Zhou, Yao; Yao, Lu [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Liqun [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Chan, Tung W. [Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, VA 24061 (United States); Liang, Yongri [Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Science and Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Li, E-mail: LiuL@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2013-11-10

    Highlights: • In situ self-polymerization of unsaturated metal methacrylate was investigated mainly by the thermal effect. • UMM with low melting point can self-polymerize to a large extent. • The fine dispersion phase is composed of poly(UMM) nanoparticles formed by in situ self-polymerization in the rubber matrix. • The UMM crystals in the presence of peroxide and rubber undergo the processes of melting, diffusion, polymerization, and phase separation in this order. - Abstract: Unsaturated metal methacrylate (UMM) as one kind of functional filler has played an important role in reinforcing rubber materials. The in situ self-polymerization of UMM in UMM/rubber composite leads to the uniform dispersion of poly(UMM) in the rubber matrix, while the crosslinking of rubber and grafting between UMM and rubber chains occur simultaneously, making it difficult to clarify the effect of the in situ polymerization on the dispersion of poly(UMM) in the rubber matrix. In this work, we investigated the dispersion mechanism of UMM without rubber matrix for the first time using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. Three types of UMMs including zinc methacrylate (Zn(MA){sub 2}), sodium methacrylate (Na(MA)) and samarium methacrylate (Sm(MA){sub 3}) were chosen to investigate the in situ self-polymerization of UMM. Based on DSC results, we conclude that the crystals with low melting point tend to self-polymerize first and generate a large amount of heat in the presence of peroxide. The high heat of reaction can melt the crystals with high melting point, and more UMM molecules are dissolved in the rubber matrix, thus increasing the extent of the in situ polymerization. Hence, the UMM with low melting point can self-polymerize to a large extent. Our findings provide in-depth understanding of the dispersion mechanism of UMM in rubber.

  2. In situ self-polymerization of unsaturated metal methacrylate and its dispersion mechanism in rubber-based composites

    International Nuclear Information System (INIS)

    Wen, Shipeng; Zhou, Yao; Yao, Lu; Zhang, Liqun; Chan, Tung W.; Liang, Yongri; Liu, Li

    2013-01-01

    Highlights: • In situ self-polymerization of unsaturated metal methacrylate was investigated mainly by the thermal effect. • UMM with low melting point can self-polymerize to a large extent. • The fine dispersion phase is composed of poly(UMM) nanoparticles formed by in situ self-polymerization in the rubber matrix. • The UMM crystals in the presence of peroxide and rubber undergo the processes of melting, diffusion, polymerization, and phase separation in this order. - Abstract: Unsaturated metal methacrylate (UMM) as one kind of functional filler has played an important role in reinforcing rubber materials. The in situ self-polymerization of UMM in UMM/rubber composite leads to the uniform dispersion of poly(UMM) in the rubber matrix, while the crosslinking of rubber and grafting between UMM and rubber chains occur simultaneously, making it difficult to clarify the effect of the in situ polymerization on the dispersion of poly(UMM) in the rubber matrix. In this work, we investigated the dispersion mechanism of UMM without rubber matrix for the first time using differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. Three types of UMMs including zinc methacrylate (Zn(MA) 2 ), sodium methacrylate (Na(MA)) and samarium methacrylate (Sm(MA) 3 ) were chosen to investigate the in situ self-polymerization of UMM. Based on DSC results, we conclude that the crystals with low melting point tend to self-polymerize first and generate a large amount of heat in the presence of peroxide. The high heat of reaction can melt the crystals with high melting point, and more UMM molecules are dissolved in the rubber matrix, thus increasing the extent of the in situ polymerization. Hence, the UMM with low melting point can self-polymerize to a large extent. Our findings provide in-depth understanding of the dispersion mechanism of UMM in rubber

  3. Influence of gamma irradiation on polymerization of pyrrole and glucose oxidase immobilization onto poly (pyrrole)/poly (vinyl alcohol) matrix

    Science.gov (United States)

    Idris, Sarada; A. Bakar, Ahmad Ashrif; Thevy Ratnam, Chantara; Kamaruddin, Nur Hasiba; Shaari, Sahbudin

    2017-04-01

    This paper describes the immobilization of glucose oxidase, GOx onto polymer matrix comprising of poly(pyrrole), PPy and poly(vinyl alcohol), PVA using gamma irradiation technique. Py/PVA-GOx film was prepared by spreading PVA:GOx, 1:1 solution onto dried pyrrole film and exposed to gamma irradiation from cobalt 60 source at doses ranging from 0 to 60 kGy. The films were subjected to structural and morphological analyses by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM), Field emission scanning electron microscope (FESEM) and Atomic-force microscopy (AFM) techniques. Similar studies were also made on pristine pyrrole film which served as control. The SEM and FTIR spectra of Py/PVA-GOx film revealed that pyrrole has been successfully polymerized through irradiation-induced reactions. The results on the morphological properties of the samples characterize using FESEM, SEM and AFM further confirmed the occurrence of radiation-induced modification of Py/PVA-GOx film. The FTIR spectra showed the existence of intermolecular interaction between polymer matrix and GOx indicating that GOx had been successfully immobilized onto Ppy/PVA matrix by radiation-induced reactions. Results revealed that radiation induced reactions such as polymerization of pyrrole, crosslinking of PVA, grafting between the adjacent PVA and pyrrole molecules as well as immobilization of GOx onto Ppy/PVA matrix occurred simultaneously upon gamma irradiation. The optimum dose for GOx immobilization in the polymer matrix found to be 40 kGy. Therefore it is clear that this irradiation technique offered a simple single process to produce Py/PVA-GOx film without additional crosslinking and polymerization agents.

  4. A study of the ion-molecule reaction in a microwave plasma of propylene

    International Nuclear Information System (INIS)

    Carmi, U.

    1980-07-01

    Microwave plasma of propylene and of argon-propylene mixture were sampled by a quadrupole mass-spectrometer. The composition of the plasma was investigated as a function of external parameters such as pressure, initial concentration of gases, microwave power and sampling position. Three main paths were determined for the pyrolysis and polymerization of propylene, that constitute the rate determining step. Rate constants were determined for the various reactions between propylene and the intermediates. An overall rate constant for the disappearance of propylene was determined. This constant was found to be dependent on the initial gas concentration and on plasma pressure

  5. "Click" i polymerer 2

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2012-01-01

    "Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer......"Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer...

  6. Biomimetic PEGylation of carbon nanotubes through surface-initiated RAFT polymerization.

    Science.gov (United States)

    Shi, Yingge; Zeng, Guanjian; Xu, Dazhuang; Liu, Meiying; Wang, Ke; Li, Zhen; Fu, Lihua; Zhang, Qingsong; Zhang, Xiaoyong; Wei, Yen

    2017-11-01

    Carbon nanotubes (CNTs) are a type of one-dimensional carbon nanomaterials that possess excellent physicochemical properties and have been potentially utilized for a variety of applications. Surface modification of CNTs with polymers is a general route to expand and improve the performance of CNTs and has attracted great research interest over the past few decades. Although many methods have been developed previously, most of these methods still showed some disadvantages, such as low efficiency, complex experimental procedure and harsh reaction conditions etc. In this work, we reported a practical and novel way to fabricate CNTs based polymer composites via the combination of mussel inspired chemistry and reversible addition fragmentation chain transfer (RAFT) polymerization. First, the amino group was introduced onto the surface of CNTs via self-polymerization of dopamine. Then, chain transfer agent can be immobilized on the amino groups functionalized CNTs to obtain CNT-PDA-CTA, which can be utilized for surface-initiated RAFT polymerization. A water soluble and biocompatible monomer poly(ethylene glycol) monomethyl ether methacrylate (PEGMA) was adopted to fabricate pPEGMA functionalized CNTs through RAFT polymerization. The successful preparation of CNTs based polymer composites (CNT-pPEGMA) was confirmed by transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy in details. The CNT-pPEGMA showed good dispersibility and desirable biocompatibility, making them highly potential for biomedical applications. More importantly, a large number of CNTs based polymer composites could also be fabricated through the same strategy when different monomers were used due to the good monomer adaptability of RAFT polymerization. Therefore, this strategy should be a general method for preparation of various multifunctional CNTs based polymer composites. Copyright © 2017 Elsevier B.V. All rights

  7. Accelerated Combinatorial High Throughput Star Polymer Synthesis via a Rapid One-Pot Sequential Aqueous RAFT (rosa-RAFT) Polymerization Scheme.

    Science.gov (United States)

    Cosson, Steffen; Danial, Maarten; Saint-Amans, Julien Rosselgong; Cooper-White, Justin J

    2017-04-01

    Advanced polymerization methodologies, such as reversible addition-fragmentation transfer (RAFT), allow unprecedented control over star polymer composition, topology, and functionality. However, using RAFT to produce high throughput (HTP) combinatorial star polymer libraries remains, to date, impracticable due to several technical limitations. Herein, the methodology "rapid one-pot sequential aqueous RAFT" or "rosa-RAFT," in which well-defined homo-, copolymer, and mikto-arm star polymers can be prepared in very low to medium reaction volumes (50 µL to 2 mL) via an "arm-first" approach in air within minutes, is reported. Due to the high conversion of a variety of acrylamide/acrylate monomers achieved during each successive short reaction step (each taking 3 min), the requirement for intermediary purification is avoided, drastically facilitating and accelerating the star synthesis process. The presented methodology enables RAFT to be applied to HTP polymeric bio/nanomaterials discovery pipelines, in which hundreds of complex polymeric formulations can be rapidly produced, screened, and scaled up for assessment in a wide range of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. STUDIES ON THE INITIATION MECHANISM OF ORGANIC PEROXIDE AND N-METHACRYLOYLOXYETHYL-N-METHYL ANILINE IN METHYL METHACRYLATE POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; GUO Dajie; GUO Xinqiu; FENG Xinde

    1990-01-01

    The initiation mechanism of methyl methacrylate (MMA) polymerization by organic peroxide and polymerizable aromatic tertiary amine such as N-methacryloyloxyethyl-N-methyi aniline (MEMA) binary system has been studied. The kinetics of polymerization of MMA and the ESR spectra of organic peroxide/MEMA system were determined. Based on the ESR study and the end-group analysis by UV spectra of the polymer formed, the initiation mechanism is proposed.

  9. Nanogravimetric studies of tungsten oxide thin films obtained by the polymeric precursor method

    International Nuclear Information System (INIS)

    Fernandes, V.C.; Santos, M.C.; Bulhoes, L.O.S.

    2007-01-01

    In this work, the intercalation/de-intercalation process of Li + ions in the tungsten oxide matrix was investigated. The reaction mechanism involved was also investigated. The WO 3 films, prepared by the polymeric precursor method, were deposited on a Pt covered quartz crystal using the dip-coating technique. The electrolyte was 0.1 mol L -1 LiClO 4 in acetonitrile. The morphology and structure of the deposit was accomplished by scanning electron microscopy and X-ray diffraction, respectively. In the electrochemical quartz crystal nanobalance results, it was observed that the mass transport as well as the kinetic processes involved are facilitated in the films cycled at lower potential sweep-rates. The mass variation data as a function of the charge variations in the anodic and cathodic regions indicate the participation of solvent molecules (acetonitrile) during the Li + ion intercalation/de-intercalation process. This was confirmed by the development of a model of the species flux as a function of the potential

  10. N-Heterocyclic Olefins as Initiators for the Polymerization of (Meth)Acrylic Monomers: A Combined Experimental and Theoretical Approach

    KAUST Repository

    Naumann, Stefan

    2017-08-25

    The zwitterionic organopolymerization of four different acrylic monomers (N,N-dimethylacrylamide, methyl acrylate, methyl methacrylate and tert-butyl methacrylate) based on neutral initiators, so-called N-heterocyclic olefins (NHOs), is presented. Scope and underlying (deactivation-)mechanisms where studied in a combined experimental and computational effort. From a range of differently structured NHOs it emerged that imidazole-, in contrast to imidazoline- and benzimidazole-derivatives, readily polymerize the selected monomers. While the additive-free reactions proceed with a relatively low degree of control to yield largely atactic material, for the acrylamide the addition of LiCl as µ-type ligand has been shown to result in a rapid and quantitative monomer consumption. The thus generated poly(N,N-dimethyl acrylamide) was found to be highly isotactic (>90% isotactic dyads) with high molecular weight (Mn = 250 000 – 650 000 g/mol, ÐM = 1.3- 1.6). Complementing DFT calculations considered the zwitterionic chain growth with respect to competing side reactions, namely spirocycles and enamine formation. It was found that NHOs with unsaturated backbone better support the zwitterionic chain growth, with the spirocycles acting as dormant species that slow down but do not quench the polymerization process. Contrasting this, enamine formation irreversibly terminates the polymerization and is found to be energetically favored. This pathway can be blocked by introduction of substituents on the exocyclic carbon of the NHO, resulting in structures like 2-isopropylidene-1,3,4,5-tetramethylimidazoline (4) which consequently deliver the most controlled polymerizations. Finally, a good correlation of the initiation energy barrier with the buried volume (%VBur) and the Parr electrophilicity index is described, allowing for a quick and reliable screening of potential monomers based on these two readily accessible parameters.

  11. Silyl Ketene Acetals/B(C6F53 Lewis Pair-Catalyzed Living Group Transfer Polymerization of Renewable Cyclic Acrylic Monomers

    Directory of Open Access Journals (Sweden)

    Lu Hu

    2018-03-01

    Full Text Available This work reveals the silyl ketene acetal (SKA/B(C6F53 Lewis pair-catalyzed room-temperature group transfer polymerization (GTP of polar acrylic monomers, including methyl linear methacrylate (MMA, and the biorenewable cyclic monomers γ-methyl-α-methylene-γ-butyrolactone (MMBL and α-methylene-γ-butyrolactone (MBL as well. The in situ NMR monitored reaction of SKA with B(C6F53 indicated the formation of Frustrated Lewis Pairs (FLPs, although it is sluggish for MMA polymerization, such a FLP system exhibits highly activity and living GTP of MMBL and MBL. Detailed investigations, including the characterization of key reaction intermediates, polymerization kinetics and polymer structures have led to a polymerization mechanism, in which the polymerization is initiated with an intermolecular Michael addition of the ester enolate group of SKA to the vinyl group of B(C6F53-activated monomer, while the silyl group is transferred to the carbonyl group of the B(C6F53-activated monomer to generate the single-monomer-addition species or the active propagating species; the coordinated B(C6F53 is released to the incoming monomer, followed by repeated intermolecular Michael additions in the subsequent propagation cycle. Such neutral SKA analogues are the real active species for the polymerization and are retained in the whole process as confirmed by experimental data and the chain-end analysis by matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF MS. Moreover, using this method, we have successfully synthesized well-defined PMMBL-b-PMBL, PMMBL-b-PMBL-b-PMMBL and random copolymers with the predicated molecular weights (Mn and narrow molecular weight distribution (MWD.

  12. Synthesis of magnetic polymeric microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I [M.V. Lomonosov Moscow State Academy of Fine Chemical Technology, Moscow (Russian Federation)

    2010-05-13

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  13. Synthesis of magnetic polymeric microspheres

    International Nuclear Information System (INIS)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I

    2010-01-01

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  14. Factors influencing catalytic behavior of titanium complexes bearing bisphenolate ligands toward ring-opening polymerization of L-lactide and ε-caprolactone

    Directory of Open Access Journals (Sweden)

    M-T. Jiang

    2018-02-01

    Full Text Available A series of titanium complexes bearing substituted diphenolate ligands (RCH(phenolate2, where R = H, CH3, o-OTs-phenyl, o-F-phenyl, o-OMe-phenyl, 2,4-OMe-phenyl was synthesized and studied as catalysts for the ring opening polymerization of L-lactide and ε-caprolactone. Ligands were designed to probe the role of chelate effect and steric effect in the catalytic performance. From the structure of triphenolate (with one extra coordination site than diphenolate ligand Ti complex, TriOTiOiPr2, we found no additional chelation to influence the catalytic activity of Ti complexes. It was found that bulky aryl groups in the diphenolate ligands decreased the rate of polymerization most. We conclude that steric effect is the most controlling factor in these polymerization reactions by using Ti complexes bearing diphenolate ligands as catalysts since it is responsible for the exclusion of needed space for incoming monomer by the bulky substituents on the catalyst.

  15. Polymerization of Oriental Lacquer (Urushi with Epoxidized Linseed Oil as a New Reactive Diluent

    Directory of Open Access Journals (Sweden)

    Takahisa Ishimura

    2015-01-01

    Full Text Available A hybrid lacquer (HBL paint prepared by combining a natural kurome lacquer (KL paint and an amino silane reagent, for example, N-(2-aminoethyl-3-aminopropyl triethoxysilane (AATES, produced a polymerized film faster than the KL paint alone. However, the viscosity of the HBL paint was too viscous for easy handling. Addition of 10 wt% of an epoxidized linseed oil, ELO-6, with 6.4 mol% epoxidation as a reactive diluent to the HBL paint decreased the viscosity by 1/2 from 25476 mPa·s to 12841 mPa·s and improved the ease of coatability. The polymerization mechanism was elucidated by NMR measurements of extracts from the resulting polymerization films, suggesting that amino groups in the HBL paint reacted with epoxy groups of ELO-6 in the lacquer matrix, and then the complex reacted with double bonds of the urushiol side-chain by autooxidation and cross-linking reactions to give a hard polymerized film with a high quality of color and gloss. These results indicate that the addition of ELO-6 improved the polymerizability of both KL and HBL paints without decreasing the quality of the resulting films.

  16. Vapor-phase polymerization of poly(3, 4-ethylenedioxythiophene) nanofibers on carbon cloth as electrodes for flexible supercapacitors

    Science.gov (United States)

    Zhao, Xin; Dong, Mengyang; Zhang, Junxian; Li, Yingzhi; Zhang, Qinghua

    2016-09-01

    In this study, an evaporative vapor-phase polymerization approach was employed to fabricate vertically aligned poly(3, 4-ethylenedioxythiophene) (PEDOT) nanofibers on the surface of carbon cloth (CC). Optimized reaction conditions can obtain well distributed and uniform layers of high-aspect-ratio PEDOT nanofibers on CC. The hierarchical PEDOT/CC structure as a freestanding electrode exhibits good electrochemical properties. As a flexible symmetric supercapacitor, the PEDOT/CC hybrid electrode displays a specific areal capacitance of 201.4 mF cm-2 at 1 mA cm-2, good flexibility with a higher value (204.6 mF cm-2) in the bending state, and a good cycling stability of 92.4% after 1000 cycles. Moreover, the device shows a maximum energy density of 4.0 Wh kg-1 (with a power density of 3.2 kW kg-1) and a maximum power density of 4.2 kW kg-1 (with an energy density of 3.1 Wh kg-1). The results demonstrate that PEDOT may be a promising material for storage devices through a simple and efficient vapor-phase polymerization process with precisely controlled reaction conditions.

  17. Effects of Molecular Iodine and 4-tert-Butylcatechol Radical Inhibitor on the Radical Polymerization of Styrene

    Directory of Open Access Journals (Sweden)

    Mojtaba Bozorg

    2017-05-01

    Full Text Available The presence of molecular iodine was studied in relation the molecular weight and molecular weight distribution of polystyrene, produced by radical poly merization. Radical polymerization of styrene initiated by 2,2׳-azobisisobutyronitrile (AIBN was performed at 70°C in the presence of molecular iodine. The synthesized polymers were characterized by gel permeation chromatography (GPC and proton- nuclear magnetic resonance (1H NMR techniques. The results of these reactions including conversion data, number-average molecular weight and molecular weight distribution were compared with those obtained for styrene radical polymerization initiated by AIBN at the same temperature in the absence of molecular iodine. It was found that the presence of iodine had a profound effect on the molecular weight and its distribution in the produced polystyrene. This was attributed to the ability of iodine to control the polymerization of styrene initiated by AIBN via reverse iodine transfer polymerization (RITP mechanism. The polymer produced by this method had a molecular weight of 10600 g/mol with a molecular weight polydispersity index of 1.3. Due to the importance of induction period in reverse iodine transfer radical polymerization, increasing the temperature to 120°C during the induction period resulted in shorter induction periods and the produced species led to better control of the molecular weight. Also, due to the role of iodine molecules as a radical inhibitor, the presence of a secondary radical inhibitor, i.e. 4-tert-butylcatechol, along with the iodine was investigated in radical polymerization of polystyrene initiated by AIBN. It was observed that the secondary radical inhibitor prevented the consumption of the iodine molecules by the radicals produced from decomposition of the AIBN initiator; therefore, alkyl halides were not produced during the induction period.

  18. Radiation-induced cationic polymerization of limonene oxide, α-pinene oxide, and β-pinene oxide

    International Nuclear Information System (INIS)

    Aikins, J.A.; Williams, F.

    1985-01-01

    After suitable drying, the subject monomers in the form of neat liquids undergo radiation-induced polymerization with no apparent side reactions and high conversions to precipitatable polymers of low molecular weights. A high frequency of chain (proton) transfer to monomer is indicated by the fact that the kinetic chain lengths are estimated to be several hundred times larger than the range of DP/sub n/ values (12-4). Structural characterization of the limonene oxide polymer by 1 H and 13 C NMR spectroscopy provides conclusive evidence that the polymerization proceeds by the opening of the epoxide ring to yield a 1,2-trans polyether. Similar NMR studies on the polymers formed from the α-pinene and β-pinene oxides show that the opening of the epoxide ring for these monomers is generally accompanied by the concomitant ring opening of the cyclobutane ring structure to yield a gem-di-methyl group in the main chain

  19. The Formation of Polymeric Products in Reactions of Polyvalent Recoil Atoms; Formation de Polymeres lors de Reactions Provoquees par des Atomes de Recul Polyvalents; Obrazovanie polimernykh produktov pri reaktsiyakh polivalentnykh atomov otdachi; Formacion de Polimeros en las Reacciones de Atomos de Retroceso Polivalentes

    Energy Technology Data Exchange (ETDEWEB)

    Dzantiev, B. G.; Stukan, R. A.; Shvedchikov, A. P.; Shishkov, A. V. [Institut Himicheskoj Fiziki AN SSSR, Moskva, SSSR (Russian Federation)

    1965-04-15

    One of the features of the hot-atom reactions obtained as a result of nuclear transformations is that labelled polymeric products can be formed. This tendency is very marked in the case of polyvalent recoil atoms, where the polymer yield can, in certain cases, reach an amount of about 90% of the total activity. The aim of the present research is a study of the behaviour of recoil atoms of sulphur-35 and carbon-14, obtained in the nuclear reactions Cl{sup 35}(n, p)S{sup 35} and N{sup 14}(n, p) C{sup 14} in gas and liquid phases. It can be assumed that in the stabilization process hot carbon atoms form methylene biradicals, whose behaviour, by reason of their reaction capacity, greatly resembles that of atomic sulphur. The investigations were conducted like those for paraffins (CH{sub 4}, C{sub 2}H{sub 6} ), and for cyclic hydrocarbons (cyclohexane, cyclohexene, benzene). The binary systems comprising hydrocarbons on the one hand and S{sup 35} and C{sup 14} hot-atom donors on the other were subjected to irradiation. Compounds of CCI{sub 4}, HCl and ammonia were used as the donors. Irradiation was carried out on a reactor of type IRT-1000 with a thermal neutron flux of 10{sup 11}-10{sup 12} n/cm{sup 2}. s. It is shown that for various compounds in the liquid phase, up to 60-90% of the sulphur-35 becomes stabilized in the form of a polymer, the yield of which is highly dependent on the composition, passing through the maximum at a nearly equimolecular ratio of components. In the gas phase the polymer yield amounts to 30-40% of the total activity. By means of paper radiochromatography it was established that labelled polymer products have a complex structure and are, at the least, a mixture of compounds of two qualitatively different types whose yield changes in various ways depending upon the ratio of the components. An increase in irradiation time leads to an increase in the labelled polymer yield. In the case of the liquid phase system C{sub 6}H{sub 12}-CCl{sub 4

  20. A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization.

    Science.gov (United States)

    Keddie, Daniel J

    2014-01-21

    The discovery of reversible-deactivation radical polymerization (RDRP) has provided an avenue for the synthesis of a vast array of polymers with a rich variety of functionality and architecture. The preparation of block copolymers has received significant focus in this burgeoning research field, due to their diverse properties and potential in a wide range of research environments. This tutorial review will address the important concepts behind the design and synthesis of block copolymers using reversible addition-fragmentation chain transfer (RAFT) polymerization. RAFT polymerization is arguably the most versatile of the RDRP methods due to its compatibility with a wide range of functional monomers and reaction media along with its relative ease of use. With an ever increasing array of researchers that possess a variety of backgrounds now turning to RDRP, and RAFT in particular, to prepare their required polymeric materials, it is pertinent to discuss the important points which enable the preparation of high purity functional block copolymers with targeted molar mass and narrow molar mass distribution using RAFT polymerization. The key principles of appropriate RAFT agent selection, the order of monomer addition in block synthesis and potential issues with maintaining high end-group fidelity are addressed. Additionally, techniques which allow block copolymers to be accessed using a combination of RAFT polymerization and complementary techniques are touched upon.

  1. Supported Catalysts Useful in Ring-Closing Metathesis, Cross Metathesis, and Ring-Opening Metathesis Polymerization

    Directory of Open Access Journals (Sweden)

    Jakkrit Suriboot

    2016-04-01

    Full Text Available Ruthenium and molybdenum catalysts are widely used in synthesis of both small molecules and macromolecules. While major developments have led to new increasingly active catalysts that have high functional group compatibility and stereoselectivity, catalyst/product separation, catalyst recycling, and/or catalyst residue/product separation remain an issue in some applications of these catalysts. This review highlights some of the history of efforts to address these problems, first discussing the problem in the context of reactions like ring-closing metathesis and cross metathesis catalysis used in the synthesis of low molecular weight compounds. It then discusses in more detail progress in dealing with these issues in ring opening metathesis polymerization chemistry. Such approaches depend on a biphasic solid/liquid or liquid separation and can use either always biphasic or sometimes biphasic systems and approaches to this problem using insoluble inorganic supports, insoluble crosslinked polymeric organic supports, soluble polymeric supports, ionic liquids and fluorous phases are discussed.

  2. Study on the immobilization of alpha-amylase by radiation-induced polymerization at low-temperature, (3)

    International Nuclear Information System (INIS)

    Yoshida, Masaru; Kumakura, Minoru; Kaetsu, Isao

    1975-07-01

    The immobilization of α-amylase in high concentration (50-200 mg) by radiation induced polymerization at low temperature, with HEMA has been studied. A feature of the high concentration α-amylase system is phase separation of the mixed solution prior to polymerization, markedly at HEMA concentrations above 50%. Useful immobilization is possible, however, by irradiation of the suspended composition at -196 0 C, which is obtained by shaking the phase-separated system. At temperatures below 0 0 C, the immobilization is possible, but not above this because of the phase separation. The polymerizability of HEMA changes abruptly at 0 0 C. The largest polymerization rate is obtained at -24 0 C, possibly due to phase change by crystallization of water of the buffer solution at 0 0 C. Activity of the immobilized high-concentration α-amylase is as high as 80-85% being somewhat higher than that in the low-concentration case. (auth.)

  3. Anodic Cyclization Reactions and the Mechanistic Strategies That Enable Optimization.

    Science.gov (United States)

    Feng, Ruozhu; Smith, Jake A; Moeller, Kevin D

    2017-09-19

    Oxidation reactions are powerful tools for synthesis because they allow us to reverse the polarity of electron-rich functional groups, generate highly reactive intermediates, and increase the functionality of molecules. For this reason, oxidation reactions have been and continue to be the subject of intense study. Central to these efforts is the development of mechanism-based strategies that allow us to think about the reactive intermediates that are frequently central to the success of the reactions and the mechanistic pathways that those intermediates trigger. For example, consider oxidative cyclization reactions that are triggered by the removal of an electron from an electron-rich olefin and lead to cyclic products that are functionalized for further elaboration. For these reactions to be successful, the radical cation intermediate must first be generated using conditions that limit its polymerization and then channeled down a productive desired pathway. Following the cyclization, a second oxidation step is necessary for product formation, after which the resulting cation must be quenched in a controlled fashion to avoid undesired elimination reactions. Problems can arise at any one or all of these steps, a fact that frequently complicates reaction optimization and can discourage the development of new transformations. Fortunately, anodic electrochemistry offers an outstanding opportunity to systematically probe the mechanism of oxidative cyclization reactions. The use of electrochemical methods allows for the generation of radical cations under neutral conditions in an environment that helps prevent polymerization of the intermediate. Once the intermediates have been generated, a series of "telltale indicators" can be used to diagnose which step in an oxidative cyclization is problematic for less successful transformation. A set of potential solutions to address each type of problem encountered has been developed. For example, problems with the initial

  4. Sustained-release of caffeine from a polymeric tablet matrix: An in vitro and pharmacokinetic study

    International Nuclear Information System (INIS)

    Tan, Donna; Zhao Bin; Moochhala, Shabbir; Yang Yiyan

    2006-01-01

    Caffeine is utilized as a stimulant to impart a desired level of alertness during certain working hours. Usually, a single dose of caffeine induces 2-3 h of alertness coupled with side effects whereas a longer effect of 8-12 h is very useful for both daily life and military action. Thus, there is a need to deliver the stimulant continuously to an individual at one time to impart an increased level of alertness for the period stated after administration. This study aimed to design a polymeric microparticle system for sustained delivery of caffeine using a polymeric matrix. Poly(ethylene oxide) (PEO) was used as the erodible matrix material and the caffeine polymeric tablets were fabricated by compression using a Graseby Specac hydraulic press. In vitro release profiles as well as the pharmacokinetics studies data were obtained. Caffeine tablets fabricated using various polymers showed a high initial burst release type profile as compared to the caffeine-PEO-tablet. The PK studies showed sustained delivery of caffeine resulted in two expected phenomena: a reduction in the initial high rate of caffeine release (burst release) as well as a reduction in the change in caffeine concentration in the systemic circulation. A simple two-component system for sustained-release caffeine formulation therefore has been achieved

  5. Sustained-release of caffeine from a polymeric tablet matrix: An in vitro and pharmacokinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Donna [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore); Zhao Bin [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore); Moochhala, Shabbir [Defence Medical and Environmental Research Institute, DSO National Laboratories (Kent Ridge), 27 Medical Drive, 12-00, Singapore 117597 (Singapore)]. E-mail: mshabbir@dso.org.sg; Yang Yiyan [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, 04-01, The Nanos, Singapore 138669 (Singapore)

    2006-07-25

    Caffeine is utilized as a stimulant to impart a desired level of alertness during certain working hours. Usually, a single dose of caffeine induces 2-3 h of alertness coupled with side effects whereas a longer effect of 8-12 h is very useful for both daily life and military action. Thus, there is a need to deliver the stimulant continuously to an individual at one time to impart an increased level of alertness for the period stated after administration. This study aimed to design a polymeric microparticle system for sustained delivery of caffeine using a polymeric matrix. Poly(ethylene oxide) (PEO) was used as the erodible matrix material and the caffeine polymeric tablets were fabricated by compression using a Graseby Specac hydraulic press. In vitro release profiles as well as the pharmacokinetics studies data were obtained. Caffeine tablets fabricated using various polymers showed a high initial burst release type profile as compared to the caffeine-PEO-tablet. The PK studies showed sustained delivery of caffeine resulted in two expected phenomena: a reduction in the initial high rate of caffeine release (burst release) as well as a reduction in the change in caffeine concentration in the systemic circulation. A simple two-component system for sustained-release caffeine formulation therefore has been achieved.

  6. Spectroscopic studies on novel donor-acceptor and low band-gap polymeric semiconductors

    International Nuclear Information System (INIS)

    Cravino, A.

    2002-11-01

    Novel low band-gap conjugated polymeric semiconductors as well as conjugated electron donor chains carrying electron acceptor substituents were electrochemically prepared and investigated by means of different spectroscopic techniques. Using in situ FTIR and ESR spectroelectrochemistry, the spectroscopic features of injected positive charges are found to be different as opposed to the negative charge carriers on the same conjugated polymer. These results, for which the theoretical models so far developed do not account, demonstrate the different structure and delocalization of charge carriers with opposite signs. In addition, vibrational spectroscopy results proof the enhanced 'quinoid' character of low band-gap conjugated chains. Excited state spectroscopy was applied to study photoexcitations in conjugated polymers carrying tetracyanoanthraquinone type or fullerene moieties. This novel class of materials, hereafter called double-cable polymers, was found promising as alternative to the conjugated polymer:fullerene mixtures currently used for the preparation of 'bulk-heterojunction' polymeric solar cells. (author)

  7. Radiation-induced polymerization of glass-forming systems. VII. Polymerization in supercooled state under high pressure

    International Nuclear Information System (INIS)

    Kaetsu, I.; Yoshii, F.; Watanabe, Y.

    1978-01-01

    Radiation-induced polymerization of glass-forming monomers such as 2-hydroxyethyl methacrylate and glycidyl methacrylate under high pressure was studied. The glass transition temperature of these monomers was heightened by increased pressure. The temperature dependence of polymerizability showed a characteristic relation, similar to those in supercooled-phase polymerization under normal pressure, that had a maximum at T/sub ν/ which shifted to higher levels of temperature as well as to T/sub g/ under high pressure. Polymerizability in the supercooled state also increased under increased pressure

  8. Isospecific propylene polymerization with in situ generated bis(phenoxy-amine)zirconium and hafnium single site catalysts.

    Science.gov (United States)

    Makio, Haruyuki; Prasad, Aitha Vishwa; Terao, Hiroshi; Saito, Junji; Fujita, Terunori

    2013-07-07

    Bis(phenoxy-imine) Zr and Hf complexes were activated with (i)Bu3Al or (i)Bu2AlH in conjunction with Ph3CB(C6F5)4 and tested as catalysts for propylene polymerization with emphasis on the enantioselectivity of the isospecific species and the single site polymerization characteristics. The isoselective species was identified as the in situ generated bis(phenoxy-amine) complex whose isoselectivity was sensitive to subtle changes in ligand structure. By employing specific substituents at certain key positions the isotacticity reached an extremely high level comparable to high-end commercial isotactic polypropylenes (Tm > 160 °C). Single site polymerization characteristics depended upon the efficiency and selectivity of the in situ imine reduction which is sensitive to the substituent on the imine nitrogen and the reaction conditions. By using (i)Bu2AlH as a reducing agent, quantitative imine reduction can be achieved with a stoichiometric amount of the reducing agent. This lower alkylaluminum loading is beneficial for the catalyst and significantly enhances the polymerization activity and the molecular weight of the resultant polymer.

  9. Complexity in modeling of residual stresses and strains during polymerization of bone cement: effects of conversion, constraint, heat transfer, and viscoelastic property changes.

    Science.gov (United States)

    Gilbert, Jeremy L

    2006-12-15

    Aseptic loosening of cemented joint prostheses remains a significant concern in orthopedic biomaterials. One possible contributor to cement loosening is the development of porosity, residual stresses, and local fracture of the cement that may arise from the in-situ polymerization of the cement. In-situ polymerization of acrylic bone cement is a complex set of interacting processes that involve polymerization reactions, heat generation and transfer, full or partial mechanical constraint, evolution of conversion- and temperature-dependent viscoelastic material properties, and thermal and conversion-driven changes in the density of the cement. Interactions between heat transfer and polymerization can lead to polymerization fronts moving through the material. Density changes during polymerization can, in the presence of mechanical constraint, lead to the development of locally high residual strain energy and residual stresses. This study models the interactions during bone cement polymerization and determines how residual stresses develop in cement and incorporates temperature and conversion-dependent viscoelastic behavior. The results show that the presence of polymerization fronts in bone cement result in locally high residual strain energies. A novel heredity integral approach is presented to track residual stresses incorporating conversion and temperature dependent material property changes. Finally, the relative contribution of thermal- and conversion-dependent strains to residual stresses is evaluated and it is found that the conversion-based strains are the major contributor to the overall behavior. This framework provides the basis for understanding the complex development of residual stresses and can be used as the basis for developing more complex models of cement behavior.

  10. Synthesis of polyurea from 1,6-hexanediamine with CO2 through a two-step polymerization

    Directory of Open Access Journals (Sweden)

    Shan Jiang

    2017-10-01

    Full Text Available Activation and transformation of CO2 is one of the important issues in the field of green and sustainable chemistry. Herein, CO2 as a carbon-oxygen resource was converted to CO2-polyurea with 1,6-hexanediamine through a two-step polymerization. The reaction parameters such as temperature, pressure and reaction time were examined; and several kinds of catalysts were screened in the absence and presence of NMP solvent. The formed oligomer and the final polyurea were characterized by FT-IR, VT-DRIFTS, NMR, XRD, AFM and their thermal properties were examined by TGA and DSC. It was confirmed that the final polyurea has a high thermal stability; the melting temperature is 269 °C and the decomposition temperature is above 300 °C. It is a brittle polymer with a tensile strength of 18.35 MPa at break length of 1.64%. The polyurea has a stronger solvent resistance due to the ordered hydrogen bond in structure. The average molecular weight should be enhanced in the post-polymerization as the appearance, hydrogen bond intensity, crystallinity, melting point and the thermal stability changed largely compared to the oligomer. The present work provides a new kind of polyurea, it is expected to have a wide application in the field of polymer materials. Keywords: CO2, Polyurea, Two-step polymerization, Catalysis

  11. RAFT polymerization mediated bioconjugation strategies

    OpenAIRE

    Bulmuş, Volga

    2011-01-01

    This review aims to highlight the use of RAFT polymerization in the synthesis of polymer bioconjugates. It covers two main bioconjugation strategies using the RAFT process: (i) post-polymerization bioconjugations using pre-synthesized reactive polymers, and (ii) bioconjugations via in situ polymerization using biomolecule-modified monomers or chain transfer agents. © 2011 The Royal Society of Chemistry.

  12. Packaging based on polymeric materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available In the past two years the consumption of common in the developed countries world wide (high tonnage polymers for packaging has approached a value of 50 wt.%. In the same period more than 50% of the packaging units on the world market were made of polymeric materials despite the fact that polymeric materials present 17 wt.% of all packaging materials. The basic properties of polymeric materials and their environmental and economical advantages, providing them such a position among packaging materials, are presented in this article. Recycling methods, as well as the development trends of polymeric packaging materials are also presented.

  13. Glycine Polymerization on Oxide Minerals

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  14. Glycine Polymerization on Oxide Minerals.

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH 3 + group of adsorbed Gly to the nucleophilic NH 2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  15. Constrained Geometry Organotitanium Catalysts Supported on Nanosized Silica for Ethylene (co)Polymerization.

    Science.gov (United States)

    Li, Kuo-Tseng; Wu, Ling-Huey

    2017-05-05

    Supported olefin polymerization catalysts can prevent reactor-fouling problems and produce uniform polymer particles. Constrained geometry complexes (CGCs) have less sterically hindered active sites than bis-cyclopentadienyl metallocene catalysts. In the literature, micrometer-sized silica particles were used for supporting CGC catalysts, which might have strong mass transfer limitations. This study aims to improve the activity of supported CGC catalysts by using nanometer-sized silica. Ti[(C₅Me₄)SiMe₂(N t Bu)]Cl₂, a "constrained-geometry" titanium catalyst, was supported on MAO-treated silicas (nano-sized and micro-sized) by an impregnation method. Ethylene homo-polymerization and co-polymerization with 1-octene were carried out in a temperature range of 80-120 °C using toluene as the solvent. Catalysts prepared and polymers produced were characterized. For both catalysts and for both reactions, the maximum activities occurred at 100 °C, which is significantly higher than that (60 °C) reported before for supported bis-cyclopentadienyl metallocene catalysts containing zirconium, and is lower than that (≥140 °C) used for unsupported Ti[(C₅Me₄)SiMe₂(N t Bu)]Me₂ catalyst. Activities of nano-sized catalyst were 2.6 and 1.6 times those of micro-sized catalyst for homopolymerization and copolymerization, respectively. The former produced polymers with higher crystallinity and melting point than the latter. In addition, copolymer produced with nanosized catalyst contained more 1-octene than that produced with microsized catalyst.

  16. Magnetic resonance studies of solid polymers; Etude des polymeres solides par resonance magnetique

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    This paper is a review of the application of nuclear magnetic resonance (NMR) to solid polymers. In the first, theoretical part, the elements of the theory of NMR, which are necessary for the study of the properties of solid polymers are discussed: the moments method, nuclear relaxation and the distribution of correlation times. In the second part the experimental results are presented. (author) [French] Cette etude est une recherche bibliographique sur l'application de la resonance magnetique nucleaire (RMN) aux polymeres solides. Dans la premiere partie theorique on discute les elements de la theorie de RMN, necessaires pour l'etude des proprietes des polymeres solides: la methode des moments, la relaxation nucleaire et la distribution des temps de correlation. La deuxieme partie presente les resultats des experiences. (auteur)

  17. Radiation polymerization of 2-hydroxyethyl methacrylate-vinyl pyrrolidone-water system

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.

    1988-01-01

    Polymerization was studied using mixtures of 2-hydroxyethyl methacrylate(HEMA)-water, vinyl pyrrolidone(NVP)-water and 2-hydroxyethyl methacrylate-vinyl pyrrolidone-water. The mixtures were irradiated with gamma radiation from a 60 Co source. Irradiation was carried out at temperatures of 0, -24, -45, -63, -78, and -196 degC. The dependence was studied of the polymerization rate on temperature during irradiation for the individual mixtures, as were the effect of monomer composition on the polymerization of the HEMA-NVP-water system at 0 degC, the effect of water on NVP polymerization and the relationship between water absorption and the composition of the monomer. (E.S.). 4 figs., 6 refs

  18. KINETICS AND MECHANISM OF PHOTOINDUCED POLYMERIZATION BY α,α-DIMETHOXY-α-PHENYL ACETOPHENONE

    Institute of Scientific and Technical Information of China (English)

    WANG Xiuzhi; LI Miaozhen; CHANG Zhiying; WANG Erjian

    1993-01-01

    α,α- dimethoxy- α-phenyl acetophenone (DMPA) is an efficient and thermally stable photoinitiator.Here its spectral characteristics in the transient state were shown. The transient species were identified as a benzoyl radical and a dimethoxyl benzyl radical that played a primary initiation role in polymerization. The kinetics and mechanism of the bulk polymerization of MMA were investigated. The exponent of DMPA concentration and κp/κt1/2 value were found to be 0.5 and 0.066 mol-1/2l1/2 s-1/2 , respectively. The existence of oxygen led to obtain the polymer with higher molecular weight, which can be attributed to the occurrence of the subsequent polymerization induced by active polymer end group. In the photocrosslinking reaction, the dependence of DMPA content on initial rate has been found. A principal reason is that the sample contained higher percentage of DMPA has higher light-absorbed efficiency. In solid film, higher concentration of DMPA is permitted to be used because there is little excited state self-quenching effect in the rigid medium.

  19. Role of a waste-derived polymeric biosurfactant in the sol-gel synthesis of nanocrystalline titanium dioxide

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Perrone, Daniele G.; Magnacca, Giuliana

    2014-01-01

    An inexpensive polymeric biosurfactant isolated from urban bio-wastes is shown to be a useful chemical aid in the synthesis of nanostructured materials with tunable pore size and surface hydrophilicity. Photocatalytic active TiO2 powders were prepared by sol–gel reaction in the presence of variable...

  20. Direct peptide bioconjugation/PEGylation at tyrosine with linear and branched polymeric diazonium salts.

    Science.gov (United States)

    Jones, Mathew W; Mantovani, Giuseppe; Blindauer, Claudia A; Ryan, Sinead M; Wang, Xuexuan; Brayden, David J; Haddleton, David M

    2012-05-02

    Direct polymer conjugation at peptide tyrosine residues is described. In this study Tyr residues of both leucine enkephalin and salmon calcitonin (sCT) were targeted using appropriate diazonium salt-terminated linear monomethoxy poly(ethylene glycol)s (mPEGs) and poly(mPEG) methacrylate prepared by atom transfer radical polymerization. Judicious choice of the reaction conditions-pH, stoichiometry, and chemical structure of diazonium salt-led to a high degree of site-specificity in the conjugation reaction, even in the presence of competitive peptide amino acid targets such as histidine, lysines, and N-terminal amine. In vitro studies showed that conjugation of mPEG(2000) to sCT did not affect the peptide's ability to increase intracellular cAMP induced in T47D human breast cancer cells bearing sCT receptors. Preliminary in vivo investigation showed preserved ability to reduce [Ca(2+)] plasma levels by mPEG(2000)-sCT conjugate in rat animal models. © 2012 American Chemical Society

  1. Initiation of MMA polymerization by iniferters based on dithiocarbamates

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available Twelve modified dithiocarbamates and a thiuramdisulfide used for the initiation of methyl methacrylate (MMA polymerization were synthesized in this study. The polymerization of MMA was followed by determine the yield and molar mass of the obtained PMMA as a function of polymerization time. Four of the synthesized dithiocarbamates S-benzyl-N,N-dibenzyldithiocarbamate, S-allyl-N,N-dibenzyldithiocarbamate S-benzyl-N,N-diisobutyldithiocarbamate and S-benzoyl-N,N-diisobutyldithiocarbamate, as well as N,N,N',N'-tetrabenzylthiuramdisulfide acted as iniferters. They were active as the initiators of the photo and/or thermally initiated radical polymerization of MMA in bulk and inert solvents (benzene and toluene. S Benzyl - N,N - dibenzyldithiocarbamate can be successfully used for the initiation of MMA polymerization in a polar solvent such as dimethylacetamide.

  2. Study the influence of reacted aliphatic amine series length on its kinetic reaction with dimeric fatty acid C36 and properties of resulted polyamide

    International Nuclear Information System (INIS)

    Al-Mohammad, H.; Falah, A.; Al-Hammoy, M.

    2013-01-01

    Kinetic studies were carried out on the reaction between dimeric fatty acid C 3 6 with 1.3 Diamino propane and 1.4 Diamino butane and 1.6 Diamino hexane and 1.8 Diamino octane in molten phase. The reaction was performed at 145 o C. The polyamidation reaction was found to be on the overall a second order up to 83% conversion for reaction dimeric fatty acid C-36 with 1.3 Diamino propane and 86% conversion for reaction dimeric fatty acid C 3 6 with 1.4 Diamino butane and 87% conversion for reaction dimeric fatty acid C 3 6 with 1.6 Diamino hexane and 1.8 Diamino octane then the reaction order changes to the third order above last conversion. The degree of polymerization,number average molecular weight and weight average molecular weight have been calculated during different times. Their relationships with the times are linear until last conversion. The melting point and thermodynamic constants for melting are determined by use of differential scanning calorimetry DSC. The melting point and thermodynamic constants increase by increasing the length of reacted amine series. (author)

  3. Fabrication of Defined Polydopamine Nanostructures by DNA Origami-Templated Polymerization.

    Science.gov (United States)

    Tokura, Yu; Harvey, Sean; Chen, Chaojian; Wu, Yuzhou; Ng, David Y W; Weil, Tanja

    2018-02-05

    A versatile, bottom-up approach allows the controlled fabrication of polydopamine (PD) nanostructures on DNA origami. PD is a biosynthetic polymer that has been investigated as an adhesive and promising surface coating material. However, the control of dopamine polymerization is challenged by the multistage-mediated reaction mechanism and diverse chemical structures in PD. DNA origami decorated with multiple horseradish peroxidase-mimicking DNAzyme motifs was used to control the shape and size of PD formation with nanometer resolution. These fabricated PD nanostructures can serve as "supramolecular glue" for controlling DNA origami conformations. Facile liberation of the PD nanostructures from the DNA origami templates has been achieved in acidic medium. This presented DNA origami-controlled polymerization of a highly crosslinked polymer provides a unique access towards anisotropic PD architectures with distinct shapes that were retained even in the absence of the DNA origami template. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Kinetic studies of elementary chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Durant, J.L. Jr. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  5. Studies on atom transfer radical polymerization of acrylates and styrenes with controlled polymeric block structures

    OpenAIRE

    Ibrahim, Khalid

    2006-01-01

    Atom transfer radical polymerization (ATRP) was applied to homo and block copolymerization of vinyl monomers methacrylates, acrylates, and styrene with iron (FeCl2.4H2O) as the transition metal in most cases. As complexing ligand either a commercially available ligand (triphenyl phosphine) (PPh3) or synthetic aliphatic amines were used. As initiators, methyl 2-bromopropionate, ethyl 2-bromoisobutyrate, α,α-dichloroacetophenone, and poly(ethylene oxide) macroinitiator were employed. Block ...

  6. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  7. Preparation of epoxy/zirconia hybrid materials via in situ polymerization using zirconium alkoxide coordinated with acid anhydride

    International Nuclear Information System (INIS)

    Ochi, Mitsukazu; Nii, Daisuke; Harada, Miyuki

    2011-01-01

    Highlights: → Novel epoxy/zirconia hybrid materials were synthesized via in situ polymerization using zirconium alkoxide coordinated with acid anhydride. → The half-ester compound of acid anhydride desorbed from zirconium played as curing agent of epoxy resin. → The zirconia was uniformly dispersed in the epoxy matrix on the nanometer or sub-nanometer scale by synchronizing the epoxy curing and sol-gel reactions. → The refractive indices of the hybrid materials significantly improved with an increase in the zirconia content. - Abstract: Novel epoxy/zirconia hybrid materials were synthesized using a bisphenol A epoxy resin (diglycidyl ether of bisphenol A; DGEBA), zirconium(IV)-n-propoxide (ZTNP), and hexahydrophthalic anhydride (HHPA) via in situ polymerization. HHPA played two roles in this system: it acted as a modifier to control the hydrolysis and condensation reactions of zirconium alkoxide and also as a curing agent - the half-ester compound of HHPA desorbed from zirconium reacted with the epoxy resin to form the epoxy network. As a result, both the sol-gel reaction and epoxy curing occurred simultaneously in a homogeneous solution, and organic-inorganic hybrid materials were readily obtained. Further, the zirconia produced by the in situ polymerization was uniformly dispersed in the epoxy matrix on the nanometer or sub-nanometer scale; thus, hybrid materials that exhibited excellent optical transparency were obtained. Furthermore, the heat resistance of the hybrid materials could be improved by hybridization with zirconia. And, the refractive indices of the hybrid materials significantly improved with an increase in the zirconia content.

  8. Polymeric Coatings for Combating Biocorrosion

    Science.gov (United States)

    Guo, Jing; Yuan, Shaojun; Jiang, Wei; Lv, Li; Liang, Bin; Pehkonen, Simo O.

    2018-03-01

    Biocorrosion has been considered as big trouble in many industries and marine environments due to causing great economic loss. The main disadvantages of present approaches to prevent corrosion include being limited by environmental factors, being expensive, inapplicable to field, and sometimes inefficient. Studies show that polymer coatings with anti-corrosion and anti-microbial properties have been widely accepted as a novel and effective approach to preventbiocorrosion. The main purpose of this review is to summarize up the progressive status of polymer coatings used for combating microbially-induced corrosion. Polymers used to synthesize protective coatings are generally divided into three categories: i) traditional polymers incorporated with biocides, ii) antibacterial polymers containing quaternary ammonium compounds, and iii) conductive polymers. The strategies to synthesize polymer coatings resort mainly to grafting anti-bacterial polymers from the metal substrate surface using novel surface-functionalization approaches, such as free radical polymerization, chemically oxidative polymerization and surface-initiated atom transfer radical polymerization, as opposed to the traditional approaches of dip coating or spin coating.

  9. Kinetics and equilibrium studies for sorption of Cu (II) and Cr (VI) ions onto polymeric composite resins

    International Nuclear Information System (INIS)

    El-Zahhhar, A.A.; Abdel-Aziz, H.M.; Siyam, T.

    2005-01-01

    The sorption behavior of Cu (II) and Cr (VI) ions from aqueous solutions was studied using polymeric composite resins. Batch sorption experiments were performed as a function of hydrogen ion concentration, complexing agent concentration, resin weight and ionic strength. Kinetic parameters as a function of initial ion concentration were determined to predict the sorption behavior of Cu (II) and Cr (VI) onto polymeric composite resins. The equilibrium data could be fitted by the frendlich adsorption isotherm equation

  10. Immobilization of antibodies and enzyme-labeled antibodies by radiation polymerization

    International Nuclear Information System (INIS)

    Kumakura, M.; Kaetsu, I.; Suzuki, M.; Adachi, S.

    1983-01-01

    Immobilization of antibodies and enzyme-labeled antibodies by radiation polymerization at low temperatures was studied. The antibody activity of antibody was not affected by irradiation at an irradiation dose of below 8 MR and low temperatures. Immobilization of peroxidase-labeled anti-rabbit IgG goat IgG, anti-peroxidase, peroxidase, and anti-alpha-fetoprotein was carried out with hydrophilic and hydrophobic monomers. The activity of the immobilized enzyme-labeled antibody membranes varied with the thickness of the membranes and increased with decreasing membrane thickness. The activity of the immobilized antibody particles was varied by particle size. Immobilized anti-alpha-fetoprotein particles and membranes can be used for the assay of alpha-fetoprotein by the antigen-antibody reaction, such as a solid-phase sandwich method with high sensitivity

  11. Polymeric films loaded with cisplatin for malignant pleural mesothelioma: a pharmacokinetic study in an ovine model

    Science.gov (United States)

    Barocelli, Elisabetta; Cavazzoni, Andrea; Petronini, Piergiorgio; Mucchino, Claudio; Cantoni, Anna Maria; Leonardi, Fabio; Ventura, Luigi; Barbieri, Stefano; Colombo, Paolo; Fusari, Antonella; Carbognani, Paolo; Rusca, Michele; Sonvico, Fabio

    2018-01-01

    Background Malignant pleural mesothelioma (MPM) continues to be a distressing tumor due to its aggressive biologic behavior and scanty prognosis. Several therapeutic approaches have been tested both in clinical and preclinical settings, being intrapleural chemotherapy one of the most promising. Some years ago, our interest focused on polymeric films loaded with cisplatin for the adjuvant intrapleural treatment of surgical patients. After in vitro and in vivo studies in a rat recurrence model of MPM, the aim of this study was to evaluate the pharmacokinetics of the polymeric films in a sheep model in view of further studies in a clinical setting. Methods An ovine model was used. Animals were divided into four groups according to pharmacologic treatment: control group (three animals undergoing left pneumonectomy and saline-NaCl solution); intrapleural hyaluronate cisplatin films (HYALCIS) group (six animals undergoing left pneumonectomy and intrapleural application of polymeric films loaded with cisplatin); intrapleural cisplatin solution (six animals undergoing left pneumonectomy and intrapleural application of cisplatin solution); intravenous cisplatin (five animals undergoing left pneumonectomy and intravenous administration of cisplatin solution). The primary objective was the plasmatic and pleural concentration of cisplatin in the treatment groups. The secondary objective was the treatment-related toxicity evaluated by plasmatic analysis performed at prearranged time intervals and histological examinations of tissue samples collected during animal autopsy. Analysis of variance (ANOVA) was used for statistical analysis. Bonferroni correction was applied for comparison between all groups. Results Twenty female Sardinian sheep with a mean weight of 45.1 kg were studied. All animals survived the surgical procedures. The whole surgical procedure had a mean duration of 113 minutes. Cisplatin blood levels obtained from polymeric films application were low during the

  12. PETMA-g-PETMA-b-PS 'palm tree' graft copolymer: A new polymeric architecture obtained via RAFT and ROP process

    International Nuclear Information System (INIS)

    Soares, Paula P.; Silva, Eduardo de O. da; Petzhold, Cesar L.

    2009-01-01

    Block copolymer with pendant thiirane moiety PETMA-b-PS is the base for a new class of 'palm tree' graft copolymers, which can show interesting properties. ETMA can be polymerized through ring opening polymerization with Lewis bases as initiator, e.g., Br- and tertiary amines. We used this reaction as a way to graft a copolymer PETMA-b-PS possessing 5% of ETMA unities, with chains having poly(propylene sulfide), obtained by graft from method. Produced materials were characterized through H1 NMR, SEC and DSC. (author)

  13. Functionalization and Polymerization on the CNT Surfaces

    KAUST Repository

    Albuerne, Julio

    2013-07-01

    In this review we focus on the current status of using carbon nanotube (CNT) as a filler for polymer nanocomposites. Starting with the historical background of CNT, its distinct properties and the surface functionalization of the nanotube, the three different surface polymerization techniques, namely grafting "from", "to" and "through/in between" were discussed. Wider focus has been given on "grafting from" surface initiated polymerizations, including atom transfer radical polymerization (ATRP), reversible addition fragmentation chain-transfer (RAFT) Polymerization, nitroxide mediated polymerization (NMP), ring opening polymerization (ROP) and other miscellaneous polymerization methods. The grafting "to" and "through / in between" also discussed and compared with grafting from polymerization. The merits and shortcomings of all three grafting methods were discussed and the bottleneck issue in grafting from method has been highlighted. Furthermore the current and potential future industrial applications were deliberated. Finally the toxicity issue of CNTs in the final product has been reviewed with the limited available literature knowledge. © 2013 Bentham Science Publishers.

  14. Synthesis of indenyllanthanide amides: the effective initiators for polymerization of methyl methacrylate

    Institute of Scientific and Technical Information of China (English)

    赵群; 姚英明; 沈琪

    2000-01-01

    Diisopropylamido bisindenyl lanthanides ( C9H7)2LnN( i-Pr)2(Ln=Gd (1), Y(2), Er (3)) were successfully synthesized in satisfied yield by the reaction of Ln(N(i-Pr)2)3(THF) with indene in 1:2 molar ratio in toluene. All of the complexes exhibit very high catalytic activity in the polymerization of methyl methacrylate. The resulting polymers have narrow molecular weight distributions and syndiotacticity.

  15. Synthesis, characterization and polymerization of methacrylates of copper (II), cobalt (II) and molybdenum (II). Generation of new materials

    International Nuclear Information System (INIS)

    Rojas Bolanos, Omar

    2006-01-01

    Coordination compounds of the species copper (II), cobalt (II) and molybdenum (II) with methacrylic acid were synthesized and characterized. Besides, it realized reactions of bromine addition to the doubles links of the species obtained previously, also too like reactions with dry HCl. Finally, it got hybrids materials by polymerization of the first compounds in an acrylic matrix. Research concluded with the characterization of all the products. (author) [es

  16. In-situ polymerization of polyaniline on the surface of graphene oxide for high electrochemical capacitance

    International Nuclear Information System (INIS)

    Li, Xinlu; Zhong, Qineng; Zhang, Xinlin; Li, Tongtao; Huang, Jiamu

    2015-01-01

    Conducting polymer polyaniline (PANI) was in-situ polymerized on the surface of graphene oxide (GO) to form PANI encapsulating GO nanocomposites. The morphology and microstructure were examined by scanning electron microscopy, X-ray diffraction and N 2 absorption/desorption analysis. Electrochemical properties were tested by cyclic voltammetry, galvanostatic charge/discharge cycles and electrochemical impedance spectroscopy. Experimental results showed that ethanol assisted the dispersion of GO in water and facilitated the diffusion of polymer monomers on GO. GO as a support material can provide sufficient reaction sites for the deposition of aniline to form the film-like GO/PANI composites. Capacitive performance illustrated that the in-situ polymerization of PANI on GO was effective in improving the specific capacitance and cycling stability. - Highlights: • GO/PANI nanocomposites were achieved by in-situ polymerization. • PANI was uniformly coated on the surface of GO with addition of ethanol. • GO/PANI show high specific capacitance and cycling stability

  17. Synthesis and characterization of hydrophobically modified polymeric betaines

    Directory of Open Access Journals (Sweden)

    Alexey Shakhvorostov

    2015-09-01

    Full Text Available Polymeric betaines containing long alkyl chains C12H25, C14H29, C16H33 and C18H37 were synthesized by Michael addition reaction of alkylaminocrotonates and methacrylic acid (MAA. They were characterized by FTIR, 13C NMR, DSC, DLS, GPC, cryo-TEM, viscometry and zeta-potential measurements. The polymers were fully soluble in DMF, THF and DMSO, partially dissolved in aromatic hydrocarbons (benzene, toluene, o-xylene and formed colloid solutions in aqueous KOH. In aqueous KOH and DMSO solutions, hydrophobically modified polymeric betaines behaved as polyelectrolytes. The average hydrodynamic size and zeta potential of diluted aqueous solutions of hydrophobic polybetainess containing dodecyl-, tetradecyl-, hexadecyl-, and octadecyl groups were studied as a function of pH. Anomalous low values of the isoelectric point (IEP of amphoteric macromolecules were found to be in the range of pH 2.7-3.4. According to DLS data, the average size of macromolecules tends to decrease with dilution. Zeta-potential of amphoteric macromolecules in aqueous solution is much higher than that in DMSO. The cryo-TEM results revealed that in both aqueous KOH and DMSO media, the micron- and nanosized vesicles existed. The structural organization of vesicles in water and DMSO is discussed. The wax inhibition effect of hydrophobic polybetaines at a decrease of the pour point temperatures of high paraffinic oils was better in comparison with commercial available ethylene-vinylacetate copolymers (EVA.

  18. Synthesis, spectral characterization thermal stability, antimicrobial studies and biodegradation of starch–thiourea based biodegradable polymeric ligand and its coordination complexes with [Mn(II, Co(II, Ni(II, Cu(II, and Zn(II] metals

    Directory of Open Access Journals (Sweden)

    Nahid Nishat

    2016-09-01

    Full Text Available A biodegradable polymer was synthesized by the modification reaction of polymeric starch with thiourea which is further modified by transition metals, Mn(II, Co(II, Ni(II, Cu(II and Zn(II. All the polymeric compounds were characterized by (FT-IR spectroscopy, 1H NMR spectroscopy, 13C NMR spectroscopy, UV–visible spectra, magnetic moment measurements, thermogravimetric analysis (TGA and antibacterial activities. Polymer complexes of Mn(II, Co(II and Ni(II show octahedral geometry, while polymer complexes of Cu(II and Zn(II show square planar and tetrahedral geometry, respectively. The TGA revealed that all the polymer metal complexes are more thermally stable than their parental ligand. In addition, biodegradable studies of all the polymeric compounds were also carried out through ASTM-D-5338-93 standards of biodegradable polymers by CO2 evolution method which says that coordination decreases biodegradability. The antibacterial activity was screened with the agar well diffusion method against some selected microorganisms. Among all the complexes, the antibacterial activity of the Cu(II polymer–metal complex showed the highest zone of inhibition because of its higher stability constant.

  19. Study by neutron diffusion of local order liquid sulfur around the polymerization transition

    International Nuclear Information System (INIS)

    Descotes, L.

    1994-05-01

    We studied the liquid sulfur according to the temperature. The sulfur is one of the most complicated elementary liquid. We experimented the neutron diffusion by the powder orthorhombic sulfur. The complexity at the polymerization transition are only accompanied by weak local structural transfer. 231 refs., 48 figs., 8 tabs., 3 annexes

  20. 2DCOS and PCMW2D analysis of FT-IR/ATR spectra measured at variable temperatures on-line to a polyurethane polymerization

    Science.gov (United States)

    Schuchardt, Patrick; Unger, Miriam; Siesler, Heinz W.

    2018-01-01

    In the present communication the potential of 2DCOS analysis and the spin-off technique perturbation-correlation moving window 2D (PCMW2D) analysis is illustrated with reference to spectroscopic changes observed in a data set recorded by in-line fiber-coupled FT-IR spectroscopy in the attenuated total reflection (ATR) mode during a polyurethane solution polymerization at different temperatures. In view of the chemical functionalities involved, hydrogen bonding plays an important role in this polymerization reaction. Based on the 2DCOS and PCMW2D analysis, the sequence of hydrogen bonding changes accompanying the progress of polymerization and precipitation of solid polymer can be determined. Complementary to the kinetic data derived from the original variable-temperature spectra in a previous publication the results provide a more detailed picture of the investigated solution polymerization.

  1. Silicoaluminates as “Support Activator” Systems in Olefin Polymerization Processes

    Science.gov (United States)

    Tabernero, Vanessa; Camejo, Claudimar; Terreros, Pilar; Alba, María Dolores; Cuenca, Tomás

    2010-01-01

    In this work we report the polymerization behaviour of natural clays (montmorillonites, MMT) as activating supports. These materials have been modified by treatment with different aluminium compounds in order to obtain enriched aluminium clays and to modify the global Brönsted/Lewis acidity. As a consequence, the intrinsic structural properties of the starting materials have been changed. These changes were studied and these new materials used for ethylene polymerization using a zirconocene complex as catalyst. All the systems were shown to be active in ethylene polymerization. The catalyst activity and the dependence on acid strength and textural properties have been also studied. The behaviour of an artificial silica (SBA 15) modified with an aluminium compound to obtain a silicoaluminate has been studied, but no ethylene polymerization activity has been found yet.

  2. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu; Hsiao, Vincent; Zheng, Yue Bing; Huang, Tony Jun

    2012-01-01

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  3. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu

    2012-05-02

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  4. Bioactive Polymeric Materials for Tissue Repair

    Directory of Open Access Journals (Sweden)

    Diane R. Bienek

    2017-01-01

    Full Text Available Bioactive polymeric materials based on calcium phosphates have tremendous appeal for hard tissue repair because of their well-documented biocompatibility. Amorphous calcium phosphate (ACP-based ones additionally protect against unwanted demineralization and actively support regeneration of hard tissue minerals. Our group has been investigating the structure/composition/property relationships of ACP polymeric composites for the last two decades. Here, we present ACP’s dispersion in a polymer matrix and the fine-tuning of the resin affects the physicochemical, mechanical, and biological properties of ACP polymeric composites. These studies illustrate how the filler/resin interface and monomer/polymer molecular structure affect the material’s critical properties, such as ion release and mechanical strength. We also present evidence of the remineralization efficacy of ACP composites when exposed to accelerated acidic challenges representative of oral environment conditions. The utility of ACP has recently been extended to include airbrushing as a platform technology for fabrication of nanofiber scaffolds. These studies, focused on assessing the feasibility of incorporating ACP into various polymer fibers, also included the release kinetics of bioactive calcium and phosphate ions from nanofibers and evaluate the biorelevance of the polymeric ACP fiber networks. We also discuss the potential for future integration of the existing ACP scaffolds into therapeutic delivery systems used in the precision medicine field.

  5. Supramolecular Assembly of Comb-like Macromolecules Induced by Chemical Reactions that Modulate the Macromolecular Interactions In Situ.

    Science.gov (United States)

    Xia, Hongwei; Fu, Hailin; Zhang, Yanfeng; Shih, Kuo-Chih; Ren, Yuan; Anuganti, Murali; Nieh, Mu-Ping; Cheng, Jianjun; Lin, Yao

    2017-08-16

    Supramolecular polymerization or assembly of proteins or large macromolecular units by a homogeneous nucleation mechanism can be quite slow and require specific solution conditions. In nature, protein assembly is often regulated by molecules that modulate the electrostatic interactions of the protein subunits for various association strengths. The key to this regulation is the coupling of the assembly process with a reversible or irreversible chemical reaction that occurs within the constituent subunits. However, realizing this complex process by the rational design of synthetic molecules or macromolecules remains a challenge. Herein, we use a synthetic polypeptide-grafted comb macromolecule to demonstrate how the in situ modulation of interactions between the charged macromolecules affects their resulting supramolecular structures. The kinetics of structural formation was studied and can be described by a generalized model of nucleated polymerization containing secondary pathways. Basic thermodynamic analysis indicated the delicate role of the electrostatic interactions between the charged subunits in the reaction-induced assembly process. This approach may be applicable for assembling a variety of ionic soft matters that are amenable to chemical reactions in situ.

  6. Metallophilic interactions in polymeric group 11 thiols

    Science.gov (United States)

    Kolari, Kalle; Sahamies, Joona; Kalenius, Elina; Novikov, Alexander S.; Kukushkin, Vadim Yu.; Haukka, Matti

    2016-10-01

    Three polymeric group 11 transition metal polymers featuring metallophilic interactions were obtained directly via self-assembly of metal ions and 4-pyridinethiol ligands. In the cationic [Cu2(S-pyH)4]n2+ with [ZnCl4]n2- counterion (1) and in the neutral [Ag(S-py) (S-pyH)]n (2) 4-pyridinethiol (S-pyH) and its deprotonated form (S-py) are coordinated through the sulfur atom. Both ligands are acting as bridging ligands linking the metal centers together. In the solid state, the gold(I) polymer [Au(S-pyH)2]Cl (3) consists of the repeating cationic [Au(S-pyH)2]+ units held together by aurophilic interactions. Compound 1 is a zig-zag chain, whereas the metal chains in the structures of 2 and 3 are linear. The protonation level of the thiol ligand had an impact on the crystallization of polymers. Both nature of the metal center and reaction conditions affected the polymerization. QTAIM analysis confirmed direct metal-metal contacts only in polymers 1 and 3. In polymer 2, no theoretical evidence of argentophilic contacts was obtained even though the AgṡṡṡAg distance was found to be less than sum of the Bondi's van der Waals radius of silver.

  7. Recyclable crosslinked polymer networks with full property recovery made via one-step controlled radical polymerization

    Science.gov (United States)

    Jin, Kailong; Li, Lingqiao; Torkelson, John

    Rubber tires illustrate well the issues ranging from economic loss to environmental problems and sustainability issues that arise with spent, covalently crosslinked polymers. A nitroxide-mediated polymerization (NMP) strategy has been developed that allows for one-step synthesis of recyclable crosslinked polymers from monomers or polymers that contain carbon-carbon double bonds amenable to radical polymerization. Resulting materials possess dynamic alkoxyamine crosslinks that undergo reversible decrosslinking as a function of temperature. Using polybutadiene as starting material, and styrene, an appropriate nitroxide molecule and bifunctional initiator for initial crosslinking, a model for tire rubber can be produced by reaction at temperatures comparable to those employed in tire molding. Upon cooling, the crosslinks are made permanent due to the extraordinarily strong temperature dependence of the reverisible nitroxide capping and uncapping reaction. Based on thermomechanical property characterization, when the original crosslinked model rubber is chopped into bits and remolded in the melt state, a well-consolidated material is obtained which exhibits full recovery of properties reflecting crosslink density after multiple recycling steps.

  8. Recent developments in biocatalysis in multiphasic ionic liquid reaction systems.

    Science.gov (United States)

    Meyer, Lars-Erik; von Langermann, Jan; Kragl, Udo

    2018-06-01

    Ionic liquids are well known and frequently used 'designer solvents' for biocatalytic reactions. This review highlights recent achievements in the field of multiphasic ionic liquid-based reaction concepts. It covers classical biphasic systems including supported ionic liquid phases, thermo-regulated multi-component solvent systems (TMS) and polymerized ionic liquids. These powerful concepts combine unique reaction conditions with a high potential for future applications on a laboratory and industrial scale. The presence of a multiphasic system simplifies downstream processing due to the distribution of the catalyst and reactants in different phases.

  9. Synthesis of Well-Defined Three-Arm Star-Branched Polystyrene through Arm-First Coupling Approach by Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2015-01-01

    Full Text Available Here we describe a simple route to synthesize three-arm star-branched polystyrene. Atom transfer radical polymerization technique has been utilized to yield branched polystyrene involving Williamson coupling strategy. Initially a linear polymeric chain of predetermined molecular weight has been synthesized which is further end-functionalized into a primary alkyl bromide moiety, a prime requisition for Williamson reaction. The end-functionalized polymer is then coupled using 1,1,1-tris(4-hydroxyphenylethane, a trifunctional core molecule, to give well-defined triple-arm star-branched polystyrene.

  10. FINAL TECHNICAL REPORT Synthetic, Structural and Mechanistic Investigations of Olefin Polymerization Catalyzed by Early Transition Metal Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bercaw, John E. [California Institute of Technology

    2014-05-23

    The goal of this project is to develop new catalysts and provide understanding of ligand effects on catalyst composition in order to guide development of superior catalyst systems for polymerization of olefins. Our group is designing and synthesizing new “LX2”,“pincer” type ligands and complexing early transition metals to afford precatalysts. In a collaboration with Hans Brintzinger from the University of Konstanz, we are also examining the structures of the components of catalyst systems obtained from reaction of zirconocene dichlorides with aluminum alkyls and aluminum hydrides. Such systems are currently used commercially to produce polyolefins, but the nature of the active and dormant species as well as the mechanisms of their interconversions are not understood. New information on catalyst design and performance may lead to new types of polymers and/or new chemical transformations between hydrocarbons and transition metal centers, ultimately contributing to the development of catalytic reactions for the production of fuels, commodity and polymeric materials.

  11. KINETICS OF SUSPENDED EMULSION POLYMERIZATION OF METHYL METHACRYLATE

    Institute of Scientific and Technical Information of China (English)

    Yong-zhong Bao; Cheng-xi Wang; Zhi-ming Huang; Zhi-xue Weng

    2004-01-01

    The kinetics of suspended emulsion polymerization of methyl methacrylate (MMA), in which water acted as the dispersed phase and the mixture of MMA and cyclohexane as the continuous phase, was investigated. It showed that the initial polymerization rate (Rp0) and steady-state polymerization rate (Rp) were proportional to the mass ratio between water and oil phase, and increased as the polymerization temperature, the potassium persulphate concentration ([I]) and the Tween20 emulsifier concentration ([S]) increased. The relationships between the polymerization rate and [I] and [S] were obtained as follows: Rp0 ∝ [I]0.73[S]0.32 and Rp ∝ [I]0.71[S]0.23. The above exponents were close to those obtained from normal MMA emulsion polymerization. It also showed that the average molecular weight of the resulting poly(methyl methacrylate) decreased as the polymerization temperature, [I] and [S] increased. Thus, MMA suspended emulsion polymerization could be considered as a combination of many miniature emulsion polymerizations proceeding in water drops and obeyed the classical kinetics of MMA emulsion polymerization.

  12. Neutral hydrophilic coatings for capillary electrophoresis prepared by controlled radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Fabián H.; Gómez, Jorge E.; Espinal, José H.; Sandoval, Junior E., E-mail: junior.sandoval@correounivalle.edu.co

    2016-12-15

    In the present study, porous silica particles as well as impervious fused-silica wafers and capillary tubes were modified with hydrophilic polymers (hydroxylated polyacrylamides and polyacrylates), using a surface-confined grafting procedure based on atom transfer radical polymerization (ATRP) which was also surface-initiated from α-bromoisobutyryl groups. Initiator immobilization was achieved by hydrosilylation of allyl alcohol on hydride silica followed by esterification of the resulting propanol-bonded surface with α-bromoisobutyryl bromide. Elemental analysis, IR and NMR spectroscopies on silica micro-particles, atomic force microscopy, ellipsometry and profilometry on fused-silica wafers, as well as CE on fused-silica tubes were used to characterize the chemically modified silica substrate at different stages. We studied the effect of monomer concentration as well as cross-linker on the ability of the polymer film to reduce electroosmosis and to prevent protein adsorption (i. e., its non-fouling capabilities) and found that the former was rather insensitive to both parameters. Surface deactivation towards adsorption was somewhat more susceptible to monomer concentration and appeared also to be favored by a low concentration of the cross-linker. The results show that hydrophilic polyacrylamide and polyacrylate coatings of controlled thickness can be prepared by ATRP under very mild polymerization conditions (aqueous solvent, room temperature and short reaction times) and that the coated capillary tubes exhibit high efficiencies for protein separations (0.3–0.6 million theoretical plates per meter) as well as long-term hydrolytic stability under the inherently harsh conditions of capillary isoelectric focusing. Additionally, there was no adsorption of lysozyme on the coated surface as indicated by a complete recovery of the basic enzyme. Furthermore, since polymerization is confined to the inner capillary surface, simple precautions (e.g., solution

  13. Modeling the Influence of Diffusion-Controlled Reactions and Residual Termination and Deactivation on the Rate and Control of Bulk ATRP at High Conversions

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Rabea

    2015-04-01

    Full Text Available In high-conversion atom transfer radical polymerization (ATRP, all the reactions, such as radical termination, radical deactivation, dormant chain activation, monomer propagation, etc. could become diffusion controlled sooner or later, depending on relative diffusivities of the involved reacting species. These diffusion-controlled reactions directly affect the rate of polymerization and the control of polymer molecular weight. A model is developed to investigate the influence of diffusion-controlled reactions on the high conversion ATRP kinetics. Model simulation reveals that diffusion-controlled termination slightly increases the rate, but it is the diffusion-controlled deactivation that causes auto-acceleration in the rate (“gel effect” and loss of control. At high conversions, radical chains are “trapped” because of high molecular weight. However, radical centers can still migrate through (1 radical deactivation–activation cycles and (2 monomer propagation, which introduce “residual termination” reactions. It is found that the “residual termination” does not have much influence on the polymerization kinetics. The migration of radical centers through propagation can however facilitate catalytic deactivation of radicals, which improves the control of polymer molecular weight to some extent. Dormant chain activation and monomer propagation also become diffusion controlled and finally stop the polymerization when the system approaches its glass state.

  14. Radiation-Induced Polymerization of Aldehydes and Ketones; Polymerisation radiochimique des aldehydes et des cetones; Radiatsionnaya polimerizatsiya al'degidov i ketonov; Polimerizacion radioinducida de aldehidos y cetonas

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K.; Yamaoka, H.; Fujiwara, K.; Sakamoto, M.; Mori, S.; Natori, T.; Yoshida, H.; Okamura, S. [Japanese Association for Radiation Research on Polymers, Neyagawa Osaka (Japan); Kyoto University, Kyoto (Japan)

    1963-11-15

    Several kinds of aldehydes and ketones are polymerized by irradiation. Formaldehyde can be polymerized into high molecular weight polyoxymethylene by radiation-induced polymerization in the liquid phase at low temperatures. The polymerization mechanism is considered to be a cationic chain reaction both in the case of bulk and of solution in methylenechloride and toluene, but to be anionic in ethylether. Acetaldehyde and propionaldehyde are recognized as being hardly polymerized in the pure liquid phase, but easily polymerized in the presence of {gamma}-alumina. In the solid state polymerization, crystalline polymers are obtained as the stable- for- heat-treatment form under suitableconditions. Glyoxal can be polymerized into a three-dimensional network polymer. With formaldehyde it can be copolymerized into some cross-linked polyoxymethylene. Acetones such as chloroor bromoacetone and methylethylketone or diacetyl can be polymerized in the solid state into polymers which are unstable. Ketene can be polymerized into a polyester-type polymer with liquid phase polymerization; polyketone is obtained additionally when polymerization is carried out in the solid state. The copolymer with formaldehyde is slightly more stable. Dimethylketene can be easily polymerized both in the liquid and solid states into polyacetal. All these polymerizations are special examples of radiation-induced reactions and the reaction kinetics are interesting. Some details of this are discussed here. (author) [French] Plusieurs sortes d'aldehydes et de cetones se polymerisent sous l'effet des rayons gamma. L'aldehyde formique peut se transformer en polyoxymethylene de poids moleculaire eleve par polymerisation radiochimique en phase liquide a basses temperatures. On pense que la polymerisation est une reaction cationique en chaine lorsqu'il s'agit de masses ou de solutions dans du chlorure de methylene et du toluene, mais une reaction anionique en chaule dans une solution d'ether ethylique. L

  15. Emulsion polymerization with high energy radiation

    International Nuclear Information System (INIS)

    Stannett, V.T.; Stahel, E.P.

    1992-01-01

    High energy radiation, particularly that of cobalt-60 or caesium-137 gamma-rays, provides in principle an ideal initiator for emulsion polymerization. The high free radical yields from the radiolysis of the aqueous phase combined with the high kinetic chain lengths associated with emulsion polymerization lead to a highly effective utilization of the radiation. There are other important advantages compared with the use of chemical initiators such as potassium persulfate. These are outlined in the chapter, together with some attendant disadvantages. Radiation-induced initiation is temperature independent, and low temperature polymerizations can be conducted with ease. Monomers that mainly terminate their growing chains by chain transfer to monomer give higher molecular weights at lower temperatures. Industrially, vinyl acetate is an important example of such a monomer, and it has been studied using radiation initiation. Both laboratory and pilot plant studies have been carried out and reported. The results are summarized in this chapter. Styrene is the classical example of a material that under a number of conditions closely obeys the so-called ideal Smith-Ewart kinetics. It has been found that under similar conditions but substituting radiation for potassium persulfate as the initiator, ideal kinetics were closely followed. Most of the conventional and some non-standard vinyl and diene monomers have been studied to some extent with radiation-initiated polymerizations in emulsion. To conserve space however, this chapter presents and discusses the results obtained only with styrene and vinyl acetate, both in laboratory and pilot plant investigations. Other monomers and special situations are referenced either directly or to the other available reviews. (orig.)

  16. Catalytic activation of molecular hydrogen in alkyne hydrogenation reactions by lanthanide metal vapor reaction products

    International Nuclear Information System (INIS)

    Evans, W.J.; Bloom, I.; Engerer, S.C.

    1983-01-01

    A rotary metal vapor was used in the synthesis of Lu, Er, Nd, Sm, Yb, and La alkyne, diene, and phosphine complexes. A typical catalytic hydrogenation experiment is described. The lanthanide metal vapor product is dissolved in tetrahydrofuran or toluene and placed in a pressure reaction vessel 3-hexyne (or another substrate) is added, the chamber attached to a high vacuum line, cooled to -196 0 C, evacuated, warmed to ambient temperature and hydrogen is added. The solution is stirred magnetically while the pressure in monitored. The reaction products were analyzed by gas chromatography. Rates and products of various systems are listed. This preliminary survey indicates that catalytic reaction chemistry is available to these metals in a wide range of coordination environments. Attempts to characterize these compounds are hampered by their paramagnetic nature and their tendency to polymerize

  17. SYNTHESIS OF BLOCK COPOLYMER BY INTEGRATED LIVING ANIONIC POLYMERIZATION-ATOM TRANSFER RADICAL POLYMERIZATION (ATRP)

    Institute of Scientific and Technical Information of China (English)

    Bing Liu; Feng Liu; Ning Luo; Sheng-kang Ying; Qing Liu

    2000-01-01

    Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene)oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as initiator.Then the PS-CH2CH2OCOCCl3 (PS-Cl3) or P(S-b-B)-CH2CH2O-COCCl3 (PSB-Cl3) was used as the macroinitiator in the polymerization of (meth)acrylates in the presence of CuX/bpy. AB diblock and ABC triblock copolymers were prepared by the integrated living anionic polymerization (LAP)-atom transfer radical polymerization (ATRP). The structures of the PSB-Cl3 and the P(S-b-MMA) were identified by FTIR and 1H-NMR spectrum, respectively. A new way to design block copolymers (the combination of LAP and ATRP) was developed.

  18. Inflation of a Polymeric Menbrane

    DEFF Research Database (Denmark)

    Kristensen, Susanne B.; Larsen, Johannes R.; Hassager, Ole

    1998-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane.......We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane....

  19. Fiscal 1992 R and D project for next generation infrastructure technology. Report on results of R and D on silicon-based polymeric material; 1992 nendo keisokei kobunshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    R and D was conducted with the purpose of establishing fundamental technologies for molecular design, synthesis, material formation and evaluation method concerning silicon-based polymer. with the fiscal 1992 results summarized. In the studies on synthesis technology of electrically conductive silicon-based polymeric materials, silicon-based compounds were synthesized including in particular -Si-Si- bond and carbon multiple bond like -C-C-, with acquisition/analysis of material data started. In the studies on new silicon-based polymeric materials capable of circuit plotting, syntheses were performed for network polysilanes through the disproportionation reaction of alkoxydisilanes. In the studies on new silicon-based polymeric materials having a light emitting function, evaluation of oxidation-reduction potential and search for synthesizing conditions were performed for halosilanes and hydrosilanes. In the studies on silicon-based photoelectric conversion materials, molecular design progressed using a crystal orbital method. Furthermore, researches were implemented on such subjects as silicon-based polymeric materials having a sea-island structure, interpenetrating polymer network forming technologies, and composite structural materials composed of organic metallic complex and silicon-based polymers. (NEDO)

  20. Study of modification of fibers from pineapple crown for the formation of polymeric composites

    International Nuclear Information System (INIS)

    Marcon, Juliana S.; Mulinari, Daniella R.; Cioffi, Maria Odila H.; Voorwald, Herman J.C.

    2009-01-01

    Study of modification of fibers from pineapple crown for the formation of polymeric composites An important aspect to make fiber and matrix work together in a given application is the interface between them. For an efficient adherence fiber/matrix an appropriate interfacial contact is required. For this purpose, it was made a modification in the fiber surface using sodium hydroxide solution. And the effect of fibers modification was analyzed by X-Ray diffractometry (XRD) and scanning electron microscopy (SEM). The results indicated that occurred an effective increase in the crystallinity of modified fibers compared to natural fibers and that was occurred the formation of pores or holes across the rough surface of the fiber showing that will can occur an increase in effective superficial area for contact with polymeric matrix. (author)

  1. Studies on selected polymeric materials using the photoacoustic spectroscopic technique

    International Nuclear Information System (INIS)

    Singh, Hukum

    2011-01-01

    Polymethylmethacrylate—graft—polybisphenol—A-carbonate (PMMA-G-PC) with 50% grafting is synthesized. The graft co-polymerization of methylmethacrylate (0.036 mol · lit −1 ) onto polybisphenol—A-carbonate (0.5 g) in the presence of a redox couple formed from potassium persulphate (40 mol · lit −1 ) and thio-urea (30 mmol · lit −1 ) in aqueous nitric acid (0.18 M, 100 ml) in air at (45±2) °C for 3.0 h. Condensation of (PMMA-G-PC) with N- [p-(carboxyl phenyl amino acetic acid)] hydrazide (PCPH) affords polybisphenol-A-carbonate-graft-polymethylmethacrylate hydrazide (PCGH). The photoacoustic (PA) spectra of (PCGH) are recorded in a wavelength range from 200 nm to 800 nm at a modulation frequency of 22 Hz, and compared with those of pure polybisphenol-A-carbonate (PC), (PMMA-G-PC) and (PCPH). In the present work, a non-destructive and non-contact analytical method, namely the photoacoustic technique, is successfully implemented for optical and thermal characterization of selected polymeric materials. The indigenous PA spectrometer used in the present study consists of a 300-W xenon arc lamp, a lock-in amplifier, a chopper, a (1/8)-m monochromator controlled by computer and a home-made PA cell. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. The effects of charge, polymerization, and cluster size on the diffusivity of dissolved Si species in pore water

    Science.gov (United States)

    Yokoyama, Tadashi; Sakuma, Hiroshi

    2018-03-01

    Silicon (Si) is the most abundant cation in crustal rocks. The charge and degree of polymerization of dissolved Si significantly change depending on solution pH and Si concentration. We used molecular dynamics (MD) simulations to predict the self-diffusion coefficients of dissolved Si, DSi, for 15 monomeric and polymeric species at ambient temperature. The results showed that DSi decreased with increasing negative charge and increasing degree of polymerization. The relationship between DSi and charge (Z) can be expressed by DSi/10-6 = 2.0 + 9.8e0.47Z, and that between DSi and number of polymerization (NSi) by DSi/10-6 = 9.7/NSi0.56. The results also revealed that multiple Si molecules assembled into a cluster and D decreased as the cluster size increased. Experiments to evaluate the diffusivity of Si in pore water revealed that the diffusion coefficient decreased with increasing Si concentration, a result consistent with the MD simulations. Simulation results can now be used to quantitatively assess water-rock interactions and water-concrete reactions over a wide range of environmentally relevant conditions.

  3. Studies in the reaction dynamics of beam-gas chemiluminescent reactions

    International Nuclear Information System (INIS)

    Prisant, M.G.

    1984-01-01

    This thesis develops techniques for the analysis and interpretation of data obtained from beam-gas chemiluminescence experiments. These techniques are applied to experimental studies of atom transfer reactions of the type A + BC → AB + C. A procedure is developed for determining the product rotational alignment in the center-of-mass frame from polarization measurements of chemiluminescent atom-diatom exchange reactions under beam-gas conditions. Knowledge of a vector property of a reaction, such as product alignment, provides information on the disposition of angular momentum by a chemical reaction. Fluorescence polarization and hence product alignment are measured for two prototype reactions. The reaction of metastable calcium atoms with hydrogen-chloride gas yields highly aligned calcium-chloride product which exhibits little variation of alignment with vibrational state. The reaction of ground-state calcium with fluorine gas yields moderately aligned product which shows strong variation of alignment with vibration. A multi-surface direct-interaction model is developed to interpret product alignment and population data. The predictions of this model for the reaction of calcium with fluorine show reasonable agreement with experiment

  4. Real-time monitoring of viscosity changes triggered by chemical reactions using a high-speed imaging method

    Directory of Open Access Journals (Sweden)

    Wooseok Jung

    2015-09-01

    Full Text Available We present a method to monitor in real time peptide self-assembly or polymerization events. The temperature controlled modification of a previously reported splash test setup using high speed imaging enables to observe and measure rheological changes in liquid samples and can, in turn, monitor a peptide self-assembly or polymerization reaction accompanied with specific changes in solution viscosity. A series of 2 mm glass beads were dropped into an Fmoc-L3-OMe (methylated Fluorenylmethyloxycarbonyl-trileucine solution mixed with Alcalase 2.4 L (EC 3.4.21.62 or first dipped in Tetramethylethylenediamine (TEMED, a catalyst for acrylamide polymerization, then dropped into acrylamide. The resulting splashes were observed using a high speed camera. The results demonstrate that the viscosity changes of the peptide sample during the peptide self-assembly or acrylamide polymerization affect the specific shape and evolution of the splashing event. Typically, the increase in viscosity while the reaction occurs decreased the size of the splash and the amount of time for the splash to reach maximum extension from the moment for the beads to impact the sample. The ability to observe rheological changes of sample state presents the opportunity to monitor the real time dynamics of peptide self-assembly or cross-polymerization. Keywords: High-speed imaging, Self-assembly, Viscosity sensor

  5. Porous Polymer Drug-Eluting Coating Prepared by Radiation Induced Polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Veres, M.; Tóth, S.; Koós, M. [Research Institute for Solid State Physics and Optics, Budapest (Hungary); Beiler, B. [Institute of Isotopes, HAS, Budapest (Hungary)

    2009-07-01

    Drug-eluting stents have several advantages over bare metal implants. They eliminate restenosis, the main drawback of bare metal stents. In addition the locally delivered drug is more effective and causes less side-effects. However in some cases dangerous stent thrombosis, inflammatory and allergy reactions were observed after their implantation, which first of all related to the drug-eluting coating. This project is aimed to develop a novel biocompatible nanoporous polymer layer by radiation induced polymerization that is capable of holding and eluting drugs and promotes endothelization after the release of the drug. (author)

  6. Porous Polymer Drug-Eluting Coating Prepared by Radiation Induced Polymerization

    International Nuclear Information System (INIS)

    Veres, M.; Tóth, S.; Koós, M.; Beiler, B.

    2009-01-01

    Drug-eluting stents have several advantages over bare metal implants. They eliminate restenosis, the main drawback of bare metal stents. In addition the locally delivered drug is more effective and causes less side-effects. However in some cases dangerous stent thrombosis, inflammatory and allergy reactions were observed after their implantation, which first of all related to the drug-eluting coating. This project is aimed to develop a novel biocompatible nanoporous polymer layer by radiation induced polymerization that is capable of holding and eluting drugs and promotes endothelization after the release of the drug. (author)

  7. Bioinspired thermo- and pH-responsive polymeric amines: multimolecular aggregates in aqueous media and matrices for silica/polymer nanocomposites.

    Science.gov (United States)

    Danilovtseva, Elena N; Aseyev, Vladimir; Belozerova, Olga Yu; Zelinskiy, Stanislav N; Annenkov, Vadim V

    2015-05-15

    Polymeric amines have been intensively studied for application in smart systems and as matrices for the design of composite materials, including bioinspired substances. A new thermo- and pH-responsive polymer was obtained by radical polymerization of N-(3-(diethylamino)propyl)-N-methylacrylamide. Upon heating, the polymer precipitated from aqueous solutions above pH 9; the observed cloud point was dependent on the polymer concentration and decreased from 95°C at pH 9 to 40°C at pH 11. The basicity of the polymer decreased at elevated temperatures owing to an increase in the hydrophobicity-driven compaction of the macromolecules. Dynamic light scattering analysis demonstrated that the formation of large multimolecular associates with radius 1000-2000 nm was initiated from 1 to 2°C below the cloud point. The new polymer is demonstrated to be an effective matrix for various siliceous composite structures, including 200-300 nm solid spherical raspberry-like particles and hollow hemispherical particles of more than 1000 nm diameter. Condensation of silicic acid in the presence of polymeric amines is a model reaction in biosilicification studies, and the obtained data are also discussed from the perspective of the matrix hypothesis for biosilica formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Polymeric membrane materials for artificial organs.

    Science.gov (United States)

    Kawakami, Hiroyoshi

    2008-01-01

    Many polymeric materials have already been used in the field of artificial organs. However, the materials used in artificial organs are not necessarily created with the best material selectivity and materials design; therefore, the development of synthesized polymeric membrane materials for artificial organs based on well-defined designs is required. The approaches to the development of biocompatible polymeric materials fall into three categories: (1) control of physicochemical characteristics on material surfaces, (2) modification of material surfaces using biomolecules, and (3) construction of biomimetic membrane surfaces. This review will describe current issues regarding polymeric membrane materials for use in artificial organs.

  9. Assembly of tobacco mosaic virus into fibrous and macroscopic bundled arrays mediated by surface aniline polymerization.

    Science.gov (United States)

    Niu, Zhongwei; Bruckman, Michael A; Li, Siqi; Lee, L Andrew; Lee, Byeongdu; Pingali, Sai Venkatesh; Thiyagarajan, P; Wang, Qian

    2007-06-05

    One-dimensional (1D) polyaniline/tobacco mosaic virus (TMV) composite nanofibers and macroscopic bundles of such fibers were generated via a self-assembly process of TMV assisted by in-situ polymerization of polyaniline on the surface of TMV. At near-neutral reaction pH, branched polyaniline formed on the surface of TMV preventing lateral association. Therefore, long 1D nanofibers were observed with high aspect ratios and excellent processibility. At a lower pH, transmission electron microscopy (TEM) analysis revealed that initially long nanofibers were formed which resulted in bundled structures upon long-time reaction, presumably mediated by the hydrophobic interaction because of the polyaniline on the surface of TMV. In-situ time-resolved small-angle X-ray scattering study of TMV at different reaction conditions supported this mechanism. This novel strategy to assemble TMV into 1D and 3D supramolecular composites could be utilized in the fabrication of advanced materials for potential applications including electronics, optics, sensing, and biomedical engineering.

  10. Modification of the hydrotalcite with sodium stearate and its influence in the polyurethane nanocomposites obtained by the in situ polymerization

    International Nuclear Information System (INIS)

    Carmo, Danieli M. do; Oliveira, Marcia G. de; Soares, Bluma G.

    2015-01-01

    Nanocomposites of PU with synthetic hydrotalcite and organoclay were obtained by the in situ polymerization. The addition of clay in the reaction has occurred with and without dispersion previous, using equipment ultraturrax and ultrasound bath. The results of XRD and FTIR confirmed the clay organophilization process. The viscosity analysis of the dispersions showed increased nanocarga-monomer interaction with the time counter, especially for samples containing LDH-st. Such interactions with possibility reaction between the phases may have contributed to the unbalance of the stoichiometry required for polymerization, resulting in lower molecular weight polymer formed in situ. As a result there was minor degradation temperature values, modulus and viscosity for samples subjected to the methodologies TBT and T. However, these methods in conjunction with LDH-st were fundamentals to improving dispersion in the matrix, accord to visual analysis. (author)

  11. Organocatalytic conjugate-addition polymerization of linear and cyclic acrylic monomers by N-heterocyclic carbenes: Mechanisms of chain initiation, propagation, and termination

    KAUST Repository

    Zhang, Yuetao

    2013-11-27

    This contribution presents a full account of experimental and theoretical/computational investigations into the mechanisms of chain initiation, propagation, and termination of the recently discovered N-heterocyclic carbene (NHC)-mediated organocatalytic conjugate-addition polymerization of acrylic monomers. The current study specifically focuses on three commonly used NHCs of vastly different nucleophilicity, 1,3-di-tert-butylimidazolin-2-ylidene (ItBu), 1,3- dimesitylimidazolin-2-ylidene (IMes), and 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4- triazol-5-ylidene (TPT), and two representative acrylic monomers, the linear methyl methacrylate (MMA) and its cyclic analog, biomass-derived renewable γ-methyl-α-methylene-γ-butyrolactone (MMBL). For MMA, there exhibits an exquisite selectivity of the NHC structure for the three types of reactions it promotes: enamine formation (single-monomer addition) by IMes, dimerization (tail-to-tail) by TPT, and polymerization by ItBu. For MMBL, all three NHCs promote no dimerization but polymerization, with the polymerization activity being highly sensitive to the NHC structure and the solvent polarity. Thus, ItBu is the most active catalyst of the series and converts quantitatively 1000-3000 equiv of MMBL in 1 min or 10 000 equiv in 5 min at room temperature to MMBL-based bioplastics with a narrow range of molecular weights of Mn = 70-85 kg/mol, regardless of the [MMBL]/[ItBu] ratio employed. The ItBu-catalyzed MMBL polymerization reaches an exceptionally high turnover frequency up to 122 s -1 and a high initiator efficiency value up to 1600%. Unique chain-termination mechanisms have been revealed, accounting for the production of relative high-molecular-weight linear polymers and the catalytic nature of this NHC-mediated conjugate-addition polymerization. Computational studies have provided mechanistic insights into reactivity and selectivity between two competing pathways for each NHC-monomer zwitterionic adduct, namely enamine

  12. Organocatalytic conjugate-addition polymerization of linear and cyclic acrylic monomers by N-heterocyclic carbenes: Mechanisms of chain initiation, propagation, and termination

    KAUST Repository

    Zhang, Yuetao; Schmitt, Meghan L.; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene You Xian

    2013-01-01

    This contribution presents a full account of experimental and theoretical/computational investigations into the mechanisms of chain initiation, propagation, and termination of the recently discovered N-heterocyclic carbene (NHC)-mediated organocatalytic conjugate-addition polymerization of acrylic monomers. The current study specifically focuses on three commonly used NHCs of vastly different nucleophilicity, 1,3-di-tert-butylimidazolin-2-ylidene (ItBu), 1,3- dimesitylimidazolin-2-ylidene (IMes), and 1,3,4-triphenyl-4,5-dihydro-1H-1,2,4- triazol-5-ylidene (TPT), and two representative acrylic monomers, the linear methyl methacrylate (MMA) and its cyclic analog, biomass-derived renewable γ-methyl-α-methylene-γ-butyrolactone (MMBL). For MMA, there exhibits an exquisite selectivity of the NHC structure for the three types of reactions it promotes: enamine formation (single-monomer addition) by IMes, dimerization (tail-to-tail) by TPT, and polymerization by ItBu. For MMBL, all three NHCs promote no dimerization but polymerization, with the polymerization activity being highly sensitive to the NHC structure and the solvent polarity. Thus, ItBu is the most active catalyst of the series and converts quantitatively 1000-3000 equiv of MMBL in 1 min or 10 000 equiv in 5 min at room temperature to MMBL-based bioplastics with a narrow range of molecular weights of Mn = 70-85 kg/mol, regardless of the [MMBL]/[ItBu] ratio employed. The ItBu-catalyzed MMBL polymerization reaches an exceptionally high turnover frequency up to 122 s -1 and a high initiator efficiency value up to 1600%. Unique chain-termination mechanisms have been revealed, accounting for the production of relative high-molecular-weight linear polymers and the catalytic nature of this NHC-mediated conjugate-addition polymerization. Computational studies have provided mechanistic insights into reactivity and selectivity between two competing pathways for each NHC-monomer zwitterionic adduct, namely enamine

  13. Preparation and study of tramadol imprinted micro-and nanoparticles by precipitation polymerization: microwave irradiation and conventional heating method.

    Science.gov (United States)

    Seifi, Mahmoud; Hassanpour Moghadam, Maryam; Hadizadeh, Farzin; Ali-Asgari, Safa; Aboli, Jafar; Mohajeri, Seyed Ahmad

    2014-08-25

    In the present work a series of tramadole imprinted micro- and nanoparticles were prepared and study their recognition properties. Methacrylic acid (MAA), as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linker and different solvents (chloroform, toluene and acetonitrile (ACN)) were used for the preparation of molecularly imprinted polymers (MIPs) and non-imprinted polymers (NIPs). Several factors such as template/monomer molar ratio, volume of polymerization solvent, total monomers/solvent volume ratio, polymerization condition (heating or microwave irradiation) were also investigated. Particle size of the polymers, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), rebinding, selectivity tests and release study were applied for evaluation of the polymers. The optimized polymers with smaller particle size and superior binding properties were obtained in acetonitrile under heating method. MIPA4 with a size of 42.6 nm and a binding factor (BF) of 6.79 was selected for selectivity and release tests. The polymerization was not successful in acetonitrile and toluene under microwave irradiation. The MIPA4 could selectively adsorb tramadol, compared to imipramine, naltrexone and gabapentin. The data showed that tramadol release from MIPA4 was significantly slower than that of its non-imprinted polymer. Therefore, MIP nanoparticles with high selectivity, binding capacity and ability to control tramadol release could be obtained in precipitation polymerization with optimized condition. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Investigation of Supramolecular Coordination Self-Assembly and Polymerization Confined on Metal Surfaces Using Scanning Tunneling Microscopy

    Science.gov (United States)

    Lin, Tao

    derivatives. Firstly, we investigated the coordination self-assembly of a series of peripheral bromo-phenyl and pyridyl substituted porphyrins with Fe. The self-assembly of the porphyrin derivatives in which phenyl groups are substituted by bromo-phenyl results in coordination networks exhibiting identical structures to that of the parent compounds, but contained nanopores that are functionalized by bromine substitutes. Secondly, we studied a two-dimensional coordination networks formed by 5,10,15,20-tetra(4-pyridyl)porphyrin and Fe. We discovered a novel coordination motif in which a pair of vertically aligned Fe atoms is ligated by four equatorial pyridyl groups. Lateral manipulation, vertical manipulation and tunneling spectroscopy were employed to characterize the networks. These novel coordination networks decorated with Br or vertically aligned Fe atoms may provide potential functions as nano-receptor, molecular magnetism or catalyst. Part III addresses the mechanism of on-surface Ullmann coupling reaction. We studied Pd- and Cu-catalyzed Ullmann coupling reactions between phenyl bromide functionalized porphyrin derivatives. We discovered that the reactions catalyzed by Pd or Cu can be described as a two-phase process that involves an initial activation followed by C-C bond formation. Analysis of rate constants of the Pd-catalyzed reactions allowed us to determine its activation energy as (0.41 +/- 0.03) eV. These results provide a quantitative understanding of on-surface Ullmann coupling reaction. Part IV addresses the on-surface self-assembly driven by a combination of coordination bonds and covalent bonds. Firstly, we utilized metal-directed template to control the on-surface polymerization process. Taking advantage of efficient topochemical enhancement owing to the conformation flexibility of the Cu-pyridyl bonds, macromolecular porphyrin structures that exhibit a narrow size distribution were synthesized. The results reveal that the polymerization process profited

  15. Fabrication and thermal stability studies of polyamide 66 containing ...

    Indian Academy of Sciences (India)

    Administrator

    by two-step polymerization reaction with adipic acid hexamethylene salt (AH salt) and bis(4-carboxyphenyl) .... polymerization autoclave (Weihai-controlled reactor Ltd,. WHF-2) equipped ... After melt polymerization, the molten copolymer was.

  16. Study on radiation-induced polymerization of vinyl monomers adsorbed on inorganic substances. II. Radiation-induced polymerization of methyl methacrylate adsorbed on several inorganic substances

    International Nuclear Information System (INIS)

    Fukano, K.; Kageyama, E.

    1975-01-01

    The radiation-induced polymerization of methyl methacrylate (MMA) adsorbed on such inorganic substances as silica gel, white carbon, silicic acid anhydride, zeolite, and activated alumina was carried out to compare with the case of styrene. The rate of radiation-induced polymerization adsorbed on inorganic substances was high compared with that of radiation-induced bulk state polymerization, as was the case with styrene. Inorganic substrates which contain aluminum as a component element are more likely to be grafted than those which consist of SiO 2 alone, as with styrene. The molecular weight distribution of unextractable polymer and extractable polymer differs, depending on the type of inorganic substance. Experiments by a preirradiation method were carried out in case of silica gel, white carbon, and silicic acid anhydride. GPC spectra of the polymer obtained were different from those of polymer formed by the simultaneous irradiation method. It appears that all the unextractable polymer is grafted to the inorganic surface with chemical bond

  17. Synthesis of amphiphilic poly(ε-caprolactone)-b-poly( N-vinylcaprolactam) block copolymers via the combination of RAFT polymerization and click chemistry

    International Nuclear Information System (INIS)

    Assis, Paulo Henrique; Aguiar, Graziele Aparecida de Jesus; Moraes, Rodolfo Minto de; Medeiros, Simone de Fatima; Santos, Amilton Martins

    2016-01-01

    Full text: In recent years, well-defined block copolymers composed of a hydrophilic and hydrophobic segments have gained much interest as drug carriers, because of their enhanced solubility and sustained release of the drug in controlled delivery systems [1]. The development of strategies to obtain block copolymers has attracted considerable attention, due to the possibility to combine characteristic properties of the homopolymers. A wide variety of well-defined block copolymers have been successfully synthesized by combining the efficiency and selectivity of click chemistry with the powerful RAFT polymerization mechanism. In the present work, well-defined amphiphilic, biocompatible, partially biodegradable, and thermosensitive poly(ε-caprolactone)-b-poly(N-vinylcaprolactam) (PCL-b-PNVCL) block copolymers were synthesized by combining ring opening polymerization (ROP), reversible addition-fragmentation chain transfer (RAFT) polymerization and subsequent click chemistry reaction. Alkyne-terminated poly(ε-caprolactone) (alkyne-PCL) was obtained by the ring opening polymerization of ε-caprolactone (ε-CL) using propargyl alcohol as initiator and stannous-2-ethylhexanoate [Sn(Oct) 2 ] as catalyst. The azide end-capped-poly(N-vinylcaprolactam) (PNVCL-N 3 ) was synthesized by reversible addition-fragmentation chain transfer/macromolecular design via interchange of xanthates (RAFT/MADIX) polymerization of the N-vinylcaprolactam (NVCL) mediated by a novel chain transfer agent comprising an azide function , 2-azidoethyl[(ethoxycarbonothioyl)thio](phenyl)acetate. These functionalized homopolymers, alkyne-PCL and PNVCL-N 3 , were coupled by the 1,3 dipolar cycloaddition reaction in order to obtain the corresponding block copolymers. These (co)polymers were characterized by FTIR, 1 H NMR and GPC measurements. Reference: 1. RAMESH, K., SINGH, S., MITRA, K., CHATTOPADHYAY, D., MISRA, N., & RAY, B. (2015). Colloid and Polymer Science, 1-9. (author)

  18. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.

    2013-12-18

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  19. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.; Poater, Albert; Childers, M. Ian; Widger, Peter C B; Lapointe, Anne M.; Lobkovsky, Emil B.; Coates, Geoffrey W.; Cavallo, Luigi

    2013-01-01

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  20. Kinetics of waterborne fluoropolymers prepared by one-step semi-continuous emulsion polymerization of chlorotrifluoroethylene, vinyl acetate, butyl acrylate and Veova 10

    Science.gov (United States)

    Liu, H. Z.; Wang, M. H.; Wang, Z. F.; Bian, J. M.

    2018-01-01

    Due to using gaseous fluorine monomer with toxicity, waterborne fluoropolymers are synthesized by semi-continuous high-pressure emulsion polymerization method which differs from free-pressure emulsion polymerization. To dates, the research on preparing process and kinetics for high-pressure emulsion polymerization is reported relatively less, which hinders researchers from understanding of mechanisms for monomer-fluorinated emulsion polymerization. The paper also provides a new method by element auxiliary analysis to calculate kinetics parameters of high-pressure emulsion polymerization. Based on aforementioned consideration, waterborne fluoropolymers were prepared by copolymerization of chlorotrifluoroethylene (CTFE), vinyl acetate (VAc), butyl acrylate (BA) and vinyl ester of versatic acid (Veova 10) using potassium persulfate as initiator and mixed surfactants. The kinetics of emulsion polymerization of waterborne fluoropolymers was then investigated. Effects of emulsifier concentration, initiator concentration, and polymerization temperature on polymerization rate (Rp) were evaluated, and relationship was described as Rp∝[I]0.10 and Rp∝[E]0.12. The apparent activation energy was determined to be 33.61 kJ·mol-1. Moreover, the relative conversion rate of CTFE with the other monomers was observed, and results indicated that CTFE monomer more uniformly copolymerized with the other monomers. The resulting emulsion properties and pressure change in an autoclave were evaluated at different stirring rates. The initial reaction time, defined as the beginning time of dropwise addition, was determined by the change in solid content and particle size of emulsion.

  1. Characterization behavior of some polymeric composite ion exchangers

    International Nuclear Information System (INIS)

    El-Zahhar, A.A; Ahdel-Aziz, H.M.; Siyam, T.

    2005-01-01

    Polymeric composite resins were prepared by template polymerization process in aqueous solution. Thermogravimetric analysis (TGA), differential thermal analysis (DTA) and The X-ray diffraction patterns (XRD) were performed to evaluate the physico chemical properties of the different polymeric composite resins. The TGA and DTA clarify high thermal stability of prepared polymeric composite resins. XRD of prepared polymeric composite shows that there is crystalline structure of some resins while other are amorphous one

  2. Characterization of dimethacrylate polymeric networks: a study of the crosslinked structure formed by monomers used in dental composites.

    Science.gov (United States)

    Pfeifer, Carmem S; Shelton, Zachary R; Braga, Roberto R; Windmoller, Dario; Machado, José C; Stansbury, Jeffrey W

    2011-02-01

    The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion

  3. Preparation of poly (methyl methacrylate)/nanometer calcium carbonate composite by in-situ emulsion polymerization

    Institute of Scientific and Technical Information of China (English)

    史建明; 包永忠; 黄志明; 翁志学

    2004-01-01

    Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate (nano-CaCO3) surface modified with (-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl methacrylate) (PMMA)/nano-CaCO3 composite. The reaction between nano-CaCO3 and MPTMS, and the grafting of PMMA onto nano-CaCO3 were confirmed by infrared spectrum. The grafting ratio and grafting efficiency of PMMA on nano-CaCO3 modified with MPTMS were much higher than that on nano-CaCO3 modified with stearic acid. The grafting ratio of PMMA increased as the weight ratio between MMA and nano-CaCO3 increased, while the grafting efficiency of PMMA decreased. Transmission electron micrograph showed that nano-CaCO3 covered with PMMA was formed by in-situ emulsion polymerization.

  4. Microencapsulated Comb-Like Polymeric Solid-Solid Phase Change Materials via In-Situ Polymerization

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-02-01

    Full Text Available To enhance the thermal stability and permeability resistance, a comb-like polymer with crystallizable side chains was fabricated as solid-solid phase change materials (PCMs inside the cores of microcapsules and nanocapsules prepared via in-situ polymerization. In this study, the effects on the surface morphology and microstructure of micro/nanocapsules caused by microencapsulating different types of core materials (i.e., n-hexadecane, ethyl hexadecanoate, hexadecyl acrylate and poly(hexadecyl acrylate were systematically studied via field emission scanning electron microscope (FE-SEM and transmission electron microscope (TEM. The confined crystallization behavior of comb-like polymer PCMs cores was investigated via differential scanning calorimeter (DSC. Comparing with low molecular organic PCMs cores, the thermal stability of PCMs microencapsulated comb-like polymer enhanced significantly, and the permeability resistance improved obviously as well. Based on these resultant analysis, the microencapsulated comb-like polymeric PCMs with excellent thermal stability and permeability resistance showed promising foreground in the field of organic solution spun, melt processing and organic coating.

  5. Polymeric carbon nitride nanomesh as an efficient and durable metal-free catalyst for oxidative desulfurization.

    Science.gov (United States)

    Shen, Lijuan; Lei, Ganchang; Fang, Yuanxing; Cao, Yanning; Wang, Xinchen; Jiang, Lilong

    2018-03-06

    We report the first use of polymeric carbon nitride (CN) for the catalytic selective oxidation of H 2 S. The as-prepared CN with unique ultrathin "nanomeshes" structure exhibits excellent H 2 S conversion and high S selectivity. In particular, the CN nanomesh also displays better durability in the desulfurization reaction than traditional catalysts, such as carbon- and iron-based materials.

  6. Production of jet fuel range paraffins by low temperature polymerization of gaseous light olefins using ionic liquid

    International Nuclear Information System (INIS)

    Jiang, Peiwen; Wu, Xiaoping; Zhu, Lijuan; Jin, Feng; Liu, Junxu; Xia, Tongyan; Wang, Tiejun; Li, Quanxin

    2016-01-01

    Graphical abstract: A novel catalytic transformation of light olefins into jet fuel range iso-paraffins by the low-temperature olefin polymerizations under atmospheric conditions. - Highlights: • A novel transformation of light olefins to jet fuel range paraffins was demonstrated. • The synthetic fuels can be produced by atmospheric olefin polymerizations. • C 8 –C 15 iso-paraffins from light olefins was achieved with a selectivity of 80.6%. - Abstract: This work demonstrated a novel catalytic transformation of gaseous olefins into jet fuel range iso-paraffins by the low-temperature olefin polymerizations under atmospheric conditions. The production of the desired C 8 –C 15 iso-paraffins with the selectivity of 80.6 C mol% was achieved by the room-temperature polymerizations of gaseous light olefins using the [BMIM] Al 2 Cl 7 ionic liquid. The influences of the reaction conditions on the olefinic polymerizations were investigated in detail. The properties of hydrocarbons in the synthetic fuels were determined by the GC–MS analyses combined with 1 H NMR, and 13 C NMR analyses. The formation of C 8 –C 15 hydrocarbons from gaseous light olefins was illustrated by the identified products and the functional groups. This transformation potentially provides a useful avenue for the production of the most important components of iso-paraffins required in jet fuels.

  7. The effects of polymeric plutonium on erythrocyte survival in mice, (1)

    International Nuclear Information System (INIS)

    Joshima, Hisamasa; Kashima, Masatoshi; Matsuoka, Osamu

    1976-01-01

    The changes in erythrocyte counts, hematocrit, hemoglobin, reticulocyte counts and erythrocyte survival following an intravenous injection of polymeric 239 Pu at the dose level of 15 μCi/kg, 10 μCi/kg and 5 μCi/kg were studied in CF no. 1 male mice in order to investigate the possible pathogenesis of anemia produced by irradiation of polymeric plutonium. The administration of 15 μCi/kg and 10 μCi/kg of polymeric plutonium produced anemia but 5 μCi/kg had no significant effect. Studies with 51 Cr labelled erythrocyte showed a moderate reduction in survival of erythrocyte following a single intraveneous injection of polymeric plutonium. Not only the intracorpuscular effect but also extracorpuscular effect of polymeric plutonium was considered to lead to a reduction in erythrocyte survival, but no clear dose relationship could be observed between the reduction of survival and either intracorpuscular effect or extracorpuscular effect. Although the most important pathogenesis of anemia produced by polymeric plutonium is supposed to be a decreased erythropoiesis, it was believed that both qualitatively impaired erythropoiesis and abnormal erythrocyte destruction might also play some role in the occurrence of anemia. (auth.)

  8. Facile synthesis of conjugated polymeric Schiff base as negative electrodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Ye, Haijun; Jiang, Fangqing; Li, Hongqin; Xu, Zheng; Yin, Jiao; Zhu, Hui

    2017-01-01

    Graphical abstract: Polymeric Schiff base (PSB) exhibits a stable cyclability as an organic Li-ion battery anode Display Omitted -- Highlights: •A conjugated Schiff base polymer has been synthesized by a solid-phase reaction. •The polymer suppresses the dissolution of organic monomer into the organic electrolyte. •The polymer demonstrates high reversible capacity and excellent cyclic performance. -- Abstract: The redox-active organic compounds show great potentials as anodes for high energy density Li-ion batteries (LIBs), comparing with the traditional transition metal-based inorganic compounds. However, the inevitable dissolution behaviors of these organics in organic electrolyte will arouse the recession in their cycling stabilities. To circumvent this problem, we successfully applied an electrochemically active imine group to connect the carbonyl compound to form conjugated polymer, where the occurrence of multi-electron reactions suppressed the dissolution of anthraquinone in the organic electrolyte with improved cycling stability and high capacity for LIBs. In detail, by virtue of a facile solid-phase reaction between 1, 4-diaminoanthraquinone (14DAAQ) and p-phthalaldehyde (PPD), a highly conjugated polymeric Schiff base (PSB) was synthesized. The obtained PSB exhibited a reversible specific capacity of 175 mAh g −1 at a current density of 10 mA g −1 . In addition, after 100 cycles, a cycling stability with 90% capacity retention can be maintained, manifesting a promising application of the organic material in high performance anodes for LIBs.

  9. Peptide block copolymers by N-carboxyanhydride ring-opening polymerization and atom transfer radical polymerization: The effect of amide macroinitiators

    NARCIS (Netherlands)

    Habraken, G.J.M.; Koning, C.E.; Heise, A.

    2009-01-01

    The synthesis of polypeptide-containing block copolymers combining N-carboxyanhydride (NCA) ring-opening polymerization and atom transfer radical polymerization (ATRP) was investigated. An amide initiator comprising an amine function for the NCA polymerization and an activated bromide for ATRP was

  10. Delineating pMDI model reactions with loblolly pine via solution-state NMR spectroscopy. Part 1, Catalyzed reactions with wood models and wood polymers

    Science.gov (United States)

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2011-01-01

    To better understand adhesive interactions with wood, reactions between model compounds of wood and a model compound of polymeric methylene diphenyl diisocyanate (pMDI) were characterized by solution-state NMR spectroscopy. For comparison, finely ground loblolly pine sapwood, milled-wood lignin and holocellulose from the same wood were isolated and derivatized with...

  11. Polymerization of aniline in an organic peroxide system by the inverted emulsion process

    OpenAIRE

    Rao, Palle Swapna; Sathyanarayana, DN; Palaniappan, S

    2002-01-01

    An inverted emulsion process for the synthesis of the emeraldine salt of polyaniline using a novel oxidizing agent, namely benzoyl peroxide, is described. The polymerization is carried out in a nonpolar solvent in the presence of a functionalized protonic acid (sulfosalicylic acid) as the dopant and an emulsifier (sodium lauryl sulfate). The influence of synthesis conditions such as the duration of the reaction, temperature, concentration of the reactants, etc., on the properties of polyanili...

  12. Platinum porphyrins as ionophores in polymeric membrane electrodes

    DEFF Research Database (Denmark)

    Lvova, Larisa; Verrelli, Giorgio; Nardis, Sara

    2011-01-01

    A comparative study of Pt(II)- and Pt(IV)-porphyrins as novel ionophores for anion-selective polymeric membrane electrodes is performed. Polymeric membranes of different compositions, prepared by varying plasticizers, cationic and anionic additives and Pt porphyrins, have been examined...... within the electrode membranes, while those based on Pt(IV)TPPCl2 operate via a mixed mode carrier mechanism, evidencing also a partial reduction of the starting ionophore to Pt(II)TPP. Spectrophotometric measurements of thin polymeric films indicate that no spontaneous formation of hydroxide ion bridged...... porphyrin dimers occurs in the membrane plasticized both with high or low dielectric constant plasticizer, due to a low oxophilicity of central Pt. The computational study of various anion–Pt(IV)TPPCl2 complex formation by means of semi-empirical and density functional theory (DFT) methods revealed a good...

  13. Fiscal 2000 achievement report on the development of polymeric material from renewable resource using biocatalyst; 2000 nendo seitai shokubai wo riyoshita saisei kano shigen kara no kobunshi sozai no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The project aims to develop a biocatalyst-assisted synthesizing method for efficiently manufacturing sugar containing polymers and polylactic acids which generate less environmental impact. The ALP-901 derived from actinomycetes operates best with 5% water content, and remains free of hydrolytic effect even when the rate rises to 20%, and catalyzes transesterification only. The esterification activity of bioprase rose remarkably upon addition of water. A polymer with a molecular weight of scores of thousands was obtained in the polymerization of sugar ester monomers. A sugar undecylenate with a double bond at an end was successfully polymerized. The sugar containing polymer exhibited excellent biodegradability. In a reaction of butanediol and lactide, several types of lactic oligomers different in molecular weight were synthesized. The oligomers were caused to react with divinylcarboxylic acid in the presence of an enzyme, and a polymerizable lactic oligomer was obtained. Furthermore, in a reaction between glucose and lactide, several lactic oligomer derivatives were synthesized, different in molecular weight. In a reaction of the derivatives and divinylcarboxylic acid with an enzyme added thereto, a polymerizable lactic oligomer derivative was obtained, which was brought into polymerization in the presence of a radical polymerization initiator for the production of a high molecular weight gel. (NEDO)

  14. Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay

    Science.gov (United States)

    Yu, Dan; Liu, Hongpeng; Geng, Yaohui; Wang, Weibo; Zhao, Yuanyuan

    2014-11-01

    Photochemical radical polymerization in phenathrenequinone doped poly(methyl methacrylate) photopolymer are investigated theoretically and experimentally under consecutive exposure. The detailed photochemical mechanisms are analyzed. Based on the rate equations of photochemical reactions, the diffusion models with nonlocal response are proposed to describe the kinetic process of radical polymerization and the significance of photochemical processes for the grating formation. In experiments, the temporal evolution of diffraction efficiency in grating formation is measured under consecutive exposure and after exposure. The percentages of these radical polymerizations, namely the polymerization of PQ with matrix, the bimolecular combination of MMA molecules, and the disproportionation of MMA molecules, are extracted quantitatively by comparing theory with experiments. It is indicated that the polymerization of PQ with matrix is primary photochemical process which dominated the grating formation under consecutive exposure. In this period, the contribution of chain polymerization of MMA radicals is weak for the grating formation. After reaching the peak values of grating strength, the influence of the free MMA molecules and photoproduct macromolecules on the grating decay is discussed in a long-term period. The diffusion coefficients of MMA and photoproduct are extracted by fitting the curves using double exponential function. MMA’s diffusion contributed to the fast decay process of grating after exposure and photoproduct’s diffusion contributed to the slow and long decay of grating. The results break previous understanding about the diffusion of single photoproduct macromolecules lead to the dark decay of grating. This investigation can provide a significant foundation for improving modulation depth and long-term stability by photochemical mechanism.

  15. SCATTERING FROM RAMIFIED POLYMERIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    M.Benhamou

    2004-01-01

    Full Text Available Here, of great interest to us is a quantitative study of the scattering properties from ramified polymeric systems of arbitrary topology. We consider three types of systems, namely ramified polymers in solution, ramified polymer blends, or ternary mixtures made of two ramified polymers of different chemical nature immersed in a good solvent. To achieve the goal of the study, use is made of the Random Phase Approximation. First we determine the exact expression of the form factor of an ideal ramified polymer of any topology, from which we extract the exact expression of its gyration radius. Using the classical Zimm's formulae and the exact form factor, we determine all scattering properties of these three types of ramified polymeric systems. The main conclusion is that ramification of the chains induces drastic changes of the scattering properties.

  16. Synthesis and polymerization of vinyl triazolium ionic liquids

    Science.gov (United States)

    Luebke, David; Nulwala, Hunaid; Matyjaszewski, Krzysztof; Adzima, Brian

    2018-05-15

    Herein, we describe polymerized ionic liquids, demonstrate the synthesis of polymerized ionic liquids, and demonstrate the polymerization of triazolium monomers. One embodiment shows the polymeriazation of the triazolium monomers with bis(trifluoromethanesulfonyl)imide anions. In another embodiment we show the feasibility of copolymerizing with commodity monomers such as styrene using free radical polymerization techniques.

  17. Optical Properties of the Self-Assembling Polymeric Colloidal Systems

    Directory of Open Access Journals (Sweden)

    Alexandra Mocanu

    2013-01-01

    Full Text Available In the last decade, optical materials have gained much interest due to the high number of possible applications involving path or intensity control and filtering of light. The continuous emerging technology in the field of electrooptical devices or medical applications allowed the development of new innovative cost effective processes to obtain optical materials suited for future applications such as hybrid/polymeric solar cells, lasers, polymeric optical fibers, and chemo- and biosensing devices. Considering the above, the aim of this review is to present recent studies in the field of photonic crystals involving the use of polymeric materials.

  18. Nuclear reaction studies using inverse kinematics

    International Nuclear Information System (INIS)

    Shapira, D.

    1985-01-01

    Reaction studies with reversed kinematics refer to studies of nuclear reactions induced by a heavy projectile colliding with lighter target nuclei. The technique of using reversed kinematics is costly in terms of the available center-of-mass energy. Most of the projectile's energy goes into forward motion of the reaction products in the laboratory system. Examples are presented where the use of reversed kinematics techniques has provided new information on certain reaction processes. A list of kinematic properties and advantages they may afford is shown. Clearly the possible studies listed can be done without using reversed kinematics but because of the difficulty associated with some of these studies they were never performed until more energetic heavier beams have become available and the reversed kinematics technique was utilized

  19. Preparations of spherical polymeric particles from Tanzanian ...

    African Journals Online (AJOL)

    Spherical Polymeric Particles (SPP) have been prepared from Tanzanian Cashew Nut Shell Liquid (CNSL) by suspension polymerization technique involving either step-growth or chain- growth polymerization mechanisms. The sizes of the SPP, which ranged from 0.1 to 2.0 mm were strongly influenced by the amounts of ...

  20. Explore the reaction mechanism of the Maillard reaction: a density functional theory study.

    Science.gov (United States)

    Ren, Ge-Rui; Zhao, Li-Jiang; Sun, Qiang; Xie, Hu-Jun; Lei, Qun-Fang; Fang, Wen-Jun

    2015-05-01

    The mechanism of Maillard reaction has been investigated by means of density functional theory calculations in the gaseous phase and aqueous solution. The Maillard reaction is a cascade of consecutive and parallel reaction. In the present model system study, glucose and glycine were taken as the initial reactants. On the basis of previous experimental results, the mechanisms of Maillard reaction have been proposed, and the possibility for the formation of different compounds have been evaluated through calculating the relative energy changes for different steps of reaction under different pH conditions. Our calculations reveal that the TS3 in Amadori rearrangement reaction is the rate-determining step of Maillard reaction with the activation barriers of about 66.7 and 68.8 kcal mol(-1) in the gaseous phase and aqueous solution, respectively. The calculation results are in good agreement with previous studies and could provide insights into the reaction mechanism of Maillard reaction, since experimental evaluation of the role of intermediates in the Maillard reaction is quite complicated.