WorldWideScience

Sample records for study protein conformation

  1. Time-resolved infrared studies of protein conformational dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, W.H.; Causgrove, T.P.; Dyer, R.B. [Los Alamos National Laboratory, NM (United States); Callender, R.H. [Univ. of New York, NY (United States)

    1994-12-01

    We have demonstrated that TRIR in the amide I region gives structural information regarding protein conformational changes in realtime, both on processes involved in the development of the functional structure (protein folding) and on protein structural changes that accompany the functional dynamics of the native structure. Assignment of many of the amide I peaks to specific amide or sidechain structures will require much additional effort. Specifically, the congestion and complexity of the protein vibrational spectra dictate that isotope studies are an absolute requirement for more than a qualitative notion of the structural interpretation of these measurements. It is clear, however, that enormous potential exists for elucidating structural relaxation dynamics and energetics with a high degree of structural specificity using this approach.

  2. Study on protein conformation and adsorption behaviors in nanodiamond particle-protein complexes

    International Nuclear Information System (INIS)

    Wang Haidong; Niu, Catherine Hui; Yang Qiaoqin; Badea, Ildiko

    2011-01-01

    In the present research, the conformation of bovine serum albumin (BSA) in the nanodiamond particle (ND)-BSA complex was studied by Fourier transform infrared spectroscopy, fluorescence spectroscopy, UV-vis spectroscopy, and circular dichroism spectroscopy. The spectroscopic study revealed that most BSA structural features could be preserved in the complex though the BSA underwent conformational changes in the complex due to ND-BSA interaction. In addition, BSA adsorption isotherms and zeta-potential measurements were employed to investigate the pH dependence of the ND-BSA interaction. The changes in surface charge of the ND-BSA complex with pH variations indicated that the binding of BSA to ND might lead to not only the adsorption of BSA onto the ND surface but also the partial breakup of ND aggregates into relatively small ND-BSA aggregates because of the strong binding force between ND and BSA. The results show that ND is an excellent platform for protein immobilization with high affinity and holds great potential to be used for biosensor applications.

  3. Study on protein conformation and adsorption behaviors in nanodiamond particle-protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Haidong [Department of Biomedical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada); Niu, Catherine Hui [Department of Chemical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada); Yang Qiaoqin [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9 (Canada); Badea, Ildiko, E-mail: catherine.niu@usask.ca [Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, S7N 5C9 (Canada)

    2011-04-08

    In the present research, the conformation of bovine serum albumin (BSA) in the nanodiamond particle (ND)-BSA complex was studied by Fourier transform infrared spectroscopy, fluorescence spectroscopy, UV-vis spectroscopy, and circular dichroism spectroscopy. The spectroscopic study revealed that most BSA structural features could be preserved in the complex though the BSA underwent conformational changes in the complex due to ND-BSA interaction. In addition, BSA adsorption isotherms and zeta-potential measurements were employed to investigate the pH dependence of the ND-BSA interaction. The changes in surface charge of the ND-BSA complex with pH variations indicated that the binding of BSA to ND might lead to not only the adsorption of BSA onto the ND surface but also the partial breakup of ND aggregates into relatively small ND-BSA aggregates because of the strong binding force between ND and BSA. The results show that ND is an excellent platform for protein immobilization with high affinity and holds great potential to be used for biosensor applications.

  4. Molecular mechanics work station for protein conformational studies

    International Nuclear Information System (INIS)

    Fine, R.; Levinthal, C.; Schoenborn, B.; Dimmier, G.; Rankowitz, C.

    1984-01-01

    Interest in computational problems in Biology has intensified over the last few years, partly due to the development of techniques for the rapid cloning, sequencing, and mutagenesis of genes from organisims ranging from E. coli to Man. The central dogma of molecular biology; that DNA codes for mRNA which codes for protein, has been understood in a linear programming sense since the genetic code was cracked. But what is not understood at present is how a protein, once assembled as a long sequence of amino acids, folds back on itself to produce a three-dimensional structure which is unique to that protein and which dictates its chemical and biological activity. This folding process is purely physics, and involves the time evolution of a system of several thousand atoms which interact with each other and with atoms from the surrounding solvent. Molecular dynamics simulations on smaller molecules suggest that approaches which treat the protein as a classical ensemble of atoms interacting with each other via an empirical Hamiltonian can yield the kind of predictive results one would like when applied to proteins

  5. Studies of Single Biomolecules, DNA Conformational Dynamics, and Protein Binding

    Science.gov (United States)

    2008-07-11

    Nucleotide Base pairs Hydrogen bonds FIG. 1: Ladder structure of DNA showing the Watson - Crick bonding of the bases A, T, G, and C which are suspended by a...protected against unwanted action of chemicals and proteins. The three-dimensional structure of DNA is the famed Watson - Crick double-helix, the equilibrium...quantitative analysis [88]. [1] A. Kornberg and T. A. Baker, DNA Replication (W. H. Freeman, New York, 1992). [2] J. D. Watson and F. H. C. Crick

  6. Binding induced conformational changes of proteins correlate with their intrinsic fluctuations: a case study of antibodies

    Directory of Open Access Journals (Sweden)

    Keskin Ozlem

    2007-05-01

    Full Text Available Abstract Background How antibodies recognize and bind to antigens can not be totally explained by rigid shape and electrostatic complimentarity models. Alternatively, pre-existing equilibrium hypothesis states that the native state of an antibody is not defined by a single rigid conformation but instead with an ensemble of similar conformations that co-exist at equilibrium. Antigens bind to one of the preferred conformations making this conformation more abundant shifting the equilibrium. Results Here, two antibodies, a germline antibody of 36–65 Fab and a monoclonal antibody, SPE7 are studied in detail to elucidate the mechanism of antibody-antigen recognition and to understand how a single antibody recognizes different antigens. An elastic network model, Anisotropic Network Model (ANM is used in the calculations. Pre-existing equilibrium is not restricted to apply to antibodies. Intrinsic fluctuations of eight proteins, from different classes of proteins, such as enzymes, binding and transport proteins are investigated to test the suitability of the method. The intrinsic fluctuations are compared with the experimentally observed ligand induced conformational changes of these proteins. The results show that the intrinsic fluctuations obtained by theoretical methods correlate with structural changes observed when a ligand is bound to the protein. The decomposition of the total fluctuations serves to identify the different individual modes of motion, ranging from the most cooperative ones involving the overall structure, to the most localized ones. Conclusion Results suggest that the pre-equilibrium concept holds for antibodies and the promiscuity of antibodies can also be explained this hypothesis: a limited number of conformational states driven by intrinsic motions of an antibody might be adequate to bind to different antigens.

  7. Conformationally Preorganized Diastereomeric Norbornane-Based Maltosides for Membrane Protein Study

    DEFF Research Database (Denmark)

    Das, Manabendra; Du, Yang; Ribeiro, Orquidea

    2017-01-01

    were generally better at stabilizing membrane proteins than short alkyl chain agents. Furthermore, use of one well-behaving NBM enabled us to attain a marked stabilization and clear visualization of a challenging membrane protein complex using electron microscopy. Thus, this study not only describes......Detergents are essential tools for functional and structural studies of membrane proteins. However, conventional detergents are limited in their scope and utility, particularly for eukaryotic membrane proteins. Thus, there are major efforts to develop new amphipathic agents with enhanced properties....... Here, a novel class of diastereomeric agents with a preorganized conformation, designated norbornane-based maltosides (NBMs), were prepared and evaluated for their ability to solubilize and stabilize membrane proteins. Representative NBMs displayed enhanced behaviors compared to n...

  8. Functional and conformational properties of phaseolin (Phaseolus vulgris L.) and kidney bean protein isolate: a comparative study.

    Science.gov (United States)

    Yin, Shou-Wei; Tang, Chuan-He; Wen, Qi-Biao; Yang, Xiao-Quan

    2010-03-15

    Kidney bean (Phaseolus vulgris L.) seed is an underutilised plant protein source with good potential to be applied in the food industry. Phaseolin (also named G1 globulin) represents about 50 g kg(-1) of total storage protein in the seed. The aim of the present study was to characterise physicochemical, functional and conformational properties of phaseolin, and to compare these properties with those of kidney bean protein isolate (KPI). Compared with kidney bean protein isolate (KPI), the acid-extracted phaseolin-rich protein product (PRP) had much lower protein recovery of 320 g kg(-1) (dry weight basis) but higher phaseolin purity (over 950 g kg(-1)). PRP contained much lower sulfhydryl (SH) and disulfide bond contents than KPI. Differential scanning calorimetry analyses showed that the phaseolin in PRP was less denatured than in KPI. Thermal analyses in the presence or absence of dithiothreitol, in combination with SH and SS content analyses showed the contributions of SS to the thermal stability of KPI. The analyses of near-UV circular dichroism and intrinsic fluorescence spectra indicated more compacted tertiary conformation of the proteins in PRP than in KPI. PRP exhibited much better protein solubility, emulsifying activity index, and gel-forming ability than KPI. The relatively poor functional properties of KPI may be associated with protein denaturation/unfolding, with subsequent protein aggregation. The results presented here suggest the potential for acid-extracted PRP to be applied in food formulations, in view of its functional properties.

  9. Using fluorescence correlation spectroscopy to study conformational changes in denatured proteins.

    Science.gov (United States)

    Sherman, Eilon; Itkin, Anna; Kuttner, Yosef Yehuda; Rhoades, Elizabeth; Amir, Dan; Haas, Elisha; Haran, Gilad

    2008-06-01

    Fluorescence correlation spectroscopy (FCS) is a sensitive analytical tool that allows dynamics and hydrodynamics of biomolecules to be studied under a broad range of experimental conditions. One application of FCS of current interest is the determination of the size of protein molecules in the various states they sample along their folding reaction coordinate, which can be accessed through the measurement of diffusion coefficients. It has been pointed out that the analysis of FCS curves is prone to artifacts that may lead to erroneous size determination. To set the stage for FCS studies of unfolded proteins, we first show that the diffusion coefficients of small molecules as well as proteins can be determined accurately even in the presence of high concentrations of co-solutes that change the solution refractive index significantly. Indeed, it is found that the Stokes-Einstein relation between the measured diffusion coefficient and solution viscosity holds even in highly concentrated glycerol or guanidinium hydrochloride (GuHCl) solutions. These measurements form the basis for an investigation of the structure of the denatured state of two proteins, the small protein L and the larger, three-domain protein adenylate kinase (AK). FCS is found useful for probing expansion in the denatured state beyond the unfolding transition. It is shown that the denatured state of protein L expands as the denaturant concentration increases, in a process akin to the transition from a globule to a coil in polymers. This process continues at least up to 5 M GuHCl. On the other hand, the denatured state of AK does not seem to expand much beyond 2 M GuHCl, a result that is in qualitative accord with single-molecule fluorescence histograms. Because both the unfolding transition and the coil-globule transition of AK occur at a much lower denaturant concentration than those of protein L, a possible correlation between the two phenomena is suggested.

  10. Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study.

    Science.gov (United States)

    Lee, Hui Sun; Qi, Yifei; Im, Wonpil

    2015-03-09

    N-linked glycosylation is one of the most important, chemically complex, and ubiquitous post-translational modifications in all eukaryotes. The N-glycans that are covalently linked to proteins are involved in numerous biological processes. There is considerable interest in developments of general approaches to predict the structural consequences of site-specific glycosylation and to understand how these effects can be exploited in protein design with advantageous properties. In this study, the impacts of N-glycans on protein structure and dynamics are systematically investigated using an integrated computational approach of the Protein Data Bank structure analysis and atomistic molecular dynamics simulations of glycosylated and deglycosylated proteins. Our study reveals that N-glycosylation does not induce significant changes in protein structure, but decreases protein dynamics, likely leading to an increase in protein stability. Overall, these results suggest not only a common role of glycosylation in proteins, but also a need for certain proteins to be properly glycosylated to gain their intrinsic dynamic properties.

  11. Conformational aspects of proteins at the air/water interface studied by infrared reflection-adsorption spectroscopy

    NARCIS (Netherlands)

    Martin, A.H.; Meinders, M.B.J.; Bos, M.A.; Cohen Stuart, M.A.; Vliet, van T.

    2003-01-01

    From absorption spectra obtained with infrared reflection-absorption spectroscopy (IRRAS), it is possible to obtain information on conformational changes at a secondary folding level of proteins adsorbed at the air/water interface. In addition, information on protein concentration at the interface

  12. Conformational aspects of proteins at the air/water interface studied by infrared reflection-absorption spectroscopy

    NARCIS (Netherlands)

    Martin, A.H.; Meinders, M.B.J.; Bos, M.A.; Cohen Stuart, M.A.; Vliet, T. van

    2003-01-01

    From absorption spectra obtained with infrared reflection - absorption spectroscopy (IRRAS), it is possible to obtain information on conformational changes at a secondary folding level of proteins adsorbed at the air/water interface. In addition, information on protein concentration at the interface

  13. Solid state protein monolayers: Morphological, conformational, and functional properties

    Science.gov (United States)

    Pompa, P. P.; Biasco, A.; Frascerra, V.; Calabi, F.; Cingolani, R.; Rinaldi, R.; Verbeet, M. Ph.; de Waal, E.; Canters, G. W.

    2004-12-01

    We have studied the morphological, conformational, and electron-transfer (ET) function of the metalloprotein azurin in the solid state, by a combination of physical investigation methods, namely atomic force microscopy, intrinsic fluorescence spectroscopy, and scanning tunneling microscopy. We demonstrate that a "solid state protein film" maintains its nativelike conformation and ET function, even after removal of the aqueous solvent.

  14. Biospectroscopy of Nanodiamond-Induced Alterations in Conformation of Intra- and Extracellular Proteins: A Nanoscale IR Study.

    Science.gov (United States)

    Khanal, Dipesh; Kondyurin, Alexey; Hau, Herman; Knowles, Jonathan C; Levinson, Olga; Ramzan, Iqbal; Fu, Dong; Marcott, Curtis; Chrzanowski, Wojciech

    2016-08-02

    The toxicity of nanomaterials raises major concerns because of the impact that nanomaterials may have on health, which remains poorly understood. We need to explore the fate of individual nanoparticles in cells at nano and molecular levels to establish their safety. Conformational changes in secondary protein structures are one of the main indicators of impaired biological function, and hence, the ability to identify these changes at a nanoscale level offers unique insights into the nanotoxicity of materials. Here, we used nanoscale infrared spectroscopy and demonstrated for the first time that nanodiamond-induced alterations in both extra- and intracellular secondary protein structures lead to the formation of antiparallel β-sheet, β-turns, intermolecular β-sheet, and aggregation of proteins. These conformational changes of the protein structure may result in the loss of functionality of proteins and in turn lead to adverse effects.

  15. Conformational study of red kidney bean (Phaseolus vulgaris L.) protein isolate (KPI) by tryptophan fluorescence and differential scanning calorimetry.

    Science.gov (United States)

    Yin, Shou-Wei; Tang, Chuan-He; Yang, Xiao-Quan; Wen, Qi-Biao

    2011-01-12

    Fluorescence and differential scanning calorimetry (DSC) were used to study changes in the conformation of red kidney bean (Phaseolus vulgaris L.) protein isolate (KPI) under various environmental conditions. The possible relationship between fluorescence data and DSC characteristics was also discussed. Tryptophan fluorescence and fluorescence quenching analyses indicated that the tryptophan residues in KPI, exhibiting multiple fluorophores with different accessibilities to acrylamide, are largely buried in the hydrophobic core of the protein matrix, with positively charged side chains close to at least some of the tryptophan residues. GdnHCl was more effective than urea and SDS in denaturing KPI. SDS and urea caused variable red shifts, 2-5 nm, in the emission λ(max), suggesting the conformational compactness of KPI. The result was further supported by DSC characteristics that a discernible endothermic peak was still detected up to 8 M urea or 30 mM SDS, also evidenced by the absence of any shift in emission maximum (λ(max)) at different pH conditions. Marked decreases in T(d) and enthalpy (ΔH) were observed at extreme alkaline and/or acidic pH, whereas the presence of NaCl resulted in higher T(d) and ΔH, along with greater cooperativity of the transition. Decreases in T(d) and ΔH were observed in the presence of protein perturbants, for example, SDS and urea, indicating partial denaturation and decrease in thermal stability. Dithiothreitol and N-ethylmaleimide have a slight effect on the thermal properties of KPI. Interestingly, a close linear relationship between the T(d) (or ΔH) and the λ(max) was observed for KPI in the presence of 0-6 M urea.

  16. Mitochondrial Dysfunction in Protein Conformational Disorders

    Indian Academy of Sciences (India)

    EstherShlomi

    protein misfolding of α-synuclein involves conformational changes in the protein .... upon association with a membrane surface its can adopt a helical form with an 11/3 ... case of α-synuclein electrostatic interactions exist between positively ...

  17. Focused conformational sampling in proteins

    Science.gov (United States)

    Bacci, Marco; Langini, Cassiano; Vymětal, Jiří; Caflisch, Amedeo; Vitalis, Andreas

    2017-11-01

    A detailed understanding of the conformational dynamics of biological molecules is difficult to obtain by experimental techniques due to resolution limitations in both time and space. Computer simulations avoid these in theory but are often too short to sample rare events reliably. Here we show that the progress index-guided sampling (PIGS) protocol can be used to enhance the sampling of rare events in selected parts of biomolecules without perturbing the remainder of the system. The method is very easy to use as it only requires as essential input a set of several features representing the parts of interest sufficiently. In this feature space, new states are discovered by spontaneous fluctuations alone and in unsupervised fashion. Because there are no energetic biases acting on phase space variables or projections thereof, the trajectories PIGS generates can be analyzed directly in the framework of transition networks. We demonstrate the possibility and usefulness of such focused explorations of biomolecules with two loops that are part of the binding sites of bromodomains, a family of epigenetic "reader" modules. This real-life application uncovers states that are structurally and kinetically far away from the initial crystallographic structures and are also metastable. Representative conformations are intended to be used in future high-throughput virtual screening campaigns.

  18. Protein conformational transitions at the liquid-gas interface as studied by dilational surface rheology.

    Science.gov (United States)

    Noskov, Boris A

    2014-04-01

    Experimental results on the dynamic dilational surface elasticity of protein solutions are analyzed and compared. Short reviews of the protein behavior at the liquid-gas interface and the dilational surface rheology precede the main sections of this work. The kinetic dependencies of the surface elasticity differ strongly for the solutions of globular and non-globular proteins. In the latter case these dependencies are similar to those for solutions of non-ionic amphiphilic polymers and have local maxima corresponding to the formation of the distal region of the surface layer (type I). In the former case the dynamic surface elasticity is much higher (>60 mN/m) and the kinetic dependencies are monotonical and similar to the data for aqueous dispersions of solid nanoparticles (type II). The addition of strong denaturants to solutions of bovine serum albumin and β-lactoglobulin results in an abrupt transition from the type II to type I dependencies if the denaturant concentration exceeds a certain critical value. These results give a strong argument in favor of the preservation of the protein globular structure in the course of adsorption without any denaturants. The addition of cationic surfactants also can lead to the non-monotonical kinetic dependencies of the dynamic surface elasticity indicating destruction of the protein tertiary and secondary structures. The addition of anionic surfactants gives similar results only for the protein solutions of high ionic strength. The influence of cationic surfactants on the local maxima of the kinetic dependencies of the dynamic surface elasticity for solutions of a non-globular protein (β-casein) differs from the influence of anionic surfactants due to the heterogeneity of the charge distribution along the protein chain. In this case one can use small admixtures of ionic surfactants as probes of the adsorption mechanism. The effect of polyelectrolytes on the kinetic dependencies of the dynamic surface elasticity of protein

  19. S-Adenosylmethionine conformations in solution and in protein complexes: Conformational influences of the sulfonium group

    DEFF Research Database (Denmark)

    Markham, George D.; Norrby, Per-Ola; Bock, Charles W.

    2002-01-01

    S-Adenosylmethionine (AdoMet) and other sulfonium ions play central roles in the metabolism of all organisms. The conformational preferences of AdoMet and two other biologically important sulfonium ions, S-methylmethionine and dimethylsulfonioproprionic acid, have been investigated by NMR...... and computational studies. Molecular mechanics parameters for the sulfonium center have been developed for the AMBER force field to permit analysis of NMR results and to enable comparison of the relative energies of the different conformations of AdoMet that have been found in crystal structures of complexes...... with proteins. S-Methylmethionine and S-dimethylsulfonioproprionate adopt a variety of conformations in aqueous solution; a conformation with an electrostatic interaction between the sulfonium sulfur and the carboxylate group is not noticeably favored, in contrast to the preferred conformation found by in vacuo...

  20. SCit: web tools for protein side chain conformation analysis

    OpenAIRE

    Gautier, R.; Camproux, A.-C.; Tufféry, P.

    2004-01-01

    SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each...

  1. Compact conformations of human protein disulfide isomerase.

    Directory of Open Access Journals (Sweden)

    Shang Yang

    Full Text Available Protein disulfide isomerase (PDI composed of four thioredoxin-like domains a, b, b', and a', is a key enzyme catalyzing oxidative protein folding in the endoplasmic reticulum. Large scale molecular dynamics simulations starting from the crystal structures of human PDI (hPDI in the oxidized and reduced states were performed. The results indicate that hPDI adopts more compact conformations in solution than in the crystal structures, which are stabilized primarily by inter-domain interactions, including the salt bridges between domains a and b' observed for the first time. A prominent feature of the compact conformations is that the two catalytic domains a and a' can locate close enough for intra-molecular electron transfer, which was confirmed by the characterization of an intermediate with a disulfide between the two domains. Mutations, which disrupt the inter-domain interactions, lead to decreased reductase activity of hPDI. Our molecular dynamics simulations and biochemical experiments reveal the intrinsic conformational dynamics of hPDI and its biological impact.

  2. 13CHD2–CEST NMR spectroscopy provides an avenue for studies of conformational exchange in high molecular weight proteins

    International Nuclear Information System (INIS)

    Rennella, Enrico; Huang, Rui; Velyvis, Algirdas; Kay, Lewis E.

    2015-01-01

    An NMR experiment for quantifying slow (millisecond) time-scale exchange processes involving the interconversion between visible ground state and invisible, conformationally excited state conformers is presented. The approach exploits chemical exchange saturation transfer (CEST) and makes use of 13 CHD 2 methyl group probes that can be readily incorporated into otherwise highly deuterated proteins. The methodology is validated with an application to a G48A Fyn SH3 domain that exchanges between a folded conformation and a sparsely populated and transiently formed unfolded ensemble. Experiments on a number of different protein systems, including a 360 kDa half-proteasome, establish that the sensitivity of this 13 CHD 2 13 C–CEST technique can be upwards of a factor of 5 times higher than for a previously published 13 CH 3 13 C–CEST approach (Bouvignies and Kay in J Biomol NMR 53:303–310, 2012), suggesting that the methodology will be powerful for studies of conformational exchange in high molecular weight proteins

  3. SCit: web tools for protein side chain conformation analysis.

    Science.gov (United States)

    Gautier, R; Camproux, A-C; Tufféry, P

    2004-07-01

    SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit.

  4. Application of time series analysis on molecular dynamics simulations of proteins: a study of different conformational spaces by principal component analysis.

    Science.gov (United States)

    Alakent, Burak; Doruker, Pemra; Camurdan, Mehmet C

    2004-09-08

    Time series analysis is applied on the collective coordinates obtained from principal component analysis of independent molecular dynamics simulations of alpha-amylase inhibitor tendamistat and immunity protein of colicin E7 based on the Calpha coordinates history. Even though the principal component directions obtained for each run are considerably different, the dynamics information obtained from these runs are surprisingly similar in terms of time series models and parameters. There are two main differences in the dynamics of the two proteins: the higher density of low frequencies and the larger step sizes for the interminima motions of colicin E7 than those of alpha-amylase inhibitor, which may be attributed to the higher number of residues of colicin E7 and/or the structural differences of the two proteins. The cumulative density function of the low frequencies in each run conforms to the expectations from the normal mode analysis. When different runs of alpha-amylase inhibitor are projected on the same set of eigenvectors, it is found that principal components obtained from a certain conformational region of a protein has a moderate explanation power in other conformational regions and the local minima are similar to a certain extent, while the height of the energy barriers in between the minima significantly change. As a final remark, time series analysis tools are further exploited in this study with the motive of explaining the equilibrium fluctuations of proteins. Copyright 2004 American Institute of Physics

  5. Conformational Entropy as Collective Variable for Proteins.

    Science.gov (United States)

    Palazzesi, Ferruccio; Valsson, Omar; Parrinello, Michele

    2017-10-05

    Many enhanced sampling methods rely on the identification of appropriate collective variables. For proteins, even small ones, finding appropriate descriptors has proven challenging. Here we suggest that the NMR S 2 order parameter can be used to this effect. We trace the validity of this statement to the suggested relation between S 2 and conformational entropy. Using the S 2 order parameter and a surrogate for the protein enthalpy in conjunction with metadynamics or variationally enhanced sampling, we are able to reversibly fold and unfold a small protein and draw its free energy at a fraction of the time that is needed in unbiased simulations. We also use S 2 in combination with the free energy flooding method to compute the unfolding rate of this peptide. We repeat this calculation at different temperatures to obtain the unfolding activation energy.

  6. Conformational dynamics data bank: a database for conformational dynamics of proteins and supramolecular protein assemblies.

    Science.gov (United States)

    Kim, Do-Nyun; Altschuler, Josiah; Strong, Campbell; McGill, Gaël; Bathe, Mark

    2011-01-01

    The conformational dynamics data bank (CDDB, http://www.cdyn.org) is a database that aims to provide comprehensive results on the conformational dynamics of high molecular weight proteins and protein assemblies. Analysis is performed using a recently introduced coarse-grained computational approach that is applied to the majority of structures present in the electron microscopy data bank (EMDB). Results include equilibrium thermal fluctuations and elastic strain energy distributions that identify rigid versus flexible protein domains generally, as well as those associated with specific functional transitions, and correlations in molecular motions that identify molecular regions that are highly coupled dynamically, with implications for allosteric mechanisms. A practical web-based search interface enables users to easily collect conformational dynamics data in various formats. The data bank is maintained and updated automatically to include conformational dynamics results for new structural entries as they become available in the EMDB. The CDDB complements static structural information to facilitate the investigation and interpretation of the biological function of proteins and protein assemblies essential to cell function.

  7. Effect of External Electric Field Stress on Gliadin Protein Conformation

    OpenAIRE

    Singh, Ashutosh; Munshi, Shirin; Raghavan, Vijaya

    2013-01-01

    A molecular dynamic (MD) modeling approach was applied to evaluate the effect of external electric field on gliadin protein structure and surface properties. Static electric field strengths of 0.001 V/nm and 0.002 V/nm induced conformational changes in the protein but had no significant effect on its surface properties. The study of hydrogen bond evolution during the course of simulation revealed that the root mean square deviation, radius of gyration and secondary structure formation, all de...

  8. Conformational dynamics of amyloid proteins at the aqueous interface

    Science.gov (United States)

    Armbruster, Matthew; Horst, Nathan; Aoki, Brendy; Malik, Saad; Soto, Patricia

    2013-03-01

    Amyloid proteins is a class of proteins that exhibit distinct monomeric and oligomeric conformational states hallmark of deleterious neurological diseases for which there are not yet cures. Our goal is to examine the extent of which the aqueous/membrane interface modulates the folding energy landscape of amyloid proteins. To this end, we probe the dynamic conformational ensemble of amyloids (monomer prion protein and Alzheimer's Ab protofilaments) interacting with model bilayers. We will present the results of our coarse grain molecular modeling study in terms of the existence of preferential binding spots of the amyloid to the bilayer and the response of the bilayer to the interaction with the amyloid. NSF Nebraska EPSCoR First Award

  9. Time-resolved Fourier transform infrared spectrometry using a microfabricated continuous flow mixer: application to protein conformation study using the example of ubiquitin.

    Science.gov (United States)

    Kakuta, Masaya; Hinsmann, Peter; Manz, Andreas; Lendl, Bernhard

    2003-05-01

    We report on the use of time-resolved Fourier transform infrared spectroscopy (FT-IR) to study chemically induced conformational changes of proteins using the example of ubiquitin. For this purpose a micromachined mixer is coupled to a conventional IR transmission cell with a pathlength of 25 microm and operated in both the continuous and the stopped-flow mode. This experimental set-up allows the elucidation of reaction pathways in the time frame of about 500 milliseconds to seconds with little reagent consumption and low pressure. For continuous flow measurements employed in the time frame from 0.5 to 1.4 s the reaction time is determined by the flow rate used as the connection between the point of confluence in the micromixer and the flow cell was kept constant in all experiments. For stopped-flow experiments (>1.4 s) the time is determined by data acquisition of the rapid scanning infrared spectrometer. Ubiquitin, a small well-known protein with 76 amino acid residues, changes its conformation from native to A-state with the addition of methanol under low pH conditions. We investigated the conformational change in the time frame from 0.5 to 10 s by mixing ubiquitin (20% methanol-d(4)) with an 80% methanol-d(4) solution at pD 2 by evaluating the time dependent changes in the amide I band of the protein.

  10. Effects of macromolecular crowding on protein conformational changes.

    Directory of Open Access Journals (Sweden)

    Hao Dong

    2010-07-01

    Full Text Available Many protein functions can be directly linked to conformational changes. Inside cells, the equilibria and transition rates between different conformations may be affected by macromolecular crowding. We have recently developed a new approach for modeling crowding effects, which enables an atomistic representation of "test" proteins. Here this approach is applied to study how crowding affects the equilibria and transition rates between open and closed conformations of seven proteins: yeast protein disulfide isomerase (yPDI, adenylate kinase (AdK, orotidine phosphate decarboxylase (ODCase, Trp repressor (TrpR, hemoglobin, DNA beta-glucosyltransferase, and Ap(4A hydrolase. For each protein, molecular dynamics simulations of the open and closed states are separately run. Representative open and closed conformations are then used to calculate the crowding-induced changes in chemical potential for the two states. The difference in chemical-potential change between the two states finally predicts the effects of crowding on the population ratio of the two states. Crowding is found to reduce the open population to various extents. In the presence of crowders with a 15 A radius and occupying 35% of volume, the open-to-closed population ratios of yPDI, AdK, ODCase and TrpR are reduced by 79%, 78%, 62% and 55%, respectively. The reductions for the remaining three proteins are 20-44%. As expected, the four proteins experiencing the stronger crowding effects are those with larger conformational changes between open and closed states (e.g., as measured by the change in radius of gyration. Larger proteins also tend to experience stronger crowding effects than smaller ones [e.g., comparing yPDI (480 residues and TrpR (98 residues]. The potentials of mean force along the open-closed reaction coordinate of apo and ligand-bound ODCase are altered by crowding, suggesting that transition rates are also affected. These quantitative results and qualitative trends will

  11. Exploring the conformational energy landscape of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Nienhaus, G.U. [Univ. of Illinois, Urbana, IL (United States)]|[Universitaet Ulm (Germany); Mueller, J.D.; McMahon, B.H. [Univ. of Illinois, Urbana, IL (United States)] [and others

    1997-04-01

    Proteins possess a complex energy landscape with a large number of local minima called conformational substates that are arranged in a hierarchical fashion. Here we discuss experiments aimed at the elucidation of the energy landscape in carbonmonoxy myoglobin (MbCO). In the highest tier of the hierarchy, a few taxonomic substates exist. Because of their small number, these substates are accessible to detailed structural investigations. Spectroscopic experiments are discussed that elucidate the role of protonations of amino acid side chains in creating the substates. The lower tiers of the hierarchy contain a large number of statistical substates. Substate interconversions are observed in the entire temperature range from below 1 K up to the denaturation temperature, indicating a wide spectrum of energy barriers that separate the substates.

  12. Exploiting conformational ensembles in modeling protein-protein interactions on the proteome scale

    Science.gov (United States)

    Kuzu, Guray; Gursoy, Attila; Nussinov, Ruth; Keskin, Ozlem

    2013-01-01

    Cellular functions are performed through protein-protein interactions; therefore, identification of these interactions is crucial for understanding biological processes. Recent studies suggest that knowledge-based approaches are more useful than ‘blind’ docking for modeling at large scales. However, a caveat of knowledge-based approaches is that they treat molecules as rigid structures. The Protein Data Bank (PDB) offers a wealth of conformations. Here, we exploited ensemble of the conformations in predictions by a knowledge-based method, PRISM. We tested ‘difficult’ cases in a docking-benchmark dataset, where the unbound and bound protein forms are structurally different. Considering alternative conformations for each protein, the percentage of successfully predicted interactions increased from ~26% to 66%, and 57% of the interactions were successfully predicted in an ‘unbiased’ scenario, in which data related to the bound forms were not utilized. If the appropriate conformation, or relevant template interface, is unavailable in the PDB, PRISM could not predict the interaction successfully. The pace of the growth of the PDB promises a rapid increase of ensemble conformations emphasizing the merit of such knowledge-based ensemble strategies for higher success rates in protein-protein interaction predictions on an interactome-scale. We constructed the structural network of ERK interacting proteins as a case study. PMID:23590674

  13. An Efficient Null Model for Conformational Fluctuations in Proteins

    DEFF Research Database (Denmark)

    Harder, Tim Philipp; Borg, Mikael; Bottaro, Sandro

    2012-01-01

    Protein dynamics play a crucial role in function, catalytic activity, and pathogenesis. Consequently, there is great interest in computational methods that probe the conformational fluctuations of a protein. However, molecular dynamics simulations are computationally costly and therefore are often...... limited to comparatively short timescales. TYPHON is a probabilistic method to explore the conformational space of proteins under the guidance of a sophisticated probabilistic model of local structure and a given set of restraints that represent nonlocal interactions, such as hydrogen bonds or disulfide...... on conformational fluctuations that is in correspondence with experimental measurements. TYPHON provides a flexible, yet computationally efficient, method to explore possible conformational fluctuations in proteins....

  14. Conformational Fluctuations in G-Protein-Coupled Receptors

    Science.gov (United States)

    Brown, Michael F.

    2014-03-01

    G-protein-coupled receptors (GPCRs) comprise almost 50% of pharmaceutical drug targets, where rhodopsin is an important prototype and occurs naturally in a lipid membrane. Rhodopsin photoactivation entails 11-cis to all-trans isomerization of the retinal cofactor, yielding an equilibrium between inactive Meta-I and active Meta-II states. Two important questions are: (1) Is rhodopsin is a simple two-state switch? Or (2) does isomerization of retinal unlock an activated conformational ensemble? For an ensemble-based activation mechanism (EAM) a role for conformational fluctuations is clearly indicated. Solid-state NMR data together with theoretical molecular dynamics (MD) simulations detect increased local mobility of retinal after light activation. Resultant changes in local dynamics of the cofactor initiate large-scale fluctuations of transmembrane helices that expose recognition sites for the signal-transducing G-protein. Time-resolved FTIR studies and electronic spectroscopy further show the conformational ensemble is strongly biased by the membrane lipid composition, as well as pH and osmotic pressure. A new flexible surface model (FSM) describes how the curvature stress field of the membrane governs the energetics of active rhodopsin, due to the spontaneous monolayer curvature of the lipids. Furthermore, influences of osmotic pressure dictate that a large number of bulk water molecules are implicated in rhodopsin activation. Around 60 bulk water molecules activate rhodopsin, which is much larger than the number of structural waters seen in X-ray crystallography, or inferred from studies of bulk hydrostatic pressure. Conformational selection and promoting vibrational motions of rhodopsin lead to activation of the G-protein (transducin). Our biophysical data give a paradigm shift in understanding GPCR activation. The new view is: dynamics and conformational fluctuations involve an ensemble of substates that activate the cognate G-protein in the amplified visual

  15. Preference of small molecules for local minimum conformations when binding to proteins.

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2007-09-01

    Full Text Available It is well known that small molecules (ligands do not necessarily adopt their lowest potential energy conformations when binding to proteins. Analyses of protein-bound ligand crystal structures have reportedly shown that many of them do not even adopt the conformations at local minima of their potential energy surfaces (local minimum conformations. The results of these analyses raise a concern regarding the validity of virtual screening methods that use ligands in local minimum conformations. Here we report a normal-mode-analysis (NMA study of 100 crystal structures of protein-bound ligands. Our data show that the energy minimization of a ligand alone does not automatically stop at a local minimum conformation if the minimum of the potential energy surface is shallow, thus leading to the folding of the ligand. Furthermore, our data show that all 100 ligand conformations in their protein-bound ligand crystal structures are nearly identical to their local minimum conformations obtained from NMA-monitored energy minimization, suggesting that ligands prefer to adopt local minimum conformations when binding to proteins. These results both support virtual screening methods that use ligands in local minimum conformations and caution about possible adverse effect of excessive energy minimization when generating a database of ligand conformations for virtual screening.

  16. Dynamics of DNA conformations and DNA-protein interaction

    DEFF Research Database (Denmark)

    Metzler, R.; Ambjörnsson, T.; Lomholt, Michael Andersen

    2005-01-01

    Optical tweezers, atomic force microscopes, patch clamping, or fluorescence techniques make it possible to study both the equilibrium conformations and dynamics of single DNA molecules as well as their interaction with binding proteins. In this paper we address the dynamics of local DNA...... denaturation (bubble breathing), deriving its dynamic response to external physical parameters and the DNA sequence in terms of the bubble relaxation time spectrum and the autocorrelation function of bubble breathing. The interaction with binding proteins that selectively bind to the DNA single strand exposed...... in a denaturation bubble are shown to involve an interesting competition of time scales, varying between kinetic blocking of protein binding up to full binding protein-induced denaturation of the DNA. We will also address the potential to use DNA physics for the design of nanosensors. Finally, we report recent...

  17. Dissecting the dynamic conformations of the metamorphic protein lymphotactin.

    Science.gov (United States)

    Harvey, Sophie R; Porrini, Massimiliano; Konijnenberg, Albert; Clarke, David J; Tyler, Robert C; Langridge-Smith, Patrick R R; MacPhee, Cait E; Volkman, Brian F; Barran, Perdita E

    2014-10-30

    A mass spectrometer provides an ideal laboratory to probe the structure and stability of isolated protein ions. Interrogation of each discrete mass/charge-separated species enables the determination of the intrinsic stability of a protein fold, gaining snapshots of unfolding pathways. In solution, the metamorphic protein lymphotactin (Ltn) exists in equilibrium between two distinct conformations, a monomeric (Ltn10) and a dimeric (Ltn40) fold. Here, we use electron capture dissociation (ECD) and drift tube ion mobility-mass spectrometry (DT IM-MS) to analyze both forms and use molecular dynamics (MD) to consider how the solution fold alters in a solvent-free environment. DT IM-MS reveals significant conformational flexibility for the monomer, while the dimer appears more conformationally restricted. These findings are supported by MD calculations, which reveal how salt bridges stabilize the conformers in vacuo. Following ECD experiments, a distinctive fragmentation pattern is obtained for both the monomer and dimer. Monomer fragmentation becomes more pronounced with increasing charge state especially in the disordered regions and C-terminal α-helix in the solution fold. Lower levels of fragmentation are seen in the β-sheet regions and in regions that contain salt bridges, identified by MD simulations. The lowest charge state of the dimer for which we obtain ECD data ([D+9H](9+)) exhibits extensive fragmentation with no relationship to the solution fold and has a smaller collision cross section (CCS) than charge states 10-13+, suggesting a "collapsed" encounter complex. Other charge states of the dimer, as for the monomer, are resistant to fragmentation in regions of β-sheets in the solution fold. This study provides evidence for preservation and loss of global fold and secondary structural elements, providing a tantalizing glimpse into the power of the emerging field of native top-down mass spectrometry.

  18. Variability of the Cyclin-Dependent Kinase 2 Flexibility Without Significant Change in the Initial Conformation of the Protein or Its Environment; a Computational Study.

    Science.gov (United States)

    Taghizadeh, Mohammad; Goliaei, Bahram; Madadkar-Sobhani, Armin

    2016-06-01

    Protein flexibility, which has been referred as a dynamic behavior has various roles in proteins' functions. Furthermore, for some developed tools in bioinformatics, such as protein-protein docking software, considering the protein flexibility, causes a higher degree of accuracy. Through undertaking the present work, we have accomplished the quantification plus analysis of the variations in the human Cyclin Dependent Kinase 2 (hCDK2) protein flexibility without affecting a significant change in its initial environment or the protein per se. The main goal of the present research was to calculate variations in the flexibility for each residue of the hCDK2, analysis of their flexibility variations through clustering, and to investigate the functional aspects of the residues with high flexibility variations. Using Gromacs package (version 4.5.4), three independent molecular dynamics (MD) simulations of the hCDK2 protein (PDB ID: 1HCL) was accomplished with no significant changes in their initial environments, structures, or conformations, followed by Root Mean Square Fluctuations (RMSF) calculation of these MD trajectories. The amount of variations in these three curves of RMSF was calculated using two formulas. More than 50% of the variation in the flexibility (the distance between the maximum and the minimum amount of the RMSF) was found at the region of Val-154. As well, there are other major flexibility fluctuations in other residues. These residues were mostly positioned in the vicinity of the functional residues. The subsequent works were done, as followed by clustering all hCDK2 residues into four groups considering the amount of their variability with respect to flexibility and their position in the RMSF curves. This work has introduced a new class of flexibility aspect of the proteins' residues. It could also help designing and engineering proteins, with introducing a new dynamic aspect of hCDK2, and accordingly, for the other similar globular proteins. In

  19. Combined Spectroscopic and Calorimetric Studies to Reveal Absorption Mechanisms and Conformational Changes of Protein on Nanoporous Biomaterials

    Directory of Open Access Journals (Sweden)

    Saharnaz Ahmadi

    2015-07-01

    Full Text Available In this study the effect of surface modification of mesoporous silica nanoparticles (MSNs on its adsorption capacities and protein stability after immobilization of beta-lactoglobulin B (BLG-B was investigated. For this purpose, non-functionalized (KIT-6 and aminopropyl-functionalized cubic Ia3d mesoporous silica ([n-PrNH2-KIT-6] nanoparticles were used as nanoporous supports. Aminopropyl-functionalized mesoporous nanoparticles exhibited more potential candidates for BLG-B adsorption and minimum BLG leaching than non-functionalized nanoparticles. It was observed that the amount of adsorbed BLG is dependent on the initial BLG concentration for both KIT-6 and [n-PrNH2-KIT-6] mesoporous nanoparticles. Also larger amounts of BLG-B on KIT-6 was immobilized upon raising the temperature of the medium from 4 to 55 °C while such increase was undetectable in the case of immobilization of BLG-B on the [n-PrNH2-KIT-6]. At temperatures above 55 °C the amounts of adsorbed BLG on both studied nanomaterials decreased significantly. By Differential scanning calorimetry or DSC analysis the heterogeneity of the protein solution and increase in Tm may indicate that immobilization of BLG-B onto the modified KIT-6 results in higher thermal stability compared to unmodified one. The obtained results provide several crucial factors in determining the mechanism(s of protein adsorption and stability on the nanostructured solid supports and the development of engineered nano-biomaterials for controlled drug-delivery systems and biomimetic interfaces for the immobilization of living cells.

  20. Distribution, transition and thermodynamic stability of protein conformations in the denaturant-induced unfolding of proteins.

    Science.gov (United States)

    Bian, Liujiao; Ji, Xu

    2014-01-01

    Extensive and intensive studies on the unfolding of proteins require appropriate theoretical model and parameter to clearly illustrate the feature and characteristic of the unfolding system. Over the past several decades, four approaches have been proposed to describe the interaction between proteins and denaturants, but some ambiguity and deviations usually occur in the explanation of the experimental data. In this work, a theoretical model was presented to show the dependency of the residual activity ratio of the proteins on the molar denaturant concentration. Through the characteristic unfolding parameters ki and Δmi in this model, the distribution, transition and thermodynamic stability of protein conformations during the unfolding process can be quantitatively described. This model was tested with the two-state unfolding of bovine heart cytochrome c and the three-state unfolding of hen egg white lysozyme induced by both guanidine hydrochloride and urea, the four-state unfolding of bovine carbonic anhydrase b induced by guanidine hydrochloride and the unfolding of some other proteins induced by denaturants. The results illustrated that this model could be used accurately to reveal the distribution and transition of protein conformations in the presence of different concentrations of denaturants and to evaluate the unfolding tendency and thermodynamic stability of different conformations. In most denaturant-induced unfolding of proteins, the unfolding became increasingly hard in next transition step and the proteins became more unstable as they attained next successive stable conformation. This work presents a useful method for people to study the unfolding of proteins and may be used to describe the unfolding and refolding of other biopolymers induced by denaturants, inducers, etc.

  1. Conformational plasticity of the Ebola virus matrix protein.

    Science.gov (United States)

    Radzimanowski, Jens; Effantin, Gregory; Weissenhorn, Winfried

    2014-11-01

    Filoviruses are the causative agents of a severe and often fatal hemorrhagic fever with repeated outbreaks in Africa. They are negative sense single stranded enveloped viruses that can cross species barriers from its natural host bats to primates including humans. The small size of the genome poses limits to viral adaption, which may be partially overcome by conformational plasticity. Here we review the different conformational states of the Ebola virus (EBOV) matrix protein VP40 that range from monomers, to dimers, hexamers, and RNA-bound octamers. This conformational plasticity that is required for the viral life cycle poses a unique opportunity for development of VP40 specific drugs. Furthermore, we compare the structure to homologous matrix protein structures from Paramyxoviruses and Bornaviruses and we predict that they do not only share the fold but also the conformational flexibility of EBOV VP40. © 2014 The Protein Society.

  2. Sampling Realistic Protein Conformations Using Local Structural Bias

    DEFF Research Database (Denmark)

    Hamelryck, Thomas Wim; Kent, John T.; Krogh, A.

    2006-01-01

    The prediction of protein structure from sequence remains a major unsolved problem in biology. The most successful protein structure prediction methods make use of a divide-and-conquer strategy to attack the problem: a conformational sampling method generates plausible candidate structures, which...... are subsequently accepted or rejected using an energy function. Conceptually, this often corresponds to separating local structural bias from the long-range interactions that stabilize the compact, native state. However, sampling protein conformations that are compatible with the local structural bias encoded...... in a given protein sequence is a long-standing open problem, especially in continuous space. We describe an elegant and mathematically rigorous method to do this, and show that it readily generates native-like protein conformations simply by enforcing compactness. Our results have far-reaching implications...

  3. Conformational Heterogeneity in Antibody-Protein Antigen Recognition IMPLICATIONS FOR HIGH AFFINITY PROTEIN COMPLEX FORMATION

    Czech Academy of Sciences Publication Activity Database

    Addis, P. W.; Hall, c. J.; Bruton, S.; Veverka, Václav; Wilkinson, I. C.; Muskett, F. W.; Renshaw, P. S.; Prosser, C. E.; Carrington, B.; Lawson, A. D. G.; Griffin, R.; Taylor, R. J.; Waters, L. C.; Henry, A. J.; Carr, M. D.

    2014-01-01

    Roč. 289, č. 10 (2014), s. 7200-7210 ISSN 0021-9258 Institutional support: RVO:61388963 Keywords : NMR * antibody * protein-protein interaction * protein conformation Subject RIV: CE - Biochemistry Impact factor: 4.573, year: 2014

  4. Prion protein β2-α2 loop conformational landscape.

    Science.gov (United States)

    Caldarulo, Enrico; Barducci, Alessandro; Wüthrich, Kurt; Parrinello, Michele

    2017-09-05

    In transmissible spongiform encephalopathies (TSEs), which are lethal neurodegenerative diseases that affect humans and a wide range of other mammalian species, the normal "cellular" prion protein ([Formula: see text]) is transformed into amyloid aggregates representing the "scrapie form" of the protein ([Formula: see text]). Continued research on this system is of keen interest, since new information on the physiological function of [Formula: see text] in healthy organisms is emerging, as well as new data on the mechanism of the transformation of [Formula: see text] to [Formula: see text] In this paper we used two different approaches: a combination of the well-tempered ensemble (WTE) and parallel tempering (PT) schemes and metadynamics (MetaD) to characterize the conformational free-energy surface of [Formula: see text] The focus of the data analysis was on an 11-residue polypeptide segment in mouse [Formula: see text](121-231) that includes the [Formula: see text]2-[Formula: see text]2 loop of residues 167-170, for which a correlation between structure and susceptibility to prion disease has previously been described. This study includes wild-type mouse [Formula: see text] and a variant with the single-residue replacement Y169A. The resulting detailed conformational landscapes complement in an integrative manner the available experimental data on [Formula: see text], providing quantitative insights into the nature of the structural transition-related function of the [Formula: see text]2-[Formula: see text]2 loop.

  5. A surprising role for conformational entropy in protein function

    Science.gov (United States)

    Wand, A. Joshua; Moorman, Veronica R.; Harpole, Kyle W.

    2014-01-01

    Formation of high-affinity complexes is critical for the majority of enzymatic reactions involving proteins. The creation of the family of Michaelis and other intermediate complexes during catalysis clearly involves a complicated manifold of interactions that are diverse and complex. Indeed, computing the energetics of interactions between proteins and small molecule ligands using molecular structure alone remains a grand challenge. One of the most difficult contributions to the free energy of protein-ligand complexes to experimentally access is that due to changes in protein conformational entropy. Fortunately, recent advances in solution nuclear magnetic resonance (NMR) relaxation methods have enabled the use of measures-of-motion between conformational states of a protein as a proxy for conformational entropy. This review briefly summarizes the experimental approaches currently employed to characterize fast internal motion in proteins, how this information is used to gain insight into conformational entropy, what has been learned and what the future may hold for this emerging view of protein function. PMID:23478875

  6. Identification of key residues for protein conformational transition using elastic network model.

    Science.gov (United States)

    Su, Ji Guo; Xu, Xian Jin; Li, Chun Hua; Chen, Wei Zu; Wang, Cun Xin

    2011-11-07

    Proteins usually undergo conformational transitions between structurally disparate states to fulfill their functions. The large-scale allosteric conformational transitions are believed to involve some key residues that mediate the conformational movements between different regions of the protein. In the present work, a thermodynamic method based on the elastic network model is proposed to predict the key residues involved in protein conformational transitions. In our method, the key functional sites are identified as the residues whose perturbations largely influence the free energy difference between the protein states before and after transition. Two proteins, nucleotide binding domain of the heat shock protein 70 and human/rat DNA polymerase β, are used as case studies to identify the critical residues responsible for their open-closed conformational transitions. The results show that the functionally important residues mainly locate at the following regions for these two proteins: (1) the bridging point at the interface between the subdomains that control the opening and closure of the binding cleft; (2) the hinge region between different subdomains, which mediates the cooperative motions between the corresponding subdomains; and (3) the substrate binding sites. The similarity in the positions of the key residues for these two proteins may indicate a common mechanism in their conformational transitions.

  7. Frustration-guided motion planning reveals conformational transitions in proteins.

    Science.gov (United States)

    Budday, Dominik; Fonseca, Rasmus; Leyendecker, Sigrid; van den Bedem, Henry

    2017-10-01

    Proteins exist as conformational ensembles, exchanging between substates to perform their function. Advances in experimental techniques yield unprecedented access to structural snapshots of their conformational landscape. However, computationally modeling how proteins use collective motions to transition between substates is challenging owing to a rugged landscape and large energy barriers. Here, we present a new, robotics-inspired motion planning procedure called dCC-RRT that navigates the rugged landscape between substates by introducing dynamic, interatomic constraints to modulate frustration. The constraints balance non-native contacts and flexibility, and instantaneously redirect the motion towards sterically favorable conformations. On a test set of eight proteins determined in two conformations separated by, on average, 7.5 Å root mean square deviation (RMSD), our pathways reduced the Cα atom RMSD to the goal conformation by 78%, outperforming peer methods. We then applied dCC-RRT to examine how collective, small-scale motions of four side-chains in the active site of cyclophilin A propagate through the protein. dCC-RRT uncovered a spatially contiguous network of residues linked by steric interactions and collective motion connecting the active site to a recently proposed, non-canonical capsid binding site 25 Å away, rationalizing NMR and multi-temperature crystallography experiments. In all, dCC-RRT can reveal detailed, all-atom molecular mechanisms for small and large amplitude motions. Source code and binaries are freely available at https://github.com/ExcitedStates/KGS/. © 2017 Wiley Periodicals, Inc.

  8. Mussel glue protein has an open conformation.

    Science.gov (United States)

    Williams, T; Marumo, K; Waite, J H; Henkens, R W

    1989-03-01

    Both native glue protein from marine mussels and a synthetic nonhydroxylated analog were analyzed by far-uv CD under a variety of conditions. Analysis of the CD spectra using various models strongly suggest a primarily random coil structure for both forms of the protein, a fact also supported by the absence of spectral change for the glue protein upon dilution into 6 M guanidine hydrochloride. The nonhydroxylated analog, which consists of 20 repeats of the peptide sequence Ala-Lys-Pro-Ser-Tyr-Pro-Pro-Thr-Tyr-Lys, was further characterized by enzyme modification using mushroom tyrosinase. Enzymatic hydroxylation of tyrosines was found to be best fit by a model containing two rate constants, 5.6 (+/- 0.6) X 10(-3) and 7.2 (+/- 0.3) X 10(-2) min-1. At equilibrium, HPLC analysis of digests showed nearly 100% conversion of Tyr-9 and only 15 to 35% conversion of Tyr-5. The Chou and Fasman rules for predicting structure were applied to the repeat sequence listed above. The rules predict the absence of alpha helix and beta pleated sheets in the structure of this peptide. On the other hand, beta turns are predicted to be present with Tyr-5 being in the region of highest probability. These data suggest that the protein in solution has only a small amount of secondary structure.

  9. Conformational analysis of g protein-coupled receptor signaling by hydrogen/deuterium exchange mass spectrometry.

    Science.gov (United States)

    Li, Sheng; Lee, Su Youn; Chung, Ka Young

    2015-01-01

    Conformational change and protein-protein interactions are two major mechanisms of membrane protein signal transduction, including G protein-coupled receptors (GPCRs). Upon agonist binding, GPCRs change conformation, resulting in interaction with downstream signaling molecules such as G proteins. To understand the precise signaling mechanism, studies have investigated the structural mechanism of GPCR signaling using X-ray crystallography, nuclear magnetic resonance (NMR), or electron paramagnetic resonance. In addition to these techniques, hydrogen/deuterium exchange mass spectrometry (HDX-MS) has recently been used in GPCR studies. HDX-MS measures the rate at which peptide amide hydrogens exchange with deuterium in the solvent. Exposed or flexible regions have higher exchange rates and excluded or ordered regions have lower exchange rates. Therefore, HDX-MS is a useful tool for studying protein-protein interfaces and conformational changes after protein activation or protein-protein interactions. Although HDX-MS does not give high-resolution structures, it analyzes protein conformations that are difficult to study with X-ray crystallography or NMR. Furthermore, conformational information from HDX-MS can help in the crystallization of X-ray crystallography by suggesting highly flexible regions. Interactions between GPCRs and downstream signaling molecules are not easily analyzed by X-ray crystallography or NMR because of the large size of the GPCR-signaling molecule complexes, hydrophobicity, and flexibility of GPCRs. HDX-MS could be useful for analyzing the conformational mechanism of GPCR signaling. In this chapter, we discuss details of HDX-MS for analyzing GPCRs using the β2AR-G protein complex as a model system. © 2015 Elsevier Inc. All rights reserved.

  10. Dissecting Protein Configurational Entropy into Conformational and Vibrational Contributions.

    Science.gov (United States)

    Chong, Song-Ho; Ham, Sihyun

    2015-10-01

    Quantifying how the rugged nature of the underlying free-energy landscape determines the entropic cost a protein must incur upon folding and ligand binding is a challenging problem. Here, we present a novel computational approach that dissects the protein configurational entropy on the basis of the classification of protein dynamics on the landscape into two separate components: short-term vibrational dynamics related to individual free-energy wells and long-term conformational dynamics associated with transitions between wells. We apply this method to separate the configurational entropy of the protein villin headpiece subdomain into its conformational and vibrational components. We find that the change in configurational entropy upon folding is dominated by the conformational entropy despite the fact that the magnitude of the vibrational entropy is the significantly larger component in each of the folded and unfolded states, which is in accord with the previous empirical estimations. The straightforward applicability of our method to unfolded proteins promises a wide range of applications, including those related to intrinsically disordered proteins.

  11. Fluctuation Flooding Method (FFM) for accelerating conformational transitions of proteins

    Science.gov (United States)

    Harada, Ryuhei; Takano, Yu; Shigeta, Yasuteru

    2014-03-01

    A powerful conformational sampling method for accelerating structural transitions of proteins, "Fluctuation Flooding Method (FFM)," is proposed. In FFM, cycles of the following steps enhance the transitions: (i) extractions of largely fluctuating snapshots along anisotropic modes obtained from trajectories of multiple independent molecular dynamics (MD) simulations and (ii) conformational re-sampling of the snapshots via re-generations of initial velocities when re-starting MD simulations. In an application to bacteriophage T4 lysozyme, FFM successfully accelerated the open-closed transition with the 6 ns simulation starting solely from the open state, although the 1-μs canonical MD simulation failed to sample such a rare event.

  12. Conformational changes in the G protein Gs induced by the β2 adrenergic receptor

    DEFF Research Database (Denmark)

    Chung, Ka Young; Rasmussen, Søren Gøgsig Faarup; Liu, Tong

    2011-01-01

    and initiation of downstream signalling cascades. Despite a wealth of biochemical and biophysical studies on inactive and active conformations of several heterotrimeric G proteins, the molecular underpinnings of G protein activation remain elusive. To characterize this mechanism, we applied peptide amide...

  13. Monitoring Conformational Landscape of Ovine Prion Protein Monomer Using Ion Mobility Coupled to Mass Spectrometry

    Science.gov (United States)

    Van der Rest, Guillaume; Rezaei, Human; Halgand, Frédéric

    2017-02-01

    Prion protein is involved in deadly neurodegenerative diseases. Its pathogenicity is linked to its structural conversion (α-helix to β-strand transition). However, recent studies suggest that prion protein can follow a plurality of conversion pathways, which hints towards different conformers that might coexist in solution. To gain insights on the plasticity of the ovine prion protein (PrP) monomer, wild type (A136, R154, Q171), mutants and deletions of ARQ were studied by traveling wave ion mobility experiments coupled to mass spectrometry. In order to perform the analysis of a large body of data sets, we designed and evaluated the performance of a processing pipeline based on Driftscope peak detection and a homemade script for automated peak assignment, annotation, and quantification on specific multiply charged protein data. Using this approach, we showed that in the gas phase, PrPs are represented by at least three conformer families differing in both charge state distribution and collisional cross-section, in agreement with the work of Hilton et al. (2010). We also showed that this plasticity is borne both by the N- and C-terminal domains. Effect of protein concentration, pH and temperature were also assessed, showing that (1) pH does not affect conformer distributions, (2) protein concentration modifies the conformational landscape of one mutant (I208M) only, and (3) heating leads to other unfolded species and to a modification of the conformer intensity ratios.

  14. Conformational Dynamics of the Receptor Protein Galactose/Glucose Binding Protein

    Science.gov (United States)

    Messina, Troy; Talaga, David

    2006-03-01

    We have performed time-correlated single photon counting (TCSPC) anisotropy and Stokes Shift measurements on bulk solutions of galactose/glucose binding protein. Site-directed mutagenesis was used to provide a single cysteine amino acid near the sugar-binding center of the protein (glutamine 26 to cysteine -- Q26C). The cysteine was covalently labeled with the environmentally-sensitive fluorophore acrylodan, and a long-lived ruthenium complex was covalently attached to the N-terminus to provide a fluorescent reference. The TCSPC data were analyzed using global convolute-and-compare fitting routines over the entire glucose titration and temperature range to provide minimal reduced chi-squared values and the highest time resolution possible. Using a standard ligand-binding model, the resulting distributions show that the closed (ligand-bound) conformation exists even at zero glucose concentration. At 20^oC, the relative abundance of this conformation is as high as 40%. The temperature dependence of this conformational study will be discussed and related to the ligand-binding free energy surface.

  15. Conformational dependence of a protein kinase phosphate transfer reaction

    Science.gov (United States)

    Labute, Montiago; Henkelman, Graeme; Tung, Chang-Shung; Fenimore, Paul; McMahon, Ben

    2007-03-01

    Atomic motions and energetics for a phosphate transfer reaction catalyzed by the cAMP-dependent protein kinase have been calculated using plane-wave density functional theory, starting from structures of proteins crystallized in both the reactant conformation (RC) and the transition-state conformation (TC). In TC, we calculate that the reactants and products are nearly isoenergetic with a 20-kJ/mol barrier, whereas phosphate transfer is unfavorable by 120 kJ/mol in the RC, with an even higher barrier. Our results demonstrate that the phosphate transfer reaction occurs rapidly and reversibly in a particular conformation of the protein, and that the reaction can be gated by changes of a few tenths of an angstrom in the catalytic site [1]. [1] G.H. Henkelman, M.X. LaBute, C.-S. Tung, P.W. Fenimore, B.H. McMahon, Proc. Natl. Acad. Sci. USA vol. 102, no. 43:15347-15351 (2005).

  16. Conformational variability of the stationary phase survival protein E from Xylella fastidiosa revealed by X-ray crystallography, small-angle X-ray scattering studies, and normal mode analysis.

    Science.gov (United States)

    Machado, Agnes Thiane Pereira; Fonseca, Emanuella Maria Barreto; Reis, Marcelo Augusto Dos; Saraiva, Antonio Marcos; Santos, Clelton Aparecido Dos; de Toledo, Marcelo Augusto Szymanski; Polikarpov, Igor; de Souza, Anete Pereira; Aparicio, Ricardo; Iulek, Jorge

    2017-10-01

    Xylella fastidiosa is a xylem-limited bacterium that infects a wide variety of plants. Stationary phase survival protein E is classified as a nucleotidase, which is expressed when bacterial cells are in the stationary growth phase and subjected to environmental stresses. Here, we report four refined X-ray structures of this protein from X. fastidiosa in four different crystal forms in the presence and/or absence of the substrate 3'-AMP. In all chains, the conserved loop verified in family members assumes a closed conformation in either condition. Therefore, the enzymatic mechanism for the target protein might be different of its homologs. Two crystal forms exhibit two monomers whereas the other two show four monomers in the asymmetric unit. While the biological unit has been characterized as a tetramer, differences of their sizes and symmetry are remarkable. Four conformers identified by Small-Angle X-ray Scattering (SAXS) in a ligand-free solution are related to the low frequency normal modes of the crystallographic structures associated with rigid body-like protomer arrangements responsible for the longitudinal and symmetric adjustments between tetramers. When the substrate is present in solution, only two conformers are selected. The most prominent conformer for each case is associated to a normal mode able to elongate the protein by moving apart two dimers. To our knowledge, this work was the first investigation based on the normal modes that analyzed the quaternary structure variability for an enzyme of the SurE family followed by crystallography and SAXS validation. The combined results raise new directions to study allosteric features of XfSurE protein. © 2017 Wiley Periodicals, Inc.

  17. Visualization of SV2A conformations in situ by the use of Protein Tomography

    International Nuclear Information System (INIS)

    Lynch, Berkley A.; Matagne, Alain; Braennstroem, Annika; Euler, Anne von; Jansson, Magnus; Hauzenberger, Elenor; Soederhaell, J. Arvid

    2008-01-01

    The synaptic vesicle protein 2A (SV2A), the brain-binding site of the anti-epileptic drug levetiracetam (LEV), has been characterized by Protein Tomography TM . We identified two major conformations of SV2A in mouse brain tissue: first, a compact, funnel-structure with a pore-like opening towards the cytoplasm; second, a more open, V-shaped structure with a cleft-like opening towards the intravesicular space. The large differences between these conformations suggest a high degree of flexibility and support a valve-like mechanism consistent with the postulated transporter role of SV2A. These two conformations are represented both in samples treated with LEV, and in saline-treated samples, which indicates that LEV binding does not cause a large-scale conformational change of SV2A, or lock a specific conformational state of the protein. This study provides the first direct structural data on SV2A, and supports a transporter function suggested by sequence homology to MFS class of transporter proteins

  18. Driving Calmodulin Protein towards Conformational Shift by Changing Ionization States of Select Residues

    International Nuclear Information System (INIS)

    Negi, Sunita; Atilgan, Ali Rana; Atilgan, Canan

    2012-01-01

    Proteins are complex systems made up of many conformational sub-states which are mainly determined by the folded structure. External factors such as solvent type, temperature, pH and ionic strength play a very important role in the conformations sampled by proteins. Here we study the conformational multiplicity of calmodulin (CaM) which is a protein that plays an important role in calcium signaling pathways in the eukaryotic cells. CaM can bind to a variety of other proteins or small organic compounds, and mediates different physiological processes by activating various enzymes. Binding of calcium ions and proteins or small organic molecules to CaM induces large conformational changes that are distinct to each interacting partner. In particular, we discuss the effect of pH variation on the conformations of CaM. By using the pKa values of the charged residues as a basis to assign protonation states, the conformational changes induced in CaM by reducing the pH are studied by molecular dynamics simulations. Our current view suggests that at high pH, barrier crossing to the compact form is prevented by repulsive electrostatic interactions between the two lobes. At reduced pH, not only is barrier crossing facilitated by protonation of residues, but also conformations which are on average more compact are attained. The latter are in accordance with the fluorescence resonance energy transfer experiment results of other workers. The key events leading to the conformational change from the open to the compact conformation are (i) formation of a salt bridge between the N-lobe and the linker, stabilizing their relative motions, (ii) bending of the C-lobe towards the N-lobe, leading to a lowering of the interaction energy between the two-lobes, (iii) formation of a hydrophobic patch between the two lobes, further stabilizing the bent conformation by reducing the entropic cost of the compact form, (iv) sharing of a Ca +2 ion between the two lobes.

  19. Driving Calmodulin Protein towards Conformational Shift by Changing Ionization States of Select Residues

    Science.gov (United States)

    Negi, Sunita; Rana Atilgan, Ali; Atilgan, Canan

    2012-12-01

    Proteins are complex systems made up of many conformational sub-states which are mainly determined by the folded structure. External factors such as solvent type, temperature, pH and ionic strength play a very important role in the conformations sampled by proteins. Here we study the conformational multiplicity of calmodulin (CaM) which is a protein that plays an important role in calcium signaling pathways in the eukaryotic cells. CaM can bind to a variety of other proteins or small organic compounds, and mediates different physiological processes by activating various enzymes. Binding of calcium ions and proteins or small organic molecules to CaM induces large conformational changes that are distinct to each interacting partner. In particular, we discuss the effect of pH variation on the conformations of CaM. By using the pKa values of the charged residues as a basis to assign protonation states, the conformational changes induced in CaM by reducing the pH are studied by molecular dynamics simulations. Our current view suggests that at high pH, barrier crossing to the compact form is prevented by repulsive electrostatic interactions between the two lobes. At reduced pH, not only is barrier crossing facilitated by protonation of residues, but also conformations which are on average more compact are attained. The latter are in accordance with the fluorescence resonance energy transfer experiment results of other workers. The key events leading to the conformational change from the open to the compact conformation are (i) formation of a salt bridge between the N-lobe and the linker, stabilizing their relative motions, (ii) bending of the C-lobe towards the N-lobe, leading to a lowering of the interaction energy between the two-lobes, (iii) formation of a hydrophobic patch between the two lobes, further stabilizing the bent conformation by reducing the entropic cost of the compact form, (iv) sharing of a Ca+2 ion between the two lobes.

  20. Limited proteolysis combined with isotope labeling and quantitative LC-MALDI MS for monitoring protein conformational changes: a study on calcium-binding sites of cardiac Troponin C

    International Nuclear Information System (INIS)

    McDonald, Chris; Li Liang

    2005-01-01

    Studies of protein-protein and protein-ligand interactions are important for understanding biological functions of proteins. A new technique based on the partial proteolysis of proteins combined with quantitative mass spectrometry is developed as a means of tracking structural changes after the formation of a protein-ligand complex. In this technique, a protein of interest with and without the binding of a ligand is digested with an enzyme to generate a set of peptides, followed by separation of the peptides by liquid chromatography. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is used to identify chromatographically separated peptides, and locate their sequence alignments in the parent protein. Using an isotopically labeled protein as a sample against an unlabeled protein standard, quantitative information can be gathered. This overcomes the inherent lack of quantitative capability of MALDI MS. The utility of the technique to investigate protein-ligand interactions is demonstrated in a model system involving calcium binding to cardiac Troponin C (cTnC). Using this technique, the general location of the three calcium-binding sites of cTnC can be determined by using several different enzymes to generate overlapping peptide maps of cTnC

  1. Study of conformational changes and protein aggregation of bovine serum albumin in presence of Sb(III) and Sb(V).

    Science.gov (United States)

    Verdugo, Marcelo; Ruiz Encinar, Jorge; Costa-Fernández, José Manuel; Menendez-Miranda, Mario; Bouzas-Ramos, Diego; Bravo, Manuel; Quiroz, Waldo

    2017-01-01

    Antimony is a metalloid that affects biological functions in humans due to a mechanism still not understood. There is no doubt that the toxicity and physicochemical properties of Sb are strongly related with its chemical state. In this paper, the interaction between Sb(III) and Sb(V) with bovine serum albumin (BSA) was investigated in vitro by fluorescence spectroscopy, and circular dichroism (CD) under simulated physiological conditions. Moreover, the coupling of the separation technique, asymmetric flow field-flow fractionation, with elemental mass spectrometry to understand the interaction of Sb(V) and Sb(III) with the BSA was also used. Our results showed a different behaviour of Sb(III) vs. Sb(V) regarding their effects on the interaction with the BSA. The effects in terms of protein aggregates and conformational changes were higher in the presence of Sb(III) compared to Sb(V) which may explain the differences in toxicity between both Sb species in vivo. Obtained results demonstrated the protective effect of GSH that modifies the degree of interaction between the Sb species with BSA. Interestingly, in our experiments it was possible to detect an interaction between BSA and Sb species, which may be related with the presence of labile complex between the Sb and a protein for the first time.

  2. Roles of electrostatics and conformation in protein-crystal interactions.

    Directory of Open Access Journals (Sweden)

    Paul V Azzopardi

    2010-02-01

    Full Text Available In vitro studies have shown that the phosphoprotein osteopontin (OPN inhibits the nucleation and growth of hydroxyapatite (HA and other biominerals. In vivo, OPN is believed to prevent the calcification of soft tissues. However, the nature of the interaction between OPN and HA is not understood. In the computational part of the present study, we used molecular dynamics simulations to predict the adsorption of 19 peptides, each 16 amino acids long and collectively covering the entire sequence of OPN, to the {100} face of HA. This analysis showed that there is an inverse relationship between predicted strength of adsorption and peptide isoelectric point (P<0.0001. Analysis of the OPN sequence by PONDR (Predictor of Naturally Disordered Regions indicated that OPN sequences predicted to adsorb well to HA are highly disordered. In the experimental part of the study, we synthesized phosphorylated and non-phosphorylated peptides corresponding to OPN sequences 65-80 (pSHDHMDDDDDDDDDGD and 220-235 (pSHEpSTEQSDAIDpSAEK. In agreement with the PONDR analysis, these were shown by circular dichroism spectroscopy to be largely disordered. A constant-composition/seeded growth assay was used to assess the HA-inhibiting potencies of the synthetic peptides. The phosphorylated versions of OPN65-80 (IC(50 = 1.93 microg/ml and OPN220-235 (IC(50 = 1.48 microg/ml are potent inhibitors of HA growth, as is the nonphosphorylated version of OPN65-80 (IC(50 = 2.97 microg/ml; the nonphosphorylated version of OPN220-235 has no measurable inhibitory activity. These findings suggest that the adsorption of acidic proteins to Ca2+-rich crystal faces of biominerals is governed by electrostatics and is facilitated by conformational flexibility of the polypeptide chain.

  3. Anion induced conformational preference of Cα NN motif residues in functional proteins.

    Science.gov (United States)

    Patra, Piya; Ghosh, Mahua; Banerjee, Raja; Chakrabarti, Jaydeb

    2017-12-01

    Among different ligand binding motifs, anion binding C α NN motif consisting of peptide backbone atoms of three consecutive residues are observed to be important for recognition of free anions, like sulphate or biphosphate and participate in different key functions. Here we study the interaction of sulphate and biphosphate with C α NN motif present in different proteins. Instead of total protein, a peptide fragment has been studied keeping C α NN motif flanked in between other residues. We use classical force field based molecular dynamics simulations to understand the stability of this motif. Our data indicate fluctuations in conformational preferences of the motif residues in absence of the anion. The anion gives stability to one of these conformations. However, the anion induced conformational preferences are highly sequence dependent and specific to the type of anion. In particular, the polar residues are more favourable compared to the other residues for recognising the anion. © 2017 Wiley Periodicals, Inc.

  4. The role of metals in protein conformational disorders - The case of prion protein and Aβ -peptide

    International Nuclear Information System (INIS)

    De Santis, E; Minicozzi, V; Morante, S; Rossi, G C; Stellato, F

    2016-01-01

    Protein conformational disorders are members of a vast class of pathologies in which endogenous proteins or peptides undergo a misfolding process by switching from the physiological soluble configuration to a pathological fibrillar insoluble state. An important, but not yet fully elucidated, role in the process appears to be played by transition metal ions, mainly copper and zinc. X-ray absorption spectroscopy is one of the most suitable techniques for the structural characterization of biological molecules in complex with metal. Owing to its chemical selectivity and sensitivity to the local atomic geometry around the absorber, it can be successfully used to study the environment of metal ions in complex with proteins and peptides in physiological conditions. In this paper we present X-ray absorption spectroscopy studies of the metal ions coordination modes in systems where metals are complexed with specific amyloidogenic proteins and peptides. In particular, we show results concerning the Amyloid β peptide, that is involved in Alzheimer's disease, and the Prion protein, that is responsible for the Transmissible Spongiform Encephalopathy. Our findings suggest that the copper and zinc ions may play a crucial role in the aggregation and fibril formation process of these two biomolecules. Elucidating this kind of interaction could be a key preliminary step before any viable therapy can be conceived or designed. (paper)

  5. The role of metals in protein conformational disorders - The case of prion protein and Aβ -peptide

    Science.gov (United States)

    De Santis, E.; Minicozzi, V.; Morante, S.; Rossi, G. C.; Stellato, F.

    2016-02-01

    Protein conformational disorders are members of a vast class of pathologies in which endogenous proteins or peptides undergo a misfolding process by switching from the physiological soluble configuration to a pathological fibrillar insoluble state. An important, but not yet fully elucidated, role in the process appears to be played by transition metal ions, mainly copper and zinc. X-ray absorption spectroscopy is one of the most suitable techniques for the structural characterization of biological molecules in complex with metal. Owing to its chemical selectivity and sensitivity to the local atomic geometry around the absorber, it can be successfully used to study the environment of metal ions in complex with proteins and peptides in physiological conditions. In this paper we present X-ray absorption spectroscopy studies of the metal ions coordination modes in systems where metals are complexed with specific amyloidogenic proteins and peptides. In particular, we show results concerning the Amyloid β peptide, that is involved in Alzheimer's disease, and the Prion protein, that is responsible for the Transmissible Spongiform Encephalopathy. Our findings suggest that the copper and zinc ions may play a crucial role in the aggregation and fibril formation process of these two biomolecules. Elucidating this kind of interaction could be a key preliminary step before any viable therapy can be conceived or designed.

  6. De novo protein structure prediction by dynamic fragment assembly and conformational space annealing.

    Science.gov (United States)

    Lee, Juyong; Lee, Jinhyuk; Sasaki, Takeshi N; Sasai, Masaki; Seok, Chaok; Lee, Jooyoung

    2011-08-01

    Ab initio protein structure prediction is a challenging problem that requires both an accurate energetic representation of a protein structure and an efficient conformational sampling method for successful protein modeling. In this article, we present an ab initio structure prediction method which combines a recently suggested novel way of fragment assembly, dynamic fragment assembly (DFA) and conformational space annealing (CSA) algorithm. In DFA, model structures are scored by continuous functions constructed based on short- and long-range structural restraint information from a fragment library. Here, DFA is represented by the full-atom model by CHARMM with the addition of the empirical potential of DFIRE. The relative contributions between various energy terms are optimized using linear programming. The conformational sampling was carried out with CSA algorithm, which can find low energy conformations more efficiently than simulated annealing used in the existing DFA study. The newly introduced DFA energy function and CSA sampling algorithm are implemented into CHARMM. Test results on 30 small single-domain proteins and 13 template-free modeling targets of the 8th Critical Assessment of protein Structure Prediction show that the current method provides comparable and complementary prediction results to existing top methods. Copyright © 2011 Wiley-Liss, Inc.

  7. A unified conformational selection and induced fit approach to protein-peptide docking.

    Directory of Open Access Journals (Sweden)

    Mikael Trellet

    Full Text Available Protein-peptide interactions are vital for the cell. They mediate, inhibit or serve as structural components in nearly 40% of all macromolecular interactions, and are often associated with diseases, making them interesting leads for protein drug design. In recent years, large-scale technologies have enabled exhaustive studies on the peptide recognition preferences for a number of peptide-binding domain families. Yet, the paucity of data regarding their molecular binding mechanisms together with their inherent flexibility makes the structural prediction of protein-peptide interactions very challenging. This leaves flexible docking as one of the few amenable computational techniques to model these complexes. We present here an ensemble, flexible protein-peptide docking protocol that combines conformational selection and induced fit mechanisms. Starting from an ensemble of three peptide conformations (extended, a-helix, polyproline-II, flexible docking with HADDOCK generates 79.4% of high quality models for bound/unbound and 69.4% for unbound/unbound docking when tested against the largest protein-peptide complexes benchmark dataset available to date. Conformational selection at the rigid-body docking stage successfully recovers the most relevant conformation for a given protein-peptide complex and the subsequent flexible refinement further improves the interface by up to 4.5 Å interface RMSD. Cluster-based scoring of the models results in a selection of near-native solutions in the top three for ∼75% of the successfully predicted cases. This unified conformational selection and induced fit approach to protein-peptide docking should open the route to the modeling of challenging systems such as disorder-order transitions taking place upon binding, significantly expanding the applicability limit of biomolecular interaction modeling by docking.

  8. Conformational disorder in folded and intrinsically disordered proteins from nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Salmon, Loic

    2010-01-01

    Biological macromolecules are, by essence, dynamical systems. While the importance of this flexibility is nowadays well established, the accurate characterization of the conformational disorder of these systems remains an important challenge. Nuclear magnetic resonance spectroscopy is a unique tool to probe these motions at atomic level, through the analysis of spin relaxation or residual dipolar couplings. The latter allows all motions occurring at timescales faster than the millisecond to be investigated, including physiologically important timescales. The information presents in those couplings is interpreted here using mainly analytical approaches in order to quantify the amounts of dynamics present in folded protein, to determine the direction of those motions and to obtain structural information within this conformational disorder. These analytical approaches are complemented by numerical methods, that allowed the observation of phenomena from a different point of view or the investigation of other systems such as intrinsically disordered proteins. All of these studies demonstrate an important complementarity between structural order and conformational disorder. (author)

  9. Protein Loop Structure Prediction Using Conformational Space Annealing.

    Science.gov (United States)

    Heo, Seungryong; Lee, Juyong; Joo, Keehyoung; Shin, Hang-Cheol; Lee, Jooyoung

    2017-05-22

    We have developed a protein loop structure prediction method by combining a new energy function, which we call E PLM (energy for protein loop modeling), with the conformational space annealing (CSA) global optimization algorithm. The energy function includes stereochemistry, dynamic fragment assembly, distance-scaled finite ideal gas reference (DFIRE), and generalized orientation- and distance-dependent terms. For the conformational search of loop structures, we used the CSA algorithm, which has been quite successful in dealing with various hard global optimization problems. We assessed the performance of E PLM with two widely used loop-decoy sets, Jacobson and RAPPER, and compared the results against the DFIRE potential. The accuracy of model selection from a pool of loop decoys as well as de novo loop modeling starting from randomly generated structures was examined separately. For the selection of a nativelike structure from a decoy set, E PLM was more accurate than DFIRE in the case of the Jacobson set and had similar accuracy in the case of the RAPPER set. In terms of sampling more nativelike loop structures, E PLM outperformed E DFIRE for both decoy sets. This new approach equipped with E PLM and CSA can serve as the state-of-the-art de novo loop modeling method.

  10. Generating intrinsically disordered protein conformational ensembles from a Markov chain

    Science.gov (United States)

    Cukier, Robert I.

    2018-03-01

    Intrinsically disordered proteins (IDPs) sample a diverse conformational space. They are important to signaling and regulatory pathways in cells. An entropy penalty must be payed when an IDP becomes ordered upon interaction with another protein or a ligand. Thus, the degree of conformational disorder of an IDP is of interest. We create a dichotomic Markov model that can explore entropic features of an IDP. The Markov condition introduces local (neighbor residues in a protein sequence) rotamer dependences that arise from van der Waals and other chemical constraints. A protein sequence of length N is characterized by its (information) entropy and mutual information, MIMC, the latter providing a measure of the dependence among the random variables describing the rotamer probabilities of the residues that comprise the sequence. For a Markov chain, the MIMC is proportional to the pair mutual information MI which depends on the singlet and pair probabilities of neighbor residue rotamer sampling. All 2N sequence states are generated, along with their probabilities, and contrasted with the probabilities under the assumption of independent residues. An efficient method to generate realizations of the chain is also provided. The chain entropy, MIMC, and state probabilities provide the ingredients to distinguish different scenarios using the terminologies: MoRF (molecular recognition feature), not-MoRF, and not-IDP. A MoRF corresponds to large entropy and large MIMC (strong dependence among the residues' rotamer sampling), a not-MoRF corresponds to large entropy but small MIMC, and not-IDP corresponds to low entropy irrespective of the MIMC. We show that MorFs are most appropriate as descriptors of IDPs. They provide a reasonable number of high-population states that reflect the dependences between neighbor residues, thus classifying them as IDPs, yet without very large entropy that might lead to a too high entropy penalty.

  11. [Interconnection between architecture of protein globule and disposition of conformational conservative oligopeptides in proteins from one protein family].

    Science.gov (United States)

    Batianovskiĭ, A V; Filatov, I V; Namiot, V A; Esipova, N G; Volotovskiĭ, I D

    2012-01-01

    It was shown that selective interactions between helical segments of macromolecules can realize in globular proteins in the segments characterized by the same periodicities of charge distribution i.e. between conformationally conservative oligopeptides. It was found that in the macromolecules of alpha-helical proteins conformationally conservative oligopeptides are disposed at a distance being characteristic of direct interactions. For representatives of many structural families of alpha-type proteins specific disposition of conformationally conservative segments is observed. This disposition is inherent to a particular structural family. Disposition of conformationally conservative segments is not related to homology of the amino acid sequence but reflects peculiarities of native 3D-architectures of protein globules.

  12. Conformational dynamics of ATP/Mg:ATP in motor proteins via data mining and molecular simulation

    Science.gov (United States)

    Bojovschi, A.; Liu, Ming S.; Sadus, Richard J.

    2012-08-01

    The conformational diversity of ATP/Mg:ATP in motor proteins was investigated using molecular dynamics and data mining. Adenosine triphosphate (ATP) conformations were found to be constrained mostly by inter cavity motifs in the motor proteins. It is demonstrated that ATP favors extended conformations in the tight pockets of motor proteins such as F1-ATPase and actin whereas compact structures are favored in motor proteins such as RNA polymerase and DNA helicase. The incorporation of Mg2+ leads to increased flexibility of ATP molecules. The differences in the conformational dynamics of ATP/Mg:ATP in various motor proteins was quantified by the radius of gyration. The relationship between the simulation results and those obtained by data mining of motor proteins available in the protein data bank is analyzed. The data mining analysis of motor proteins supports the conformational diversity of the phosphate group of ATP obtained computationally.

  13. Structural investigation of ribonuclease A conformational preferences using high pressure protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Kurpiewska, Katarzyna, E-mail: kurpiews@chemia.uj.edu.pl [Jagiellonian University, Faculty of Chemistry, Department of Crystal Chemistry and Crystal Physics, Protein Crystallography Group, Ingardena 3, 30-060 Kraków (Poland); Dziubek, Kamil; Katrusiak, Andrzej [Adam Mickiewicz University, Faculty of Chemistry, Department of Materials Chemistry, Umultowska 89b, 61-61 Poznań (Poland); Font, Josep [School of Medical Science, University of Sydney, NSW 2006 (Australia); Ribò, Marc; Vilanova, Maria [Universitat de Girona, Laboratorid’Enginyeria de Proteïnes, Departament de Biologia, Facultat de Ciències, Campus de Montilivi, 17071 Girona (Spain); Lewiński, Krzysztof [Jagiellonian University, Faculty of Chemistry, Department of Crystal Chemistry and Crystal Physics, Protein Crystallography Group, Ingardena 3, 30-060 Kraków (Poland)

    2016-04-01

    Highlights: • A unique crystallographic studies of wild-type and mutated form of the same protein under high pressure. • Compressibility of RNase A molecule is significantly affected by a single amino acid substitution. • High pressure protein crystallography helps understanding protein flexibility and identify conformational substrates. - Abstract: Hydrostatic pressure in range 0.1–1.5 GPa is used to modify biological system behaviour mostly in biophysical studies of proteins in solution. Due to specific influence on the system equilibrium high pressure can act as a filter that enables to identify and investigate higher energy protein conformers. The idea of the presented experiments is to examine the behaviour of RNase A molecule under high pressure before and after introduction of destabilizing mutation. For the first time crystal structures of wild-type bovine pancreatic ribonuclease A and its markedly less stable variant modified at position Ile106 were determined at different pressures. X-ray diffraction experiments at high pressure showed that the secondary structure of RNase A is well preserved even beyond 0.67 GPa at room temperature. Detailed structural analysis of ribonuclease A conformation observed under high pressure revealed that pressure influences hydrogen bonds pattern, cavity size and packing of molecule.

  14. Structural investigation of ribonuclease A conformational preferences using high pressure protein crystallography

    International Nuclear Information System (INIS)

    Kurpiewska, Katarzyna; Dziubek, Kamil; Katrusiak, Andrzej; Font, Josep; Ribò, Marc; Vilanova, Maria; Lewiński, Krzysztof

    2016-01-01

    Highlights: • A unique crystallographic studies of wild-type and mutated form of the same protein under high pressure. • Compressibility of RNase A molecule is significantly affected by a single amino acid substitution. • High pressure protein crystallography helps understanding protein flexibility and identify conformational substrates. - Abstract: Hydrostatic pressure in range 0.1–1.5 GPa is used to modify biological system behaviour mostly in biophysical studies of proteins in solution. Due to specific influence on the system equilibrium high pressure can act as a filter that enables to identify and investigate higher energy protein conformers. The idea of the presented experiments is to examine the behaviour of RNase A molecule under high pressure before and after introduction of destabilizing mutation. For the first time crystal structures of wild-type bovine pancreatic ribonuclease A and its markedly less stable variant modified at position Ile106 were determined at different pressures. X-ray diffraction experiments at high pressure showed that the secondary structure of RNase A is well preserved even beyond 0.67 GPa at room temperature. Detailed structural analysis of ribonuclease A conformation observed under high pressure revealed that pressure influences hydrogen bonds pattern, cavity size and packing of molecule.

  15. Detergent-associated solution conformations of helical and beta-barrel membrane proteins.

    Science.gov (United States)

    Mo, Yiming; Lee, Byung-Kwon; Ankner, John F; Becker, Jeffrey M; Heller, William T

    2008-10-23

    Membrane proteins present major challenges for structural biology. In particular, the production of suitable crystals for high-resolution structural determination continues to be a significant roadblock for developing an atomic-level understanding of these vital cellular systems. The use of detergents for extracting membrane proteins from the native membrane for either crystallization or reconstitution into model lipid membranes for further study is assumed to leave the protein with the proper fold with a belt of detergent encompassing the membrane-spanning segments of the structure. Small-angle X-ray scattering was used to probe the detergent-associated solution conformations of three membrane proteins, namely bacteriorhodopsin (BR), the Ste2p G-protein coupled receptor from Saccharomyces cerevisiae, and the Escherichia coli porin OmpF. The results demonstrate that, contrary to the traditional model of a detergent-associated membrane protein, the helical proteins BR and Ste2p are not in the expected, compact conformation and associated with detergent micelles, while the beta-barrel OmpF is indeed embedded in a disk-like micelle in a properly folded state. The comparison provided by the BR and Ste2p, both members of the 7TM family of helical membrane proteins, further suggests that the interhelical interactions between the transmembrane helices of the two proteins differ, such that BR, like other rhodopsins, can properly refold to crystallize, while Ste2p continues to prove resistant to crystallization from an initially detergent-associated state.

  16. Microscopic insights into the NMR relaxation based protein conformational entropy meter

    Science.gov (United States)

    Kasinath, Vignesh; Sharp, Kim A.; Wand, A. Joshua

    2013-01-01

    Conformational entropy is a potentially important thermodynamic parameter contributing to protein function. Quantitative measures of conformational entropy are necessary for an understanding of its role but have been difficult to obtain. An empirical method that utilizes changes in conformational dynamics as a proxy for changes in conformational entropy has recently been introduced. Here we probe the microscopic origins of the link between conformational dynamics and conformational entropy using molecular dynamics simulations. Simulation of seven pro! teins gave an excellent correlation with measures of side-chain motion derived from NMR relaxation. The simulations show that the motion of methyl-bearing side-chains are sufficiently coupled to that of other side chains to serve as excellent reporters of the overall side-chain conformational entropy. These results tend to validate the use of experimentally accessible measures of methyl motion - the NMR-derived generalized order parameters - as a proxy from which to derive changes in protein conformational entropy. PMID:24007504

  17. Relation between Protein Intrinsic Normal Mode Weights and Pre-Existing Conformer Populations.

    Science.gov (United States)

    Ozgur, Beytullah; Ozdemir, E Sila; Gursoy, Attila; Keskin, Ozlem

    2017-04-20

    Intrinsic fluctuations of a protein enable it to sample a large repertoire of conformers including the open and closed forms. These distinct forms of the protein called conformational substates pre-exist together in equilibrium as an ensemble independent from its ligands. The role of ligand might be simply to alter the equilibrium toward the most appropriate form for binding. Normal mode analysis is proved to be useful in identifying the directions of conformational changes between substates. In this study, we demonstrate that the ratios of normalized weights of a few normal modes driving the protein between its substates can give insights about the ratios of kinetic conversion rates of the substates, although a direct relation between the eigenvalues and kinetic conversion rates or populations of each substate could not be observed. The correlation between the normalized mode weight ratios and the kinetic rate ratios is around 83% on a set of 11 non-enzyme proteins and around 59% on a set of 17 enzymes. The results are suggestive that mode motions carry intrinsic relations with thermodynamics and kinetics of the proteins.

  18. Incorporation of protein flexibility and conformational energy penalties in docking screens to improve ligand discovery

    Science.gov (United States)

    Fischer, Marcus; Coleman, Ryan G.; Fraser, James S.; Shoichet, Brian K.

    2014-07-01

    Proteins fluctuate between alternative conformations, which presents a challenge for ligand discovery because such flexibility is difficult to treat computationally owing to problems with conformational sampling and energy weighting. Here we describe a flexible docking method that samples and weights protein conformations using experimentally derived conformations as a guide. The crystallographically refined occupancies of these conformations, which are observable in an apo receptor structure, define energy penalties for docking. In a large prospective library screen, we identified new ligands that target specific receptor conformations of a cavity in cytochrome c peroxidase, and we confirm both ligand pose and associated receptor conformation predictions by crystallography. The inclusion of receptor flexibility led to ligands with new chemotypes and physical properties. By exploiting experimental measures of loop and side-chain flexibility, this method can be extended to the discovery of new ligands for hundreds of targets in the Protein Data Bank for which similar experimental information is available.

  19. The role of PEG conformation in mixed layers: from protein corona substrate to steric stabilization avoiding protein adsorption

    Directory of Open Access Journals (Sweden)

    Joan Comenge

    2015-03-01

    Full Text Available Although nanoparticles (NPs have been traditionally modified with a single ligand layer, mixture of ligands might help to combine different functionalities and to further engineer the NP surface. A detailed study of the competition between an alkanethiol (11-mercaptoundecanoic acid and SH-PEG for the surface of AuNPs and the resultant behaviors of this model nanoconjugate is presented here. As a result, the physicochemical properties of these conjugates can be progressively tuned by controlling the composition and especially the conformation of the mixed monolayer. This has implications in the physiological stability. The controlled changes on the SH-PEG conformation rather than its concentration induce a change in the stabilization mechanism from electrostatic repulsion to steric hindrance, which changes the biological fate of NPs. Importantly, the adsorption of proteins on the conjugates can be tailored by tuning the composition and conformation of the mixed layer.

  20. Mechanisms of protein misfolding in conformational lung diseases.

    LENUS (Irish Health Repository)

    McElvaney, N G

    2012-08-01

    Genetic or environmentally-induced alterations in protein structure interfere with the correct folding, assembly and trafficking of proteins. In the lung the expression of misfolded proteins can induce a variety of pathogenetic effects. Cystic fibrosis (CF) and alpha-1 antitrypsin (AAT) deficiency are two major clinically relevant pulmonary disorders associated with protein misfolding. Both are genetic diseases the primary causes of which are expression of mutant alleles of the cystic fibrosis transmembrane conductance regulator (CFTR) and SERPINA1, respectively. The most common and best studied mutant forms of CFTR and AAT are ΔF508 CFTR and the Glu342Lys mutant of AAT called ZAAT, respectively. Non-genetic mechanisms can also damage protein structure and induce protein misfolding in the lung. Cigarette-smoke contains oxidants and other factors that can modify a protein\\'s structure, and is one of the most significant environmental causes of protein damage within the lung. Herein we describe the mechanisms controlling the folding of wild type and mutant versions of CFTR and AAT proteins, and explore the consequences of cigarette-smoke-induced effects on the protein folding machinery in the lung.

  1. Conformational variation of proteins at room temperature is not dominated by radiation damage

    International Nuclear Information System (INIS)

    Russi, Silvia; González, Ana; Kenner, Lillian R.; Keedy, Daniel A.; Fraser, James S.; Bedem, Henry van den

    2017-01-01

    Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature have not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins (T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 10 7 Gy at 100 K and 10 5 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. Lastly, this analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation

  2. Conformational changes in acetylcholine binding protein investigated by temperature accelerated molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Zeynab Mohammad Hosseini Naveh

    Full Text Available Despite the large number of studies available on nicotinic acetylcholine receptors, a complete account of the mechanistic aspects of their gating transition in response to ligand binding still remains elusive. As a first step toward dissecting the transition mechanism by accelerated sampling techniques, we study the ligand-induced conformational changes of the acetylcholine binding protein (AChBP, a widely accepted model for the full receptor extracellular domain. Using unbiased Molecular Dynamics (MD and Temperature Accelerated Molecular Dynamics (TAMD simulations we investigate the AChBP transition between the apo and the agonist-bound state. In long standard MD simulations, both conformations of the native protein are stable, while the agonist-bound structure evolves toward the apo one if the orientation of few key sidechains in the orthosteric cavity is modified. Conversely, TAMD simulations initiated from the native conformations are able to produce the spontaneous transition. With respect to the modified conformations, TAMD accelerates the transition by at least a factor 10. The analysis of some specific residue-residue interactions points out that the transition mechanism is based on the disruption/formation of few key hydrogen bonds. Finally, while early events of ligand dissociation are observed already in standard MD, TAMD accelerates the ligand detachment and, at the highest TAMD effective temperature, it is able to produce a complete dissociation path in one AChBP subunit.

  3. Lipid Regulated Intramolecular Conformational Dynamics of SNARE-Protein Ykt6

    Science.gov (United States)

    Dai, Yawei; Seeger, Markus; Weng, Jingwei; Song, Song; Wang, Wenning; Tan, Yan-Wen

    2016-08-01

    Cellular informational and metabolic processes are propagated with specific membrane fusions governed by soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNARE). SNARE protein Ykt6 is highly expressed in brain neurons and plays a critical role in the membrane-trafficking process. Studies suggested that Ykt6 undergoes a conformational change at the interface between its longin domain and the SNARE core. In this work, we study the conformational state distributions and dynamics of rat Ykt6 by means of single-molecule Förster Resonance Energy Transfer (smFRET) and Fluorescence Cross-Correlation Spectroscopy (FCCS). We observed that intramolecular conformational dynamics between longin domain and SNARE core occurred at the timescale ~200 μs. Furthermore, this dynamics can be regulated and even eliminated by the presence of lipid dodecylphoshpocholine (DPC). Our molecular dynamic (MD) simulations have shown that, the SNARE core exhibits a flexible structure while the longin domain retains relatively stable in apo state. Combining single molecule experiments and theoretical MD simulations, we are the first to provide a quantitative dynamics of Ykt6 and explain the functional conformational change from a qualitative point of view.

  4. Self Organizing Maps to efficiently cluster and functionally interpret protein conformational ensembles

    Directory of Open Access Journals (Sweden)

    Fabio Stella

    2013-09-01

    Full Text Available An approach that combines Self-Organizing maps, hierarchical clustering and network components is presented, aimed at comparing protein conformational ensembles obtained from multiple Molecular Dynamic simulations. As a first result the original ensembles can be summarized by using only the representative conformations of the clusters obtained. In addition the network components analysis allows to discover and interpret the dynamic behavior of the conformations won by each neuron. The results showed the ability of this approach to efficiently derive a functional interpretation of the protein dynamics described by the original conformational ensemble, highlighting its potential as a support for protein engineering.

  5. Globular conformation of some ribosomal proteins in solution

    International Nuclear Information System (INIS)

    Serdyuk, I.N.; Spirin, A.S.

    1978-01-01

    The possibility that such RNA-binding proteins of the 30 S subparticle as S4, S7, S8 and S16 exist in the form of compact globules in solution has been explored experimentally. These proteins have been studied in D 2 O solution by neutron scattering to measure their radii of gyration. This type of radiation using D 2 O as a solvent provides the maximum 'contrast', that is the maximum difference between the scattering of the protein and the solvent. It allowed measurements to be made using protein at <= 1.5 mg/ml. The radii of gyration for the ribosomal proteins S4, S7, S8 and S16 were found to be relatively small corresponding to the radii of gyration of compact globular proteins of the same molecular weights. (Auth.)

  6. Molecular dynamics simulations of conformation changes of HIV-1 regulatory protein on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Daohui; Li, Libo; He, Daohang; Zhou, Jian, E-mail: jianzhou@scut.edu.cn

    2016-07-30

    Graphical abstract: Preferential adsorption of Vpr13-33 on graphene accompanied by early conformational change from α-helix to β-sheet structures was observed by molecular simulations. This work presents the molecular mechanism of graphene-induced peptide conformational alteration and sheds light on developing graphene-based materials to inhibit HIV. - Highlights: • Graphene induced early structural transition of Vpr13-33 is studied by MD simulations. • Both π-π stacking and hydrophobic interactions orchestrate the peptide adsorption. • Vpr has an increased propensity of β-sheet content on graphene surface. • To develop graphene-based materials to inhibit HIV is possible. - Abstract: The fragment of viral protein R (Vpr), Vpr13-33, plays an important role in regulating nuclear importing of HIV genes through channel formation in which it adopts a leucine-zipper-like alpha-helical conformation. A recent experimental study reported that helical Vpr13-33 would transform to β-sheet or random coil structures and aggregate on the surface of graphene or graphene oxide through hydrophobic interactions. Due to experimental limitations, however, there is still a considerable lack of understanding on the adsorption dynamics at the early stage of the conformational transition at water-graphene interface and the underlying driving force at molecular level. In this study, atomistic molecular dynamics simulations were used to explore the conformation transition phenomena. Vpr13-33 kept α-helical structure in solution, but changed to β-sheet structure when strongly adsorbed onto graphene. Preferential adsorption of Vpr13-33 on graphene is dominated by hydrophobic interactions. The cluster analysis identified the most significant populated conformation and the early stage of structure conversion from α-helical to β-sheet was found, but the full β-sheet propagation was not observed. Free energy landscape analysis further complemented the transformation analysis of

  7. Molecular dynamics simulations of conformation changes of HIV-1 regulatory protein on graphene

    International Nuclear Information System (INIS)

    Zhao, Daohui; Li, Libo; He, Daohang; Zhou, Jian

    2016-01-01

    Graphical abstract: Preferential adsorption of Vpr13-33 on graphene accompanied by early conformational change from α-helix to β-sheet structures was observed by molecular simulations. This work presents the molecular mechanism of graphene-induced peptide conformational alteration and sheds light on developing graphene-based materials to inhibit HIV. - Highlights: • Graphene induced early structural transition of Vpr13-33 is studied by MD simulations. • Both π-π stacking and hydrophobic interactions orchestrate the peptide adsorption. • Vpr has an increased propensity of β-sheet content on graphene surface. • To develop graphene-based materials to inhibit HIV is possible. - Abstract: The fragment of viral protein R (Vpr), Vpr13-33, plays an important role in regulating nuclear importing of HIV genes through channel formation in which it adopts a leucine-zipper-like alpha-helical conformation. A recent experimental study reported that helical Vpr13-33 would transform to β-sheet or random coil structures and aggregate on the surface of graphene or graphene oxide through hydrophobic interactions. Due to experimental limitations, however, there is still a considerable lack of understanding on the adsorption dynamics at the early stage of the conformational transition at water-graphene interface and the underlying driving force at molecular level. In this study, atomistic molecular dynamics simulations were used to explore the conformation transition phenomena. Vpr13-33 kept α-helical structure in solution, but changed to β-sheet structure when strongly adsorbed onto graphene. Preferential adsorption of Vpr13-33 on graphene is dominated by hydrophobic interactions. The cluster analysis identified the most significant populated conformation and the early stage of structure conversion from α-helical to β-sheet was found, but the full β-sheet propagation was not observed. Free energy landscape analysis further complemented the transformation analysis of

  8. Accessing a hidden conformation of the maltose binding protein using accelerated molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Denis Bucher

    2011-04-01

    Full Text Available Periplasmic binding proteins (PBPs are a large family of molecular transporters that play a key role in nutrient uptake and chemotaxis in Gram-negative bacteria. All PBPs have characteristic two-domain architecture with a central interdomain ligand-binding cleft. Upon binding to their respective ligands, PBPs undergo a large conformational change that effectively closes the binding cleft. This conformational change is traditionally viewed as a ligand induced-fit process; however, the intrinsic dynamics of the protein may also be crucial for ligand recognition. Recent NMR paramagnetic relaxation enhancement (PRE experiments have shown that the maltose binding protein (MBP - a prototypical member of the PBP superfamily - exists in a rapidly exchanging (ns to µs regime mixture comprising an open state (approx 95%, and a minor partially closed state (approx 5%. Here we describe accelerated MD simulations that provide a detailed picture of the transition between the open and partially closed states, and confirm the existence of a dynamical equilibrium between these two states in apo MBP. We find that a flexible part of the protein called the balancing interface motif (residues 175-184 is displaced during the transformation. Continuum electrostatic calculations indicate that the repacking of non-polar residues near the hinge region plays an important role in driving the conformational change. Oscillations between open and partially closed states create variations in the shape and size of the binding site. The study provides a detailed description of the conformational space available to ligand-free MBP, and has implications for understanding ligand recognition and allostery in related proteins.

  9. MOLECULAR MODELING INDICATES THAT HOMOCYSTEINE INDUCES CONFORMATIONAL CHANGES IN THE STRUCTURE OF PUTATIVE TARGET PROTEINS

    Directory of Open Access Journals (Sweden)

    Yumnam Silla

    2015-09-01

    Full Text Available An elevated level of homocysteine, a reactive thiol containing amino acid is associated with a multitude of complex diseases. A majority (>80% of homocysteine in circulation is bound to protein cysteine residues. Although, till date only 21 proteins have been experimentally shown to bind with homocysteine, using an insilico approach we had earlier identified several potential target proteins that could bind with homocysteine. Shomocysteinylation of proteins could potentially alter the structure and/or function of the protein. Earlier studies have shown that binding of homocysteine to protein alters its function. However, the effect of homocysteine on the target protein structure has not yet been documented. In the present work, we assess conformational or structural changes if any due to protein homocysteinylation using two proteins, granzyme B (GRAB and junctional adhesion molecule 1 (JAM1, which could potentially bind to homocysteine. We, for the first time, constructed computational models of homocysteine bound to target proteins and monitored their structural changes using explicit solvent molecular dynamic (MD simulation. Analysis of homocysteine bound trajectories revealed higher flexibility of the active site residues and local structural perturbations compared to the unbound native structure’s simulation, which could affect the stability of the protein. In addition, secondary structure analysis of homocysteine bound trajectories also revealed disappearance of â-helix within the G-helix and linker region that connects between the domain regions (as defined in the crystal structure. Our study thus captures the conformational transitions induced by homocysteine and we suggest these structural alterations might have implications for hyperhomocysteinemia induced pathologies.

  10. On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein

    International Nuclear Information System (INIS)

    Grosso, Marcos; Kalstein, Adrian; Parisi, Gustavo; Fernandez-Alberti, Sebastian; Roitberg, Adrian E.

    2015-01-01

    The native state of a protein consists of an equilibrium of conformational states on an energy landscape rather than existing as a single static state. The co-existence of conformers with different ligand-affinities in a dynamical equilibrium is the basis for the conformational selection model for ligand binding. In this context, the development of theoretical methods that allow us to analyze not only the structural changes but also changes in the fluctuation patterns between conformers will contribute to elucidate the differential properties acquired upon ligand binding. Molecular dynamics simulations can provide the required information to explore these features. Its use in combination with subsequent essential dynamics analysis allows separating large concerted conformational rearrangements from irrelevant fluctuations. We present a novel procedure to define the size and composition of essential dynamics subspaces associated with ligand-bound and ligand-free conformations. These definitions allow us to compare essential dynamics subspaces between different conformers. Our procedure attempts to emphasize the main similarities and differences between the different essential dynamics in an unbiased way. Essential dynamics subspaces associated to conformational transitions can also be analyzed. As a test case, we study the glutaminase interacting protein (GIP), composed of a single PDZ domain. Both GIP ligand-free state and glutaminase L peptide-bound states are analyzed. Our findings concerning the relative changes in the flexibility pattern upon binding are in good agreement with experimental Nuclear Magnetic Resonance data

  11. On the analysis and comparison of conformer-specific essential dynamics upon ligand binding to a protein

    Energy Technology Data Exchange (ETDEWEB)

    Grosso, Marcos; Kalstein, Adrian; Parisi, Gustavo; Fernandez-Alberti, Sebastian, E-mail: sfalberti@gmail.com [Universidad Nacional de Quilmes, Roque Saenz Peña 352, B1876BXD Bernal (Argentina); Roitberg, Adrian E. [Departments of Physics and Chemistry, University of Florida, Gainesville, Florida 32611 (United States)

    2015-06-28

    The native state of a protein consists of an equilibrium of conformational states on an energy landscape rather than existing as a single static state. The co-existence of conformers with different ligand-affinities in a dynamical equilibrium is the basis for the conformational selection model for ligand binding. In this context, the development of theoretical methods that allow us to analyze not only the structural changes but also changes in the fluctuation patterns between conformers will contribute to elucidate the differential properties acquired upon ligand binding. Molecular dynamics simulations can provide the required information to explore these features. Its use in combination with subsequent essential dynamics analysis allows separating large concerted conformational rearrangements from irrelevant fluctuations. We present a novel procedure to define the size and composition of essential dynamics subspaces associated with ligand-bound and ligand-free conformations. These definitions allow us to compare essential dynamics subspaces between different conformers. Our procedure attempts to emphasize the main similarities and differences between the different essential dynamics in an unbiased way. Essential dynamics subspaces associated to conformational transitions can also be analyzed. As a test case, we study the glutaminase interacting protein (GIP), composed of a single PDZ domain. Both GIP ligand-free state and glutaminase L peptide-bound states are analyzed. Our findings concerning the relative changes in the flexibility pattern upon binding are in good agreement with experimental Nuclear Magnetic Resonance data.

  12. Introduction to the conformational investigation of peptides and proteins by using two-dimensional proton NMR experiments

    International Nuclear Information System (INIS)

    Neumann, J.M.; Macquaire, F.

    1991-01-01

    This report presents the elementary bases for an initiation to the conformational study of peptides and proteins by using two-dimensional proton NMR experiments. First, some general features of protein structures are summarized. A second chapter is devoted to the basic NMR experiments and to the spectral parameters which provide a structural information. This description is illustrated by NMR spectra of peptides. The third chapter concerns the most standard two-dimensional proton NMR experiments and their use for a conformational study of peptides and proteins. Lastly, an example of NMR structural investigation of a peptide is reported [fr

  13. Supercharging Protein Complexes from Aqueous Solution Disrupts their Native Conformations

    Science.gov (United States)

    Sterling, Harry J.; Kintzer, Alexander F.; Feld, Geoffrey K.; Cassou, Catherine A.; Krantz, Bryan A.; Williams, Evan R.

    2012-02-01

    The effects of aqueous solution supercharging on the solution- and gas-phase structures of two protein complexes were investigated using traveling-wave ion mobility-mass spectrometry (TWIMS-MS). Low initial concentrations of m-nitrobenzyl alcohol ( m-NBA) in the electrospray ionization (ESI) solution can effectively increase the charge of concanavalin A dimers and tetramers, but at higher m-NBA concentrations, the increases in charge are accompanied by solution-phase dissociation of the dimers and up to a ~22% increase in the collision cross section (CCS) of the tetramers. With just 0.8% m-NBA added to the ESI solution of a ~630 kDa anthrax toxin octamer complex, the average charge is increased by only ~4% compared with the "native" complex, but it is sufficiently destabilized so that extensive gas-phase fragmentation occurs in the relatively high pressure regions of the TWIMS device. Anthrax toxin complexes exist in either a prechannel or a transmembrane channel state. With m-NBA, the prechannel state of the complex has the same CCS/charge ratio in the gas phase as the transmembrane channel state of the same complex formed without m-NBA, yet undergoes extensive dissociation, indicating that destabilization from supercharging occurs in the ESI droplet prior to ion formation and is not a result of Coulombic destabilization in the gas phase as a result of higher charging. These results demonstrate that the supercharging of large protein complexes is the result of conformational changes induced by the reagents in the ESI droplets, where enrichment of the supercharging reagent during droplet evaporation occurs.

  14. DNA oligonucleotide conformations: high resolution NMR studies

    International Nuclear Information System (INIS)

    Mellema, J.-R.

    1984-01-01

    The present work describes a DNA double-helix model, which is well comparable with the models derived from fibre-diffraction studies. The model has a mononucleotide repeat with torsion angles in accordance with average geometries as derived from 1 H NMR studies. Special attention was paid to reduce the number of short H-H nonbonding contacts, which are abundantly present in the 'classical' fibre-diffraction models. Chapter 3 describes the first complete assignment of a 1 H NMR spectrum of a DNA tetramer, d(TAAT). Preliminary conformational data derived from the spectral parameters recorded at 27 0 C are given. A more detailed analysis employing temperature-dependence studies is given in Chapter 4. (Auth.)

  15. Navigating the conformational landscape of G protein-coupled receptor kinases during allosteric activation.

    Science.gov (United States)

    Yao, Xin-Qiu; Cato, M Claire; Labudde, Emily; Beyett, Tyler S; Tesmer, John J G; Grant, Barry J

    2017-09-29

    G protein-coupled receptors (GPCRs) are essential for transferring extracellular signals into carefully choreographed intracellular responses controlling diverse aspects of cell physiology. The duration of GPCR-mediated signaling is primarily regulated via GPCR kinase (GRK)-mediated phosphorylation of activated receptors. Although many GRK structures have been reported, the mechanisms underlying GRK activation are not well-understood, in part because it is unknown how these structures map to the conformational landscape available to this enzyme family. Unlike most other AGC kinases, GRKs rely on their interaction with GPCRs for activation and not phosphorylation. Here, we used principal component analysis of available GRK and protein kinase A crystal structures to identify their dominant domain motions and to provide a framework that helps evaluate how close each GRK structure is to being a catalytically competent state. Our results indicated that disruption of an interface formed between the large lobe of the kinase domain and the regulator of G protein signaling homology domain (RHD) is highly correlated with establishment of the active conformation. By introducing point mutations in the GRK5 RHD-kinase domain interface, we show with both in silico and in vitro experiments that perturbation of this interface leads to higher phosphorylation activity. Navigation of the conformational landscape defined by this bioinformatics-based study is likely common to all GPCR-activated GRKs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Detection of small conformational changes of proteins by small-angle scattering

    International Nuclear Information System (INIS)

    Durchschlag, H.; Purr, G.; Zipper, P.; Wilfing, R.

    1991-01-01

    In the past the technique of small-angle scattering has been a powerful tool for studying conformational changes of protein which occur, for example, upon binding with ligands. Results obtained by different authors from X-ray and neutron experiments on a variety of proteins and under various conditions have been compiled. This offers the possibility of comparing the extent of changes in the molecular parameters investigated (e.g. change of the radius of gyration). Problems encountered with the detection of small changes are discussed. As an example, conformational changes of the enzyme citrate synthase upon substrate binding (oxaloacetate) are presented. X-ray crystallography had already found distinct changes between open and closed forms of the enzyme. Small-angle X-ray scattering studies registered slight changes of some parameters in solution. These changes could be paralleled with the results of other solution techniques (UV absorption, fluorescence and circular dichroism spectroscopy, analytical ultracentrifugation). The results found for citrate synthase are also compared with previous findings for malate synthase, an enzyme of similar enzymatic function. Above all, this study shows that care has to be taken when studying small conformational changes. It is absolutely necessary to use different methods and conditions and to study the problem from different points of view to avoid pitfalls. (orig.)

  17. Conformational responses to changes in the state of ionization of titrable groups in proteins

    Science.gov (United States)

    Richman, Daniel Eric

    Electrostatic energy links the structural properties of proteins with some of their important biological functions, including catalysis, energy transduction, and binding and recognition. Accurate calculation of electrostatic energy is essential for predicting and for analyzing function from structure. All proteins have many ionizable residues at the protein-water interface. These groups tend to have ionization equilibria (pK a values) shifted slightly relative to their values in water. In contrast, groups buried in the hydrophobic interior usually have highly anomalous p Ka values. These shifts are what structure-based calculations have to reproduce to allow examination of contributions from electrostatics to stability, solubility and interactions of proteins. Electrostatic energies are challenging to calculate accurately because proteins are heterogeneous dielectric materials. Any individual ionizable group can experience very different local environments with different dielectric properties. The studies in this thesis examine the hypothesis that proteins reorganize concomitant with changes in their state of ionization. It appears that the pKa value measured experimentally reflects the average of pKa values experienced in the different electrostatic environments corresponding to different conformational microstates. Current computational models fail to sample conformational reorganization of the backbone correctly. Staphyloccocal nuclease (SNase) was used as a model protein in nuclear magnetic resonance (NMR) spectroscopy studies to characterize the conformational rearrangements of the protein coupled to changes in the ionization state of titrable groups. One set of experiments tests the hypothesis that proton binding to surface Asp and Glu side chains drives local unfolding by stabilizing less-native, more water-solvated conformations in which the side chains have normalized pKa values. Increased backbone flexibility in the ps-ns timescale, hydrogen bond (H

  18. Promiscuity and the conformational rearrangement of drug-like molecules: insight from the protein data bank.

    Science.gov (United States)

    He, Michael W; Lee, Patrick S; Sweeney, Zachary K

    2015-02-01

    Selectivity is a central aspect of lead optimization in the drug discovery process. Medicinal chemists often try to decrease molecular flexibility to improve selectivity, given the common belief that the two are interdependent. To investigate the relationship between polypharmacology and conformational flexibility, we mined the Protein Data Bank and constructed a dataset of pharmaceutically relevant ligands that crystallized in more than one protein target while binding to each co-crystallized receptor with similar in vitro affinities. After analyzing the molecular conformations of these 100 ligands, we found that 59 ligands bound to different protein targets without significantly changing conformation, suggesting that there is no distinct correlation between conformational flexibility and polypharmacology within our dataset. Ligands crystallized in similar proteins and highly ligand-efficient compounds with five or fewer rotatable bonds were less likely to adjust conformation when binding. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Protein adsorption on tailored substrates: long-range forces and conformational changes

    Energy Technology Data Exchange (ETDEWEB)

    Bellion, M; Santen, L [Department of Theoretical Physics, Saarland University, 66041 Saarbruecken (Germany); Mantz, H; Haehl, H; Quinn, A; Nagel, A; Gilow, C; Weitenberg, C; Schmitt, Y; Jacobs, K [Department of Experimental Physics, Saarland University, 66041 Saarbruecken (Germany)], E-mail: k.jacobs@physik.uni-saarland.de

    2008-10-08

    Adsorption of proteins onto solid surfaces is an everyday phenomenon that is not yet fully understood. To further the current understanding, we have performed in situ ellipsometry studies to reveal the adsorption kinetics of three different proteins, lysozyme, {alpha}-amylase and bovine serum albumin. As substrates we offer Si wafers with a controlled Si oxide layer thickness and a hydrophilic or hydrophobic surface functionalization, allowing the tailoring of the influence of short- and long-range interactions. Our studies show that not only the surface chemistry determines the properties of an adsorbed protein layer but also the van der Waals contributions of a composite substrate. We compare the experimental findings to results of a colloidal Monte Carlo approach that includes conformational changes of the adsorbed proteins induced by density fluctuations.

  20. The Dynameomics Entropy Dictionary: A Large-Scale Assessment of Conformational Entropy across Protein Fold Space.

    Science.gov (United States)

    Towse, Clare-Louise; Akke, Mikael; Daggett, Valerie

    2017-04-27

    Molecular dynamics (MD) simulations contain considerable information with regard to the motions and fluctuations of a protein, the magnitude of which can be used to estimate conformational entropy. Here we survey conformational entropy across protein fold space using the Dynameomics database, which represents the largest existing data set of protein MD simulations for representatives of essentially all known protein folds. We provide an overview of MD-derived entropies accounting for all possible degrees of dihedral freedom on an unprecedented scale. Although different side chains might be expected to impose varying restrictions on the conformational space that the backbone can sample, we found that the backbone entropy and side chain size are not strictly coupled. An outcome of these analyses is the Dynameomics Entropy Dictionary, the contents of which have been compared with entropies derived by other theoretical approaches and experiment. As might be expected, the conformational entropies scale linearly with the number of residues, demonstrating that conformational entropy is an extensive property of proteins. The calculated conformational entropies of folding agree well with previous estimates. Detailed analysis of specific cases identifies deviations in conformational entropy from the average values that highlight how conformational entropy varies with sequence, secondary structure, and tertiary fold. Notably, α-helices have lower entropy on average than do β-sheets, and both are lower than coil regions.

  1. Crystal structure and conformational flexibility of the unligated FK506-binding protein FKBP12.6

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hui; Mustafi, Sourajit M. [New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States); LeMaster, David M. [New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States); University at Albany – SUNY, Empire State Plaza, Albany, NY 12201 (United States); Li, Zhong [New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States); Héroux, Annie [Brookhaven National Laboratory, Upton, NY 11973 (United States); Li, Hongmin; Hernández, Griselda, E-mail: griselda@wadsworth.org [New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States); University at Albany – SUNY, Empire State Plaza, Albany, NY 12201 (United States)

    2014-03-01

    Two crystal forms of unligated FKBP12.6 exhibit multiple conformations in the active site and in the 80s loop, the primary site for known protein-recognition interactions. The previously unreported NMR backbone assignment of FKBP12.6 revealed extensive doubling of amide resonances, which reflects a slow conformational transition centered in the 80s loop. The primary known physiological function of FKBP12.6 involves its role in regulating the RyR2 isoform of ryanodine receptor Ca{sup 2+} channels in cardiac muscle, pancreatic β islets and the central nervous system. With only a single previously reported X-ray structure of FKBP12.6, bound to the immunosuppressant rapamycin, structural inferences for this protein have been drawn from the more extensive studies of the homologous FKBP12. X-ray structures at 1.70 and 1.90 Å resolution from P2{sub 1} and P3{sub 1}21 crystal forms are reported for an unligated cysteine-free variant of FKBP12.6 which exhibit a notable diversity of conformations. In one monomer from the P3{sub 1}21 crystal form, the aromatic ring of Phe59 at the base of the active site is rotated perpendicular to its typical orientation, generating a steric conflict for the immunosuppressant-binding mode. The peptide unit linking Gly89 and Val90 at the tip of the protein-recognition ‘80s loop’ is flipped in the P2{sub 1} crystal form. Unlike the >30 reported FKBP12 structures, the backbone conformation of this loop closely follows that of the first FKBP domain of FKBP51. The NMR resonances for 21 backbone amides of FKBP12.6 are doubled, corresponding to a slow conformational transition centered near the tip of the 80s loop, as recently reported for 31 amides of FKBP12. The comparative absence of doubling for residues along the opposite face of the active-site pocket in FKBP12.6 may in part reflect attenuated structural coupling owing to increased conformational plasticity around the Phe59 ring.

  2. Probing Conformational Changes of Human DNA Polymerase λ Using Mass Spectrometry-Based Protein Footprinting

    Science.gov (United States)

    Fowler, Jason D.; Brown, Jessica A.; Kvaratskhelia, Mamuka; Suo, Zucai

    2009-01-01

    SUMMARY Crystallographic studies of the C-terminal, DNA polymerase β-like domain of human DNA polymerase lambda (fPolλ) suggested that the catalytic cycle might not involve a large protein domain rearrangement as observed with several replicative DNA polymerases and DNA polymerase β. To examine solution-phase protein conformation changes in fPolλ, which also contains a breast cancer susceptibility gene 1 C-terminal domain and a Proline-rich domain at its N-terminus, we used a mass spectrometry - based protein footprinting approach. In parallel experiments, surface accessibility maps for Arg residues were compared for the free fPolλ versus the binary complex of enzyme•gapped DNA and the ternary complex of enzyme•gapped DNA•dNTP. These experiments suggested that fPolλ does not undergo major conformational changes during the catalysis in the solution phase. Furthermore, the mass spectrometry-based protein footprinting experiments revealed that active site residue R386 was shielded from the surface only in the presence of both a gapped DNA substrate and an incoming nucleotide dNTP. Site-directed mutagenesis and pre-steady state kinetic studies confirmed the importance of R386 for the enzyme activity, and indicated the key role for its guanidino group in stabilizing the negative charges of an incoming nucleotide and the leaving pyrophosphate product. We suggest that such interactions could be shared by and important for catalytic functions of other DNA polymerases. PMID:19467241

  3. Influence of Tableting on the Conformation and Thermal Stability of Trypsin as a Model Protein

    DEFF Research Database (Denmark)

    Klukkert, Marten; Van De Weert, Marco; Fanø, Mathias

    2015-01-01

    was performed to determine the Tm as well as the folding reversibility after thermal denaturation of the reconstituted samples. It was found that compacted samples showed reduced activity accompanied by an altered secondary structure. Conformational changes that occur in the solid state were partially...... reversible upon tablet reconstitution. Aqueous-state IR spectroscopy combined with partial least squares was shown to be a powerful tool to follow irreversible structural changes and evaluate sample bioactivity. Besides its conformation, the thermal stability of trypsin was altered as a result of the applied...... compaction pressure, indicated by a reduced folding reversibility. In conclusion, this study reveals that tableting can have a negative impact on the biological quality of protein APIs....

  4. Conformational energy calculations on polypeptides and proteins: use of a statistical mechanical procedure for evaluating structure and properties.

    Science.gov (United States)

    Scheraga, H A; Paine, G H

    1986-01-01

    We are using a variety of theoretical and computational techniques to study protein structure, protein folding, and higher-order structures. Our earlier work involved treatments of liquid water and aqueous solutions of nonpolar and polar solutes, computations of the stabilities of the fundamental structures of proteins and their packing arrangements, conformations of small cyclic and open-chain peptides, structures of fibrous proteins (collagen), structures of homologous globular proteins, introduction of special procedures as constraints during energy minimization of globular proteins, and structures of enzyme-substrate complexes. Recently, we presented a new methodology for predicting polypeptide structure (described here); the method is based on the calculation of the probable and average conformation of a polypeptide chain by the application of equilibrium statistical mechanics in conjunction with an adaptive, importance sampling Monte Carlo algorithm. As a test, it was applied to Met-enkephalin.

  5. Compositional and conformational analysis of yam proteins by near infrared fourier transform Raman spectroscopy.

    Science.gov (United States)

    Liao, Yu-Hsiu; Wang, Chih-Hsien; Tseng, Chin-Yin; Chen, Hsiu-Ling; Lin, Long-Liu; Chen, Wenlung

    2004-12-29

    Fourier transform (FT)-Raman spectroscopy was employed to study the molecular structure of yam proteins isolated from three commonly consumed yam species including Dioscorea alata L., D. alata L. var. purpurea, and Dioscorea japonica. Although D. alata L. and D. alata L. var. purpurea consisted of similar amino acid residues, they still exhibited significant differences in conformational arrangement. The secondary structure of D. alata L. was mainly an alpha-helix, while D. alata L. var. purpurea was mostly in antiparallel beta-sheets. In contrast, D. japonica, which belongs to a different species, exhibited explicit differences in amino acid compositions and molecular structures of which the conformation was a mixed form of alpha-helices and antiparallel beta-sheets. FT-Raman directly proved the existence of S-S in yam proteins, implying that oligomer formation in yam proteins might be due to disulfide linking of dioscorin (32 kDa). The microenvironment of aromatic amino acids and the state of S-S in yam proteins were also discussed.

  6. A multiscale approach to simulating the conformational properties of unbound multi-C₂H₂ zinc finger proteins.

    Science.gov (United States)

    Liu, Lei; Wade, Rebecca C; Heermann, Dieter W

    2015-09-01

    The conformational properties of unbound multi-Cys2 His2 (mC2H2) zinc finger proteins, in which zinc finger domains are connected by flexible linkers, are studied by a multiscale approach. Three methods on different length scales are utilized. First, atomic detail molecular dynamics simulations of one zinc finger and its adjacent flexible linker confirmed that the zinc finger is more rigid than the flexible linker. Second, the end-to-end distance distributions of mC2H2 zinc finger proteins are computed using an efficient atomistic pivoting algorithm, which only takes excluded volume interactions into consideration. The end-to-end distance distribution gradually changes its profile, from left-tailed to right-tailed, as the number of zinc fingers increases. This is explained by using a worm-like chain model. For proteins of a few zinc fingers, an effective bending constraint favors an extended conformation. Only for proteins containing more than nine zinc fingers, is a somewhat compacted conformation preferred. Third, a mesoscale model is modified to study both the local and the global conformational properties of multi-C2H2 zinc finger proteins. Simulations of the CCCTC-binding factor (CTCF), an important mC2H2 zinc finger protein for genome spatial organization, are presented. © 2015 Wiley Periodicals, Inc.

  7. Interconversion of two GDP-bound conformations and their selection in an Arf-family small G protein.

    Science.gov (United States)

    Okamura, Hideyasu; Nishikiori, Masaki; Xiang, Hongyu; Ishikawa, Masayuki; Katoh, Etsuko

    2011-07-13

    ADP-ribosylation factor (Arf) and other Arf-family small G proteins participate in many cellular functions via their characteristic GTP/GDP conformational cycles, during which a nucleotide(∗)Mg(2+)-binding site communicates with a remote N-terminal helix. However, the conformational interplay between the nucleotides, the helix, the protein core, and Mg(2+) has not been fully delineated. Herein, we report a study of the dynamics of an Arf-family protein, Arl8, under various conditions by means of NMR relaxation spectroscopy. The data indicated that, when GDP is bound, the protein core, which does not include the N-terminal helix, reversibly transition between an Arf-family GDP form and another conformation that resembles the Arf-family GTP form. Additionally, we found that the N-terminal helix and Mg(2+), respectively, stabilize the aforementioned former and latter conformations in a population-shift manner. Given the dynamics of the conformational changes, we can describe the Arl8 GTP/GDP cycle in terms of an energy diagram. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Energetically Unfavorable Amide Conformations for N6-Acetyllysine Side Chains in Refined Protein Structures

    Science.gov (United States)

    Genshaft, Alexander; Moser, Joe-Ann S.; D'Antonio, Edward L.; Bowman, Christine M.; Christianson, David W.

    2013-01-01

    The reversible acetylation of lysine to form N6-acetyllysine in the regulation of protein function is a hallmark of epigenetics. Acetylation of the positively charged amino group of the lysine side chain generates a neutral N-alkylacetamide moiety that serves as a molecular “switch” for the modulation of protein function and protein-protein interactions. We now report the analysis of 381 N6-acetyllysine side chain amide conformations as found in 79 protein crystal structures and 11 protein NMR structures deposited in the Protein Data Bank (PDB) of the Research Collaboratory for Structural Bioinformatics. We find that only 74.3% of N6-acetyllysine residues in protein crystal structures and 46.5% in protein NMR structures contain amide groups with energetically preferred trans or generously trans conformations. Surprisingly, 17.6% of N6-acetyllysine residues in protein crystal structures and 5.3% in protein NMR structures contain amide groups with energetically unfavorable cis or generously cis conformations. Even more surprisingly, 8.1% of N6-acetyllysine residues in protein crystal structures and 48.2% in NMR structures contain amide groups with energetically prohibitive twisted conformations that approach the transition state structure for cis-trans isomerization. In contrast, 109 unique N-alkylacetamide groups contained in 84 highly-accurate small molecule crystal structures retrieved from the Cambridge Structural Database exclusively adopt energetically preferred trans conformations. Therefore, we conclude that cis and twisted N6-acetyllysine amides in protein structures deposited in the PDB are erroneously modeled due to their energetically unfavorable or prohibitive conformations. PMID:23401043

  9. Probing Protein Multidimensional Conformational Fluctuations by Single-Molecule Multiparameter Photon Stamping Spectroscopy

    Science.gov (United States)

    2015-01-01

    Conformational motions of proteins are highly dynamic and intrinsically complex. To capture the temporal and spatial complexity of conformational motions and further to understand their roles in protein functions, an attempt is made to probe multidimensional conformational dynamics of proteins besides the typical one-dimensional FRET coordinate or the projected conformational motions on the one-dimensional FRET coordinate. T4 lysozyme hinge-bending motions between two domains along α-helix have been probed by single-molecule FRET. Nevertheless, the domain motions of T4 lysozyme are rather complex involving multiple coupled nuclear coordinates and most likely contain motions besides hinge-bending. It is highly likely that the multiple dimensional protein conformational motions beyond the typical enzymatic hinged-bending motions have profound impact on overall enzymatic functions. In this report, we have developed a single-molecule multiparameter photon stamping spectroscopy integrating fluorescence anisotropy, FRET, and fluorescence lifetime. This spectroscopic approach enables simultaneous observations of both FRET-related site-to-site conformational dynamics and molecular rotational (or orientational) motions of individual Cy3-Cy5 labeled T4 lysozyme molecules. We have further observed wide-distributed rotational flexibility along orientation coordinates by recording fluorescence anisotropy and simultaneously identified multiple intermediate conformational states along FRET coordinate by monitoring time-dependent donor lifetime, presenting a whole picture of multidimensional conformational dynamics in the process of T4 lysozyme open-close hinge-bending enzymatic turnover motions under enzymatic reaction conditions. By analyzing the autocorrelation functions of both lifetime and anisotropy trajectories, we have also observed the dynamic and static inhomogeneity of T4 lysozyme multidimensional conformational fluctuation dynamics, providing a fundamental

  10. DNA and Protein Requirements for Substrate Conformational Changes Necessary for Human Flap Endonuclease-1-catalyzed Reaction*

    Science.gov (United States)

    Algasaier, Sana I.; Exell, Jack C.; Bennet, Ian A.; Thompson, Mark J.; Gotham, Victoria J. B.; Shaw, Steven J.; Craggs, Timothy D.; Finger, L. David; Grasby, Jane A.

    2016-01-01

    Human flap endonuclease-1 (hFEN1) catalyzes the essential removal of single-stranded flaps arising at DNA junctions during replication and repair processes. hFEN1 biological function must be precisely controlled, and consequently, the protein relies on a combination of protein and substrate conformational changes as a prerequisite for reaction. These include substrate bending at the duplex-duplex junction and transfer of unpaired reacting duplex end into the active site. When present, 5′-flaps are thought to thread under the helical cap, limiting reaction to flaps with free 5′-termini in vivo. Here we monitored DNA bending by FRET and DNA unpairing using 2-aminopurine exciton pair CD to determine the DNA and protein requirements for these substrate conformational changes. Binding of DNA to hFEN1 in a bent conformation occurred independently of 5′-flap accommodation and did not require active site metal ions or the presence of conserved active site residues. More stringent requirements exist for transfer of the substrate to the active site. Placement of the scissile phosphate diester in the active site required the presence of divalent metal ions, a free 5′-flap (if present), a Watson-Crick base pair at the terminus of the reacting duplex, and the intact secondary structure of the enzyme helical cap. Optimal positioning of the scissile phosphate additionally required active site conserved residues Tyr40, Asp181, and Arg100 and a reacting duplex 5′-phosphate. These studies suggest a FEN1 reaction mechanism where junctions are bound and 5′-flaps are threaded (when present), and finally the substrate is transferred onto active site metals initiating cleavage. PMID:26884332

  11. How Diverse are the Protein-Bound Conformations of Small-Molecule Drugs and Cofactors?

    Science.gov (United States)

    Friedrich, Nils-Ole; Simsir, Méliné; Kirchmair, Johannes

    2018-03-01

    Knowledge of the bioactive conformations of small molecules or the ability to predict them with theoretical methods is of key importance to the design of bioactive compounds such as drugs, agrochemicals and cosmetics. Using an elaborate cheminformatics pipeline, which also evaluates the support of individual atom coordinates by the measured electron density, we compiled a complete set (“Sperrylite Dataset”) of high-quality structures of protein-bound ligand conformations from the PDB. The Sperrylite Dataset consists of a total of 10,936 high-quality structures of 4548 unique ligands. Based on this dataset, we assessed the variability of the bioactive conformations of 91 small molecules—each represented by a minimum of ten structures—and found it to be largely independent of the number of rotatable bonds. Sixty-nine molecules had at least two distinct conformations (defined by an RMSD greater than 1 Å). For a representative subset of 17 approved drugs and cofactors we observed a clear trend for the formation of few clusters of highly similar conformers. Even for proteins that share a very low sequence identity, ligands were regularly found to adopt similar conformations. For cofactors, a clear trend for extended conformations was measured, although in few cases also coiled conformers were observed. The Sperrylite Dataset is available for download from http://www.zbh.uni-hamburg.de/sperrylite_dataset.

  12. Enrichment of Druggable Conformations from Apo Protein Structures Using Cosolvent-Accelerated Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Andrew Kalenkiewicz

    2015-04-01

    Full Text Available Here we describe the development of an improved workflow for utilizing experimental and simulated protein conformations in the structure-based design of inhibitors for anti-apoptotic Bcl-2 family proteins. Traditional structure-based approaches on similar targets are often constrained by the sparsity of available structures and difficulties in finding lead compounds that dock against flat, flexible protein-protein interaction surfaces. By employing computational docking of known small molecule inhibitors, we have demonstrated that structural ensembles derived from either accelerated MD (aMD or MD in the presence of an organic cosolvent generally give better scores than those assessed from analogous conventional MD. Furthermore, conformations obtained from combined cosolvent aMD simulations started with the apo-Bcl-xL structure yielded better average and minimum docking scores for known binders than an ensemble of 72 experimental apo- and ligand-bound Bcl-xL structures. A detailed analysis of the simulated conformations indicates that the aMD effectively enhanced conformational sampling of the flexible helices flanking the main Bcl-xL binding groove, permitting the cosolvent acting as small ligands to penetrate more deeply into the binding pocket and shape ligand-bound conformations not evident in conventional simulations. We believe this approach could be useful for identifying inhibitors against other protein-protein interaction systems involving highly flexible binding sites, particularly for targets with less accumulated structural data.

  13. Substantial conformational change mediated by charge-triad residues of the death effector domain in protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Edward C Twomey

    Full Text Available Protein conformational changes are commonly associated with the formation of protein complexes. The non-catalytic death effector domains (DEDs mediate protein-protein interactions in a variety of cellular processes, including apoptosis, proliferation and migration, and glucose metabolism. Here, using NMR residual dipolar coupling (RDC data, we report a conformational change in the DED of the phosphoprotein enriched in astrocytes, 15 kDa (PEA-15 protein in the complex with a mitogen-activated protein (MAP kinase, extracellular regulated kinase 2 (ERK2, which is essential in regulating ERK2 cellular distribution and function in cell proliferation and migration. The most significant conformational change in PEA-15 happens at helices α2, α3, and α4, which also possess the highest flexibility among the six-helix bundle of the DED. This crucial conformational change is modulated by the D/E-RxDL charge-triad motif, one of the prominent structural features of DEDs, together with a number of other electrostatic and hydrogen bonding interactions on the protein surface. Charge-triad motif promotes the optimal orientation of key residues and expands the binding interface to accommodate protein-protein interactions. However, the charge-triad residues are not directly involved in the binding interface between PEA-15 and ERK2.

  14. A conformational study of proline derivatives

    Directory of Open Access Journals (Sweden)

    M.E. Kamwaya

    2002-12-01

    Full Text Available From the study of the structures and molecular conformations of a number of proline derivatives, some conclusions were drawn. The widening effect of angle Cα-C'-N' is caused by steric repulsion between a hydrogen atom at Cα of the preceding prolyl residue with any other at either Cα or Cδ of the pyrrolidine ring cis to it. This effect is influenced by the distance between the said hydrogen atoms: the nearer this distance is, the greater is the steric repulsion and the wider is the angle of steric repulsion. The ratio of the angle of steric repulsion to the distance between Cα and the following Cα (or Cδ cis to it is approximately 40 and 41 for peptides with trans and cis configurations, respectively. The torsion angle ranges for χ1, χ3, χ 4, θ and φ in these derivatives are widened more than usual. The highest vibration, which more often takes place at either the Cβ or Cγ of the pyrrolidine ring, does so not necessarily at the one that is puckered. A Δ&psi -relationship is established, for the determination of α-helixity or collageneity, also in small peptides and amino acids that contain proline. The Δ&psi-relationship is versatile and gives about +180o and –180o for the two categories, respectively. The distance between the carbonyl and hydroxyl (or otherwise terminal end atoms is minimal (2.2 Å and constant, for all peptides. The ratios of the angles at the carbonyl carbons (O'-C'-N' or (O'-C'-O' to this distance is also constant: 56 and 57 for the cis and trans confirgurations, respectively; i.e. a proline O'-C'-N'- (or O'-C'-O'-test, hereinafter called the CT-test, has been established for the determination of cis and trans configurations. It is also established in these proline derivatives, that whereas puckering takes place at Cβ for the CS form, it does so at Cγ for the C2 form.

  15. Molecular modeling of the conformational dynamics of the cellular prion protein

    Science.gov (United States)

    Nguyen, Charles; Colling, Ian; Bartz, Jason; Soto, Patricia

    2014-03-01

    Prions are infectious agents responsible for transmissible spongiform encephalopathies (TSEs), a type of fatal neurodegenerative disease in mammals. Prions propagate biological information by conversion of the non-pathological version of the prion protein to the infectious conformation, PrPSc. A wealth of knowledge has shed light on the nature and mechanism of prion protein conversion. In spite of the significance of this problem, we are far from fully understanding the conformational dynamics of the cellular isoform. To remedy this situation we employ multiple biomolecular modeling techniques such as docking and molecular dynamics simulations to map the free energy landscape and determine what specific regions of the prion protein are most conductive to binding. The overall goal is to characterize the conformational dynamics of the cell form of the prion protein, PrPc, to gain insight into inhibition pathways against misfolding. NE EPSCoR FIRST Award to Patricia Soto.

  16. Conformation transitions of blood proteins under influence of physical factors on microwave dielectric method

    International Nuclear Information System (INIS)

    Gorobchenko, O.A.; Nikolov, O.T.; Gatash, S.V.

    2006-01-01

    In this article, the influence of γ-irradiation and temperature on albumin and fibrinogen conformation and dielectric properties of protein solutions have been studied by the microwave dielectric method. Both the values of the real part ε' (dielectric permittivity) and the imaginary part ε'' (dielectric losses) of the complex dielectric permittivity of the aqueous solution of bovine serum albumin and human fibrinogen as functions of temperature and γ-irradiation dose have been obtained. The time of dielectric relaxation of water molecules in the protein solutions was calculated. The hydration of the albumin and fibrinogen molecules was determined. The temperature dependencies of hydration are non-monotonous and have a number of characteristic features at the temperatures 30-34 and 44-47 deg. C for serum albumin, and 24 and 32 deg. C for fibrinogen

  17. Guiding exploration in conformational feature space with Lipschitz underestimation for ab-initio protein structure prediction.

    Science.gov (United States)

    Hao, Xiaohu; Zhang, Guijun; Zhou, Xiaogen

    2018-04-01

    Computing conformations which are essential to associate structural and functional information with gene sequences, is challenging due to the high dimensionality and rugged energy surface of the protein conformational space. Consequently, the dimension of the protein conformational space should be reduced to a proper level, and an effective exploring algorithm should be proposed. In this paper, a plug-in method for guiding exploration in conformational feature space with Lipschitz underestimation (LUE) for ab-initio protein structure prediction is proposed. The conformational space is converted into ultrafast shape recognition (USR) feature space firstly. Based on the USR feature space, the conformational space can be further converted into Underestimation space according to Lipschitz estimation theory for guiding exploration. As a consequence of the use of underestimation model, the tight lower bound estimate information can be used for exploration guidance, the invalid sampling areas can be eliminated in advance, and the number of energy function evaluations can be reduced. The proposed method provides a novel technique to solve the exploring problem of protein conformational space. LUE is applied to differential evolution (DE) algorithm, and metropolis Monte Carlo(MMC) algorithm which is available in the Rosetta; When LUE is applied to DE and MMC, it will be screened by the underestimation method prior to energy calculation and selection. Further, LUE is compared with DE and MMC by testing on 15 small-to-medium structurally diverse proteins. Test results show that near-native protein structures with higher accuracy can be obtained more rapidly and efficiently with the use of LUE. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Protein Conformational Plasticity: the 'off-on' Switching Movement in Cdk5

    International Nuclear Information System (INIS)

    Cavalli, Andrea; Recanatini, Maurizio; Berteotti, Anna; Branduardi, Davide; Gervasio, Francesco L.; Parrinello, Michele

    2007-01-01

    Cyclin-dependent kinases (CDKs) are mostly known for their role in the cell cycle regulation. The activation mechanism of all CDKs involves the association with a regulatory protein, generally a cyclin, that binds to the kinase unit and stabilizes a catalytically active conformation. Active and inactive conformations of CDKs are characterized by the different spatial localization of two typical elements, namely the activation loop and an □-helix, whose amino-acid composition varies throughout the family

  19. Prion protein β2–α2 loop conformational landscape

    Science.gov (United States)

    Caldarulo, Enrico; Wüthrich, Kurt; Parrinello, Michele

    2017-01-01

    In transmissible spongiform encephalopathies (TSEs), which are lethal neurodegenerative diseases that affect humans and a wide range of other mammalian species, the normal “cellular” prion protein (PrPC) is transformed into amyloid aggregates representing the “scrapie form” of the protein (PrPSc). Continued research on this system is of keen interest, since new information on the physiological function of PrPC in healthy organisms is emerging, as well as new data on the mechanism of the transformation of PrPC to PrPSc. In this paper we used two different approaches: a combination of the well-tempered ensemble (WTE) and parallel tempering (PT) schemes and metadynamics (MetaD) to characterize the conformational free-energy surface of PrPC. The focus of the data analysis was on an 11-residue polypeptide segment in mouse PrPC(121–231) that includes the β2–α2 loop of residues 167–170, for which a correlation between structure and susceptibility to prion disease has previously been described. This study includes wild-type mouse PrPC and a variant with the single-residue replacement Y169A. The resulting detailed conformational landscapes complement in an integrative manner the available experimental data on PrPC, providing quantitative insights into the nature of the structural transition-related function of the β2–α2 loop. PMID:28827331

  20. Probing Conformational Dynamics of Tau Protein by Hydrogen/Deuterium Exchange Mass Spectrometry

    Science.gov (United States)

    Huang, Richard Y.-C.; Iacob, Roxana E.; Sankaranarayanan, Sethu; Yang, Ling; Ahlijanian, Michael; Tao, Li; Tymiak, Adrienne A.; Chen, Guodong

    2018-01-01

    Fibrillization of the microtubule-associated protein tau has been recognized as one of the signature pathologies of the nervous system in Alzheimer's disease, progressive supranuclear palsy, and other tauopathies. The conformational transition of tau in the fibrillization process, tau monomer to soluble aggregates to fibrils in particular, remains unclear. Here we report on the use of hydrogen/deuterium exchange mass spectrometry (HDX-MS) in combination with other biochemical approaches, including Thioflavin S fluorescence measurements, enzyme-linked immunosorbent assay (ELISA), and Western blotting to understand the heparin-induced tau's fibrillization. HDX-MS studies including anti-tau antibody epitope mapping experiments provided molecular level details of the full-length tau's conformational dynamics and its regional solvent accessibility upon soluble aggregates formation. The results demonstrate that R3 region in the full-length tau's microtubule binding repeat region (MTBR) is stabilized in the aggregation process, leaving both N and C terminal regions to be solvent exposed in the soluble aggregates and fibrils. The findings also illustrate the practical utility of orthogonal analytical methodologies for the characterization of protein higher order structure. [Figure not available: see fulltext.

  1. Quantum-chemical study on the bioactive conformation of epothilones.

    Science.gov (United States)

    Jiménez, Verónica A

    2010-12-27

    Herein, I report a DFT study on the bioactive conformation of epothilone A based on the analysis of 92 stable conformations of free and bound epothilone to a reduced model of tubulin receptor. The equilibrium structures and relative energies were studied using B3LYP and X3LYP functionals and the 6-31G(d) standard basis set, which was considered appropriate for the size of the systems under study. Calculated relative energies of free and bound epothilones led me to propose a new model for the bioactive conformation of epothilone A, which accounts for several structure-activity data.

  2. REDOR NMR Reveals Multiple Conformers for a Protein Kinase C Ligand in a Membrane Environment

    Directory of Open Access Journals (Sweden)

    Hao Yang

    2018-01-01

    Full Text Available Bryostatin 1 (henceforth bryostatin is in clinical trials for the treatment of Alzheimer’s disease and for HIV/AIDS eradication. It is also a preclinical lead for cancer immunotherapy and other therapeutic indications. Yet nothing is known about the conformation of bryostatin bound to its protein kinase C (PKC target in a membrane microenvironment. As a result, efforts to design more efficacious, better tolerated, or more synthetically accessible ligands have been limited to structures that do not include PKC or membrane effects known to influence PKC–ligand binding. This problem extends more generally to many membrane-associated proteins in the human proteome. Here, we use rotational-echo double-resonance (REDOR solid-state NMR to determine the conformations of PKC modulators bound to the PKCδ-C1b domain in the presence of phospholipid vesicles. The conformationally limited PKC modulator phorbol diacetate (PDAc is used as an initial test substrate. While unanticipated partitioning of PDAc between an immobilized protein-bound state and a mobile state in the phospholipid assembly was observed, a single conformation in the bound state was identified. In striking contrast, a bryostatin analogue (bryolog was found to exist exclusively in a protein-bound state, but adopts a distribution of conformations as defined by three independent distance measurements. The detection of multiple PKCδ-C1b-bound bryolog conformers in a functionally relevant phospholipid complex reveals the inherent dynamic nature of cellular systems that is not captured with single-conformation static structures. These results indicate that binding, selectivity, and function of PKC modulators, as well as the design of new modulators, are best addressed using a dynamic multistate model, an analysis potentially applicable to other membrane-associated proteins.

  3. Increasing the sampling efficiency of protein conformational transition using velocity-scaling optimized hybrid explicit/implicit solvent REMD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yuqi; Wang, Jinan; Shao, Qiang, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn; Zhu, Weiliang, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn [ACS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203 (China); Shi, Jiye, E-mail: qshao@mail.shcnc.ac.cn, E-mail: Jiye.Shi@ucb.com, E-mail: wlzhu@mail.shcnc.ac.cn [UCB Pharma, 216 Bath Road, Slough SL1 4EN (United Kingdom)

    2015-03-28

    The application of temperature replica exchange molecular dynamics (REMD) simulation on protein motion is limited by its huge requirement of computational resource, particularly when explicit solvent model is implemented. In the previous study, we developed a velocity-scaling optimized hybrid explicit/implicit solvent REMD method with the hope to reduce the temperature (replica) number on the premise of maintaining high sampling efficiency. In this study, we utilized this method to characterize and energetically identify the conformational transition pathway of a protein model, the N-terminal domain of calmodulin. In comparison to the standard explicit solvent REMD simulation, the hybrid REMD is much less computationally expensive but, meanwhile, gives accurate evaluation of the structural and thermodynamic properties of the conformational transition which are in well agreement with the standard REMD simulation. Therefore, the hybrid REMD could highly increase the computational efficiency and thus expand the application of REMD simulation to larger-size protein systems.

  4. Conformational targeting of fibrillar polyglutamine proteins in live cells escalates aggregation and cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Erik Kvam

    2009-05-01

    Full Text Available Misfolding- and aggregation-prone proteins underlying Parkinson's, Huntington's and Machado-Joseph diseases, namely alpha-synuclein, huntingtin, and ataxin-3 respectively, adopt numerous intracellular conformations during pathogenesis, including globular intermediates and insoluble amyloid-like fibrils. Such conformational diversity has complicated research into amyloid-associated intracellular dysfunction and neurodegeneration. To this end, recombinant single-chain Fv antibodies (scFvs are compelling molecular tools that can be selected against specific protein conformations, and expressed inside cells as intrabodies, for investigative and therapeutic purposes.Using atomic force microscopy (AFM and live-cell fluorescence microscopy, we report that a human scFv selected against the fibrillar form of alpha-synuclein targets isomorphic conformations of misfolded polyglutamine proteins. When expressed in the cytoplasm of striatal cells, this conformation-specific intrabody co-localizes with intracellular aggregates of misfolded ataxin-3 and a pathological fragment of huntingtin, and enhances the aggregation propensity of both disease-linked polyglutamine proteins. Using this intrabody as a tool for modulating the kinetics of amyloidogenesis, we show that escalating aggregate formation of a pathologic huntingtin fragment is not cytoprotective in striatal cells, but rather heightens oxidative stress and cell death as detected by flow cytometry. Instead, cellular protection is achieved by suppressing aggregation using a previously described intrabody that binds to the amyloidogenic N-terminus of huntingtin. Analogous cytotoxic results are observed following conformational targeting of normal or polyglutamine-expanded human ataxin-3, which partially aggregate through non-polyglutamine domains.These findings validate that the rate of aggregation modulates polyglutamine-mediated intracellular dysfunction, and caution that molecules designed to

  5. Ligand binding turns moth pheromone-binding protein into a pH sensor: effect on the Antheraea polyphemus PBP1 conformation.

    Science.gov (United States)

    Katre, Uma V; Mazumder, Suman; Prusti, Rabi K; Mohanty, Smita

    2009-11-13

    In moths, pheromone-binding proteins (PBPs) are responsible for the transport of the hydrophobic pheromones to the membrane-bound receptors across the aqueous sensillar lymph. We report here that recombinant Antheraea polyphemus PBP1 (ApolPBP1) picks up hydrophobic molecule(s) endogenous to the Escherichia coli expression host that keeps the protein in the "open" (bound) conformation at high pH but switches to the "closed" (free) conformation at low pH. This finding has bearing on the solution structures of undelipidated lepidopteran moth PBPs determined thus far. Picking up a hydrophobic molecule from the host expression system could be a common feature for lipid-binding proteins. Thus, delipidation is critical for bacterially expressed lipid-binding proteins. We have shown for the first time that the delipidated ApolPBP1 exists primarily in the closed form at all pH levels. Thus, current views on the pH-induced conformational switch of PBPs hold true only for the ligand-bound open conformation of the protein. Binding of various ligands to delipidated ApolPBP1 studied by solution NMR revealed that the protein in the closed conformation switches to the open conformation only at or above pH 6.0 with a protein to ligand stoichiometry of approximately 1:1. Mutation of His(70) and His(95) to alanine drives the equilibrium toward the open conformation even at low pH for the ligand-bound protein by eliminating the histidine-dependent pH-induced conformational switch. Thus, the delipidated double mutant can bind ligand even at low pH in contrast to the wild type protein as revealed by fluorescence competitive displacement assay using 1-aminoanthracene and solution NMR.

  6. Prediction of protein conformational freedom from distance constraints

    NARCIS (Netherlands)

    de Groot, B.L.; van Aalten, D.M.F.; Scheek, R.M.; Amadei, A; Vriend, G.; Berendsen, H.J.C.

    1997-01-01

    A method is presented that generates random protein structures that fulfil a set of upper and lower interatomic distance limits, These limits depend on distances measured in experimental structures and the strength of the interatomic interaction, Structural differences between generated structures

  7. New conformations of linear polyubiquitin chains from crystallographic and solution-scattering studies expand the conformational space of polyubiquitin.

    Science.gov (United States)

    Thach, Trung Thanh; Shin, Donghyuk; Han, Seungsu; Lee, Sangho

    2016-04-01

    The conformational flexibility of linkage-specific polyubiquitin chains enables ubiquitylated proteins and their receptors to be involved in a variety of cellular processes. Linear or Met1-linked polyubiquitin chains, associated with nondegradational cellular signalling pathways, have been known to adopt multiple conformations from compact to extended conformations. However, the extent of such conformational flexibility remains open. Here, the crystal structure of linear Ub2 was determined in a more compact conformation than that of the previously known structure (PDB entry 3axc). The two structures differ significantly from each other, as shown by an r.m.s.d. between C(α) atoms of 3.1 Å. The compactness of the linear Ub2 structure in comparison with PDB entry 3axc is supported by smaller values of the radius of gyration (Rg; 18 versus 18.9 Å) and the maximum interatomic distance (Dmax; 55.5 versus 57.8 Å). Extra intramolecular hydrogen bonds formed among polar residues between the distal and proximal ubiquitin moieties seem to contribute to stabilization of the compact conformation of linear Ub2. An ensemble of three semi-extended and extended conformations of linear Ub2 was also observed by small-angle X-ray scattering (SAXS) analysis in solution. In addition, the conformational heterogeneity in linear polyubiquitin chains is clearly manifested by SAXS analyses of linear Ub3 and Ub4: at least three distinct solution conformations are observed in each chain, with the linear Ub3 conformations being compact. The results expand the extent of conformational space of linear polyubiquitin chains and suggest that changes in the conformational ensemble may be pivotal in mediating multiple signalling pathways.

  8. A cDNA Immunization Strategy to Generate Nanobodies against Membrane Proteins in Native Conformation

    Science.gov (United States)

    Eden, Thomas; Menzel, Stephan; Wesolowski, Janusz; Bergmann, Philine; Nissen, Marion; Dubberke, Gudrun; Seyfried, Fabienne; Albrecht, Birte; Haag, Friedrich; Koch-Nolte, Friedrich

    2018-01-01

    Nanobodies (Nbs) are soluble, versatile, single-domain binding modules derived from the VHH variable domain of heavy-chain antibodies naturally occurring in camelids. Nbs hold huge promise as novel therapeutic biologics. Membrane proteins are among the most interesting targets for therapeutic Nbs because they are accessible to systemically injected biologics. In order to be effective, therapeutic Nbs must recognize their target membrane protein in native conformation. However, raising Nbs against membrane proteins in native conformation can pose a formidable challenge since membrane proteins typically contain one or more hydrophobic transmembrane regions and, therefore, are difficult to purify in native conformation. Here, we describe a highly efficient genetic immunization strategy that circumvents these difficulties by driving expression of the target membrane protein in native conformation by cells of the immunized camelid. The strategy encompasses ballistic transfection of skin cells with cDNA expression plasmids encoding one or more orthologs of the membrane protein of interest and, optionally, other costimulatory proteins. The plasmid is coated onto 1 µm gold particles that are then injected into the shaved and depilated skin of the camelid. A gene gun delivers a helium pulse that accelerates the DNA-coated particles to a velocity sufficient to penetrate through multiple layers of cells in the skin. This results in the exposure of the extracellular domains of the membrane protein on the cell surface of transfected cells. Repeated immunization drives somatic hypermutation and affinity maturation of target-specific heavy-chain antibodies. The VHH/Nb coding region is PCR-amplified from B cells obtained from peripheral blood or a lymph node biopsy. Specific Nbs are selected by phage display or by screening of Nb-based heavy-chain antibodies expressed as secretory proteins in transfected HEK cells. Using this strategy, we have successfully generated agonistic

  9. A cDNA Immunization Strategy to Generate Nanobodies against Membrane Proteins in Native Conformation

    Directory of Open Access Journals (Sweden)

    Thomas Eden

    2018-01-01

    Full Text Available Nanobodies (Nbs are soluble, versatile, single-domain binding modules derived from the VHH variable domain of heavy-chain antibodies naturally occurring in camelids. Nbs hold huge promise as novel therapeutic biologics. Membrane proteins are among the most interesting targets for therapeutic Nbs because they are accessible to systemically injected biologics. In order to be effective, therapeutic Nbs must recognize their target membrane protein in native conformation. However, raising Nbs against membrane proteins in native conformation can pose a formidable challenge since membrane proteins typically contain one or more hydrophobic transmembrane regions and, therefore, are difficult to purify in native conformation. Here, we describe a highly efficient genetic immunization strategy that circumvents these difficulties by driving expression of the target membrane protein in native conformation by cells of the immunized camelid. The strategy encompasses ballistic transfection of skin cells with cDNA expression plasmids encoding one or more orthologs of the membrane protein of interest and, optionally, other costimulatory proteins. The plasmid is coated onto 1 µm gold particles that are then injected into the shaved and depilated skin of the camelid. A gene gun delivers a helium pulse that accelerates the DNA-coated particles to a velocity sufficient to penetrate through multiple layers of cells in the skin. This results in the exposure of the extracellular domains of the membrane protein on the cell surface of transfected cells. Repeated immunization drives somatic hypermutation and affinity maturation of target-specific heavy-chain antibodies. The VHH/Nb coding region is PCR-amplified from B cells obtained from peripheral blood or a lymph node biopsy. Specific Nbs are selected by phage display or by screening of Nb-based heavy-chain antibodies expressed as secretory proteins in transfected HEK cells. Using this strategy, we have successfully

  10. TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching.

    Science.gov (United States)

    Ye, Qiaozhen; Rosenberg, Scott C; Moeller, Arne; Speir, Jeffrey A; Su, Tiffany Y; Corbett, Kevin D

    2015-04-28

    The AAA+ family ATPase TRIP13 is a key regulator of meiotic recombination and the spindle assembly checkpoint, acting on signaling proteins of the conserved HORMA domain family. Here we present the structure of the Caenorhabditis elegans TRIP13 ortholog PCH-2, revealing a new family of AAA+ ATPase protein remodelers. PCH-2 possesses a substrate-recognition domain related to those of the protein remodelers NSF and p97, while its overall hexameric architecture and likely structural mechanism bear close similarities to the bacterial protein unfoldase ClpX. We find that TRIP13, aided by the adapter protein p31(comet), converts the HORMA-family spindle checkpoint protein MAD2 from a signaling-active 'closed' conformer to an inactive 'open' conformer. We propose that TRIP13 and p31(comet) collaborate to inactivate the spindle assembly checkpoint through MAD2 conformational conversion and disassembly of mitotic checkpoint complexes. A parallel HORMA protein disassembly activity likely underlies TRIP13's critical regulatory functions in meiotic chromosome structure and recombination.

  11. TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Qiaozhen [Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, United States; Rosenberg, Scott C. [Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, United States; Moeller, Arne [National Resource for Automated Molecular Microscopy, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States; Speir, Jeffrey A. [National Resource for Automated Molecular Microscopy, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States; Su, Tiffany Y. [Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, United States; Corbett, Kevin D. [Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, United States; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States

    2015-04-28

    The AAA+ family ATPase TRIP13 is a key regulator of meiotic recombination and the spindle assembly checkpoint, acting on signaling proteins of the conserved HORMA domain family. Here we present the structure of the Caenorhabditis elegans TRIP13 ortholog PCH-2, revealing a new family of AAA+ ATPase protein remodelers. PCH-2 possesses a substrate-recognition domain related to those of the protein remodelers NSF and p97, while its overall hexameric architecture and likely structural mechanism bear close similarities to the bacterial protein unfoldase ClpX. We find that TRIP13, aided by the adapter protein p31(comet), converts the HORMA-family spindle checkpoint protein MAD2 from a signaling-active ‘closed’ conformer to an inactive ‘open’ conformer. We propose that TRIP13 and p31(comet) collaborate to inactivate the spindle assembly checkpoint through MAD2 conformational conversion and disassembly of mitotic checkpoint complexes. A parallel HORMA protein disassembly activity likely underlies TRIP13's critical regulatory functions in meiotic chromosome structure and recombination.

  12. Experimental conformational energy maps of proteins and peptides.

    Science.gov (United States)

    Balaji, Govardhan A; Nagendra, H G; Balaji, Vitukudi N; Rao, Shashidhar N

    2017-06-01

    We have presented an extensive analysis of the peptide backbone dihedral angles in the PDB structures and computed experimental Ramachandran plots for their distributions seen under a various constraints on X-ray resolution, representativeness at different sequence identity percentages, and hydrogen bonding distances. These experimental distributions have been converted into isoenergy contour plots using the approach employed previously by F. M. Pohl. This has led to the identification of energetically favored minima in the Ramachandran (ϕ, ψ) plots in which global minima are predominantly observed either in the right-handed α-helical or the polyproline II regions. Further, we have identified low energy pathways for transitions between various minima in the (ϕ,ψ) plots. We have compared and presented the experimental plots with published theoretical plots obtained from both molecular mechanics and quantum mechanical approaches. In addition, we have developed and employed a root mean square deviation (RMSD) metric for isoenergy contours in various ranges, as a measure (in kcal.mol -1 ) to compare any two plots and determine the extent of correlation and similarity between their isoenergy contours. In general, we observe a greater degree of compatibility with experimental plots for energy maps obtained from molecular mechanics methods compared to most quantum mechanical methods. The experimental energy plots we have investigated could be helpful in refining protein structures obtained from X-ray, NMR, and electron microscopy and in refining force field parameters to enable simulations of peptide and protein structures that have higher degree of consistency with experiments. Proteins 2017; 85:979-1001. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Characterizing protein conformations by correlation analysis of coarse-grained contact matrices

    Science.gov (United States)

    Lindsay, Richard J.; Siess, Jan; Lohry, David P.; McGee, Trevor S.; Ritchie, Jordan S.; Johnson, Quentin R.; Shen, Tongye

    2018-01-01

    We have developed a method to capture the essential conformational dynamics of folded biopolymers using statistical analysis of coarse-grained segment-segment contacts. Previously, the residue-residue contact analysis of simulation trajectories was successfully applied to the detection of conformational switching motions in biomolecular complexes. However, the application to large protein systems (larger than 1000 amino acid residues) is challenging using the description of residue contacts. Also, the residue-based method cannot be used to compare proteins with different sequences. To expand the scope of the method, we have tested several coarse-graining schemes that group a collection of consecutive residues into a segment. The definition of these segments may be derived from structural and sequence information, while the interaction strength of the coarse-grained segment-segment contacts is a function of the residue-residue contacts. We then perform covariance calculations on these coarse-grained contact matrices. We monitored how well the principal components of the contact matrices is preserved using various rendering functions. The new method was demonstrated to assist the reduction of the degrees of freedom for describing the conformation space, and it potentially allows for the analysis of a system that is approximately tenfold larger compared with the corresponding residue contact-based method. This method can also render a family of similar proteins into the same conformational space, and thus can be used to compare the structures of proteins with different sequences.

  14. The Staphylococcus aureus extracellular adherence protein (Eap) adopts an elongated but structured conformation in solution.

    Science.gov (United States)

    Hammel, Michal; Nemecek, Daniel; Keightley, J Andrew; Thomas, George J; Geisbrecht, Brian V

    2007-12-01

    The extracellular adherence protein (Eap) of Staphylococcus aureus participates in a wide range of protein-protein interactions that facilitate the initiation and dissemination of Staphylococcal disease. In this report, we describe the use of a multidisciplinary approach to characterize the solution structure of full-length Eap. In contrast to previous reports suggesting that a six-domain isoform of Eap undergoes multimerization, sedimentation equilibrium analytical ultracentrifugation data revealed that a four-domain isoform of Eap is a monomer in solution. In vitro proteolysis and solution small angle X-ray scattering studies both indicate that Eap adopts an extended conformation in solution, where the linkers connecting sequential EAP modules are solvent exposed. Construction of a low-resolution model of full-length Eap using a combination of ab initio deconvolution of the SAXS data and rigid body modeling of the EAP domain crystal structure suggests that full-length Eap may present several unique concave surfaces capable of participating in ligand binding. These results also raise the possibility that such surfaces may be held together by additional interactions between adjacent EAP modules. This hypothesis is supported by a comparative Raman spectroscopic analysis of full-length Eap and a stoichiometric solution of the individual EAP modules, which indicates the presence of additional secondary structure and a greater extent of hydrogen/deuterium exchange protection in full-length Eap. Our results provide the first insight into the solution structure of full-length Eap and an experimental basis for interpreting the EAP domain crystal structures within the context of the full-length molecule. They also lay a foundation for future studies into the structural and molecular bases of Eap-mediated protein-protein interactions with its many ligands.

  15. Correlated motion of protein subdomains and large-scale conformational flexibility of RecA protein filament

    Science.gov (United States)

    Yu, Garmay; A, Shvetsov; D, Karelov; D, Lebedev; A, Radulescu; M, Petukhov; V, Isaev-Ivanov

    2012-02-01

    Based on X-ray crystallographic data available at Protein Data Bank, we have built molecular dynamics (MD) models of homologous recombinases RecA from E. coli and D. radiodurans. Functional form of RecA enzyme, which is known to be a long helical filament, was approximated by a trimer, simulated in periodic water box. The MD trajectories were analyzed in terms of large-scale conformational motions that could be detectable by neutron and X-ray scattering techniques. The analysis revealed that large-scale RecA monomer dynamics can be described in terms of relative motions of 7 subdomains. Motion of C-terminal domain was the major contributor to the overall dynamics of protein. Principal component analysis (PCA) of the MD trajectories in the atom coordinate space showed that rotation of C-domain is correlated with the conformational changes in the central domain and N-terminal domain, that forms the monomer-monomer interface. Thus, even though C-terminal domain is relatively far from the interface, its orientation is correlated with large-scale filament conformation. PCA of the trajectories in the main chain dihedral angle coordinate space implicates a co-existence of a several different large-scale conformations of the modeled trimer. In order to clarify the relationship of independent domain orientation with large-scale filament conformation, we have performed analysis of independent domain motion and its implications on the filament geometry.

  16. Spectroscopic and theoretical investigation of conformational changes of proteins by synthesized pyrimidine derivative and its sensitivity towards FRET application

    Science.gov (United States)

    Ghosh, Swadesh; Singharoy, Dipti; Bhattacharya, Subhash Chandra

    2018-04-01

    Interest in synthesizing and characterizing (IR, NMR and HRMS spectroscopic methods) a pyrimidine based Schiff-base ligand, 2-(2-(Anthracen-9-ylmethylene) hydrazinyl)-4,6-dimethyl pyrimidine (ANHP) has been developed for its application to ascertain the conformational change of protein and sensitivity towards fluorescence resonance energy transfer (FRET) process. Location of ANHP in bovine serum albumin (BSA) and human serum albumin (HSA) proteins environment has been determined using different spectroscopic techniques. Weakly fluorescent ANHP have shown greater protein induced fluorescence enhancement (PIFE) in case of HSA than BSA, though in both cases energy transfer efficiency are almost same but difference in binding constant values encourages us to find the location of ANHP within the complex protein environment. From the FRET parameter and α-helicity change, it has been found that ANHP bound with Trp-214 of HSA and surface Trp-134 of BSA. Conformational changes of proteins have been observed more for HSA than BSA in presence of ANHP, which has confirmed the location of ANHP in both the protein environments. Coupled with experimental studies, molecular docking analysis has also been done to explain the locations and distance dependent FRET process of ANHP in both proteins.

  17. Effect of dietary protein level and length of fattening period on dressing percentage and carcass conformation in broiler chickens

    OpenAIRE

    Dosković, Vladimir; Bogosavljević-Bošković, Snežana; Škrbić, Zdenka; Đoković, Radojica; Rakonjac, Simeon; Petričević, Veselin

    2017-01-01

    This study analyses the effect of different protein levels in broiler feeds (supplemented with protease) and different lengths of fattening period on some parameters related to dressed carcass quality. Medium-growing Master Gris broiler chickens were used in a fattening trial lasting 63 days. At slaughter, dressing percentages and abdominal fat percentages were determined based on traditionally dressed carcass weights and abdominal fat weights of broilers at 49 and 63 days, and conformation i...

  18. Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR

    International Nuclear Information System (INIS)

    Eddy, Matthew T.; Su, Yongchao; Silvers, Robert; Andreas, Loren; Clark, Lindsay; Wagner, Gerhard; Pintacuda, Guido; Emsley, Lyndon; Griffin, Robert G.

    2015-01-01

    The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms two-dimensional lipid crystals, showing remarkable spectral resolution (0.5–0.3 ppm for 13 C line widths and <0.5 ppm 15 N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane β-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the reported

  19. Conformational effects on the circular dichroism of Human Carbonic Anhydrase II: a multilevel computational study.

    Directory of Open Access Journals (Sweden)

    Tatyana G Karabencheva-Christova

    Full Text Available Circular Dichroism (CD spectroscopy is a powerful method for investigating conformational changes in proteins and therefore has numerous applications in structural and molecular biology. Here a computational investigation of the CD spectrum of the Human Carbonic Anhydrase II (HCAII, with main focus on the near-UV CD spectra of the wild-type enzyme and it seven tryptophan mutant forms, is presented and compared to experimental studies. Multilevel computational methods (Molecular Dynamics, Semiempirical Quantum Mechanics, Time-Dependent Density Functional Theory were applied in order to gain insight into the mechanisms of interaction between the aromatic chromophores within the protein environment and understand how the conformational flexibility of the protein influences these mechanisms. The analysis suggests that combining CD semi empirical calculations, crystal structures and molecular dynamics (MD could help in achieving a better agreement between the computed and experimental protein spectra and provide some unique insight into the dynamic nature of the mechanisms of chromophore interactions.

  20. Using simulation to interpret experimental data in terms of protein conformational ensembles.

    Science.gov (United States)

    Allison, Jane R

    2017-04-01

    In their biological environment, proteins are dynamic molecules, necessitating an ensemble structural description. Molecular dynamics simulations and solution-state experiments provide complimentary information in the form of atomically detailed coordinates and averaged or distributions of structural properties or related quantities. Recently, increases in the temporal and spatial scale of conformational sampling and comparison of the more diverse conformational ensembles thus generated have revealed the importance of sampling rare events. Excitingly, new methods based on maximum entropy and Bayesian inference are promising to provide a statistically sound mechanism for combining experimental data with molecular dynamics simulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Contribution to the study of conformal theories and integrable models

    International Nuclear Information System (INIS)

    Sochen, N.

    1992-05-01

    The purpose of this thesis is the 2-D physics study. The main tool is the conformal field theory with Kac-Moody and W algebra. This theory describes the 2-D models that have translation, rotation and dilatation symmetries, at their critical point. The expanded conformal theories describe models that have a larger symmetry than conformal symmetry. After a review of conformal theory methods, the author effects a detailed study of singular vector form in sl(2) affine algebra. With this important form, correlation functions can be calculated. The classical W algebra is studied and the relations between classical W algebra and quantum W algebra are specified. Bosonization method is presented and sl(2)/sl(2) topological model, studied. Partition function bosonization of different models is described. A program of rational theory classification is described linking rational conformal theories and spin integrable models, and interesting relations between Boltzmann weights of different models have been found. With these relations, the integrability of models by a direct calculation of their Boltzmann weights is proved

  2. Conformational Changes in the Hepatitis B Virus Core Protein Are Consistent with a Role for Allostery in Virus Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Packianathan, Charles; Katen, Sarah P.; Dann, III, Charles E.; Zlotnick, Adam (Indiana)

    2010-01-12

    In infected cells, virus components must be organized at the right place and time to ensure assembly of infectious virions. From a different perspective, assembly must be prevented until all components are available. Hypothetically, this can be achieved by allosterically controlling assembly. Consistent with this hypothesis, here we show that the structure of the hepatitis B virus (HBV) core protein dimer, which can spontaneously self-assemble, is incompatible with capsid assembly. Systematic differences between core protein dimer and capsid conformations demonstrate linkage between the intradimer interface and interdimer contact surface. These structures also provide explanations for the capsid-dimer selectivity of some antibodies and the activities of assembly effectors. Solution studies suggest that the assembly-inactive state is more accurately an ensemble of conformations. Simulations show that allostery supports controlled assembly and results in capsids that are resistant to dissociation. We propose that allostery, as demonstrated in HBV, is common to most self-assembling viruses.

  3. Conformational sampling in template-free protein loop structure modeling: an overview.

    Science.gov (United States)

    Li, Yaohang

    2013-01-01

    Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a "mini protein folding problem" under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also summarized.

  4. CONFORMATIONAL SAMPLING IN TEMPLATE-FREE PROTEIN LOOP STRUCTURE MODELING: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    Yaohang Li

    2013-02-01

    Full Text Available Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a “mini protein folding problem” under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also summarized.

  5. Conformational Analysis of Misfolded Protein Aggregation by FRET and Live-Cell Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Akira Kitamura

    2015-03-01

    Full Text Available Cellular homeostasis is maintained by several types of protein machinery, including molecular chaperones and proteolysis systems. Dysregulation of the proteome disrupts homeostasis in cells, tissues, and the organism as a whole, and has been hypothesized to cause neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS and Huntington’s disease (HD. A hallmark of neurodegenerative disorders is formation of ubiquitin-positive inclusion bodies in neurons, suggesting that the aggregation process of misfolded proteins changes during disease progression. Hence, high-throughput determination of soluble oligomers during the aggregation process, as well as the conformation of sequestered proteins in inclusion bodies, is essential for elucidation of physiological regulation mechanism and drug discovery in this field. To elucidate the interaction, accumulation, and conformation of aggregation-prone proteins, in situ spectroscopic imaging techniques, such as Förster/fluorescence resonance energy transfer (FRET, fluorescence correlation spectroscopy (FCS, and bimolecular fluorescence complementation (BiFC have been employed. Here, we summarize recent reports in which these techniques were applied to the analysis of aggregation-prone proteins (in particular their dimerization, interactions, and conformational changes, and describe several fluorescent indicators used for real-time observation of physiological states related to proteostasis.

  6. A correspondence between solution-state dynamics of an individual protein and the sequence and conformational diversity of its family.

    Directory of Open Access Journals (Sweden)

    Gregory D Friedland

    2009-05-01

    Full Text Available Conformational ensembles are increasingly recognized as a useful representation to describe fundamental relationships between protein structure, dynamics and function. Here we present an ensemble of ubiquitin in solution that is created by sampling conformational space without experimental information using "Backrub" motions inspired by alternative conformations observed in sub-Angstrom resolution crystal structures. Backrub-generated structures are then selected to produce an ensemble that optimizes agreement with nuclear magnetic resonance (NMR Residual Dipolar Couplings (RDCs. Using this ensemble, we probe two proposed relationships between properties of protein ensembles: (i a link between native-state dynamics and the conformational heterogeneity observed in crystal structures, and (ii a relation between dynamics of an individual protein and the conformational variability explored by its natural family. We show that the Backrub motional mechanism can simultaneously explore protein native-state dynamics measured by RDCs, encompass the conformational variability present in ubiquitin complex structures and facilitate sampling of conformational and sequence variability matching those occurring in the ubiquitin protein family. Our results thus support an overall relation between protein dynamics and conformational changes enabling sequence changes in evolution. More practically, the presented method can be applied to improve protein design predictions by accounting for intrinsic native-state dynamics.

  7. Multiple conformational states of DnaA protein regulate its interaction with DnaA boxes in the initiation of DNA replication.

    Science.gov (United States)

    Patel, Meera J; Bhatia, Lavesh; Yilmaz, Gulden; Biswas-Fiss, Esther E; Biswas, Subhasis B

    2017-09-01

    DnaA protein is the initiator of genomic DNA replication in prokaryotes. It binds to specific DNA sequences in the origin of DNA replication and unwinds small AT-rich sequences downstream for the assembly of the replisome. The mechanism of activation of DnaA that enables it to bind and organize the origin DNA and leads to replication initiation remains unclear. In this study, we have developed double-labeled fluorescent DnaA probes to analyze conformational states of DnaA protein upon binding DNA, nucleotide, and Soj sporulation protein using Fluorescence Resonance Energy Transfer (FRET). Our studies demonstrate that DnaA protein undergoes large conformational changes upon binding to substrates and there are multiple distinct conformational states that enable it to initiate DNA replication. DnaA protein adopted a relaxed conformation by expanding ~15Å upon binding ATP and DNA to form the ATP·DnaA·DNA complex. Hydrolysis of bound ATP to ADP led to a contraction of DnaA within the complex. The relaxed conformation of DnaA is likely required for the formation of the multi-protein ATP·DnaA·DNA complex. In the initiation of sporulation, Soj binding to DnaA prevented relaxation of its conformation. Soj·ADP appeared to block the activation of DnaA, suggesting a mechanism for Soj·ADP in switching initiation of DNA replication to sporulation. Our studies demonstrate that multiple conformational states of DnaA protein regulate its binding to DNA in the initiation of DNA replication. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Roles of electrostatics and conformation in protein-crystal interactions

    NARCIS (Netherlands)

    Azzopardi, P.V.; O'Young, J.; Lajoie, G.; Karttunen, M.E.J.; Goldberg, H.A.; Hunter, G.K.

    2010-01-01

    In vitro studies have shown that the phosphoprotein osteopontin (OPN) inhibits the nucleation and growth of hydroxyapatite (HA) and other biominerals. In vivo, OPN is believed to prevent the calcification of soft tissues. However, the nature of the interaction between OPN and HA is not understood.

  9. Structure of Human Pancreatic Lipase-Related Protein 2 with the Lid in an Open Conformation

    Energy Technology Data Exchange (ETDEWEB)

    Eydoux, Cecilia; Spinelli, Silvia; Davis, Tara L.; Walker, John R.; Seitova, Alma; Dhe-Paganon, Sirano; De Caro, Alain; Cambillau, Christian; Carriere, Frederic (CNRS-UMR); (Toronto)

    2008-10-02

    Access to the active site of pancreatic lipase (PL) is controlled by a surface loop, the lid, which normally undergoes conformational changes only upon addition of lipids or amphiphiles. Structures of PL with their lids in the open and functional conformation have required cocrystallization with amphiphiles. Here we report two crystal structures of wild-type and unglycosylated human pancreatic lipase-related protein 2 (HPLRP2) with the lid in an open conformation in the absence of amphiphiles. These structures solved independently are strikingly similar, with some residues of the lid being poorly defined in the electron-density map. The open conformation of the lid is however different from that previously observed in classical liganded PL, suggesting different kinetic properties for HPLRP2. Here we show that the HPLRP2 is directly inhibited by E600, does not present interfacial activation, and acts preferentially on substrates forming monomers or small aggregates (micelles) dispersed in solution like monoglycerides, phospholipids and galactolipids, whereas classical PL displays reverse properties and a high specificity for unsoluble substrates like triglycerides and diglycerides forming oil-in-water interfaces. These biochemical properties imply that the lid of HPLRP2 is likely to spontaneously adopt in solution the open conformation observed in the crystal structure. This open conformation generates a large cavity capable of accommodating the digalactose polar head of galactolipids, similar to that previously observed in the active site of the guinea pig PLRP2, but absent from the classical PL. Most of the structural and kinetic properties of HPLRP2 were found to be different from those of rat PLRP2, the structure of which was previously obtained with the lid in a closed conformation. Our findings illustrate the essential role of the lid in determining the substrate specificity and the mechanism of action of lipases.

  10. Study of conformally flat polytropes with tilted congruence

    Science.gov (United States)

    Sharif, M.; Sadiq, Sobia

    This paper is aimed to study the modeling of spherically symmetric spacetime in the presence of anisotropic dissipative fluid configuration. This is accomplished for an observer moving relative to matter content using two cases of polytropic equation-of-state under conformally flat condition. We formulate the corresponding generalized Tolman-Oppenheimer-Volkoff equation, mass equation, as well as energy conditions for both cases. The conformally flat condition is imposed to find an expression for anisotropy which helps to study spherically symmetric polytropes. Finally, Tolman mass is used to analyze stability of the resulting models.

  11. Assessing protein conformational sampling methods based on bivariate lag-distributions of backbone angles

    KAUST Repository

    Maadooliat, Mehdi; Gao, Xin; Huang, Jianhua Z.

    2012-01-01

    Despite considerable progress in the past decades, protein structure prediction remains one of the major unsolved problems in computational biology. Angular-sampling-based methods have been extensively studied recently due to their ability to capture the continuous conformational space of protein structures. The literature has focused on using a variety of parametric models of the sequential dependencies between angle pairs along the protein chains. In this article, we present a thorough review of angular-sampling-based methods by assessing three main questions: What is the best distribution type to model the protein angles? What is a reasonable number of components in a mixture model that should be considered to accurately parameterize the joint distribution of the angles? and What is the order of the local sequence-structure dependency that should be considered by a prediction method? We assess the model fits for different methods using bivariate lag-distributions of the dihedral/planar angles. Moreover, the main information across the lags can be extracted using a technique called Lag singular value decomposition (LagSVD), which considers the joint distribution of the dihedral/planar angles over different lags using a nonparametric approach and monitors the behavior of the lag-distribution of the angles using singular value decomposition. As a result, we developed graphical tools and numerical measurements to compare and evaluate the performance of different model fits. Furthermore, we developed a web-tool (http://www.stat.tamu. edu/~madoliat/LagSVD) that can be used to produce informative animations. © The Author 2012. Published by Oxford University Press.

  12. Assessing protein conformational sampling methods based on bivariate lag-distributions of backbone angles

    KAUST Repository

    Maadooliat, Mehdi

    2012-08-27

    Despite considerable progress in the past decades, protein structure prediction remains one of the major unsolved problems in computational biology. Angular-sampling-based methods have been extensively studied recently due to their ability to capture the continuous conformational space of protein structures. The literature has focused on using a variety of parametric models of the sequential dependencies between angle pairs along the protein chains. In this article, we present a thorough review of angular-sampling-based methods by assessing three main questions: What is the best distribution type to model the protein angles? What is a reasonable number of components in a mixture model that should be considered to accurately parameterize the joint distribution of the angles? and What is the order of the local sequence-structure dependency that should be considered by a prediction method? We assess the model fits for different methods using bivariate lag-distributions of the dihedral/planar angles. Moreover, the main information across the lags can be extracted using a technique called Lag singular value decomposition (LagSVD), which considers the joint distribution of the dihedral/planar angles over different lags using a nonparametric approach and monitors the behavior of the lag-distribution of the angles using singular value decomposition. As a result, we developed graphical tools and numerical measurements to compare and evaluate the performance of different model fits. Furthermore, we developed a web-tool (http://www.stat.tamu. edu/~madoliat/LagSVD) that can be used to produce informative animations. © The Author 2012. Published by Oxford University Press.

  13. Time-resolved circular dichroism: Application to the study of conformal changes in biomolecules

    Science.gov (United States)

    Hache, F.

    2010-06-01

    Circular dichroism (CD) is known to be a very sensitive probe of the conformation of molecules and biomolecules. It is therefore tempting to implement CD in a pump-probe experiment in order to measure ultrarapid conformational changes which occur in photochemical processes. We present two technical developments of such time-resolved CD experiments. The first one relies on the modulation of the probe polarization from left to right circular whereas the second one measures the pump-induced ellipticity of the probe with a Babinet-Soleil compensator. Some applications are described and extension of these techniques towards the study of elementary protein folding processes is discussed.

  14. Time-resolved circular dichroism: Application to the study of conformal changes in biomolecules

    Directory of Open Access Journals (Sweden)

    Hache F.

    2010-06-01

    Full Text Available Circular dichroism (CD is known to be a very sensitive probe of the conformation of molecules and biomolecules. It is therefore tempting to implement CD in a pump-probe experiment in order to measure ultrarapid conformational changes which occur in photochemical processes. We present two technical developments of such time-resolved CD experiments. The first one relies on the modulation of the probe polarization from left to right circular whereas the second one measures the pump-induced ellipticity of the probe with a Babinet-Soleil compensator. Some applications are described and extension of these techniques towards the study of elementary protein folding processes is discussed.

  15. Conformational Flexibility of Proteins Involved in Ribosome Biogenesis: Investigations via Small Angle X-ray Scattering (SAXS

    Directory of Open Access Journals (Sweden)

    Dritan Siliqi

    2018-02-01

    Full Text Available The dynamism of proteins is central to their function, and several proteins have been described as flexible, as consisting of multiple domains joined by flexible linkers, and even as intrinsically disordered. Several techniques exist to study protein structures, but small angle X-ray scattering (SAXS has proven to be particularly powerful for the quantitative analysis of such flexible systems. In the present report, we have used SAXS in combination with X-ray crystallography to highlight their usefulness at characterizing flexible proteins, using as examples two proteins involved in different steps of ribosome biogenesis. The yeast BRCA2 and CDKN1A-interactig protein, Bcp1, is a chaperone for Rpl23 of unknown structure. We showed that it consists of a rigid, slightly elongated protein, with a secondary structure comprising a mixture of alpha helices and beta sheets. As an example of a flexible molecule, we studied the SBDS (Shwachman-Bodian-Diamond Syndrome protein that is involved in the cytoplasmic maturation of the 60S subunit and constitutes the mutated target in the Shwachman-Diamond Syndrome. In solution, this protein coexists in an ensemble of three main conformations, with the N- and C-terminal ends adopting different orientations with respect to the central domain. The structure observed in the protein crystal corresponds to an average of those predicted by the SAXS flexibility analysis.

  16. Influence of multiple well defined conformations on small-angle scattering of proteins in solution.

    Science.gov (United States)

    Heller, William T

    2005-01-01

    A common structural motif for many proteins comprises rigid domains connected by a flexible hinge or linker. The flexibility afforded by these domains is important for proper function and such proteins may be able to adopt more than one conformation in solution under equilibrium conditions. Small-angle scattering of proteins in solution samples all conformations that exist in the sampled volume during the time of the measurement, providing an ensemble-averaged intensity. In this paper, the influence of sampling an ensemble of well defined protein structures on the small-angle solution scattering intensity profile is examined through common analysis methods. Two tests were performed using simulated data: one with the extended and collapsed states of the bilobal calcium-binding protein calmodulin and the second with the catalytic subunit of protein kinase A, which has two globular domains connected by a glycine hinge. In addition to analyzing the simulated data for the radii of gyration Rg, distance distribution function P(r) and particle volume, shape restoration was applied to the simulated data. Rg and P(r) of the ensemble profiles could be easily mistaken for a single intermediate state. The particle volumes and models of the ensemble intensity profiles show that some indication of multiple conformations exists in the case of calmodulin, which manifests an enlarged volume and shapes that are clear superpositions of the conformations used. The effect on the structural parameters and models is much more subtle in the case of the catalytic subunit of protein kinase A. Examples of how noise influences the data and analyses are also presented. These examples demonstrate the loss of the indications of multiple conformations in cases where even broad distributions of structures exist. While the tests using calmodulin show that the ensemble states remain discernible from the other ensembles tested or a single partially collapsed state, the tests performed using the

  17. Role of Detergents in Conformational Exchange of a G Protein-coupled Receptor*

    Science.gov (United States)

    Chung, Ka Young; Kim, Tae Hun; Manglik, Aashish; Alvares, Rohan; Kobilka, Brian K.; Prosser, R. Scott

    2012-01-01

    The G protein-coupled β2-adrenoreceptor (β2AR) signals through the heterotrimeric G proteins Gs and Gi and β-arrestin. As such, the energy landscape of β2AR-excited state conformers is expected to be complex. Upon tagging Cys-265 of β2AR with a trifluoromethyl probe, 19F NMR was used to assess conformations and possible equilibria between states. Here, we report key differences in β2AR conformational dynamics associated with the detergents used to stabilize the receptor. In dodecyl maltoside (DDM) micelles, the spectra are well represented by a single Lorentzian line that shifts progressively downfield with activation by appropriate ligand. The results are consistent with interconversion between two or more states on a time scale faster than the greatest difference in ligand-dependent chemical shift (i.e. >100 Hz). Given that high detergent off-rates of DDM monomers may facilitate conformational exchange between functional states of β2AR, we utilized the recently developed maltose-neopentyl glycol (MNG-3) diacyl detergent. In MNG-3 micelles, spectra indicated at least three distinct states, the relative populations of which depended on ligand, whereas no ligand-dependent shifts were observed, consistent with the slow exchange limit. Thus, detergent has a profound effect on the equilibrium kinetics between functional states. MNG-3, which has a critical micelle concentration in the nanomolar regime, exhibits an off-rate that is 4 orders of magnitude lower than that of DDM. High detergent off-rates are more likely to facilitate conformational exchange between distinct functional states associated with the G protein-coupled receptor. PMID:22893704

  18. Role of detergents in conformational exchange of a G protein-coupled receptor.

    Science.gov (United States)

    Chung, Ka Young; Kim, Tae Hun; Manglik, Aashish; Alvares, Rohan; Kobilka, Brian K; Prosser, R Scott

    2012-10-19

    The G protein-coupled β(2)-adrenoreceptor (β(2)AR) signals through the heterotrimeric G proteins G(s) and G(i) and β-arrestin. As such, the energy landscape of β(2)AR-excited state conformers is expected to be complex. Upon tagging Cys-265 of β(2)AR with a trifluoromethyl probe, (19)F NMR was used to assess conformations and possible equilibria between states. Here, we report key differences in β(2)AR conformational dynamics associated with the detergents used to stabilize the receptor. In dodecyl maltoside (DDM) micelles, the spectra are well represented by a single Lorentzian line that shifts progressively downfield with activation by appropriate ligand. The results are consistent with interconversion between two or more states on a time scale faster than the greatest difference in ligand-dependent chemical shift (i.e. >100 Hz). Given that high detergent off-rates of DDM monomers may facilitate conformational exchange between functional states of β(2)AR, we utilized the recently developed maltose-neopentyl glycol (MNG-3) diacyl detergent. In MNG-3 micelles, spectra indicated at least three distinct states, the relative populations of which depended on ligand, whereas no ligand-dependent shifts were observed, consistent with the slow exchange limit. Thus, detergent has a profound effect on the equilibrium kinetics between functional states. MNG-3, which has a critical micelle concentration in the nanomolar regime, exhibits an off-rate that is 4 orders of magnitude lower than that of DDM. High detergent off-rates are more likely to facilitate conformational exchange between distinct functional states associated with the G protein-coupled receptor.

  19. A network model to correlate conformational change and the impedance spectrum of single proteins

    Energy Technology Data Exchange (ETDEWEB)

    Alfinito, Eleonora; Pennetta, Cecilia; Reggiani, Lino [Dipartimento di Ingegneria dell' Innovazione, Universita del Salento, Via Arnesano, Lecce (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM) (Italy)

    2008-02-13

    Integrated nanodevices based on proteins or biomolecules are attracting increasing interest in today's research. In fact, it has been shown that proteins such as azurin and bacteriorhodopsin manifest some electrical properties that are promising for the development of active components of molecular electronic devices. Here we focus on two relevant kinds of protein: bovine rhodopsin, prototype of G-protein-coupled-receptor (GPCR) proteins, and the enzyme acetylcholinesterase (AChE), whose inhibition is one of the most qualified treatments of Alzheimer's disease. Both these proteins exert their function starting with a conformational change of their native structure. Our guess is that such a change should be accompanied with a detectable variation of their electrical properties. To investigate this conjecture, we present an impedance network model of proteins, able to estimate the different impedance spectra associated with the different configurations. The distinct types of conformational change of rhodopsin and AChE agree with their dissimilar electrical responses. In particular, for rhodopsin the model predicts variations of the impedance spectra up to about 30%, while for AChE the same variations are limited to about 10%, which supports the existence of a dynamical equilibrium between its native and complexed states.

  20. Conformational dynamics of a protein in the folded and the unfolded state

    Energy Technology Data Exchange (ETDEWEB)

    Fitter, Joerg

    2003-08-01

    In a quasielastic neutron scattering experiment, the picosecond dynamics of {alpha}-amylase was investigated for the folded and the unfolded state of the protein. In order to ensure a reasonable interpretation of the internal protein dynamics, the protein was measured in D{sub 2}O-buffer solution. The much higher structural flexibility of the pH induced unfolded state as compared to the native folded state was quantified using a simple analytical model, describing a local diffusion inside a sphere. In terms of this model the conformational volume, which is explored mainly by confined protein side-chain movements, is parameterized by the radius of a sphere (folded state, r=1.2 A; unfolded state, 1.8 A). Differences in conformational dynamics between the folded and the unfolded state of a protein are of fundamental interest in the field of protein science, because they are assumed to play an important role for the thermodynamics of folding/unfolding transition and for protein stability.

  1. Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein conformational equilibria.

    Science.gov (United States)

    Lee, Kuo Hao; Chen, Jianhan

    2017-06-15

    Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non-trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi-scale enhanced sampling technique to re-optimize the generalized-Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and β-hairpin model peptides. Importantly, this force field appears to be free of the over-compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Lipid-protein interaction induced domains: Kinetics and conformational changes in multicomponent vesicles

    Science.gov (United States)

    Sreeja, K. K.; Sunil Kumar, P. B.

    2018-04-01

    The spatio-temporal organization of proteins and the associated morphological changes in membranes are of importance in cell signaling. Several mechanisms that promote the aggregation of proteins at low cell surface concentrations have been investigated in the past. We show, using Monte Carlo simulations, that the affinity of proteins for specific lipids can hasten their aggregation kinetics. The lipid membrane is modeled as a dynamically triangulated surface with the proteins defined as in-plane fields at the vertices. We show that, even at low protein concentrations, strong lipid-protein interactions can result in large protein clusters indicating a route to lipid mediated signal amplification. At high protein concentrations, the domains form buds similar to that seen in lipid-lipid interaction induced phase separation. Protein interaction induced domain budding is suppressed when proteins act as anisotropic inclusions and exhibit nematic orientational order. The kinetics of protein clustering and resulting conformational changes are shown to be significantly different for the isotropic and anisotropic curvature inducing proteins.

  3. Dynamic fluctuations provide the basis of a conformational switch mechanism in apo cyclic AMP receptor protein.

    Directory of Open Access Journals (Sweden)

    Burcu Aykaç Fas

    Full Text Available Escherichia coli cyclic AMP Receptor Protein (CRP undergoes conformational changes with cAMP binding and allosterically promotes CRP to bind specifically to the DNA. In that, the structural and dynamic properties of apo CRP prior to cAMP binding are of interest for the comprehension of the activation mechanism. Here, the dynamics of apo CRP monomer/dimer and holo CRP dimer were studied by Molecular Dynamics (MD simulations and Gaussian Network Model (GNM. The interplay of the inter-domain hinge with the cAMP and DNA binding domains are pre-disposed in the apo state as a conformational switch in the CRP's allosteric communication mechanism. The hinge at L134-D138 displaying intra- and inter-subunit coupled fluctuations with the cAMP and DNA binding domains leads to the emergence of stronger coupled fluctuations between the two domains and describes an on state. The flexible regions at K52-E58, P154/D155 and I175 maintain the dynamic coupling of the two domains. With a shift in the inter-domain hinge position towards the N terminus, nevertheless, the latter correlations between the domains loosen and become disordered; L134-D138 dynamically interacts only with the cAMP and DNA binding domains of its own subunit, and an off state is assumed. We present a mechanistic view on how the structural dynamic units are hierarchically built for the allosteric functional mechanism; from apo CRP monomer to apo-to-holo CRP dimers.

  4. On the effect of hydrostatic pressure on the conformational stability of globular proteins.

    Science.gov (United States)

    Graziano, Giuseppe

    2015-12-01

    The model developed for cold denaturation (Graziano, PCCP 2010, 12, 14245-14252) is extended to rationalize the dependence of protein conformational stability upon hydrostatic pressure, at room temperature. A pressure- volume work is associated with the process of cavity creation for the need to enlarge the liquid volume against hydrostatic pressure. This contribution destabilizes the native state that has a molecular volume slightly larger than the denatured state due to voids existing in the protein core. Therefore, there is a hydrostatic pressure value at which the pressure-volume contribution plus the conformational entropy loss of the polypeptide chain are able to overwhelm the stabilizing gain in translational entropy of water molecules, due to the decrease in water accessible surface area upon folding, causing denaturation. © 2015 Wiley Periodicals, Inc.

  5. Clinical Studies on conformal radiotherapy combined with epidermal ...

    African Journals Online (AJOL)

    Purpose: To study the effect of conformal radiotherapy combined with epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) in the second-line treatment of non-small cell lung cancer (NSCLC). Methods: A total of 316 patients attending Shanghai Pulmonary Hospital affiliated to Tongji University, were divided ...

  6. Characterization of conformational properties of protein/trehalose/water system by neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, A. [Hahn-Meitner-Institut, BENSC (NI), Glienicker Strasse, 14109 Berlin (Germany); Magazu' , S.; Mangione, A.; Migliardo, F. [Dipartimento di Fisica and INFM, Universita' di Messina, PO Box 55, 98166 Messina (Italy); Vertessy, B.G. [Institute of Enzymology, Hungarian Academy of Sciences, P. O. Box 7, 1518 Budapest (Hungary)

    2002-07-01

    In this contribution we report results of a small-angle neutron scattering (SANS) investigation of dUTPase/D{sub 2}O solutions. Data were collected by the V4 spectrometer at the BENSC facility (Berlin, Germany). The results allow us to characterize the conformational properties of the protein in solution as a function of temperature and in the presence of trehalose, a disaccharide with a noticeable bioprotective action. (orig.)

  7. Characterization of conformational properties of protein/trehalose/water system by neutron scattering

    CERN Document Server

    Brandt, A; Mangione, A; Migliardo, F; Vertessy, B G

    2002-01-01

    In this contribution we report results of a small-angle neutron scattering (SANS) investigation of dUTPase/D sub 2 O solutions. Data were collected by the V4 spectrometer at the BENSC facility (Berlin, Germany). The results allow us to characterize the conformational properties of the protein in solution as a function of temperature and in the presence of trehalose, a disaccharide with a noticeable bioprotective action. (orig.)

  8. Synthesis of 19-substituted geldanamycins with altered conformations and their binding to heat shock protein Hsp90

    Science.gov (United States)

    Kitson, Russell R. A.; Chang, Chuan-Hsin; Xiong, Rui; Williams, Huw E. L.; Davis, Adrienne L.; Lewis, William; Dehn, Donna L.; Siegel, David; Roe, S. Mark; Prodromou, Chrisostomos; Ross, David; Moody, Christopher J.

    2013-01-01

    The benzoquinone ansamycin geldanamycin and its derivatives are inhibitors of heat shock protein Hsp90, an emerging target for novel therapeutic agents both in cancer and in neurodegeneration. However, toxicity of these compounds to normal cells has been ascribed to reaction with thiol nucleophiles at the quinone 19-position. We reasoned that blocking this position would ameliorate toxicity, and that it might also enforce a favourable conformational switch of the trans-amide group into the cis-form required for protein binding. We report here an efficient synthesis of such 19-substituted compounds and realization of our hypotheses. Protein crystallography established that the new compounds bind to Hsp90 with, as expected, a cis-amide conformation. Studies on Hsp90 inhibition in cells demonstrated the molecular signature of Hsp90 inhibitors: decreases in client proteins with compensatory increases in other heat shock proteins in both human breast cancer and dopaminergic neural cells, demonstrating their potential for use in the therapy of cancer or neurodegenerative diseases. PMID:23511419

  9. Identification of conformational epitopes for human IgG on Chemotaxis inhibitory protein of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Furebring Christina

    2009-03-01

    Full Text Available Abstract Background The Chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS blocks the Complement fragment C5a receptor (C5aR and formylated peptide receptor (FPR and is thereby a potent inhibitor of neutrophil chemotaxis and activation of inflammatory responses. The majority of the healthy human population has antibodies against CHIPS that have been shown to interfere with its function in vitro. The aim of this study was to define potential epitopes for human antibodies on the CHIPS surface. We also initiate the process to identify a mutated CHIPS molecule that is not efficiently recognized by preformed anti-CHIPS antibodies and retains anti-inflammatory activity. Results In this paper, we panned peptide displaying phage libraries against a pool of CHIPS specific affinity-purified polyclonal human IgG. The selected peptides could be divided into two groups of sequences. The first group was the most dominant with 36 of the 48 sequenced clones represented. Binding to human affinity-purified IgG was verified by ELISA for a selection of peptide sequences in phage format. For further analysis, one peptide was chemically synthesized and antibodies affinity-purified on this peptide were found to bind the CHIPS molecule as studied by ELISA and Surface Plasmon Resonance. Furthermore, seven potential conformational epitopes responsible for antibody recognition were identified by mapping phage selected peptide sequences on the CHIPS surface as defined in the NMR structure of the recombinant CHIPS31–121 protein. Mapped epitopes were verified by in vitro mutational analysis of the CHIPS molecule. Single mutations introduced in the proposed antibody epitopes were shown to decrease antibody binding to CHIPS. The biological function in terms of C5aR signaling was studied by flow cytometry. A few mutations were shown to affect this biological function as well as the antibody binding. Conclusion Conformational epitopes recognized by human antibodies

  10. Conformational and functional variants of CD44-targeted protein nanoparticles bio-produced in bacteria

    International Nuclear Information System (INIS)

    Pesarrodona, Mireia; Conchillo-Solé, Oscar; Unzueta, Ugutz; Xu, Zhikun; Ferrer-Miralles, Neus; Daura, Xavier; Vázquez, Esther; Villaverde, Antonio; Fernández, Yolanda; Foradada, Laia; Schwartz, Simó Jr; Abasolo, Ibane; Sánchez-Chardi, Alejandro; Roldán, Mónica; Villegas, Sandra; Rinas, Ursula

    2016-01-01

    Biofabrication is attracting interest as a means to produce nanostructured functional materials because of its operational versatility and full scalability. Materials based on proteins are especially appealing, as the structure and functionality of proteins can be adapted by genetic engineering. Furthermore, strategies and tools for protein production have been developed and refined steadily for more than 30 years. However, protein conformation and therefore activity might be sensitive to production conditions. Here, we have explored whether the downstream strategy influences the structure and biological activities, in vitro and in vivo, of a self-assembling, CD44-targeted protein-only nanoparticle produced in Escherichia coli. This has been performed through the comparative analysis of particles built from soluble protein species or protein versions obtained by in vitro protein extraction from inclusion bodies, through mild, non-denaturing procedures. These methods have been developed recently as a convenient alternative to the use of toxic chaotropic agents for protein resolubilization from protein aggregates. The results indicate that the resulting material shows substantial differences in its physicochemical properties and its biological performance at the systems level, and that its building blocks are sensitive to the particular protein source. (paper)

  11. Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Mei [Iowa State University, Department of Chemistry (United States)], E-mail: mhong@iastate.edu; McMillan, R. Andrew; Conticello, Vincent P. [Emory University, Department of Chemistry (United States)

    2002-02-15

    We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross polarization to achieve {sup 13}CO{sub i} {sup {yields}} {sup 15}N{sub i} {sup {yields}} {sup 13}C{alpha}{sub i} transfer between two residues. A {sup 13}C, {sup 15}N-labeled elastin mimetic protein (VPGVG){sub n} is used to demonstrate the method. The technique selected the Gly3 C{alpha} signal while suppressing the Gly5 C{alpha} signal, and allowed the measurement of the Gly3 C{alpha} chemical shift anisotropy to derive information on the protein conformation. This residue-pair selection technique should simplify the study of protein structure at specific residues.

  12. Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR

    International Nuclear Information System (INIS)

    Hong, Mei; McMillan, R. Andrew; Conticello, Vincent P.

    2002-01-01

    We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross polarization to achieve 13 CO i → 15 N i → 13 Cα i transfer between two residues. A 13 C, 15 N-labeled elastin mimetic protein (VPGVG) n is used to demonstrate the method. The technique selected the Gly3 Cα signal while suppressing the Gly5 Cα signal, and allowed the measurement of the Gly3 Cα chemical shift anisotropy to derive information on the protein conformation. This residue-pair selection technique should simplify the study of protein structure at specific residues

  13. Nuclear magnetic resonance provides a quantitative description of protein conformational flexibility on physiologically important time scales.

    Science.gov (United States)

    Salmon, Loïc; Bouvignies, Guillaume; Markwick, Phineus; Blackledge, Martin

    2011-04-12

    A complete description of biomolecular activity requires an understanding of the nature and the role of protein conformational dynamics. In recent years, novel nuclear magnetic resonance-based techniques that provide hitherto inaccessible detail concerning biomolecular motions occurring on physiologically important time scales have emerged. Residual dipolar couplings (RDCs) provide precise information about time- and ensemble-averaged structural and dynamic processes with correlation times up to the millisecond and thereby encode key information for understanding biological activity. In this review, we present the application of two very different approaches to the quantitative description of protein motion using RDCs. The first is purely analytical, describing backbone dynamics in terms of diffusive motions of each peptide plane, using extensive statistical analysis to validate the proposed dynamic modes. The second is based on restraint-free accelerated molecular dynamics simulation, providing statistically sampled free energy-weighted ensembles that describe conformational fluctuations occurring on time scales from pico- to milliseconds, at atomic resolution. Remarkably, the results from these two approaches converge closely in terms of distribution and absolute amplitude of motions, suggesting that this kind of combination of analytical and numerical models is now capable of providing a unified description of protein conformational dynamics in solution.

  14. Biomimetic conformation-specific assembly of proteins at artificial binding sites nano-patterned on silicon

    Science.gov (United States)

    de la Rica, Roberto; Matsui, Hiroshi

    2009-01-01

    Biomolecules such as enzymes and antibodies possess binding sites where the molecular architecture and the physicochemical properties are optimum for their interaction with a particular target, in some cases even differentiating between stereoisomers. Here, we mimic this exquisite specificity via the creation of a suitable chemical environment by fabricating artificial binding sites for the protein calmodulin (CaM). By downscaling well-known surface chemical modification methodologies to the nanometer scale via silicon nanopatterning, the Ca2+-CaM conformer was found to selectively bind the biomimetic binding sites. The methodology could be adapted to mimic other protein-receptor interactions for sensing and catalysis. PMID:19757782

  15. Quantifying polypeptide conformational space: sensitivity to conformation and ensemble definition.

    Science.gov (United States)

    Sullivan, David C; Lim, Carmay

    2006-08-24

    Quantifying the density of conformations over phase space (the conformational distribution) is needed to model important macromolecular processes such as protein folding. In this work, we quantify the conformational distribution for a simple polypeptide (N-mer polyalanine) using the cumulative distribution function (CDF), which gives the probability that two randomly selected conformations are separated by less than a "conformational" distance and whose inverse gives conformation counts as a function of conformational radius. An important finding is that the conformation counts obtained by the CDF inverse depend critically on the assignment of a conformation's distance span and the ensemble (e.g., unfolded state model): varying ensemble and conformation definition (1 --> 2 A) varies the CDF-based conformation counts for Ala(50) from 10(11) to 10(69). In particular, relatively short molecular dynamics (MD) relaxation of Ala(50)'s random-walk ensemble reduces the number of conformers from 10(55) to 10(14) (using a 1 A root-mean-square-deviation radius conformation definition) pointing to potential disconnections in comparing the results from simplified models of unfolded proteins with those from all-atom MD simulations. Explicit waters are found to roughen the landscape considerably. Under some common conformation definitions, the results herein provide (i) an upper limit to the number of accessible conformations that compose unfolded states of proteins, (ii) the optimal clustering radius/conformation radius for counting conformations for a given energy and solvent model, (iii) a means of comparing various studies, and (iv) an assessment of the applicability of random search in protein folding.

  16. A theoretical and spectroscopic study of conformational structures of piroxicam

    Science.gov (United States)

    Souza, Kely Ferreira de; Martins, José A.; Pessine, Francisco B. T.; Custodio, Rogério

    2010-02-01

    Piroxicam (PRX) has been widely studied in an attempt to elucidate the causes and mechanisms of its side effects, mainly the photo-toxicity. In this paper fluorescence spectra in non-protic solvents and different polarities were carried out along with theoretical calculations. Preliminary potential surfaces of the keto and enol forms were obtained at AM1 level of theory providing the most stable conformers, which had their structure re-optimized through the B3LYP/CEP-31G(d,p) method. From the optimized structures, the electronic spectra were calculated using the TD-DFT method in vacuum and including the solvent effect through the PCM method and a single water molecule near PRX. A new potential surface was constructed to the enol tautomer at DFT level and the most stable conformers were submitted to the QST2 calculations. The experimental data showed that in apolar media, the solution fluorescence is raised. Based on conformational analysis for the two tautomers, keto and enol, the results indicated that the PRX-enol is the main tautomer related to the drug fluorescence, which is reinforced by the spectra results, as well as the interconvertion barrier obtained from the QST2 calculations. The results suggest that the PRX one of the enol conformers presents great possibility of involvement in the photo-toxicity mechanisms.

  17. Conformational landscape of an amyloid intra-cellular domain and Landau-Ginzburg-Wilson paradigm in protein dynamics

    International Nuclear Information System (INIS)

    Dai, Jin; He, Jianfeng; Niemi, Antti J.

    2016-01-01

    The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.

  18. Conformational landscape of an amyloid intra-cellular domain and Landau-Ginzburg-Wilson paradigm in protein dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jin; He, Jianfeng, E-mail: Antti.Niemi@physics.uu.se, E-mail: hjf@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se, E-mail: hjf@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200 Tours (France)

    2016-07-28

    The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.

  19. A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP

    Energy Technology Data Exchange (ETDEWEB)

    Rozentur-Shkop, Eva; Goobes, Gil; Chill, Jordan H., E-mail: Jordan.Chill@biu.ac.il [Bar Ilan University, Department of Chemistry (Israel)

    2016-12-15

    Intrinsically disordered proteins (IDPs) are multi-conformational polypeptides that lack a single stable three-dimensional structure. It has become increasingly clear that the versatile IDPs play key roles in a multitude of biological processes, and, given their flexible nature, NMR is a leading method to investigate IDP behavior on the molecular level. Here we present an IDP-tailored J-modulated experiment designed to monitor changes in the conformational ensemble characteristic of IDPs by accurately measuring backbone one- and two-bond J({sup 15}N,{sup 13}Cα) couplings. This concept was realized using a unidirectional (H)NCO {sup 13}C-detected experiment suitable for poor spectral dispersion and optimized for maximum coverage of amino acid types. To demonstrate the utility of this approach we applied it to the disordered actin-binding N-terminal domain of WASp interacting protein (WIP), a ubiquitous key modulator of cytoskeletal changes in a range of biological systems. One- and two-bond J({sup 15}N,{sup 13}Cα) couplings were acquired for WIP residues 2–65 at various temperatures, and in denaturing and crowding environments. Under native conditions fitted J-couplings identified in the WIP conformational ensemble a propensity for extended conformation at residues 16–23 and 45–60, and a helical tendency at residues 28–42. These findings are consistent with a previous study of the based upon chemical shift and RDC data and confirm that the WIP{sup 2–65} conformational ensemble is biased towards the structure assumed by this fragment in its actin-bound form. The effects of environmental changes upon this ensemble were readily apparent in the J-coupling data, which reflected a significant decrease in structural propensity at higher temperatures, in the presence of 8 M urea, and under the influence of a bacterial cell lysate. The latter suggests that crowding can cause protein unfolding through protein–protein interactions that stabilize the unfolded

  20. A microscopic insight from conformational thermodynamics to functional ligand binding in proteins.

    Science.gov (United States)

    Sikdar, Samapan; Chakrabarti, J; Ghosh, Mahua

    2014-12-01

    We show that the thermodynamics of metal ion-induced conformational changes aid to understand the functions of protein complexes. This is illustrated in the case of a metalloprotein, alpha-lactalbumin (aLA), a divalent metal ion binding protein. We use the histograms of dihedral angles of the protein, generated from all-atom molecular dynamics simulations, to calculate conformational thermodynamics. The thermodynamically destabilized and disordered residues in different conformational states of a protein are proposed to serve as binding sites for ligands. This is tested for β-1,4-galactosyltransferase (β4GalT) binding to the Ca(2+)-aLA complex, in which the binding residues are known. Among the binding residues, the C-terminal residues like aspartate (D) 116, glutamine (Q) 117, tryptophan (W) 118 and leucine (L) 119 are destabilized and disordered and can dock β4GalT onto Ca(2+)-aLA. No such thermodynamically favourable binding residues can be identified in the case of the Mg(2+)-aLA complex. We apply similar analysis to oleic acid binding and predict that the Ca(2+)-aLA complex can bind to oleic acid through the basic histidine (H) 32 of the A2 helix and the hydrophobic residues, namely, isoleucine (I) 59, W60 and I95, of the interfacial cleft. However, the number of destabilized and disordered residues in Mg(2+)-aLA are few, and hence, the oleic acid binding to Mg(2+)-bound aLA is less stable than that to the Ca(2+)-aLA complex. Our analysis can be generalized to understand the functionality of other ligand bound proteins.

  1. Conformal cryogenic tank trade study for reusable launch vehicles

    Science.gov (United States)

    Rivers, H. Kevin

    1999-01-01

    Future reusable launch vehicles may be lifting bodies with non-circular cross section like the proposed Lockheed-Martin VentureStar™. Current designs for the cryogenic tanks of these vehicles are dual-lobed and quad-lobed tanks which are packaged more efficiently than circular tanks, but still have low packaging efficiencies with large gaps existing between the vehicle outer mold line and the outer surfaces of the tanks. In this study, tanks that conform to the outer mold line of a non-circular vehicle were investigated. Four structural concepts for conformal cryogenic tanks and a quad-lobed tank concept were optimized for minimum weight designs. The conformal tank concepts included a sandwich tank stiffened with axial tension webs, a sandwich tank stiffened with transverse tension webs, a sandwich tank stiffened with rings and tension ties, and a sandwich tank stiffened with orthogrid stiffeners and tension ties. For each concept, geometric parameters (such as ring frame spacing, the number and spacing of tension ties or webs, and tank corner radius) and internal pressure loads were varied and the structure was optimized using a finite-element-based optimization procedure. Theoretical volumetric weights were calculated by dividing the weight of the barrel section of the tank concept and its associated frames, webs and tension ties by the volume it circumscribes. This paper describes the four conformal tank concepts and the design assumptions utilized in their optimization. The conformal tank optimization results included theoretical weights, trends and comparisons between the concepts, are also presented, along with results from the optimization of a quad-lobed tank. Also, the effects of minimum gauge values and non-optimum weights on the weight of the optimized structure are described in this paper.

  2. Cholesterol Corrects Altered Conformation of MHC-II Protein in Leishmania donovani Infected Macrophages: Implication in Therapy

    Science.gov (United States)

    Chakrabarti, Saikat; Roy, Syamal

    2016-01-01

    Background Previously we reported that Kala-azar patients show progressive decrease in serum cholesterol as a function of splenic parasite burden. Splenic macrophages (MΦ) of Leishmania donovani (LD) infected mice show decrease in membrane cholesterol, while LD infected macrophages (I-MΦ) show defective T cell stimulating ability that could be corrected by liposomal delivery of cholesterol. T helper cells recognize peptide antigen in the context of class II MHC molecule. It is known that the conformation of a large number of membrane proteins is dependent on membrane cholesterol. In this investigation we tried to understand the influence of decreased membrane cholesterol in I-MΦ on the conformation of MHC-II protein and peptide-MHC-II stability, and its bearing on the antigen specific T-cell activation. Methodology/Principal Findings MΦ of CBA/j mice were infected with Leishmania donovani (I-MΦ). Two different anti-Aκ mAbs were used to monitor the status of MHC-II protein under parasitized condition. One of them (11.5–2) was conformation specific, whereas the other one (10.2.16) was not. Under parasitized condition, the binding of 11.5–2 decreased significantly with respect to the normal counterpart, whereas that of 10.2.16 remained unaltered. The binding of 11.5–2 was restored to normal upon liposomal delivery of cholesterol in I-MΦ. By molecular dynamics (MD) simulation studies we found that there was considerable conformational fluctuation in the transmembrane domain of the MHC-II protein in the presence of membrane cholesterol than in its absence, which possibly influenced the distal peptide binding groove. This was evident from the faster dissociation of the cognate peptide from peptide-MHC complex under parasitized condition, which could be corrected by liposomal delivery of cholesterol in I-MΦ. Conclusion The decrease in membrane cholesterol in I-MΦ may lead to altered conformation of MHC II, and this may contribute to a faster dissociation of

  3. Alternative Conformations of the Tau Repeat Domain in Complex with an Engineered Binding Protein*

    Science.gov (United States)

    Grüning, Clara S. R.; Mirecka, Ewa A.; Klein, Antonia N.; Mandelkow, Eckhard; Willbold, Dieter; Marino, Stephen F.; Stoldt, Matthias; Hoyer, Wolfgang

    2014-01-01

    The aggregation of Tau into paired helical filaments is involved in the pathogenesis of several neurodegenerative diseases, including Alzheimer disease. The aggregation reaction is characterized by conformational conversion of the repeat domain, which partially adopts a cross-β-structure in the resulting amyloid-like fibrils. Here, we report the selection and characterization of an engineered binding protein, β-wrapin TP4, targeting the Tau repeat domain. TP4 was obtained by phage display using the four-repeat Tau construct K18ΔK280 as a target. TP4 binds K18ΔK280 as well as the longest isoform of human Tau, hTau40, with nanomolar affinity. NMR spectroscopy identified two alternative TP4-binding sites in the four-repeat domain, with each including two hexapeptide motifs with high β-sheet propensity. Both binding sites contain the aggregation-determining PHF6 hexapeptide within repeat 3. In addition, one binding site includes the PHF6* hexapeptide within repeat 2, whereas the other includes the corresponding hexapeptide Tau(337–342) within repeat 4, denoted PHF6**. Comparison of TP4-binding with Tau aggregation reveals that the same regions of Tau are involved in both processes. TP4 inhibits Tau aggregation at substoichiometric concentration, demonstrating that it interferes with aggregation nucleation. This study provides residue-level insight into the interaction of Tau with an aggregation inhibitor and highlights the structural flexibility of Tau. PMID:24966331

  4. Conformational transition paths harbor structures useful for aiding drug discovery and understanding enzymatic mechanisms in protein kinases.

    Science.gov (United States)

    Wong, Chung F

    2016-01-01

    This short article examines the usefulness of fast simulations of conformational transition paths in elucidating enzymatic mechanisms and guiding drug discovery for protein kinases. It applies the transition path method in the MOIL software package to simulate the paths of conformational transitions between six pairs of structures from the Protein Data Bank. The structures along the transition paths were found to resemble experimental structures that mimic transient structures believed to form during enzymatic catalysis or conformational transitions, or structures that have drug candidates bound. These findings suggest that such simulations could provide quick initial insights into the enzymatic mechanisms or pathways of conformational transitions of proteins kinases, or could provide structures useful for aiding structure-based drug design. © 2015 The Protein Society.

  5. Conformational Rigidity and Protein Dynamics at Distinct Timescales Regulate PTP1B Activity and Allostery.

    Science.gov (United States)

    Choy, Meng S; Li, Yang; Machado, Luciana E S F; Kunze, Micha B A; Connors, Christopher R; Wei, Xingyu; Lindorff-Larsen, Kresten; Page, Rebecca; Peti, Wolfgang

    2017-02-16

    Protein function originates from a cooperation of structural rigidity, dynamics at different timescales, and allostery. However, how these three pillars of protein function are integrated is still only poorly understood. Here we show how these pillars are connected in Protein Tyrosine Phosphatase 1B (PTP1B), a drug target for diabetes and cancer that catalyzes the dephosphorylation of numerous substrates in essential signaling pathways. By combining new experimental and computational data on WT-PTP1B and ≥10 PTP1B variants in multiple states, we discovered a fundamental and evolutionarily conserved CH/π switch that is critical for positioning the catalytically important WPD loop. Furthermore, our data show that PTP1B uses conformational and dynamic allostery to regulate its activity. This shows that both conformational rigidity and dynamics are essential for controlling protein activity. This connection between rigidity and dynamics at different timescales is likely a hallmark of all enzyme function. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Ultra-thin, conformal, and hydratable color-absorbers using silk protein hydrogel

    Science.gov (United States)

    Umar, Muhammad; Min, Kyungtaek; Jo, Minsik; Kim, Sunghwan

    2018-06-01

    Planar and multilayered photonic devices offer unprecedented opportunities in biological and chemical sensing due to strong light-matter interactions. However, uses of rigid substances such as semiconductors and dielectrics confront photonic devices with issues of biocompatibility and a mechanical mismatch for their application on humid, uneven, and soft biological surfaces. Here, we report that favorable material traits of natural silk protein led to the fabrication of an ultra-thin, conformal, and water-permeable (hydratable) metal-insulator-metal (MIM) color absorber that was mapped on soft, curved, and hydrated biological interfaces. Strong absorption was induced in the MIM structure and could be tuned by hydration and tilting of the sample. The transferred MIM color absorbers reached the exhibition of a very strong resonant absorption in the visible and near infra-red ranges. In addition, we demonstrated that the conformal resonator could function as a refractometric glucose sensor applied on a contact lens.

  7. Practical considerations for investigation of protein conformational dynamics by {sup 15}N R{sub 1ρ} relaxation dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Walinda, Erik [Kyoto University, Department of Molecular and Cellular Physiology, Graduate School of Medicine (Japan); Morimoto, Daichi; Shirakawa, Masahiro; Sugase, Kenji, E-mail: sugase@moleng.kyoto-u.ac.jp [Kyoto University, Department of Molecular Engineering, Graduate School of Engineering (Japan)

    2017-03-15

    It is becoming increasingly apparent that proteins are not static entities and that their function often critically depends on accurate sampling of multiple conformational states in aqueous solution. Accordingly, the development of methods to study conformational states in proteins beyond their ground-state structure (“excited states”) has crucial biophysical importance. Here we investigate experimental schemes for optimally probing chemical exchange processes in proteins on the micro- to millisecond timescale by {sup 15}N R{sub 1ρ} relaxation dispersion. The schemes use selective Hartmann–Hahn cross-polarization (CP) transfer for excitation, and derive peak integrals from 1D NMR spectra (Korzhnev et al. in J Am Chem Soc 127:713–721, 2005; Hansen et al. in J Am Chem Soc 131:3818–3819, 2009). Simulation and experiment collectively show that in such CP-based schemes care has to be taken to achieve accurate suppression of undesired off-resonance coherences, when using weak spin-lock fields. This then (i) ensures that relaxation dispersion profiles in the absence of chemical exchange are flat, and (ii) facilitates extraction of relaxation dispersion profiles in crowded regions of the spectrum. Further improvement in the quality of the experimental data is achieved by recording the free-induction decays in an interleaved manner and including a heating-compensation element. The reported considerations will particularly benefit the use of CP-based R{sub 1ρ} relaxation dispersion to analyze conformational exchange processes in larger proteins, where resonance line overlap becomes the main limiting factor.

  8. Conformational Profiling of the AT1 Angiotensin II Receptor Reflects Biased Agonism, G Protein Coupling, and Cellular Context.

    Science.gov (United States)

    Devost, Dominic; Sleno, Rory; Pétrin, Darlaine; Zhang, Alice; Shinjo, Yuji; Okde, Rakan; Aoki, Junken; Inoue, Asuka; Hébert, Terence E

    2017-03-31

    Here, we report the design and use of G protein-coupled receptor-based biosensors to monitor ligand-mediated conformational changes in receptors in intact cells. These biosensors use bioluminescence resonance energy transfer with Renilla luciferase (RlucII) as an energy donor, placed at the distal end of the receptor C-tail, and the small fluorescent molecule FlAsH as an energy acceptor, its binding site inserted at different positions throughout the intracellular loops and C-terminal tail of the angiotensin II type I receptor. We verified that the modifications did not compromise receptor localization or function before proceeding further. Our biosensors were able to capture effects of both canonical and biased ligands, even to the extent of discriminating between different biased ligands. Using a combination of G protein inhibitors and HEK 293 cell lines that were CRISPR/Cas9-engineered to delete Gα q , Gα 11 , Gα 12 , and Gα 13 or β-arrestins, we showed that Gα q and Gα 11 are required for functional responses in conformational sensors in ICL3 but not ICL2. Loss of β-arrestin did not alter biased ligand effects on ICL2P2. We also demonstrate that such biosensors are portable between different cell types and yield context-dependent readouts of G protein-coupled receptor conformation. Our study provides mechanistic insights into signaling events that depend on either G proteins or β-arrestin. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Rates and equilibrium constants of the ligand-induced conformational transition of an HCN ion channel protein domain determined by DEER spectroscopy.

    Science.gov (United States)

    Collauto, Alberto; DeBerg, Hannah A; Kaufmann, Royi; Zagotta, William N; Stoll, Stefan; Goldfarb, Daniella

    2017-06-14

    Ligand binding can induce significant conformational changes in proteins. The mechanism of this process couples equilibria associated with the ligand binding event and the conformational change. Here we show that by combining the application of W-band double electron-electron resonance (DEER) spectroscopy with microfluidic rapid freeze quench (μRFQ) it is possible to resolve these processes and obtain both equilibrium constants and reaction rates. We studied the conformational transition of the nitroxide labeled, isolated carboxy-terminal cyclic-nucleotide binding domain (CNBD) of the HCN2 ion channel upon binding of the ligand 3',5'-cyclic adenosine monophosphate (cAMP). Using model-based global analysis, the time-resolved data of the μRFQ DEER experiments directly provide fractional populations of the open and closed conformations as a function of time. We modeled the ligand-induced conformational change in the protein using a four-state model: apo/open (AO), apo/closed (AC), bound/open (BO), bound/closed (BC). These species interconvert according to AC + L ⇌ AO + L ⇌ BO ⇌ BC. By analyzing the concentration dependence of the relative contributions of the closed and open conformations at equilibrium, we estimated the equilibrium constants for the two conformational equilibria and the open-state ligand dissociation constant. Analysis of the time-resolved μRFQ DEER data gave estimates for the intrinsic rates of ligand binding and unbinding as well as the rates of the conformational change. This demonstrates that DEER can quantitatively resolve both the thermodynamics and the kinetics of ligand binding and the associated conformational change.

  10. Molecular dynamics analysis of conformational change of paramyxovirus F protein during the initial steps of membrane fusion

    International Nuclear Information System (INIS)

    Martín-García, Fernando; Mendieta-Moreno, Jesús Ignacio; Mendieta, Jesús; Gómez-Puertas, Paulino

    2012-01-01

    Highlights: ► Initial conformational change of paramyxovirus F protein is caused only by mechanical forces. ► HRA region undergoes a structural change from a beta + alpha conformation to an extended coil and then to an all-alpha conformation. ► HRS domains of F protein form three single α-helices prior to generation of the coiled coil. -- Abstract: The fusion of paramyxovirus to the cell membrane is mediated by fusion protein (F protein) present in the virus envelope, which undergoes a dramatic conformational change during the process. Unlike hemagglutinin in orthomyxovirus, this change is not mediated by an alteration of environmental pH, and its cause remains unknown. Steered molecular dynamics analysis leads us to suggest that the conformational modification is mediated only by stretching mechanical forces once the transmembrane fusion peptide of the protein is anchored to the cell membrane. Such elongating forces will generate major secondary structure rearrangement in the heptad repeat A region of the F protein; from β-sheet conformation to an elongated coil and then spontaneously to an α-helix. In addition, it is proposed that the heptad repeat A region adopts a final three-helix coiled coil and that this structure appears after the formation of individual helices in each monomer.

  11. Neutron scattering studies of molecular conformations in liquid crystal polymers

    Science.gov (United States)

    Noirez, L.; Moussa, F.; Cotton, J. P.; Keller, P.; Pépy, G.

    1991-03-01

    A comblike liquid crystal polymer (LPC) is a polymer on which mesogenic molecules have been grafted. It exhibits a succession of liquid crystal phases. Usually the equilibrium conformation of an ordinary polymeric chain corresponds to a maximum entropy, i.e., to an isotropic spherical coil. How does the backbone of a LCP behave in the nematic and smectic field? Small-angle neutron scattering may answer this question. Such measurements are presented here on four different polymers as a function of temperature. An anisotropy of the backbone conformation is found in all these studied compounds, much more pronounced in the smectic phase than in the nematic phase: the backbone spreads more or less perpendicularly to its hanging cores. A comparison with existing theories and a discussion of these results is outlined.

  12. Enhanced conformational sampling to visualize a free-energy landscape of protein complex formation.

    Science.gov (United States)

    Iida, Shinji; Nakamura, Haruki; Higo, Junichi

    2016-06-15

    We introduce various, recently developed, generalized ensemble methods, which are useful to sample various molecular configurations emerging in the process of protein-protein or protein-ligand binding. The methods introduced here are those that have been or will be applied to biomolecular binding, where the biomolecules are treated as flexible molecules expressed by an all-atom model in an explicit solvent. Sampling produces an ensemble of conformations (snapshots) that are thermodynamically probable at room temperature. Then, projection of those conformations to an abstract low-dimensional space generates a free-energy landscape. As an example, we show a landscape of homo-dimer formation of an endothelin-1-like molecule computed using a generalized ensemble method. The lowest free-energy cluster at room temperature coincided precisely with the experimentally determined complex structure. Two minor clusters were also found in the landscape, which were largely different from the native complex form. Although those clusters were isolated at room temperature, with rising temperature a pathway emerged linking the lowest and second-lowest free-energy clusters, and a further temperature increment connected all the clusters. This exemplifies that the generalized ensemble method is a powerful tool for computing the free-energy landscape, by which one can discuss the thermodynamic stability of clusters and the temperature dependence of the cluster networks. © 2016 The Author(s).

  13. Effective Application of Bicelles for Conformational Analysis of G Protein-Coupled Receptors by Hydrogen/Deuterium Exchange Mass Spectrometry

    Science.gov (United States)

    Duc, Nguyen Minh; Du, Yang; Thorsen, Thor S.; Lee, Su Youn; Zhang, Cheng; Kato, Hideaki; Kobilka, Brian K.; Chung, Ka Young

    2015-05-01

    G protein-coupled receptors (GPCRs) have important roles in physiology and pathology, and 40% of drugs currently on the market target GPCRs for the treatment of various diseases. Because of their therapeutic importance, the structural mechanism of GPCR signaling is of great interest in the field of drug discovery. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a useful tool for analyzing ligand binding sites, the protein-protein interaction interface, and conformational changes of proteins. However, its application to GPCRs has been limited for various reasons, including the hydrophobic nature of GPCRs and the use of detergents in their preparation. In the present study, we tested the application of bicelles as a means of solubilizing GPCRs for HDX-MS studies. GPCRs (e.g., β2-adrenergic receptor [β2AR], μ-opioid receptor, and protease-activated receptor 1) solubilized in bicelles produced better sequence coverage (greater than 90%) than GPCRs solubilized in n-dodecyl-β-D-maltopyranoside (DDM), suggesting that bicelles are a more effective method of solubilization for HDX-MS studies. The HDX-MS profile of β2AR in bicelles showed that transmembrane domains (TMs) undergo lower deuterium uptake than intracellular or extracellular regions, which is consistent with the fact that the TMs are highly ordered and embedded in bicelles. The overall HDX-MS profiles of β2AR solubilized in bicelles and in DDM were similar except for intracellular loop 3. Interestingly, we detected EX1 kinetics, an important phenomenon in protein dynamics, at the C-terminus of TM6 in β2AR. In conclusion, we suggest the application of bicelles as a useful method for solubilizing GPCRs for conformational analysis by HDX-MS.

  14. Conformational Stability of the NH2-Terminal Propeptide of the Precursor of Pulmonary Surfactant Protein SP-B.

    Directory of Open Access Journals (Sweden)

    Ángeles Bañares-Hidalgo

    Full Text Available Assembly of pulmonary surfactant lipid-protein complexes depends on conformational changes coupled with proteolytic maturation of proSP-B, the precursor of pulmonary surfactant protein B (SP-B, along the surfactant biogenesis pathway in pneumocytes. Conformational destabilization of the N-terminal propeptide of proSP-B (SP-BN triggers exposure of the mature SP-B domain for insertion into surfactant lipids. We have studied the conformational stability during GdmCl- or urea-promoted unfolding of SP-BN with trp fluorescence and circular dichroism spectroscopies. Binding of the intermediate states to bis-ANS suggests their molten globule-like character. ΔG0H2O was ~ 12.7 kJ·mol-1 either with urea or GdmCl. None of the thermal transitions of SP-BN detected by CD correspond to protein unfolding. Differential scanning calorimetry of SP-BN evidenced two endothermic peaks involved in oligomer dissociation as confirmed with 2 M urea. Ionic strength was relevant since at 150 mM NaCl, the process originating the endotherm at the highest temperature was irreversible (Tm2 = 108.5°C with an activation energy of 703.8 kJ·mol-1. At 500 mM NaCl the process became reversible (Tm2 = 114.4°C and data were fitted to the Non-two States model with two subpeaks. No free thiols in the propeptide could be titrated by DTNB with or without 5.7 M GdmCl, indicating disulfide bonds establishment.

  15. Steric exclusion and protein conformation determine the localization of plasma membrane transporters.

    Science.gov (United States)

    Bianchi, Frans; Syga, Łukasz; Moiset, Gemma; Spakman, Dian; Schavemaker, Paul E; Punter, Christiaan M; Seinen, Anne-Bart; van Oijen, Antoine M; Robinson, Andrew; Poolman, Bert

    2018-02-05

    The plasma membrane (PM) of Saccharomyces cerevisiae contains membrane compartments, MCC/eisosomes and MCPs, named after the protein residents Can1 and Pma1, respectively. Using high-resolution fluorescence microscopy techniques we show that Can1 and the homologous transporter Lyp1 are able to diffuse into the MCC/eisosomes, where a limited number of proteins are conditionally trapped at the (outer) edge of the compartment. Upon addition of substrate, the immobilized proteins diffuse away from the MCC/eisosomes, presumably after taking a different conformation in the substrate-bound state. Our data indicate that the mobile fraction of all integral plasma membrane proteins tested shows extremely slow Brownian diffusion through most of the PM. We also show that proteins with large cytoplasmic domains, such as Pma1 and synthetic chimera of Can1 and Lyp1, are excluded from the MCC/eisosomes. We hypothesize that the distinct localization patterns found for these integral membrane proteins in S. cerevisiae arises from a combination of slow lateral diffusion, steric exclusion, and conditional trapping in membrane compartments.

  16. The Role of Conformational Flexibility on Protein Supercharging in Native Electrospray Ionization

    Science.gov (United States)

    Sterling, Harry J.; Cassou, Catherine A.; Trnka, Michael J.; Burlingame, A. L.; Krantz, Bryan A.; Williams, Evan R.

    2012-01-01

    Effects of covalent intramolecular bonds, either native disulfide bridges or chemical crosslinks, on ESI supercharging of proteins from aqueous solutions were investigated. Chemically modifying cytochrome c with up to seven crosslinks or ubiquitin with up to two crosslinks did not affect the average or maximum charge states of these proteins in the absence of m-nitrobenzyl alcohol (m-NBA), but the extent of supercharging induced by m-NBA increased with decreasing numbers of crosslinks. For the model random coil polypeptide reduced/alkylated RNase A, a decrease in charging with increasing m-NBA concentration attributable to reduced surface tension of the ESI droplet was observed, whereas native RNase A electrosprayed from these same solutions exhibited enhanced charging. The inverse relationship between the extent of supercharging and the number of intramolecular crosslinks for folded proteins, as well as the absence of supercharging for proteins that are random coils in aqueous solution, indicate that conformational restrictions induced by the crosslinks reduce the extent of supercharging. These results provide additional evidence that protein and protein complex supercharging from aqueous solution is primarily due to partial or significant unfolding that occurs as a result of chemical and/or thermal denaturation induced by the supercharging reagent late in the ESI droplet lifetime. PMID:21399817

  17. How and why do toxic conformers of aberrant proteins accumulate during ageing?

    Science.gov (United States)

    Josefson, Rebecca; Andersson, Rebecca; Nyström, Thomas

    2017-07-15

    Ageing can be defined as a gradual decline in cellular and physical functions accompanied by an increased sensitivity to the environment and risk of death. The increased risk of mortality is causally connected to a gradual, intracellular accumulation of so-called ageing factors, of which damaged and aggregated proteins are believed to be one. Such aggregated proteins also contribute to several age-related neurodegenerative disorders e.g. Alzheimer's, Parkinson's, and Huntington's diseases, highlighting the importance of protein quality control (PQC) in ageing and its associated diseases. PQC consists of two interrelated systems: the temporal control system aimed at refolding, repairing, and/or removing aberrant proteins and their aggregates and the spatial control system aimed at harnessing the potential toxicity of aberrant proteins by sequestering them at specific cellular locations. The accumulation of toxic conformers of aberrant proteins during ageing is often declared to be a consequence of an incapacitated temporal PQC system-i.e. a gradual decline in the activity of chaperones and proteases. Here, we review the current knowledge on PQC in relation to ageing and highlight that the breakdown of both temporal and spatial PQC may contribute to ageing and thus comprise potential targets for therapeutic interventions of the ageing process. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Binding of Cimetidine to Balb/C Mouse Liver Catalase; Kinetics and Conformational Studies.

    Science.gov (United States)

    Jahangirvand, Mahboubeh; Minai-Tehrani, Dariush; Yazdi, Fatemeh; Minai-Tehrani, Arash; Razmi, Nematollah

    2016-01-01

    Catalase is responsible for converting hydrogen peroxide (H2O2) into water and oxygen in cells. This enzyme has high affinity for hydrogen peroxide and can protect the cells from oxidative stress damage. Catalase is a tetramer protein and each monomer contains a heme group. Cimetidine is a histamine H2 receptor blocker which inhibits acid release from stomach and is used for gasterointestinal diseases. In this research, effect of cimetidine on the activity of liver catalase was studied and the kinetic parameters of this enzyme and its conformational changes were investigated. Cell free extract of mouse liver was used for the catalase assay. The activity of the catalase was detected in the absence and presence of cimetidine by monitoring hydrogen peroxide reduction absorbance at 240 nm. The purified enzyme was used for conformational studies by Fluorescence spectrophotometry. The data showed that cimetidine could inhibit the enzyme in a non-competitive manner. Ki and IC50 values of the drug were determined to be about 0.75 and 0.85 uM, respectively. The Arrhenius plot showed that activation energy was 6.68 and 4.77 kJ/mol in the presence and absence of the drug, respectively. Fluorescence spectrophotometry revealed that the binding of cimetidine to the purified enzyme induced hyperchromicity and red shift which determined the conformational change on the enzyme. Cimetidine could non-competitively inhibit the liver catalase with high affinity. Binding of cimetidine to the enzyme induced conformational alteration in the enzyme.

  19. Conformation guides molecular efficacy in docking screens of activated β-2 adrenergic G protein coupled receptor.

    Science.gov (United States)

    Weiss, Dahlia R; Ahn, SeungKirl; Sassano, Maria F; Kleist, Andrew; Zhu, Xiao; Strachan, Ryan; Roth, Bryan L; Lefkowitz, Robert J; Shoichet, Brian K

    2013-05-17

    A prospective, large library virtual screen against an activated β2-adrenergic receptor (β2AR) structure returned potent agonists to the exclusion of inverse-agonists, providing the first complement to the previous virtual screening campaigns against inverse-agonist-bound G protein coupled receptor (GPCR) structures, which predicted only inverse-agonists. In addition, two hits recapitulated the signaling profile of the co-crystal ligand with respect to the G protein and arrestin mediated signaling. This functional fidelity has important implications in drug design, as the ability to predict ligands with predefined signaling properties is highly desirable. However, the agonist-bound state provides an uncertain template for modeling the activated conformation of other GPCRs, as a dopamine D2 receptor (DRD2) activated model templated on the activated β2AR structure returned few hits of only marginal potency.

  20. The role of side chain conformational flexibility in surface recognition by Tenebrio molitor antifreeze protein

    Science.gov (United States)

    Daley, Margaret E.; Sykes, Brian D.

    2003-01-01

    Two-dimensional nuclear magnetic resonance spectroscopy was used to investigate the flexibility of the threonine side chains in the β-helical Tenebrio molitor antifreeze protein (TmAFP) at low temperatures. From measurement of the 3Jαβ 1H-1H scalar coupling constants, the χ1 angles and preferred rotamer populations can be calculated. It was determined that the threonines on the ice-binding face of the protein adopt a preferred rotameric conformation at near freezing temperatures, whereas the threonines not on the ice-binding face sample many rotameric states. This suggests that TmAFP maintains a preformed ice-binding conformation in solution, wherein the rigid array of threonines that form the AFP-ice interface matches the ice crystal lattice. A key factor in binding to the ice surface and inhibition of ice crystal growth appears to be the close surface-to-surface complementarity between the AFP and crystalline ice, and the lack of an entropic penalty associated with freezing out motions in a flexible ligand. PMID:12824479

  1. Conformational detection of prion protein with biarsenical labeling and FlAsH fluorescence

    International Nuclear Information System (INIS)

    Coleman, Bradley M.; Nisbet, Rebecca M.; Han, Sen; Cappai, Roberto; Hatters, Danny M.; Hill, Andrew F.

    2009-01-01

    Prion diseases are associated with the misfolding of the host-encoded cellular prion protein (PrP C ) into a disease associated form (PrP Sc ). Recombinant PrP can be refolded into either an α-helical rich conformation (α-PrP) resembling PrP C or a β-sheet rich, protease resistant form similar to PrP Sc . Here, we generated tetracysteine tagged recombinant PrP, folded this into α- or β-PrP and determined the levels of FlAsH fluorescence. Insertion of the tetracysteine tag at three different sites within the 91-111 epitope readily distinguished β-PrP from α-PrP upon FlAsH labeling. Labelling of tetracysteine tagged PrP in the α-helical form showed minimal fluorescence, whereas labeling of tagged PrP in the β-sheet form showed high fluorescence indicating that this region is exposed upon conversion. This highlights a region of PrP that can be implicated in the development of diagnostics and is a novel, protease free mechanism for distinguishing PrP Sc from PrP C . This technique may also be applied to any protein that undergoes conformational change and/or misfolding such as those involved in other neurodegenerative disorders including Alzheimer's, Huntington's and Parkinson's diseases.

  2. Conformational co-dependence between Plasmodium berghei LCCL proteins promotes complex formation and stability.

    Science.gov (United States)

    Saeed, Sadia; Tremp, Annie Z; Dessens, Johannes T

    2012-10-01

    Malaria parasites express a conserved family of LCCL-lectin adhesive-like domain proteins (LAPs) that have essential functions in sporozoite transmission. In Plasmodium falciparum all six family members are expressed in gametocytes and form a multi-protein complex. Intriguingly, knockout of P. falciparum LCCL proteins adversely affects expression of other family members at protein, but not at mRNA level, a phenomenon termed co-dependent expression. Here, we investigate this in Plasmodium berghei by crossing a PbLAP1 null mutant parasite with a parasite line expressing GFP-tagged PbLAP3 that displays strong fluorescence in gametocytes. Selected and validated double mutants show normal synthesis and subcellular localization of PbLAP3::GFP. However, GFP-based fluorescence is dramatically reduced without PbLAP1 present, indicating that PbLAP1 and PbLAP3 interact. Moreover, absence of PbLAP1 markedly reduces the half-life of PbLAP3, consistent with a scenario of misfolding. These findings unveil a potential mechanism of conformational interdependence that facilitates assembly and stability of the functional LCCL protein complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Determining In Situ Protein Conformation and Orientation from the Amide-I Sum-Frequency Generation Spectrum: Theory and Experiment

    NARCIS (Netherlands)

    Roeters, S.J.; van Dijk, C.N.; Torres Knoop, A.; Backus, E.H.G.; Campen, R.K.; Bonn, M.; Woutersen, S.

    2013-01-01

    Vibrational sum-frequency generation (VSFG) spectra of the amide-I band of proteins can give detailed insight into biomolecular processes near membranes. However, interpreting these spectra in terms of the conformation and orientation of a protein can be difficult, especially in the case of complex

  4. pH-induced conformational changes of AcrA, the membrane fusion protein of Escherichia coli multidrug efflux system.

    Science.gov (United States)

    Ip, Hermia; Stratton, Kelly; Zgurskaya, Helen; Liu, Jun

    2003-12-12

    The multidrug efflux system AcrA-AcrB-TolC of Escherichia coli expels a wide range of drugs directly into the external medium from the bacterial cell. The mechanism of the efflux process is not fully understood. Of an elongated shape, AcrA is thought to span the periplasmic space coordinating the concerted operation of the inner and outer membrane proteins AcrB and TolC. In this study, we used site-directed spin labeling (SDSL) EPR (electron paramagnetic resonance) spectroscopy to investigate the molecular conformations of AcrA in solution. Ten AcrA mutants, each with an alanine to cysteine substitution, were engineered, purified, and labeled with a nitroxide spin label. EPR analysis of spin-labeled AcrA variants indicates that the side chain mobilities are consistent with the predicted secondary structure of AcrA. We further demonstrated that acidic pH induces oligomerization and conformational change of AcrA, and that the structural changes are reversible. These results suggest that the mechanism of action of AcrA in drug efflux is similar to the viral membrane fusion proteins, and that AcrA actively mediates the efflux of substrates.

  5. Loss of conformational entropy in protein folding calculated using realistic ensembles and its implications for NMR-based calculations

    Science.gov (United States)

    Baxa, Michael C.; Haddadian, Esmael J.; Jumper, John M.; Freed, Karl F.; Sosnick, Tobin R.

    2014-01-01

    The loss of conformational entropy is a major contribution in the thermodynamics of protein folding. However, accurate determination of the quantity has proven challenging. We calculate this loss using molecular dynamic simulations of both the native protein and a realistic denatured state ensemble. For ubiquitin, the total change in entropy is TΔSTotal = 1.4 kcal⋅mol−1 per residue at 300 K with only 20% from the loss of side-chain entropy. Our analysis exhibits mixed agreement with prior studies because of the use of more accurate ensembles and contributions from correlated motions. Buried side chains lose only a factor of 1.4 in the number of conformations available per rotamer upon folding (ΩU/ΩN). The entropy loss for helical and sheet residues differs due to the smaller motions of helical residues (TΔShelix−sheet = 0.5 kcal⋅mol−1), a property not fully reflected in the amide N-H and carbonyl C=O bond NMR order parameters. The results have implications for the thermodynamics of folding and binding, including estimates of solvent ordering and microscopic entropies obtained from NMR. PMID:25313044

  6. Conformational effects of a common codon 751 polymorphism on the C-terminal domain of the xeroderma pigmentosum D protein

    Directory of Open Access Journals (Sweden)

    Monaco Regina

    2009-01-01

    Full Text Available Aim: The xeroderma pigmentosum D (XPD protein is a DNA helicase involved in the repair of DNA damage, including nucleotide excision repair (NER and transcription-coupled repair (TCR. The C-terminal domain of XPD has been implicated in interactions with other components of the TFIIH complex, and it is also the site of a common genetic polymorphism in XPD at amino acid residue 751 (Lys->Gln. Some evidence suggests that this polymorphism may alter DNA repair capacity and increase cancer risk. The aim of this study was to investigate whether these effects could be attributable to conformational changes in XPD induced by the polymorphism. Materials and Methods: Molecular dynamics techniques were used to predict the structure of the wild-type and polymorphic forms of the C-terminal domain of XPD and differences in structure produced by the polymorphic substitution were determined. Results: The results indicate that, although the general configuration of both proteins is similar, the substitution produces a significant conformational change immediately N-terminal to the site of the polymorphism. Conclusion: These results provide support for the hypothesis that this polymorphism in XPD could affect DNA repair capability, and hence cancer risk, by altering the structure of the C-terminal domain.

  7. Single-molecule fluorescence polarization study of conformational change in archaeal group II chaperonin.

    Directory of Open Access Journals (Sweden)

    Ryo Iizuka

    Full Text Available Group II chaperonins found in archaea and in eukaryotic cytosol mediate protein folding without a GroES-like cofactor. The function of the cofactor is substituted by the helical protrusion at the tip of the apical domain, which forms a built-in lid on the central cavity. Although many studies on the change in lid conformation coupled to the binding and hydrolysis of nucleotides have been conducted, the molecular mechanism of lid closure remains poorly understood. Here, we performed a single-molecule polarization modulation to probe the rotation of the helical protrusion of a chaperonin from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1. We detected approximately 35° rotation of the helical protrusion immediately after photorelease of ATP. The result suggests that the conformational change from the open lid to the closed lid state is responsible for the approximately 35° rotation of the helical protrusion.

  8. Refinement of protein termini in template-based modeling using conformational space annealing.

    Science.gov (United States)

    Park, Hahnbeom; Ko, Junsu; Joo, Keehyoung; Lee, Julian; Seok, Chaok; Lee, Jooyoung

    2011-09-01

    The rapid increase in the number of experimentally determined protein structures in recent years enables us to obtain more reliable protein tertiary structure models than ever by template-based modeling. However, refinement of template-based models beyond the limit available from the best templates is still needed for understanding protein function in atomic detail. In this work, we develop a new method for protein terminus modeling that can be applied to refinement of models with unreliable terminus structures. The energy function for terminus modeling consists of both physics-based and knowledge-based potential terms with carefully optimized relative weights. Effective sampling of both the framework and terminus is performed using the conformational space annealing technique. This method has been tested on a set of termini derived from a nonredundant structure database and two sets of termini from the CASP8 targets. The performance of the terminus modeling method is significantly improved over our previous method that does not employ terminus refinement. It is also comparable or superior to the best server methods tested in CASP8. The success of the current approach suggests that similar strategy may be applied to other types of refinement problems such as loop modeling or secondary structure rearrangement. Copyright © 2011 Wiley-Liss, Inc.

  9. Tetrahymena telomerase protein p65 induces conformational changes throughout telomerase RNA (TER) and rescues telomerase reverse transcriptase and TER assembly mutants.

    Science.gov (United States)

    Berman, Andrea J; Gooding, Anne R; Cech, Thomas R

    2010-10-01

    The biogenesis of the Tetrahymena telomerase ribonucleoprotein particle (RNP) is enhanced by p65, a La family protein. Single-molecule and biochemical studies have uncovered a hierarchical assembly of the RNP, wherein the binding of p65 to stems I and IV of telomerase RNA (TER) causes a conformational change that facilitates the subsequent binding of telomerase reverse transcriptase (TERT) to TER. We used purified p65 and variants of TERT and TER to investigate the conformational rearrangements that occur during RNP assembly. Nuclease protection assays and mutational analysis revealed that p65 interacts with and stimulates conformational changes in regions of TER beyond stem IV. Several TER mutants exhibited telomerase activity only in the presence of p65, revealing the importance of p65 in promoting the correct RNP assembly pathway. In addition, p65 rescued TERT assembly mutants but not TERT activity mutants. Taken together, these results suggest that p65 stimulates telomerase assembly and activity in two ways. First, by sequestering stems I and IV, p65 limits the ensemble of structural conformations of TER, thereby presenting TERT with the active conformation of TER. Second, p65 acts as a molecular buttress within the assembled RNP, mutually stabilizing TER and TERT in catalytically active conformations.

  10. Study of polymer molecules and conformations with a nanopore

    Science.gov (United States)

    Golovchenko, Jene A.; Li, Jiali; Stein, Derek; Gershow, Marc H.

    2010-12-07

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  11. Molecular dynamics studies of the conformation of sorbitol

    Science.gov (United States)

    Lerbret, A.; Mason, P.E.; Venable, R.M.; Cesàro, A.; Saboungi, M.-L.; Pastor, R.W.; Brady, J.W.

    2009-01-01

    Molecular dynamics simulations of a 3 m aqueous solution of D-sorbitol (also called D-glucitol) have been performed at 300 K, as well as at two elevated temperatures to promote conformational transitions. In principle, sorbitol is more flexible than glucose since it does not contain a constraining ring. However, a conformational analysis revealed that the sorbitol chain remains extended in solution, in contrast to the bent conformation found experimentally in the crystalline form. While there are 243 staggered conformations of the backbone possible for this open-chain polyol, only a very limited number were found to be stable in the simulations. Although many conformers were briefly sampled, only eight were significantly populated in the simulation. The carbon backbones of all but two of these eight conformers were completely extended, unlike the bent crystal conformation. These extended conformers were stabilized by a quite persistent intramolecular hydrogen bond between the hydroxyl groups of carbon C-2 and C-4. The conformational populations were found to be in good agreement with the limited available NMR data except for the C-2–C-3 torsion (spanned by the O-2–O-4 hydrogen bond), where the NMR data supports a more bent structure. PMID:19744646

  12. An Improved Methodology for Multidimensional High-Throughput Preformulation Characterization of Protein Conformational Stability

    Science.gov (United States)

    Maddux, Nathaniel R.; Rosen, Ilan T.; Hu, Lei; Olsen, Christopher M.; Volkin, David B.; Middaugh, C. Russell

    2013-01-01

    The Empirical Phase Diagram (EPD) technique is a vector-based multidimensional analysis method for summarizing large data sets from a variety of biophysical techniques. It can be used to provide comprehensive preformulation characterization of a macromolecule’s higher-order structural integrity and conformational stability. In its most common mode, it represents a type of stimulus-response diagram using environmental variables such as temperature, pH, and ionic strength as the stimulus, with alterations in macromolecular structure being the response. Until now EPD analysis has not been available in a high throughput mode because of the large number of experimental techniques and environmental stressor/stabilizer variables typically employed. A new instrument has been developed that combines circular dichroism, UV-absorbance, fluorescence spectroscopy and light scattering in a single unit with a 6-position temperature controlled cuvette turret. Using this multifunctional instrument and a new software system we have generated EPDs for four model proteins. Results confirm the reproducibility of the apparent phase boundaries and protein behavior within the boundaries. This new approach permits two EPDs to be generated per day using only 0.5 mg of protein per EPD. Thus, the new methodology generates reproducible EPDs in high-throughput mode, and represents the next step in making such determinations more routine. PMID:22447621

  13. Conformational transitions and interactions underlying the function of membrane embedded receptor protein kinases.

    Science.gov (United States)

    Bocharov, Eduard V; Sharonov, Georgy V; Bocharova, Olga V; Pavlov, Konstantin V

    2017-09-01

    Among membrane receptors, the single-span receptor protein kinases occupy a broad but specific functional niche determined by distinctive features of the underlying transmembrane signaling mechanisms that are briefly overviewed on the basis of some of the most representative examples, followed by a more detailed discussion of several hierarchical levels of organization and interactions involved. All these levels, including single-molecule interactions (e.g., dimerization, liganding, chemical modifications), local processes (e.g. lipid membrane perturbations, cytoskeletal interactions), and larger scale phenomena (e.g., effects of membrane surface shape or electrochemical potential gradients) appear to be closely integrated to achieve the observed diversity of the receptor functioning. Different species of receptor protein kinases meet their specific functional demands through different structural features defining their responses to stimulation, but certain common patterns exist. Signaling by receptor protein kinases is typically associated with the receptor dimerization and clustering, ligand-induced rearrangements of receptor domains through allosteric conformational transitions with involvement of lipids, release of the sequestered lipids, restriction of receptor diffusion, cytoskeleton and membrane shape remodeling. Understanding of complexity and continuity of the signaling processes can help identifying currently neglected opportunities for influencing the receptor signaling with potential therapeutic implications. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Handheld highly selective plasmonic chem/biosensor using engineered binding proteins for extreme conformational changes

    Science.gov (United States)

    Kosciolek, Derek J.; Sonar, Ajay; Lepak, Lori A.; Schnatz, Peter; Bendoym, Igor; Brown, Mia C.; Koder, Ronald L.; Crouse, David T.

    2017-08-01

    In this project we develop a handheld, portable, highly selective and sensitive chem/biosensor that has potential applications in both airborne and water-based environmental sensing. The device relies on a plasmonic chip of subwavelength-scale periodic gold rods engineered to resonate in the near infrared. The chip is functionalized with a novel class of proteins that exhibit large conformational changes upon binding to a specific target analyte. The subsequent change in local refractive index near the surface of the gold is one to two orders of magnitude greater than current conventional methods, which produces a readily measurable 5 to 10 percent difference in light transmission. This allows us to forgo traditional, bulky tabletop setups in favor of a compact form factor. Using commercially available optics to construct a transmission-based optical train, measured changes in bulk refractive index are presented here. While synthesis of binding protein efforts are focused on heme as analyte for proof of concept validation, the functionalized protein can be engineered to pair with a wide variety of analytes with minimal alterations to the plasmonic chip or device design. Such flexibility allows for this device to potentially meet the needs of first responders and health care professionals in a multitude of scenarios.

  15. Conformational and functional analysis of the C-terminal globular head of the reovirus cell attachment protein.

    Science.gov (United States)

    Duncan, R; Horne, D; Strong, J E; Leone, G; Pon, R T; Yeung, M C; Lee, P W

    1991-06-01

    We have been investigating structure-function relationships in the reovirus cell attachment protein sigma 1 using various deletion mutants and protease analysis. In the present study, a series of deletion mutants were constructed which lacked 90, 44, 30, 12, or 4 amino acids from the C-terminus of the 455-amino acid-long reovirus type 3 (T3) sigma 1 protein. The full-length and truncated sigma 1 proteins were expressed in an in vitro transcription/translation system and assayed for L cell binding activity. It was found that the removal of as few as four amino acids from the C-terminus drastically affected the cell binding function of the sigma 1 protein. The C-terminal-truncated proteins were further characterized using trypsin, chymotrypsin, and monoclonal and polyclonal antibodies. Our results indicated that the C-terminal portions of the mutant proteins were misfolded, leading to a loss in cell binding function. The N-terminal fibrous tail of the proteins was unaffected by the deletions as was sigma 1 oligomerization, further illustrating the discrete structural and functional roles of the N- and C-terminal domains of sigma 1. In an attempt to identify smaller, functional peptides, full-length sigma 1 expressed in vitro was digested with trypsin and subsequently with chymotrypsin under various conditions. The results clearly demonstrated the highly stable nature of the C-terminal globular head of sigma 1, even when separated from the N-terminal fibrous tail. We concluded that: (1) the C-terminal globular head of sigma 1 exists as a compact, protease-resistant oligomeric structure; (2) an intact C-terminus is required for proper head folding and generation of the conformationally dependent cell binding domain.

  16. Clinical Studies on conformal radiotherapy combined with epidermal ...

    African Journals Online (AJOL)

    in second-line treatment of non-small cell lung cancer ... receptor-tyrosine kinase inhibitor (EGFR-TKI) in the second-line treatment of non-small cell ... were divided into two groups: 106 patients were treated with conformal ... Conformal radiotherapy, Targeted therapy, Survival rate .... regression model was used for survival.

  17. The Asch Conformity Effect: A Study in Kuwait.

    Science.gov (United States)

    Amir, Taha

    1984-01-01

    Investigated whether conformity in the experimental setting suggested by Asch was related to American culture and less likely to be replicable elsewhere. Kuwaiti subjects (N=200) were used in replicating the original experiment. Obtained an 'Asch effect' of a comparable magnitude to that of Asch. Individual differences in conformity were evident.…

  18. Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites

    International Nuclear Information System (INIS)

    Serrano, Pedro; Pedrini, Bill; Geralt, Michael; Jaudzems, Kristaps; Mohanty, Biswaranjan; Horst, Reto; Herrmann, Torsten; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    Tools for systematic comparisons of NMR and crystal structures developed by the JCSG were applied to two proteins with known functions: the T. maritima anti-σ factor antagonist TM1081 and the mouse γ-glutamylamine cyclotransferase A2LD1 (gi:13879369). In an attempt to exploit the complementarity of crystal and NMR data, the combined use of the two structure-determination techniques was explored for the initial steps in the challenge of searching proteins of unknown functions for putative active sites. The JCSG has recently developed a protocol for systematic comparisons of high-quality crystal and NMR structures of proteins. In this paper, the extent to which this approach can provide function-related information on the two functionally annotated proteins TM1081, a Thermotoga maritima anti-σ factor antagonist, and A2LD1 (gi:13879369), a mouse γ-glutamylamine cyclotransferase, is explored. The NMR structures of the two proteins have been determined in solution at 313 and 298 K, respectively, using the current JCSG protocol based on the software package UNIO for extensive automation. The corresponding crystal structures were solved by the JCSG at 100 K and 1.6 Å resolution and at 100 K and 1.9 Å resolution, respectively. The NMR and crystal structures of the two proteins share the same overall molecular architectures. However, the precision of the structure determination along the amino-acid sequence varies over a significantly wider range in the NMR structures than in the crystal structures. Thereby, in each of the two NMR structures about 65% of the residues have displacements below the average and in both proteins the less well ordered residues include large parts of the active sites, in addition to some highly solvent-exposed surface areas. Whereas the latter show increased disorder in the crystal and in solution, the active-site regions display increased displacements only in the NMR structures, where they undergo local conformational exchange on the

  19. Structural and conformational study of polysaccharides by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bossennec, Veronique

    1989-01-01

    As some natural polysaccharides are involved in important biological processes, the use of nuclear magnetic resonance appears to be an adapted mean to determine their structure-activity relationship and is therefore the object of this research thesis. By using bi-dimensional proton-based NMR techniques, it is possible to identify minority saccharide units, to determine their conformation, and to identify units which they are bound to. The author reports the application of these methods to swine mucosa heparin, and to heparins displaying a high and low anticoagulant activity. The dermatan sulphate has also been studied, and the NMR analysis allowed some polymer structure irregularities to be identified. A molecular modelling of dermatan sulphate has been performed [fr

  20. Conformational, vibrational, NMR and DFT studies of N-methylacetanilide.

    Science.gov (United States)

    Arjunan, V; Santhanam, R; Rani, T; Rosi, H; Mohan, S

    2013-03-01

    A detailed conformational, vibrational, NMR and DFT studies of N-methylacetanilide have been carried out. In DFT, B3LYP method have been used with 6-31G(**), 6-311++G(**) and cc-pVTZ basis sets. The vibrational frequencies were calculated resulting in IR and Raman frequencies together with intensities and Raman depolarisation ratios. The dipole moment derivatives were computed analytically. Owing to the complexity of the molecule, the potential energy distributions of the vibrational modes of the compound are also calculated. Isoelectronic molecular electrostatic potential surface (MEP) and electron density surface were examined. (1)H and (13)C NMR isotropic chemical shifts were calculated and the assignments made are compared with the experimental values. The energies of important MO's of the compound were also determined from TD-DFT method. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Probing the Mechanism of pH-Induced Large-Scale Conformational Changes in Dengue Virus Envelope Protein Using Atomistic Simulations

    Science.gov (United States)

    Prakash, Meher K.; Barducci, Alessandro; Parrinello, Michele

    2010-01-01

    Abstract One of the key steps in the infection of the cell by dengue virus is a pH-induced conformational change of the viral envelope proteins. These envelope proteins undergo a rearrangement from a dimer to a trimer, with large conformational changes in the monomeric unit. In this article, metadynamics simulations were used to enable us to understand the mechanism of these large-scale changes in the monomer. By using all-atom, explicit solvent simulations of the monomers, the stability of the protein structure is studied under low and high pH conditions. Free energy profiles obtained along appropriate collective coordinates demonstrate that pH affects the domain interface in both the conformations of E monomer, stabilizing one and destabilizing the other. These simulations suggest a mechanism with an intermediate detached state between the two monomeric structures. Using further analysis, we comment on the key residue interactions responsible for the instability and the pH-sensing role of a histidine that could not otherwise be studied experimentally. The insights gained from this study and methodology can be extended for studying similar mechanisms in the E proteins of the other members of class II flavivirus family. PMID:20643078

  2. Conformational intermediate of the amyloidogenic protein beta 2-microglobulin at neutral pH

    DEFF Research Database (Denmark)

    Heegaard, N H; Sen, J W; Kaarsholm, N C

    2001-01-01

    electrophoresis that two conformers spontaneously exist in aqueous buffers at neutral pH. Upon treatment of wild-type beta(2)-microglobulin with acetonitrile or trifluoroethanol, two conformations were also observed. These conformations were in equilibrium dependent on the sample temperature and the percentage...

  3. Sequence and conformational preferences at termini of α-helices in membrane proteins: role of the helix environment.

    Science.gov (United States)

    Shelar, Ashish; Bansal, Manju

    2014-12-01

    α-Helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These α-helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C-termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze α-helices in a high-resolution dataset of integral α-helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C-termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near-helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins. © 2014 Wiley Periodicals, Inc.

  4. Conformational Study of Taurine in the Gas Phase

    Science.gov (United States)

    Cortijo, Vanessa; Sanz, M. Eugenia; López, Juan C.; Alonso, José L.

    2009-08-01

    The conformational preferences of the amino sulfonic acid taurine (NH2-CH2-CH2-SO3H) have been investigated in the gas phase by laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW) in the 6-14 GHz frequency range. One conformer has been observed, and its rotational, centrifugal distortion, and hyperfine quadrupole coupling constants have been determined from the analysis of its rotational spectrum. Comparison of the experimental constants with those calculated theoretically identifies the detected conformer unambiguously. The observed conformer of taurine is stabilized by an intramolecular hydrogen bond O-H···N between the hydrogen of the sulfonic acid group and the nitrogen atom of the amino group.

  5. The Fusion Loops of the Initial Prefusion Conformation of Herpes Simplex Virus 1 Fusion Protein Point Toward the Membrane

    Directory of Open Access Journals (Sweden)

    Juan Fontana

    2017-08-01

    Full Text Available All enveloped viruses, including herpesviruses, must fuse their envelope with the host membrane to deliver their genomes into target cells, making this essential step subject to interference by antibodies and drugs. Viral fusion is mediated by a viral surface protein that transits from an initial prefusion conformation to a final postfusion conformation. Strikingly, the prefusion conformation of the herpesvirus fusion protein, gB, is poorly understood. Herpes simplex virus (HSV, a model system for herpesviruses, causes diseases ranging from mild skin lesions to serious encephalitis and neonatal infections. Using cryo-electron tomography and subtomogram averaging, we have characterized the structure of the prefusion conformation and fusion intermediates of HSV-1 gB. To this end, we have set up a system that generates microvesicles displaying full-length gB on their envelope. We confirmed proper folding of gB by nondenaturing electrophoresis-Western blotting with a panel of monoclonal antibodies (MAbs covering all gB domains. To elucidate the arrangement of gB domains, we labeled them by using (i mutagenesis to insert fluorescent proteins at specific positions, (ii coexpression of gB with Fabs for a neutralizing MAb with known binding sites, and (iii incubation of gB with an antibody directed against the fusion loops. Our results show that gB starts in a compact prefusion conformation with the fusion loops pointing toward the viral membrane and suggest, for the first time, a model for gB’s conformational rearrangements during fusion. These experiments further illustrate how neutralizing antibodies can interfere with the essential gB structural transitions that mediate viral entry and therefore infectivity.

  6. Structural studies of conformational changes of proteins upon phosphorylation: Structures of activated CheY, CheY-N16-FliM complex, and AAA + ATPase domain of NtrC1 in both inactive and active states

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seok-Yong [Univ. of California, Berkeley, CA (United States)

    2003-04-10

    Protein phosphorylation is a general mechanism for signal transduction as well as regulation of cellular function. Unlike phosphorylation in eukaryotic systems that uses Ser/Thr for the sites of modification, two-component signal transduction systems, which are prevalent in bacteria, archea, and lower eukaryotes, use an aspartate as the site of phosphorylation. Two-component systems comprise a histidine kinase and a receiver domain. The conformational change of the receiver domain upon phosphorylation leads to signal transfer to the downstream target, a process that had not been understood well at the molecular level. The transient nature of the phospho-Asp bond had made structural studies difficult. The discovery of an excellent analogue for acylphosphate, BeF3-, enabled structural study of activated receiver domains. The structure of activated Chemotaxis protein Y (CheY) was determined both by NMR spectroscopy and X-ray crystallography. These structures revealed the molecular basis of the conformational change that is coupled to phosphorylation. Phosphorylation of the conserved Asp residue in the active site allows hydrogen bonding of the T87 Oγ to phospho-aspartate, which in turn leads to the rotation of Y106 into the ''in'' position (termed Y-T coupling). The structure of activated CheY complexed with the 16 N-terminal residues of FliM (N16-FliM), its target, was also determined by X-ray crystallography and confirmed the proposed mechanism of activation (Y-T coupling). First, N16-FliM binds to the region on CheY that undergoes a significant conformational change. Second, the ''in'' position of Y106 presents a better binding surface for FliM because the sidechain of Y106 in the inactive form of CheY (''out'' position) sterically interferes with binding of N16-FliM. In addition to confirmation of Y-T coupling, the structure of the activated CheY-N16-FliM complex suggested that the

  7. A Novel Method Using Abstract Convex Underestimation in Ab-Initio Protein Structure Prediction for Guiding Search in Conformational Feature Space.

    Science.gov (United States)

    Hao, Xiao-Hu; Zhang, Gui-Jun; Zhou, Xiao-Gen; Yu, Xu-Feng

    2016-01-01

    To address the searching problem of protein conformational space in ab-initio protein structure prediction, a novel method using abstract convex underestimation (ACUE) based on the framework of evolutionary algorithm was proposed. Computing such conformations, essential to associate structural and functional information with gene sequences, is challenging due to the high-dimensionality and rugged energy surface of the protein conformational space. As a consequence, the dimension of protein conformational space should be reduced to a proper level. In this paper, the high-dimensionality original conformational space was converted into feature space whose dimension is considerably reduced by feature extraction technique. And, the underestimate space could be constructed according to abstract convex theory. Thus, the entropy effect caused by searching in the high-dimensionality conformational space could be avoided through such conversion. The tight lower bound estimate information was obtained to guide the searching direction, and the invalid searching area in which the global optimal solution is not located could be eliminated in advance. Moreover, instead of expensively calculating the energy of conformations in the original conformational space, the estimate value is employed to judge if the conformation is worth exploring to reduce the evaluation time, thereby making computational cost lower and the searching process more efficient. Additionally, fragment assembly and the Monte Carlo method are combined to generate a series of metastable conformations by sampling in the conformational space. The proposed method provides a novel technique to solve the searching problem of protein conformational space. Twenty small-to-medium structurally diverse proteins were tested, and the proposed ACUE method was compared with It Fix, HEA, Rosetta and the developed method LEDE without underestimate information. Test results show that the ACUE method can more rapidly and more

  8. Theoretical study of γ-aminobutyric acid conformers: Intramolecular interactions and ionization energies

    Science.gov (United States)

    Wang, Ke-Dong; Wang, Mei-Ting; Meng, Ju

    2014-10-01

    Allowing for all combinations of internal single-bond rotamers, 1,296 unique trial structures of γ-Aminobutyric acid (GABA) are obtained. All of these structures are optimized at the M06-2X level of theory and a total of 68 local minimal conformers are found. The nine low-lying conformers are used for further studies. According to the calculated relative Gibbs free energies at M06-2X level of theory, we find that the dispersion is important for the relative energy of GABA. The intramolecular hydrogen bonds and hyperconjugative interaction and their effects on the conformational stability are studied. The results show that both of them have great influence on the conformers. The vertical ionization energies (VIE) are calculated and match the experimental data well. The results show that the neutral GABA in the gas phase is a multi-conformer system and at least four conformations exist.

  9. Conformational Studies on γ - Benzyl- L- Glutamate and L- Valine Containing Block Copolypeptides

    OpenAIRE

    Kumar, Ajay

    2010-01-01

    Conformational studies on γ - benzyl-L- glutamate and L- valine containing block copolypeptides are reported using IR and CD spectra. The block copolypeptides contain valine block in the center and on both sides of the valine are γ - benzyl- L- glutamate blocks. The changes in conformation with increase in chain length of γ - benzyl- L- glutamate blocks are observed. When the chain length of γ - benzyl-L- glutamate block is 13, the block copolypeptide crystallized into beta conformation. With...

  10. Beam shaping for conformal fractionated stereotactic radiotherapy: a modeling study

    International Nuclear Information System (INIS)

    Hacker, Fred L.; Kooy, Hanne M.; Bellerive, Marc R.; Killoran, Joseph H.; Leber, Zachary H.; Shrieve, Dennis C.; Tarbell, Nancy J.; Loeffler, Jay S.

    1997-01-01

    Purpose: The patient population treated with fractionated stereotactic radiotherapy (SRT) is significantly different than that treated with stereotactic radiosurgery (SRS). Generally, lesions treated with SRT are larger, less spherical, and located within critical regions of the central nervous system; hence, they offer new challenges to the treatment planner. Here a simple, cost effective, beam shaping system has been evaluated relative to both circular collimators and an ideal dynamically conforming system for effectiveness in providing conformal therapy for these lesions. Methods and Materials: We have modeled a simple system for conformal arc therapy using four independent jaws. The jaw positions and collimator angle are changed between arcs but held fixed for the duration of each arc. Eleven previously treated SRT cases have been replanned using this system. The rectangular jaw plans were then compared to the original treatment plans which used circular collimators. The plans were evaluated with respect to tissue sparing at 100%, 80%, 50%, and 20% of the prescription dose. A plan was also done for each tumor in which the beam aperture was continuously conformed to the beams eye view projection of the tumor. This was used as an ideal standard for conformal therapy in the absence of fluence modulation. Results: For tumors with a maximum extent of over 3.5 cm the rectangular jaw plans reduced the mean volume of healthy tissue involved at the prescription dose by 57% relative to the circular collimator plans. The ideal conformal plans offered no significant further improvement at the prescription dose. The relative advantage of the rectangular jaw plans decreased at lower isodoses so that at 20% of the prescription dose tissue involvement for the rectangular jaw plans was equivalent to that for the circular collimator plans. At these isodoses the ideal conformal plans gave substantially better tissue sparing. Conclusion: A simple and economical field shaping

  11. Sequence-independent control of peptide conformation in liposomal vaccines for targeting protein misfolding diseases

    NARCIS (Netherlands)

    Hickman, D.T.; Nand, D.; Baldus, M.; Muhs, A.

    2011-01-01

    Synthetic peptide immunogens which mimic the conformation of a target epitope of pathological relevance offer the possibility to precisely control the immune response specificity. Here, we performed conformational analyses using a panel of peptides in order to investigate the key parameters

  12. Determination of conformation and orientation of immobilized peptides and proteins at buried interfaces

    Science.gov (United States)

    Shen, Lei; Ulrich, Nathan W.; Mello, Charlene M.; Chen, Zhan

    2015-01-01

    Surface immobilized peptides/proteins have important applications such as antimicrobial coating and biosensing. We report a study of such peptides/proteins using sum frequency generation vibrational spectroscopy and ATR-FTIR. Immobilization on surfaces via physical adsorption and chemical coupling revealed that structures of chemically immobilized peptides are determined by immobilization sites, chemical environments, and substrate surfaces. In addition, controlling enzyme orientation by engineering the surface immobilization site demonstrated that structures can be well-correlated to measured chemical activity. This research facilitates the development of immobilized peptides/proteins with improved activities by optimizing their surface orientation and structure.

  13. Identification of a conformational neutralizing epitope on the VP1 protein of type A foot-and-mouth disease virus.

    Science.gov (United States)

    Liu, Wenming; Yang, Baolin; Wang, Mingxia; Wang, Haiwei; Yang, Decheng; Ma, Wenge; Zhou, Guohui; Yu, Li

    2017-12-01

    Foot-and-mouth disease (FMD) caused by foot-and-mouth disease virus (FMDV), is a highly contagious infectious disease that affects domestic and wild cloven-hoofed animals worldwide. In recent years, outbreaks of serotype A FMD have occurred in many countries. High-affinity neutralizing antibodies against a conserved epitope could provide protective immunity against diverse subtypes of FMDV serotype A and protect against future pandemics. In this study, we generated a serotype A FMDV-specific potent neutralizing monoclonal antibody (MAb), 6C9, which recognizes a conformation-dependent epitope. MAb 6C9 potently neutralized FMDV A/XJBC/CHA/2010 with a 50% neutralization titer (NT 50 ) of 4096. Screening of a phage-displayed random 12-mer peptide library revealed that MAb 6C9 bound to phages displaying the consensus motif YxxPxGDLG, which is highly homologous to the 135 YxxPxxxxxGDLG 147 motif found in the serotype A FMDV virus-encoded structural protein VP1. To further verify the authentic epitope recognized by MAb 6C9, two FMDV A/XJBC/CHA/2010 mutant viruses, P138A and G144A, were generated using a reverse genetic system. Subsequent micro-neutralization assays and double-antibody sandwich (DAS) ELISA analyses revealed that the Pro 138 and Gly 144 residues of the conformational epitope that are recognized by 6C9 are important for MAb 6C9 binding. Importantly, the epitope 135 YxxPxxxxxGDLG 147 was highly conserved among different topotypes of serotype A FMDV strains in a sequence alignment analysis. Thus, the results of this study could have potential applications in the development of novel epitope-based vaccines and suitable a MAb-based diagnostic method for the detection of serotype A FMDV and the quantitation of antibodies against this serotype. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Quantitative characterization of conformational-specific protein-DNA binding using a dual-spectral interferometric imaging biosensor

    Science.gov (United States)

    Zhang, Xirui; Daaboul, George G.; Spuhler, Philipp S.; Dröge, Peter; Ünlü, M. Selim

    2016-03-01

    DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are not fully understood. Recently, it was discovered that DNA-binding proteins recognize specific binding sites to carry out their functions through an indirect readout mechanism by recognizing and capturing DNA conformational flexibility and deformation. High-throughput DNA microarray-based methods that provide large-scale protein-DNA binding information have shown effective and comprehensive analysis of protein-DNA binding affinities, but do not provide information of DNA conformational changes in specific protein-DNA complexes. Building on the high-throughput capability of DNA microarrays, we demonstrate a quantitative approach that simultaneously measures the amount of protein binding to DNA and nanometer-scale DNA conformational change induced by protein binding in a microarray format. Both measurements rely on spectral interferometry on a layered substrate using a single optical instrument in two distinct modalities. In the first modality, we quantitate the amount of binding of protein to surface-immobilized DNA in each DNA spot using a label-free spectral reflectivity technique that accurately measures the surface densities of protein and DNA accumulated on the substrate. In the second modality, for each DNA spot, we simultaneously measure DNA conformational change using a fluorescence vertical sectioning technique that determines average axial height of fluorophores tagged to specific nucleotides of the surface-immobilized DNA. The approach presented in this paper, when combined with current high-throughput DNA microarray-based technologies, has the potential to serve as a rapid and simple method for quantitative and large-scale characterization of conformational specific protein-DNA interactions.DNA-binding proteins play crucial roles in the maintenance and functions of the genome and yet, their specific binding mechanisms are

  15. Conformational composition of neutral leucine. Matrix isolation infrared and ab initio study

    International Nuclear Information System (INIS)

    Stepanian, Stepan G.; Ivanov, Alexander Yu.; Adamowicz, Ludwik

    2013-01-01

    Highlights: • FTIR spectra of leucine isolated in argon, neon and xenon matrices are obtained. • UV irradiation is used to separate bands of the leucine conformers. • Populations of the leucine conformers is determined. - Abstract: Low-temperature matrix-isolation FTIR spectroscopy and ab initio calculations are employed to determine conformational composition of neutral leucine. The presence of three leucine conformers in the matrices is revealed. This is in agreement with the results of a detailed study of the potential energy surface of leucine which demonstrates that only five out of 105 possible conformers should have populations in the matrices larger than 2% and only three conformers, which are the ones detected in the experiment, should have populations larger than 10%. UV irradiation of the matrix samples are used to separate bands of the different conformers. We also show that the populations of the leucine conformers in the gas phase at 440 K are significantly different from the ones in matrices. The population of the lowest energy conformer in the gas phase being approximately 23% in the gas phase increases to over 64% in matrices

  16. Heteronuclear Adiabatic Relaxation Dispersion (HARD) for quantitative analysis of conformational dynamics in proteins.

    Science.gov (United States)

    Traaseth, Nathaniel J; Chao, Fa-An; Masterson, Larry R; Mangia, Silvia; Garwood, Michael; Michaeli, Shalom; Seelig, Burckhard; Veglia, Gianluigi

    2012-06-01

    NMR relaxation methods probe biomolecular motions over a wide range of timescales. In particular, the rotating frame spin-lock R(1ρ) and Carr-Purcell-Meiboom-Gill (CPMG) R(2) experiments are commonly used to characterize μs to ms dynamics, which play a critical role in enzyme folding and catalysis. In an effort to complement these approaches, we introduced the Heteronuclear Adiabatic Relaxation Dispersion (HARD) method, where dispersion in rotating frame relaxation rate constants (longitudinal R(1ρ) and transverse R(2ρ)) is created by modulating the shape and duration of adiabatic full passage (AFP) pulses. Previously, we showed the ability of the HARD method to detect chemical exchange dynamics in the fast exchange regime (k(ex)∼10(4)-10(5) s(-1)). In this article, we show the sensitivity of the HARD method to slower exchange processes by measuring R(1ρ) and R(2ρ) relaxation rates for two soluble proteins (ubiquitin and 10C RNA ligase). One advantage of the HARD method is its nominal dependence on the applied radio frequency field, which can be leveraged to modulate the dispersion in the relaxation rate constants. In addition, we also include product operator simulations to define the dynamic range of adiabatic R(1ρ) and R(2ρ) that is valid under all exchange regimes. We conclude from both experimental observations and simulations that this method is complementary to CPMG-based and rotating frame spin-lock R(1ρ) experiments to probe conformational exchange dynamics for biomolecules. Finally, this approach is germane to several NMR-active nuclei, where relaxation rates are frequency-offset independent. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Studies on the optical absorption of copper-dopped myoglobin: conformational changes

    International Nuclear Information System (INIS)

    Lamy, M.T.M.

    1976-03-01

    Optical absorption changes in the visible and near U.V. spectrum of myoglobin molecules are observed when copper ions are added to the macromolecule. The heme optical transitions are investigated through a theoretical simulation of the optical absorption spectrum. A study of the absorption band in the region of 700 nm associated with the copper - myoglobin complexes indicated the existence of two kinds of metal-protein complexes: one associated with the six or eitht first added copper ions and the other related with the higher concentrations. Conformational changes caused by thermal treatment are studied in myoglobin water solutions and solutions containing copper ions. The phenomenon named pre-denaturation is observed through the optical absorption at 245 nm. It is shown that interactions between myoglobin molecules occur in the pre-denaturation phenomenon. (Author) [pt

  18. Social Conformity and Autism Spectrum Disorder: A Child-Friendly Take on a Classic Study

    Science.gov (United States)

    Yafai, Abdul-Fattah; Verrier, Diarmuid; Reidy, Lisa

    2014-01-01

    Perhaps surprisingly, given the importance of conformity as a theoretical construct in social psychology and the profound implications autism has for social function, little research has been done on whether autism is associated with the propensity to conform to a social majority. This study is a modern, child-friendly implementation of the…

  19. The making of the minibody: an engineered beta-protein for the display of conformationally constrained peptides.

    Science.gov (United States)

    Tramontano, A; Bianchi, E; Venturini, S; Martin, F; Pessi, A; Sollazzo, M

    1994-03-01

    Conformationally constraining selectable peptides onto a suitable scaffold that enables their conformation to be predicted or readily determined by experimental techniques would considerably boost the drug discovery process by reducing the gap between the discovery of a peptide lead and the design of a peptidomimetic with a more desirable pharmacological profile. With this in mind, we designed the minibody, a 61-residue beta-protein aimed at retaining some desirable features of immunoglobulin variable domains, such as tolerance to sequence variability in selected regions of the protein and predictability of the main chain conformation of the same regions, based on the 'canonical structures' model. To test the ability of the minibody scaffold to support functional sites we also designed a metal binding version of the protein by suitably choosing the sequences of its loops. The minibody was produced both by chemical synthesis and expression in E. coli and characterized by size exclusion chromatography, UV CD (circular dichroism) spectroscopy and metal binding activity. All our data supported the model, but a more detailed structural characterization of the molecule was impaired by its low solubility. We were able to overcome this problem both by further mutagenesis of the framework and by addition of a solubilizing motif. The minibody is being used to select constrained human IL-6 peptidic ligands from a library displayed on the surface of the f1 bacteriophage.

  20. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

    Energy Technology Data Exchange (ETDEWEB)

    Eghbalnia, Hamid R.; Wang Liya; Bahrami, Arash [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States); Assadi, Amir [University of Wisconsin-Madison, Mathematics Department (United States); Markley, John L. [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States)], E-mail: eghbalni@nmrfam.wisc.edu

    2005-05-15

    We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model ('PECAN', Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states.

  1. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

    International Nuclear Information System (INIS)

    Eghbalnia, Hamid R.; Wang Liya; Bahrami, Arash; Assadi, Amir; Markley, John L.

    2005-01-01

    We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model ('PECAN', Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states

  2. A novel mechanism for antiglycative action of limonene through stabilization of protein conformation.

    Science.gov (United States)

    Joglekar, Madhav M; Panaskar, Shrimant N; Chougale, Ashok D; Kulkarni, Mahesh J; Arvindekar, Akalpita U

    2013-10-01

    Inhibition of protein glycation is known to ameliorate secondary complications in diabetes. In the present study antiglycative properties of limonene, a natural product, were evaluated using BSA as a model protein. AMG (aminoguanidine) was used as a positive control. Measurement of total AGEs (Advanced Glycation End-products) and specific AGEs revealed that limonene could inhibit protein glycation to the extent of 56.3% and 75.1% respectively at 50 μM concentration as against 54.4% and 82.2% by AMG at 1 mM. Congo red binding and CD (Circular Dichroism) analysis revealed inhibition of α-helix to β-sheet transition wherein 18.5% β-sheet structures were observed in glycated BSA (bovine serum albumin) as against 4.9% with limonene. Glycation of protein in the presence of urea was enhanced by 18%, while in the presence of limonene it was reduced by 23% revealing the stabilizing effect of limonene. Electrophoretic mobility was similar to the normal control and a zeta potential value of -12.1 mV as against -15.1 mV in diabetic control was observed. Inhibition of glycation in limonene treated samples was confirmed through LC-MS analysis wherein AGEs such as pentosidine, CML (N(ε)-(carboxymethyl)lysine), CEL (N(ε)-(carboxyethyl)lysine), MOLD (methylglyoxal-lysine dimer) and imidazolone observed in glycated samples were absent in limonene treated samples. PatchDock studies revealed that limonene could bind to the major glycation sites IB, IIA and IIB sub domains and AMG to the IIIA sub domain. Thus limonene is a potent protein glycation inhibitor that prevents protein glycation through a novel mechanism of stabilization of protein structure through hydrophobic interactions.

  3. A constitutively activating mutation alters the dynamics and energetics of a key conformational change in a ligand-free G protein-coupled receptor.

    Science.gov (United States)

    Tsukamoto, Hisao; Farrens, David L

    2013-09-27

    G protein-coupled receptors (GPCRs) undergo dynamic transitions between active and inactive conformations. Usually, these conversions are triggered when the receptor detects an external signal, but some so-called constitutively activating mutations, or CAMs, induce a GPCR to bind and activate G proteins in the absence of external stimulation, in ways still not fully understood. Here, we investigated how a CAM alters the structure of a GPCR and the dynamics involved as the receptor transitions between different conformations. Our approach used site-directed fluorescence labeling (SDFL) spectroscopy to compare opsin, the ligand-free form of the GPCR rhodopsin, with opsin containing the CAM M257Y, focusing specifically on key movements that occur in the sixth transmembrane helix (TM6) during GPCR activation. The site-directed fluorescence labeling data indicate opsin is constrained to an inactive conformation both in detergent micelles and lipid membranes, but when it contains the M257Y CAM, opsin is more dynamic and can interact with a G protein mimetic. Further study of these receptors using tryptophan-induced quenching (TrIQ) methods indicates that in detergent, the CAM significantly increases the population of receptors in the active state, but not in lipids. Subsequent Arrhenius analysis of the TrIQ data suggests that, both in detergent and lipids, the CAM lowers the energy barrier for TM6 movement, a key transition required for conversion between the inactive and active conformations. Together, these data suggest that the lowered energy barrier is a primary effect of the CAM on the receptor dynamics and energetics.

  4. Workers’ Conformism

    Directory of Open Access Journals (Sweden)

    Nikolay Ivantchev

    2013-10-01

    Full Text Available Conformism was studied among 46 workers with different kinds of occupations by means of two modified scales measuring conformity by Santor, Messervey, and Kusumakar (2000 – scale for perceived peer pressure and scale for conformism in antisocial situations. The hypothesis of the study that workers’ conformism is expressed in a medium degree was confirmed partly. More than a half of the workers conform in a medium degree for taking risk, and for the use of alcohol and drugs, and for sexual relationships. More than a half of the respondents conform in a small degree for anti-social activities (like a theft. The workers were more inclined to conform for risk taking (10.9%, then – for the use of alcohol, drugs and for sexual relationships (8.7%, and in the lowest degree – for anti-social activities (6.5%. The workers who were inclined for the use of alcohol and drugs tended also to conform for anti-social activities.

  5. Theoretical and NMR conformational studies of β-proline oligopeptides with alternating chirality of pyrrolidine units

    Science.gov (United States)

    Mantsyzov, Alexey B.; Savelyev, Oleg Y.; Ivantcova, Polina M.; Bräse, Stefan; Kudryavtsev, Konstantin V.; Polshakov, Vladimir I.

    2018-03-01

    Synthetic β-peptides are potential functional mimetics of native α-proteins. A recently developed, novel, synthetic approach provides an effective route to the broad group of β-proline oligomers with alternating patterns of stereogenic centers. Conformation of the pyrrolidine ring, Z/E isomerism of β-peptide bonds, and hindered rotation of the neighboring monomers determine the spatial structure of this group of β-proline oligopeptides. Preferences in structural organization and corresponding thermodynamic properties are determined by NMR spectroscopy, restrained molecular dynamics and quantum mechanics. The studied β-proline oligopeptides exist in dimethyl sulfoxide solution in a limited number of conformers, with compatible energy of formation and different spatial organization. In the β-proline tetrapeptide with alternating chirality of composing pyrrolidine units, one of three peptide bonds may exist in an E configuration. For the alternating β-proline pentapeptide, the presence of an E configuration for at least of one β-peptide bond is mandatory. In this case, three peptide bonds synchronously change their configurations. Larger polypeptides may only exist in the presence of several E configurations of β-peptide bonds forming a wave-like extended structure.

  6. Theoretical and NMR Conformational Studies of β-Proline Oligopeptides With Alternating Chirality of Pyrrolidine Units

    Directory of Open Access Journals (Sweden)

    Alexey B. Mantsyzov

    2018-03-01

    Full Text Available Synthetic β-peptides are potential functional mimetics of native α-proteins. A recently developed, novel, synthetic approach provides an effective route to the broad group of β-proline oligomers with alternating patterns of stereogenic centers. Conformation of the pyrrolidine ring, Z/E isomerism of β-peptide bonds, and hindered rotation of the neighboring monomers determine the spatial structure of this group of β-proline oligopeptides. Preferences in their structural organization and corresponding thermodynamic properties are determined by NMR spectroscopy, restrained molecular dynamics and quantum mechanics. The studied β-proline oligopeptides exist in dimethyl sulfoxide solution in a limited number of conformers, with compatible energy of formation and different spatial organization. In the β-proline tetrapeptide with alternating chirality of composing pyrrolidine units, one of three peptide bonds may exist in an E configuration. For the alternating β-proline pentapeptide, the presence of an E configuration for at least of one β-peptide bond is mandatory. In this case, three peptide bonds synchronously change their configurations. Larger polypeptides may only exist in the presence of several E configurations of β-peptide bonds forming a wave-like extended structure.

  7. Conformational study of glyoxal bis(amidinohydrazone) by ab initio methods

    Science.gov (United States)

    Mannfors, B.; Koskinen, J. T.; Pietilä, L.-O.

    1997-08-01

    We report the first ab initio molecular orbital study on the ground state of the endiamine tautomer of glyoxal bis(amidinohydrazone) (or glyoxal bis(guanylhydrazone), GBG) free base. The calculations were performed at the following levels of theory: Hartree-Fock, second-order Møller-Plesset perturbation theory and density functional theory (B-LYP and B3-LYP) as implemented in the Gaussian 94 software. The standard basis set 6-31G(d) was found to be sufficient. The default fine grid of Gaussian 94 was used in the density functional calculations. Molecular properties, such as optimized structures, total energies and the electrostatic potential derived (CHELPG) atomic charges, were studied as functions of C-C and N-N conformations. The lowest energy conformation was found to be all- trans, in agreement with the experimental solid-state structure. The second conformer with respect to rotation around the central C-C bond was found to be the cis conformer with an MP2//HF energy of 4.67 kcal mol -1. For rotation around the N-N bond the energy increased monotonically from the trans conformation to the cis conformation, the cis energy being very high, 22.01 kcal mol -1 (MP2//HF). The atomic charges were shown to be conformation dependent, and the bond charge increments and especially the conformational changes of the bond charge increments were found to be easily transferable between structurally related systems.

  8. Conformationally Constrained Peptidomimetics as Inhibitors of the Protein Arginine Methyl Transferases

    DEFF Research Database (Denmark)

    Knuhtsen, Astrid; Legrand, Baptiste; Van der Poorten, Olivier

    2016-01-01

    Protein arginine N-methyl transferases (PRMTs) belong to a family of enzymes that modulate the epigenetic code through modifications of histones. In the present study, peptides emerging from a phage display screening were modified in the search for PRMT inhibitors through substitution with non-pr...

  9. Exploring the local conformational space of a membrane protein by site-directed spin labeling

    NARCIS (Netherlands)

    Stopar, D.; Strancar, J.; Spruijt, R.B.; Hemminga, M.A.

    2005-01-01

    Molecular modeling based on a hybrid evolutionary optimization and an information condensation algorithm, called GHOST, of spin label ESR spectra was applied to study the structure and dynamics of membrane proteins. The new method is capable of providing detailed molecular information about the

  10. Fragment growing induces conformational changes in acetylcholine-binding protein: A structural and thermodynamic analysis

    NARCIS (Netherlands)

    Edink, E.S.; Rucktooa, P.; Retra, K.; Akdemir, A.; Nahar, T.T.; Zuiderveld, O.P.; van Elk, R.; Janssen, E.; van Nierop, P.; van Muijlwijk-Koezen, J.E.; Smit, A.B.; Sixma, T.K.; Leurs, R.; de Esch, I.J.P.

    2011-01-01

    Optimization of fragment hits toward high-affinity lead compounds is a crucial aspect of fragment-based drug discovery (FBDD). In the current study, we have successfully optimized a fragment by growing into a ligand-inducible subpocket of the binding site of acetylcholine-binding protein (AChBP).

  11. Solvent and conformation dependence of amide I vibrations in peptides and proteins containing proline

    NARCIS (Netherlands)

    Roy, Santanu; Lessing, Joshua; Meisl, Georg; Ganim, Ziad; Tokmakoff, Andrei; Knoester, Jasper; Jansen, Thomas L. C.

    2011-01-01

    We present a mixed quantum-classical model for studying the amide I vibrational dynamics (predominantly CO stretching) in peptides and proteins containing proline. There are existing models developed for determining frequencies of and couplings between the secondary amide units. However, these are

  12. Solid state NMR sequential resonance assignments and conformational analysis of the 2x10.4 kDa dimeric form of the Bacillus subtilis protein Crh

    Energy Technology Data Exchange (ETDEWEB)

    Boeckmann, Anja [Institut de Biologie et Chimie des Proteines, C.N.R.S UMR 5086 (France)], E-mail: a.bockmann@ibcp.fr; Lange, Adam [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany); Galinier, Anne [Institut de Biologie Structurale et Microbiologie, C.N.R.S UPR 9043 (France); Luca, Sorin [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany); Giraud, Nicolas; Juy, Michel [Institut de Biologie et Chimie des Proteines, C.N.R.S UMR 5086 (France); Heise, Henrike [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany); Montserret, Roland; Penin, Francois [Institut de Biologie et Chimie des Proteines, C.N.R.S UMR 5086 (France); Baldus, Marc [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany)], E-mail: maba@mpibpc.mpg.de

    2003-12-15

    Solid state NMR sample preparation and resonance assignments of the U-[{sup 13}C,{sup 15}N] 2x10.4 kDa dimeric form of the regulatory protein Crh in microcrystalline, PEG precipitated form are presented. Intra- and interresidue correlations using dipolar polarization transfer methods led to nearly complete sequential assignments of the protein, and to 88% of all {sup 15}N, {sup 13}C chemical shifts. For several residues, the resonance assignments differ significantly from those reported for the monomeric form analyzed by solution state NMR. Dihedral angles obtained from a TALOS-based statistical analysis suggest that the microcrystalline arrangement of Crh must be similar to the domain-swapped dimeric structure of a single crystal form recently solved using X-ray crystallography. For a limited number of protein residues, a remarkable doubling of the observed NMR resonances is observed indicative of local static or dynamic conformational disorder. Our study reports resonance assignments for the largest protein investigated by solid state NMR so far and describes the conformational dimeric variant of Crh with previously unknown chemical shifts.

  13. The coat protein of prunus necrotic ringspot virus specifically binds to and regulates the conformation of its genomic RNA.

    Science.gov (United States)

    Aparicio, Frederic; Vilar, Marçal; Perez-Payá, Enrique; Pallás, Vicente

    2003-08-15

    Binding of coat protein (CP) to the 3' nontranslated region (3'-NTR) of viral RNAs is a crucial requirement to establish the infection of Alfamo- and Ilarviruses. In vitro binding properties of the Prunus necrotic ringspot ilarvirus (PNRSV) CP to the 3'-NTR of its genomic RNA using purified E. coli- expressed CP and different synthetic peptides corresponding to a 26-residue sequence near the N-terminus were investigated by electrophoretic mobility shift assays. PNRSV CP bound to, at least, three different sites existing on the 3'-NTR. Moreover, the N-terminal region between amino acid residues 25 to 50 of the protein could function as an independent RNA-binding domain. Single exchange of some arginine residues by alanine eliminated the RNA-interaction capacity of the synthetic peptides, consistent with a crucial role for Arg residues common to many RNA-binding proteins possessing Arg-rich domains. Circular dichroism spectroscopy revealed that the RNA conformation is altered when amino-terminal CP peptides bind to the viral RNA. Finally, mutational analysis of the 3'-NTR suggested the presence of a pseudoknotted structure at this region on the PNRSV RNA that, when stabilized by the presence of Mg(2+), lost its capability to bind the coat protein. The existence of two mutually exclusive conformations for the 3'-NTR of PNRSV strongly suggests a similar regulatory mechanism at the 3'-NTR level in Alfamo- and Ilarvirus genera.

  14. The coat protein of prunus necrotic ringspot virus specifically binds to and regulates the conformation of its genomic RNA

    International Nuclear Information System (INIS)

    Aparicio, Frederic; Vilar, Marcal; Perez-Paya, Enrique; Pallas, Vicente

    2003-01-01

    Binding of coat protein (CP) to the 3' nontranslated region (3'-NTR) of viral RNAs is a crucial requirement to establish the infection of Alfamo- and Ilarviruses. In vitro binding properties of the Prunus necrotic ringspot ilarvirus (PNRSV) CP to the 3'-NTR of its genomic RNA using purified E. coli- expressed CP and different synthetic peptides corresponding to a 26-residue sequence near the N-terminus were investigated by electrophoretic mobility shift assays. PNRSV CP bound to, at least, three different sites existing on the 3'-NTR. Moreover, the N-terminal region between amino acid residues 25 to 50 of the protein could function as an independent RNA-binding domain. Single exchange of some arginine residues by alanine eliminated the RNA-interaction capacity of the synthetic peptides, consistent with a crucial role for Arg residues common to many RNA-binding proteins possessing Arg-rich domains. Circular dichroism spectroscopy revealed that the RNA conformation is altered when amino-terminal CP peptides bind to the viral RNA. Finally, mutational analysis of the 3'-NTR suggested the presence of a pseudoknotted structure at this region on the PNRSV RNA that, when stabilized by the presence of Mg 2+ , lost its capability to bind the coat protein. The existence of two mutually exclusive conformations for the 3'-NTR of PNRSV strongly suggests a similar regulatory mechanism at the 3'-NTR level in Alfamo- and Ilarvirus genera

  15. Multiple receptor conformers based molecular docking study of fluorine enhanced ethionamide with mycobacterium enoyl ACP reductase (InhA).

    Science.gov (United States)

    Khan, Akib Mahmud; Shawon, Jakaria; Halim, Mohammad A

    2017-10-01

    A major limitation in current molecular docking method is that of failure to account for receptor flexibility. Herein we report multiple receptor conformers based molecular docking as a practical alternative to account for the receptor flexibility. Multiple (forty) conformers of Mycobacterium Enoyl ACP Reductase (InhA) are generated from Molecular Dynamics simulation and twenty crystallographic structures of InhA bound to different inhibitors are obtained from the Protein Data Bank. Fluorine directed modifications are performed to currently available anti-tuberculosis drug ethionamide. The modified drugs are optimized using B3LYP 6-31G (d,p) level of theory. Dipole moment, frontier orbital gap and thermodynamical properties such as electronic energy, enthalpy and Gibbs free energy of these optimized drugs are investigated. These drugs are subsequently docked against the conformers of InhA. Molecular docking against multiple InhA conformations show variation in ligand binding affinity and suggest that Ser94, Gly96, Lys165 and Ile194 amino acids play critical role on strong drug-InhA interaction. Modified drug N1 showed greater binding affinity compared to EN in most conformations. Structure of PDB ID: 2NSD and snapshot conformer at 5.5ns show most favorable binding with N1 compared to other conformers. Fluorine participates in forming fluorine bonds and contributes significantly in increasing binding affinity. Our study reveal that addition of trifluoromethyl group explicitly shows promise in improving thermodynamic properties and in enhancing hydrogen bonding and non-bonded interactions. Molecular dynamics (MD) simulation show that EN and N1 remained in the binding pocket similar to the docked pose of EN-InhA and E1-InhA complexes and also suggested that InhA binds to its inhibitor in inhibitor-induced folding manner. ADMET calculations predict modified drugs to have improved pharmacokinetic properties. Our study concludes that multiple receptor conformers based

  16. Rational design of a conformation-switchable Ca2+- and Tb3+-binding protein without the use of multiple coupled metal-binding sites.

    Science.gov (United States)

    Li, Shunyi; Yang, Wei; Maniccia, Anna W; Barrow, Doyle; Tjong, Harianto; Zhou, Huan-Xiang; Yang, Jenny J

    2008-10-01

    Ca2+, as a messenger of signal transduction, regulates numerous target molecules via Ca2+-induced conformational changes. Investigation into the determinants for Ca2+-induced conformational change is often impeded by cooperativity between multiple metal-binding sites or protein oligomerization in naturally occurring proteins. To dissect the relative contributions of key determinants for Ca2+-dependent conformational changes, we report the design of a single-site Ca2+-binding protein (CD2.trigger) created by altering charged residues at an electrostatically sensitive location on the surface of the host protein rat Cluster of Differentiation 2 (CD2).CD2.trigger binds to Tb3+ and Ca2+ with dissociation constants of 0.3 +/- 0.1 and 90 +/- 25 microM, respectively. This protein is largely unfolded in the absence of metal ions at physiological pH, but Tb3+ or Ca2+ binding results in folding of the native-like conformation. Neutralization of the charged coordination residues, either by mutation or protonation, similarly induces folding of the protein. The control of a major conformational change by a single Ca2+ ion, achieved on a protein designed without reliance on sequence similarity to known Ca2+-dependent proteins and coupled metal-binding sites, represents an important step in the design of trigger proteins.

  17. Fluorescent Protein-Based Ca2+ Sensor Reveals Global, Divalent Cation-Dependent Conformational Changes in Cardiac Troponin C.

    Directory of Open Access Journals (Sweden)

    Myriam A Badr

    Full Text Available Cardiac troponin C (cTnC is a key effector in cardiac muscle excitation-contraction coupling as the Ca2+ sensing subunit responsible for controlling contraction. In this study, we generated several FRET sensors for divalent cations based on cTnC flanked by a donor fluorescent protein (CFP and an acceptor fluorescent protein (YFP. The sensors report Ca2+ and Mg2+ binding, and relay global structural information about the structural relationship between cTnC's N- and C-domains. The sensors were first characterized using end point titrations to decipher the response to Ca2+ binding in the presence or absence of Mg2+. The sensor that exhibited the largest responses in end point titrations, CTV-TnC, (Cerulean, TnC, and Venus was characterized more extensively. Most of the divalent cation-dependent FRET signal originates from the high affinity C-terminal EF hands. CTV-TnC reconstitutes into skinned fiber preparations indicating proper assembly of troponin complex, with only ~0.2 pCa unit rightward shift of Ca2+-sensitive force development compared to WT-cTnC. Affinity of CTV-TnC for divalent cations is in agreement with known values for WT-cTnC. Analytical ultracentrifugation indicates that CTV-TnC undergoes compaction as divalent cations bind. C-terminal sites induce ion-specific (Ca2+ versus Mg2+ conformational changes in cTnC. Our data also provide support for the presence of additional, non-EF-hand sites on cTnC for Mg2+ binding. In conclusion, we successfully generated a novel FRET-Ca2+ sensor based on full length cTnC with a variety of cellular applications. Our sensor reveals global structural information about cTnC upon divalent cation binding.

  18. Effects of protein-coated nanofibers on conformation of gingival fibroblast spheroids: potential utility for connective tissues regeneration.

    Science.gov (United States)

    Kaufman, Gili; Whitescarver, Ryan; Nunes, Laiz; Palmer, Xavier-Lewis; Skrtic, Drago; Tutak, Wojtek

    2017-10-09

    Deep wounds in the gingiva caused by trauma or surgery require a rapid and robust healing of connective tissues. We propose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels of specific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature of dense and soft connective tissues. Gingival fibroblast monolayers and 3D spheroids were cultured on ECM substrate and covered with gas-blown poly-(DL-lactide-co-glycolide) (PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed by F-actin staining and confocal microscopy. Thicknesses of the cell layers, developed within the nanofibers, were quantified by imageJ software. The expression of collagen1α1 chain (Col1α1), fibronectin, and metalloproteinase 2 (MMP2) encoding genes was determined by quantitative reverse transcription analysis. Collagen- and fibrin- coated nanofibers induced cell migration toward fibers and supported cellular growth within the scaffolds. Both proteins affected the spatial rearrangement of fibroblasts by favoring packed cell clusters or intermittent cell spreading. These cell arrangements resembled the structural characteristic of dense and soft connective tissues, respectively. Within 3 days of incubation, fibroblast spheroids interacted with the fibers and grew robustly by increasing their thickness compared to monolayers. While the ECM key components, such as fibronectin and MMP2 encoding genes, were expressed in both protein groups, Col1α1 was predominantly expressed in bundled fibroblasts grown on collagen fibers. This enhanced expression of collagen1 is typical for dense connective tissue. Based on results of this study, our gas-blown, collagen- and fibrin-coated PLGA nanofibers are viable candidates for

  19. Effects of protein-coated nanofibers on conformation of gingival fibroblast spheroids: potential utility for connective tissue regeneration.

    Science.gov (United States)

    Kaufman, Gili; Whitescarver, Ryan A; Nunes, Laiz; Palmer, Xavier-Lewis; Skrtic, Drago; Tutak, Wojtek

    2018-01-24

    Deep wounds in the gingiva caused by trauma or surgery require a rapid and robust healing of connective tissues. We propose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels of specific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature of dense and soft connective tissues. Gingival fibroblast monolayers and 3D spheroids were cultured on ECM substrate and covered with gas-blown poly-(DL-lactide-co-glycolide) (PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed by F-actin staining and confocal microscopy. Thicknesses of the cell layers, developed within the nanofibers, were quantified by ImageJ software. The expression of collagen1α1 chain (Col1α1), fibronectin, and metalloproteinase 2 (MMP2) encoding genes was determined by quantitative reverse transcription analysis. Collagen- and fibrin- coated nanofibers induced cell migration toward fibers and supported cellular growth within the scaffolds. Both proteins affected the spatial rearrangement of fibroblasts by favoring packed cell clusters or intermittent cell spreading. These cell arrangements resembled the structural characteristic of dense and soft connective tissues, respectively. Within three days of incubation, fibroblast spheroids interacted with the fibers, and grew robustly by increasing their thickness compared to monolayers. While the ECM key components, such as fibronectin and MMP2 encoding genes, were expressed in both protein groups, Col1α1 was predominantly expressed in bundled fibroblasts grown on collagen fibers. This enhanced expression of collagen1 is typical for dense connective tissue. Based on results of this study, our gas-blown, collagen- and fibrin-coated PLGA nanofibers are viable candidates for

  20. Nuclear magnetic resonance study of alkane conformational statistics

    Science.gov (United States)

    Burnell, E. Elliott; Weber, Adrian C. J.; de Lange, Cornelis A.; Meerts, W. Leo; Dong, Ronald Y.

    2011-12-01

    NMR spectra of ethane, propane, and n-butane as solutes in the nematic liquid crystals 4-n-pentyl-4'-cyanobiphenyl (5CB) and Merck ZLI 1132 (1132) are investigated over a wide temperature range. The ratios of dipolar couplings of ethane to propane are constant over the entire temperature range. Assuming that this constancy applies to the butane conformers facilitates the separation of probability from order parameter. This separation allows the investigation of conformational distribution without the need of invoking any model for the anisotropic intermolecular potential. The results give an order matrix that is consistent with that predicted from model potentials that describe the orientational potential in terms of short-range size and shape effects. The isotropic intermolecular potential contribution to the trans-gauche energy difference Etg is found to be temperature dependent with the values and variation in agreement with that found when the same results are analyzed using the chord model for anisotropic interactions [A. C. J. Weber and E. E. Burnell, Chem. Phys. Lett. 506, 196 (2011)]. The fit obtained for 9 spectra in 5CB (63 dipolar couplings) has an RMS difference between experimental and calculated dipolar couplings of 2.7 Hz, while that for the 16 spectra in 1132 (112 couplings) is 6.2 Hz; this excellent fit with nine adjustable parameters suggests that the assumption of equal temperature dependencies of the order parameters for ethane, propane, and each conformer of butane is correct. Also the fit parameters (Etg and the methyl angle increase) obtained for 1132 and 5CB agree. The results indicate that the chord model, which was designed to treat hydrocarbon chains, is indeed the model of choice for these chains. The temperature variation of Etg provides a challenge for theoreticians. Finally, even better fits to the experimental dipolar couplings are obtained when the energy in the Boltzmann factor is used for scaling ethane to butane results. However

  1. Conformationally rigid histone deacetylase inhibitors correct DF508-CFTR protein function

    DEFF Research Database (Denmark)

    Vickers, Chris J.; Olsen, Christian Adam; Hutt, Darren M.

    2011-01-01

    and bacterial infection, therapy using HDAC inhibitors has the potential to treat and correct the underlying etiology associated with the disorder. Subsequently, we have synthesized conformationally well-defined cyclic tetrapeptide derivatives based on the natural product HDAC inhibitor Apicidin, in order...

  2. Protein folding and protein metallocluster studies using synchrotron small angler X-ray scattering

    International Nuclear Information System (INIS)

    Eliezer, D.

    1994-06-01

    Proteins, biological macromolecules composed of amino-acid building blocks, possess unique three dimensional shapes or conformations which are intimately related to their biological function. All of the information necessary to determine this conformation is stored in a protein's amino acid sequence. The problem of understanding the process by which nature maps protein amino-acid sequences to three-dimensional conformations is known as the protein folding problem, and is one of the central unsolved problems in biophysics today. The possible applications of a solution are broad, ranging from the elucidation of thousands of protein structures to the rational modification and design of protein-based drugs. The scattering of X-rays by matter has long been useful as a tool for the characterization of physical properties of materials, including biological samples. The high photon flux available at synchrotron X-ray sources allows for the measurement of scattering cross-sections of dilute and/or disordered samples. Such measurements do not yield the detailed geometrical information available from crystalline samples, but do allow for lower resolution studies of dynamical processes not observable in the crystalline state. The main focus of the work described here has been the study of the protein folding process using time-resolved small-angle x-ray scattering measurements. The original intention was to observe the decrease in overall size which must accompany the folding of a protein from an extended conformation to its compact native state. Although this process proved too fast for the current time-resolution of the technique, upper bounds were set on the probable compaction times of several small proteins. In addition, an interesting and unexpected process was detected, in which the folding protein passes through an intermediate state which shows a tendency to associate. This state is proposed to be a kinetic molten globule folding intermediate

  3. Study on fusion energy conformity with global environmental issues

    International Nuclear Information System (INIS)

    Kurihara, Kenichi

    1998-01-01

    Global environmental conformity has been one of the most important issues discussed recently as being required for all human activities. From this point of view, this report investigates whether nuclear fusion can be a benign energy source for the global environment. First of all, we chose the following global environmental problems: (1) Global warming, (2) Acid rain, (3) Ozonosphere destruction, (4) Air pollution, (5) Environmental hormones, (6) Radiation and radioactive materials, (7) Electromagnetic waves, and (8) Heat drainage from an energy source. Secondly, these problems were fully surveyed in terms of their relationships with proposed nuclear fusion power plant. Finally, as a result of this discussion, it was confirmed that a fusion power plant would not produce any new problems, but would partially contribute to solving some of the environmental problems. (author)

  4. Differential Mobility Spectrometry-Hydrogen Deuterium Exchange (DMS-HDX) as a Probe of Protein Conformation in Solution.

    Science.gov (United States)

    Zhu, Shaolong; Campbell, J Larry; Chernushevich, Igor; Le Blanc, J C Yves; Wilson, Derek J

    2016-06-01

    Differential mobility spectrometry (DMS) is an ion mobility technique that has been adopted chiefly as a pre-filter for small- to medium-sized analytes (DMS-field asymmetric waveform ion mobility spectroscopy (FAIMS)-the application of DMS to intact biomacromolecules remains largely unexplored. In this work, we employ DMS combined with gas-phase hydrogen deuterium exchange (DMS-HDX) to probe the gas-phase conformations generated from proteins that were initially folded, partially-folded, and unfolded in solution. Our findings indicate that proteins with distinct structural features in solution exhibit unique deuterium uptake profiles as function of their optimal transmission through the DMS. Ultimately we propose that DMS-HDX can, if properly implemented, provide rapid measurements of liquid-phase protein structural stability that could be of use in biopharmaceuticals development. Graphical Abstract ᅟ.

  5. Conformations of Trimethyl Phosphite: a Matrix Isolation Infrared and AB Initio Study

    Science.gov (United States)

    Ramanathan, N.; Sundararajan, K.; Kar, Bishnu Prasad; Viswanathan, K. S.

    2011-06-01

    Hyperconjugative interactions have received considerable attention because of its importance in determining structure and reactivity in organic compounds. In all these molecules, our studies, as many others in the literature, indicated that the O-P-O and O-C-O segments played a crucial role in conformational preferences. In the case of the organic phosphates, in addition to the O-P-O segments, the P=O group was also found to influence the structures. To address this issue further, it was thought interesting to study the conformations of trimethylphosphite (TMPhite), which lacks a P=O group. A comparison of the conformations of trimethylphosphate (TMP) and TMPhite was expected to highlight the role of the P=O group in the conformational preference of organic phosphates, which is the motivation for the present work. The conformations of TMPhite were studied using matrix isolation infrared spectroscopy. TMPhite was trapped in a nitrogen matrix using an effusive source maintained at 298 K and 410 K and also a supersonic source. These experiments were designed to enable us to assign the infrared features of the higher energy conformer(s). As a result of these experiments, infrared spectra of the conformations of TMPhite were obtained. The experimental studies were supported by ab initio computations performed at the B3LYP/6-31++G** level. Computations indicated four minima corresponding to conformers with the following symmetries: C_1, C_s, C1a and C_3, given in order of increasing energy. This conformational picture was clearly different from that of TMP, in which the C_3 was the lowest energy structure, thereby clearly indicating the role of the P=O group in structural preferences in these systems. We also performed a photochemical insertion of oxygen in TMPhite to produce TMP in the matrix, in an effort to correlate the conformers of the two molecules. These experiments also gave rise to interesting side reactions, where in addition to TMP, we also observed the

  6. Influence of conformity on the wear of total knee replacement: An experimental study.

    Science.gov (United States)

    Brockett, Claire L; Carbone, Silvia; Fisher, John; Jennings, Louise M

    2018-02-01

    Wear of total knee replacement continues to be a significant factor influencing the clinical longevity of implants. Historically, failure due to delamination and fatigue directed design towards more conforming inserts to reduce contact stress. As new generations of more oxidatively stable polyethylene have been developed, more flexibility in bearing design has been introduced. The aim of this study was to investigate the effect of insert conformity on the wear performance of a fixed bearing total knee replacement through experimental simulation. Two geometries of insert were studied under standard gait conditions. There was a significant reduction in wear with reducing implant conformity. This study has demonstrated that bearing conformity has a significant impact on the wear performance of a fixed bearing total knee replacement, providing opportunities to improve clinical performance through enhanced material and design selection.

  7. Albumin-coated SPIONs: an experimental and theoretical evaluation of protein conformation, binding affinity and competition with serum proteins

    Science.gov (United States)

    Yu, Siming; Perálvarez-Marín, Alex; Minelli, Caterina; Faraudo, Jordi; Roig, Anna; Laromaine, Anna

    2016-07-01

    The variety of nanoparticles (NPs) used in biological applications is increasing and the study of their interaction with biological media is becoming more important. Proteins are commonly the first biomolecules that NPs encounter when they interact with biological systems either in vitro or in vivo. Among NPs, super-paramagnetic iron oxide nanoparticles (SPIONs) show great promise for medicine. In this work, we study in detail the formation, composition, and structure of a monolayer of bovine serum albumin (BSA) on SPIONs. We determine, both by molecular simulations and experimentally, that ten molecules of BSA form a monolayer around the outside of the SPIONs and their binding strength to the SPIONs is about 3.5 × 10-4 M, ten times higher than the adsorption of fetal bovine serum (FBS) on the same SPIONs. We elucidate a strong electrostatic interaction between BSA and the SPIONs, although the secondary structure of the protein is not affected. We present data that supports the strong binding of the BSA monolayer on SPIONs and the properties of the BSA layer as a protein-resistant coating. We believe that a complete understanding of the behavior and morphology of BSA-SPIONs and how the protein interacts with SPIONs is crucial for improving NP surface design and expanding the potential applications of SPIONs in nanomedicine.The variety of nanoparticles (NPs) used in biological applications is increasing and the study of their interaction with biological media is becoming more important. Proteins are commonly the first biomolecules that NPs encounter when they interact with biological systems either in vitro or in vivo. Among NPs, super-paramagnetic iron oxide nanoparticles (SPIONs) show great promise for medicine. In this work, we study in detail the formation, composition, and structure of a monolayer of bovine serum albumin (BSA) on SPIONs. We determine, both by molecular simulations and experimentally, that ten molecules of BSA form a monolayer around the

  8. Calculation of relative free energies for ligand-protein binding, solvation, and conformational transitions using the GROMOS software.

    Science.gov (United States)

    Riniker, Sereina; Christ, Clara D; Hansen, Halvor S; Hünenberger, Philippe H; Oostenbrink, Chris; Steiner, Denise; van Gunsteren, Wilfred F

    2011-11-24

    The calculation of the relative free energies of ligand-protein binding, of solvation for different compounds, and of different conformational states of a polypeptide is of considerable interest in the design or selection of potential enzyme inhibitors. Since such processes in aqueous solution generally comprise energetic and entropic contributions from many molecular configurations, adequate sampling of the relevant parts of configurational space is required and can be achieved through molecular dynamics simulations. Various techniques to obtain converged ensemble averages and their implementation in the GROMOS software for biomolecular simulation are discussed, and examples of their application to biomolecules in aqueous solution are given. © 2011 American Chemical Society

  9. Conformational reduction of DOPA in the gas phase studied by laser desorption supersonic jet laser spectroscopy.

    Science.gov (United States)

    Ishiuchi, Shun-ichi; Mitsuda, Haruhiko; Asakawa, Toshiro; Miyazaki, Mitsuhiko; Fujii, Masaaki

    2011-05-07

    The conformational reduction in catecholamine neurotransmitters was studied by resonance enhanced multi photon ionization (REMPI), ultraviolet-ultraviolet (UV-UV) hole burning and infrared (IR) dip spectroscopy with applying a laser desorption supersonic jet technique to DOPA, which is one of the catecholamine neurotransmitters and has one more phenolic OH group than tyrosine. It is concluded that DOPA has a single observable conformer in the gas phase at low temperature. Quantum chemical calculations at several levels with or without the dispersion correction were also carried out to study stable conformations. From the comparison between the computational IR spectra and the experimental ones, the most stable structure was determined. It is strongly suggested that the conformational reduction is caused by electrostatic interactions, such as a dipole-dipole interaction, between the chain and OH groups. This journal is © the Owner Societies 2011

  10. DFT study of conformational and vibrational characteristics of 2-(2-hydroxyphenyl)benzothiazole molecule.

    Science.gov (United States)

    Pandey, Urmila; Srivastava, Mayuri; Singh, R P; Yadav, R A

    2014-08-14

    The conformational and IR and Raman spectral studies of 2-(2-hydroxyphenyl)benzothiazole have been carried out by using the DFT method at the B3LYP/6-311++G(**) level. The detailed vibrational assignments have been done on the basis of calculated potential energy distributions. Comparative studies of molecular geometries, atomic charges and vibrational fundamentals of all the conformers have been made. There are four possible conformers for this molecule. The optimized geometrical parameters obtained by B3LYP/6-311++G(**) method showed good agreement with the experimental X-ray data. The atomic polar tensor (APT) charges, Mulliken atomic charges, natural bond orbital (NBO) analysis and HOMO-LUMO energy gap of HBT and its conformers were also computed. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2000-08-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, ``conformal infinity'' is related with almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved out of physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation and how it lends itself very naturally to solve radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  12. Conformal Infinity.

    Science.gov (United States)

    Frauendiener, Jörg

    2004-01-01

    The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  13. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2004-01-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, 'conformal infinity' is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  14. Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins

    International Nuclear Information System (INIS)

    Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune

    2012-01-01

    NOEs between the β-protons of cysteine residues across disulfide bonds in proteins provide direct information on the connectivities and conformations of these important cross-links, which are otherwise difficult to investigate. With conventional [U- 13 C, 15 N]-proteins, however, fast spin diffusion processes mediated by strong dipolar interactions between geminal β-protons prohibit the quantitative measurements and thus the analyses of long-range NOEs across disulfide bonds. We describe a robust approach for alleviating such difficulties, by using proteins selectively labeled with an equimolar mixture of (2R, 3S)-[β- 13 C; α,β- 2 H 2 ] Cys and (2R, 3R)-[β- 13 C; α,β- 2 H 2 ] Cys, but otherwise fully deuterated. Since either one of the prochiral methylene protons, namely β2 (proS) or β3 (proR), is always replaced with a deuteron and no other protons remain in proteins prepared by this labeling scheme, all four of the expected NOEs for the β-protons across disulfide bonds could be measured without any spin diffusion interference, even with long mixing times. Therefore, the NOEs for the β2 and β3 pairs across each of the disulfide bonds could be observed at high sensitivity, even though they are 25% of the theoretical maximum for each pair. With the NOE information, the disulfide bond connectivities can be unambiguously established for proteins with multiple disulfide bonds. In addition, the conformations around disulfide bonds, namely χ 2 and χ 3 , can be determined based on the precise proton distances of the four β-proton pairs, by quantitative measurements of the NOEs across the disulfide bonds. The feasibility of this method is demonstrated for bovine pancreatic trypsin inhibitor, which has three disulfide bonds.

  15. Benchmarking Commercial Conformer Ensemble Generators.

    Science.gov (United States)

    Friedrich, Nils-Ole; de Bruyn Kops, Christina; Flachsenberg, Florian; Sommer, Kai; Rarey, Matthias; Kirchmair, Johannes

    2017-11-27

    We assess and compare the performance of eight commercial conformer ensemble generators (ConfGen, ConfGenX, cxcalc, iCon, MOE LowModeMD, MOE Stochastic, MOE Conformation Import, and OMEGA) and one leading free algorithm, the distance geometry algorithm implemented in RDKit. The comparative study is based on a new version of the Platinum Diverse Dataset, a high-quality benchmarking dataset of 2859 protein-bound ligand conformations extracted from the PDB. Differences in the performance of commercial algorithms are much smaller than those observed for free algorithms in our previous study (J. Chem. Inf. 2017, 57, 529-539). For commercial algorithms, the median minimum root-mean-square deviations measured between protein-bound ligand conformations and ensembles of a maximum of 250 conformers are between 0.46 and 0.61 Å. Commercial conformer ensemble generators are characterized by their high robustness, with at least 99% of all input molecules successfully processed and few or even no substantial geometrical errors detectable in their output conformations. The RDKit distance geometry algorithm (with minimization enabled) appears to be a good free alternative since its performance is comparable to that of the midranked commercial algorithms. Based on a statistical analysis, we elaborate on which algorithms to use and how to parametrize them for best performance in different application scenarios.

  16. Conformational dynamics and ligand binding in the multi-domain protein PDC109.

    Directory of Open Access Journals (Sweden)

    Hyun Jin Kim

    2010-02-01

    Full Text Available PDC109 is a modular multi-domain protein with two fibronectin type II (Fn2 repeats joined by a linker. It plays a major role in bull sperm binding to the oviductal epithelium through its interactions with phosphorylcholines (PhCs, a head group of sperm cell membrane lipids. The crystal structure of the PDC109-PhC complex shows that each PhC binds to the corresponding Fn2 domain, while the two domains are on the same face of the protein. Long timescale explicit solvent molecular dynamics (MD simulations of PDC109, in the presence and absence of PhC, suggest that PhC binding strongly correlates with the relative orientation of choline-phospholipid binding sites of the two Fn2 domains; unless the two domains tightly bind PhCs, they tend to change their relative orientation by deforming the flexible linker. The effective PDC109-PhC association constant of 28 M(-1, estimated from their potential of mean force is consistent with the experimental result. Principal component analysis of the long timescale MD simulations was compared to the significantly less expensive normal mode analysis of minimized structures. The comparison indicates that difference between relative domain motions of PDC109 with bound and unbound PhC is captured by the first principal component in the principal component analysis as well as the three lowest normal modes in the normal mode analysis. The present study illustrates the use of detailed MD simulations to clarify the energetics of specific ligand-domain interactions revealed by a static crystallographic model, as well as their influence on relative domain motions in a multi-domain protein.

  17. Self-assembly, Dynamics and Chirality of Conformational Switches on Metal Surfaces Studied by UHV-STM

    DEFF Research Database (Denmark)

    Nuermaimaiti, Ajiguli

    2013-01-01

    structures formed by the conformational switches and statistical analysis of conformational states, a detailed study of dynamic processes is performed by acquiring time-resolved STM data. Furthermore, one of the possible applications of conformational switches towards inducing chirality in surface assemblies...

  18. Hartree-Fock and density functional theory study of alpha-cyclodextrin conformers.

    Science.gov (United States)

    Jiménez, Verónica; Alderete, Joel B

    2008-01-31

    Herein, we report the geometry optimization of four conformers of alpha-cyclodextrin (alpha-CD) by means of PM3, HF/STO-3G, HF/3-21G, HF/6-31G(d), B3LYP/6-31G(d), and X3LYP/6-31G(d) calculations. The analysis of several geometrical parameters indicates that all conformers possess bond lengths, angles, and dihedrals that agree fairly well with the crystalline structure of alpha-CD. However, only three of them (1-3) resemble the polar character of CDs and show intramolecular hydrogen-bonding patterns that agree with experimental NMR data. Among them, conformer 3 appears to be the most stable species both in the gas phase and in solution; therefore, it is expected to be the most suitable representative structure for alpha-CD conformation. The purpose of selecting such a species is to identify an appropriate structure to be employed as a starting point for reliable computational studies on complexation phenomena. Our results indicate that the choice of a particular alpha-CD conformer should affect the results of ab initio computational studies on the inclusion complexation with this cyclodextrin since both the direction and the magnitude of the dipole moment depend strongly on the conformation of alpha-CD.

  19. Small-angle reflectometry of milk protein (β -casein) at the air/serum interface and its conformational changes due to fat content and temperature

    International Nuclear Information System (INIS)

    Heidari, R.; White, J.W.

    2003-01-01

    Full text: The surface structure of dispersed emulsions play a key role in stability of the system. Proteins being one of the most important surface-active components in foods stabilise interfaces by self-interaction, resulting in a stiff visco-elastic adsorbed layer. These interactions are sensitive to disruptive effects of lipids. Previous kinetics studies by the group 1 using the X-ray reflectivity method to investigate the surface adsorption of milk proteins indicate that β -casein had a stronger affinity for the air-liquid interface compared to whey proteins. It has been shown that initially a dense protein layer, with the thickness of 20 Angstroms is formed then a second more diffuse layer with lower volume density of protein follows. Here we report the conformational changes (with particular emphasise on the β -casein tail) occurred at the air-milk serum interface due to the effects of milk fat content, temperature and the milk preparation technique (ie homogenisation vs microfluidisation). In the effect of fat content on the adsorption of protein into the interface the key conclusion is that at lower temperatures the surface composition remains unchanged. The compositional changes, however, become significant at room temperature indicating adsorption of less reflective-water-soluble components into the surface layer. Repulsive interactions between casein aggregates are also involved. Microfluidised samples having the advantage of smaller particle size prove to be more stable to fat or temperature effects compared to the corresponding homogenised milks

  20. Conformation radiotherapy and conformal radiotherapy

    International Nuclear Information System (INIS)

    Morita, Kozo

    1999-01-01

    In order to coincide the high dose region to the target volume, the 'Conformation Radiotherapy Technique' using the multileaf collimator and the device for 'hollow-out technique' was developed by Prof. S. Takahashi in 1960. This technique can be classified a type of 2D-dynamic conformal RT techniques. By the clinical application of this technique, the late complications of the lens, the intestine and the urinary bladder after radiotherapy for the maxillary cancer and the cervical cancer decreased. Since 1980's the exact position and shape of the tumor and the surrounding normal tissues can be easily obtained by the tremendous development of the CT/MRI imaging technique. As a result, various kinds of new conformal techniques such as the 3D-CRT, the dose intensity modulation, the tomotherapy have been developed since the beginning of 1990'. Several 'dose escalation study with 2D-/3D conformal RT' is now under way to improve the treatment results. (author)

  1. Rapid Conformational Analysis of Protein Drugs in Formulation by Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS)

    DEFF Research Database (Denmark)

    Esmail Nazari, Zeinab; van de Weert, Marco; Bou-Assaf, George

    2016-01-01

    Hydrogen Deuterium Exchange coupled to Mass Spectrometry (HDX-MS) has become an established method for analysis of protein higher-order structure. Here, we use HDX-MS methodology based on manual Solid-Phase Extraction (SPE) to allow fast and simplified conformational analysis of proteins under...... pharmaceutically relevant formulation conditions. Of significant practical utility, the methodology allows global HDX-MS analyses to be performed without refrigeration or external cooling of the setup. In Mode 1, we used DMSO-containing solvents for SPE, allowing the HDX-MS analysis to be performed at acceptable...... in formulation, using an internal HDX reference peptide (P7I) to control for any sample-to-sample variations in back exchange. Advantages of the methodology include low sample use, optimized excipient removal using multiple solvents, and fast data acquisition. Our results indicate that the SPE-HDX-MS system can...

  2. Sequence dependent DNA conformations: Raman spectroscopic studies and a model of action of restriction enzymes

    International Nuclear Information System (INIS)

    Nishimura, Y.

    1985-01-01

    Raman spectra have been examined to clarify the polymorphic forms of DNA, A, B, and Z forms. From an analysis the authors found that the guanine ring breathing vibration is sensitive to its local conformation. Examination of nine crystals of guanosine residues in which the local conformations are well established revealed that a guanosine residue with a C3'endo-anti gives a strong line at 666+-2 cm/sup -1/, O4'endo-anti at 682 cm/sup -1/, C1'exo-anti at 673 cm/sup -1/, C2'endo-anti at 677 cm/sup -1/ and syn-forms around 625 cm/sup -1/. Using this characteristic line, they were able to obtain the local conformations of guanosine moieties in poly(dG-dC). Such a sequence derived variation is suggested to be recognized by sequence specific proteins such as restriction enzymes. The authors found a correlation between sequence dependent DNA conformation and a mode of action of restriction enzymes. The cutting mode of restriction enzymes is classified into three groups. The classification of whether the products have blunt ends, two-base-long cohesive ends, or four-base-long cohesive ends depends primarily on the substrate, not on the enzyme. It is suggested that sequence dependent DNA conformation causes such a classification by the use of the Calladine-Dickerson analysis. In the recognition of restriction enzymes, the methyl group in a certain sequence is considered to play an important role by changing the local conformation of DNA

  3. Change of conformation and internal dynamics of supercoiled DNA upon binding of Escherichia coli single-strand binding protein

    International Nuclear Information System (INIS)

    Langowski, J.; Benight, A.S.; Fujimoto, B.S.; Schurr, J.M.; Schomburg, U.

    1985-01-01

    The influence of Escherichia coli single-strand binding (SSB) protein on the conformation and internal dynamics of pBR322 and pUC8 supercoiled DNAs has been investigated by using dynamic light scattering at 632.8 and 351.1 nm and time-resolved fluorescence polarization anisotropy of intercalated ethidium. SSB protein binds to both DNAs up to a stoichiometry that is sufficient to almost completely relax the superhelical turns. Upon saturation binding, the translational diffusion coefficients (D 0 ) of both DNAs decrease by approximately 20%. Apparent diffusion coefficients (D/sub app/) obtained from dynamic light scattering display the well-known increase with K 2 (K = scattering vector), leveling off toward a plateau value (D/sub plat/) at high K 2 . For both DNAs, the difference D/sub plat/ - D 0 increases upon relaxation of supercoils by SSB protein, which indicates a corresponding enhancement of the subunit mobilities in internal motions. Fluorescence polarization anisotropy measurements on free and complexed pBR322 DNA indicate a (predominantly) uniform torsional rigidity for the saturated DNA/SSB protein complex that is significantly reduced compared to the free DNA. These observations are all consistent with the notion that binding of SSB protein is accompanied by a gradual loss of supercoils and saturates when the superhelical twist is largely removed

  4. Conformational Sampling in Template-Free Protein Loop Structure Modeling: An Overview

    OpenAIRE

    Li, Yaohang

    2013-01-01

    Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a “mini protein folding problem” under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increas...

  5. Dynamic conformational change regulates the protein-DNA recognition: an investigation on binding of a Y-family polymerase to its target DNA.

    Directory of Open Access Journals (Sweden)

    Xiakun Chu

    2014-09-01

    Full Text Available Protein-DNA recognition is a central biological process that governs the life of cells. A protein will often undergo a conformational transition to form the functional complex with its target DNA. The protein conformational dynamics are expected to contribute to the stability and specificity of DNA recognition and therefore may control the functional activity of the protein-DNA complex. Understanding how the conformational dynamics influences the protein-DNA recognition is still challenging. Here, we developed a two-basin structure-based model to explore functional dynamics in Sulfolobus solfataricus DNA Y-family polymerase IV (DPO4 during its binding to DNA. With explicit consideration of non-specific and specific interactions between DPO4 and DNA, we found that DPO4-DNA recognition is comprised of first 3D diffusion, then a short-range adjustment sliding on DNA and finally specific binding. Interestingly, we found that DPO4 is under a conformational equilibrium between multiple states during the binding process and the distributions of the conformations vary at different binding stages. By modulating the strength of the electrostatic interactions, the flexibility of the linker, and the conformational dynamics in DPO4, we drew a clear picture on how DPO4 dynamically regulates the DNA recognition. We argue that the unique features of flexibility and conformational dynamics in DPO4-DNA recognition have direct implications for low-fidelity translesion DNA synthesis, most of which is found to be accomplished by the Y-family DNA polymerases. Our results help complete the description of the DNA synthesis process for the Y-family polymerases. Furthermore, the methods developed here can be widely applied for future investigations on how various proteins recognize and bind specific DNA substrates.

  6. Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015

    Science.gov (United States)

    Xu, Xianjin; Yan, Chengfei; Zou, Xiaoqin

    2017-08-01

    The growing number of protein-ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein-ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein-ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein-ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein-ligand complex structures available to improve predictions on binding.

  7. Calcium binding promotes prion protein fragment 90-231 conformational change toward a membrane destabilizing and cytotoxic structure.

    Directory of Open Access Journals (Sweden)

    Sacha Sorrentino

    Full Text Available The pathological form of prion protein (PrP(Sc, as other amyloidogenic proteins, causes a marked increase of membrane permeability. PrP(Sc extracted from infected Syrian hamster brains induces a considerable change in membrane ionic conductance, although the contribution of this interaction to the molecular mechanism of neurodegeneration process is still controversial. We previously showed that the human PrP fragment 90-231 (hPrP₉₀₋₂₃₁ increases ionic conductance across artificial lipid bilayer, in a calcium-dependent manner, producing an alteration similar to that observed for PrP(Sc. In the present study we demonstrate that hPrP₉₀₋₂₃₁, pre-incubated with 10 mM Ca⁺⁺ and then re-suspended in physiological external solution increases not only membrane conductance but neurotoxicity as well. Furthermore we show the existence of a direct link between these two effects as demonstrated by a highly statistically significant correlation in several experimental conditions. A similar correlation between increased membrane conductance and cell degeneration has been observed assaying hPrP₉₀₋₂₃₁ bearing pathogenic mutations (D202N and E200K. We also report that Ca⁺⁺ binding to hPrP₉₀₋₂₃₁ induces a conformational change based on an alteration of secondary structure characterized by loss of alpha-helix content causing hydrophobic amino acid exposure and proteinase K resistance. These features, either acquired after controlled thermal denaturation or induced by D202N and E200K mutations were previously identified as responsible for hPrP₉₀₋₂₃₁ cytotoxicity. Finally, by in silico structural analysis, we propose that Ca⁺⁺ binding to hPrP₉₀₋₂₃₁ modifies amino acid orientation, in the same way induced by E200K mutation, thus suggesting a pathway for the structural alterations responsible of PrP neurotoxicity.

  8. Comparative Study of Elastic Network Model and Protein Contact Network for Protein Complexes: The Hemoglobin Case

    Directory of Open Access Journals (Sweden)

    Guang Hu

    2017-01-01

    Full Text Available The overall topology and interfacial interactions play key roles in understanding structural and functional principles of protein complexes. Elastic Network Model (ENM and Protein Contact Network (PCN are two widely used methods for high throughput investigation of structures and interactions within protein complexes. In this work, the comparative analysis of ENM and PCN relative to hemoglobin (Hb was taken as case study. We examine four types of structural and dynamical paradigms, namely, conformational change between different states of Hbs, modular analysis, allosteric mechanisms studies, and interface characterization of an Hb. The comparative study shows that ENM has an advantage in studying dynamical properties and protein-protein interfaces, while PCN is better for describing protein structures quantitatively both from local and from global levels. We suggest that the integration of ENM and PCN would give a potential but powerful tool in structural systems biology.

  9. A Unified Conformational Selection and Induced Fit Approach to Protein-Peptide Docking

    NARCIS (Netherlands)

    Trellet, M.; Melquiond, A.S.J.; Bonvin, A.M.J.J.

    2013-01-01

    Protein-peptide interactions are vital for the cell. They mediate, inhibit or serve as structural components in nearly 40% of all macromolecular interactions, and are often associated with diseases, making them interesting leads for protein drug design. In recent years, large-scale technologies have

  10. Defining a conformational consensus motif in cotransin-sensitive signal sequences: a proteomic and site-directed mutagenesis study.

    Directory of Open Access Journals (Sweden)

    Wolfgang Klein

    Full Text Available The cyclodepsipeptide cotransin was described to inhibit the biosynthesis of a small subset of proteins by a signal sequence-discriminatory mechanism at the Sec61 protein-conducting channel. However, it was not clear how selective cotransin is, i.e. how many proteins are sensitive. Moreover, a consensus motif in signal sequences mediating cotransin sensitivity has yet not been described. To address these questions, we performed a proteomic study using cotransin-treated human hepatocellular carcinoma cells and the stable isotope labelling by amino acids in cell culture technique in combination with quantitative mass spectrometry. We used a saturating concentration of cotransin (30 micromolar to identify also less-sensitive proteins and to discriminate the latter from completely resistant proteins. We found that the biosynthesis of almost all secreted proteins was cotransin-sensitive under these conditions. In contrast, biosynthesis of the majority of the integral membrane proteins was cotransin-resistant. Cotransin sensitivity of signal sequences was neither related to their length nor to their hydrophobicity. Instead, in the case of signal anchor sequences, we identified for the first time a conformational consensus motif mediating cotransin sensitivity.

  11. Defining a Conformational Consensus Motif in Cotransin-Sensitive Signal Sequences: A Proteomic and Site-Directed Mutagenesis Study

    Science.gov (United States)

    Klein, Wolfgang; Westendorf, Carolin; Schmidt, Antje; Conill-Cortés, Mercè; Rutz, Claudia; Blohs, Marcus; Beyermann, Michael; Protze, Jonas; Krause, Gerd; Krause, Eberhard; Schülein, Ralf

    2015-01-01

    The cyclodepsipeptide cotransin was described to inhibit the biosynthesis of a small subset of proteins by a signal sequence-discriminatory mechanism at the Sec61 protein-conducting channel. However, it was not clear how selective cotransin is, i.e. how many proteins are sensitive. Moreover, a consensus motif in signal sequences mediating cotransin sensitivity has yet not been described. To address these questions, we performed a proteomic study using cotransin-treated human hepatocellular carcinoma cells and the stable isotope labelling by amino acids in cell culture technique in combination with quantitative mass spectrometry. We used a saturating concentration of cotransin (30 micromolar) to identify also less-sensitive proteins and to discriminate the latter from completely resistant proteins. We found that the biosynthesis of almost all secreted proteins was cotransin-sensitive under these conditions. In contrast, biosynthesis of the majority of the integral membrane proteins was cotransin-resistant. Cotransin sensitivity of signal sequences was neither related to their length nor to their hydrophobicity. Instead, in the case of signal anchor sequences, we identified for the first time a conformational consensus motif mediating cotransin sensitivity. PMID:25806945

  12. Constrained Maximum Likelihood Estimation of Relative Abundances of Protein Conformation in a Heterogeneous Mixture from Small Angle X-Ray Scattering Intensity Measurements

    Science.gov (United States)

    Onuk, A. Emre; Akcakaya, Murat; Bardhan, Jaydeep P.; Erdogmus, Deniz; Brooks, Dana H.; Makowski, Lee

    2015-01-01

    In this paper, we describe a model for maximum likelihood estimation (MLE) of the relative abundances of different conformations of a protein in a heterogeneous mixture from small angle X-ray scattering (SAXS) intensities. To consider cases where the solution includes intermediate or unknown conformations, we develop a subset selection method based on k-means clustering and the Cramér-Rao bound on the mixture coefficient estimation error to find a sparse basis set that represents the space spanned by the measured SAXS intensities of the known conformations of a protein. Then, using the selected basis set and the assumptions on the model for the intensity measurements, we show that the MLE model can be expressed as a constrained convex optimization problem. Employing the adenylate kinase (ADK) protein and its known conformations as an example, and using Monte Carlo simulations, we demonstrate the performance of the proposed estimation scheme. Here, although we use 45 crystallographically determined experimental structures and we could generate many more using, for instance, molecular dynamics calculations, the clustering technique indicates that the data cannot support the determination of relative abundances for more than 5 conformations. The estimation of this maximum number of conformations is intrinsic to the methodology we have used here. PMID:26924916

  13. Methodologies for conformational studies of oligo- and poly-glucans: crystallography and molecular mechanics

    International Nuclear Information System (INIS)

    Tran, Huu Vinh

    1983-01-01

    After some considerations on the conformational analysis of polysaccharides, this research thesis outlines the interest of molecular mechanics as a method to study these components. Technical aspects are presented. The author reports the prediction of the conformations of some specific cyclic oligomers (glucans, glucore), the use of X-ray diffraction to study glucides (and the limitations of this method). He reports the search for another investigation method: relationships between X rays and molecular mechanics, situation with respect to other crystallographic methods, presentation of principle of the 'Packing' method, and applications. He reports the study of regular conformations of polysaccharides, the study of the statistic configuration of polymer chains and the application to alpha-glucans

  14. The Staphylococcus aureus extracellular adherence protein (Eap) adopts an elongated but structured conformation in solution

    OpenAIRE

    Hammel, Michal; Němeček, Daniel; Keightley, J. Andrew; Thomas, George J.; Geisbrecht, Brian V.

    2007-01-01

    The extracellular adherence protein (Eap) of Staphylococcus aureus participates in a wide range of protein–protein interactions that facilitate the initiation and dissemination of Staphylococcal disease. In this report, we describe the use of a multidisciplinary approach to characterize the solution structure of full-length Eap. In contrast to previous reports suggesting that a six-domain isoform of Eap undergoes multimerization, sedimentation equilibrium analytical ultracentrifugation data r...

  15. Open and closed conformations of two SpoIIAA-like proteins (YP-749275.1 and YP-001095227.1) provide insights into membrane association and ligand binding

    International Nuclear Information System (INIS)

    Kumar, Abhinav; Lomize, Andrei; Jin, Kevin K.; Carlton, Dennis; Miller, Mitchell D.; Jaroszewski, Lukasz; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2009-01-01

    The crystal structures of two orthologous proteins from different Shewanella species have uncovered a resemblance to CRAL-TRIO carrier proteins, which suggest that they function as transporters of small nonpolar molecules. One protein adopts an open conformation, while the other adopts a closed structure that may act as a conformational switch in the transport of ligands at the membrane surface. The crystal structures of the proteins encoded by the YP-749275.1 and YP-001095227.1 genes from Shewanella frigidimarina and S. loihica, respectively, have been determined at 1.8 and 2.25 Å resolution, respectively. These proteins are members of a novel family of bacterial proteins that adopt the α/β SpoIIAA-like fold found in STAS and CRAL-TRIO domains. Despite sharing 54% sequence identity, these two proteins adopt distinct conformations arising from different dispositions of their α2 and α3 helices. In the ‘open’ conformation (YP-001095227.1), these helices are 15 Å apart, leading to the creation of a deep nonpolar cavity. In the ‘closed’ structure (YP-749275.1), the helices partially unfold and rearrange, occluding the cavity and decreasing the solvent-exposed hydrophobic surface. These two complementary structures are reminiscent of the conformational switch in CRAL-TRIO carriers of hydrophobic compounds. It is suggested that both proteins may associate with the lipid bilayer in their ‘open’ monomeric state by inserting their amphiphilic helices, α2 and α3, into the lipid bilayer. These bacterial proteins may function as carriers of nonpolar substances or as interfacially activated enzymes

  16. Protein Conformation Ensembles Monitored by HDX Reveal a Structural Rationale for Abscisic Acid Signaling Protein Affinities and Activities

    OpenAIRE

    West, Graham M.; Pascal, Bruce D.; Ng, Ley-Moy; Soon, Fen-Fen; Melcher, Karsten; Xu, H. Eric; Chalmers, Michael J.; Griffin, Patrick R.

    2013-01-01

    Plants regulate growth and respond to environmental stress through abscisic acid (ABA) regulated pathways, and as such these pathways are of primary interest for biological and agricultural research. The ABA response is first perceived by the PYR/PYL/RCAR class of START protein receptors. These ABA activated receptors disrupt phosphatase inhibition of Snf1-related kinases (SnRKs) enabling kinase signaling. Here, insights into the structural mechanism of proteins in the ABA signaling pathway (...

  17. Structural ordering of disordered ligand-binding loops of biotin protein ligase into active conformations as a consequence of dehydration.

    Directory of Open Access Journals (Sweden)

    Vibha Gupta

    Full Text Available Mycobacterium tuberculosis (Mtb, a dreaded pathogen, has a unique cell envelope composed of high fatty acid content that plays a crucial role in its pathogenesis. Acetyl Coenzyme A Carboxylase (ACC, an important enzyme that catalyzes the first reaction of fatty acid biosynthesis, is biotinylated by biotin acetyl-CoA carboxylase ligase (BirA. The ligand-binding loops in all known apo BirAs to date are disordered and attain an ordered structure only after undergoing a conformational change upon ligand-binding. Here, we report that dehydration of Mtb-BirA crystals traps both the apo and active conformations in its asymmetric unit, and for the first time provides structural evidence of such transformation. Recombinant Mtb-BirA was crystallized at room temperature, and diffraction data was collected at 295 K as well as at 120 K. Transfer of crystals to paraffin and paratone-N oil (cryoprotectants prior to flash-freezing induced lattice shrinkage and enhancement in the resolution of the X-ray diffraction data. Intriguingly, the crystal lattice rearrangement due to shrinkage in the dehydrated Mtb-BirA crystals ensued structural order of otherwise flexible ligand-binding loops L4 and L8 in apo BirA. In addition, crystal dehydration resulted in a shift of approximately 3.5 A in the flexible loop L6, a proline-rich loop unique to Mtb complex as well as around the L11 region. The shift in loop L11 in the C-terminal domain on dehydration emulates the action responsible for the complex formation with its protein ligand biotin carboxyl carrier protein (BCCP domain of ACCA3. This is contrary to the involvement of loop L14 observed in Pyrococcus horikoshii BirA-BCCP complex. Another interesting feature that emerges from this dehydrated structure is that the two subunits A and B, though related by a noncrystallographic twofold symmetry, assemble into an asymmetric dimer representing the ligand-bound and ligand-free states of the protein, respectively. In

  18. 3D Conformal radiotherapy for gastric cancer-results of a comparative planning study

    International Nuclear Information System (INIS)

    Leong, Trevor; Willis, David; Joon, Daryl Lim; Condron, Sara; Hui, Andrew; Ngan, Samuel Y.K.

    2005-01-01

    Background and purpose: Many radiation oncologists are reluctant to use anteroposterior-posteroanterior (AP-PA) field arrangements when treating gastric cancer with adjuvant postoperative radiotherapy due to concerns about normal tissue toxicity, particularly in relation to the kidneys and spinal cord. In this report, we describe a multiple-field conformal radiotherapy technique, and compare this technique to the more commonly used AP-PA technique that was used in the recently reported Intergroup study (INT0116). Materials and methods: Fifteen patients with stages II-IV adenocarcinoma of the stomach were treated with adjuvant postoperative chemoradiotherapy using a standardised 3D conformal radiotherapy technique that consisted of a 'split-field', mono-isocentric arrangement employing 6 radiation fields. For each patient, a second radiotherapy treatment plan was generated utilising AP-PA fields. The two techniques were then compared for target volume coverage and dose to normal tissues using dose volume histogram (DVH) analysis. Results: The conformal technique provides more adequate coverage of the target volume with 99% of the planning target volume (PTV) receiving 95% of the prescribed dose, compared to 93% using AP-PA fields. Comparative DVHs for the right kidney, left kidney and spinal cord demonstrate lower radiation doses using the conformal technique, and although the liver dose is higher, it is still well below liver tolerance. Conclusions: 3D conformal radiotherapy produces superior dose distributions and reduced radiation doses to the kidneys and spinal cord compared to AP-PA techniques, with the potential to reduce treatment toxicity

  19. Conformational interconversions in peptide beta-turns: analysis of turns in proteins and computational estimates of barriers.

    Science.gov (United States)

    Gunasekaran, K; Gomathi, L; Ramakrishnan, C; Chandrasekhar, J; Balaram, P

    1998-12-18

    The two most important beta-turn features in peptides and proteins are the type I and type II turns, which differ mainly in the orientation of the central peptide unit. Facile conformational interconversion is possible, in principle, by a flip of the central peptide unit. Homologous crystal structures afford an opportunity to structurally characterize both possible conformational states, thus allowing identification of sites that are potentially stereochemically mobile. A representative data set of 250 high-resolution (turns that are assigned different conformational types (type I/type II) in related structures. A total of 55 examples of beta-turns were identified as possible candidates for a stereochemically mobile site. Of the 55 examples, 45 could be classified as a potential site for interconversion between type I and type II beta-turns, while ten correspond to flips from type I' to type II' structures. As a further check, the temperature factors of the central peptide unit carbonyl oxygen atom of the 55 examples were examined. The analysis reveals that the turn assignments are indeed reliable. Examination of the secondary structures at the flanking positions of the flippable beta-turns reveals that seven examples occur in the loop region of beta-hairpins, indicating that the formation of ordered secondary structures on either side of the beta-turn does not preclude local conformational variations. In these beta-turns, Pro (11 examples), Lys (nine examples) and Ser (seven examples) were most often found at the i+1 position. Glycine was found to occur overwhelmingly at position i+2 (28 examples), while Ser (seven examples) and Asn (six examples) were amongst the most frequent residues. Activation energy barriers for the interconversion between type I and type II beta-turns were computed using the peptide models Ac-Pro-Aib-NHMe and Ac-Pro-Gly-NHMe within the framework of the AM1 semi-empirical molecular orbital procedure. In order to have a uniform basis for

  20. Conformational Studies of ε- CBz- L- Lysine and L- Valine Block Copolypeptides

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2010-01-01

    Full Text Available Conformational studies of ε-CBz-L-lysine and L-valine block copoylpeptides using x- ray diffraction and CD spectra are described. The block copolypeptides contain valine block in the center and on both side of the valine are ε-CBz-L-lysine blocks. The conformation of the copolypeptides changes with increases in the chain length of ε- CBz-L- lysine blocks. When length of ε- CBZ- L- lysine blocks is 9, the block copolypeptide has exclusive beta sheet structure. With the increase in chain length of ε-CBz-L-lysine blocks from 9 to 14, the block copolypeptide shows presence of both alpha helix and beta sheet components. With further increase in chain length of ε- CBz- L- lysine blocks, the beta sheet component disappears and block copolypeptides exhibits exclusive α -helix conformation.

  1. Exploring the conformational landscape of menthol, menthone, and isomenthone: A microwave study

    Directory of Open Access Journals (Sweden)

    David eSchmitz

    2015-03-01

    Full Text Available The rotational spectra of the monoterpenoids menthol, menthone, and isomenthone are reportedin the frequency range of 2−8.5GHz, obtained with broadband Fourier-transform microwave spectroscopy.For menthol only one conformation was identified under the cold conditions of the molecularjet, whereas three conformations were observed for menthone and one for isomenthone. Theconformational space of the different molecules was extensively studied using quantum chemicalcalculations, and the results were compared with molecular parameters obtained by the measurements.Finally, a computer program is presented, which was developed to automatically identifydifferent species in a dense broadband microwave spectrum using calculated ab initio rotationalconstants as input.

  2. The Conformational Landscape of L-Threonine Matrix Isolation Infrared and {AB-INITIO Studies

    Science.gov (United States)

    Dubey, Pankaj; Mukhopadhyay, Anamika; Viswanathan, K. S.

    2017-06-01

    Amino acids, containing hydroxy side chains such as L-threonine and tyrosine play an important role in molecular recognition, such as in the docking of propofol, which is a commonly used anaesthetic. A rich conformational landscape of these amino acids makes them interesting candidates in the study of intra and intermolecular interactions. In this work, the conformational landscape of L-threonine was studied, as it can be expected to serve as a basis for understanding structure and functions of polypeptides and other biomolecules. The matrix isolation technique (MI) coupled with a high temperature effusive molecular beam (EMB) nozzle was used to trap conformers of amino acid, which were then characterized using FTIR spectroscopy. The usefulness of MI-EMB-FTIR spectroscopy is that it can trap structures corresponding to the local minima along with the global minimum and hence allows for a better exploration of the potential energy surface. A major challenge in conformational analysis of amino acids using matrix isolation FTIR arises from its non-volatile nature. A home built heating system which was mounted close to the cryotip, was used to evaporate the non-volatile amino acids. Our infrared spectra show that three conformations were trapped in the matrix. Experimental results were supported by {ab-initio calculations performed using the CCSD(T), MP2 and M06-2X methods together with 6-311++G(d,p) and aug/cc-pVDZ basis sets. The side chains of the amino acids appeared to have an influence on the preferential stabilisation of a particular backbone structure of amino acids. Factors such as entropy, anomeric effect and intramolecular H-bonding were also found to play an important role in determining conformal preferences, which will be discussed.

  3. Exploration of Protein Conformational Change with PELE and Meta-Dynamics.

    Science.gov (United States)

    Cossins, Benjamin P; Hosseini, Ali; Guallar, Victor

    2012-03-13

    Atomistic molecular simulation methods are now able to explore complex protein or protein-ligand dynamical space in a tractable way with methods such as meta-dynamics or adaptive biasing force. However, many of these methods either require a careful selection of reaction coordinates or the knowledge of an initial pathway of some kind. Thus, it is important that effective methods are developed to produce this pathway data in an efficient fashion. PELE, a proven protein-ligand sampling code, has been developed to provide rapid protein sampling in highly flexible cases, using a reduced network model eigen problem approach. The resulting method is able to rapidly sample configuration space with very general driving information. When applied to ubiquitin, PELE was able to reproduce RMSD and average force data found in molecular dynamics simulations. PELE was also applied to explore the opening/closing transition of T4 lysozyme. A meta-dynamics exploration using a low energy pathway validated that the configurations explored by PELE represent the most populated regions of phase space. PELE and meta-dynamics explorations also discovered a low free energy region where a large cross-domain helix of T4 lysozyme is broken in two. There is previous NMR evidence for the validity of this unfolded helix region.

  4. Steric exclusion and protein conformation determine the localization of plasma membrane transporters

    NARCIS (Netherlands)

    Bianchi, Frans; Syga, Łukasz; Moiset, Gemma; Spakman, Dian; Schavemaker, Paul E; Punter, Christiaan M; Seinen, Anne-Bart; van Oijen, Antoine M; Robinson, Andrew; Poolman, Bert

    2018-01-01

    The plasma membrane (PM) of Saccharomyces cerevisiae contains membrane compartments, MCC/eisosomes and MCPs, named after the protein residents Can1 and Pma1, respectively. Using high-resolution fluorescence microscopy techniques we show that Can1 and the homologous transporter Lyp1 are able to

  5. CONFORMATIONAL STUDIES OF LIGNANS FROM Durio oxleyanus Griff. (

    Directory of Open Access Journals (Sweden)

    Rudiyansyah Rudiyansyah

    2010-06-01

    Full Text Available Searching for secondary metabolites from the wood bark of Durio oxleyanus has afforded two new lignans, namely threo-carolignan Y (1 and erythro-carolignan Y (2 together with three other known lignans erythro-carolignan X (3, boehmenan X (4 and boehmenan (5. The relative configurations of compounds 1 and 2 were established by J-based configurational analysis and 2D NOESY studies.   Keywords: carolignan, threo, erythro, Durio, Bombacaceae

  6. Photon-counting single-molecule spectroscopy for studying conformational dynamics and macromolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, Ted Alfred [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    Single-molecule methods have the potential to provide information about conformational dynamics and molecular interactions that cannot be obtained by other methods. Removal of ensemble averaging provides several benefits, including the ability to detect heterogeneous populations and the ability to observe asynchronous reactions. Single-molecule diffusion methodologies using fluorescence resonance energy transfer (FRET) are developed to monitor conformational dynamics while minimizing perturbations introduced by interactions between molecules and surfaces. These methods are used to perform studies of the folding of Chymotrypsin Inhibitor 2, a small, single-domain protein, and of single-stranded DNA (ssDNA) homopolymers. Confocal microscopy is used in combination with sensitive detectors to detect bursts of photons from fluorescently labeled biomolecules as they diffuse through the focal volume. These bursts are analyzed to extract fluorescence resonance energy transfer (FRET) efficiency. Advances in data acquisition and analysis techniques that are providing a more complete picture of the accessible molecular information are discussed. Photon Arrival-time Interval Distribution (PAID) analysis is a new method for monitoring macromolecular interactions by fluorescence detection with simultaneous determination of coincidence, brightness, diffusion time, and occupancy (proportional to concentration) of fluorescently-labeled molecules undergoing diffusion in a confocal detection volume. This method is based on recording the time of arrival of all detected photons, and then plotting the two-dimensional histogram of photon pairs, where one axis is the time interval between each pair of photons 1 and 2, and the second axis is the number of other photons detected in the time interval between photons 1 and 2. PAID is related to Fluorescence Correlation Spectroscopy (FCS) by a collapse of this histogram onto the time interval axis. PAID extends auto- and cross-correlation FCS

  7. Photon-counting single-molecule spectroscopy for studying conformational dynamics and macromolecular interactions

    International Nuclear Information System (INIS)

    Laurence, Ted Alfred

    2002-01-01

    Single-molecule methods have the potential to provide information about conformational dynamics and molecular interactions that cannot be obtained by other methods. Removal of ensemble averaging provides several benefits, including the ability to detect heterogeneous populations and the ability to observe asynchronous reactions. Single-molecule diffusion methodologies using fluorescence resonance energy transfer (FRET) are developed to monitor conformational dynamics while minimizing perturbations introduced by interactions between molecules and surfaces. These methods are used to perform studies of the folding of Chymotrypsin Inhibitor 2, a small, single-domain protein, and of single-stranded DNA (ssDNA) homopolymers. Confocal microscopy is used in combination with sensitive detectors to detect bursts of photons from fluorescently labeled biomolecules as they diffuse through the focal volume. These bursts are analyzed to extract fluorescence resonance energy transfer (FRET) efficiency. Advances in data acquisition and analysis techniques that are providing a more complete picture of the accessible molecular information are discussed. Photon Arrival-time Interval Distribution (PAID) analysis is a new method for monitoring macromolecular interactions by fluorescence detection with simultaneous determination of coincidence, brightness, diffusion time, and occupancy (proportional to concentration) of fluorescently-labeled molecules undergoing diffusion in a confocal detection volume. This method is based on recording the time of arrival of all detected photons, and then plotting the two-dimensional histogram of photon pairs, where one axis is the time interval between each pair of photons 1 and 2, and the second axis is the number of other photons detected in the time interval between photons 1 and 2. PAID is related to Fluorescence Correlation Spectroscopy (FCS) by a collapse of this histogram onto the time interval axis. PAID extends auto- and cross-correlation FCS

  8. Interaction of pepsin-[C16mim]Br system: interfacial dilational rheology and conformational studies.

    Science.gov (United States)

    Huang, Tian; Cao, Chong; Liu, Zi-lin; Li, Yang; Du, Feng-pei

    2014-09-21

    The interfacial rheological property is closely related to the stabilities of foams and emulsions, yet there have been limited studies on the interaction between proteins with ionic liquid-type imidazolium surfactants at the decane-water interface as well as in the bulk. Herein, we investigated the interfacial and bulk properties of pepsin (PEP) and an ionic liquid (IL), 1-hexadecyl-3-methylimidazolium bromide, [C(16)mim]Br. The interfacial pressure and dilational rheology studies were performed to describe the formation of [C(16)mim]Br-pepsin complexes. The influence of the oscillating frequency and the bulk concentration of [C(16)mim]Br on the dilational properties were explored. The conformational changes were studied by monitoring the fluorescence and far UV-CD spectra. The results reveal that the globular structure of pepsin is one of the decisive factors controlling the nature of the interfacial film. The monotonous increase in the dilational elastic modulus of pepsin-[C(16)mim]Br solutions with the surface age indicates that no loops and tails had formed. Interestingly, with an increase in the concentration of [C(16)mim]Br, the εd-c curve first passes through a plateau value due to steric hindrance and the electrostatic barrier of already absorbed tenacious pepsin-[C(16)mim]Br complexes. With the further addition of [C(16)mim]Br, the remarkable decrease in dilational elastic modulus indicates that the compact structure is destroyed gradually. The results of the fluorescence spectra and far UV-CD spectra confirm that [C(16)mim]Br did not produce perceptible changes in pepsin at the concentrations studied in the dilational experiment. Possible schematic programs of the pepsin-[C(16)mim]Br interaction model at the interface and in bulk phase are proposed.

  9. A nuclear magnetic resonance study of conformational transmission in phosphorylated pyranosides

    International Nuclear Information System (INIS)

    Vries, N.K. de.

    1987-01-01

    This thesis describes an experimental NMR study, combined with MNDO calculations, on the conformational preferences of the exocyclic bond of 6-phosphorylated pyranosides and tetrahydropyran-2-methyl compounds. The various factors influencing the rotamer population distribution around this O-C-C-O fragment, e.g. solvent polarity, stereoelectronic effects and coordination of phosphorus, are analysed. 150 refs.; 25 figs.; 16 tabs

  10. Novel Entropically Driven Conformation-specific Interactions with Tomm34 Protein Modulate Hsp70 Protein Folding and ATPase Activities

    Czech Academy of Sciences Publication Activity Database

    Durech, M.; Trčka, F.; Man, Petr; Blackburn, E.A.; Hernychová, L.; Dvořáková, P.; Coufalová, D.; Kavan, Daniel; Vojtěšek, B.; Muller, P.

    2016-01-01

    Roč. 15, č. 5 (2016), s. 1710-1727 ISSN 1535-9476 R&D Projects: GA MŠk(CZ) LO1509 EU Projects: Wellcome Trust(CZ) 01527/Z/13/Z Institutional support: RVO:61388971 Keywords : HEAT-SHOCK-PROTEIN * MOLECULAR CHAPERONE DNAK * SUBSTRATE-BINDING DOMAIN * INVASIVE BREAST - CANCER Subject RIV: CE - Biochemistry Impact factor: 6.540, year: 2016

  11. Exploratory conformational study of (+)-catechin. Modeling of the polarizability and electric dipole moment.

    Science.gov (United States)

    Bentz, Erika N; Pomilio, Alicia B; Lobayan, Rosana M

    2014-12-01

    The extension of the study of the conformational space of the structure of (+)-catechin at the B3LYP/6-31G(d,p) level of theory is presented in this paper. (+)-Catechin belongs to the family of the flavan-3-ols, which is one of the five largest phenolic groups widely distributed in nature, and whose biological activity and pharmaceutical utility are related to the antioxidant activity due to their ability to scavenge free radicals. The effects of free rotation around all C-O bonds of the OH substituents at different rings are taken into account, obtaining as the most stable conformer, one that had not been previously reported. One hundred seven structures, and a study of the effects of charge delocalization and stereoelectronic effects at the B3LYP/6-311++G(d,p) level are reported by natural bond orbital analysis, streamlining the order of these structures. For further analysis of the structural and molecular properties of this compound in a biological environment, the calculation of polarizabilities, and the study of the electric dipole moment are performed considering the whole conformational space described. The results are analyzed in terms of accumulated knowledge for (4α → 6″, 2α → O → 1″)-phenylflavans and (+)-catechin in previous works, enriching the study of both types of structures, and taking into account the importance of considering the whole conformational space in modeling both the polarizability and the electric dipole moment, also proposing to define a descriptive subspace of only 16 conformers.

  12. Interconverting conformations of variants of the human amyloidogenic protein beta2-microglobulin quantitatively characterized by dynamic capillary electrophoresis and computer simulation

    DEFF Research Database (Denmark)

    Heegaard, Niels H H; Jørgensen, Thomas J D; Cheng, Lei

    2006-01-01

    Capillary electrophoretic separation profiles of cleaved variants of beta2-microglobulin (beta2m) reflect the conformational equilibria existing in solutions of these proteins. The characterization of these equilibria is of interest since beta2m is responsible for amyloid formation in dialysis-re...

  13. Probing the interaction of ferrocene containing hyperbranched poly-ester with model plasma protein: Effect on the interaction mechanism and conformational change

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Fengjuan, E-mail: xfj66@126.com; Gu, Muqing; Liang, Ye; Li, Lanlan; Yu, Xiaolei; Wu, Xiangfeng

    2014-05-01

    Interaction mechanism and conformational change of model plasma protein-bovine serum albumin (BSA) induced by ferrocenyl-functionalized hyperbranched polyester (HBPE-Fc) were investigated using cyclicvoltammetry (CV), differential pulsed voltammetry (DPV), fluorescence, UV–vis absorption spectrometry and circular dichroism (CD). Some complicated interactions occurred between BSA and HBPE-Fc and the new redox centers appeared in the BSA/HBPE-Fc complex that changed and hindered the electron transfer of Fe/Fe{sup 2+}. Fluorescence quenching data showed that the fluorescence of BSA was statically quenched by HBPE-Fc, which implied that ground state complex formed between BSA and HBPE-Fc. van der Waals force and hydrogen bond played major roles in the interaction of HBPE-Fc with BSA. The binding constant Ka for HBPE-Fc–protein interaction is in the order of 10{sup 6} at room temperature indicates that there is a strong interaction between HBPE-Fc and BSA. Synchronous, three-dimensional fluorescence and CD studies indicated that the interaction of BSA with HBPE-Fc induced conformational changes in BSA with overall decrease in the α-helical structure and increase in β-pleated sheet structure. The molecular model of the interaction between HBPE-Fc and BSA was also presented according to the results in this study. - Highlights: • A novel ferrocenyl-functionalized hyperbranched polymer (HBPE-Fc) with potential anticancer effects. • New redox centers appear in the BSA/HBPE-Fc complex that changed and hindered the electron transfer of Fe/Fe{sup 2+}. • BSA fluorescence was statically quenched by HBPE-Fc. • BSA/HBPE-Fc ground state complex was mainly formed by the hydrogen bonds and van der Waals force. • HBPE-Fc induced conformational changes in BSA with overall decrease in the α-helical structure and increase in β-pleated sheet structure. • The molecular model of the interaction was presented according to the results in this study.

  14. A single amino acid of human immunodeficiency virus type 2 capsid protein affects conformation of two external loops and viral sensitivity to TRIM5α.

    Directory of Open Access Journals (Sweden)

    Tadashi Miyamoto

    Full Text Available We previously reported that human immunodeficiency virus type 2 (HIV-2 carrying alanine or glutamine but not proline at position 120 of the capsid protein (CA could grow in the presence of anti-viral factor TRIM5α of cynomolgus monkey (CM. To elucidate details of the interaction between the CA and TRIM5α, we generated mutant HIV-2 viruses, each carrying one of the remaining 17 possible amino acid residues, and examined their sensitivity to CM TRIM5α-mediated restriction. Results showed that hydrophobic residues or those with ring structures were associated with sensitivity, while those with small side chains or amide groups conferred resistance. Molecular dynamics simulation study revealed a structural basis for the differential TRIM5α sensitivities. The mutations at position 120 in the loop between helices 6 and 7 (L6/7 affected conformation of the neighboring loop between helices 4 and 5 (L4/5, and sensitive viruses had a common L4/5 conformation. In addition, the common L4/5 structures of the sensitive viruses were associated with a decreased probability of hydrogen bond formation between the 97th aspartic acid in L4/5 and the 119th arginine in L6/7. When we introduced aspartic acid-to-alanine substitution at position 97 (D97A of the resistant virus carrying glutamine at position 120 to disrupt hydrogen bond formation, the resultant virus became moderately sensitive. Interestingly, the virus carrying glutamic acid at position 120 showed resistance, while its predicted L4/5 conformation was similar to those of sensitive viruses. The D97A substitution failed to alter the resistance of this particular virus, indicating that the 120th amino acid residue itself is also involved in sensitivity regardless of the L4/5 conformation. These results suggested that a hydrogen bond between the L4/5 and L6/7 modulates the overall structure of the exposed surface of the CA, but the amino acid residue at position 120 is also directly involved in CM TRIM5

  15. Calcium Sensing by Recoverin: Effect of Protein Conformation on Ion Affinity.

    Science.gov (United States)

    Timr, Štěpán; Kadlec, Jan; Srb, Pavel; Ollila, O H Samuli; Jungwirth, Pavel

    2018-04-05

    The detailed functional mechanism of recoverin, which acts as a myristoyl switch at the rod outer-segment disk membrane, is elucidated by direct and replica-exchange molecular dynamics. In accord with NMR structural evidence and calcium binding assays, simulations point to the key role of enhanced calcium binding to the EF3 loop of the semiopen state of recoverin as compared to the closed state. This 2-4-order decrease in calcium dissociation constant stabilizes the semiopen state in response to the increase of cytosolic calcium concentration in the vicinity of recoverin. A second calcium ion then binds to the EF2 loop and, consequently, the structure of the protein changes from the semiopen to the open state. The latter has the myristoyl chain extruded to the cytosol, ready to act as a membrane anchor of recoverin.

  16. Conformational study of sarcosine as probed by matrix-isolation FT-IR spectroscopy and molecular orbital calculations

    OpenAIRE

    Gómez-Zavaglia, Andrea; Fausto, R.

    2003-01-01

    Sarcosine (N-methylglycine) has been studied by matrix-isolation FT-IR spectroscopy and molecular orbital calculations undertaken at the DFT/B3LYP and MP2 levels of theory with the 6-311++G(d, p) and 6-31++G(d, p) basis set, respectively. Eleven different conformers were located in the potential energy surface (PES) of sarcosine, with the ASC conformer being the ground conformational state. This form is analogous to the glycine most stable conformer and is characterized by a NH...O= intramole...

  17. Conformational change in full-length mouse prion: A site-directed spin-labeling study

    International Nuclear Information System (INIS)

    Inanami, Osamu; Hashida, Shukichi; Iizuka, Daisuke; Horiuchi, Motohiro; Hiraoka, Wakako; Shimoyama, Yuhei; Nakamura, Hideo; Inagaki, Fuyuhiko; Kuwabara, Mikinori

    2005-01-01

    The structure of the mouse prion (moPrP) was studied using site-directed spin-labeling electron spin resonance (SDSL-ESR). Since a previous NMR study by Hornemanna et al., [Hornemanna, Korthb, Oeschb, Rieka, Widera, Wuethricha, Glockshubera, Recombinant full-length murine prion protein, mPrP (23-231): purification and spectroscopic characterization, FEBS Lett. 413 (1997) 277-281] has indicated that N96, D143, and T189 in moPrP are localized in a Cu 2+ binding region, Helix1 and Helix2, respectively, three recombinant moPrP mutations (N96C, D143C, and T189C) were expressed in an Escherichia coli system, and then refolded by dialysis under low pH and purified by reverse-phase HPLC. By using the preparation, we succeeded in preserving a target cystein residue without alteration of the α-helix structure of moPrP and were able to apply SDSL-ESR with a methane thiosulfonate spin label to the full-length prion protein. The rotational correlation times (τ) of 1.1, 3.3, and 4.8 ns were evaluated from the X-band ESR spectra at pH 7.4 and 20 deg C for N96R1, D143R1, and T189R1, respectively. τ reflects the fact that the Cu 2+ binding region is more flexible than Helix1 or Helix2. ESR spectra recorded at various temperatures revealed two phases together with a transition point at around 20 deg C in D143R1 and T189R1, but not in N96R1. With the variation of pH from 4.0 to 7.8, ESR spectra of T189R1 at 20 deg C showed a gradual increase of τ from 2.9 to 4.8 ns. On the other hand, the pH-dependent conformational changes in N96R1 and D143R1 were negligible. These results indicated that T189 located in Helix2 possessed a structure sensitive to physiological pH changes; simultaneously, N96 in the Cu 2+ binding region and D143 in Helix1 were conserved

  18. 3-D conformal HDR brachytherapy as monotherapy for localized prostate cancer. A pilot study

    International Nuclear Information System (INIS)

    Martin, T.; Baltas, D.; Kurek, R.; Roeddiger, S.; Kontova, M.; Anagnostopoulos, G.; Skazikis, G.; Zamboglou, N.; Dannenberg, T.; Buhleier, T.; Tunn, U.

    2004-01-01

    Purpose: pilot study to evaluate feasibility, acute toxicity and conformal quality of three-dimensional (3-D) conformal high-dose-rate (HDR) brachytherapy as monotherapy for localized prostate cancer using intraoperative real-time planning. Patients and methods: between 05/2002 and 05/2003, 52 patients with prostate cancer, prostate-specific antigen (PSA) ≤ 10 ng/ml, Gleason score ≤ 7 and clinical stage ≤ T2a were treated. Median PSA was 6.4 ng/ml and median Gleason score 5. 24/52 patients had stage T1c and 28/52 stage T2a. For transrectal ultrasound-(TRUS-)guided transperineal implantation of flexible plastic needles into the prostate, the real-time HDR planning system SWIFT trademark was used. After implantation, CT-based 3-D postplanning was performed. All patients received one implant for four fractions of HDR brachytherapy in 48 h using a reference dose (D ref ) of 9.5 Gy to a total dose of 38.0 Gy. Dose-volume histograms (DVHs) were analyzed to evaluate the conformal quality of each implant using D 90 , D 10 urethra, and D 10 rectum. Acute toxicity was evaluated using the CTC (common toxicity criteria) scales. Results: median D 90 was 106% of D ref (range: 93-115%), median D 10 urethra 159% of D ref (range: 127-192%), and median D 10 rectum 55% of D ref (range: 35-68%). Median follow-up is currently 8 months. In 2/52 patients acute grade 3 genitourinary toxicity was observed. No gastrointestinal toxicity > grade 1 occurred. Conclusion: 3-D conformal HDR brachytherapy as monotherapy using intraoperative real-time planning is a feasible and highly conformal treatment for localized prostate cancer associated with minimal acute toxicity. Longer follow-up is needed to evaluate late toxicity and biochemical control. (orig.)

  19. Development of Conformation Independent Computational Models for the Early Recognition of Breast Cancer Resistance Protein Substrates

    Directory of Open Access Journals (Sweden)

    Melisa Edith Gantner

    2013-01-01

    Full Text Available ABC efflux transporters are polyspecific members of the ABC superfamily that, acting as drug and metabolite carriers, provide a biochemical barrier against drug penetration and contribute to detoxification. Their overexpression is linked to multidrug resistance issues in a diversity of diseases. Breast cancer resistance protein (BCRP is the most expressed ABC efflux transporter throughout the intestine and the blood-brain barrier, limiting oral absorption and brain bioavailability of its substrates. Early recognition of BCRP substrates is thus essential to optimize oral drug absorption, design of novel therapeutics for central nervous system conditions, and overcome BCRP-mediated cross-resistance issues. We present the development of an ensemble of ligand-based machine learning algorithms for the early recognition of BCRP substrates, from a database of 262 substrates and nonsubstrates compiled from the literature. Such dataset was rationally partitioned into training and test sets by application of a 2-step clustering procedure. The models were developed through application of linear discriminant analysis to random subsamples of Dragon molecular descriptors. Simple data fusion and statistical comparison of partial areas under the curve of ROC curves were applied to obtain the best 2-model combination, which presented 82% and 74.5% of overall accuracy in the training and test set, respectively.

  20. [Study of beta-turns in globular proteins].

    Science.gov (United States)

    Amirova, S R; Milchevskiĭ, Iu V; Filatov, I V; Esipova, N G; Tumanian, V G

    2005-01-01

    The formation of beta-turns in globular proteins has been studied by the method of molecular mechanics. Statistical method of discriminant analysis was applied to calculate energy components and sequences of oligopeptide segments, and after this prediction of I type beta-turns has been drawn. The accuracy of true positive prediction is 65%. Components of conformational energy considerably affecting beta-turn formation were delineated. There are torsional energy, energy of hydrogen bonds, and van der Waals energy.

  1. Glycation and secondary conformational changes of human serum albumin: study of the FTIR spectroscopic curve-fitting technique

    Directory of Open Access Journals (Sweden)

    Yu-Ting Huang

    2016-05-01

    Full Text Available The aim of this study was attempted to investigate both the glycation kinetics and protein secondary conformational changes of human serum albumin (HSA after the reaction with ribose. The browning and fluorescence determinations as well as Fourier transform infrared (FTIR microspectroscopy with a curve-fitting technique were applied. Various concentrations of ribose were incubated over a 12-week period at 37 ± 0.5 oC under dark conditions. The results clearly shows that the glycation occurred in HSA-ribose reaction mixtures was markedly increased with the amount of ribose used and incubation time, leading to marked alterations of protein conformation of HSA after FTIR determination. In addition, the browning intensity of reaction solutions were colored from light to deep brown, as determined by optical observation. The increase in fluorescence intensity from HSA–ribose mixtures seemed to occur more quickly than browning, suggesting that the fluorescence products were produced earlier on in the process than compounds causing browning. Moreover, the predominant α-helical composition of HSA decreased with an increase in ribose concentration and incubation time, whereas total β-structure and random coil composition increased, as determined by curve-fitted FTIR microspectroscopy analysis. We also found that the peak intensity ratios at 1044 cm−1/1542 cm−1 markedly decreased prior to 4 weeks of incubation, then almost plateaued, implying that the consumption of ribose in the glycation reaction might have been accelerated over the first 4 weeks of incubation, and gradually decreased. This study first evidences that two unique IR peaks at 1710 cm−1 [carbonyl groups of irreversible products produced by the reaction and deposition of advanced glycation end products (AGEs] and 1621 cm−1 (aggregated HSA molecules were clearly observed from the curve-fitted FTIR spectra of HSA-ribose mixtures over the course of incubation time. This study

  2. "Invisible" conformers of an antifungal disulfide protein revealed by constrained cold and heat unfolding, CEST-NMR experiments, and molecular dynamics calculations.

    Science.gov (United States)

    Fizil, Ádám; Gáspári, Zoltán; Barna, Terézia; Marx, Florentine; Batta, Gyula

    2015-03-23

    Transition between conformational states in proteins is being recognized as a possible key factor of function. In support of this, hidden dynamic NMR structures were detected in several cases up to populations of a few percent. Here, we show by two- and three-state analysis of thermal unfolding, that the population of hidden states may weight 20-40 % at 298 K in a disulfide-rich protein. In addition, sensitive (15) N-CEST NMR experiments identified a low populated (0.15 %) state that was in slow exchange with the folded PAF protein. Remarkably, other techniques failed to identify the rest of the NMR "dark matter". Comparison of the temperature dependence of chemical shifts from experiments and molecular dynamics calculations suggests that hidden conformers of PAF differ in the loop and terminal regions and are most similar in the evolutionary conserved core. Our observations point to the existence of a complex conformational landscape with multiple conformational states in dynamic equilibrium, with diverse exchange rates presumably responsible for the completely hidden nature of a considerable fraction. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  3. “Invisible” Conformers of an Antifungal Disulfide Protein Revealed by Constrained Cold and Heat Unfolding, CEST-NMR Experiments, and Molecular Dynamics Calculations

    Science.gov (United States)

    Fizil, Ádám; Gáspári, Zoltán; Barna, Terézia; Marx, Florentine; Batta, Gyula

    2015-01-01

    Transition between conformational states in proteins is being recognized as a possible key factor of function. In support of this, hidden dynamic NMR structures were detected in several cases up to populations of a few percent. Here, we show by two- and three-state analysis of thermal unfolding, that the population of hidden states may weight 20–40 % at 298 K in a disulfide-rich protein. In addition, sensitive 15N-CEST NMR experiments identified a low populated (0.15 %) state that was in slow exchange with the folded PAF protein. Remarkably, other techniques failed to identify the rest of the NMR “dark matter”. Comparison of the temperature dependence of chemical shifts from experiments and molecular dynamics calculations suggests that hidden conformers of PAF differ in the loop and terminal regions and are most similar in the evolutionary conserved core. Our observations point to the existence of a complex conformational landscape with multiple conformational states in dynamic equilibrium, with diverse exchange rates presumably responsible for the completely hidden nature of a considerable fraction. PMID:25676351

  4. Comparison of Palivizumab-Like Antibody Binding to Different Conformations of the RSV F Protein in RSV-Infected Adult Hematopoietic Cell Transplant Recipients.

    Science.gov (United States)

    Ye, Xunyan; Iwuchukwu, Obinna P; Avadhanula, Vasanthi; Aideyan, Letisha O; McBride, Trevor J; Ferlic-Stark, Laura L; Patel, Kirtida D; Piedra, Felipe-Andres; Shah, Dimpy P; Chemaly, Roy F; Piedra, Pedro A

    2018-03-28

    Most respiratory syncytial virus (RSV) vaccine candidates include fusion (F) protein in different conformations. Antigenic site II found in the different F conformations is the target of palivizumab, the only US Food and Drug Administration approved monoclonal antibody (mAb). Serum palivizumab-like antibody (PLA) is a potential serologic correlate of immunity. Our objective was to determine if different conformations of F protein in a palivizumab competitive antibody (PCA) assay affect the PLA concentrations. Four PCA assays were standardized using mAbs. Each contained prefusion, postfusion, or intermediate F forms. PLA concentrations were measured in acute and convalescent sera from 22 RSV/A and 18 RSV/B-infected adult hematopoietic cell transplant (HCT) recipients. PLA concentrations were calculated using a 4-parameter logistic regression model and analyzed for statistical significance. PCA assays revealed significantly greater PLA concentrations in convalescent sera; comparable increases in PLA concentration in RSV/A and RSV/B-infected HCT recipients; and significantly reduced PLA concentrations in HCT recipients who shed RSV ≥14 days. A significant positive correlation was observed between PCA assays and RSV neutralizing antibody titers. F protein conformation does not appear to have a measurable impact on PCA assays for measuring PLA induced by RSV/A or RSV/B infection.

  5. Modular design of synthetic protein mimics. Characterization of the helical conformation of a 13-residue peptide in crystals

    International Nuclear Information System (INIS)

    Karle, I.L.; Flippen-Anderson, J.L.; Uma, K.; Balaram, P.

    1989-01-01

    The incorporation of α-aminoisobutyryl (Aib) residues into peptide sequences facilitates helical folding. Aib-containing sequences have been chosen for the design of rigid helical segments in a modular approach to the construction of a synthetic protein mimic. The helical conformation of the synthetic peptide Boc-Aib-(Val-Ala-Leu-Aib) 3 -OMe in crystals is established by X-ray diffraction. The 13-residue apolar peptide adopts a helical form in the crystal with seven α-type hydrogen bonds in the middle and 3 10 -type hydrogen bonds at either end. The helices stack in columns, zigzag rather than linear, by means of direct NH hor-ellipsis OC head to tail hydrogen bonds. Leucyl side chains are extended on one side of the helix and valyl side chains on the other side. Water molecules form hydrogen bonds with several backbone carbonyl oxygens that also participate in α-helix hydrogen bonds. There is no apparent distortion of the helix caused by hydration

  6. N-terminal diproline and charge group effects on the stabilization of helical conformation in alanine-based short peptides: CD studies with water and methanol as solvent.

    Science.gov (United States)

    Goyal, Bhupesh; Srivastava, Kinshuk Raj; Durani, Susheel

    2017-06-01

    Protein folding problem remains a formidable challenge as main chain, side chain and solvent interactions remain entangled and have been difficult to resolve. Alanine-based short peptides are promising models to dissect protein folding initiation and propagation structurally as well as energetically. The effect of N-terminal diproline and charged side chains is assessed on the stabilization of helical conformation in alanine-based short peptides using circular dichroism (CD) with water and methanol as solvent. A1 (Ac-Pro-Pro-Ala-Lys-Ala-Lys-Ala-Lys-Ala-NH 2 ) is designed to assess the effect of N-terminal homochiral diproline and lysine side chains to induce helical conformation. A2 (Ac-Pro-Pro-Glu-Glu-Ala-Ala-Lys-Lys-Ala-NH 2 ) and A3 (Ac-dPro-Pro-Glu-Glu-Ala-Ala-Lys-Lys-Ala-NH 2 ) with N-terminal homochiral and heterochiral diproline, respectively, are designed to assess the effect of Glu...Lys (i, i + 4) salt bridge interactions on the stabilization of helical conformation. The CD spectra of A1, A2 and A3 in water manifest different amplitudes of the observed polyproline II (PPII) signals, which indicate different conformational distributions of the polypeptide structure. The strong effect of solvent substitution from water to methanol is observed for the peptides, and CD spectra in methanol evidence A2 and A3 as helical folds. Temperature-dependent CD spectra of A1 and A2 in water depict an isodichroic point reflecting coexistence of two conformations, PPII and β-strand conformation, which is consistent with the previous studies. The results illuminate the effect of N-terminal diproline and charged side chains in dictating the preferences for extended-β, semi-extended PPII and helical conformation in alanine-based short peptides. The results of the present study will enhance our understanding on stabilization of helical conformation in short peptides and hence aid in the design of novel peptides with helical structures. Copyright © 2017 European Peptide

  7. Statistical Study to Check the Conformity of Aggregate in Kirkuk City to Requirement of Iraqi Specification

    OpenAIRE

    Ammar Saleem Khazaal; Nizar N Ismeel; Abdel fattah K. Hussein

    2018-01-01

    This research reviews a statistical study to check the conformity of aggregates (Coarse and Fine) was used in Kirkuk city to the requirements of the Iraqi specifications. The data of sieve analysis (215 samples) of aggregates being obtained from of National Central Construction Laboratory and Technical College Construction Laboratory in Kirkuk city have analyzed using the statistical program SAS. The results showed that 5%, 17%, and 18% of fine aggregate samples are passing sieve sizes 10 mm,...

  8. Conformal Nets II: Conformal Blocks

    Science.gov (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-08-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  9. Conformational Study of DNA Sugars: from the Gas Phase to Solution

    Science.gov (United States)

    Uriarte, Iciar; Vallejo-López, Montserrat; Cocinero, Emilio J.; Corzana, Francisco; Davis, Benjamin G.

    2017-06-01

    Sugars are versatile molecules that play a variety of roles in the organism. For example, they are important in energy storage processes or as structural scaffolds. Here, we focus on the monosaccharide present in DNA by addressing the conformational and puckering properties in the gas phase of α- and β-methyl-2-deoxy-ribofuranoside and α- and β-methyl-2-deoxy-ribopiranoside. Other sugars have been previously studied in the gas phase The work presented here stems from a combination of chemical synthesis, ultrafast vaporization methods, supersonic expansions, microwave spectroscopy (both chirped-pulsed and Balle-Flygare cavity-based spectrometers) and NMR spectroscopy. Previous studies in the gas phase had been performed on 2-deoxyribose, but only piranose forms were detected. However, thanks to the combination of these techniques, we have isolated and characterized for the first time the conformational landscape of the sugar present in DNA in its biologically relevant furanose form. Our gas phase study serves as a probe of the conformational preferences of these biomolecules under isolation conditions. Thanks to the NMR experiments, we can characterize the favored conformations in solution and extract the role of the solvent in the structure and puckering of the monosaccharides. E. J. Cocinero, A. Lesarri, P. Écija, F. J. Basterretxea, J.-U. Grabow, J. A. Fernández, F. Castaño, Angew. Chem. Int. Edit. 2012, 51, 3119. P. Écija, I. Uriarte, L. Spada, B. G. Davis, W. Caminati, F. J. Basterretxea, A. Lesarri, E. J. Cocinero, Chem. Commun. 2016, 52, 6241. I. Peña, E. J. Cocinero, C. Cabezas, A. Lesarri, S. Mata, P. Écija, A. M. Daly, Á. Cimas, C. Bermúdez, F. J. Basterretxea, S. Blanco, J. A. Fernández, J. C. López, F. Castaño, J. L. Alonso, Angew. Chem. Int. Edit. 2013, 52, 11840.

  10. Spectroscopic and theoretical studies on the aromaticity of pyrrol-2-yl-carbonyl conformers

    Science.gov (United States)

    Dubis, Alina T.; Wojtulewski, Sławomir; Filipkowski, Karol

    2013-06-01

    The aromaticity of s-cis and s-trans pyrrol-2-yl carbonyl conformers was studied by FT-IR, 1H NMR spectroscopy and DFT calculations at the B3LYP/6-311++G(d,p) level of theory. The Harmonic Oscillator Model of Aromaticity (HOMA) and Nucleus Independent Chemical Shift (NICS) indices were calculated to estimate π-electron delocalization in the pyrrole ring. The usefulness of infrared spectroscopy in the evaluation of the aromaticity of the homogeneous set of pyrroles is discussed. The influence of 2-substitution on different aspects of aromaticity and stability of the pyrrol-2-yl carbonyl conformers is also discussed. It is concluded that the substitution effect of the title pyrrole derivatives can be explained on the basis of theoretical and experimental measurements of π-electron delocalization, including IR data.

  11. Conformational study of melectin and antapin antimicrobial peptides in model membrane environments

    Science.gov (United States)

    Kocourková, Lucie; Novotná, Pavlína; Čujová, Sabína; Čeřovský, Václav; Urbanová, Marie; Setnička, Vladimír

    2017-01-01

    Antimicrobial peptides have long been considered as promising compounds against drug-resistant pathogens. In this work, we studied the secondary structure of antimicrobial peptides melectin and antapin using electronic (ECD) and vibrational circular dichroism (VCD) spectroscopies that are sensitive to peptide secondary structures. The results from quantitative ECD spectral evaluation by Dichroweb and CDNN program and from the qualitative evaluation of the VCD spectra were compared. The antimicrobial activity of the selected peptides depends on their ability to adopt an amphipathic α-helical conformation on the surface of the bacterial membrane. Hence, solutions of different zwitterionic and negatively charged liposomes and micelles were used to mimic the eukaryotic and bacterial biological membranes. The results show a significant content of α-helical conformation in the solutions of negatively charged liposomes mimicking the bacterial membrane, thus correlating with the antimicrobial activity of the studied peptides. On the other hand in the solutions of zwitterionic liposomes used as models of the eukaryotic membranes, the fraction of α-helical conformation was lower, which corresponds with their moderate hemolytic activity.

  12. Conformational changes of the N-terminal part of Mason-Pfizer monkey virus p12 protein during multimerization

    International Nuclear Information System (INIS)

    Knejzlik, Zdenek; Ulbrich, Pavel; Strohalm, Martin; Lastuvkova, Hana; Kodicek, Milan; Sakalian, Michael; Ruml, Tomas

    2009-01-01

    The Mason-Pfizer monkey virus is a prototype Betaretrovirus with the defining characteristic that it assembles spherical immature particles from Gag-related polyprotein precursors within the cytoplasm of the infected cell. It was shown previously that the N-terminal part of the Gag p12 domain (wt-Np12) is required for efficient assembly. However, the precise role for p12 in mediating Gag-Gag interaction is still poorly understood. In this study we employed detailed circular dichroism spectroscopy, electron microscopy and ultracentrifugation analyses of recombinant wt-Np12 prepared by in vitro transcription and translation. The wt-Np12 domain fragment forms fibrillar structures in a concentration-dependent manner. Assembly into fibers is linked to a conformational transition from unfolded or another non-periodical state to α-helix during multimerization.

  13. Monte Carlo Methods Development and Applications in Conformational Sampling of Proteins

    DEFF Research Database (Denmark)

    Tian, Pengfei

    quantitative insights into their thermodynamic and mechanistic properties that are difficult to probe in laboratory experiments. However, despite the rapid progress in the development of molecular simulation, there are still two limiting factors, (1), the current molecular mechanics force fields alone...... sampling methods to address these two problems. First of all, a novel technique has been developed for reliably estimating diffusion coefficients for use in the enhanced sampling of molecular simulations. A broad applicability of this method is illustrated by studying various simulation problems...

  14. Conformational stability and self-association equilibrium in biologics.

    Science.gov (United States)

    Clarkson, Benjamin R; Schön, Arne; Freire, Ernesto

    2016-02-01

    Biologics exist in equilibrium between native, partially denatured, and denatured conformational states. The population of any of these states is dictated by their Gibbs energy and can be altered by changes in physical and solution conditions. Some conformations have a tendency to self-associate and aggregate, an undesirable phenomenon in protein therapeutics. Conformational equilibrium and self-association are linked thermodynamic functions. Given that any associative reaction is concentration dependent, conformational stability studies performed at different protein concentrations can provide early clues to future aggregation problems. This analysis can be applied to the selection of protein variants or the identification of better formulation solutions. In this review, we discuss three different aggregation situations and their manifestation in the observed conformational equilibrium of a protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Multiscale Modeling of the Active Site of [Fe] Hydrogenase: The H2 Binding Site in Open and Closed Protein Conformations

    DEFF Research Database (Denmark)

    Hedegård, Erik D.; Kongsted, Jacob; Ryde, Ulf

    2015-01-01

    A series of QM/MM optimizations of the full protein of [Fe] hydrogenase were performed. The FeGP cofactor has been optimized in the water-bound resting state (1), with a side-on bound dihydrogen (2), or as a hydride intermediate (3). For inclusion of H4MPT in the closed structure, advanced multis...... that hydride transfer from 3 has a significantly higher barrier than found in previous studies neglecting the full protein environment....

  16. Biologically relevant conformational features of linear and cyclic proteolipid protein (PLP) peptide analogues obtained by high-resolution nuclear magnetic resonance and molecular dynamics

    Science.gov (United States)

    Kordopati, Golfo G.; Tzoupis, Haralambos; Troganis, Anastassios N.; Tsivgoulis, Gerasimos M.; Golic Grdadolnik, Simona; Simal, Carmen; Tselios, Theodore V.

    2017-09-01

    Proteolipid protein (PLP) is one of the main proteins of myelin sheath that are destroyed during the progress of multiple sclerosis (MS). The immunodominant PLP139-151 epitope is known to induce experimental autoimmune encephalomyelitis (EAE, animal model of MS), wherein residues 144 and 147 are recognized by T cell receptor (TCR) during the formation of trimolecular complex with peptide-antigen and major histocompability complex. The conformational behavior of linear and cyclic peptide analogues of PLP, namely PLP139-151 and cyclic (139-151) (L144, R147) PLP139-151, have been studied in solution by means of nuclear magnetic resonance (NMR) methods in combination with unrestrained molecular dynamics simulations. The results indicate that the side chains of mutated amino acids in the cyclic analogue have different spatial orientation compared with the corresponding side chains of the linear analogue, which can lead to reduced affinity to TCR. NMR experiments combined with theoretical calculations pave the way for the design and synthesis of potent restricted peptides of immunodominant PLP139-151 epitope as well as non peptide mimetics that rises as an ultimate goal.

  17. NMR and computer modelling conformational study of N-benzyl, N-n-propyl (2-methyl-3-nitrophenyl)acetamide

    International Nuclear Information System (INIS)

    Nicolle, E.; Benoit-Guyod, M.; Namil, A.; Cussac, M.; Leclerc, G.; Maldivi, P.

    1995-01-01

    The conformation of N-benzyl-N-n-propyl (2-methyl-3-nitrophenyl) acetamide 1 in dimethyl sulfoxide (DMSO-d 6 ) or chloroform (CDCL 3 ) solution was studied using 1 H and 13 CNMR analysis. In solution, 1 existed as two distinct Z and E isomers, which could not be separated at laboratory temperature. Both conformations were in equivalent proportions in chloroform whereas in a polar solvent (DMSO), the conformation Z was more usual with the aromatic rings in a transposition. Major and minor rotation isomers were assigned form the '1H and 13 C NMR chemical shifts determined at 293 K. Separate treatment of signals displayed by two different methylene groups gave comparable activation parameters (ΔG ∼ 16 kcal/mol). Conformational analysis and measurement of the rotational barrier between the E and Z conformers by molecular modeling (Sybyl program) were performed. (authors). 14 refs., 8 figs

  18. Variants of beta-microglobulin cleaved at lysine-58 retain the main conformational features of the native protein but are more conformationally heterogeneous and unstable at physiological temperature

    DEFF Research Database (Denmark)

    Mimmi, Maria C; Jørgensen, Thomas J D; Pettirossi, Fabio

    2006-01-01

    -58 is removed. We find that the solution stability of both variants, especially of beta2-microglobulin from which lysine-58 is removed, is much reduced compared to wild-type beta2-microglobulin and is strongly dependent on temperature and protein concentration. 1H-NMR spectroscopy and amide hydrogen......Cleavage of the small amyloidogenic protein beta2-microglobulin after lysine-58 renders it more prone to unfolding and aggregation. This is important for dialysis-related beta2-microglobulin amyloidosis, since elevated levels of cleaved beta2-microglobulin may be found in the circulation...

  19. Regulated bioanalysis of conformers - A case study with ASP2151 in dog plasma and urine.

    Science.gov (United States)

    Ohtsu, Yoshiaki; Otsuka, Shohei; Nakamura, Takeshi; Noguchi, Kiyoshi

    2015-08-01

    We developed and validated bioanalytical methods for a potent helicase-primase inhibitor ASP2151 that has two conformers. These conformers elute as unseparated broad peaks under ordinary high-performance liquid chromatographic conditions, indicating discernable differences in hydrophobicity. We observed that column temperature and mobile phase pH have no effect on these peaks and that conformers form a single symmetrical peak when tetrahydrofuran is added to the mobile phase. In addition, we needed to develop semi-automated methods where inter-conversion of the conformers is unlikely to cause sample-to-sample extraction variability. Briefly, following the addition of deuterium-labeled ASP2151 as an internal standard (IS), dog plasma samples or acetonitrile-added urine samples were filtrated. The filtrates were then injected into a column-switching liquid chromatography-tandem mass spectrometry (LC-MS/MS) system and trapped onto an extraction column. Extracts were back-flushed onto an analytical C18 column (4.6×50mm, 3μm) with a mobile phase consisting of methanol, tetrahydrofuran, and 20mmol/L ammonium acetate (45:5:50, v/v/v). The eluent was monitored in the negative atmospheric pressure chemical ionization mode. The calibration curve was linear over a range of 5-1000ng/mL for plasma and 0.5-100μg/mL for urine. Validation data met the acceptance criteria in accordance with regulatory guidance and demonstrated that these methods were selective, accurate, and reproducible. In addition, the present methods were successfully applied to a pharmacokinetic study in dogs. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Study on the conformal variations of bovine and human serum albumin in solution using small angle X-ray scattering

    International Nuclear Information System (INIS)

    Olivieri, Johnny Rizzieri.

    1992-01-01

    It is reported a Small Angle X-Ray Scattering (SAXS) study of BSA (Bovine Serum Albumin) and HSA (Human Serum Albumin) on pH between 2.5 and 7.0. The measured scattering intensities, normalized in relation to incident beam, exposition time and scattering due to solvent and capillary, and corrected due to concentration and beam shape effects, have shown a strong dependence of the protein shape with pH for both albumins. It was found that the radius of gyration varies between 26.7 and 35 A, and the analyses of the distance distribution function. P(r), indicated that these proteins undergoes conformational changes with pH. Different theoretical shapes have been proposed and analysed comparing the computed P(r) function generated from the models with the experimental P(r). A large variety of shapes were found in both proteins, indicating that BSA and HSA are very flexibility macromolecules. (author). 60 refs., 49 figs., 7 tabs

  1. Conformational changes of plasma fibronectin detected upon adsorption to solid substrates: A spin-label study

    International Nuclear Information System (INIS)

    Narasimhan, C.; Lai, Chingsan

    1989-01-01

    Changes in local environment of the free sulfhydryl groups in plasma fibronectin upon adsorption of the protein to polystyrene beads have been examined by electron spin resonance (ESR) spin-label spectroscopy. The two free sulfhydryl groups per subunit of plasma fibronectin were modified chemically with an [ 15 N, 2 H]maleimide spin-label. For soluble fibronectin, both free sulfhydryl groups shown to be in confined environments as evidenced from the labeled protein exhibiting a strongly immobilized ESR spectrum as described previously using [ 14 N, 1 H]maleimide spin-labels. When the labeled protein was adsorbed to the beads, half of the strongly immobilized component was found to convert into a weakly immobilized component, a result indicating that one of the two labeled sites becomes exposed and exhibits a fast tumbling motion. Experiments conducted using various spin-labeled fibronectin fragments suggest that the newly exposed labeled site is located between the DNA-binding and the cell-binding regions of the molecule. The data obtained indicate that, upon adsorption to polystyrene beads, plasma fibronectin undergoes a conformational change through which the buried free sulfhydryl group near the cell-binding region of the molecule is exposed. This observation may have important implications regarding the expression of cell adhesive properties of the fibronectin molecule

  2. Studying pressure denaturation of a protein by molecular dynamics simulations.

    Science.gov (United States)

    Sarupria, Sapna; Ghosh, Tuhin; García, Angel E; Garde, Shekhar

    2010-05-15

    Many globular proteins unfold when subjected to several kilobars of hydrostatic pressure. This "unfolding-up-on-squeezing" is counter-intuitive in that one expects mechanical compression of proteins with increasing pressure. Molecular simulations have the potential to provide fundamental understanding of pressure effects on proteins. However, the slow kinetics of unfolding, especially at high pressures, eliminates the possibility of its direct observation by molecular dynamics (MD) simulations. Motivated by experimental results-that pressure denatured states are water-swollen, and theoretical results-that water transfer into hydrophobic contacts becomes favorable with increasing pressure, we employ a water insertion method to generate unfolded states of the protein Staphylococcal Nuclease (Snase). Structural characteristics of these unfolded states-their water-swollen nature, retention of secondary structure, and overall compactness-mimic those observed in experiments. Using conformations of folded and unfolded states, we calculate their partial molar volumes in MD simulations and estimate the pressure-dependent free energy of unfolding. The volume of unfolding of Snase is negative (approximately -60 mL/mol at 1 bar) and is relatively insensitive to pressure, leading to its unfolding in the pressure range of 1500-2000 bars. Interestingly, once the protein is sufficiently water swollen, the partial molar volume of the protein appears to be insensitive to further conformational expansion or unfolding. Specifically, water-swollen structures with relatively low radii of gyration have partial molar volume that are similar to that of significantly more unfolded states. We find that the compressibility change on unfolding is negligible, consistent with experiments. We also analyze hydration shell fluctuations to comment on the hydration contributions to protein compressibility. Our study demonstrates the utility of molecular simulations in estimating volumetric properties

  3. A combined variable temperature 600 MHz NMR/MD study of the calcium release agent cyclic adenosine diphosphate ribose (cADPR): Structure, conformational analysis, and thermodynamics of the conformational equilibria.

    Science.gov (United States)

    Javornik, Uroš; Plavec, Janez; Wang, Baifan; Graham, Steven M

    2018-01-02

    A combined variable temperature 600 MHz NMR/molecular dynamics study of the Ca 2+ -release agent cyclic adenosine 5'-diphosphate ribose (cADPR) was conducted. In addition to elucidating the major and minor orientations of the conformationally flexible furanose rings, γ- (C4'-C5'), and β- (C5'-O5') bonds, the thermodynamics (ΔH o , ΔS o ) associated with each of these conformational equilibria were determined. Both furanose rings were biased towards a south conformation (64-74%) and both β-bonds heavily favored trans conformations. The R-ring γ-bond was found to exist almost exclusively as the γ + conformer, whereas the A-ring γ-bond was a mixture of the γ + and γ t conformers, with the trans conformer being slightly favored. Enthalpic factors accounted for most of the observed conformational preferences, although the R-ring furanose exists as its major conformation based solely on entropic factors. There was excellent agreement between the NMR and MD results, particularly with regard to the conformer identities, but the MD showed a bias towards γ + conformers. The MD results showed that both N-glycosidic χ-bonds are exclusively syn. Collectively the data allowed for the construction of a model for cADPR in which many of the conformationally flexible units in fact effectively adopt single orientations and where most of the conformational diversity resides in its A-ring furanose and γ-bond. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Conformal house

    DEFF Research Database (Denmark)

    Ryttov, Thomas Aaby; Sannino, Francesco

    2010-01-01

    fixed point. As a consistency check we recover the previously investigated bounds of the conformal windows when restricting to a single matter representation. The earlier conformal windows can be imagined to be part now of the new conformal house. We predict the nonperturbative anomalous dimensions...... at the infrared fixed points. We further investigate the effects of adding mass terms to the condensates on the conformal house chiral dynamics and construct the simplest instanton induced effective Lagrangian terms...

  5. Exploring the diameter and surface dependent conformational changes in carbon nanotube-protein corona and the related cytotoxicity

    International Nuclear Information System (INIS)

    Zhao, Xingchen; Lu, Dawei; Hao, Fang; Liu, Rutao

    2015-01-01

    Highlights: • CNT diameter and surface area govern the stability of adsorbed proteins. • More BSA was loaded and destabilized on smaller CNTs. • Protein corona reduces the cytotoxicity of CNTs - Abstract: In this work, we investigated and compared carbon nanotubes (CNTs) of different diameters regarding their interaction with bovine serum albumin (BSA) and their ability to alter protein structure. BSA was exposed to CNT solutions, and the effects were assessed by utilizing fluorescence spectroscopy, UV–vis absorption spectroscopy, circular dichroism (CD) spectroscopy, transmission electron microscopy (TEM), bichinchoninic acid (BCA) and zeta-potential measurement assays. We demonstrate that CNT diameter and surface area play key roles in influencing the stability of adsorbed proteins. Results showed that the secondary and tertiary structural stability of BSA decreased upon adsorption onto CNTs, with greater decrease on smaller-diametered nanotubes. Besides, more protein was loaded onto CNTs with small diameter, reducing the cytotoxicity. This study, therefore, provides fundamental information for the influence of CNT diameter and surface on protein behavior, which may be helpful to understand toxic effects of CNTs and prove beneficial for developing novel biomedical devices and safe use of nanomaterials

  6. A Method for Extracting the Free Energy Surface and Conformational Dynamics of Fast-Folding Proteins from Single Molecule Photon Trajectories

    Science.gov (United States)

    2015-01-01

    Single molecule fluorescence spectroscopy holds the promise of providing direct measurements of protein folding free energy landscapes and conformational motions. However, fulfilling this promise has been prevented by technical limitations, most notably, the difficulty in analyzing the small packets of photons per millisecond that are typically recorded from individual biomolecules. Such limitation impairs the ability to accurately determine conformational distributions and resolve sub-millisecond processes. Here we develop an analytical procedure for extracting the conformational distribution and dynamics of fast-folding proteins directly from time-stamped photon arrival trajectories produced by single molecule FRET experiments. Our procedure combines the maximum likelihood analysis originally developed by Gopich and Szabo with a statistical mechanical model that describes protein folding as diffusion on a one-dimensional free energy surface. Using stochastic kinetic simulations, we thoroughly tested the performance of the method in identifying diverse fast-folding scenarios, ranging from two-state to one-state downhill folding, as a function of relevant experimental variables such as photon count rate, amount of input data, and background noise. The tests demonstrate that the analysis can accurately retrieve the original one-dimensional free energy surface and microsecond folding dynamics in spite of the sub-megahertz photon count rates and significant background noise levels of current single molecule fluorescence experiments. Therefore, our approach provides a powerful tool for the quantitative analysis of single molecule FRET experiments of fast protein folding that is also potentially extensible to the analysis of any other biomolecular process governed by sub-millisecond conformational dynamics. PMID:25988351

  7. Statistical Study to Check the Conformity of Aggregate in Kirkuk City to Requirement of Iraqi Specification

    Directory of Open Access Journals (Sweden)

    Ammar Saleem Khazaal

    2018-01-01

    Full Text Available This research reviews a statistical study to check the conformity of aggregates (Coarse and Fine was used in Kirkuk city to the requirements of the Iraqi specifications. The data of sieve analysis (215 samples of aggregates being obtained from of National Central Construction Laboratory and Technical College Construction Laboratory in Kirkuk city have analyzed using the statistical program SAS. The results showed that 5%, 17%, and 18% of fine aggregate samples are passing sieve sizes 10 mm, 4.75 mm, and 2.36 mm, respectively, which were less than the minimum limit allowed by the Iraqi specifications for each sieve. The percentages passing sieve sizes 1.18mm, 600micrometers, and 300micrometers were more than the upper limit of specification by 5%, 20%, and 30% respectively. The samples were passing sieve sizes 1.18mm, and 600micrometers less than the minimum limit of specification by 17%, and 4%, respectively. The results showed that the deviation in a sieve size of 150 micrometers for the upper limit of the specification performs 2% of the total number of samples. For Coarse aggregate, the samples passing sieves size 37.5mm and 20mm were comforting the Iraqi specifications by 100% and 83% respectively, it has found that the samples were passing sieve sizes 10 mm was 5% was more than the higher limit of Iraqi specifications, and 27% of these samples were less than the minimum limit, whereas sample passing sieve size 5mm was 1% which is more than the upper limit of the Iraqi specification. As a result of statistical analysis of data for fine aggregate, it has found that the samples were passing sieve sizes 10 mm, 2.36 mm, 1.18 mm and 150micrometers conforming from statistical point of view the Iraqi specifications, whereas the samples were passing sieve sizes 4.75 mm, 600micrometers and 300 micrometers didn’t conform. Statistical analysis of the results of the coarse aggregates also showed that conforming to sieve sizes of 37.5 mm and 20 mm and

  8. Following DNA chain extension and protein conformational changes in crystals of a Y-family DNA polymerase via Raman crystallography.

    Science.gov (United States)

    Espinoza-Herrera, Shirly J; Gaur, Vineet; Suo, Zucai; Carey, Paul R

    2013-07-23

    Y-Family DNA polymerases are known to bypass DNA lesions in vitro and in vivo. Sulfolobus solfataricus DNA polymerase (Dpo4) was chosen as a model Y-family enzyme for investigating the mechanism of DNA synthesis in single crystals. Crystals of Dpo4 in complexes with DNA (the binary complex) in the presence or absence of an incoming nucleotide were analyzed by Raman microscopy. (13)C- and (15)N-labeled d*CTP, or unlabeled dCTP, were soaked into the binary crystals with G as the templating base. In the presence of the catalytic metal ions, Mg(2+) and Mn(2+), nucleotide incorporation was detected by the disappearance of the triphosphate band of dCTP and the retention of *C modes in the crystal following soaking out of noncovalently bound C(or *C)TP. The addition of the second coded base, thymine, was observed by adding cognate dTTP to the crystal following a single d*CTP addition. Adding these two bases caused visible damage to the crystal that was possibly caused by protein and/or DNA conformational change within the crystal. When d*CTP is soaked into the Dpo4 crystal in the absence of Mn(2+) or Mg(2+), the primer extension reaction did not occur; instead, a ternary protein·template·d*CTP complex was formed. In the Raman difference spectra of both binary and ternary complexes, in addition to the modes of d(*C)CTP, features caused by ring modes from the template/primer bases being perturbed and from the DNA backbone appear, as well as features from perturbed peptide and amino acid side chain modes. These effects are more pronounced in the ternary complex than in the binary complex. Using standardized Raman intensities followed as a function of time, the C(*C)TP population in the crystal was maximal at ∼20 min. These remained unchanged in the ternary complex but declined in the binary complexes as chain incorporation occurred.

  9. Set of programs for the conformational study by NMR of flexible molecules

    International Nuclear Information System (INIS)

    Chachaty, C.; Langlet, G.

    1984-09-01

    A series of programs of common modular structure have been written in APL for the interpretation of nuclear magnetic resonance and relaxation data in isotropic or anisotropic solutions (liquid crystals). After giving an outline of the computation methods, several examples are reported of the applications of these programs to conformational studies by means of the nuclear relaxation and of the diamagnetic of paramagnetic shifts of resonance lines. These programs are also convenient for studies of dipolar and quadrupolar splittings or chemical shift anisotropy in liquid crystals [fr

  10. Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants.

    Directory of Open Access Journals (Sweden)

    Thomas L Prince

    Full Text Available The two cytosolic/nuclear isoforms of the molecular chaperone HSP90, stress-inducible HSP90α and constitutively expressed HSP90β, fold, assemble and maintain the three-dimensional structure of numerous client proteins. Because many HSP90 clients are important in cancer, several HSP90 inhibitors have been evaluated in the clinic. However, little is known concerning possible unique isoform or conformational preferences of either individual HSP90 clients or inhibitors. In this report, we compare the relative interaction strength of both HSP90α and HSP90β with the transcription factors HSF1 and HIF1α, the kinases ERBB2 and MET, the E3-ubiquitin ligases KEAP1 and RHOBTB2, and the HSP90 inhibitors geldanamycin and ganetespib. We observed unexpected differences in relative client and drug preferences for the two HSP90 isoforms, with HSP90α binding each client protein with greater apparent affinity compared to HSP90β, while HSP90β bound each inhibitor with greater relative interaction strength compared to HSP90α. Stable HSP90 interaction was associated with reduced client activity. Using a defined set of HSP90 conformational mutants, we found that some clients interact strongly with a single, ATP-stabilized HSP90 conformation, only transiently populated during the dynamic HSP90 chaperone cycle, while other clients interact equally with multiple HSP90 conformations. These data suggest different functional requirements among HSP90 clientele that, for some clients, are likely to be ATP-independent. Lastly, the two inhibitors examined, although sharing the same binding site, were differentially able to access distinct HSP90 conformational states.

  11. Quantum efficiency and two-photon absorption cross-section of conjugated polyelectrolytes used for protein conformation measurements with applications on amyloid structures

    Energy Technology Data Exchange (ETDEWEB)

    Stabo-Eeg, Frantz [Norwegian University of Science and Technology, N-7491 Trondheim (Norway)], E-mail: Frantz.Stabo-Eeg@phys.ntnu.no; Lindgren, Mikael [Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Nilsson, K. Peter R.; Inganaes, Olle; Hammarstroem, Per [IFM Department of Physics, Chemistry and Biology Linkoeping University, S-581 83 Linkoeping (Sweden)

    2007-07-27

    Amyloid diseases such as Alzheimer's and spongiform encephalopathies evolve from aggregation of proteins due to misfolding of the protein structure. Early disease handling require sophisticated but yet simple techniques to follow the complex properties of the aggregation process. Conjugated polyelectrolytes (CPEs) have shown promising capabilities acting as optical biological sensors, since they can specifically bind to polypeptides both in solution and in solid phase. The structural changes in biomolecules can be monitored by changes of the optical spectra of the CPEs, both in absorption and emission modes. Notably, the studied CPEs possess multi-photon excitation capability, making them potential for in vivo imaging using laser scanning microscopy. Aggregation of proteins depends on concentration, temperature and pH. The optical effect on the molecular probe in various environments must also be investigated if applied in these environments. Here we present the results of quantum efficiency and two-photon absorption cross-section of three CPEs: POMT, POWT and PTAA in three different pH buffer systems. The extinction coefficient and quantum efficiency were measured. POMT was found to have the highest quantum efficiency being approximately 0.10 at pH 2.0. The two-photon absorption cross-section was measured for POMT and POWT and was found to be more than 18-25 times and 7-11 times that of Fluorescein, respectively. We also show how POMT fluorescence can be used to distinguish conformational differences between amyloid fibrils formed from reduced and non-reduced insulin in spectrally resolved images recorded with a laser scanning microscope using both one- and two-photon excitation.

  12. Contesting the "Nature" Of Conformity: what Milgram and Zimbardo's studies really show.

    Directory of Open Access Journals (Sweden)

    S Alexander Haslam

    Full Text Available Understanding of the psychology of tyranny is dominated by classic studies from the 1960s and 1970s: Milgram's research on obedience to authority and Zimbardo's Stanford Prison Experiment. Supporting popular notions of the banality of evil, this research has been taken to show that people conform passively and unthinkingly to both the instructions and the roles that authorities provide, however malevolent these may be. Recently, though, this consensus has been challenged by empirical work informed by social identity theorizing. This suggests that individuals' willingness to follow authorities is conditional on identification with the authority in question and an associated belief that the authority is right.

  13. Conformation of bovine submaxillary mucin layers on hydrophobic surface as studied by biomolecular probes

    DEFF Research Database (Denmark)

    Pakkanen, Kirsi I.; Madsen, Jan Busk; Lee, Seunghwan

    2015-01-01

    In the present study, the conformational changes of bovine submaxillary mucin (BSM) adsorbed on a hydrophobic surface (polystyrene (PS)) as a function of concentration in bulk solution (up to 2mg/mL) have been investigated with biomolecular probe-based approaches, including bicinchoninic acid (BCA),enzyme-linkedimmunosorbentassay(EIA...... solution. Adsorbed masses of BSM onto hydrophobic surface, as probe by BCA, showed a continuously increasing trend up to 2mg/mL. But, the signals from EIA and ELLA, which probe the concentration of available unglycosylatedC-terminals and the central glycosylated regions, respectively, showed complicated...

  14. Performances study of UWB monopole antennas using half-elliptic radiator conformed on elliptical surface

    Energy Technology Data Exchange (ETDEWEB)

    Djidel, S.; Bouamar, M.; Khedrouche, D., E-mail: dkhedrouche@yahoo.com [LASS (Laboratoired’Analyse des Signaux et Systèmes), Department of Electronics, University of M’sila BP.166, Route Ichebilia, M’sila, 28000 Algeria (Algeria)

    2016-04-21

    This paper presents a performances study of UWB monopole antenna using half-elliptic radiator conformed on elliptical surface. The proposed antenna, simulated using microwave studio computer CST and High frequency simulator structure HFSS, is designed to operate in frequency interval over 3.1 to 40 GHz. Good return loss and radiation pattern characteristics are obtained in the frequency band of interest. The proposed antenna structure is suitable for ultra-wideband applications, which is, required for many wearable electronics applications.

  15. Biophysical characterization of the feline immunodeficiency virus p24 capsid protein conformation and in vitro capsid assembly.

    Directory of Open Access Journals (Sweden)

    Jennifer Serrière

    Full Text Available The Feline Immunodeficiency Virus (FIV capsid protein p24 oligomerizes to form a closed capsid that protects the viral genome. Because of its crucial role in the virion, FIV p24 is an interesting target for the development of therapeutic strategies, although little is known about its structure and assembly. We defined and optimized a protocol to overexpress recombinant FIV capsid protein in a bacterial system. Circular dichroism and isothermal titration calorimetry experiments showed that the structure of the purified FIV p24 protein was comprised mainly of α-helices. Dynamic light scattering (DLS and cross-linking experiments demonstrated that p24 was monomeric at low concentration and dimeric at high concentration. We developed a protocol for the in vitro assembly of the FIV capsid. As with HIV, an increased ionic strength resulted in FIV p24 assembly in vitro. Assembly appeared to be dependent on temperature, salt concentration, and protein concentration. The FIV p24 assembly kinetics was monitored by DLS. A limit end-point diameter suggested assembly into objects of definite shapes. This was confirmed by electron microscopy, where FIV p24 assembled into spherical particles. Comparison of FIV p24 with other retroviral capsid proteins showed that FIV assembly is particular and requires further specific study.

  16. Conformational coupling between receptor and kinase binding sites through a conserved salt bridge in a signaling complex scaffold protein.

    Directory of Open Access Journals (Sweden)

    Davi R Ortega

    Full Text Available Bacterial chemotaxis is one of the best studied signal transduction pathways. CheW is a scaffold protein that mediates the association of the chemoreceptors and the CheA kinase in a ternary signaling complex. The effects of replacing conserved Arg62 of CheW with other residues suggested that the scaffold protein plays a more complex role than simply binding its partner proteins. Although R62A CheW had essentially the same affinity for chemoreceptors and CheA, cells expressing the mutant protein are impaired in chemotaxis. Using a combination of molecular dynamics simulations (MD, NMR spectroscopy, and circular dichroism (CD, we addressed the role of Arg62. Here we show that Arg62 forms a salt bridge with another highly conserved residue, Glu38. Although this interaction is unimportant for overall protein stability, it is essential to maintain the correct alignment of the chemoreceptor and kinase binding sites of CheW. Computational and experimental data suggest that the role of the salt bridge in maintaining the alignment of the two partner binding sites is fundamental to the function of the signaling complex but not to its assembly. We conclude that a key feature of CheW is to maintain the specific geometry between the two interaction sites required for its function as a scaffold.

  17. Epigenetic dominance of prion conformers.

    Directory of Open Access Journals (Sweden)

    Eri Saijo

    2013-10-01

    Full Text Available Although they share certain biological properties with nucleic acid based infectious agents, prions, the causative agents of invariably fatal, transmissible neurodegenerative disorders such as bovine spongiform encephalopathy, sheep scrapie, and human Creutzfeldt Jakob disease, propagate by conformational templating of host encoded proteins. Once thought to be unique to these diseases, this mechanism is now recognized as a ubiquitous means of information transfer in biological systems, including other protein misfolding disorders such as those causing Alzheimer's and Parkinson's diseases. To address the poorly understood mechanism by which host prion protein (PrP primary structures interact with distinct prion conformations to influence pathogenesis, we produced transgenic (Tg mice expressing different sheep scrapie susceptibility alleles, varying only at a single amino acid at PrP residue 136. Tg mice expressing ovine PrP with alanine (A at (OvPrP-A136 infected with SSBP/1 scrapie prions propagated a relatively stable (S prion conformation, which accumulated as punctate aggregates in the brain, and produced prolonged incubation times. In contrast, Tg mice expressing OvPrP with valine (V at 136 (OvPrP-V136 infected with the same prions developed disease rapidly, and the converted prion was comprised of an unstable (U, diffusely distributed conformer. Infected Tg mice co-expressing both alleles manifested properties consistent with the U conformer, suggesting a dominant effect resulting from exclusive conversion of OvPrP-V136 but not OvPrP-A136. Surprisingly, however, studies with monoclonal antibody (mAb PRC5, which discriminates OvPrP-A136 from OvPrP-V136, revealed substantial conversion of OvPrP-A136. Moreover, the resulting OvPrP-A136 prion acquired the characteristics of the U conformer. These results, substantiated by in vitro analyses, indicated that co-expression of OvPrP-V136 altered the conversion potential of OvPrP-A136 from the S to

  18. Electrostatics effects on Ca(2+) binding and conformational changes in EF-hand domains: Functional implications for EF-hand proteins.

    Science.gov (United States)

    Ababou, Abdessamad; Zaleska, Mariola

    2015-12-01

    Mutations of Gln41 and Lys75 with nonpolar residues in the N-terminal domain of calmodulin (N-Cam) revealed the importance of solvation energetics in conformational change of Ca(2+) sensor EF-hand domains. While in general these domains have polar residues at these corresponding positions yet the extent of their conformational response to Ca(2+) binding and their Ca(2+) binding affinity can be different from N-Cam. Consequently, here we address the charge state of the polar residues at these positions. The results show that the charge state of these polar residues can affect substantially the conformational change and the Ca(2+) binding affinity of our N-Cam variants. Since all the variants kept their conformational activity in the presence of Ca(2+) suggests that the differences observed among them mainly originate from the difference in their molecular dynamics. Hence we propose that the molecular dynamics of Ca(2+) sensor EF-hand domains is a key factor in the multifunctional aspect of EF-hand proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Polyclonal and monoclonal antibodies specific for the six-helix bundle of the human respiratory syncytial virus fusion glycoprotein as probes of the protein post-fusion conformation

    International Nuclear Information System (INIS)

    Palomo, Concepción; Mas, Vicente; Vázquez, Mónica; Cano, Olga; Luque, Daniel; Terrón, María C.; Calder, Lesley J.; Melero, José A.

    2014-01-01

    Human respiratory syncytial virus (hRSV) has two major surface glycoproteins (G and F) anchored in the lipid envelope. Membrane fusion promoted by hRSV F occurs via refolding from a pre-fusion form to a highly stable post-fusion state involving large conformational changes of the F trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of hRSV F , we have prepared polyclonal (α-6HB) and monoclonal (R145) rabbit antibodies specific for the 6HB. Among other applications, these antibodies were used to explore the requirements of 6HB formation by isolated protein segments or peptides and by truncated mutants of the F protein. Site-directed mutagenesis and electron microscopy located the R145 epitope in the post-fusion hRSV F at a site distantly located from previously mapped epitopes, extending the repertoire of antibodies that can decorate the F molecule. - Highlights: • Antibodies specific for post-fusion respiratory syncytial virus fusion protein are described. • Polyclonal antibodies were obtained in rabbit inoculated with chimeric heptad repeats. • Antibody binding required assembly of a six-helix bundle in the post-fusion protein. • A monoclonal antibody with similar structural requirements is also described. • Binding of this antibody to the post-fusion protein was visualized by electron microscopy

  20. The novel 2Fe–2S outer mitochondrial protein mitoNEET displays conformational flexibility in its N-terminal cytoplasmic tethering domain

    International Nuclear Information System (INIS)

    Conlan, Andrea R.; Paddock, Mark L.; Axelrod, Herbert L.; Cohen, Aina E.; Abresch, Edward C.; Wiley, Sandra; Roy, Melinda; Nechushtai, Rachel; Jennings, Patricia A.

    2009-01-01

    The crystal structure of the anti-diabetic drug target mitoNEET obtained from a GFP fusion construct (1.4 Å resolution, R factor = 20.2%) shows that the CDGSH 2Fe–2S binding domains are superimposable with previously determined non-fused constructs. However, there is considerable flexibility in the position of the outer mitochondrial tethering arms resulting in two different conformations in the crystal structure. A primary role for mitochondrial dysfunction is indicated in the pathogenesis of insulin resistance. A widely used drug for the treatment of type 2 diabetes is pioglitazone, a member of the thiazolidinedione class of molecules. MitoNEET, a 2Fe–2S outer mitochondrial membrane protein, binds pioglitazone [Colca et al. (2004 ▶), Am. J. Physiol. Endocrinol. Metab.286, E252–E260]. The soluble domain of the human mitoNEET protein has been expressed C-terminal to the superfolder green fluorescent protein and the mitoNEET protein has been isolated. Comparison of the crystal structure of mitoNEET isolated from cleavage of the fusion protein (1.4 Å resolution, R factor = 20.2%) with other solved structures shows that the CDGSH domains are superimposable, indicating proper assembly of mitoNEET. Furthermore, there is considerable flexibility in the position of the cytoplasmic tethering arms, resulting in two different conformations in the crystal structure. This flexibility affords multiple orientations on the outer mitochondrial membrane

  1. Polyclonal and monoclonal antibodies specific for the six-helix bundle of the human respiratory syncytial virus fusion glycoprotein as probes of the protein post-fusion conformation

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, Concepción; Mas, Vicente; Vázquez, Mónica; Cano, Olga [Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid (Spain); CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid (Spain); Luque, Daniel; Terrón, María C. [Unidad de Microscopía Electrónica y Confocal, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid (Spain); Calder, Lesley J. [National Institute for Medical Research, MRC, Mill Hill, London NW7 1AA (United Kingdom); Melero, José A., E-mail: jmelero@isciii.es [Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid (Spain); CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid (Spain)

    2014-07-15

    Human respiratory syncytial virus (hRSV) has two major surface glycoproteins (G and F) anchored in the lipid envelope. Membrane fusion promoted by hRSV{sub F} occurs via refolding from a pre-fusion form to a highly stable post-fusion state involving large conformational changes of the F trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of hRSV{sub F}, we have prepared polyclonal (α-6HB) and monoclonal (R145) rabbit antibodies specific for the 6HB. Among other applications, these antibodies were used to explore the requirements of 6HB formation by isolated protein segments or peptides and by truncated mutants of the F protein. Site-directed mutagenesis and electron microscopy located the R145 epitope in the post-fusion hRSV{sub F} at a site distantly located from previously mapped epitopes, extending the repertoire of antibodies that can decorate the F molecule. - Highlights: • Antibodies specific for post-fusion respiratory syncytial virus fusion protein are described. • Polyclonal antibodies were obtained in rabbit inoculated with chimeric heptad repeats. • Antibody binding required assembly of a six-helix bundle in the post-fusion protein. • A monoclonal antibody with similar structural requirements is also described. • Binding of this antibody to the post-fusion protein was visualized by electron microscopy.

  2. Spectral analysis and quantum chemical studies of chair and twist-boat conformers of cycloheximide in gas and solution phases

    Science.gov (United States)

    Tokatli, A.; Ucun, F.; Sütçü, K.; Osmanoğlu, Y. E.; Osmanoğlu, Ş.

    2018-02-01

    In this study the conformational behavior of cycloheximide in the gas and solution (CHCl3) phases has theoretically been investigated by spectroscopic and quantum chemical properties using density functional theory (wB97X-D) method with 6-31++G(d,p) basis set, for the first time. The calculated IR results reveal that in the ground state the molecule exits as a mixture of the chair and twist-boat conformers in the gas phase, while the calculated NMR results reveal that it only exits as the chair conformer in the solution phase. In order to obtain the contributions coming from intramolecular interactions to the stability of the conformers in the gas and solution phases, the quantum theory of atoms in molecules (QTAIM), noncovalent interactions (NCI) method, and natural bond orbital analysis (NBO) have been employed. The QTAIM and NCI methods indicated that by intramolecular interactions with bond critical point (BCP) the twist-boat conformer is more stabilized than the chair conformer, while by steric interactions it is more destabilized. Considering that these interactions balance each other, the stabilities of the conformers are understood to be dictated by the van der Waals interactions. The NBO analyses show that the hyperconjugative and steric effects play an important role in the stabilization in the gas and solution phases. Furthermore, to get a better understanding of the chemical behavior of this important antibiotic drug we have evaluated and, commented the global and local reactivity descriptors of the both conformers. Finally, the EPR analysis of γ-irradiated cycloheximide has been done. The comparison of the experimental and calculated data have showed the inducement of a radical structure of (CH2)2ĊCH2 in the molecule. The experimental EPR spectrum has also confirmed that the molecule simultaneously exists in the chair and twist-boat conformers in the solid phase.

  3. Conformational dynamics of dry lamellar crystals of sugar based lipids: an atomistic simulation study.

    Directory of Open Access Journals (Sweden)

    Vijayan ManickamAchari

    Full Text Available The rational design of a glycolipid application (e.g. drug delivery with a tailored property depends on the detailed understanding of its structure and dynamics. Because of the complexity of sugar stereochemistry, we have undertaken a simulation study on the conformational dynamics of a set of synthetic glycosides with different sugar groups and chain design, namely dodecyl β-maltoside, dodecyl β-cellobioside, dodecyl β-isomaltoside and a C12C10 branched β-maltoside under anhydrous conditions. We examined the chain structure in detail, including the chain packing, gauche/trans conformations and chain tilting. In addition, we also investigated the rotational dynamics of the headgroup and alkyl chains. Monoalkylated glycosides possess a small amount of gauche conformers (∼20% in the hydrophobic region of the lamellar crystal (LC phase. In contrast, the branched chain glycolipid in the fluid Lα phase has a high gauche population of up to ∼40%. Rotational diffusion analysis reveals that the carbons closest to the headgroup have the highest correlation times. Furthermore, its value depends on sugar type, where the rotational dynamics of an isomaltose was found to be 11-15% and more restrained near the sugar, possibly due to the chain disorder and partial inter-digitation compared to the other monoalkylated lipids. Intriguingly, the present simulation demonstrates the chain from the branched glycolipid bilayer has the ability to enter into the hydrophilic region. This interesting feature of the anhydrous glycolipid bilayer simulation appears to arise from a combination of lipid crowding and the amphoteric nature of the sugar headgroups.

  4. Natural abundant solid state NMR studies in designed tripeptides for differentiation of multiple conformers.

    Science.gov (United States)

    Jayanthi, S; Chatterjee, Bhaswati; Raghothama, S

    2009-10-01

    Solid state NMR (SSNMR) experiments on heteronuclei in natural abundance are described for three synthetically designed tripeptides Piv-(L)Pro-(L)Pro-(L)Phe-OMe (1), Piv-(D)Pro-(L)Pro-(L)Phe-OMe (2), and Piv-(D)Pro-(L)Pro-(L)Phe-NHMe (3). These peptides exist in different conformation as shown by solution state NMR and single crystal X-ray analysis (Chatterjee et al., Chem Eur J 2008, 14, 6192). In this study, SSNMR has been used to probe the conformations of these peptides in their powder form. The (13)C spectrum of peptide (1) showed doubling of resonances corresponding to cis/cis form, unlike in solution where the similar doubling is attributed to cis/trans form. This has been confirmed by the chemical shift differences of C(beta) and C(gamma) carbon of Proline in peptide (1) both in solution and SSNMR. Peptide (2) and (3) provided single set of resonances which represented all trans form across the di-Proline segment. The results are in agreement with the X-ray analysis. Solid state (15)N resonances, especially from Proline residues provided additional information, which is normally not observable in solution state NMR. (1)H chemical shifts are also obtained from a two-dimensional heteronuclear correlation experiment between (1)H--(13)C. The results confirm the utility of NMR as a useful tool for identifying different conformers in peptides in the solid state. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 851-860, 2009.

  5. NMR studies of the solution conformation and dynamics of the tyrocidine peptide antibiotics

    International Nuclear Information System (INIS)

    Zhou, N.

    1985-01-01

    The tyrocidine B and tyrocidine C 1 H NMR spectra in DMSO-d 6 were assigned by using 2D 1 H- 1 H correlation spectroscopy and 1D double resonance experiments. Based on the proton chemical shifts, 3 J/sub NH-Nα/ coupling constants, the chemical shift temperature dependence, and 1D and 2D 1 H- 1 H NOE values, a backbone conformation consisting of an anti-parallel β-pleated sheet, a type I β-turn and a type II' β-turn was suggested for both tyrocidines B and C. Seven out of ten side chains were determined to exist predominantly in one classical Chi 1 rotamer; while the residues Val 1 and Leu 3 had two Chi 1 rotamers which were significantly populated. Chi 2 angles were determined for residues Phe 4 , Trp 6 , DPhe 7 (D Trp 7 ) and Asn 8 . The natural abundance 13 C spectra of tyrocidine B and tyrocidine C were assigned by using 1 H- 13 C correlation spectroscopy. A study of the effect of soluble paramagnetic nitroxide compounds on tyrocidine A proton T 1 values were performed which confirmed the proposed tyrocidine A conformation. It also proved that these nitroxide compounds are very useful in studying proton solvent exposure, and therefore in delineating hydrogen bonding. A proton NMR study of the opioid peptide dynorphin-(1-13) in aqueous solution was reported which was consistent with a non-ordered molecule in the solution

  6. Thermal Performance Study of Composite Phase Change Material with Polyacrylicand Conformal Coating.

    Science.gov (United States)

    Kee, Shin Yiing; Munusamy, Yamuna; Ong, Kok Seng; Cornelis Metselaar, Hendrik Simon; Chee, Swee Yong; Lai, Koon Chun

    2017-07-28

    The composite PCM was prepared by blending polymethyl methacrylate (PMMA) and myristic acid (MA) in different weight percentages. The MA and PMMA were selected as PCM and supporting material, respectively. As liquid MA may leak out during the phase transition, this study proposes the use of two coatings, namely a polyacrylic coating and a conformal coating to overcome the leakage problem. Both coatings were studied in terms of the leakage test, chemical compatibility, thermal stability, morphology, and reliability. No leakage was found in the PCMs with coatings compared to those without under the same proportions of MA/PMMA, thus justifying the use of coatings in the present study. The chemically compatibility was confirmed by FTIR spectra: the functional groups of PCMs were in accordance with those of coatings. DSC showed that the coatings did not significantly change the melting and freezing temperatures, however, they improved the thermal stability of composite PCMs as seen in TGA analysis. Furthermore, the composite PCMs demonstrated good thermal reliability after 1000 times thermal cycling. The latent heat of melting reduced by only 0.16% and 1.02% for the PCMs coated with conformal coating and polyacrylic coating, respectively. Therefore, the proposed coatings can be considered in preparing fatty acid/PMMA blends attributed to the good stability, compatibility and leakage prevention.

  7. Comparative dosimetric study of three-dimensional conformal, dynamic conformal arc, and intensity-modulated radiotherapy for brain tumor treatment using Novalis system

    International Nuclear Information System (INIS)

    Ding Meisong; Newman, Francis M.S.; Kavanagh, Brian D.; Stuhr, Kelly M.S.; Johnson, Tim K.; Gaspar, Laurie E.

    2006-01-01

    Purpose: To investigate the dosimetric differences among three-dimensional conformal radiotherapy (3D-CRT), dynamic conformal arc therapy (DCAT), and intensity-modulated radiotherapy (IMRT) for brain tumor treatment. Methods and Materials: Fifteen patients treated with Novalis were selected. We performed 3D-CRT, DCAT, and IMRT plans for all patients. The margin for the planning target volume (PTV) was 1 mm, and the specific prescription dose was 90% for all plans. The target coverage at the prescription dose, conformity index (CI), and heterogeneity index were analyzed for all plans. Results: For small tumors (PTV ≤2 cm 3 ), the three dosimetric parameters had approximate values for both 3D-CRT and DCAT plans. The CI for the IMRT plans was high. For medium tumors (PTV >2 to ≤100 cm 3 ), the three plans were competitive with each other. The IMRT plans had a greater CI, better target coverage at the prescription dose, and a better heterogeneity index. For large tumors (PTV >100 cm 3 ), the IMRT plan had good target coverage at the prescription dose and heterogeneity index and approximate CI values as those in the 3D-CRT and DCAT plans. Conclusion: The results of our study have shown that DCAT is suitable for most cases in the treatment of brain tumors. For a small target, 3D-CRT is useful, and IMRT is not recommended. For larger tumors, IMRT is superior to 3D-CRT and very competitive in sparing critical structures, especially for big tumors

  8. Protein-protein interactions as a proxy to monitor conformational changes and activation states of the tomato resistance protein I-2

    NARCIS (Netherlands)

    Lukasik-Shreepaathy, E.; Vossen, J.H.; Tameling, W.I.L.; de Vroomen, M.J.; Cornelissen, B.J.C.; Takken, F.L.W.

    2012-01-01

    Plant resistance proteins (R) are involved in pathogen recognition and subsequent initiation of defence responses. Their activity is regulated by inter- and intramolecular interactions. In a yeast two-hybrid screen two clones (I2I-1 and I2I-2) specifically interacting with I-2, a Fusarium oxysporum

  9. Studies on solution conformations and mechanism of action of amrinone and milrinone

    International Nuclear Information System (INIS)

    Beedle, E.E.; Elzey, T.K.; Kauffman, R.F.; Hayes, J.S.; Robertson, D.W.

    1986-01-01

    There are two structural differences between the positive inotropes amrinone (A) and milrinone (M): (1) M has a pyridone 2-methyl substituent and; (2) the pyridone 5-amino substituent of A is replaced with a nitrile in M. SAR studies confirmed that the 2-methyl substituent is responsible for the dramatically increased potency of M relative to A (canine i.v. ED 50 's=37 and 1891 μg/kg, respectively). Both M and A inhibited canine heart PDEase III (IC 50 's=12 and 150μM, respectively). Moreover, in a series of M/A congeners, the correlation between in vitro PDEase III IC 50 's and in vivo inotropic ED 50 's was highly significant (r = 0.98, p 13 C- and 1 H-NMR spectra of A and M and have used the chemical shifts of the pyridone C-4 protons as conformational reporters. These studies revealed that the C-4 protons of methyl containing congeners (M-like) experience a 0.38-0.53 ppm upfield shift relative to the corresponding proton resonance in unmethylated congeners (A-like). These data suggest there are marked, methyl-induced differences in the solution conformations of A and M

  10. Benchmarking Experimental and Computational Thermochemical Data: A Case Study of the Butane Conformers.

    Science.gov (United States)

    Barna, Dóra; Nagy, Balázs; Csontos, József; Császár, Attila G; Tasi, Gyula

    2012-02-14

    Due to its crucial importance, numerous studies have been conducted to determine the enthalpy difference between the conformers of butane. However, it is shown here that the most reliable experimental values are biased due to the statistical model utilized during the evaluation of the raw experimental data. In this study, using the appropriate statistical model, both the experimental expectation values and the associated uncertainties are revised. For the 133-196 and 223-297 K temperature ranges, 668 ± 20 and 653 ± 125 cal mol(-1), respectively, are recommended as reference values. Furthermore, to show that present-day quantum chemistry is a favorable alternative to experimental techniques in the determination of enthalpy differences of conformers, a focal-point analysis, based on coupled-cluster electronic structure computations, has been performed that included contributions of up to perturbative quadruple excitations as well as small correction terms beyond the Born-Oppenheimer and nonrelativistic approximations. For the 133-196 and 223-297 K temperature ranges, in exceptional agreement with the corresponding revised experimental data, our computations yielded 668 ± 3 and 650 ± 6 cal mol(-1), respectively. The most reliable enthalpy difference values for 0 and 298.15 K are also provided by the computational approach, 680.9 ± 2.5 and 647.4 ± 7.0 cal mol(-1), respectively.

  11. Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change.

    Science.gov (United States)

    Hetrick, Byron; Han, Min Suk; Helgeson, Luke A; Nolen, Brad J

    2013-05-23

    Actin-related protein 2/3 (Arp2/3) complex is a seven-subunit assembly that nucleates branched actin filaments. Small molecule inhibitors CK-666 and CK-869 bind to Arp2/3 complex and inhibit nucleation, but their modes of action are unknown. Here, we use biochemical and structural methods to determine the mechanism of each inhibitor. Our data indicate that CK-666 stabilizes the inactive state of the complex, blocking movement of the Arp2 and Arp3 subunits into the activated filament-like (short pitch) conformation, while CK-869 binds to a serendipitous pocket on Arp3 and allosterically destabilizes the short pitch Arp3-Arp2 interface. These results provide key insights into the relationship between conformation and activity in Arp2/3 complex and will be critical for interpreting the influence of the inhibitors on actin filament networks in vivo. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. A chemometric analysis of ligand-induced changes in intrinsic fluorescence of folate binding protein indicates a link between altered conformational structure and physico-chemical characteristics

    DEFF Research Database (Denmark)

    Bruun, Susanne W; Holm, Jan; Hansen, Steen Ingemann

    2009-01-01

    Ligand binding alters the conformational structure and physico-chemical characteristics of bovine folate binding protein (FBP). For the purpose of achieving further information we analyzed ligand (folate and methotrexate)-induced changes in the fluorescence landscape of FBP. Fluorescence excitation...... of folate accords fairly well with the disappearance of strongly hydrophobic tryptophan residues from the solvent-exposed surface of FBP. The PARAFAC has thus proven useful to establish a hitherto unexplained link between parallel changes in conformational structure and physico-chemical characteristics...... of FBP induced by folate binding. Parameters for ligand binding derived from PARAFAC analysis of the fluorescence data were qualitatively and quantitatively similar to those obtained from binding of radiofolate to FBP. Herein, methotrexate exhibited a higher affinity for FBP than in competition...

  13. Transportation Conformity

    Science.gov (United States)

    This section provides information on: current laws, regulations and guidance, policy and technical guidance, project-level conformity, general information, contacts and training, adequacy review of SIP submissions

  14. Study of PDMS conformation in PDMS-based hybrid materials prepared by gamma irradiation

    International Nuclear Information System (INIS)

    Lancastre, J.J.H.; Fernandes, N.; Margaça, F.M.A.; Miranda Salvado, I.M.; Ferreira, L.M.; Falcão, A.N.; Casimiro, M.H.

    2012-01-01

    Polydimethylsiloxane-silicate based hybrid materials have recognized properties (high flexibility, low elastic modulus or high mechanical strength) for which there are a large number of applications in development, such as for the bioapplications field. The hybrids addressed in the present study were prepared by gamma irradiation of a mixture of polydimethylsiloxane (PDMS) with tetraethylorthosilicate (TEOS) and zirconium propoxide (PrZr) without addition of any solvent or other product. The materials are homogeneous, transparent, monolithic and flexible. The structure dependence on the PrZr content is addressed. A combination of X-ray diffraction (XRD) and Infrared Spectroscopy (IR) was used. The results reveal that the polymer in the hybrids prepared with PrZr, in a content≤5 wt%, shows a structure similar to that in the irradiated pure polymer sample. In these samples the presence of ordered polymer regions is clearly found. For samples prepared with higher content of Zr almost no ordered polymer regions are observed. The addition of PrZr plays an important role on polymer conformation in these hybrid materials. - Highlights: ► PDMS-based hybrid materials were prepared by γ-irradiation. ► FTIR, ATR/FT-IR and XRD techniques were used to characterize the materials. ► Changes in FTIR bands reflect growth of crosslinking network. ► Above certain Zr concentration regions of Zr-silicate oxide are formed. ► Zr content determines conformation of the polymer chain network.

  15. THz time domain spectroscopy of biomolecular conformational modes

    International Nuclear Information System (INIS)

    Markelz, Andrea; Whitmire, Scott; Hillebrecht, Jay; Birge, Robert

    2002-01-01

    We discuss the use of terahertz time domain spectroscopy for studies of conformational flexibility and conformational change in biomolecules. Protein structural dynamics are vital to biological function with protein flexibility affecting enzymatic reaction rates and sensory transduction cycling times. Conformational mode dynamics occur on the picosecond timescale and with the collective vibrational modes associated with these large scale structural motions in the 1-100 cm -1 range. We have performed THz time domain spectroscopy (TTDS) of several biomolecular systems to explore the sensitivity of TTDS to distinguish different molecular species, different mutations within a single species and different conformations of a given biomolecule. We compare the measured absorbances to normal mode calculations and find that the TTDS absorbance reflects the density of normal modes determined by molecular mechanics calculations, and is sensitive to both conformation and mutation. These early studies demonstrate some of the advantages and limitations of using TTDS for the study of biomolecules

  16. Controlling non-conformities propagation in manufacturing. Case study in an electromechanical assembly plant.

    OpenAIRE

    Fiegenwald , Valérie; Bassetto , Samuel; Tollenaere , Michel

    2011-01-01

    International audience; The purpose of this paper is to control the propagation of non-conformities. The control methods implemented to ensure the quality performance of a production system present weaknesses, inherent to their constitution, which can let non-conformities propagate along the value stream. This propagation cannot be avoided, but it can be mastered. This paper presents a method to master non-conformities propagation in a production system by building the associated control char...

  17. Orientation and conformation of a lipase at an interface studied by molecular dynamics simulations

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Jensen, T.R.; Kjær, Kristian

    2002-01-01

    Electron density profiles calculated from molecular dynamics trajectories are used to deduce the orientation and conformation of Thermomyces lanuginosa lipase and a mutant adsorbed at an air-water interface. It is demonstrated that the profiles display distinct fine structures, which uniquely...... characterize enzyme orientation and conformation. The density profiles are, on the nanosecond timescale, determined by the average enzyme conformation. We outline a Computational scheme that from a single molecular dynamics trajectory allows for extraction of electron density profiles referring to different...

  18. Conformational study of the protegrin-1 (PG-1 dimer interaction with lipid bilayers and its effect

    Directory of Open Access Journals (Sweden)

    Nussinov Ruth

    2007-04-01

    Full Text Available Abstract Background Protegrin-1 (PG-1 is known as a potent antibiotic peptide; it prevents infection via an attack on the membrane surface of invading microorganisms. In the membrane, the peptide forms a pore/channel through oligomerization of multiple subunits. Recent experimental and computational studies have increasingly unraveled the molecular-level mechanisms underlying the interactions of the PG-1 β-sheet motifs with the membrane. The PG-1 dimer is important for the formation of oligomers, ordered aggregates, and for membrane damaging effects. Yet, experimentally, different dimeric behavior has been observed depending on the environment: antiparallel in the micelle environment, and parallel in the POPC bilayer. The experimental structure of the PG-1 dimer is currently unavailable. Results Although the β-sheet structures of the PG-1 dimer are less stable in the bulk water environment, the dimer interface is retained by two intermolecular hydrogen bonds. The formation of the dimer in the water environment implies that the pathway of the dimer invasion into the membrane can originate from the bulk region. In the initial contact with the membrane, both the antiparallel and parallel β-sheet conformations of the PG-1 dimer are well preserved at the amphipathic interface of the lipid bilayer. These β-sheet structures illustrate the conformations of PG-1 dimer in the early stage of the membrane attack. Here we observed that the activity of PG-1 β-sheets on the bilayer surface is strongly correlated with the dimer conformation. Our long-term goal is to provide a detailed mechanism of the membrane-disrupting effects by PG-1 β-sheets which are able to attack the membrane and eventually assemble into the ordered aggregates. Conclusion In order to understand the dimeric effects leading to membrane damage, extensive molecular dynamics (MD simulations were performed for the β-sheets of the PG-1 dimer in explicit water, salt, and lipid bilayers

  19. Functional fluorescent protein insertions in herpes simplex virus gB report on gB conformation before and after execution of membrane fusion.

    Directory of Open Access Journals (Sweden)

    John R Gallagher

    2014-09-01

    Full Text Available Entry of herpes simplex virus (HSV into a target cell requires complex interactions and conformational changes by viral glycoproteins gD, gH/gL, and gB. During viral entry, gB transitions from a prefusion to a postfusion conformation, driving fusion of the viral envelope with the host cell membrane. While the structure of postfusion gB is known, the prefusion conformation of gB remains elusive. As the prefusion conformation of gB is a critical target for neutralizing antibodies, we set out to describe its structure by making genetic insertions of fluorescent proteins (FP throughout the gB ectodomain. We created gB constructs with FP insertions in each of the three globular domains of gB. Among 21 FP insertion constructs, we found 8 that allowed gB to remain membrane fusion competent. Due to the size of an FP, regions in gB that tolerate FP insertion must be solvent exposed. Two FP insertion mutants were cell-surface expressed but non-functional, while FP insertions located in the crown were not surface expressed. This is the first report of placing a fluorescent protein insertion within a structural domain of a functional viral fusion protein, and our results are consistent with a model of prefusion HSV gB constructed from the prefusion VSV G crystal structure. Additionally, we found that functional FP insertions from two different structural domains could be combined to create a functional form of gB labeled with both CFP and YFP. FRET was measured with this construct, and we found that when co-expressed with gH/gL, the FRET signal from gB was significantly different from the construct containing CFP alone, as well as gB found in syncytia, indicating that this construct and others of similar design are likely to be powerful tools to monitor the conformation of gB in any model system accessible to light microscopy.

  20. A Conformational Change in C-Reactive Protein Enhances Leukocyte Recruitment and Reactive Oxygen Species Generation in Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Jan R. Thiele

    2018-04-01

    Full Text Available IntroductionC-reactive protein circulates as a pentameric protein (pCRP. pCRP is a well-established diagnostic marker as plasma levels rise in response to tissue injury and inflammation. We recently described pro-inflammatory properties of CRP, which are mediated by conformational changes from pCRP to bioactive isoforms expressing pro-inflammatory neo-epitopes [pCRP* and monomeric C-reactive protein (mCRP]. Here, we investigate the role of CRP isoforms in renal ischemia/reperfusion injury (IRI.MethodsRat kidneys in animals with and without intraperitoneally injected pCRP were subjected to IRI by the time of pCRP exposure and were subsequently analyzed for monocyte infiltration, caspase-3 expression, and tubular damage. Blood urea nitrogen (BUN was analyzed pre-ischemia and post-reperfusion. CRP effects on leukocyte recruitment were investigated via intravital imaging of rat-striated muscle IRI. Localized conformational CRP changes were analyzed by immunohistochemistry using conformation specific antibodies. 1,6-bis(phosphocholine-hexane (1,6-bisPC, which stabilizes CRP in its native pentameric form was used to validate CRP effects. Leukocyte activation was assessed by quantification of reactive oxygen species (ROS induction by CRP isoforms ex vivo and in vitro through electron spin resonance spectroscopy. Signaling pathways were analyzed by disrupting lipid rafts with nystatin and subsequent ROS detection. In order to confirm the translational relevance of our findings, biopsies of microsurgical human free tissue transfers before and after IRI were examined by immunofluorescence for CRP deposition and co-localization of CD68+ leukocytes.ResultsThe application of pCRP aggravates tissue damage in renal IRI. 1,6-bisPC reverses these effects via inhibition of the conformational change that leads to exposure of pro-inflammatory epitopes in CRP (pCRP* and mCRP. Structurally altered CRP induces leukocyte–endothelial interaction and induces ROS

  1. Molecular modeling of protein materials: case study of elastin

    International Nuclear Information System (INIS)

    Tarakanova, Anna; Buehler, Markus J

    2013-01-01

    Molecular modeling of protein materials is a quickly growing area of research that has produced numerous contributions in fields ranging from structural engineering to medicine and biology. We review here the history and methods commonly employed in molecular modeling of protein materials, emphasizing the advantages for using modeling as a complement to experimental work. We then consider a case study of the protein elastin, a critically important ‘mechanical protein’ to exemplify the approach in an area where molecular modeling has made a significant impact. We outline the progression of computational modeling studies that have considerably enhanced our understanding of this important protein which endows elasticity and recoil to the tissues it is found in, including the skin, lungs, arteries and the heart. A vast collection of literature has been directed at studying the structure and function of this protein for over half a century, the first molecular dynamics study of elastin being reported in the 1980s. We review the pivotal computational works that have considerably enhanced our fundamental understanding of elastin's atomistic structure and its extraordinary qualities—focusing on two in particular: elastin's superb elasticity and the inverse temperature transition—the remarkable ability of elastin to take on a more structured conformation at higher temperatures, suggesting its effectiveness as a biomolecular switch. Our hope is to showcase these methods as both complementary and enriching to experimental approaches that have thus far dominated the study of most protein-based materials. (topical review)

  2. Conformation, orientation and interaction in molecular monolayers: A surface second harmonic and sum frequency generation study

    International Nuclear Information System (INIS)

    Superfine, R.; Huang, J.Y.; Shen, Y.R.

    1988-12-01

    We have used sum frequency generation (SFG) to study the order in a silane monolayer before and after the deposition of a coadsorbed liquid crystal monolayer. We observe an increase in the order of the chain of the silane molecule induced by the interpenetration of the liquid crystal molecules. By using second harmonic generation (SHG) and SFG, we have studied the orientation and conformation of the liquid crystal molecule on clean and silane coated glass surfaces. On both surfaces, the biphenyl group is tilted by 70 degree with the alkyl chain end pointing away from the surface. The shift in the C-H stretch frequencies in the coadsorbed system indicates a significant interaction between molecules. 9 refs., 3 figs

  3. Hyperfractionated conformal radiotherapy in locally advanced prostate cancer: results of a dose escalation study

    International Nuclear Information System (INIS)

    Forman, Jeffrey D.; Duclos, Marie; Shamsa, Falah; Porter, Arthur T.; Orton, Colin

    1996-01-01

    Purpose: This study was initiated to assess the incidence of chronic complications and histologic and biochemical control following hyperfractionated conformal radiotherapy in patients with locally advanced prostate cancer. Methods and Materials: Between October 1991 and October 1994, 49 patients with locally advanced prostate cancer were entered on the first two dose levels of a prospective dose-escalation study using hyperfractionated three dimensional conformal radiotherapy. The first 25 patients received a minimum tumor dose of 78 Gy to the prostate and seminal vesicles in 6 weeks at 1.3 Gy, b.i.d. No increase in chronic toxicity compared with conventional radiotherapy was noted; therefore, an additional 24 patients were treated to a minimum tumor dose of 82.8 Gy to the prostate and seminal vesicles in 7 weeks at 1.15 Gy, b.i.d. Toxicity was scored according to the Radiation Therapy Oncology Group morbidity grading scale. Efficacy was assessed through scheduled postradiation prostate specific antigen values and ultrasound-guided biopsies. The median follow-up for the entire group was 20 months. Results: The hyperfractionated external radiation was well tolerated with minimal acute morbidity. At 30 months, the actuarial probability of Grade 2 gastrointestinal toxicity was 17%. At 30 months, the actuarial probability of Grade 2 genitourinary toxicity was 16%. There was no statistically significant difference between the two dose levels. No Grade 3 or 4 gastrointestinal or genitourinary toxicity was noted. At 12 months, 84% of patients had a prostate specific antigen ≤ 4; and 53%; ≤ 1 ng/ml. At 12 months, 71% of patients had post radiation biopsies that were either negative (55%) or showed a marked therapeutic effect (16%). Conclusion: The use of hyperfractionated conformal radiotherapy facilitated dose escalation with no increase in chronic toxicity compared to standard doses. The initial tumor response based on prostate specific antigen measurements and

  4. Surface-water interface induces conformational changes critical for protein adsorption: Implications for monolayer formation of EAS hydrophobin

    Directory of Open Access Journals (Sweden)

    Kamron eLey

    2015-11-01

    Full Text Available The class I hydrophobin EAS is part of a family of small, amphiphilic fungal proteins best known for their ability to self-assemble into stable monolayers that modify the hydrophobicity of a surface to facilitate further microbial growth. These proteins have attracted increasing attention for industrial and biomedical applications, with the aim of designing surfaces that have the potential to maintain their clean state by resisting non-specific protein binding. To gain a better understanding of this process, we have employed all-atom molecular dynamics to study initial stages of the spontaneous adsorption of monomeric EAS hydrophobin on fully hydroxylated silica, a commonly used industrial and biomedical substrate. Particular interest has been paid to the Cys3-Cys4 loop, which has been shown to exhibit disruptive behavior in solution, and the Cys7-Cys8 loop, which is believed to be involved in the aggregation of EAS hydrophobin at interfaces. Specific and water mediated interactions with the surface were also analyzed. We have identified two possible binding motifs, one which allows unfolding of the Cys7-Cys8 loop due to the surfactant-like behavior of the Cys3-Cys4 loop, and another which has limited unfolding due to the Cys3-Cys4 loop remaining disordered in solution. We have also identified intermittent interactions with water which mediate the protein adsorption to the surface, as well as longer lasting interactions which control the diffusion of water around the adsorption site. These results have shown that EAS behaves in a similar way at the air-water and surface-water interfaces, and have also highlighted the need for hydrophilic ligand functionalization of the silica surface in order to prevent the adsorption of EAS hydrophobin.

  5. Protein covalent immobilization via its scarce thiol versus abundant amine groups: Effect on orientation, cell binding domain exposure and conformational lability.

    Science.gov (United States)

    Ba, O M; Hindie, M; Marmey, P; Gallet, O; Anselme, K; Ponche, A; Duncan, A C

    2015-10-01

    Quantity, orientation, conformation and covalent linkage of naturally cell adhesive proteins adsorbed or covalently linked to a surface, are known to influence the preservation of their subsequent long term cell adhesion properties and bioactivity. In the present work, we explore two different strategies for the covalent linking of plasma fibronectin (pFN) - used as a cell adhesive model protein, onto a polystyrene (PS) surface. One is aimed at tethering the protein to the surface in a semi-oriented fashion (via one of the 4 free thiol reactive groups on the protein) with a heterofunctional coupling agent (SSMPB method). The other aims to immobilize the protein in a more random fashion by reaction between the abundant pendant primary amine bearing amino acids of the pFN and activated carboxylic surface functions obtained after glutaric anhydride surface treatment (GA method). The overall goal will be to verify the hypothesis of a correlation between covalent immobilization of a model cell adhesive protein to a PS surface in a semi-oriented configuration (versus randomly oriented) with promotion of enhanced exposure of the protein's cell binding domain. This in turn would lead to enhanced cell adhesion. Ideally the goal is to elaborate substrates exhibiting a long term stable protein monolayer with preserved cell adhesive properties and bioactivity for biomaterial and/or cell adhesion commercial plate applications. However, the initial restrictive objective of this paper is to first quantitatively and qualitatively investigate the reversibly (merely adsorbed) versus covalently irreversibly bound protein to the surface after the immobilization procedure. Although immobilized surface amounts were similar (close to the monolayer range) for all immobilization approaches, covalent grafting showed improved retention and stronger "tethering" of the pFN protein to the surface (roughly 40%) after SDS rinsing compared to that for mere adsorption (0%) suggesting an added value

  6. Structural alphabets derived from attractors in conformational space

    Directory of Open Access Journals (Sweden)

    Kleinjung Jens

    2010-02-01

    Full Text Available Abstract Background The hierarchical and partially redundant nature of protein structures justifies the definition of frequently occurring conformations of short fragments as 'states'. Collections of selected representatives for these states define Structural Alphabets, describing the most typical local conformations within protein structures. These alphabets form a bridge between the string-oriented methods of sequence analysis and the coordinate-oriented methods of protein structure analysis. Results A Structural Alphabet has been derived by clustering all four-residue fragments of a high-resolution subset of the protein data bank and extracting the high-density states as representative conformational states. Each fragment is uniquely defined by a set of three independent angles corresponding to its degrees of freedom, capturing in simple and intuitive terms the properties of the conformational space. The fragments of the Structural Alphabet are equivalent to the conformational attractors and therefore yield a most informative encoding of proteins. Proteins can be reconstructed within the experimental uncertainty in structure determination and ensembles of structures can be encoded with accuracy and robustness. Conclusions The density-based Structural Alphabet provides a novel tool to describe local conformations and it is specifically suitable for application in studies of protein dynamics.

  7. Rotational Spectroscopy and Conformational Studies of 4-PENTYNENITRILE, 4-PENTENENITRILE, and Glutaronitrile

    Science.gov (United States)

    Hays, Brian M.; Mehta-Hurt, Deepali; Jawad, Khadija M.; Hernandez-Castillo, Alicia O.; Abeysekera, Chamara; Zhang, Di; Zwier, Timothy S.

    2017-06-01

    The pure rotational spectra of 4-pentynenitrile, 4-pentenenitrile, and glutaronitrile were acquired using chirped pulse Fouirer transform microwave spectroscopy. 4-pentynenitrile and 4-pentenenitrile are the recombination products of two resonance stabilized radicals, propargyl + cyanomethyl or allyl + cyanomethyl, respectively, and are thus anticipated to be significant among the more complex nitriles in Titan's atmosphere. Indeed, these partially unsaturated alkyl cyanides have been found in laboratory analogs of tholins and are also expected to have interesting photochemistry. The optimized structures of all conformers below predicted energies of 500 \\wn were calculated for each molecule. Both of the conformers, trans and gauche, for 4-pentynenitrile have been identified and assigned. Five conformers were assigned in 4-pentenenitrile. The eclipsed conformers, with respect to the vinyl group, dominate the spectrum but some population was found in the syn conformers including the syn-gauche conformer, calculated to be 324 \\wn above the global minimum. The glutaronitrile spectrum contained only the two conformers below 500 \\wn, with reduced amount of the gauche trans conformer. The assigned spectra and structural assignments will be presented.

  8. Study of conformation and dynamic of surfactant molecules in graphite oxide via NMR

    Energy Technology Data Exchange (ETDEWEB)

    Ai, X.Q. [Jiangsu Second Normal University, College of Physics and Electronic Engineering, Nanjing (China); Ma, L.G. [Nanjing Xiaozhuang University, School of Electronic Engineering, Nanjing (China)

    2016-08-15

    The conformation and dynamic of surfactant in graphite oxide (GO) was investigated by solid-state {sup 13}C magic-angle-spinning NMR and {sup 1}H-{sup 13}C cross-polarization/magic-angle-spinning NMR spectra. The conformation ordering of the alkyl chains in the confined system shows strong dependence on its orientation. While the alkyl chains parallel to the GO layer in lateral monolayer arrangement are in gauche conformation in addition to a small amount of all-trans conformation, those with orientation radiating away from the GO in paraffin bilayer arrangement is in all-trans conformation in addition to some gauche conformation even though high-order diffraction peaks appears. NMR results suggest that the least mobile segment is located at the GO-surfactant interface corresponding to the N-methylene group. Further from it, the mobility of the alkyl chain increases. The terminal methyl and N-methyl carbon groups have the highest mobile. The chains in all-trans conformational state are characterized as more rigid than chains with gauche conformation; each segment of the confined alkyl chains with the lateral monolayer arrangement exhibits less mobility as compared to that with the paraffin bilayer arrangement. (orig.)

  9. Ego Development and Conformity: A Construct Validity Study of the Washington University Sentence Completion Test

    Science.gov (United States)

    Hoppe, Carl F.; Loevinger, Jane

    1977-01-01

    Self and peer evaluations and experimental measures of conformity were given to 107 adolescent private school boys. Student discipline records also indicated the number of demerits. The self-report measures and the demerits showed maximum conformity between the self-protective and conscientious ego stages as measured by the Sentence Completion…

  10. NATO Advanced Study Institute on Photophysical and Photochemical Tools in Polymer Science : Conformation, Dynamics, Morphology

    CERN Document Server

    1986-01-01

    In 1980 the New York Academy of Sciences sponsored a three-day conference on luminescence in biological and synthetic macromolecules. After that meeting, Professor Frans DeSchryver and I began to discuss the possibility of organizing a different kind of meeting, with time for both informal and in-depth discussions, to examine certain aspects of the application of fluorescence and phosphorescence spectroscopy to polymers. Our ideas developed through discussions with many others, particularly Professor Lucien Monnerie. By 1983, when we submitted our proposal to NATO for an Advanced Study Institute, the area had grown enormous ly. It is interesting in retrospect to look back on the points which emerged from these discussions as the basis around which the scientific program would be organized and the speakers chosen. We decided early on to focus on applications of these methods to provide information about polymer molecules and polymer systems: The topics would all relate to the conformation and dynamics of macro...

  11. Determination of a PWR key neutron parameters uncertainties and conformity studies applications

    International Nuclear Information System (INIS)

    Bernard, D.

    2002-01-01

    The aim of this thesis was to evaluate uncertainties of key neutron parameters of slab reactors. Uncertainties sources have many origins, technologic origin for parameters of fabrication and physical origin for nuclear data. First, each contribution of uncertainties is calculated and finally, a factor of uncertainties is associated to key slab parameter like reactivity, isotherm reactivity coefficient, control rod efficiency, power form factor before irradiation and lifetime. This factors of uncertainties were computed by Generalized Perturbations Theory in case of step 0 and by directs calculations in case of irradiation problems. One of neutronic conformity applications was about fabrication and nuclear data targets precision adjustments. Statistic (uncertainties) and deterministic (deviations) approaches were studied. Then neutronics key slab parameters uncertainties were reduced and so nuclear performances were optimised. (author)

  12. A study of the conformation and stability of nitroxide free radicals

    International Nuclear Information System (INIS)

    Briere, R.

    1969-03-01

    The first part of this study is an application of nuclear magnetic resonance to the determination of the sign and magnitude of the long range nuclear-electron spin-spin couplings in the free radical nitroxide derived from piperidine. It has been shown that the coupling constants of the protons γ to the nitrogen atom have a pronounced spatial dependence as do the protons in the β position, a point which has not been brought out by previous investigations. Conformational analysis of these compounds has been carried out by measurement of the effect of temperature on the NMR spectra at 310 MHz. The synthesis of di-t-Bu nitroxide labelled with C 13 in the α-position made possible the unambiguous determination of the corresponding 13 C nuclear-electron spin-spin coupling constant, a parameter which had not previously been measured. The coupling constants measured in the 2,2,6,6-tetramethyl piperidine series could then be attributed to the 13 C atoms in the β-position and their variation related to the conformations of the heterocycles. This constitutes the second part of the work reported here. The final section is devoted to a study of the decomposition of an unstable nitroxide having a hydrogen atom in the p-position. This decomposition is bimolecular and the primary isotope effect shows that the rupture. of the C-H bond is involved. From this one can conclude that a nitroxide is stable when the different groups attached to the nitrogen atom cannot give rise to a decomposition either intra molecularly, if the molecular geometry is suitable, or inter molecularly by dimerisation through attack on a different center of a neighbouring molecule thus leading to a fragmentation or a disproportionation. (author) [fr

  13. Studies on solution conformations and mechanism of action of amrinone and milrinone

    Energy Technology Data Exchange (ETDEWEB)

    Beedle, E.E.; Elzey, T.K.; Kauffman, R.F.; Hayes, J.S.; Robertson, D.W.

    1986-03-05

    There are two structural differences between the positive inotropes amrinone (A) and milrinone (M): (1) M has a pyridone 2-methyl substituent and; (2) the pyridone 5-amino substituent of A is replaced with a nitrile in M. SAR studies confirmed that the 2-methyl substituent is responsible for the dramatically increased potency of M relative to A (canine i.v. ED/sub 50/'s=37 and 1891 ..mu..g/kg, respectively). Both M and A inhibited canine heart PDEase III (IC/sub 50/'s=12 and 150..mu..M, respectively). Moreover, in a series of M/A congeners, the correlation between in vitro PDEase III IC/sub 50/'s and in vivo inotropic ED/sub 50/'s was highly significant (r = 0.98, p < 0.01). In the crystal-state, the methyl substituent of M induces a marked alteration in its 3-dimensional topology relative to A. They have now completely assigned the /sup 13/C- and /sup 1/H-NMR spectra of A and M and have used the chemical shifts of the pyridone C-4 protons as conformational reporters. These studies revealed that the C-4 protons of methyl containing congeners (M-like) experience a 0.38-0.53 ppm upfield shift relative to the corresponding proton resonance in unmethylated congeners (A-like). These data suggest there are marked, methyl-induced differences in the solution conformations of A and M.

  14. Handheld Chem/Biosensor Using Extreme Conformational Changes in Designed Binding Proteins to Enhance Surface Plasmon Resonance (SPR)

    Science.gov (United States)

    2016-04-01

    characteristics similar to a random coil conformation. By increasing the solution ionic strength it is possible to screen the side chain charges and... characteristics of metallic thin films perforated with subwavelength-sized apertures, spawned the research field of metamaterials and anomalous transmission...Veldhoven, Netherlands). Following a post-exposure bake on a hotplate at 95 °C for 90 s, each wafer was developed in AZ®726 MIF (MicroChemicals GmbH

  15. Interdependence of coenzyme-induced conformational work and binding potential in yeast alcohol and porcine heart lactate dehydrogenases: a hydrogen-deuterium exchange study

    International Nuclear Information System (INIS)

    De Weck, Z.; Pande, J.; Kaegi, J.H.R.

    1987-01-01

    Binding of NAD coenzymes to yeast alcohol dehydrogenase (YADH) and porcine heart lactate dehydrogenase (PHLDH) was studied by hydrogen-deuterium exchange with the infrared technique. Conformational changes in the enzymes specific to the coenzymes and their fragments were observed, and the pH dependence of the exchange reaction shows that it conforms to the EX-2 scheme. In both YADH and PHLDH the magnitude of the conformational change as measured by exchange retardation is considerably larger for the NAD + than for NADH. Studies with coenzyme fragments like ADP-ribose, ADP, and AMP also highlight the lack of rigorous correlation between structural features such as charge and size and their influence on exchange behavior. Ternary complexes such as YADH-NAD + -pyrazole, PHLDH-NAD + -oxalate, and PHLDH-NADH-oxamate, which mimic the transition state, have a significantly more pronounced effect on exchange rates than the corresponding binary complexes. The outstanding feature of this study is the demonstration that in the binary enzyme-coenzyme complexes the more loosely bound NAD + is more effective in retarding exchange than the more firmly bound NADH. These differences are attributed to the unequal structural constraints exerted by the two coenzymes upon the enzymes, which translate to unequal expenditure of transconformational work in the formation of the two complexes. The opposing variation in the free energy of binding and the transconformational work expended can be viewed as an unequal partitioning of the net free energy gain resulting from the protein-ligand interaction into a binding term and that required for conformational change

  16. The Idea of Conformation in the Study of Systemic Socio-Economic Transformations

    Directory of Open Access Journals (Sweden)

    Olga Valentinovna Brizhak

    2016-12-01

    Full Text Available The author shows the idea of conformation at studying the issues of intracorporate structure, corporate capital and economic (productive relations in the context of specific systemic socio-economic transformations. The dynamism and depth of current changes makes reflect on their nature, their objective conditionality, their dependence on existing factors. The problems of systemic market reforms are projected to private transformations. They relate both to individual economic entities (firms, companies, corporations, and to individual regions and territories of the national economy. In such conditions the aims of economic system development are changing and being corrected, and the possibilities are being reestimated. In the process of reforming the Russian economy some of the borrowed elements were rejected as inadequate and socially unacceptable. The other part was modified and embedded in public life in the course of implementation, so that they often served the opposite purposes in comparison with those for which they were borrowed. The article reveals the mission of conformation as a seamless integration of this process into the context of systemic socio-economic reforms, ensuring the necessary proportionality of transformations, the prevention of arousing gaps that threaten the sustainable movement in the corporate sector and systemic organization of economic relations at the intra-corporate level. Core development of contradictions, sprouts of post-market relations, components of the traditional capitalist market organization in terms of socio-economic transformation of Russia have impact on the economic behavior of corporations and on the specifics of intracorporate relations and interests. The corporation’s behavior is always focused on the specifics of domestic relations, the stability of legal and political system, property rights protection, preservation of national culture, etc. The author carries out the present research on the

  17. NMR Studies of Protein Hydration and Protein-Ligand Interactions

    Science.gov (United States)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be

  18. Plasmon waveguide resonance spectroscopic evidence for differential binding of oxidized and reduced rhodobacter capsulatus cytochrome c(2) to the cytochrome bc(1) complex mediated by the conformation of the rieske iron-sulfur protein

    International Nuclear Information System (INIS)

    Devanathan, S.; Salamon, Z.; Tollin, G.; Fitch, J.C.; Meyer, T.E.; Berry, E.A.; Cusanovich, M.A.

    2007-01-01

    The dissociation constants for the binding of Rhodobacter capsulatus cytochrome c2 and its K93P mutant to the cytochrome bc1 complex embedded in a phospholipid bilayer were measured by plasmon waveguide resonance spectroscopy in the presence and absence of the inhibitor stigmatellin. The reduced form of cytochrome c2 strongly binds to reduced cytochrome bc1 (Kd = 0.02 M) but binds much more weakly to the oxidized form (Kd = 3.1 M). In contrast, oxidized cytochrome c2 binds to oxidized cytochrome bc1 in a biphasic fashion with Kd values of 0.11 and 0.58 M. Such a biphasic interaction is consistent with binding to two separate sites or conformations of oxidized cytochrome c2 and/or cytochrome bc1. However, in the presence of stigmatellin, we find that oxidized cytochrome c2 binds to oxidized cytochrome bc1 in a monophasic fashion with high affinity (Kd = 0.06 M) and reduced cytochrome c2 binds less strongly (Kd = 0.11 M) but ∼30-fold more tightly than in the absence of stigmatellin. Structural studies with cytochrome bc1, with and without the inhibitor stigmatellin, have led to the proposal that the Rieske protein is mobile, moving between the cytochrome b and cytochrome c1 components during turnover. In one conformation, the Rieske protein binds near the heme of cytochrome c1, while the cytochrome c2 binding site is also near the cytochrome c1 heme but on the opposite side from the Rieske site, where cytochrome c2 cannot directly interact with Rieske. However, the inhibitor, stigmatellin, freezes the Rieske protein iron-sulfur cluster in a conformation proximal to cytochrome b and distal to cytochrome c1. We conclude from this that the dual conformation of the Rieske protein is primarily responsible for biphasic binding of oxidized cytochrome c2 to cytochrome c1. This optimizes turnover by maximizing binding of the substrate, oxidized cytochrome c2, when the iron-sulfur cluster is proximal to cytochrome b and minimizing binding of the product, reduced cytochrome c

  19. Desulfurization of 2-thiouracil nucleosides: conformational studies of 4-pyrimidinone nucleosides.

    Science.gov (United States)

    Kraszewska, Karina; Kaczyńska, Iwona; Jankowski, Stefan; Karolak-Wojciechowska, Janina; Sochacka, Elzbieta

    2011-04-01

    4-Pyrimidinone ribofuranoside (H(2)o(4)U) and 4-pyrimidinone 2'-deoxyribofuranoside (dH(2)o(4)U) were synthesized by the oxidative desulfurization of parent 2-thiouracil nucleosides with m-chloroperbenzoic acid. The crystal structures of H(2)o(4)U and dH(2)o(4)U and their conformations in solution were determined and compared with corresponding 2-thiouracil and uracil nucleosides. The absence of a large 2-thiocarbonyl/2-carbonyl group in the nucleobase moiety results in C2'-endo puckering of the ribofuranose ring (S conformer) in the crystal structure of H(2)o(4)U, which is not typical of RNA nucleosides. Interestingly, the hydrogen bonding network in the crystals of dH(2)o(4)U stabilizes the sugar moiety conformation in the C3'-endo form (N conformer), rarely found in DNA nucleosides. In aqueous solution, dH(2)o(4)U reveals a similar population of the C2'-endo conformation (65%) to that of 2'-deoxy-2-thiouridine (62%), while the 62% population of the S conformer for H(2)o(4)U is significantly different from that of the parent 2-thiouridine, for which the N conformer is dominant (71%). Such a difference may be of biological importance, as the desulfurization process of natural tRNA 2-thiouridines may occur under conditions of oxidative stress in the cell and may influence the decoding process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Neural signatures of social conformity: A coordinate-based activation likelihood estimation meta-analysis of functional brain imaging studies.

    Science.gov (United States)

    Wu, Haiyan; Luo, Yi; Feng, Chunliang

    2016-12-01

    People often align their behaviors with group opinions, known as social conformity. Many neuroscience studies have explored the neuropsychological mechanisms underlying social conformity. Here we employed a coordinate-based meta-analysis on neuroimaging studies of social conformity with the purpose to reveal the convergence of the underlying neural architecture. We identified a convergence of reported activation foci in regions associated with normative decision-making, including ventral striatum (VS), dorsal posterior medial frontal cortex (dorsal pMFC), and anterior insula (AI). Specifically, consistent deactivation of VS and activation of dorsal pMFC and AI are identified when people's responses deviate from group opinions. In addition, the deviation-related responses in dorsal pMFC predict people's conforming behavioral adjustments. These are consistent with current models that disagreement with others might evoke "error" signals, cognitive imbalance, and/or aversive feelings, which are plausibly detected in these brain regions as control signals to facilitate subsequent conforming behaviors. Finally, group opinions result in altered neural correlates of valuation, manifested as stronger responses of VS to stimuli endorsed than disliked by others. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Membrane-bound conformation of M13 major coat protein : a structure validation through FRET-derived constraints

    NARCIS (Netherlands)

    Vos, W.L.; Koehorst, R.B.M.; Spruijt, R.B.; Hemminga, M.A.

    2005-01-01

    M13 major coat protein, a 50-amino-acid-long protein, was incorporated into DOPC/DOPG (80/20 molar ratio) unilamellar vesicles. Over 60% of all amino acid residues was replaced with cysteine residues, and the single cysteine mutants were labeled with the fluorescent label I-AEDANS. The coat protein

  2. Study on the Application of the Combination of TMD Simulation and Umbrella Sampling in PMF Calculation for Molecular Conformational Transitions

    Directory of Open Access Journals (Sweden)

    Qing Wang

    2016-05-01

    Full Text Available Free energy calculations of the potential of mean force (PMF based on the combination of targeted molecular dynamics (TMD simulations and umbrella samplings as a function of physical coordinates have been applied to explore the detailed pathways and the corresponding free energy profiles for the conformational transition processes of the butane molecule and the 35-residue villin headpiece subdomain (HP35. The accurate PMF profiles for describing the dihedral rotation of butane under both coordinates of dihedral rotation and root mean square deviation (RMSD variation were obtained based on the different umbrella samplings from the same TMD simulations. The initial structures for the umbrella samplings can be conveniently selected from the TMD trajectories. For the application of this computational method in the unfolding process of the HP35 protein, the PMF calculation along with the coordinate of the radius of gyration (Rg presents the gradual increase of free energies by about 1 kcal/mol with the energy fluctuations. The feature of conformational transition for the unfolding process of the HP35 protein shows that the spherical structure extends and the middle α-helix unfolds firstly, followed by the unfolding of other α-helices. The computational method for the PMF calculations based on the combination of TMD simulations and umbrella samplings provided a valuable strategy in investigating detailed conformational transition pathways for other allosteric processes.

  3. Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Emilio I.; Bueno-Alejo, Carlos J.; Noel, Christopher W.; Stamplecoskie, Kevin G. [Centre for Catalysis Research and Innovation, University of Ottawa, Department of Chemistry (Canada); Pacioni, Natalia L. [Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, INFIQC, Departamento de Quimica Organica (Argentina); Poblete, Horacio [Center for Bioinformatics and Molecular Simulations, Universidad de Talca (Chile); Scaiano, J. C., E-mail: tito@photo.chem.uottawa.ca [Centre for Catalysis Research and Innovation, University of Ottawa, Department of Chemistry (Canada)

    2013-01-15

    Thermally denatured human serum albumin interacts with {approx}3.0 nm spherical AgNP enhancing the fluorescence of Trp-214 at large protein/nanoparticle ratios. However, using native HSA, no changes in the emission were observed. The observation is likely due to differences between native and denatured protein packing resulting from protein corona formation. We have also found that NH{sub 2} blocking of the protein strongly affects the ability of the protein to protect AgNP from different salts/ions such as NaCl, PBS, Hank's buffer, Tris-HCl, MES, and DMEM. Additionally, AgNP can be readily prepared in aqueous solutions by a photochemical approach employing HSA as an in situ protecting agent. The role of the protein in this case is beyond that of protecting agent; thus, Ag{sup +} ions and I-2959 complexation within the protein structure also affects the efficiency of AgNP formation. Blocking NH{sub 2} in HSA modified the AgNP growth profile, surface plasmon band shape, and long-term stability suggesting that amine groups are directly involved in the formation and post-stabilization of AgNP. In particular, AgNP size and shape are extensively influenced by NH{sub 2} blocking, leading primarily to cubes and plates with sizes around 5-15 nm; in contrast, spherical monodisperse 4.0 nm AgNP are observed for native HSA. The nanoparticles prepared by this protocol are non-toxic in primary cells and have remarkable antibacterial properties. Finally, surface plasmon excitation of native HSA-AgNP promoted loss of protein conformation in just 5 min, suggesting that plasmon heating causes protein denaturation using continuous light sources such as commercial LED.

  4. Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization

    International Nuclear Information System (INIS)

    Alarcon, Emilio I.; Bueno-Alejo, Carlos J.; Noel, Christopher W.; Stamplecoskie, Kevin G.; Pacioni, Natalia L.; Poblete, Horacio; Scaiano, J. C.

    2013-01-01

    Thermally denatured human serum albumin interacts with ∼3.0 nm spherical AgNP enhancing the fluorescence of Trp-214 at large protein/nanoparticle ratios. However, using native HSA, no changes in the emission were observed. The observation is likely due to differences between native and denatured protein packing resulting from protein corona formation. We have also found that NH 2 blocking of the protein strongly affects the ability of the protein to protect AgNP from different salts/ions such as NaCl, PBS, Hank’s buffer, Tris–HCl, MES, and DMEM. Additionally, AgNP can be readily prepared in aqueous solutions by a photochemical approach employing HSA as an in situ protecting agent. The role of the protein in this case is beyond that of protecting agent; thus, Ag + ions and I-2959 complexation within the protein structure also affects the efficiency of AgNP formation. Blocking NH 2 in HSA modified the AgNP growth profile, surface plasmon band shape, and long-term stability suggesting that amine groups are directly involved in the formation and post-stabilization of AgNP. In particular, AgNP size and shape are extensively influenced by NH 2 blocking, leading primarily to cubes and plates with sizes around 5–15 nm; in contrast, spherical monodisperse 4.0 nm AgNP are observed for native HSA. The nanoparticles prepared by this protocol are non-toxic in primary cells and have remarkable antibacterial properties. Finally, surface plasmon excitation of native HSA-AgNP promoted loss of protein conformation in just 5 min, suggesting that plasmon heating causes protein denaturation using continuous light sources such as commercial LED.

  5. Citrate synthase proteins in extremophilic organisms: Studies within a structure-based model

    International Nuclear Information System (INIS)

    Różycki, Bartosz; Cieplak, Marek

    2014-01-01

    We study four citrate synthase homodimeric proteins within a structure-based coarse-grained model. Two of these proteins come from thermophilic bacteria, one from a cryophilic bacterium and one from a mesophilic organism; three are in the closed and two in the open conformations. Even though the proteins belong to the same fold, the model distinguishes the properties of these proteins in a way which is consistent with experiments. For instance, the thermophilic proteins are more stable thermodynamically than their mesophilic and cryophilic homologues, which we observe both in the magnitude of thermal fluctuations near the native state and in the kinetics of thermal unfolding. The level of stability correlates with the average coordination number for amino acid contacts and with the degree of structural compactness. The pattern of positional fluctuations along the sequence in the closed conformation is different than in the open conformation, including within the active site. The modes of correlated and anticorrelated movements of pairs of amino acids forming the active site are very different in the open and closed conformations. Taken together, our results show that the precise location of amino acid contacts in the native structure appears to be a critical element in explaining the similarities and differences in the thermodynamic properties, local flexibility, and collective motions of the different forms of the enzyme

  6. Conformational entropic maps of functional coupling domains in GPCR activation: A case study with beta2 adrenergic receptor

    Science.gov (United States)

    Liu, Fan; Abrol, Ravinder; Goddard, William, III; Dougherty, Dennis

    2014-03-01

    Entropic effect in GPCR activation is poorly understood. Based on the recent solved structures, researchers in the GPCR structural biology field have proposed several ``local activating switches'' that consisted of a few number of conserved residues, but have long ignored the collective dynamical effect (conformational entropy) of a domain comprised of an ensemble of residues. A new paradigm has been proposed recently that a GPCR can be viewed as a composition of several functional coupling domains, each of which undergoes order-to-disorder or disorder-to-order transitions upon activation. Here we identified and studied these functional coupling domains by comparing the local entropy changes of each residue between the inactive and active states of the β2 adrenergic receptor from computational simulation. We found that agonist and G-protein binding increases the heterogeneity of the entropy distribution in the receptor. This new activation paradigm and computational entropy analysis scheme provides novel ways to design functionally modified mutant and identify new allosteric sites for GPCRs. The authors thank NIH and Sanofi for funding this project.

  7. Conformational analysis and vibrational studies of ethylenediamine-d4, using DFT method

    International Nuclear Information System (INIS)

    Catikkas, B.

    2010-01-01

    In this work, conformational analysis and quantum chemical calculations of ethylenediamine-d4 were carried out. The geometry optimization and the geometric parameters (bond length, bond angle and tortion angle) were calculated. The Infrared and Raman frequencies of fundamental modes of the most stable conformer were determined. Calculations were carried out by using the MPW1PW91/6-311+G(d,p) method and Gaussian03 and GaussView3.0 programs. Populations of the conformers was calculated. Vibrational assignments of the title molecule were calculated by using Scaled Quantum Mechanical (SQM) analysis. Calculated values were compared with the experimental ones.

  8. AFM study of adsorption of protein A on a poly(dimethylsiloxane) surface

    International Nuclear Information System (INIS)

    Yu Ling; Lu Zhisong; Gan Ye; Liu Yingshuai; Li, C M

    2009-01-01

    In this paper, the morphology and kinetics of adsorption of protein A on a PDMS surface is studied by AFM. The results of effects of pH, protein concentration and contact time of the adsorption reveal that the morphology of adsorbed protein A is significantly affected by pH and adsorbed surface concentration, in which the pH away from the isoelectric point (IEP) of protein A could produce electrical repulsion to change the protein conformation, while the high adsorbed surface protein volume results in molecular networks. Protein A can form an adsorbed protein film on PDMS with a maximum volume of 2.45 x 10 -3 μm 3 . This work enhances our fundamental understanding of protein A adsorption on PDMS, a frequently used substrate component in miniaturized immunoassay devices.

  9. Proton NMR studies of Cucurbita maxima trypsin inhibitors: Evidence for pH-dependent conformational change and his25 - try27 interaction

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamoorthi, R.; Chanlan Sun Lin; Yuxi Gong (Kansas State Univ., Manhattan (United States)); VanderVelde, D. (Univ. of Kansas, Lawrence (United States)); Hahn, K. (Univ. of Colorado, Denver (United States))

    1992-01-28

    A pH-dependent His25-Tyr27 interaction was demonstrated in the case of Cucurbita maxima trypsin inhibitors (CMTI-I and CMTI-III) by means of nuclear magnetic resonance (NMR) spectroscopy. pH titration, line widths, peak shapes, deuterium exchange kinetics, and two-dimensional nuclear Overhauser effect spectroscopy (NOESY) were employed to characterize a conformational change involving Tyr27, which was shown to be triggered by deprotonation of His25 around pH 6. A hydrogen bond is proposed to be formed between N{sub {epsilon}} of His25 and OH of Tyr27, as a distance between the atoms, His25 N{epsilon} and Tyr25 OH, of 3.02 {angstrom} is consistent with a model built with NOE-derived distance constraints. The presently characterized relative orientations of His25 and Tyr27 are of functional significance, as these residues make contact with the enzyme in the enzyme-inhibitor complex. Furthermore, trypsin assay and inhibitor-binding studies showed that conformations of trypsin and the squash inhibitor complex. Furthermore, trypsin assay and inhibitor-binding studies showed that conformations of trypsin and the squash inhibitor were functionally relevant only in the pH range 6-8. The pK{sub a} of His25 was determined and found to be influenced by Glu9/Lys substitution and by the hydrolysis of the reactive-site peptide bond between Arg5 and Ile6. As these sites are located far (>10 {angstrom}) from His25, the results point out conformational changes that are propagated to a distant site in the protein molecule.

  10. Conformational control of the binding of the transactivation domain of the MLL protein and c-Myb to the KIX domain of CREB.

    Directory of Open Access Journals (Sweden)

    Elif Nihal Korkmaz

    Full Text Available The KIX domain of CBP is a transcriptional coactivator. Concomitant binding to the activation domain of proto-oncogene protein c-Myb and the transactivation domain of the trithorax group protein mixed lineage leukemia (MLL transcription factor lead to the biologically active ternary MLL∶KIX∶c-Myb complex which plays a role in Pol II-mediated transcription. The binding of the activation domain of MLL to KIX enhances c-Myb binding. Here we carried out molecular dynamics (MD simulations for the MLL∶KIX∶c-Myb ternary complex, its binary components and KIX with the goal of providing a mechanistic explanation for the experimental observations. The dynamic behavior revealed that the MLL binding site is allosterically coupled to the c-Myb binding site. MLL binding redistributes the conformational ensemble of KIX, leading to higher populations of states which favor c-Myb binding. The key element in the allosteric communication pathways is the KIX loop, which acts as a control mechanism to enhance subsequent binding events. We tested this conclusion by in silico mutations of loop residues in the KIX∶MLL complex and by comparing wild type and mutant dynamics through MD simulations. The loop assumed MLL binding conformation similar to that observed in the KIX∶c-Myb state which disfavors the allosteric network. The coupling with c-Myb binding site faded, abolishing the positive cooperativity observed in the presence of MLL. Our major conclusion is that by eliciting a loop-mediated allosteric switch between the different states following the binding events, transcriptional activation can be regulated. The KIX system presents an example how nature makes use of conformational control in higher level regulation of transcriptional activity and thus cellular events.

  11. Cholesterol-induced conformational changes in the sterol-sensing domain of the Scap protein suggest feedback mechanism to control cholesterol synthesis.

    Science.gov (United States)

    Gao, Yansong; Zhou, Yulian; Goldstein, Joseph L; Brown, Michael S; Radhakrishnan, Arun

    2017-05-26

    Scap is a polytopic protein of endoplasmic reticulum (ER) membranes that transports sterol regulatory element-binding proteins to the Golgi complex for proteolytic activation. Cholesterol accumulation in ER membranes prevents Scap transport and decreases cholesterol synthesis. Previously, we provided evidence that cholesterol inhibition is initiated when cholesterol binds to loop 1 of Scap, which projects into the ER lumen. Within cells, this binding causes loop 1 to dissociate from loop 7, another luminal Scap loop. However, we have been unable to demonstrate this dissociation when we added cholesterol to isolated complexes of loops 1 and 7. We therefore speculated that the dissociation requires a conformational change in the intervening polytopic sequence separating loops 1 and 7. Here we demonstrate such a change using a protease protection assay in sealed membrane vesicles. In the absence of cholesterol, trypsin or proteinase K cleaved cytosolic loop 4, generating a protected fragment that we visualized with a monoclonal antibody against loop 1. When cholesterol was added to these membranes, cleavage in loop 4 was abolished. Because loop 4 is part of the so-called sterol-sensing domain separating loops 1 and 7, these results support the hypothesis that cholesterol binding to loop 1 alters the conformation of the sterol-sensing domain. They also suggest that this conformational change helps transmit the cholesterol signal from loop 1 to loop 7, thereby allowing separation of the loops and facilitating the feedback inhibition of cholesterol synthesis. These insights suggest a new structural model for cholesterol-mediated regulation of Scap activity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. General Conformity

    Science.gov (United States)

    The General Conformity requirements ensure that the actions taken by federal agencies in nonattainment and maintenance areas do not interfere with a state’s plans to meet national standards for air quality.

  13. Study of the chain conformation of thermotropic nematic main chain polyesters

    Science.gov (United States)

    Li, M. H.; Brûlet, A.; Cotton, J. P.; Davidson, P.; Strazielle, C.; Keller, P.

    1994-10-01

    The conformation of main chain mesomorphic polyesters is studied by small angle neutron scattering (SANS) in the isotropic and in the nematic phases, by using mixtures of deuterated and undeuterated polymers. Particular attention is given to neglect the transesterification effects occurring mainly at high temperature for these LC polymers. In the isotropic phase, despite the presence of long rigid mesogenic groups, the LC polyester chains have a Gaussian conformation shown by the variation of the radius of gyration as a function of the molecular weight. This result is confirmed from the scattering variation in the intermediate range of the scattering vector. In the nematic phase, the SANS data are well fitted to a model of cylinder, in which the main chain polymer is confined. In the unoriented phase, the measurements in the intermediate range give the values of the radii of cylinders : they lie in between 10 Å and 19 Å depending on the degree of polymerization of chains. In the oriented nematic phase, the scattering patterns are highly anisotropic : they correspond to very long, thin and well-oriented cylinders. We have calculated the fully extended chain lengths using for the monomer length that measured in situ by X-ray diffraction. Then the comparison of this length with the measured height of the cylinders gives the existence of hairpins and their number per chain. For the short chain, the conformation is almost completely elongated in the nematic direction, whereas hairpin defects appear in longer chains. Their number decreases slightly with decreasing temperature. The orientational fluctuations of cylinders relatively to the nematic director are weak as shown from the high values of their order parameter (P_2 > 0.9). These results are discussed for two spacer lengths as a function of the molecular weight and of the temperature. La conformation de polyesters linéaires mésomorphes est étudiée par diffusion de neutrons aux petits angles (DNPA) dans les

  14. Conformal Infinity

    OpenAIRE

    Frauendiener, J?rg

    2000-01-01

    The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, 'conformal infinity' is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory...

  15. A treatment planning study comparing whole breast radiation therapy against conformal, IMRT and tomotherapy for accelerated partial breast irradiation

    International Nuclear Information System (INIS)

    Oliver, Mike; Chen, Jeff; Wong, Eugene; Van Dyk, Jake; Perera, Francisco

    2007-01-01

    Purpose and background: Conventional early breast cancer treatment consists of a lumpectomy followed by whole breast radiation therapy. Accelerated partial breast irradiation (APBI) is an investigational approach to post-lumpectomy radiation for early breast cancer. The purpose of this study is to compare four external beam APBI techniques, including tomotherapy, with conventional whole breast irradiation for their radiation conformity index, dose homogeneity index, and dose to organs at risk. Methods and materials: Small-field tangents, three-dimensional conformal radiation therapy, intensity-modulated radiation therapy and helical tomotherapy were compared for each of 15 patients (7 right, 8 left). One radiation conformity and two dose homogeneity indices were used to evaluate the dose to the target. The mean dose to organs at risk was also evaluated. Results: All proposed APBI techniques improved the conformity index significantly over whole breast tangents while maintaining dose homogeneity and without a significant increase in dose to organs at risk. Conclusion: The four-field IMRT plan produced the best dosimetric results; however this technique would require appropriate respiratory motion management. An alternative would be to use a four-field conformal technique that is less sensitive to the effects of respiratory motion

  16. Dynamics and diffusive-conformational coupling in polymer bulk samples and surfaces: a molecular dynamics study

    International Nuclear Information System (INIS)

    Vree, C; Mayr, S G

    2010-01-01

    The impact of free surfaces on the mobility and conformational fluctuations of model polymer chains is investigated with the help of classical molecular dynamics simulations over a broad temperature range. Below a critical temperature, T*, similar to the critical temperature of the mode coupling theory, the center-of-mass displacements and temporal fluctuations of the radius of gyration of individual chains-as a fingerprint of structural reconfigurations-reveal a strong enhancement close to surfaces, while this effect diminishes with increasing temperature and observation time. Interpreting conformational fluctuations as a random walk in conformational space, identical activation enthalpies for structural reconfigurations and diffusion are obtained within the error bars in the bulk and at the surfaces, thus indicating a coupling of diffusive and conformational dynamics.

  17. Genome wide association studies for body conformation traits in the Chinese Holstein cattle population

    DEFF Research Database (Denmark)

    Wu, Xiaoping; Fang, Ming; Liu, Lin

    2013-01-01

    .Results: The Illumina BovineSNP50 BeadChip was used to identify single nucleotide polymorphisms (SNPs) that are associated with body conformation traits. A least absolute shrinkage and selection operator (LASSO) was applied to detect multiple SNPs simultaneously for 29 body conformation traits with 1,314 Chinese...... Holstein cattle and 52,166 SNPs. Totally, 59 genome-wide significant SNPs associated with 26 conformation traits were detected by genome-wide association analysis; five SNPs were within previously reported QTL regions (Animal Quantitative Trait Loci (QTL) database) and 11 were very close to the reported...... SNPs. Twenty-two SNPs were located within annotated gene regions, while the remainder were 0.6-826 kb away from known genes. Some of the genes had clear biological functions related to conformation traits. By combining information about the previously reported QTL regions and the biological functions...

  18. Conformational plasticity of the catalytic subunit of protein kinase CK2 and its consequences for regulation and drug design

    DEFF Research Database (Denmark)

    Niefind, Karsten; Issinger, Olaf-Georg

    2010-01-01

    well to the constitutive activity of the enzyme, meaning, its independence from phosphorylation or other characteristic control factors. Most CK2alpha structures are based on the enzyme from Zea mays, supplemented by an increasing number of human CK2alpha structures. In the latter a surprising...... plasticity of important ATP-binding elements - the interdomain hinge region and the glycine-rich loop - was discovered. In fully active CK2alpha the hinge region is open and does not anchor the ATP ribose, but alternatively it can adopt a closed conformation, form hydrogen bonds to the ribose moiety and thus...

  19. DICOM Standard Conformance in Veterinary Medicine in Germany: a Survey of Imaging Studies in Referral Cases.

    Science.gov (United States)

    Brühschwein, Andreas; Klever, Julius; Wilkinson, Tom; Meyer-Lindenberg, Andrea

    2018-02-01

    In 2016, the recommendations of the DICOM Standards Committee for the use of veterinary identification DICOM tags had its 10th anniversary. The goal of our study was to survey veterinary DICOM standard conformance in Germany regarding the specific identification tags veterinarians should use in veterinary diagnostic imaging. We hypothesized that most veterinarians in Germany do not follow the guidelines of the DICOM Standards Committee. We analyzed the metadata of 488 imaging studies of referral cases from 115 different veterinary institutions in Germany by computer-aided DICOM header readout. We found that 25 (5.1%) of the imaging studies fully complied with the "veterinary DICOM standard" in this survey. The results confirmed our hypothesis that the recommendations of the DICOM Standards Committee for the consistent and advantageous use of veterinary identification tags have found minimal acceptance amongst German veterinarians. DICOM does not only enable connectivity between machines, DICOM also improves communication between veterinarians by sharing correct and valuable metadata for better patient care. Therefore, we recommend that lecturers, universities, societies, authorities, vendors, and other stakeholders should increase their effort to improve the spread of the veterinary DICOM standard in the veterinary world.

  20. MOLECULAR DOCKING AND DYNAMICS STUDIES ON THE PROTEIN-PROTEIN INTERACTIONS OF ELECTRICALLY ACTIVE PILIN NANOWIRES OF GEOBACTER SULFURREDUCENS.

    Directory of Open Access Journals (Sweden)

    D. Jeya Sundara Sharmila1 *

    2017-06-01

    Full Text Available Molecular interactions are key aspects in biological recognitions applicable in nano/micro systems. Bacterial nanowires are pilus filament based structures that can conduct electrons. The transport of electron is proposed to be facilitated by filamentous fibers made up of polymeric assemblies of proteins called pilin. Geobacter sulfurreducens is capable of delivering electrons through extracellular electron transport (EET by employing conductive nanowires, which are pilin proteins composed of type IV subunit PilA. Protein-protein interactions play an important role in the stabilization of the pilin nanowire assembly complex and it contains transmembrane (TM domain. In current study, protein-protein docking and multiple molecular dynamic (MD simulations were performed to understand the binding mode of pilin nanowires. The MD result explains the conformational behavior and folding of pilin nanowires in water environment in different time scale duration 20, 5, 5, 10 and 20ns (total of 60ns. Direct hydrogen bonds and water mediated hydrogen bonds that play a crucial role during the simulation were investigated. The conformational state, folding, end-toend distance profile and hydrogen bonding behavior had indicated that the Geobacter sulfurreducens pilin nanowires have electrical conductivity properties.

  1. A study of the conformation and stability of nitroxide free radicals; Etude de la conformation et de la stabilite de radicaux libres nitroxydes

    Energy Technology Data Exchange (ETDEWEB)

    Briere, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-03-01

    The first part of this study is an application of nuclear magnetic resonance to the determination of the sign and magnitude of the long range nuclear-electron spin-spin couplings in the free radical nitroxide derived from piperidine. It has been shown that the coupling constants of the protons {gamma} to the nitrogen atom have a pronounced spatial dependence as do the protons in the {beta} position, a point which has not been brought out by previous investigations. Conformational analysis of these compounds has been carried out by measurement of the effect of temperature on the NMR spectra at 310 MHz. The synthesis of di-t-Bu nitroxide labelled with C{sup 13} in the {alpha}-position made possible the unambiguous determination of the corresponding {sup 13}C nuclear-electron spin-spin coupling constant, a parameter which had not previously been measured. The coupling constants measured in the 2,2,6,6-tetramethyl piperidine series could then be attributed to the {sup 13}C atoms in the {beta}-position and their variation related to the conformations of the heterocycles. This constitutes the second part of the work reported here. The final section is devoted to a study of the decomposition of an unstable nitroxide having a hydrogen atom in the p-position. This decomposition is bimolecular and the primary isotope effect shows that the rupture. of the C-H bond is involved. From this one can conclude that a nitroxide is stable when the different groups attached to the nitrogen atom cannot give rise to a decomposition either intra molecularly, if the molecular geometry is suitable, or inter molecularly by dimerisation through attack on a different center of a neighbouring molecule thus leading to a fragmentation or a disproportionation. (author) [French] La premiere partie est une application de la resonance magnetique nucleaire a la determination du signe et de la grandeur des couplages a longue distance dans des radicaux libres nitroxydes piperidiniques. Il est montre que

  2. On New Families of Integrals in Analytical Studies of Superconductors within the Conformal Transformation Method

    Directory of Open Access Journals (Sweden)

    Ryszard Gonczarek

    2015-01-01

    Full Text Available We show that, by applying the conformal transformation method, strongly correlated superconducting systems can be discussed in terms of the Fermi liquid with a variable density of states function. Within this approach, it is possible to formulate and carry out purely analytical study based on a set of fundamental equations. After presenting the mathematical structure of the s-wave superconducting gap and other quantitative characteristics of superconductors, we evaluate and discuss integrals inherent in fundamental equations describing superconducting systems. The results presented here extend the approach formulated by Abrikosov and Maki, which was restricted to the first-order expansion. A few infinite families of integrals are derived and allow us to express the fundamental equations by means of analytical formulas. They can be then exploited in order to find quantitative characteristics of superconducting systems by the method of successive approximations. We show that the results can be applied in studies of high-Tc superconductors and other superconducting materials of the new generation.

  3. Modularity in protein structures: study on all-alpha proteins.

    Science.gov (United States)

    Khan, Taushif; Ghosh, Indira

    2015-01-01

    Modularity is known as one of the most important features of protein's robust and efficient design. The architecture and topology of proteins play a vital role by providing necessary robust scaffolds to support organism's growth and survival in constant evolutionary pressure. These complex biomolecules can be represented by several layers of modular architecture, but it is pivotal to understand and explore the smallest biologically relevant structural component. In the present study, we have developed a component-based method, using protein's secondary structures and their arrangements (i.e. patterns) in order to investigate its structural space. Our result on all-alpha protein shows that the known structural space is highly populated with limited set of structural patterns. We have also noticed that these frequently observed structural patterns are present as modules or "building blocks" in large proteins (i.e. higher secondary structure content). From structural descriptor analysis, observed patterns are found to be within similar deviation; however, frequent patterns are found to be distinctly occurring in diverse functions e.g. in enzymatic classes and reactions. In this study, we are introducing a simple approach to explore protein structural space using combinatorial- and graph-based geometry methods, which can be used to describe modularity in protein structures. Moreover, analysis indicates that protein function seems to be the driving force that shapes the known structure space.

  4. Conformal Gravity

    International Nuclear Information System (INIS)

    Hooft, G.

    2012-01-01

    The dynamical degree of freedom for the gravitational force is the metric tensor, having 10 locally independent degrees of freedom (of which 4 can be used to fix the coordinate choice). In conformal gravity, we split this field into an overall scalar factor and a nine-component remainder. All unrenormalizable infinities are in this remainder, while the scalar component can be handled like any other scalar field such as the Higgs field. In this formalism, conformal symmetry is spontaneously broken. An imperative demand on any healthy quantum gravity theory is that black holes should be described as quantum systems with micro-states as dictated by the Hawking-Bekenstein theory. This requires conformal symmetry that may be broken spontaneously but not explicitly, and this means that all conformal anomalies must cancel out. Cancellation of conformal anomalies yields constraints on the matter sector as described by some universal field theory. Thus black hole physics may eventually be of help in the construction of unified field theories. (author)

  5. Conformal Tachyons

    CERN Document Server

    Tomaschitz, R

    2000-01-01

    We study tachyons conformally coupled to the background geometry of a Milne universe. The causality of superluminal signal transfer is scrutinized in this context. The cosmic time of the comoving frame determines a distinguished time order for events connected by superluminal signals. An observer can relate his rest frame to the galaxy frame, and compare so the time order of events in his proper time to the cosmic time order. All observers can in this way arrive at identical conclusions on the causality of events connected by superluminal signals. An unambiguous energy concept for tachyonic rays is defined by means of the cosmic time of the comoving reference frame, without resorting to an antiparticle interpretation. On that basis we give an explicit proof that no signals can be sent into the past of observers. Causality violating signals are energetically forbidden, as they would have negative energy in the rest frame of the emitting observer. If an observer emits a superluminal signal, the tachyonic respon...

  6. Conformational studies of peptides representing a segment of TM7 from Vo-H+-V-ATPase in SDS micelles

    NARCIS (Netherlands)

    Duarte, A.M.; Jong, de E.R.; Koehorst, R.B.M.; Hemminga, M.A.

    2010-01-01

    The conformation of a transmembrane peptide, sMTM7, encompassing the cytoplasmic hemi-channel domain of the seventh transmembrane section of subunit a from V-ATPase from Saccharomyces cerevisiae solubilized in SDS solutions was studied by circular dichroism (CD) spectroscopy and fluorescence

  7. Dosimetry study on the conventional and three dimensional conformal radiation treatment planning protocols for rectal cancer

    International Nuclear Information System (INIS)

    Cai Yong; He Yuxiang; Han Shukui; Wu Hao; Gong Jian; Xu Bo

    2007-01-01

    Objective: To compare the dose distribution of clinical target volume (CTV), in normal tissues and organs for patients with rectal cancer on the conventional radiotherapy (2D) and three dimension- al conformal radiation treatment (3DCRT). Methods: The CT image data of 36 rectal cancer patients treated with 3DCRT were studied. The CTV, small bowel, colon, bladder, pelvic bone marrow, and femoral head and neck were contoured on consecutive axial slices of CT images. Two 3DCRT and three conventional treatment planning protocols were simulated using three dimensional treatment planning system (CMS Focus 2.31), were defined as 3D-3, 3D-4, 2D-2, 2D-3, 2D-4. The difference of five treatment planning protocols on the CTV and normal structure by analysis of dose-volume histograms (DVHs) were compared. Results: The D 95 and V 95 of these five protocols all exceeded 97%. The conformity index(CI) of 3D was obviously larger than that of 2D protocol. The dose inhomogeneity(DI) in 4 DCRT was less than that of 3 DCRT. The 3D as compared with the 2D, significantly reduced the mean dose of 45 Gy to the small bowel and colon. The 3D-3 as compared with the 2D-3, the 3D-4 as compared with the 2D-4, the mean dose of small bowel and colon was reduced by 28.5% and 25.7%, respectively. The 3D-3 as compared with the 2D-2, the 3D-3 as compared with the 2D-3 and the 3D4 as compared with the 2D-4, the percentage volume of small bowel and colon which received 45 Gy was reduced by 80.8% , 51.1% and 54.7% , respectively. Either the mean dose, or the percentage volume receiving 35 Gy and 45 Gy to the pelvic bone and bladder, the 3D planning protocols had advanage over the 2D planning protocols. The V 45 of bladder in 2D-2 planning proto- col was the highest in all planning protocols, exceeding 98%, but the highest V 45 of bladder was only 50% in the other planning protocols. Conclusions: Even though the difference in pelvic CTV of rectal cancer patients between the conventional radiotherapy and 3

  8. Native Alanine Substitution in the Glycine Hinge Modulates Conformational Flexibility of Heme Nitric Oxide/Oxygen (H-NOX) Sensing Proteins.

    Science.gov (United States)

    Hespen, Charles W; Bruegger, Joel J; Guo, Yirui; Marletta, Michael A

    2018-06-15

    Heme nitric oxide/oxygen sensing (H-NOX) domains are direct NO sensors that regulate a variety of biological functions in both bacteria and eukaryotes. Previous work on H-NOX proteins has shown that upon NO binding, a conformational change occurs along two glycine residues on adjacent helices (termed the glycine hinge). Despite the apparent importance of the glycine hinge, it is not fully conserved in all H-NOX domains. Several H-NOX sensors from the family Flavobacteriaceae contain a native alanine substitution in one of the hinge residues. In this work, the effect of the increased steric bulk within the Ala-Gly hinge on H-NOX function was investigated. The hinge in Kordia algicida OT-1 ( Ka H-NOX) is composed of A71 and G145. Ligand-binding properties and signaling function for this H-NOX were characterized. The variant A71G was designed to convert the hinge region of Ka H-NOX to the typical Gly-Gly motif. In activity assays with its cognate histidine kinase (HnoK), the wild type displayed increased signal specificity compared to A71G. Increasing titrations of unliganded A71G gradually inhibits HnoK autophosphorylation, while increasing titrations of unliganded wild type H-NOX does not inhibit HnoK. Crystal structures of both wild type and A71G Ka H-NOX were solved to 1.9 and 1.6 Å, respectively. Regions of H-NOX domains previously identified as involved in protein-protein interactions with HnoK display significantly higher b-factors in A71G compared to wild-type H-NOX. Both biochemical and structural data indicate that the hinge region controls overall conformational flexibility of the H-NOX, affecting NO complex formation and regulation of its HnoK.

  9. Two global conformation states of a novel NAD(P) reductase like protein of the thermogenic appendix of the Sauromatum guttatum inflorescence.

    Science.gov (United States)

    Skubatz, Hanna; Howald, William N

    2013-06-01

    A novel NAD(P) reductase like protein (RL) belonging to a class of reductases involved in phenylpropanoid synthesis was previously purified to homogeneity from the Sauromatum guttatum appendix. The Sauromatum appendix raises its temperature above ambient temperature to ~30 °C on the day of inflorescence opening (D-day). Changes in the charge state distribution of the protein in electrospray ionization-mass spectrometry spectra were observed during the development of the appendix. RL adopted two conformations, state A (an extended state) that appeared before heat-production (D - 4 to D - 2), and state B (a compact state) that began appearing on D - 1 and reached a maximum on D-day. RL in healthy leaves of Arabidopsis is present in state A, whereas in thermogenic sporophylls of male cones of Encephalartos ferox is present in state B. These conformational changes strongly suggest an involvement of RL in heat-production. The biophysical properties of this protein are remarkable. It is self-assembled in aqueous solutions into micrometer sizes of organized morphologies. The assembly produces a broad range of cyclic and linear morphologies that resemble micelles, rods, lamellar micelles, as well as vesicles. The assemblies could also form network structures. RL molecules entangle with each other and formed branched, interconnected networks. These unusual assemblies suggest that RL is an oligomer, and its oligomerization can provide additional information needed for thermoregulation. We hypothesize that state A controls the plant basal temperature and state B allows a shift in the temperature set point to above ambient temperature.

  10. Conversion of functionally undefined homopentameric protein PbaA into a proteasome activator by mutational modification of its C-terminal segment conformation.

    Science.gov (United States)

    Yagi-Utsumi, Maho; Sikdar, Arunima; Kozai, Toshiya; Inoue, Rintaro; Sugiyama, Masaaki; Uchihashi, Takayuki; Yagi, Hirokazu; Satoh, Tadashi; Kato, Koichi

    2018-01-01

    Recent bioinformatic analyses identified proteasome assembly chaperone-like proteins, PbaA and PbaB, in archaea. PbaB forms a homotetramer and functions as a proteasome activator, whereas PbaA does not interact with the proteasome despite the presence of an apparent C-terminal proteasome activation motif. We revealed that PbaA forms a homopentamer predominantly in the closed conformation with its C-terminal segments packed against the core domains, in contrast to the PbaB homotetramer with projecting C-terminal segments. This prompted us to create a novel proteasome activator based on a well-characterized structural framework. We constructed a panel of chimeric proteins comprising the homopentameric scaffold of PbaA and C-terminal segment of PbaB and subjected them to proteasome-activating assays as well as small-angle X-ray scattering and high-speed atomic force microscopy. The results indicated that the open conformation and consequent proteasome activation activity could be enhanced by replacement of the crystallographically disordered C-terminal segment of PbaA with the corresponding disordered segment of PbaB. Moreover, these effects can be produced just by incorporating two glutamate residues into the disordered C-terminal segment of PbaA, probably due to electrostatic repulsion among the negatively charged segments. Thus, we successfully endowed a functionally undefined protein with proteasome-activating activity by modifying its C-terminal segment. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Coevolution study of mitochondria respiratory chain proteins: toward the understanding of protein--protein interaction.

    Science.gov (United States)

    Yang, Ming; Ge, Yan; Wu, Jiayan; Xiao, Jingfa; Yu, Jun

    2011-05-20

    Coevolution can be seen as the interdependency between evolutionary histories. In the context of protein evolution, functional correlation proteins are ever-present coordinated evolutionary characters without disruption of organismal integrity. As to complex system, there are two forms of protein--protein interactions in vivo, which refer to inter-complex interaction and intra-complex interaction. In this paper, we studied the difference of coevolution characters between inter-complex interaction and intra-complex interaction using "Mirror tree" method on the respiratory chain (RC) proteins. We divided the correlation coefficients of every pairwise RC proteins into two groups corresponding to the binary protein--protein interaction in intra-complex and the binary protein--protein interaction in inter-complex, respectively. A dramatical discrepancy is detected between the coevolution characters of the two sets of protein interactions (Wilcoxon test, p-value = 4.4 × 10(-6)). Our finding reveals some critical information on coevolutionary study and assists the mechanical investigation of protein--protein interaction. Furthermore, the results also provide some unique clue for supramolecular organization of protein complexes in the mitochondrial inner membrane. More detailed binding sites map and genome information of nuclear encoded RC proteins will be extraordinary valuable for the further mitochondria dynamics study. Copyright © 2011. Published by Elsevier Ltd.

  12. Rational design and validation of an anti-protein kinase C active-state specific antibody based on conformational changes.

    Science.gov (United States)

    Pena, Darlene Aparecida; Andrade, Victor Piana de; Silva, Gabriela Ávila Fernandes; Neves, José Ivanildo; Oliveira, Paulo Sergio Lopes de; Alves, Maria Julia Manso; Devi, Lakshmi A; Schechtman, Deborah

    2016-02-25

    Protein kinase C (PKC) plays a regulatory role in key pathways in cancer. However, since phosphorylation is a step for classical PKC (cPKC) maturation and does not correlate with activation, there is a lack of tools to detect active PKC in tissue samples. Here, a structure-based rational approach was used to select a peptide to generate an antibody that distinguishes active from inactive cPKC. A peptide conserved in all cPKCs, C2Cat, was chosen since modeling studies based on a crystal structure of PKCβ showed that it is localized at the interface between the C2 and catalytic domains of cPKCs in an inactive kinase. Anti-C2Cat recognizes active cPKCs at least two-fold better than inactive kinase in ELISA and immunoprecipitation assays, and detects the temporal dynamics of cPKC activation upon receptor or phorbol stimulation. Furthermore, the antibody is able to detect active PKC in human tissue. Higher levels of active cPKC were observed in the more aggressive triple negative breast cancer tumors as compared to the less aggressive estrogen receptor positive tumors. Thus, this antibody represents a reliable, hitherto unavailable and a valuable tool to study PKC activation in cells and tissues. Similar structure-based rational design strategies can be broadly applied to obtain active-state specific antibodies for other signal transduction molecules.

  13. SLITHER: a web server for generating contiguous conformations of substrate molecules entering into deep active sites of proteins or migrating through channels in membrane transporters.

    Science.gov (United States)

    Lee, Po-Hsien; Kuo, Kuei-Ling; Chu, Pei-Ying; Liu, Eric M; Lin, Jung-Hsin

    2009-07-01

    Many proteins use a long channel to guide the substrate or ligand molecules into the well-defined active sites for catalytic reactions or for switching molecular states. In addition, substrates of membrane transporters can migrate to another side of cellular compartment by means of certain selective mechanisms. SLITHER (http://bioinfo.mc.ntu.edu.tw/slither/or http://slither.rcas.sinica.edu.tw/) is a web server that can generate contiguous conformations of a molecule along a curved tunnel inside a protein, and the binding free energy profile along the predicted channel pathway. SLITHER adopts an iterative docking scheme, which combines with a puddle-skimming procedure, i.e. repeatedly elevating the potential energies of the identified global minima, thereby determines the contiguous binding modes of substrates inside the protein. In contrast to some programs that are widely used to determine the geometric dimensions in the ion channels, SLITHER can be applied to predict whether a substrate molecule can crawl through an inner channel or a half-channel of proteins across surmountable energy barriers. Besides, SLITHER also provides the list of the pore-facing residues, which can be directly compared with many genetic diseases. Finally, the adjacent binding poses determined by SLITHER can also be used for fragment-based drug design.

  14. Conformational study of bovine lactoferricin in membrane-micking conditions by molecular dynamics simulation and circular dichroism.

    Science.gov (United States)

    Daidone, Isabella; Magliano, Alessandro; Di Nola, Alfredo; Mignogna, Giuseppina; Clarkson, Matilda Manuela; Lizzi, Anna Rita; Oratore, Arduino; Mazza, Fernando

    2011-04-01

    Lactoferricins are potent antimicrobial peptides released by pepsin cleavage of Lactoferrins. Bovine Lactoferricin (LfcinB) has higher activity than the intact bovine Lactoferrin, and is the most active among the other Lactoferricins of human, murine and caprine origin. In the intact protein the fragment corresponding to LfcinB is in an helical conformation, while in water LfcinB adopts an amphipathic β-hairpin structure. However, whether any of these structural motifs is the antibacterial active conformation, i.e., the one interacting with bacterial membrane components, remains to be seen. Here we present Circular Dichroism (CD) spectra and Molecular Dynamics (MD) simulations indicating that in membrane-mimicking solvents the LfcinB adopts an amphipathic β-hairpin structure similar to that observed in water, but differing in the dynamic behavior of the side-chains of the two tryptophan residues. In the membrane-mimicking solvent these side-chains show a high propensity to point towards the hydrophobic environment, rather than being in the hydrophobic core as seen in water, while the backbone preserves the hairpin conformation as found in water. These results suggest that the tryptophans might act as anchors pulling the stable, solvent-invariant hairpin structure into the membrane.

  15. Nuclear Overhauser effect studies on the conformation of magnesium adenosine 5'-triphosphate bound to rabbit muscle creatine kinase

    International Nuclear Information System (INIS)

    Rosevear, P.R.; Powers, V.M.; Dowhan, D.; Mildvan, A.S.; Kenyon, G.L.

    1987-01-01

    Nuclear Overhauser effects were used to determine interproton distances on MgATP bound to rabbit muscle creatine kinase. The internuclear distances were used in a distance geometry program that objectively determines both the conformation of the bound MgATP and its uniqueness. Two classes of structures were found that satisfied the measured interproton distances. Both classes had the same anti glycosidic torsional angle (X = 78 +/- 10 0 ) but differed in their ribose ring puckers (O1'-endo or C4'-exo). The uniqueness of the glycosidic torsional angle is consistent with the preference of creatine kinase for adenine nucleotides. One of these conformations of MgATP bound to creatine kinase is indistinguishable from the conformation found for Co(NH 3 ) 4 ATP bound to the catalytic subunit of protein kinase, which also has a high specificity for adenine nucleotides. Distance geometry calculations also suggest that upper limit distances, when low enough (≤ 3.4 A), can be used instead of measured distances to define, within experimental error, the glycosidic torsional angle of bound nucleotides. However, this approach does not permit an evaluation of the ribose ring pucker

  16. Conformational aspects of dibenzo-tetroxecin: A structural, Raman spectroscopic and computational study

    Science.gov (United States)

    Gordon, Keith C.; McAdam, C. John; Moratti, Stephen C.; Shillito, Georgina E.; Simpson, Jim

    2017-10-01

    Crystalline dibenzo-tetroxecin (I) has been prepared from a reaction between catechol and dichloromethane and its molecular and crystal structure, together with the Raman spectrum of the material in the solid state and in solution, is reported. The molecular structure shows the molecule adopts an anti or stepped conformation. Density functional theory (DFT) optimisation and frequency calculations using the B3LYP functional with the 6-31G(d) basis set showed the presence of syn- and anti-conformers of (I), with the anti-conformer predicted to be the lower in energy by 13.6 kJ mol-1. The vibrational frequencies and relative Raman intensities of the anti-conformer are well modelled by the DFT calculations. The bond lengths and angles obtained for the anti-conformer are also in good agreement with the crystal structure. The crystal structure of (I) is stabilised by intermolecular Csbnd H⋯O hydrogen bonds that generate a three dimensional network.

  17. Multiple spectroscopic studies of the structural conformational changes of human serum albumin—Essential oil based nanoemulsions conjugates

    International Nuclear Information System (INIS)

    Sekar, Gajalakshmi; Sugumar, Saranya; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2015-01-01

    Nanoemulsions have numerous biomedical applications. For the first time, we have investigated the effects of orange and eucalyptus essential oil based nanoemulsions towards the structural aspect of human serum albumin (HSA). Quenching effect of nanoemulsion against the intrinsic fluorescence potential of tryptophan and tyrosine residues were evidenced from the fluorescence spectroscopic analysis. Static quenching mechanism was found to lead the binding of HSA–nanoemulsion systems. Synchronous and three dimensional spectroscopic studies have revealed the possible changes to the aromatic environment of HSA by the nanoemulsion. UV–Visible spectroscopic studies have confirmed the existence of the ground state complex formation between HSA and the surface of nanoemulsions by exhibiting the hyper-chromic effect in a concentration dependant manner. FTIR spectroscopy revealed the slight alteration in the Amide I, II and III bands of HSA after interaction. FT-Raman spectroscopy showed the decrease in the Raman intensity of the aromatic amino acid residues and shift in the amide bands of HSA upon binding with the nanoemulsion. Dichoric band obtained from the far UV-CD spectra at 208 and 222 nm of HSA showed the corresponding decrease in the alpha-helical contents upon interaction with nanoemulsions. Near UV-CD spectra also showed the prominent changes in the aromatic positions of the amino acid residues of HSA on binding with nanoemulsions. The above study has extrapolated the side effect analysis of the nanoemulsions in pharmaceutical applications in vitro in reference to their interaction with serum proteins. - Highlights: • Orange and eucalyptus oil based nanoemulsions were formulated and characterized. • UV–Visible spectroscopy confirmed the ground state complex formation. • Fluorescence spectroscopy confirmed the molecular conformational changes. • FTIR spectroscopy deep-rooted the alteration in the amide bands of HSA. • FT-Raman spectroscopy established

  18. Multiple spectroscopic studies of the structural conformational changes of human serum albumin—Essential oil based nanoemulsions conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Sekar, Gajalakshmi; Sugumar, Saranya; Mukherjee, Amitava; Chandrasekaran, Natarajan, E-mail: nchandra40@hotmail.com

    2015-05-15

    Nanoemulsions have numerous biomedical applications. For the first time, we have investigated the effects of orange and eucalyptus essential oil based nanoemulsions towards the structural aspect of human serum albumin (HSA). Quenching effect of nanoemulsion against the intrinsic fluorescence potential of tryptophan and tyrosine residues were evidenced from the fluorescence spectroscopic analysis. Static quenching mechanism was found to lead the binding of HSA–nanoemulsion systems. Synchronous and three dimensional spectroscopic studies have revealed the possible changes to the aromatic environment of HSA by the nanoemulsion. UV–Visible spectroscopic studies have confirmed the existence of the ground state complex formation between HSA and the surface of nanoemulsions by exhibiting the hyper-chromic effect in a concentration dependant manner. FTIR spectroscopy revealed the slight alteration in the Amide I, II and III bands of HSA after interaction. FT-Raman spectroscopy showed the decrease in the Raman intensity of the aromatic amino acid residues and shift in the amide bands of HSA upon binding with the nanoemulsion. Dichoric band obtained from the far UV-CD spectra at 208 and 222 nm of HSA showed the corresponding decrease in the alpha-helical contents upon interaction with nanoemulsions. Near UV-CD spectra also showed the prominent changes in the aromatic positions of the amino acid residues of HSA on binding with nanoemulsions. The above study has extrapolated the side effect analysis of the nanoemulsions in pharmaceutical applications in vitro in reference to their interaction with serum proteins. - Highlights: • Orange and eucalyptus oil based nanoemulsions were formulated and characterized. • UV–Visible spectroscopy confirmed the ground state complex formation. • Fluorescence spectroscopy confirmed the molecular conformational changes. • FTIR spectroscopy deep-rooted the alteration in the amide bands of HSA. • FT-Raman spectroscopy established

  19. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding.

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  20. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding

    Science.gov (United States)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  1. Study of local conformation and molecular movements of homo-polypeptides in aqueous solutions by using magnetic resonance and relaxation

    International Nuclear Information System (INIS)

    Perly, Bruno

    1980-01-01

    The objective of this research thesis is to study local conformations and mobilities of some typical homo-polypeptides by using techniques of magnetic resonance. By using these techniques, it is possible to make highly local observations of molecular elements which allows very efficient analysis of structural and dynamic properties of several biologically important compounds to be performed, and the study of their interactions. After a presentation of the general properties of the studied polypeptides, of magnetic resonance and of magnetic relaxation, the author presents some elements of macromolecular dynamics and movement models. Then, he reports the study of local conformations and structural transitions, applications of spin marking to the dynamic study of polypeptides, a dynamic study of the polypeptide skeleton under the form of statistic balls, the study of local movements of side chains by using nuclear relaxation, the study of the coupling of movements of main and side chains, and of the nuclear relaxation induced by a radical spin marker

  2. Interactions between protein molecules and the virus removal membrane surface: Effects of immunoglobulin G adsorption and conformational changes on filter performance.

    Science.gov (United States)

    Hamamoto, Ryo; Ito, Hidemi; Hirohara, Makoto; Chang, Ryongsok; Hongo-Hirasaki, Tomoko; Hayashi, Tomohiro

    2018-03-01

    Membrane fouling commonly occurs in all filter types during virus filtration in protein-based biopharmaceutical manufacturing. Mechanisms of decline in virus filter performance due to membrane fouling were investigated using a cellulose-based virus filter as a model membrane. Filter performance was critically dependent on solution conditions; specifically, ionic strength. To understand the interaction between immunoglobulin G (IgG) and cellulose, sensors coated with cellulose were fabricated for surface plasmon resonance and quartz crystal microbalance with energy dissipation measurements. The primary cause of flux decline appeared to be irreversible IgG adsorption on the surface of the virus filter membrane. In particular, post-adsorption conformational changes in the IgG molecules promoted further irreversible IgG adsorption, a finding that could not be adequately explained by DLVO theory. Analyses of adsorption and desorption and conformational changes in IgG molecules on cellulose surfaces mimicking cellulose-based virus removal membranes provide an effective approach for identifying ways of optimizing solution conditions to maximize virus filter performance. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:379-386, 2018. © 2017 American Institute of Chemical Engineers.

  3. Conformal expansions and renormalons

    Energy Technology Data Exchange (ETDEWEB)

    Rathsman, J.

    2000-02-07

    The coefficients in perturbative expansions in gauge theories are factorially increasing, predominantly due to renormalons. This type of factorial increase is not expected in conformal theories. In QCD conformal relations between observables can be defined in the presence of a perturbative infrared fixed-point. Using the Banks-Zaks expansion the authors study the effect of the large-order behavior of the perturbative series on the conformal coefficients. The authors find that in general these coefficients become factorially increasing. However, when the factorial behavior genuinely originates in a renormalon integral, as implied by a postulated skeleton expansion, it does not affect the conformal coefficients. As a consequence, the conformal coefficients will indeed be free of renormalon divergence, in accordance with previous observations concerning the smallness of these coefficients for specific observables. The authors further show that the correspondence of the BLM method with the skeleton expansion implies a unique scale-setting procedure. The BLM coefficients can be interpreted as the conformal coefficients in the series relating the fixed-point value of the observable with that of the skeleton effective charge. Through the skeleton expansion the relevance of renormalon-free conformal coefficients extends to real-world QCD.

  4. Fluoroolefins as Peptide Mimetics. 2. A Computational Study of the Conformational Ramifications of Peptide Bond Replacement

    Science.gov (United States)

    2010-01-01

    Calculated Relative Energies and Thermochemical Corrections (in kcal/mol) for the Gas Phase Conformations of DFA ∆E ∆(E+ ZPE ) ∆E(298) ∆H(298) ∆G(298...Thermochemical Corrections (in kcal/mol) for the Aqueous Phase Conformations of DFA ∆E ∆(E+ ZPE ) ∆E(298) ∆Η(298) ∆G(298) DFA1 0.00 0.00 0.00 0.00 0.00 DFA2 0.39

  5. Small angle X-ray scattering study of calreticulin reveals conformational plasticity

    DEFF Research Database (Denmark)

    Toft, Katrine Nørgaard; Larsen, Nanna; Jørgensen, Flemming Steen

    2008-01-01

    . The data from the calreticulin monomer reveal the shape of calreticulin in solution: The previously structurally un-described C-terminal is seen as a globular domain, and the P-domain beta-hairpin extends from the N-domain in a spiral like conformation. In the calreticulin solution dimer, the N-, C-, and P......-domains are easily identified, and the P-domain is in an extended conformation connecting to the second calreticulin molecule. The SAXS solution data enables the construction of a medium-resolution model of calreticulin. In the light of the unresolved chaperone mechanism of calreticulin and calnexin, we discuss...

  6. Decipher the mechanisms of protein conformational changes induced by nucleotide binding through free-energy landscape analysis: ATP binding to Hsp70.

    Directory of Open Access Journals (Sweden)

    Adrien Nicolaï

    Full Text Available ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD of Hsp70 propagates a signal to its substrate-binding domain (SBD. Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in

  7. Effect of Chain Conformation on the Single-Molecule Melting Force in Polymer Single Crystals: Steered Molecular Dynamics Simulations Study.

    Science.gov (United States)

    Feng, Wei; Wang, Zhigang; Zhang, Wenke

    2017-02-28

    Understanding the relationship between polymer chain conformation as well as the chain composition within the single crystal and the mechanical properties of the corresponding single polymer chain will facilitate the rational design of high performance polymer materials. Here three model systems of polymer single crystals, namely poly(ethylene oxide) (PEO), polyethylene (PE), and nylon-66 (PA66) have been chosen to study the effects of chain conformation, helical (PEO) versus planar zigzag conformation (PE, PA66), and chain composition (PE versus PA66) on the mechanical properties of a single polymer chain. To do that, steered molecular dynamics simulations were performed on those polymer single crystals by pulling individual polymer chains out of the crystals. Our results show that the patterns of force-extension curve as well as the chain moving mode are closely related to the conformation of the polymer chain in the single crystal. In addition, hydrogen bonds can enhance greatly the force required to stretch the polymer chain out of the single crystal. The dynamic breaking and reformation of multivalent hydrogen bonds have been observed for the first time in PA66 at the single molecule level.

  8. Structural characterization of POM6 Fab and mouse prion protein complex identifies key regions for prions conformational conversion.

    Science.gov (United States)

    Baral, Pravas Kumar; Swayampakula, Mridula; Aguzzi, Adriano; James, Michael N G

    2018-05-01

    Conversion of the cellular prion protein PrP C into its pathogenic isoform PrP S c is the hallmark of prion diseases, fatal neurodegenerative diseases affecting many mammalian species including humans. Anti-prion monoclonal antibodies can arrest the progression of prion diseases by stabilizing the cellular form of the prion protein. Here, we present the crystal structure of the POM6 Fab fragment, in complex with the mouse prion protein (moPrP). The prion epitope of POM6 is in close proximity to the epitope recognized by the purportedly toxic antibody fragment, POM1 Fab also complexed with moPrP. The POM6 Fab recognizes a larger binding interface indicating a likely stronger binding compared to POM1. POM6 and POM1 exhibit distinct biological responses. Structural comparisons of the bound mouse prion proteins from the POM6 Fab:moPrP and POM1 Fab:moPrP complexes reveal several key regions of the prion protein that might be involved in initiating mis-folding events. The structural data of moPrP:POM6 Fab complex are available in the PDB under the accession number www.rcsb.org/pdb/search/structidSearch.do?structureId=6AQ7. © 2018 Federation of European Biochemical Societies.

  9. Dissipative particle dynamics of triblock copolymer melts: A midblock conformational study at moderate segregation

    Science.gov (United States)

    Tallury, Syamal S.; Spontak, Richard J.; Pasquinelli, Melissa A.

    2014-12-01

    As thermoplastic elastomers, triblock copolymers constitute an immensely important class of shape-memory soft materials due to their unique ability to form molecular networks stabilized by physical, rather than chemical, cross-links. The extent to which such networks develop in triblock and higher-order multiblock copolymers is sensitive to the formation of midblock bridges, which serve to connect neighboring microdomains. In addition to bridges, copolymer molecules can likewise form loops and dangling ends upon microphase separation or they can remain unsegregated. While prior theoretical and simulation studies have elucidated the midblock bridging fraction in triblock copolymer melts, most have only considered strongly segregated systems wherein dangling ends and unsegregated chains become relatively insignificant. In this study, simulations based on dissipative particle dynamics are performed to examine the self-assembly and networkability of moderately segregated triblock copolymers. Utilizing a density-based cluster-recognition algorithm, we demonstrate how the simulations can be analyzed to extract information about microdomain formation and permit explicit quantitation of the midblock bridging, looping, dangling, and unsegregated fractions for linear triblock copolymers varying in chain length, molecular composition, and segregation level. We show that midblock conformations can be sensitive to variations in chain length, molecular composition, and bead repulsion, and that a systematic investigation can be used to identify the onset of strong segregation where the presence of dangling and unsegregated fractions are minimal. In addition, because this clustering approach is robust, it can be used with any particle-based simulation method to quantify network formation of different morphologies for a wide range of triblock and higher-order multiblock copolymer systems.

  10. Radioactive Lysine in Protein Metabolism Studies

    Science.gov (United States)

    Miller, L. L.; Bale, W. F.; Yuile, C. L.; Masters, R. E.; Tishkoff, G. H.; Whipple,, G. H.

    1950-01-09

    Studies of incorporation of DL-lysine in various body proteins of the dog; the time course of labeled blood proteins; and apparent rate of disappearance of labeled plasma proteins for comparison of behavior of the plasma albumin and globulin fractions; shows more rapid turn over of globulin fraction.

  11. Effects of carbon nanofiller characteristics on PTT chain conformation and dynamics: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Asadinezhad, Ahmad, E-mail: asadinezhad@cc.iut.ac.ir; Kelich, Payam

    2017-01-15

    Highlights: • Poly (trimethylene terephthalate) (PTT) conformation adopts a folded shape near nanofiller surface. • Graphene and carbon nanotube with different size and chemistry were simulated. • Graphene functionalization induces stronger confinement on PTT chain conformation. • PTT chain motion alters in dynamics mode as it becomes adsorbed onto nanofillers. • PTT reveals further changes near graphene than carbon nanotube surface. - Abstract: The effects of nanofiller chemistry and geometry on static and dynamic properties of an aromatic polyester, poly (trimethylene terephthalate), were addressed thanks to long-run classical molecular dynamics simulation. Two carbon nanofillers, graphene and carbon nanotube, were employed, where graphene was used in pristine and functionalized forms and carbon nanotube was used in two different diameters. The nanofiller geometry and chemistry were found to exert significant effects on conformation and dynamic behavior of PTT chain at the interface within the time scale the simulation was performed. It was found that PTT chain underwent interaction of van der Waals type with nanofiller via two subsequent phases, adsorption and orientation. The former stage, with definite characteristic time, involved translation of polymer chain toward interface while the latter was controlled by vibrational motions of chain atoms. The consequence of interaction was an increase in conformational order of polymer chain by transition to folded shape being favorable for any subsequent structural ordering (crystallization). The interaction of polymer with nanofiller gave rise to a reduction in overall mobility of polymer chain characterized by crossover from normal diffusive motion to subdiffusive mode.

  12. Conformational studies on pertrimethylsilyl derivatives of some mono- and disaccharides by 220 MHz PMR spectroscopy

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Streefkerk, D.G.; Bie, M.J.A. de

    1973-01-01

    The complete interpretation of 220 MHz PMR spectra and the accurate chemical shifts and coupling constants, obtained after computer simulation of the spectra, of a number of TMS-mono and -disaccharides are given. By means of an adapted Karplus equation the conformation of the derivatives has been

  13. Vibrational absorption spectra, DFT and SCC-DFTB conformational study and analysis of [Leu]enkephalin

    DEFF Research Database (Denmark)

    Abdali, Salim; Niehaus, T.A.; Jalkanen, Karl J.

    2003-01-01

    . Ab initio (DFT at the B3LYP/6-31G* level of theory) and semi-empirical (SCC-DFTB) with and without dispersion correction were applied to simulate the VA spectra of [Leu] enkephalin. In these calculations structures taken from X-ray measurements for different conformers of the molecule were used...

  14. Effects of carbon nanofiller characteristics on PTT chain conformation and dynamics: A computational study

    International Nuclear Information System (INIS)

    Asadinezhad, Ahmad; Kelich, Payam

    2017-01-01

    Highlights: • Poly (trimethylene terephthalate) (PTT) conformation adopts a folded shape near nanofiller surface. • Graphene and carbon nanotube with different size and chemistry were simulated. • Graphene functionalization induces stronger confinement on PTT chain conformation. • PTT chain motion alters in dynamics mode as it becomes adsorbed onto nanofillers. • PTT reveals further changes near graphene than carbon nanotube surface. - Abstract: The effects of nanofiller chemistry and geometry on static and dynamic properties of an aromatic polyester, poly (trimethylene terephthalate), were addressed thanks to long-run classical molecular dynamics simulation. Two carbon nanofillers, graphene and carbon nanotube, were employed, where graphene was used in pristine and functionalized forms and carbon nanotube was used in two different diameters. The nanofiller geometry and chemistry were found to exert significant effects on conformation and dynamic behavior of PTT chain at the interface within the time scale the simulation was performed. It was found that PTT chain underwent interaction of van der Waals type with nanofiller via two subsequent phases, adsorption and orientation. The former stage, with definite characteristic time, involved translation of polymer chain toward interface while the latter was controlled by vibrational motions of chain atoms. The consequence of interaction was an increase in conformational order of polymer chain by transition to folded shape being favorable for any subsequent structural ordering (crystallization). The interaction of polymer with nanofiller gave rise to a reduction in overall mobility of polymer chain characterized by crossover from normal diffusive motion to subdiffusive mode.

  15. Conformational study of melectin and antapin antimicrobial peptides in model membrane environments

    Czech Academy of Sciences Publication Activity Database

    Kocourková, L.; Novotná, P.; Čujová, Sabína; Čeřovský, Václav; Urbanová, M.; Setnička, V.

    2017-01-01

    Roč. 170, Jan 5 (2017), s. 247-255 ISSN 1386-1425 Institutional support: RVO:61388963 Keywords : antimicrobial peptides * conformation * liposomes * model membranes * circular dichroism * infrared spectroscopy Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.536, year: 2016

  16. Conformable variational iteration method

    Directory of Open Access Journals (Sweden)

    Omer Acan

    2017-02-01

    Full Text Available In this study, we introduce the conformable variational iteration method based on new defined fractional derivative called conformable fractional derivative. This new method is applied two fractional order ordinary differential equations. To see how the solutions of this method, linear homogeneous and non-linear non-homogeneous fractional ordinary differential equations are selected. Obtained results are compared the exact solutions and their graphics are plotted to demonstrate efficiency and accuracy of the method.

  17. Investigating the microstructure of keratin extracted from wool: peptide sequence (MALDI-TOF/TOF) and protein conformation (FTIR)

    Science.gov (United States)

    Keratin was extracted from wool by reduction with 2-mercaptoethanol. It was isolated as intact keratin and characterized by its similar molecular weight, protein composition, and secondary structure to native keratin. Gel electrophoresis patterns and MALDI-TOF/TOF peptide sequences provided the ide...

  18. Conformational Analysis of Proteins in Highly Concentrated Solutions by Dialysis-Coupled Hydrogen/Deuterium Exchange Mass Spectrometry

    DEFF Research Database (Denmark)

    Houde, Damian; Esmail Nazari, Zeinab; Bou-Assaf, George M

    2016-01-01

    When highly concentrated, an antibody solution can exhibit unusual behaviors, which can lead to unwanted properties, such as increased levels of protein aggregation and unusually high viscosity. Molecular modeling, along with many indirect biophysical measurements, has suggested that the cause fo...... in industry. Graphical Abstract ᅟ....

  19. A radioimmunoassay to screen for antibodies to native conformational antigens and analyse ligand-induced structural states of antigenic proteins

    International Nuclear Information System (INIS)

    Bernotat-Danielowski, S.; Koepsell, H.

    1988-01-01

    A radioimmunoassay is described in which antigenic protein was immobilized by incubating nitrocellulose filters of defined diameter with antigen-containing solutions. Antigenic sites which are sensitive to protein denaturation by drying could be detected with the assay. The assay was also used to screen hybridoma supernatants for antibodies directed against Na + cotransport proteins from renal brush-border membranes. Monoclonal antibodies were selected which showed different binding charactertics depending on whether or not substrates of Na + cotransporters were present. One of the antibodies, which showed different antibody binding after addition of D-glucose or L-lactate, bound to a polypeptide component of the renal N + -D-glucose cotransporter and was able to inhibit Na + gradient-dependent. To investigate the effects of D-glucose and L-lactate on the binding of this antibody concentration dependence was measured. High and low affinity binding sites for D-glucose and L-lactate were characterized thereby demonstrating that the radioimmunoassay permits investigations of the properties of high and low affinity substrate binding sites. (author). refs.; 6 figs.; 2 tabs

  20. Conformality lost

    International Nuclear Information System (INIS)

    Kaplan, David B.; Lee, Jong-Wan; Son, Dam T.; Stephanov, Mikhail A.

    2009-01-01

    We consider zero-temperature transitions from conformal to nonconformal phases in quantum theories. We argue that there are three generic mechanisms for the loss of conformality in any number of dimensions: (i) fixed point goes to zero coupling, (ii) fixed point runs off to infinite coupling, or (iii) an IR fixed point annihilates with a UV fixed point and they both disappear into the complex plane. We give both relativistic and nonrelativistic examples of the last case in various dimensions and show that the critical behavior of the mass gap behaves similarly to the correlation length in the finite temperature Berezinskii-Kosterlitz-Thouless (BKT) phase transition in two dimensions, ξ∼exp(c/|T-T c | 1/2 ). We speculate that the chiral phase transition in QCD at large number of fermion flavors belongs to this universality class, and attempt to identify the UV fixed point that annihilates with the Banks-Zaks fixed point at the lower end of the conformal window.

  1. Conformational analysis of quinine and its pseudo enantiomer quinidine: a combined jet-cooled spectroscopy and vibrational circular dichroism study.

    Science.gov (United States)

    Sen, Ananya; Bouchet, Aude; Lepère, Valeria; Le Barbu-Debus, Katia; Scuderi, D; Piuzzi, F; Zehnacker-Rentien, A

    2012-08-16

    Laser-desorbed quinine and quinidine have been studied in the gas phase by combining supersonic expansion with laser spectroscopy, namely, laser-induced fluorescence (LIF), resonance-enhanced multiphoton ionization (REMPI), and IR-UV double resonance experiments. Density funtional theory (DFT) calculations have been done in conjunction with the experimental work. The first electronic transition of quinine and quinidine is of π-π* nature, and the studied molecules weakly fluoresce in the gas phase, in contrast to what was observed in solution (Qin, W. W.; et al. J. Phys. Chem. C2009, 113, 11790). The two pseudo enantiomers quinine and quinidine show limited differences in the gas phase; their main conformation is of open type as it is in solution. However, vibrational circular dichroism (VCD) experiments in solution show that additional conformers exist in condensed phase for quinidine, which are not observed for quinine. This difference in behavior between the two pseudo enantiomers is discussed.

  2. Interrogating the activities of conformational deformed enzyme by single-molecule fluorescence-magnetic tweezers microscopy

    Science.gov (United States)

    Guo, Qing; He, Yufan; Lu, H. Peter

    2015-01-01

    Characterizing the impact of fluctuating enzyme conformation on enzymatic activity is critical in understanding the structure–function relationship and enzymatic reaction dynamics. Different from studying enzyme conformations under a denaturing condition, it is highly informative to manipulate the conformation of an enzyme under an enzymatic reaction condition while monitoring the real-time enzymatic activity changes simultaneously. By perturbing conformation of horseradish peroxidase (HRP) molecules using our home-developed single-molecule total internal reflection magnetic tweezers, we successfully manipulated the enzymatic conformation and probed the enzymatic activity changes of HRP in a catalyzed H2O2–amplex red reaction. We also observed a significant tolerance of the enzyme activity to the enzyme conformational perturbation. Our results provide a further understanding of the relation between enzyme behavior and enzymatic conformational fluctuation, enzyme–substrate interactions, enzyme–substrate active complex formation, and protein folding–binding interactions. PMID:26512103

  3. <