WorldWideScience

Sample records for structured action spaces

  1. Action detection by double hierarchical multi-structure space-time statistical matching model

    Science.gov (United States)

    Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang

    2018-03-01

    Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.

  2. Jointly structuring triadic spaces of meaning and action: book sharing from 3 months on

    Science.gov (United States)

    Rossmanith, Nicole; Costall, Alan; Reichelt, Andreas F.; López, Beatriz; Reddy, Vasudevi

    2014-01-01

    This study explores the emergence of triadic interactions through the example of book sharing. As part of a naturalistic study, 10 infants were visited in their homes from 3–12 months. We report that (1) book sharing as a form of infant-caregiver-object interaction occurred from as early as 3 months. Using qualitative video analysis at a micro-level adapting methodologies from conversation and interaction analysis, we demonstrate that caregivers and infants practiced book sharing in a highly co-ordinated way, with caregivers carving out interaction units and shaping actions into action arcs and infants actively participating and co-ordinating their attention between mother and object from the beginning. We also (2) sketch a developmental trajectory of book sharing over the first year and show that the quality and dynamics of book sharing interactions underwent considerable change as the ecological situation was transformed in parallel with the infants' development of attention and motor skills. Social book sharing interactions reached an early peak at 6 months with the infants becoming more active in the coordination of attention between caregiver and book. From 7 to 9 months, the infants shifted their interest largely to solitary object exploration, in parallel with newly emerging postural and object manipulation skills, disrupting the social coordination and the cultural frame of book sharing. In the period from 9 to 12 months, social book interactions resurfaced, as infants began to effectively integrate manual object actions within the socially shared activity. In conclusion, to fully understand the development and qualities of triadic cultural activities such as book sharing, we need to look especially at the hitherto overlooked early period from 4 to 6 months, and investigate how shared spaces of meaning and action are structured together in and through interaction, creating the substrate for continuing cooperation and cultural learning. PMID:25540629

  3. Jointly structuring triadic spaces of meaning and action: book sharing from 3 months on.

    Directory of Open Access Journals (Sweden)

    Nicole eRossmanith

    2014-12-01

    Full Text Available This study explores the emergence of triadic interactions through the example of book sharing. As part of a naturalistic study, 10 infants were visited in their homes from 3-12 months. We report that (1 book sharing as a form of infant-caregiver-object interaction occurred from as early as 3 months. Using qualitative video analysis at a micro-level adapting methodologies from conversation and interaction analysis, we demonstrate that caregivers and infants practiced book sharing in a highly co-ordinated way, with caregivers carving out interaction units and shaping actions into action arcs and infants actively participating and co-ordinating their attention between mother and object from the beginning. We also (2 sketch a developmental trajectory of book sharing over the first year and show that the quality and dynamics of book sharing interactions underwent considerable change as the ecological situation was transformed in parallel with the infants' development of attention and motor skills. Social book sharing interactions reached an early peak at 6 months with the infants becoming more active in the coordination of attention between caregiver and book. From 7-9 months, the infants shifted their interest largely to solitary object exploration, in parallel with newly emerging postural and object manipulation skills, disrupting the social coordination and the cultural frame of book sharing. In the period from 9-12 months, social book interactions resurfaced, as infants began to effectively integrate object actions within the socially shared activity. In conclusion, to fully understand the development and qualities of triadic cultural activities such as book sharing, we need to look especially at the hitherto overlooked early period from 4-6 months, and investigate how shared spaces of meaning and action are structured together in and through interaction, creating the substrate for continuing cooperation and cultural learning.

  4. The Galaxy in action space

    Science.gov (United States)

    Binney, James

    It is generally better to think of galaxies as made of orbits rather than stars. Orbits in most axisymmetric potentials form a three-dimensional continuum. The natural coordinates for the description of this continuum are action integrals. Thus, one is led to the view that the Galaxy inhabits a three-dimensional Euclidean space called action space. In this space the density of stars belonging to each galactic component is given by the distribution function of that component. The structure and evolution of the disk within action space is described. The most natural disk distribution function turns out to violate the classical relation between Oort's constants and the ratio of principal velocity dispersions of disk stars. The Schwarzschild velocity ellipsoid is not a self-similar solution of the equation that governs the diffusion of disk stars through action space if scattering of stars by molecular clouds is the sole cause of the diffusion. A general procedure for choosing the distribution functions of hot components such as the classical populations II is described and illustrated by several worked examples.

  5. Tracking in Object Action Space

    DEFF Research Database (Denmark)

    Krüger, Volker; Herzog, Dennis

    2013-01-01

    -dependent or as, e.g., in the case of a pointing direction convey important information. One common way to achieve recognition is by using 3D human body tracking followed by action recognition based on the captured tracking data. For the kind of scenarios considered here we would like to argue that 3D body...... tracking and action recognition should be seen as an intertwined problem that is primed by the objects on which the actions are applied. In this paper, we are looking at human body tracking and action recognition from a object-driven perspective. Instead of the space of human body poses we consider...... the space of the object affordances, i.e., the space of possible actions that are applied on a given object. This way, 3D body tracking reduces to action tracking in the object (and context) primed parameter space of the object affordances. This reduces the high-dimensional joint-space to a low...

  6. Action selection in growing state spaces: control of network structure growth

    International Nuclear Information System (INIS)

    Thalmeier, Dominik; Kappen, Hilbert J; Gómez, Vicenç

    2017-01-01

    The dynamical processes taking place on a network depend on its topology. Influencing the growth process of a network therefore has important implications on such dynamical processes. We formulate the problem of influencing the growth of a network as a stochastic optimal control problem in which a structural cost function penalizes undesired topologies. We approximate this control problem with a restricted class of control problems that can be solved using probabilistic inference methods. To deal with the increasing problem dimensionality, we introduce an adaptive importance sampling method for approximating the optimal control. We illustrate this methodology in the context of formation of information cascades, considering the task of influencing the structure of a growing conversation thread, as in Internet forums. Using a realistic model of growing trees, we show that our approach can yield conversation threads with better structural properties than the ones observed without control. (paper)

  7. The Milky Way Halo in Action Space

    Science.gov (United States)

    Myeong, G. C.; Evans, N. W.; Belokurov, V.; Sanders, J. L.; Koposov, S. E.

    2018-04-01

    We analyze the structure of the local stellar halo of the Milky Way using ∼60000 stars with full phase space coordinates extracted from the SDSS–Gaia catalog. We display stars in action space as a function of metallicity in a realistic axisymmetric potential for the Milky Way Galaxy. The metal-rich population is more distended toward high radial action J R as compared to azimuthal or vertical action, J ϕ or J z . It has a mild prograde rotation ( ≈ 25 {km} {{{s}}}-1), is radially anisotropic and highly flattened, with axis ratio q ≈ 0.6–0.7. The metal-poor population is more evenly distributed in all three actions. It has larger prograde rotation ( ≈ 50 {km} {{{s}}}-1), a mild radial anisotropy, and a roundish morphology (q ≈ 0.9). We identify two further components of the halo in action space. There is a high-energy, retrograde component that is only present in the metal-rich stars. This is suggestive of an origin in a retrograde encounter, possibly the one that created the stripped dwarf galaxy nucleus, ωCentauri. Also visible as a distinct entity in action space is a resonant component, which is flattened and prograde. It extends over a range of metallicities down to [Fe/H] ≈ ‑3. It has a net outward radial velocity ≈ 12 {km} {{{s}}}-1 within the solar circle at | z| < 3.5 {kpc}. The existence of resonant stars at such extremely low metallicities has not been seen before.

  8. Space Science in Action: Space Exploration [Videotape].

    Science.gov (United States)

    1999

    In this videotape recording, students learn about the human quest to discover what is out in space. Students see the challenges and benefits of space exploration including the development of rocket science, a look back at the space race, and a history of manned space travel. A special section on the Saturn V rocket gives students insight into the…

  9. Group actions on geodesic Ptolemy spaces

    OpenAIRE

    Foertsch, T; Schroeder, Viktor

    2011-01-01

    In this paper we study geodesic Ptolemy metric spaces $ X$ which allow proper and cocompact isometric actions of crystallographic or, more generally, virtual polycyclic groups. We show that $ X$ is equivariantly roughly isometric to a Euclidean space.

  10. Topology of actions and homogeneous spaces

    International Nuclear Information System (INIS)

    Kozlov, Konstantin L

    2013-01-01

    Topologization of a group of homeomorphisms and its action provide additional possibilities for studying the topological space, the group of homeomorphisms, and their interconnections. The subject of the paper is the use of the property of d-openness of an action (introduced by Ancel under the name of weak micro-transitivity) in the study of spaces with various forms of homogeneity. It is proved that a d-open action of a Čech-complete group is open. A characterization of Polish SLH spaces using d-openness is given, and it is established that any separable metrizable SLH space has an SLH completion that is a Polish space. Furthermore, the completion is realized in coordination with the completion of the acting group with respect to the two-sided uniformity. A sufficient condition is given for extension of a d-open action to the completion of the space with respect to the maximal equiuniformity with preservation of d-openness. A result of van Mill is generalized, namely, it is proved that any homogeneous CDH metrizable compactum is the only G-compactification of the space of rational numbers for the action of some Polish group. Bibliography: 39 titles.

  11. Grounding of space structures

    Science.gov (United States)

    Bosela, P. A.; Fertis, D. G.; Shaker, F. J.

    1992-01-01

    Space structures, such as the Space Station solar arrays, must be extremely light-weight, flexible structures. Accurate prediction of the natural frequencies and mode shapes is essential for determining the structural adequacy of components, and designing a controls system. The tension pre-load in the 'blanket' of photovoltaic solar collectors, and the free/free boundary conditions of a structure in space, causes serious reservations on the use of standard finite element techniques of solution. In particular, a phenomenon known as 'grounding', or false stiffening, of the stiffness matrix occurs during rigid body rotation. This paper examines the grounding phenomenon in detail. Numerous stiffness matrices developed by others are examined for rigid body rotation capability, and found lacking. A force imbalance inherent in the formulations examined is the likely cause of the grounding problem, suggesting the need for a directed force formulation.

  12. Space dissipative structures

    International Nuclear Information System (INIS)

    Chernousenko, V.M.; Kuklin, V.M.; Panachenko, I.P.; Vorob'yov, V.M.

    1990-01-01

    This paper reports on a wide spectrum of oscillations that is excited due to the evolution instabilities, being in a weak above-threshold state, in the inequilibrium media with decaying spectrum. In this case the pumping, whose part is played by an intensive wave or occupation inversion in the active medium, synchronized the phases of excited modes and, thus, forms the space dissipative structure of the field. In dissipative nonlinear media with nondecaying spectrum the space structures, formed due to the development of instability, experience small-scale hexagonal modulation

  13. Space-time structure

    CERN Document Server

    Schrödinger, Erwin

    1985-01-01

    In response to repeated requests this classic book on space-time structure by Professor Erwin Schrödinger is now available in the Cambridge Science Classics series. First published in 1950, and reprinted in 1954 and 1960, this lucid and profound exposition of Einstein's 1915 theory of gravitation still provides valuable reading for students and research workers in the field.

  14. Accidental actions in steel structures

    NARCIS (Netherlands)

    Vrouwenvelder, A.C.W.M.; Gresnigt, A.M.

    2006-01-01

    Part 1-7 of EN 1991 covers accidental actions and gives rules and values for impact loads due to road, train and ship traffic and loads due to internal explosions. In this paper, the application of Part 1-7 of EN 1991 for steel structures is explained. Background information and design strategies

  15. Conformal higher spin theory and twistor space actions

    Science.gov (United States)

    Hähnel, Philipp; McLoughlin, Tristan

    2017-12-01

    We consider the twistor description of conformal higher spin theories and give twistor space actions for the self-dual sector of theories with spin greater than two that produce the correct flat space-time spectrum. We identify a ghost-free subsector, analogous to the embedding of Einstein gravity with cosmological constant in Weyl gravity, which generates the unique spin-s three-point anti-MHV amplitude consistent with Poincaré invariance and helicity constraints. By including interactions between the infinite tower of higher-spin fields we give a geometric interpretation to the twistor equations of motion as the integrability condition for a holomorphic structure on an infinite jet bundle. Finally, we conjecture anti-self-dual interaction terms which give an implicit definition of a twistor action for the full conformal higher spin theory.

  16. Self deployable deorbiting space structure

    DEFF Research Database (Denmark)

    2012-01-01

    -active or heavy device has to be brought on board the spacecraft for deploying the space structure. Allows the deployed flexible sheet surface higher than the case when SDSS is rigidly linked at the short distance from carrier structure. Ensures a reliable unfolding of deorbiting structures in zero gravity....... Provides the strain energy provoking the deployment without the need of addition of energy to the system. Eliminates the issues around successful unfolding known from other technical solutions as the frame unfolds automatically without using external energy for unfolding by using the accumulated strain...... energy in stressed configuration. Ensures that deorbiting space structure can be efficiently folded without intervention of active unfolding device....

  17. Dirac structures on Hilbert spaces

    Directory of Open Access Journals (Sweden)

    A. Parsian

    1999-01-01

    shown that Dirac structures on H are in one-to-one correspondence with isometries on H, and, any two Dirac structures are isometric. It is, also, proved that any Dirac structure on a smooth manifold in the sense of [1] yields a Dirac structure on some Hilbert space. The graph of any densely defined skew symmetric linear operator on a Hilbert space is, also, shown to be a Dirac structure. For a Dirac structure L on H, every z∈H is uniquely decomposed as z=p1(l+p2(l for some l∈L, where p1 and p2 are projections. When p1(L is closed, for any Hilbert subspace W⊂H, an induced Dirac structure on W is introduced. The latter concept has also been generalized.

  18. Using structuration theory in action research

    DEFF Research Database (Denmark)

    Rose, Jeremy; Lewis, Paul

    2001-01-01

    Structuration theory, Giddens' meta theory of social practice, has been used for theorizing the IS field and for analyzing empirical case studies, but has been little used in any practical or action research context. In the action research project reported here, which concerns the development...... developments for the intranet. Many of these developments have been implemented and proved successful....

  19. Space Science in Action: Astronomy [Videotape].

    Science.gov (United States)

    1999

    This videotape recording teaches students about constellations, star movement, and how scientists have studied celestial bodies throughout history from Ptolemy to Copernicus to the work of the Hubble Space Telescope. An interview with Kathy Thornton, one of the astronauts who repaired the Hubble while in orbit, is featured. A hands-on activity…

  20. Pro-torus actions on Poincaré duality spaces

    Indian Academy of Sciences (India)

    Abstract. In this paper, it is shown that some of the results of torus actions on Poincaré duality spaces, Borel's dimension formula and topological splitting principle to local weights, hold if `torus' is replaced by `pro-torus'.

  1. Lightweight Space Tug body structure

    Science.gov (United States)

    Lager, J. R.

    1976-01-01

    Lightweight honeycomb sandwich construction using a wide variety of metal and fibrous composite faceskins was used in the design of a typical Space Tug skirt structure. Relatively low magnitude combined loading of axial compression and torsion resulted in designs using ultrathin faceskins, lightweight honeycomb cores, and thin faceskin/core adhesive bond layers. Two of the designs with metal faceskins (aluminum and titanium) and four with fibrous composite faceskins (using combinations of fiberglass, boron, and graphite) were evaluated through the fabrication and structural test of a series of small development panels. The two most promising concepts with aluminum and graphite/epoxy faceskins, were further evaluated through the fabrication and structural test of larger compression and shear panels. All panels tested exceeded design ultimate load levels, thereby, verifying the structural integrity of the selected designs. Projected skirt structural weights for the graphite/epoxy and aluminum concepts fall within original weight guidelines established for the Space Tug vehicle.

  2. Lightweight Space Tug body structure

    International Nuclear Information System (INIS)

    Lager, J.R.

    1976-01-01

    Lightweight honeycomb sandwich construction using a wide variety of metal and fibrous composite faceskins was used in the design of a typical Space Tug skirt structure. Relatively low magnitude combined loading of axial compression and torsion resulted in designs using ultrathin faceskins, light-weight honeycomb cores, and thin faceskin/core adhesive bond layers. Two of the designs with metal faceskins (aluminum and titanium) and four with fibrous composite faceskins (using combinations of fiberglass, boron, and graphite) were evaluated through the fabrication and structural test of a series of small development panels. The two most promising concepts with aluminum and graphite/epoxy faceskins, were further evaluated through the fabrication and structural test of larger compression and shear panels. All panels tested exceeded design ultimate load levels, thereby, verifying the structural integrity of the selected designs. Projected skirt structural weights for the graphite/epoxy and aluminum concepts fall within original weight guidelines established for the Space Tug vehicle

  3. Space for action: How practitioners influence environmental assessment

    International Nuclear Information System (INIS)

    Kågström, Mari; Richardson, Tim

    2015-01-01

    Highlights: • The concept of ‘space for action’ offers an important new lens on EA practice. • Focuses on the relation between practitioner's understanding and their actions • Environmental assessment practice is decisively shaped by practitioners. • Practitioners may underestimate their potential to make a difference. • Contributes to understanding change in the environmental assessment field. This article contributes to understanding of how change occurs in the field of environmental assessment (EA). It argues that the integration of new issues in EA, such as human health, is significantly influenced by how practitioners' understandings shape their actions, and by what happens when those, possibly different, interpretations of appropriate action are acted out. The concept of space for action is developed as a means of investigating this relation between understanding and action. Frame theory is also used, to develop a sharper focus on how ‘potential spaces for action’ are created, what these imply for (individuals') preferred choices and actions in certain situations, and what happens in practice when these are acted out and ‘actual spaces for action’ are created. This novel approach is then applied in a Swedish case study of transport planning. The analysis reveals the important work done by practitioners, revealing just how EA practice is decisively shaped by practitioners. Analysis of practice using the lens of spaces for action offers an important new perspective in understanding how the field adapts to new challenges

  4. Unsupervised action classification using space-time link analysis

    DEFF Research Database (Denmark)

    Liu, Haowei; Feris, Rogerio; Krüger, Volker

    2010-01-01

    In this paper we address the problem of unsupervised discovery of action classes in video data. Different from all existing methods thus far proposed for this task, we present a space-time link analysis approach which matches the performance of traditional unsupervised action categorization metho...

  5. Higher order point and continuum mechanics from phase-space action

    Energy Technology Data Exchange (ETDEWEB)

    Shamanna, J.; Talukdar, B.; Das, U

    2002-12-02

    It is pointed out that use of phase-space action provides an elegant method to study the canonical structure of problems in mechanics. Higher order Lagrangian systems are Hamiltonized by employing the variational principle in phase space. Studies are envisaged for both particle dynamics and field theory. Hamilton's equations are expressed in terms of appropriate Poisson brackets.

  6. MHD dynamo action in space plasmas

    International Nuclear Information System (INIS)

    Faelthammar, C.G.

    1984-05-01

    Electric currents are now recognized to play a major role in the physical process of the Earths magnetosphere as well as in distant astrophysical plasmas. In driving these currents MHD dynamos as well as generators of a thermoelectric nature are important. The primary source of power for the Earths magnetospheric process is the solar wind, which supplies a voltage of the order of 200 kV across the magnetosphere. The direction of the large-scale solar wind electric field varies of many different time scales. The power input to the magnetosphere is closely correlated with the direction of the large-scale solar wind electric field in such a fashion as to mimick the response of a half-wave rectifier with a down-to-dusk conduction direction. Behind this apparently simple response there are complex plasma physical processes that are still very incompletely understood. They are intimately related to auroras, magnetic storms, radiation belts and changes in magnetospheric plasma populations. Similar dynamo actions should occur at other planets having magnetospheres. Recent observations seem to indicate that part of the power input to the Earths magnetosphere comes through MHD dynamo action of a forced plasma flow inside the flanks of the magnetopause and may play a role in other parts of the magnetosphere, too. An example of a cosmical MHD connected to a solid load is the corotating plasma of Jupiters inner magnetosphere, sweeping past the plants inner satelites. In particular the electric currents thereby driven to and from the satellite Io have attracted considerable interest.(author)

  7. Pro-torus actions on Poincaré duality spaces

    Indian Academy of Sciences (India)

    In this paper, it is shown that some of the results of torus actions on Poincaré duality spaces, Borel's dimension formula and topological splitting principle to local weights, hold if 'torus' is replaced by 'pro-torus'. Keywords. Pro-torus; Poincaré duality space; local weight. 1. Introduction. In the theory of linear representations of ...

  8. Application of Conformational Space Search in Drug Action | Adikwu ...

    African Journals Online (AJOL)

    ... therapeutic groups are presented. Conformational space search will lead to isolating the exact conformation with the desired medicinal properties. Many conformations of a plant isolate may exist which are active, weakly active or inactive. Key Words: Conformational, Space, Drug Action Bio-Research Vol.1(2) 2003: 69-76 ...

  9. Application of Conformational Space Search in Drug Action | Adikwu ...

    African Journals Online (AJOL)

    The role of conformational space in drug action is presented. Two examples of molecules in different therapeutic groups are presented. Conformational space search will lead to isolating the exact conformation with the desired medicinal properties. Many conformations of a plant isolate may exist which are active, weakly ...

  10. Structural priming, action planning, and grammar.

    Science.gov (United States)

    MacDonald, Maryellen C; Weiss, Daniel J

    2017-01-01

    Structural priming is poorly understood and cannot inform accounts of grammar for two reasons. First, those who view performance as grammar + processing will always be able to attribute psycholinguistic data to processing rather than grammar. Second, structural priming may be simply an example of hysteresis effects in general action planning. If so, then priming offers no special insight into grammar.

  11. The physical structure of space

    International Nuclear Information System (INIS)

    Perkins, F.; Pankey, T. Jr

    1989-01-01

    While physical theory postulates the existence of electromagnetic, weak, strong and gravitational interactions, it does not explain how matter and charge actually accomplish the necessary acts of attraction and repulsion. A review of related historical experiments is made, pointing out certain deficiencies in interpretation. Then a space with the properties of a C ∞ elastic manifold is introduced. It is shown that the four interactions of physics can be viewed as different sets of group action under a Lagrangian density defined on the described manifold. The basic equations of classical physics are special cases of a generalized force equation

  12. Creating communicative spaces in an action research study.

    Science.gov (United States)

    Bevan, Ann L

    2013-11-01

    To argue that creating communicative spaces in an action research study gave voice to young mothers who may otherwise have remained voiceless. Underpinning the concept of the communicative space in action research is the critical social theory of Jürgen Habermas, in particular, his theory of communicative action and the ideal speech situation. The author argues that in collaborative research, the successful creation of a communicative space is vital in enabling equitable and discursive speech to take place. This is a methodological paper. This approach provided a discursive space to participants who ordinarily may not have interacted, and led to the sharing of different perceptions and understandings that may not otherwise have been possible. This research pointed to the possibility of the ideal speech situation, and the value of opening up a communicative space for researchers and participants. Action research for professionals is a sometimes messy and time-consuming process. However, it is a rewarding approach that uncovers layers of interpretations and understanding that have meaning for the participants involved. The creation of communicative spaces has the potential to enrich nursing research because of its participatory nature, making it more likely that solutions reached will have meaning to people.

  13. Large space structure damping design

    Science.gov (United States)

    Pilkey, W. D.; Haviland, J. K.

    1983-01-01

    Several FORTRAN subroutines and programs were developed which compute complex eigenvalues of a damped system using different approaches, and which rescale mode shapes to unit generalized mass and make rigid bodies orthogonal to each other. An analytical proof of a Minimum Constrained Frequency Criterion (MCFC) for a single damper is presented. A method to minimize the effect of control spill-over for large space structures is proposed. The characteristic equation of an undamped system with a generalized control law is derived using reanalysis theory. This equation can be implemented in computer programs for efficient eigenvalue analysis or control quasi synthesis. Methods to control vibrations in large space structure are reviewed and analyzed. The resulting prototype, using electromagnetic actuator, is described.

  14. Structural safety in case of extreme actions

    DEFF Research Database (Denmark)

    Giuliani, Luisa

    2012-01-01

    The behaviour of buildings and other constructions under critical events is widely recognised to be an important part of structural design. Still, the problem is often addressed in a qualitative way by many current codes and regulations and designers cannot refer to specific methodologies...... for the assessment or the achievement of the structural integrity of constructions. The term structural integrity is intended here as the ability of the structure to sustain extreme actions that directly affects its system without developing a major collapse. In this paper two main methods are outlined....... The use of the first approach is proposed for assessing, by means of a set of nonlinear static analyses, the robustness of structural systems, intended as the ability of a structure to sustain local failure (Starossek, 2009) without developing a major collapse....

  15. Action Recognition Using Discriminative Structured Trajectory Groups

    KAUST Repository

    Atmosukarto, Indriyati

    2015-01-06

    In this paper, we develop a novel framework for action recognition in videos. The framework is based on automatically learning the discriminative trajectory groups that are relevant to an action. Different from previous approaches, our method does not require complex computation for graph matching or complex latent models to localize the parts. We model a video as a structured bag of trajectory groups with latent class variables. We model action recognition problem in a weakly supervised setting and learn discriminative trajectory groups by employing multiple instance learning (MIL) based Support Vector Machine (SVM) using pre-computed kernels. The kernels depend on the spatio-temporal relationship between the extracted trajectory groups and their associated features. We demonstrate both quantitatively and qualitatively that the classification performance of our proposed method is superior to baselines and several state-of-the-art approaches on three challenging standard benchmark datasets.

  16. Unsupervised Action Classification Using Space-Time Link Analysis

    Directory of Open Access Journals (Sweden)

    Feris Rogerio

    2010-01-01

    Full Text Available We address the problem of unsupervised discovery of action classes in video data. Different from all existing methods thus far proposed for this task, we present a space-time link analysis approach which consistently matches or exceeds the performance of traditional unsupervised action categorization methods in various datasets. Our method is inspired by the recent success of link analysis techniques in the image domain. By applying these techniques in the space-time domain, we are able to naturally take into account the spatiotemporal relationships between the video features, while leveraging the power of graph matching for action classification. We present a comprehensive set of experiments demonstrating that our approach is capable of handling cluttered backgrounds, activities with subtle movements, and video data from moving cameras. State-of-the-art results are reported on standard datasets. We also demonstrate our method in a compelling surveillance application with the goal of avoiding fraud in retail stores.

  17. Response actions influence the categorization of directions in auditory space

    Directory of Open Access Journals (Sweden)

    Marcella de Castro Campos Velten

    2015-08-01

    Full Text Available Spatial region concepts such as front, back, left and right reflect our typical interaction with space, and the corresponding surrounding regions have different statuses in memory. We examined the representation of spatial directions in the auditory space, specifically in how far natural response actions, such as orientation movements towards a sound source, would affect the categorization of egocentric auditory space. While standing in the middle of a circle with 16 loudspeakers, participants were presented acoustic stimuli coming from the loudspeakers in randomized order, and verbally described their directions by using the concept labels front, back, left, right, front-right, front-left, back-right and back-left. Response actions varied in three blocked conditions: 1 facing front, 2 turning the head and upper body to face the stimulus, and 3 turning the head and upper body plus pointing with the hand and outstretched arm towards the stimulus. In addition to a protocol of the verbal utterances, motion capture and video recording generated a detailed corpus for subsequent analysis of the participants’ behavior. Chi-square tests revealed an effect of response condition for directions within the left and right sides. We conclude that movement-based response actions influence the representation of auditory space, especially within the sides’ regions.

  18. Segmenting Dynamic Human Action via Statistical Structure

    Science.gov (United States)

    Baldwin, Dare; Andersson, Annika; Saffran, Jenny; Meyer, Meredith

    2008-01-01

    Human social, cognitive, and linguistic functioning depends on skills for rapidly processing action. Identifying distinct acts within the dynamic motion flow is one basic component of action processing; for example, skill at segmenting action is foundational to action categorization, verb learning, and comprehension of novel action sequences. Yet…

  19. Synthesizing lattice structures in phase space

    International Nuclear Information System (INIS)

    Guo, Lingzhen; Marthaler, Michael

    2016-01-01

    In one dimensional systems, it is possible to create periodic structures in phase space through driving, which is called phase space crystals (Guo et al 2013 Phys. Rev. Lett. 111 205303). This is possible even if for particles trapped in a potential without periodicity. In this paper we discuss ultracold atoms in a driven optical lattice, which is a realization of such a phase space crystals. The corresponding lattice structure in phase space is complex and contains rich physics. A phase space lattice differs fundamentally from a lattice in real space, because its coordinate system, i.e., phase space, has a noncommutative geometry, which naturally provides an artificial gauge (magnetic) field. We study the behavior of the quasienergy band structure and investigate the dissipative dynamics. Synthesizing lattice structures in phase space provides a new platform to simulate the condensed matter phenomena and study the intriguing phenomena of driven systems far away from equilibrium. (paper)

  20. Autonomous Assembly of Structures in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — In-orbit assembly of structures is a task that must be performed by space-walking humans, and yet it is costly, time-consuming, and potentially dangerous. Assembly...

  1. Plasticity of the association between visual space and action space in a blind-walking task.

    Science.gov (United States)

    Ellard, Colin G; Wagar, Lori S

    2008-01-01

    Many experiments have shown that a brief visual preview provides sufficient information to complete certain kinds of movements (reaching, grasping, and walking) with high precision. This suggests that participants must possess a calibration between visual target location and the kinaesthetic, proprioceptive, and/or vestibular stimulation generated during movement towards the target. We investigated the properties of this calibration using a cue-conflict paradigm in which participants were trained with mismatched locomotor and visual input. After training, participants were presented with visual targets and were asked to either walk to them or locate them in a spatial updating task. Our results showed that the training was sufficient to produce significant, systematic miscalibrations of the association between visual space and action space. These findings suggest that the association between action space and visual space is modifiable by experience. This plasticity could be either due to modification of a simple, task-specific sensory motor association or it could reflect a change in the gain of a path integration signal or a reorganisation of the relationship between perceived space and action space. We suggest further experiments that might help to distinguish between these possibilities.

  2. Action Research as a Space for Transforming Learning Cultures

    Directory of Open Access Journals (Sweden)

    Elżbieta Wołodźko

    2015-12-01

    Full Text Available The article presents a three-year educational action research project on autonomous and reflective learning. Students and teachers, being actively engaged in many learning practices, were both participating in process(es of developing educational and research community. These interrelated processes framed a dynamic space for constructing and reconstructing the participants’ learning cultures. Thanks to linking educational and research aspects of students’ activity and to interpenetration of practice and reflection, action research generates particular conditions for learning cultures’ transformation, from “traditional” toward “new” ones, based on reflectivity, authenticity and empowerment. The dynamism of learning cultures was connected to various and conscious and reflective types of educational participation, which affected autonomy of studying (in its numerous dimensions and types, being in turn a constitutive element of participants’ learning cultures.

  3. Modelling of Tethered Space-Web Structures

    Science.gov (United States)

    McKenzie, D. J.; Cartnell, M. P.

    Large structures in space are an essential milestone in the path of many projects, from solar power collectors to space stations. In space, as on Earth, these large projects may be split up into more manageable sections, dividing the task into multiple replicable parts. Specially constructed spider robots could assemble these structures piece by piece over a membrane or space- web, giving a method for building a structure while on orbit. The modelling and applications of these space-webs are discussed, along with the derivation of the equations of motion of the structure. The presentation of some preliminary results from the solution of these equations will show that space-webs can take a variety of different forms, and give some guidelines for configuring the space-web system.

  4. The cohomology of orbit spaces of certain free circle group actions

    Indian Academy of Sciences (India)

    theorem for a free G-action on S1 ×CPm−1. It is note worthy that the mod p index for free G-actions on the cohomology lens space is not defined. Keywords. Characteristic class; finitistic space; free action; index; spectral sequence. 1. Introduction. Let X be a topological space and G a topological group acting continuously on ...

  5. The New Space Weather Action Center; the Next Level on Space Weather Education

    Science.gov (United States)

    Collado-Vega, Y. M.; Lewis, E. M.; Cline, T. D.; MacDonald, E.

    2016-12-01

    The Space Weather Action Center (SWAC) provides access for students to near real-time space weather data, and a set of easy instructions and well-defined protocols that allow them to correctly interpret such data. It is a student centered approach to teaching science and technology in classrooms, as students are encouraged to act like real scientists by accessing, collecting, analyzing, recording, and communicating space weather forecasts. Integration and implementation of several programs will enhance and provide a rich education experience for students' grades 5-16. We will enhance the existing data and tutorials available using the Integrated Space Weather Analysis (iSWA) tool created by the Community Coordinated Modeling Center (CCMC) at NASA GSFC. iSWA is a flexible, turn-key, customer-configurable, Web-based dissemination system for NASA-relevant space weather information that combines data based on the most advanced space weather models available through the CCMC with concurrent space environment information. This tool provides an additional component by the use of videos and still imagery from different sources as a tool for educators to effectively show what happens during an eruption from the surface of the Sun. We will also update content on the net result of space weather forecasting that the public can experience by including Aurorasaurus, a well established, growing, modern, innovative, interdisciplinary citizen science project centered around the public's visibility of the northern lights with mobile applications via the use of social media connections.

  6. State spaces of orthomodular structures

    OpenAIRE

    Navara, Mirko

    2000-01-01

    We present several known and one new description of orthomodular structures (orthomodular lattices, orthomodular posets and orthoalgebras). Originally, orthomodular structures were viewed as pasted families of Boolean algebras. Here we introduce semipasted families of Boolean algebras as an alternative description which is not as detailed, but substantially simplex. Semipasted families of Boolean algebras correspond to orthomodular structures in such a way that states and evaluation functiona...

  7. Ionospheric Response to Extremes in the Space Environment: Establishing Benchmarks for the Space Weather Action Plan.

    Science.gov (United States)

    Viereck, R. A.; Azeem, S. I.

    2017-12-01

    One of the goals of the National Space Weather Action Plan is to establish extreme event benchmarks. These benchmarks are estimates of environmental parameters that impact technologies and systems during extreme space weather events. Quantitative assessment of anticipated conditions during these extreme space weather event will enable operators and users of affected technologies to develop plans for mitigating space weather risks and improve preparedness. The ionosphere is one of the most important regions of space because so many applications either depend on ionospheric space weather for their operation (HF communication, over-the-horizon radars), or can be deleteriously affected by ionospheric conditions (e.g. GNSS navigation and timing, UHF satellite communications, synthetic aperture radar, HF communications). Since the processes that influence the ionosphere vary over time scales from seconds to years, it continues to be a challenge to adequately predict its behavior in many circumstances. Estimates with large uncertainties, in excess of 100%, may result in operators of impacted technologies over or under preparing for such events. The goal of the next phase of the benchmarking activity is to reduce these uncertainties. In this presentation, we will focus on the sources of uncertainty in the ionospheric response to extreme geomagnetic storms. We will then discuss various research efforts required to better understand the underlying processes of ionospheric variability and how the uncertainties in ionospheric response to extreme space weather could be reduced and the estimates improved.

  8. Transformation: Structure/space studies in bionics and space design

    Science.gov (United States)

    Gruber, Petra; Imhof, Barbara

    2007-02-01

    This paper discusses the architectural design project "Transformation Structure Space", which was carried out at the Department of Building Construction HB2 in 2004. The goal of the study was to find innovative solutions for space system design through the application of bionic (biomimetic) approaches. Using specific research both fields as the foundation, five different architectural projects based on a scientific-technological concept were developed. The introduction of natural role models into the design process and the development of the application in space and the respective setting proved to be a difficult task within the timeframe of a design program, nonetheless all of the projects show very innovative aspects.

  9. Classifying spaces of degenerating polarized Hodge structures

    CERN Document Server

    Kato, Kazuya

    2009-01-01

    In 1970, Phillip Griffiths envisioned that points at infinity could be added to the classifying space D of polarized Hodge structures. In this book, Kazuya Kato and Sampei Usui realize this dream by creating a logarithmic Hodge theory. They use the logarithmic structures begun by Fontaine-Illusie to revive nilpotent orbits as a logarithmic Hodge structure. The book focuses on two principal topics. First, Kato and Usui construct the fine moduli space of polarized logarithmic Hodge structures with additional structures. Even for a Hermitian symmetric domain D, the present theory is a refinem

  10. Parovičenko spaces with structures

    Czech Academy of Sciences Publication Activity Database

    Kubiś, Wieslaw; Kucharski, A.; Turek, S.

    2014-01-01

    Roč. 108, č. 2 (2014), s. 989-1004 ISSN 1578-7303 R&D Projects: GA ČR(CZ) GAP201/12/0290 Institutional support: RVO:67985840 Keywords : structured compact space * normally supercompact space * median space Subject RIV: BA - General Mathematics Impact factor: 0.776, year: 2014 http://link.springer.com/article/10.1007%2Fs13398-013-0156-0

  11. The structure of visual spaces

    NARCIS (Netherlands)

    Koenderink, J.J.; van Doorn, A.J.

    2008-01-01

    The “visual space” of an optical observer situated at a single, fixed viewpoint is necessarily very ambiguous. Although the structure of the “visual field” (the lateral dimensions, i.e., the “image”) is well defined, the “depth” dimension has to be inferred from the image on the basis of “monocular

  12. Dynamic structure of joint-action stimulus-response activity.

    Directory of Open Access Journals (Sweden)

    MaryLauren Malone

    Full Text Available The mere presence of a co-actor can influence an individual's response behavior. For instance, a social Simon effect has been observed when two individuals perform a Go/No-Go response to one of two stimuli in the presence of each other, but not when they perform the same task alone. Such effects are argued to provide evidence that individuals co-represent the task goals and the to-be-performed actions of a co-actor. Motivated by the complex-systems approach, the present study was designed to investigate an alternative hypothesis--that such joint-action effects are due to a dynamical (time-evolving interpersonal coupling that operates to perturb the behavior of socially situated actors. To investigate this possibility, participants performed a standard Go/No-Go Simon task in joint and individual conditions. The dynamic structure of recorded reaction times was examined using fractal statistics and instantaneous cross-correlation. Consistent with our hypothesis that participants responding in a shared space would become behaviorally coupled, the analyses revealed that reaction times in the joint condition displayed decreased fractal structure (indicative of interpersonal perturbation processes modulating ongoing participant behavior compared to the individual condition, and were more correlated across a range of time-scales compared to the reaction times of pseudo-pair controls. Collectively, the findings imply that dynamic processes might underlie social stimulus-response compatibility effects and shape joint cognitive processes in general.

  13. On a Poisson homogeneous space of bilinear forms with a Poisson-Lie action

    Science.gov (United States)

    Chekhov, L. O.; Mazzocco, M.

    2017-12-01

    Let \\mathscr A be the space of bilinear forms on C^N with defining matrices A endowed with a quadratic Poisson structure of reflection equation type. The paper begins with a short description of previous studies of the structure, and then this structure is extended to systems of bilinear forms whose dynamics is governed by the natural action A\\mapsto B ABT} of the {GL}_N Poisson-Lie group on \\mathscr A. A classification is given of all possible quadratic brackets on (B, A)\\in {GL}_N× \\mathscr A preserving the Poisson property of the action, thus endowing \\mathscr A with the structure of a Poisson homogeneous space. Besides the product Poisson structure on {GL}_N× \\mathscr A, there are two other (mutually dual) structures, which (unlike the product Poisson structure) admit reductions by the Dirac procedure to a space of bilinear forms with block upper triangular defining matrices. Further generalisations of this construction are considered, to triples (B,C, A)\\in {GL}_N× {GL}_N× \\mathscr A with the Poisson action A\\mapsto B ACT}, and it is shown that \\mathscr A then acquires the structure of a Poisson symmetric space. Generalisations to chains of transformations and to the quantum and quantum affine algebras are investigated, as well as the relations between constructions of Poisson symmetric spaces and the Poisson groupoid. Bibliography: 30 titles.

  14. Small Quantum Structures with Small State Spaces

    Science.gov (United States)

    Navara, Mirko

    2008-01-01

    We summarize and extend results about “small” quantum structures with small dimensions of state spaces. These constructions have contributed to the theory of orthomodular lattices. More general quantum structures (orthomodular posets, orthoalgebras, and effect algebras) admit sometimes simplifications, but there are problems where no progress has been achieved.

  15. Action Research to Improve the Learning Space for Diagnostic Techniques

    Directory of Open Access Journals (Sweden)

    Ellen Ariel

    2015-08-01

    Full Text Available The module described and evaluated here was created in response to perceived learning difficulties in diagnostic test design and interpretation for students in third-year Clinical Microbiology. Previously, the activities in lectures and laboratory classes in the module fell into the lower cognitive operations of “knowledge” and “understanding.” The new approach was to exchange part of the traditional activities with elements of interactive learning, where students had the opportunity to engage in deep learning using a variety of learning styles. The effectiveness of the new curriculum was assessed by means of on-course student assessment throughout the module, a final exam, an anonymous questionnaire on student evaluation of the different activities and a focus group of volunteers. Although the new curriculum enabled a major part of the student cohort to achieve higher pass grades (p < 0.001, it did not meet the requirements of the weaker students, and the proportion of the students failing the module remained at 34%. The action research applied here provided a number of valuable suggestions from students on how to improve future curricula from their perspective. Most importantly, an interactive online program that facilitated flexibility in the learning space for the different reagents and their interaction in diagnostic tests was proposed. The methods applied to improve and assess a curriculum refresh by involving students as partners in the process, as well as the outcomes, are discussed.

  16. Neutral Buoyancy Test - Large Space Structure

    Science.gov (United States)

    1979-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  17. Health Interrogation for Space Structures (HISS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Invocon's Health Interrogation for Space Structures (HISS) system provides a significant improvement over current alternatives for monitoring pressurized space...

  18. Geometric structures on loop and path spaces

    Indian Academy of Sciences (India)

    Geometric structures on loop and path spaces. VICENTE MU ˜NOZ ... Now consider the path space P(M) consisting of C∞. -maps γ: [0, 1] .... (7) which implies ω(U,V) = ∫ 1. 0 g. (. ∂U. ∂t. ,V. ) dt. (8). Now the kernel of this 2-form at a point γ is given by the parallel vector fields along γ. Therefore dim ker(ωγ ) ≤ n. There are ...

  19. On the structure of physical space

    CERN Document Server

    Wisnivesky, D

    2001-01-01

    In this paper we develop a theory based on the postulate that the environment where physical phenomena take place is the space of four complex parameters of the linear group of transformations. Using these parameters as fundamental building blocks we construct ordinary space-time and the internal space. Lorentz invariance is built in the definition of external space, while the symmetry of the internal space, S(1)*SU(2) results as a consequence of the identification of the external coordinates. Thus, special relativity and the electroweak interaction symmetry ensue from the properties of the basic building blocks of physical space. Since internal and external space are derived from a common structure, there is no need to bring into the theory any additional hypothesis to account for the microscopic nature of the internal space, nor to introduce symmetry breaking mechanisms that would normally be required to force a splitting of the internal and external symmetries. As an outcome of the existence of a basic str...

  20. Structure of twistor and H-spaces

    International Nuclear Information System (INIS)

    Lugo, G.G.

    1979-01-01

    In chapter one, we review briefly the spinor and twistor formalisms in general relativity. Following some suggestions of A.H. Taub, we show that the local twistor structure of a general curved space-time is closely related to the conformal structure used by B.G. Schmidt to define conformal infinity. In particular, we prove that the normal Cartan connection of the conformal bundle coincides with the connection which gives the covariant derivative of local twistors. In chapter two, we use the results of E.T. Newman and J. Plebanski to construct some explicit self-dual metrics. These solutions are of interest because they are good candidates for what we would like to call asymptotically flat H-spaces. Furthermore, by a closer look at these metrics, we may gain more insight into the behavior of twistor spaces near the boundary. In chapter three, we study the geometric structure of twistor spaces associated with asymptotically flat space-times. We show that the space of asymptotic projective twistors, PT + , is an Einstein Kaehler manifold of constant holomorphic sectional curvature. We also give a brief description of the twistor space construction of the metrics in chapter two. In chapter four, we apply the Chern-Moser theory of the pseudoconformal geometry of real hypersurfaces in complex manifolds to study the structure of the boundary PN of PT + . Using some ideas due to S. Webster, we show that the Chern-Moser curvature invariants of PN coincide with the Kaehler curvature invariants of PT + . From the results of chapter three, we deduce that the pseudoconformal geodesics (chains) of the boundary are nicely behaved

  1. Structural dimensions of knowledge-action networks for sustainability

    Science.gov (United States)

    Tischa A. Munoz; B.B. Cutts

    2016-01-01

    Research on the influence of social network structure over flows of knowledge in support of sustainability governance and action has recently flourished. These studies highlight three challenges to evaluating knowledge-action networks: first, defining boundaries; second, characterizing power distributions; and third, identifying obstacles to knowledge sharing and...

  2. One-loop effective action and Schwinger effect in (anti-) de Sitter space

    Science.gov (United States)

    Cai, Rong-Gen; Kim, Sang Pyo

    2014-09-01

    We study the Schwinger mechanism by a uniform electric field in dS2 and AdS2 and the curvature effect on the Schwinger effect, and further propose a thermal interpretation of the Schwinger formula in terms of the Gibbons-Hawking temperature and the Unruh temperature for an accelerating charge in dS2 and an analogous expression in AdS2. The exact one-loop effective action is found in the proper-time integral in each space, which is determined by the effective mass, the Maxwell scalar, and the scalar curvature, and whose pole structure gives the imaginary part of the effective action and the exact pair-production rate. The exact pair-production rate is also given the thermal interpretation.

  3. The effects of optical illusions in perception and action in peripersonal and extrapersonal space

    NARCIS (Netherlands)

    Shim, J.; van der Kamp, J

    While the two visual system hypothesis tells a fairly compelling story about perception and action in peripersonal space (i.e., within arm's reach), its validity for extrapersonal space is very limited and highly controversial. Hence, the present purpose was to assess whether perception and action

  4. Carbon composites in space vehicle structures

    Science.gov (United States)

    Mayer, N. J.

    1974-01-01

    Recent developments in the technology of carbon or graphite filaments now provide the designer with greatly improved materials offering high specific strength and modulus. Besides these advantages are properties which are distinctly useful for space applications and which provide feasibility for missions not obtainable by other means. Current applications include major and secondary structures of communications satellites. A number of R & D projects are exploring carbon-fiber application to rocket engine motor cases, advanced antenna systems, and space shuttle components. Future system studies are being made, based on the successful application of carbon fibers for orbiting space telescope assemblies, orbital transfer vehicles, and very large deployable energy generation systems. Continued technology development is needed in analysis, material standards, and advanced structural concepts to exploit the full potential of carbon filaments in composite materials.

  5. Large space structures at the Marshall Space Flight Center

    Science.gov (United States)

    Harrison, J. K.; Darwin, C. R.

    1978-01-01

    The Space Shuttle will provide a new capability for the construction in space of structures too large to be accommodated in the Shuttle bay. To understand and develop this new capability several construction methods and design approaches are being studied by MSFC and industry. This paper relates the general scope of these ongoing activities, the project aims and objectives, and a discussion of many design and equipment variables. Major design and construction variables, such as on-orbit or ground fabricated construction and type of materials to be used, are discussed relative to their status and applicability to various designs. Construction methods and options are reviewed and many of the support equipments under study or development are described.

  6. Structural safety in case of extreme actions

    DEFF Research Database (Denmark)

    Giuliani, Luisa

    2012-01-01

    The behaviour of buildings and other constructions under critical events is widely recognised to be an important part of structural design. Still, the problem is often addressed in a qualitative way by many current codes and regulations and designers cannot refer to specific methodologies...

  7. Periodic orbits and TDHF phase space structure

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Yukio; Iwasawa, Kazuo [Tsukuba Univ., Ibaraki (Japan). Inst. of Physics; Tsukuma, Hidehiko; Sakata, Fumihiko

    1998-03-01

    The collective motion of atomic nuclei is closely coupled with the motion of nucleons, therefore, it is nonlinear, and the contents of the motion change largely with the increase of its amplitude. As the framework which describes the collective motion accompanied by the change of internal structure, time-dependent Hurtley Fock (TDHF) method is suitable. At present, the authors try to make the method for studying the large region structure in quantum system by utilizing the features of the TDHF phase space. The studies made so far are briefed. In this report, the correspondence of the large region patterns appearing in the band structure chart of three-level model with the periodic orbit group in the TDHF phase space is described. The Husimi function is made, and it possesses the information on the form of respective corresponding intrinsic state. The method of making the band structure chart is explained. There are three kinds of the tendency in the intrinsic state group. The E-T charts are made for the band structure charts to quantitatively express the large region tendency. The E-T chart and the T{sub r}-T chart are drawn for a selected characteristic orbit group. It became to be known that the large region properties of the quantum intrinsic state group of three-level model can be forecast by examining the properties of the periodic orbit group in the TDHF phase space. (K.I.)

  8. Pro-torus actions on Poincaré duality spaces

    Indian Academy of Sciences (India)

    duality spaces, Borel's dimension formula and topological splitting principle to local weights, hold if 'torus' is replaced by 'pro-torus'. Keywords. Pro-torus; Poincaré duality space; local weight. 1. Introduction. In the theory of linear representations of compact connected Lie groups, the crucial first step is restriction to the ...

  9. Free space in the processes of action research

    DEFF Research Database (Denmark)

    Bladt, Mette; Nielsen, Kurt Aagaard

    2013-01-01

    that we can move the world in a different direction. Thus the notion of utopia becomes part of an ontologically basic understanding. But these different orientations must be developed and protected in a free space. In this article we will focus on the creation of free space for the utopia work....

  10. Projective Hilbert space structures at exceptional points

    Science.gov (United States)

    Günther, Uwe; Rotter, Ingrid; Samsonov, Boris F.

    2007-07-01

    A non-Hermitian complex symmetric 2 × 2-matrix toy model is used to study projective Hilbert space structures in the vicinity of exceptional points (EPs). The bi-orthogonal eigenvectors of a diagonalizable matrix are Puiseux-expanded in terms of the root vectors at the EP. It is shown that the apparent contradiction between the two incompatible normalization conditions with finite and singular behaviour in the EP-limit can be resolved by projectively extending the original Hilbert space. The complementary normalization conditions correspond then to two different affine charts of this enlarged projective Hilbert space. Geometric phase and phase-jump behaviour are analysed, and the usefulness of the phase rigidity as measure for the distance to EP configurations is demonstrated. Finally, EP-related aspects of {\\cal P}{\\cal T} -symmetrically extended quantum mechanics are discussed and a conjecture concerning the quantum brachistochrone problem is formulated.

  11. Projective Hilbert space structures at exceptional points

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Uwe [Research Center Dresden-Rossendorf, PO 510119, D-01314 Dresden (Germany); Rotter, Ingrid [Max Planck Institute for the Physics of Complex Systems, D-01187 Dresden (Germany); Samsonov, Boris F [Physics Department, Tomsk State University, 36 Lenin Avenue, 634050 Tomsk (Russian Federation)

    2007-07-27

    A non-Hermitian complex symmetric 2 x 2-matrix toy model is used to study projective Hilbert space structures in the vicinity of exceptional points (EPs). The bi-orthogonal eigenvectors of a diagonalizable matrix are Puiseux-expanded in terms of the root vectors at the EP. It is shown that the apparent contradiction between the two incompatible normalization conditions with finite and singular behaviour in the EP-limit can be resolved by projectively extending the original Hilbert space. The complementary normalization conditions correspond then to two different affine charts of this enlarged projective Hilbert space. Geometric phase and phase-jump behaviour are analysed, and the usefulness of the phase rigidity as measure for the distance to EP configurations is demonstrated. Finally, EP-related aspects of PT-symmetrically extended quantum mechanics are discussed and a conjecture concerning the quantum brachistochrone problem is formulated.

  12. Mach's principle and space-time structure

    International Nuclear Information System (INIS)

    Raine, D.J.

    1981-01-01

    Mach's principle, that inertial forces should be generated by the motion of a body relative to the bulk of matter in the universe, is shown to be related to the structure imposed on space-time by dynamical theories. General relativity theory and Mach's principle are both shown to be well supported by observations. Since Mach's principle is not contained in general relativity this leads to a discussion of attempts to derive Machian theories. The most promising of these appears to be a selection rule for solutions of the general relativistic field equations, in which the space-time metric structure is generated by the matter content of the universe only in a well-defined way. (author)

  13. Design and volume optimization of space structures

    KAUST Repository

    Jiang, Caigui

    2017-07-21

    We study the design and optimization of statically sound and materially efficient space structures constructed by connected beams. We propose a systematic computational framework for the design of space structures that incorporates static soundness, approximation of reference surfaces, boundary alignment, and geometric regularity. To tackle this challenging problem, we first jointly optimize node positions and connectivity through a nonlinear continuous optimization algorithm. Next, with fixed nodes and connectivity, we formulate the assignment of beam cross sections as a mixed-integer programming problem with a bilinear objective function and quadratic constraints. We solve this problem with a novel and practical alternating direction method based on linear programming relaxation. The capability and efficiency of the algorithms and the computational framework are validated by a variety of examples and comparisons.

  14. Sculpting the space of actions: explaining human action by integrating intentions and mechanisms

    NARCIS (Netherlands)

    Keestra, M.

    2014-01-01

    How can we explain the intentional nature of an expert’s actions, performed without immediate and conscious control, relying instead on automatic cognitive processes? How can we account for the differences and similarities with a novice’s performance of the same actions? Can a naturalist explanation

  15. Air and Space Expeditionary Force Crisis Action Leadership for Commanders

    National Research Council Canada - National Science Library

    Molloy, James P

    2004-01-01

    .... The Air and Space Expeditionary Force (AEF) concept has been executed for a multitude of operations, including the recent Operations ENDURING FREEDOM, IRAQI FREEDOM, AND NOBLE EAGLE, during which several units deployed on very short notice...

  16. Space Structure and Clustering of Categorical Data.

    Science.gov (United States)

    Qian, Yuhua; Li, Feijiang; Liang, Jiye; Liu, Bing; Dang, Chuangyin

    2016-10-01

    Learning from categorical data plays a fundamental role in such areas as pattern recognition, machine learning, data mining, and knowledge discovery. To effectively discover the group structure inherent in a set of categorical objects, many categorical clustering algorithms have been developed in the literature, among which k -modes-type algorithms are very representative because of their good performance. Nevertheless, there is still much room for improving their clustering performance in comparison with the clustering algorithms for the numeric data. This may arise from the fact that the categorical data lack a clear space structure as that of the numeric data. To address this issue, we propose, in this paper, a novel data-representation scheme for the categorical data, which maps a set of categorical objects into a Euclidean space. Based on the data-representation scheme, a general framework for space structure based categorical clustering algorithms (SBC) is designed. This framework together with the applications of two kinds of dissimilarities leads two versions of the SBC-type algorithms. To verify the performance of the SBC-type algorithms, we employ as references four representative algorithms of the k -modes-type algorithms. Experiments show that the proposed SBC-type algorithms significantly outperform the k -modes-type algorithms.

  17. Effective action for a quantum scalar field in warped spaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoff da Silva, J.M.; Mendonca, E.L.; Scatena, E. [Universidade Estadual Paulista ' ' Julio de Mesquita Filho' ' -UNESP, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)

    2015-11-15

    We investigate the one-loop corrections, at zero as well as finite temperature, of a scalar field taking place in a braneworld motivated warped background. After to reach a well-defined problem, we calculate the effective action with the corresponding quantum corrections to each case. (orig.)

  18. Effective action for a quantum scalar field in warped spaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoff da Silva, J. M., E-mail: hoff@feg.unesp.br; Mendonça, E. L., E-mail: eliasleite@feg.unesp.br; Scatena, E., E-mail: eslley@feg.unesp.br [Departamento de Física e Química, Universidade Estadual Paulista “Júlio de Mesquita Filho”-UNESP, Av. Ariberto Pereira da Cunha 333, Pedregulho, Guaratinguetá, SP (Brazil)

    2015-10-30

    We investigate the one-loop corrections, at zero as well as finite temperature, of a scalar field taking place in a braneworld motivated warped background. After to reach a well-defined problem, we calculate the effective action with the corresponding quantum corrections to each case.

  19. Effective action for a quantum scalar field in warped spaces

    Science.gov (United States)

    Hoff da Silva, J. M.; Mendonça, E. L.; Scatena, E.

    2015-11-01

    We investigate the one-loop corrections, at zero as well as finite temperature, of a scalar field taking place in a braneworld motivated warped background. After to reach a well-defined problem, we calculate the effective action with the corresponding quantum corrections to each case.

  20. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    Science.gov (United States)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  1. The Effects of Optical Illusions in Perception and Action in Peripersonal and Extrapersonal Space.

    Science.gov (United States)

    Shim, Jaeho; van der Kamp, John

    2017-09-01

    While the two visual system hypothesis tells a fairly compelling story about perception and action in peripersonal space (i.e., within arm's reach), its validity for extrapersonal space is very limited and highly controversial. Hence, the present purpose was to assess whether perception and action differences in peripersonal space hold in extrapersonal space and are modulated by the same factors. To this end, the effects of an optic illusion in perception and action in both peripersonal and extrapersonal space were compared in three groups that threw balls toward a target at a distance under different target eccentricity (i.e., with the target fixated and in peripheral field), viewing (i.e., binocular and monocular viewing), and delay conditions (i.e., immediate and delayed action). The illusory bias was smaller in action than in perception in peripersonal space, but this difference was significantly reduced in extrapersonal space, primarily because of a weakening bias in perception. No systematic modulation of target eccentricity, viewing, and delay arose. The findings suggest that the two visual system hypothesis is also valid for extra personal space.

  2. Space for human connection in antenatal education: Uncovering women's hopes using Participatory Action Research.

    Science.gov (United States)

    Brady, Vivienne; Lalor, Joan

    2017-12-01

    the aim of this research was to initiate active consultation with women and antenatal educators in the development and delivery of antenatal education that was mutually relevant. a Participatory Action Research approach influenced by feminist concerns was used to guide the research. Data were analysed by the researcher and participants using a Voice Centred Relational Method of Analysis. an Antenatal Education service in a consultant-led tertiary referral unit in Ireland. research findings revealed women's desires to build relationships through ANE to cope with anticipated loneliness and isolation after birth; however, environmental, structural, and organisational factors prohibited opportunity to build space for human connection. Participating women valued external and authoritative knowledge as truth, but concomitantly sought opportunity and space through classes to learn from the real life experiences of other mothers. Women lacked confidence in embodied knowing and their power to birth and demonstrated unquestioning acceptance of the predetermined nature of hospital birth and biomedical model of maternity care. in this research, we envisioned that hospital-based ANE, relevant and grounded in the needs and life experiences of women, could be developed, with a view to supporting women's decision-making processes, and understanding of pregnancy, birth and early motherhood. Participatory Action Research using a Voice Centred Relational Method of Analysis offered an opportunity to foster ethical and dialogic activity between learner and facilitator, underpinned by acknowledgement of the value of women's experiences; however, space for expression of new and useful knowledge in preparation for motherhood was limited by institutional context. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. CNT Applique for SHM of Space Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space structures are unique in that once they are deployed, there is little to no opportunity for manual inspection to assess their integrity. Even on the space...

  4. Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications

    Czech Academy of Sciences Publication Activity Database

    Spížek, Jaroslav; Řezanka, Tomáš

    2017-01-01

    Roč. 133, June 1 SI (2017), s. 20-28 ISSN 0006-2952 Institutional support: RVO:61388971 Keywords : Lincosamides * Chemical structure * Biosynthesis and mechanism of action Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.581, year: 2016

  5. Syntax at hand: common syntactic structures for actions and language.

    Directory of Open Access Journals (Sweden)

    Alice C Roy

    Full Text Available Evidence that the motor and the linguistic systems share common syntactic representations would open new perspectives on language evolution. Here, crossing disciplinary boundaries, we explore potential parallels between the structure of simple actions and that of sentences. First, examining Typically Developing (TD children displacing a bottle with or without knowledge of its weight prior to movement onset, we provide kinematic evidence that the sub-phases of this displacing action (reaching + moving the bottle manifest a structure akin to linguistic embedded dependencies. Then, using the same motor task, we reveal that children suffering from specific language impairment (SLI, whose core deficit affects syntactic embedding and dependencies, manifest specific structural motor anomalies parallel to their linguistic deficits. In contrast to TD children, SLI children performed the displacing-action as if its sub-phases were juxtaposed rather than embedded. The specificity of SLI's structural motor deficit was confirmed by testing an additional control group: Fragile-X Syndrome patients, whose language capacity, though delayed, comparatively spares embedded dependencies, displayed slower but structurally normal motor performances. By identifying the presence of structural representations and dependency computations in the motor system and by showing their selective deficit in SLI patients, these findings point to a potential motor origin for language syntax.

  6. Syntax at hand: common syntactic structures for actions and language.

    Science.gov (United States)

    Roy, Alice C; Curie, Aurore; Nazir, Tatjana; Paulignan, Yves; des Portes, Vincent; Fourneret, Pierre; Deprez, Viviane

    2013-01-01

    Evidence that the motor and the linguistic systems share common syntactic representations would open new perspectives on language evolution. Here, crossing disciplinary boundaries, we explore potential parallels between the structure of simple actions and that of sentences. First, examining Typically Developing (TD) children displacing a bottle with or without knowledge of its weight prior to movement onset, we provide kinematic evidence that the sub-phases of this displacing action (reaching + moving the bottle) manifest a structure akin to linguistic embedded dependencies. Then, using the same motor task, we reveal that children suffering from specific language impairment (SLI), whose core deficit affects syntactic embedding and dependencies, manifest specific structural motor anomalies parallel to their linguistic deficits. In contrast to TD children, SLI children performed the displacing-action as if its sub-phases were juxtaposed rather than embedded. The specificity of SLI's structural motor deficit was confirmed by testing an additional control group: Fragile-X Syndrome patients, whose language capacity, though delayed, comparatively spares embedded dependencies, displayed slower but structurally normal motor performances. By identifying the presence of structural representations and dependency computations in the motor system and by showing their selective deficit in SLI patients, these findings point to a potential motor origin for language syntax.

  7. Prediction of Cracking Induced by Indirect Actions in RC Structures

    Science.gov (United States)

    Anerdi, Costanza; Bertagnoli, Gabriele; Gino, Diego; Malavisi, Marzia; Mancini, Giuseppe

    2017-10-01

    Cracking of concrete plays a key role in reinforced concrete (RC) structures design, especially in serviceability conditions. A variety of reasons contribute to develop cracking and its presence in concrete structures is to be considered as almost unavoidable. Therefore, a good control of the phenomenon in order to provide durability is required. Cracking development is due to tensile stresses that arise in concrete structures as a result of the action of direct external loads or restrained endogenous deformations. This paper focuses on cracking induced by indirect actions. In fact, there is very limited literature regarding this particular phenomenon if compared to its high incidence in the construction practice. As a consequence, the correct prediction of the crack opening, width and position when structures are subjected to imposed deformations, such as massive castings or other highly restrained structures, becomes a compelling task, not so much for the structural capacity, as for their durability. However, this is only partially addressed by commonly used design methods, which are usually intended for direct actions. A set of non-linear analysis on simple tie models is performed using the Finite Element Method in order to study the cracking process under imposed deformations. Different concrete grades have been considered and analysed. The results of this study have been compared with the provisions of the most common codes.

  8. Functional differentiation of macaque visual temporal cortical neurons using a parametric action space.

    Science.gov (United States)

    Vangeneugden, Joris; Pollick, Frank; Vogels, Rufin

    2009-03-01

    Neurons in the rostral superior temporal sulcus (STS) are responsive to displays of body movements. We employed a parametric action space to determine how similarities among actions are represented by visual temporal neurons and how form and motion information contributes to their responses. The stimulus space consisted of a stick-plus-point-light figure performing arm actions and their blends. Multidimensional scaling showed that the responses of temporal neurons represented the ordinal similarity between these actions. Further tests distinguished neurons responding equally strongly to static presentations and to actions ("snapshot" neurons), from those responding much less strongly to static presentations, but responding well when motion was present ("motion" neurons). The "motion" neurons were predominantly found in the upper bank/fundus of the STS, and "snapshot" neurons in the lower bank of the STS and inferior temporal convexity. Most "motion" neurons showed strong response modulation during the course of an action, thus responding to action kinematics. "Motion" neurons displayed a greater average selectivity for these simple arm actions than did "snapshot" neurons. We suggest that the "motion" neurons code for visual kinematics, whereas the "snapshot" neurons code for form/posture, and that both can contribute to action recognition, in agreement with computation models of action recognition.

  9. Moduli spaces of convex projective structures on surfaces

    DEFF Research Database (Denmark)

    Fock, V. V.; Goncharov, A. B.

    2007-01-01

    We introduce explicit parametrisations of the moduli space of convex projective structures on surfaces, and show that the latter moduli space is identified with the higher Teichmüller space for defined in [V.V. Fock, A.B. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, ma.......AG/0311149]. We investigate the cluster structure of this moduli space, and define its quantum version....

  10. q-deformed phase-space and its lattice structure

    International Nuclear Information System (INIS)

    Wess, J.

    1998-01-01

    Quantum groups lead to an algebraic structure that can be realized on quantum spaces. These are non-commutative spaces that inherit a well-defined mathematical structure from the quantum group symmetry. In turn, such quantum spaces can be interpreted as non-commutative configuration spaces for physical systems. We study the non-commutative Euclidean space that is based on the quantum group SO q (3)

  11. Integrated structural control design of large space structures

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.J.; Lauffer, J.P.

    1995-01-01

    Active control of structures has been under intensive development for the last ten years. Reference 2 reviews much of the identification and control technology for structural control developed during this time. The technology was initially focused on space structure and weapon applications; however, recently the technology is also being directed toward applications in manufacturing and transportation. Much of this technology focused on multiple-input/multiple-output (MIMO) identification and control methodology because many of the applications require a coordinated control involving multiple disturbances and control objectives where multiple actuators and sensors are necessary for high performance. There have been many optimal robust control methods developed for the design of MIMO robust control laws; however, there appears to be a significant gap between the theoretical development and experimental evaluation of control and identification methods to address structural control applications. Many methods have been developed for MIMO identification and control of structures, such as the Eigensystem Realization Algorithm (ERA), Q-Markov Covariance Equivalent Realization (Q-Markov COVER) for identification; and, Linear Quadratic Gaussian (LQG), Frequency Weighted LQG and H-/ii-synthesis methods for control. Upon implementation, many of the identification and control methods have shown limitations such as the excitation of unmodelled dynamics and sensitivity to system parameter variations. As a result, research on methods which address these problems have been conducted.

  12. Neural networks for harmonic structure in music perception and action.

    Science.gov (United States)

    Bianco, R; Novembre, G; Keller, P E; Kim, Seung-Goo; Scharf, F; Friederici, A D; Villringer, A; Sammler, D

    2016-11-15

    The ability to predict upcoming structured events based on long-term knowledge and contextual priors is a fundamental principle of human cognition. Tonal music triggers predictive processes based on structural properties of harmony, i.e., regularities defining the arrangement of chords into well-formed musical sequences. While the neural architecture of structure-based predictions during music perception is well described, little is known about the neural networks for analogous predictions in musical actions and how they relate to auditory perception. To fill this gap, expert pianists were presented with harmonically congruent or incongruent chord progressions, either as musical actions (photos of a hand playing chords) that they were required to watch and imitate without sound, or in an auditory format that they listened to without playing. By combining task-based functional magnetic resonance imaging (fMRI) with functional connectivity at rest, we identified distinct sub-regions in right inferior frontal gyrus (rIFG) interconnected with parietal and temporal areas for processing action and audio sequences, respectively. We argue that the differential contribution of parietal and temporal areas is tied to motoric and auditory long-term representations of harmonic regularities that dynamically interact with computations in rIFG. Parsing of the structural dependencies in rIFG is co-determined by both stimulus- or task-demands. In line with contemporary models of prefrontal cortex organization and dual stream models of visual-spatial and auditory processing, we show that the processing of musical harmony is a network capacity with dissociated dorsal and ventral motor and auditory circuits, which both provide the infrastructure for predictive mechanisms optimising action and perception performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The Perspective Structure of Visual Space

    Science.gov (United States)

    2015-01-01

    Luneburg’s model has been the reference for experimental studies of visual space for almost seventy years. His claim for a curved visual space has been a source of inspiration for visual scientists as well as philosophers. The conclusion of many experimental studies has been that Luneburg’s model does not describe visual space in various tasks and conditions. Remarkably, no alternative model has been suggested. The current study explores perspective transformations of Euclidean space as a model for visual space. Computations show that the geometry of perspective spaces is considerably different from that of Euclidean space. Collinearity but not parallelism is preserved in perspective space and angles are not invariant under translation and rotation. Similar relationships have shown to be properties of visual space. Alley experiments performed early in the nineteenth century have been instrumental in hypothesizing curved visual spaces. Alleys were computed in perspective space and compared with reconstructed alleys of Blumenfeld. Parallel alleys were accurately described by perspective geometry. Accurate distance alleys were derived from parallel alleys by adjusting the interstimulus distances according to the size-distance invariance hypothesis. Agreement between computed and experimental alleys and accommodation of experimental results that rejected Luneburg’s model show that perspective space is an appropriate model for how we perceive orientations and angles. The model is also appropriate for perceived distance ratios between stimuli but fails to predict perceived distances. PMID:27648222

  14. Defining Learning Space in a Serious Game in Terms of Operative and Resultant Actions

    Science.gov (United States)

    Martin, Michael W.; Shen, Yuzhong

    2012-01-01

    This paper explores the distinction between operative and resultant actions in games, and proposes that the learning space created by a serious game is a function of these actions. Further, it suggests a possible relationship between these actions and the forms of cognitive load imposed upon the game player. Association of specific types of cognitive load with respective forms of actions in game mechanics also presents some heuristics for integrating learning content into serious games. Research indicates that different balances of these types of actions are more suitable for novice or experienced learners. By examining these relationships, we can develop a few basic principles of game design which have an increased potential to promote positive learning outcomes.

  15. The cohomology of orbit spaces of certain free circle group actions

    Indian Academy of Sciences (India)

    Abstract. Suppose that G = S1 acts freely on a finitistic space X whose (mod p) cohomology ring is isomorphic to that of a lens space L2m−1(p;q1,...,qm) or S1 ×. CPm−1. The mod p index of the action is defined to be the largest integer n such that αn = 0, where α ϵ H2(X/G; Zp) is the nonzero characteristic class of the S1-.

  16. Quantum Structure of Space and Time

    Science.gov (United States)

    Duff, M. J.; Isham, C. J.

    2012-07-01

    Foreword Abdus Salam; Preface; List of participants; Part I. Quantum Gravity, Fields and Topology: 1. Some remarks on gravity and quantum mechanics Roger Penrose; 2. An experimental test of quantum gravity Don N. Page and C. D. Geilker; 3. Quantum mechanical origin of the sandwich theorem in classical gravitation theory Claudio Teitelboim; 4. θ-States induced by the diffeomorphism group in canonically quantized gravity C. J. Isham; 5. Strong coupling quantum gravity: an introduction Martin Pilati; 6. Quantizing fourth order gravity theories S. M. Christensen; 7. Green's functions, states and renormalisation M. R. Brown and A. C. Ottewill; 8. Introduction to quantum regge calculus Martin Roček and Ruth Williams; 9. Spontaneous symmetry breaking in curved space-time D. J. Toms; 10. Spontaneous symmetry breaking near a black hole M. S. Fawcett and B. F. Whiting; 11. Yang-Mills vacua in a general three-space G. Kunstatter; 12. Fermion fractionization in physics R. Jackiw; Part II. Supergravity: 13. The new minimal formulation of N=1 supergravity and its tensor calculus M. F. Sohnius and P. C. West; 14. A new deteriorated energy-momentum tensor M. J. Duff and P. K. Townsend; 15. Off-shell N=2 and N=4 supergravity in five dimensions P. Howe; 16. Supergravity in high dimensions P. van Niewenhuizen; 17. Building linearised extended supergravities J. G. Taylor; 18. (Super)gravity in the complex angular momentum plane M. T. Grisaru; 19. The multiplet structure of solitons in the O(2) supergravity theory G. W. Gibbons; 20. Ultra-violet properties of supersymmetric gauge theory S. Ferrara; 21. Extended supercurrents and the ultra-violet finiteness of N=4 supersymmetric Yang-Mills theories K. S. Stelle; 22. Duality rotations B. Zumino; Part III. Cosmology and the Early Universe: 23. Energy, stability and cosmological constant S. Deser; 24. Phase transitions in the early universe T. W. B. Kibble; 25. Complete cosmological theories L. P. Grishchuk and Ya. B. Zeldovich; 26. The

  17. Active rejection of persistent disturbances in flexible space structures

    Science.gov (United States)

    Hwang, Cheng-Neng; Jayasuriya, Suhada; Parlos, Alexander G.; Sunkel, John W.

    1990-01-01

    A dynamic compensator for active rejection of persistent disturbances in flexible space structures is designed on the principle of the H(infinity)-optimization of the sensitivity transfer function matrix. A general state space solution is formulated to the multiinput multioutput H(infinity)-optimal control problem, allowing the use of the H(infinity)-optimal synthesis algorithm for the state-space models of space structures that result from model order reduction. Disturbances encountered in flexible space structures, such as shuttle docking, are investigated using the high-mode and the reduced-order models of a cantilevered two-bay truss, demonstrating the applicability of the H(infinity)-optimal approach.

  18. Preliminary Structural Design - Defining the Design Space

    Science.gov (United States)

    1993-02-01

    space (where the feasible design space is an n-dimensional "volume"). The dimension of the hyperspace relates to the number of design variables, and...unobtainable from current design procedures. It was pointed out earlier that a hyperspace can be imagined for which each point in that space...other features that make this investigation desirable: • It is robust and fault tolerant. Nerve cells in the brain die every day without affecting its

  19. Space, Place and the Problematic of Race: Black Adolescent Discourse as Mediated Action.

    Science.gov (United States)

    Duncan, Garrett A.

    1996-01-01

    Examines black adolescence and schooling within the conceptual framework of mediated action theory by analyzing the discourses of six black high school students. These discourses connect the concepts of "space," relating to the body, and "place," in the sense of arrangement of public institutions, to the political construction…

  20. Graphene for Expandable Space Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Graphene's tightly bonded impermeable single atomic layer of carbon offers unrivalled potential for lightweight flexible gas barrier applications. Graphene has been...

  1. Taking action: A cross-modal investigation of discourse structure

    Directory of Open Access Journals (Sweden)

    Elsi eKaiser

    2012-06-01

    Full Text Available Segmenting stimuli into events and understanding the relations between those events is crucial for understanding the world. For example, on the linguistic level, successful language use requires the ability to recognize semantic coherence relations between events (e.g. causality, similarity. However, relatively little is known about the mental representation of discourse structure. We report two experiments that used a cross-modal priming paradigm to investigate how humans represent the relations between events. Participants repeated a motor action modeled by the experimenter (e.g. rolled a ball towards mini bowling pins to knock them over, and then completed an unrelated sentence-continuation task (e.g. provided a continuation for Peter scratched John. …. In two experiments, we tested whether and how the coherence relations represented by the motor actions (e.g., causal events vs. non-causal events influence participants’ performance in the linguistic task. Our analyses focused on the coherence relations between the prompt sentences and participants’ continuations, as well as the referential shifts in the continuations. As a whole, the results suggest that the mental representations activated by motor actions overlap with the mental representations used during linguistic discourse-level processing, but nevertheless contain fine-grained information about sub-types of causality (reaction vs. consequence. In addition, the findings point to parallels between shifting one’s attention from one event to another and shifting one’s attention from one referent to another, and indicate that the event structure of causal sequences is conceptualized more like single events than like two distinct events. As a whole, the results point towards common representations activated by motor sequences and discourse-semantic relations, and further our understanding of the mental representation of discourse structure, an area that is still not yet well-understood.

  2. Information space is action space: perceiving the partial lengths of rods rotated on an axle.

    Science.gov (United States)

    Michaels, Claire F; Isenhower, Robert W

    2011-01-01

    In a single experiment, perceivers held unseen rods at some position along their lengths and reported the two partial lengths-to the left and to the right of the hand. Wielding was mechanically limited to a vertical plane. Previous research suggested that the information exploited for this task is captured in a space created from the moment of inertia and gravitational torque. The experiment reported here attempted to replicate the relevance of that space and to ask how exploration might access it. Perceivers were given feedback on accuracy on Blocks 2 and 3 of a four-block experiment, and their performance and position in information space were monitored. Exploratory movements were recorded. Judgments were shown to depend on inertial and gravitational torques, as expected. Analysis of exploratory movements suggested that occupying a locus in information space is equivalent to exploring at some angular acceleration. The apparent weighting of cues (gravitational and inertial torque), which might be interpreted as a cognitive process, was instead interpreted as a consequence of manner of exploration.

  3. The Approach for Action Recognition Based on the Reconstructed Phase Spaces

    Directory of Open Access Journals (Sweden)

    Hong-bin Tu

    2014-01-01

    Full Text Available This paper presents a novel method of human action recognition, which is based on the reconstructed phase space. Firstly, the human body is divided into 15 key points, whose trajectory represents the human body behavior, and the modified particle filter is used to track these key points for self-occlusion. Secondly, we reconstruct the phase spaces for extracting more useful information from human action trajectories. Finally, we apply the semisupervised probability model and Bayes classified method for classification. Experiments are performed on the Weizmann, KTH, UCF sports, and our action dataset to test and evaluate the proposed method. The compare experiment results showed that the proposed method can achieve was more effective than compare methods.

  4. The perspective structure of visual space

    NARCIS (Netherlands)

    Erkelens, C.J.|info:eu-repo/dai/nl/069562296

    2015-01-01

    Luneburg’s model has been the reference for experimental studies of visual space for almost seventy years. His claim for a curved visual space has been a source of inspiration for visual scientists as well as philosophers. The conclusion of many experimental studies has been that Luneburg’s model

  5. Cosmic Rays Report from the Structure of Space

    Directory of Open Access Journals (Sweden)

    A. Annila

    2015-01-01

    Full Text Available Spectrum of cosmic rays follows a broken power law over twelve orders of magnitude. Since ubiquitous power laws are manifestations of the principle of least action, we interpret the spectrum accordingly. Our analysis complies with understanding that low-energy particles originate mostly from rapidly receding sources throughout the cosmos. The flux peaks about proton rest energy whereafter it decreases because fewer and fewer receding sources are energetic enough to provide particles with high enough velocities to compensate for the recessional velocities. Above 1015.6 eV the flux from the expanding Universe diminishes below the flux from the nearby nonexpanding part of the Universe. In this spectral feature, known as the “knee,” we relate to a distance of about 1.3 Mpc where the gravitational potential tallies the energy density of free space. At higher energies particles decelerate in a dissipative manner to attain thermodynamic balance with the vacuum. At about 1017.2 eV a distinct dissipative mechanism opens up for protons to slow down by electron-positron pair production. At about 1019.6 eV a more effective mechanism opens up via pion production. All in all, the universal principle discloses that the broad spectrum of cosmic rays probes the structure of space from cosmic distances down to microscopic details.

  6. Ultra-Lightweight Nanocomposite Foams and Sandwich Structures for Space Structures Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space structures that are ultra-lightweight, and have gas barrier property, space durability, radiation resistance and high impact resistance are desirable to...

  7. Ultra-Lightweight Nanocomposite Foams and Sandwich Structures for Space Structures Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space structures that are ultra-lightweight, and have gas barrier property, space durability, radiation resistance, EMI shielding, and high impact resistance are...

  8. Ultra-Lightweight Nanocomposite Foams and Sandwich Structures for Space Structures Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Space structures that are ultra-lightweight, and have gas barrier property, space durability, radiation resistance, EMI shielding, and high impact resistance are...

  9. Schools as Racial Spaces: Understanding and Resisting Structural Racism

    Science.gov (United States)

    Blaisdell, Benjamin

    2016-01-01

    Analyzing schools as racial spaces can help researchers examine the role of teachers in the perpetuation of structural racism in schools. Based on ethnographic and autoethnographic work, this article offers examples of schools as racial spaces, spaces where whiteness controlled access. It also highlights four teachers who pursued racial equity in…

  10. Dimensionally Stable Structural Space Cable, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Jet Propulsion Laboratory (JPL) is involved in an ongoing effort to design and demonstrate a full-scale (30-32m diameter) Starshade engineering demonstrator that...

  11. Dimensionally Stable Structural Space Cable, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to the need for an affordable exoplanet-analysis science mission, NASA has recently embarked on the ROSES Technology Development for Exoplanet Missions...

  12. A learning oriented subjective action space as an indicator of giftedness

    Directory of Open Access Journals (Sweden)

    ALBERT ZIEGLER

    2008-06-01

    Full Text Available Traditionally, in giftedness research, the intelligence quotient has been presumed to be the best predictor of high achievement levels. From the perspective of the Actiotope Model of Giftedness, however, it is merely one indicator among several on the effectiveness of the academic action repertoire. In this model, learning is considered to be more important than personal traits for attaining high levels of achievement. This is confirmed with three studies conducted with pupils in grades 8 through 11. In Study 1 it was shown that high achieving pupils in the subject of mathematics can be differentiated from other pupils according to the learning orientation of their subjective action space. High achievement can be better predicted over a temporal distance of six months through the learning orientation of the subjective action space than through intelligence. This finding was replicated in Study 2 for the scholastic subject of biology. In Study 3, an investigation was undertaken to determine whether the performance enhancing effect of a learning oriented subjective action space is also beneficial in coming to terms with experiences of failure. This premise could also be confirmed.

  13. Unibody Composite Pressurized Structure (UCPS) for In-Space Propulsion

    Science.gov (United States)

    Rufer, Markus

    2015-01-01

    Microcosm, Inc., in conjunction with the Scorpius Space Launch Company, is developing a UCPS (Unibody Composite Pressurized Structure )for in-space propulsion. This innovative approach constitutes a clean break from traditional spacecraft design by combining what were traditionally separate primary and secondary support structures and metal propellant tanks into a single unit.

  14. 11th International Space Conference on Protection of Materials and Structures from Space Environment

    CERN Document Server

    2017-01-01

    The proceedings published in this book document and foster the goals of the 11th International Space Conference on “Protection of Materials and Structures from Space Environment” ICPMSE-11 to facilitate exchanges between members of the various engineering and science disciplines involved in the development of space materials. Contributions cover aspects of interaction with space environment of LEO, GEO, Deep Space, Planetary environments, ground-based qualification and in-flight experiments, as well as lessons learned from operational vehicles that are closely interrelated to disciplines of atmospheric sciences, solar-terrestrial interactions and space life sciences.

  15. A Hilbert space structure on Banach algebras

    International Nuclear Information System (INIS)

    Mohammad, N.; Thaheem, A.B.

    1988-08-01

    In this note we define an inner product on ''reduced'' Banach *-algebras via a measure on the set of positive functionals. It is shown here that the resultant inner product space is a topological algebra and also a completeness condition is obtained. (author). 9 refs

  16. Notes on qubit phase space and discrete symplectic structures

    International Nuclear Information System (INIS)

    Livine, Etera R

    2010-01-01

    We start from Wootter's construction of discrete phase spaces and Wigner functions for qubits and more generally for finite-dimensional Hilbert spaces. We look at this framework from a non-commutative space perspective and we focus on the Moyal product and the differential calculus on these discrete phase spaces. In particular, the qubit phase space provides the simplest example of a four-point non-commutative phase space. We give an explicit expression of the Moyal bracket as a differential operator. We then compare the quantum dynamics encoded by the Moyal bracket to the classical dynamics: we show that the classical Poisson bracket does not satisfy the Jacobi identity thus leaving the Moyal bracket as the only consistent symplectic structure. We finally generalize our analysis to Hilbert spaces of prime dimensions d and their associated d x d phase spaces.

  17. Notes on qubit phase space and discrete symplectic structures

    Energy Technology Data Exchange (ETDEWEB)

    Livine, Etera R, E-mail: etera.livine@ens-lyon.f [Laboratoire de Physique, ENS Lyon, CNRS UMR 5672, 46 Allee d' Italie, 69364 Lyon (France)

    2010-02-19

    We start from Wootter's construction of discrete phase spaces and Wigner functions for qubits and more generally for finite-dimensional Hilbert spaces. We look at this framework from a non-commutative space perspective and we focus on the Moyal product and the differential calculus on these discrete phase spaces. In particular, the qubit phase space provides the simplest example of a four-point non-commutative phase space. We give an explicit expression of the Moyal bracket as a differential operator. We then compare the quantum dynamics encoded by the Moyal bracket to the classical dynamics: we show that the classical Poisson bracket does not satisfy the Jacobi identity thus leaving the Moyal bracket as the only consistent symplectic structure. We finally generalize our analysis to Hilbert spaces of prime dimensions d and their associated d x d phase spaces.

  18. Space time manifolds and contact structures

    Directory of Open Access Journals (Sweden)

    K. L. Duggal

    1990-01-01

    Full Text Available A new class of contact manifolds (carring a global non-vanishing timelike vector field is introduced to establish a relation between spacetime manifolds and contact structures. We show that odd dimensional strongly causal (in particular, globally hyperbolic spacetimes can carry a regular contact structure. As examples, we present a causal spacetime with a non regular contact structure and a physical model [Gödel Universe] of Homogeneous contact manifold. Finally, we construct a model of 4-dimensional spacetime of general relativity as a contact CR-submanifold.

  19. Distributed active control of large flexible space structures

    Science.gov (United States)

    Nguyen, C. C.; Baz, A.

    1986-01-01

    This progress report summarizes the research work performed at the Catholic University of America on the research grant entitled Distributed Active Control of Large Flexible Space Structures, funded by NASA/Goddard Space Flight Center, under grant number NAG5-749, during the period of March 15, 1986 to September 15, 1986.

  20. Diaphragm Effect of Steel Space Roof Systems in Hall Structures

    Directory of Open Access Journals (Sweden)

    Mehmet FENKLİ

    2015-09-01

    Full Text Available Hall structures have been used widely for different purposes. They have are reinforced concrete frames and shear wall with steel space roof systems. Earthquake response of hall structures is different from building type structures. One of the most critical nodes is diaphragm effect of steel space roof on earthquake response of hall structures. Diaphragm effect is depending on lateral stiffness capacity of steel space roof system. Lateral stiffness of steel space roof system is related to modulation geometry, support conditions, selected sections and system geometry. In current paper, three representative models which are commonly used in Turkey were taken in to account for investigation. Results of numerical tests were present comparatively

  1. Structural Design and Analysis of a Rigidizable Space Shuttle Experiment

    National Research Council Canada - National Science Library

    Holstein

    2004-01-01

    .... Once in space, the experiment will inflate and rigidize three composite structures and perform a vibration analysis on each by exciting the tubes using piezoelectric patches and collecting data via an accelerometer...

  2. Simulating Nonlinear Dynamics of Deployable Space Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To support NASA's vital interest in developing much larger solar array structures over the next 20 years, MotionPort LLC's Phase I SBIR project will strengthen...

  3. Integrated Structural Health Sensors for Inflatable Space Habitats, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna will partner with Dr. Daewon Kim and Dr. Sirish Namilae of Embry Riddle Aeronautical University to develop a multifunctional structural health monitoring...

  4. Track structure model of cell damage in space flight

    Science.gov (United States)

    Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Shinn, Judy L.; Ngo, Duc M.

    1992-01-01

    The phenomenological track-structure model of cell damage is discussed. A description of the application of the track-structure model with the NASA Langley transport code for laboratory and space radiation is given. Comparisons to experimental results for cell survival during exposure to monoenergetic, heavy-ion beams are made. The model is also applied to predict cell damage rates and relative biological effectiveness for deep-space exposures.

  5. A scale invariant covariance structure on jet space

    DEFF Research Database (Denmark)

    Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo

    2005-01-01

    This paper considers scale invariance of statistical image models. We study statistical scale invariance of the covariance structure of jet space under scale space blurring and derive the necessary structure and conditions of the jet covariance matrix in order for it to be scale invariant. As part...... results where we estimate the scale invariant jet covariance of natural images and show that it resembles that of Brownian images....

  6. Control methodologies for large space structures

    Science.gov (United States)

    Mcree, G. J.; Altonji, E.

    1984-01-01

    The objectives of this research were to develop techniques of controlling a dc-motor driven flywheel which would apply torque to the structure to which it was mounted. The motor control system was to be implemented using a microprocessor based controller. The purpose of the torque applied by this system was to dampen oscillations of the structure to which it was mounted. Before the work was terminated due to the unavailability of equipment, a system was developed and partially tested which would provide tight control of the flywheel velocity when it received a velocity command in the form of a voltage. The procedure followed in this development was to first model the motor and flywheel system on an analog computer. Prior to the time the microprocessor development system was available, an analog control loop was replaced by the microprocessor and the system was partially tested.

  7. The role of defensible space for residential structure protection during wildfires

    Science.gov (United States)

    Syphard, Alexandra D.; Brennan, Teresa J.; Keeley, Jon E.

    2014-01-01

    With the potential for worsening fire conditions, discussion is escalating over how to best reduce effects on urban communities. A widely supported strategy is the creation of defensible space immediately surrounding homes and other structures. Although state and local governments publish specific guidelines and requirements, there is little empirical evidence to suggest how much vegetation modification is needed to provide significant benefits. We analysed the role of defensible space by mapping and measuring a suite of variables on modern pre-fire aerial photography for 1000 destroyed and 1000 surviving structures for all fires where homes burned from 2001 to 2010 in San Diego County, CA, USA. Structures were more likely to survive a fire with defensible space immediately adjacent to them. The most effective treatment distance varied between 5 and 20 m (16–58 ft) from the structure, but distances larger than 30 m (100 ft) did not provide additional protection, even for structures located on steep slopes. The most effective actions were reducing woody cover up to 40% immediately adjacent to structures and ensuring that vegetation does not overhang or touch the structure. Multiple-regression models showed landscape-scale factors, including low housing density and distances to major roads, were more important in explaining structure destruction. The best long-term solution will involve a suite of prevention measures that include defensible space as well as building design approach, community education and proactive land use planning that limits exposure to fire.

  8. Maximally helicity-violating diagrams in twistor space and the twistor action

    Science.gov (United States)

    Adamo, Tim; Mason, Lionel

    2012-09-01

    Maximally helicity-violating (MHV) diagrams give an efficient Feynman diagramlike formalism for calculating gauge theory scattering amplitudes on momentum space. Although they arise as the Feynman diagrams from an action on twistor space in an axial gauge, the main ingredients were previously expressed only in momentum space and momentum twistor space. Here we show how the formalism can be elegantly derived and expressed entirely in twistor space. This brings out the underlying superconformal invariance of the framework (up to the choice of a reference twistor used to define the axial gauge) and makes the twistor support transparent. Our treatment is largely independent of signature, although we focus on Lorentz signature. Starting from the N=4 super-Yang-Mills twistor action, we obtain the propagator for the antiholomorphic Dolbeault operator as a delta function imposing collinear support with the reference twistor defining the axial gauge. The MHV vertices are also expressed in terms of similar delta functions. We obtain concrete formulas for tree-level NkMHV diagrams as a product of MHV amplitudes with an R invariant for each propagator; here the R invariant manifests superconformal as opposed to dual-superconformal invariance. This gives the expected explicit support on k+1 lines linked by k further lines associated to the propagators. The R invariants arising correspond to those obtained in the dual conformal invariant momentum twistor version of the formalism, but differences arise in the specification of the boundary terms. Surprisingly, in this framework, some finite loop integrals can be performed as simply as those for tree diagrams.

  9. Stochastic sampling of the RNA structural alignment space.

    Science.gov (United States)

    Harmanci, Arif Ozgun; Sharma, Gaurav; Mathews, David H

    2009-07-01

    A novel method is presented for predicting the common secondary structures and alignment of two homologous RNA sequences by sampling the 'structural alignment' space, i.e. the joint space of their alignments and common secondary structures. The structural alignment space is sampled according to a pseudo-Boltzmann distribution based on a pseudo-free energy change that combines base pairing probabilities from a thermodynamic model and alignment probabilities from a hidden Markov model. By virtue of the implicit comparative analysis between the two sequences, the method offers an improvement over single sequence sampling of the Boltzmann ensemble. A cluster analysis shows that the samples obtained from joint sampling of the structural alignment space cluster more closely than samples generated by the single sequence method. On average, the representative (centroid) structure and alignment of the most populated cluster in the sample of structures and alignments generated by joint sampling are more accurate than single sequence sampling and alignment based on sequence alone, respectively. The 'best' centroid structure that is closest to the known structure among all the centroids is, on average, more accurate than structure predictions of other methods. Additionally, cluster analysis identifies, on average, a few clusters, whose centroids can be presented as alternative candidates. The source code for the proposed method can be downloaded at http://rna.urmc.rochester.edu.

  10. Legal and Political Implications of Offensive Actions from and Against the Space Segment

    Science.gov (United States)

    de Angelis, Iole M.

    2002-01-01

    deployment of strategic weapons, kinetic energy weapons and directed energy weapons are already contained within existing rules and such issues are being actively addressed by the international community. At the same time, the use of cyberwar and electronic warfare to counter space technology not only encounters a void of international rules, but it is a question that is very rarely taken into consideration while addressing to the issues of preventing space warfare. Finally, these techniques are easily available to non-state organisations - terrorist organisations and commercial companies - and individuals. In conclusion, the issues related to offensive actions towards and from space shall be taken into consideration not only in a military perspective, but also in a political perspective - terrorist actions against the space segment - and from an economical point of view.

  11. Progress in composite structure and space construction systems technology

    Science.gov (United States)

    Bodle, J. B.; Jenkins, L. M.

    1981-01-01

    The development of deployable and fabricated composite trusses for large space structures by NASA and private industry is reviewed. Composite materials technology is discussed with a view toward fabrication processes and the characteristics of finished truss beams. Advances in roll-forming open section caps from graphite-composite strip material and new ultrasonic welding techniques are outlined. Vacuum- and gravity-effect test results show that the ultrasonic welding of graphite-thermoplastic materials in space is feasible. The structural characteristics of a prototype truss segment are presented. A new deployable graphite-composite truss with high packaging density for broad application to large space platforms is described.

  12. Advanced Metal Foam Structures for Outer Space

    Science.gov (United States)

    Hanan, Jay; Johnson, William; Peker, Atakan

    2005-01-01

    A document discusses a proposal to use advanced materials especially bulk metallic glass (BMG) foams in structural components of spacecraft, lunar habitats, and the like. BMG foams, which are already used on Earth in some consumer products, are superior to conventional metal foams: BMG foams have exceptionally low mass densities and high strength-to-weight ratios and are more readily processable into strong, lightweight objects of various sizes and shapes. These and other attractive properties of BMG foams would be exploited, according to the proposal, to enable in situ processing of BMG foams for erecting and repairing panels, shells, containers, and other objects. The in situ processing could include (1) generation of BMG foams inside prefabricated deployable skins that would define the sizes and shapes of the objects thus formed and (2) thermoplastic deformation of BMG foams. Typically, the generation of BMG foams would involve mixtures of precursor chemicals that would be subjected to suitable pressure and temperature schedules. In addition to serving as structural components, objects containing or consisting of BMG foams could perform such functions as thermal management, shielding against radiation, and shielding against hypervelocity impacts of micrometeors and small debris particles.

  13. High-Resolution Reciprocal Space Mapping for Characterizing Deformation Structures

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang; Wejdemann, Christian; Jakobsen, Bo

    2014-01-01

    With high-angular resolution three-dimensional X-ray diffraction (3DXRD), quantitative information is gained about dislocation structures in individual grains in the bulk of a macroscopic specimen by acquiring reciprocal space maps. In high-resolution 3D reciprocal space maps of tensile-deformed ......With high-angular resolution three-dimensional X-ray diffraction (3DXRD), quantitative information is gained about dislocation structures in individual grains in the bulk of a macroscopic specimen by acquiring reciprocal space maps. In high-resolution 3D reciprocal space maps of tensile...... dynamics is followed in situ during varying loading conditions by reciprocal space mapping: during uninterrupted tensile deformation, formation of subgrains is observed concurrently with broadening of Bragg reflections shortly after the onset of plastic deformation. When the traction is terminated, stress...

  14. On the cohomology of orbit space of free Zp Zp Zp-actions on lens ...

    Indian Academy of Sciences (India)

    sphere. S2m−1 ⊂ C ×···× C (m-times). Given integers q1,...,qm relatively prime to p, the map (ξ1,...,ξm) → (ζq1 ξ1,...,ζqm ξm), where ζ = e2πι/p2. , defines a free action of. G = 〈ζ〉 on S2m−1 . The orbit spaces of G and the subgroup N = 〈ζp〉 are ...

  15. Does the Vilkovisky-De Witt effective action in quantum gravity depend on the configuration space metric?

    International Nuclear Information System (INIS)

    Odintsov, S.D.

    1991-01-01

    The dependence on the configuration space metric of the Vilkovisky-De Witt effective action in quantum gravity is discussed. As an example d-dimensional Einstein gravity on the flat background R d or R k x T d-k is considered, where the one-loop Vilkovisky-De Witt effective action with the one-parameter dependent configuration space metric is calculated. The dependence on the configuration space metric of the Vilkovisky-De Witt EA in gravity on the space R 4 x S 1 , has been investigated for the first time by Huggins, Kunstatter, Leivo and Toms. (orig.)

  16. Stochastic modelling of extreme action events in structural engineering

    NARCIS (Netherlands)

    Vrouwenvelder, A.C.W.M.

    1998-01-01

    The design for extreme actions, like impact and explosions, should ideally be based on advanced mechanics in combination with risk analysis and decision making principles. In present practice, however, the design for these important actions is often very simple and quite unsatisfactory. For

  17. Initiating Interactive Turn Spaces in Japanese Conversation: Local Projection and Collaborative Action

    Science.gov (United States)

    Iwasaki, Shimako

    2009-01-01

    Shifting from a focus on transitions between speakers at turn boundaries, this study examines projective and multimodal structures "inside" a turn-constructional unit (TCU), out of which any turn is built. It analyzes how particular noun-phrasal components within a TCU become projective and shape interactive turn spaces (ITSs) where…

  18. Definition of technology development missions for early space stations: Large space structures

    Science.gov (United States)

    Gates, R. M.; Reid, G.

    1984-01-01

    The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

  19. Classical mechanics on noncommutative space with Lie-algebraic structure

    International Nuclear Information System (INIS)

    Miao Yangang; Wang Xudong; Yu Shaojie

    2011-01-01

    Highlights: → Suggest a useful method to look for new Lie-algebraic noncommutative spaces. → Find out two new Lie-algebraic noncommutative spaces. → Derive Newton and Hamilton equations that present unimaginable extra forces. → Analyse the source of unimaginable extra forces from space noncummutativity. → Provide various intriguing classical trajectories. - Abstract: We investigate the kinetics of a nonrelativistic particle interacting with a constant external force on a Lie-algebraic noncommutative space. The structure constants of a Lie algebra, also called noncommutative parameters, are constrained in general due to some algebraic properties, such as the antisymmetry and Jacobi identity. Through solving the constraint equations the structure constants satisfy, we obtain two new sorts of algebraic structures, each of which corresponds to one type of noncommutative spaces. Based on such types of noncommutative spaces as the starting point, we analyze the classical motion of the particle interacting with a constant external force by means of the Hamiltonian formalism on a Poisson manifold. Our results not only include that of a recent work as our special cases, but also provide new trajectories of motion governed mainly by marvelous extra forces. The extra forces with the unimaginable tx-dot-,(xx-dot)-, and (xx-double dot)-dependence besides with the usual t-, x-, and x-dot-dependence, originating from a variety of noncommutativity between different spatial coordinates and between spatial coordinates and momenta as well, deform greatly the particle's ordinary trajectories we are quite familiar with on the Euclidean (commutative) space.

  20. Neutral Buoyancy Test - NB-18 - Large Space Structure Assembly

    Science.gov (United States)

    1979-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  1. Efficient placement of structural dynamics sensors on the space station

    Science.gov (United States)

    Lepanto, Janet A.; Shepard, G. Dudley

    1987-01-01

    System identification of the space station dynamic model will require flight data from a finite number of judiciously placed sensors on it. The placement of structural dynamics sensors on the space station is a particularly challenging problem because the station will not be deployed in a single mission. Given that the build-up sequence and the final configuration for the space station are currently undetermined, a procedure for sensor placement was developed using the assembly flights 1 to 7 of the rephased dual keel space station as an example. The procedure presented approaches the problem of placing the sensors from an engineering, as opposed to a mathematical, point of view. In addition to locating a finite number of sensors, the procedure addresses the issues of unobserved structural modes, dominant structural modes, and the trade-offs involved in sensor placement for space station. This procedure for sensor placement will be applied to revised, and potentially more detailed, finite element models of the space station configuration and assembly sequence.

  2. K-nearest uphill clustering in the protein structure space

    KAUST Repository

    Cui, Xuefeng

    2016-08-26

    The protein structure classification problem, which is to assign a protein structure to a cluster of similar proteins, is one of the most fundamental problems in the construction and application of the protein structure space. Early manually curated protein structure classifications (e.g., SCOP and CATH) are very successful, but recently suffer the slow updating problem because of the increased throughput of newly solved protein structures. Thus, fully automatic methods to cluster proteins in the protein structure space have been designed and developed. In this study, we observed that the SCOP superfamilies are highly consistent with clustering trees representing hierarchical clustering procedures, but the tree cutting is very challenging and becomes the bottleneck of clustering accuracy. To overcome this challenge, we proposed a novel density-based K-nearest uphill clustering method that effectively eliminates noisy pairwise protein structure similarities and identifies density peaks as cluster centers. Specifically, the density peaks are identified based on K-nearest uphills (i.e., proteins with higher densities) and K-nearest neighbors. To our knowledge, this is the first attempt to apply and develop density-based clustering methods in the protein structure space. Our results show that our density-based clustering method outperforms the state-of-the-art clustering methods previously applied to the problem. Moreover, we observed that computational methods and human experts could produce highly similar clusters at high precision values, while computational methods also suggest to split some large superfamilies into smaller clusters. © 2016 Elsevier B.V.

  3. MULTICYCLIC ACTION OF DRIFTING ICE FIELDS ON OFFSHORE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Uvarova Tatyana Erikovna

    2012-09-01

    Full Text Available The paper presents the model of mechanical interaction of ice fields with offshore structures. This model allows to calculate the amount of loading cycles, duration of penetration, interaction length and loading regime of structure.

  4. Hamiltonian flow over saddles for exploring molecular phase space structures

    Science.gov (United States)

    Farantos, Stavros C.

    2018-03-01

    Despite using potential energy surfaces, multivariable functions on molecular configuration space, to comprehend chemical dynamics for decades, the real happenings in molecules occur in phase space, in which the states of a classical dynamical system are completely determined by the coordinates and their conjugate momenta. Theoretical and numerical results are presented, employing alanine dipeptide as a model system, to support the view that geometrical structures in phase space dictate the dynamics of molecules, the fingerprints of which are traced by following the Hamiltonian flow above saddles. By properly selecting initial conditions in alanine dipeptide, we have found internally free rotor trajectories the existence of which can only be justified in a phase space perspective. This article is part of the theme issue `Modern theoretical chemistry'.

  5. Quark mass functions and pion structure in Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmer P. [CFTP, Institute Superior Tecnico; Gross, Franz L. [JLAB; Pena, Maria Teresa [CFTP, Institute Superior Tecnico; Stadler, Alfred [University of Evora

    2014-03-01

    We present a study of the dressed quark mass function and the pion structure in Minkowski space using the Covariant Spectator Theory (CST). The quark propagators are dressed with the same kernel that describes the interaction between different quarks. We use an interaction kernel in momentum space that is a relativistic generalization of the linear confining q-qbar potential and a constant potential shift that defines the energy scale. The confining interaction has a Lorentz scalar part that is not chirally invariant by itself but decouples from the equations in the chiral limit and therefore allows the Nambu--Jona-Lasinio (NJL) mechanism to work. We adjust the parameters of our quark mass function calculated in Minkowski-space to agree with LQCD data obtained in Euclidean space. Results of a calculation of the pion electromagnetic form factor in the relativistic impulse approximation using the same mass function are presented and compared with experimental data.

  6. Space Weather Action Plan Solar Radio Burst Phase 1 Benchmarks and the Steps to Phase 2

    Science.gov (United States)

    Biesecker, D. A.; White, S. M.; Gopalswamy, N.; Black, C.; Love, J. J.; Pierson, J.

    2017-12-01

    Solar radio bursts, when at the right frequency and when strong enough, can interfere with radar, communication, and tracking signals. In severe cases, radio bursts can inhibit the successful use of radio communications and disrupt a wide range of systems that are reliant on Position, Navigation, and Timing services on timescales ranging from minutes to hours across wide areas on the dayside of Earth. The White House's Space Weather Action Plan asked for solar radio burst intensity benchmarks for an event occurrence frequency of 1 in 100 years and also a theoretical maximum intensity benchmark. The benchmark team has developed preliminary (phase 1) benchmarks for the VHF (30-300 MHz), UHF (300-3000 MHz), GPS (1176-1602 MHz), F10.7 (2800 MHz), and Microwave (4000-20000) bands. The preliminary benchmarks were derived based on previously published work. Limitations in the published work will be addressed in phase 2 of the benchmark process. In addition, deriving theoretical maxima requires additional work, where it is even possible to, in order to meet the Action Plan objectives. In this presentation, we will present the phase 1 benchmarks, the basis used to derive them, and the limitations of that work. We will also discuss the work that needs to be done to complete the phase 2 benchmarks.

  7. Intermediate Jacobians and Hodge structures of moduli spaces

    Indian Academy of Sciences (India)

    space of vector bundles on a curve is studied. Analysis of the third cohomology yields a new proof of a Torelli theorem. Keywords. Vector bundle; mixed Hodge structure; intermediate Jacobian. 1. Introduction. We work throughout over the complex numbers C, i.e. all schemes are over C and all maps of schemes are maps of ...

  8. Intermediate Jacobians and Hodge structures of moduli spaces

    Indian Academy of Sciences (India)

    The mixed Hodge structure on the low degree cohomology of the moduli space of vector bundles on a curve is studied. Analysis of the third cohomology yields a new proof of a Torelli theorem. Author Affiliations. Donu Arapura1 Pramathanath Sastry1 2. Department of Mathematics, Purdue University, West Lafayette, ...

  9. Structures that Include a Semi-Outdoor Space

    DEFF Research Database (Denmark)

    Papachristou, C.; Foteinaki, Kyriaki; Kazanci, Ongun Berk

    2016-01-01

    The thermal environment of buildings with a second "skin" and semi-outdoor space is examined in the present study. A literature review was conducted on similar structures and only a few studies were found focusing on the thermal environment. Two different building case studies were chosen with di...

  10. On the Fonte structure between a pair of Banach spaces

    International Nuclear Information System (INIS)

    Sharma, C.S.

    1990-01-01

    The main purpose of the present note is to establish the essential equivalence of the adjoint of a semilinear map defined through the Fonte structure between a pair of Banach spaces and the adjoint of the same map defined by Pian and the present author

  11. "Shell and space structures in modern engineering: Challenges and ...

    African Journals Online (AJOL)

    "Shell and space structures in modern engineering: Challenges and opportunities" - An Inaugural Lecture. A Zingoni. Abstract. An Inaugural Lecture Given in the University of Zimbabwe On 4 July 2001. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  12. Spectral investigation of a complex space charge structure in plasma

    International Nuclear Information System (INIS)

    Gurlui, S.; Dimitriu, D. G.; Ionita, C.; Schrittwieser, R. W.

    2009-01-01

    Complex space charge structures bordered by electrical double layers were spectrally investigated in argon plasma in the domain 400-1000 nm, identifying the lines corresponding to the transitions from different excited states of argon. The electron excitation temperature in the argon atoms was estimated from the spectral lines intensity ratio. (authors)

  13. Developing Space Weather products and services in Europe – Preface to the Special Issue on COST Action ES0803

    Directory of Open Access Journals (Sweden)

    Belehaki Anna

    2014-01-01

    Full Text Available COST Action ES0803 “Developing Space Weather products and services in Europe” primarily aimed at forming an interdisciplinary network among European scientists dealing with different issues relevant to Geospace as well as warning system developers and operators in order to assess existing Space Weather products and recommend new ones. The work that has been implemented from 2008 to 2012 resulted in advances in modeling and predicting Space Weather, in recommendations for the validation of Space Weather models, in proposals for new Space Weather products and services, and in dissemination, training, and outreach activities. This preface summarizes the most important achievements of this European activity that are detailed in this special issue by the key scientists who participated in COST Action ES0803.

  14. A Status of the Advanced Space Transportation Program from Planning to Action

    Science.gov (United States)

    Lyles, Garry; Griner, Carolyn

    1998-01-01

    A Technology Plan for Enabling Commercial Space Business was presented at the 48th International Astronautical Congress in Turin, Italy. This paper presents a status of the program's accomplishments. Technology demonstrations have progressed in each of the four elements of the program; (1) Low Cost Technology, (2) Advanced Reusable Technology, (3) Space Transfer Technology and (4) Space Transportation Research. The Low Cost Technology program element is primarily focused at reducing development and acquisition costs of aerospace hardware using a "design to cost" philosophy with robust margins, adapting commercial manufacturing processes and commercial off-the-shelf hardware. The attributes of this philosophy for small payload launch are being demonstrated at the component, sub-system, and system level. The X-34 "Fastrac" engine has progressed through major component and subsystem demonstrations. A propulsion system test bed has been implemented for system-level demonstration of component and subsystem technologies; including propellant tankage and feedlines, controls, pressurization, and engine systems. Low cost turbopump designs, commercial valves and a controller are demonstrating the potential for a ten-fold reduction in engine and propulsion system costs. The Advanced Reusable Technology program element is focused on increasing life through high strength-to-weight structures and propulsion components, highly integrated propellant tanks, automated checkout and health management and increased propulsion system performance. The validation of rocket based combined cycle (RBCC) propulsion is pro,-,ressing through component and subsystem testing. RBCC propulsion has the potential to provide performance margin over an all rocket system that could result in lower gross liftoff weight, a lower propellant mass fraction or a higher payload mass fraction. The Space Transfer Technology element of the program is pursuing technology that can improve performance and

  15. DNA secondary structure of the released strand stimulates WRN helicase action on forked duplexes without coordinate action of WRN exonuclease

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byungchan, E-mail: bbccahn@mail.ulsan.ac.kr [Department of Life Sciences, University of Ulsan, Ulsan (Korea, Republic of); Bohr, Vilhelm A. [Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, Baltimore, MD (United States)

    2011-08-12

    Highlights: {yields} In this study, we investigated the effect of a DNA secondary structure on the two WRN activities. {yields} We found that a DNA secondary structure of the displaced strand during unwinding stimulates WRN helicase without coordinate action of WRN exonuclease. {yields} These results imply that WRN helicase and exonuclease activities can act independently. -- Abstract: Werner syndrome (WS) is an autosomal recessive premature aging disorder characterized by aging-related phenotypes and genomic instability. WS is caused by mutations in a gene encoding a nuclear protein, Werner syndrome protein (WRN), a member of the RecQ helicase family, that interestingly possesses both helicase and exonuclease activities. Previous studies have shown that the two activities act in concert on a single substrate. We investigated the effect of a DNA secondary structure on the two WRN activities and found that a DNA secondary structure of the displaced strand during unwinding stimulates WRN helicase without coordinate action of WRN exonuclease. These results imply that WRN helicase and exonuclease activities can act independently, and we propose that the uncoordinated action may be relevant to the in vivo activity of WRN.

  16. Research on the material and structure of space electrodynamic tether

    Science.gov (United States)

    Dong, Xiaolin; Li, Yongpeng; Zhang, Zhanzhi; Kong, Lingchao; Wang, Xiaoding

    In order to reduce the number of space debris efficiently, many approaches have been developed, such as: initiative propulsion, space robot removal system, electrodynamic tether system and etc. The principle of electrodynamic tether system is as following: Firstly, release the tether from the obsolete satellites or upper stages. Then produce the tether current by collecting and emitting electrons. Finally, when the tether moves through the earth’s magnetic field, the Lorentz Force will be generated by the electrodynamic tether, which could move the whole system away from the orbit. Due to the system should be in orbit for several months or even years, the tether need survive the space environment and the collision from the micro orbital debris for a long time. It requires the tether to be lightweight, high tensile strength and long life-span. Meanwhile, the tether should be conductive, even have the ability of collecting electrons. To satisfy these requirements, the research on material and structure of space electrodynamic tether should be focused on, which is also one of the key technologies of the whole system. This paper summarized the development on the material and structure of space electrodynamic tether, which will contribute to the whole system design.

  17. Assembly of Space CFRP Structures with Racing Sailing Boats Technology

    Science.gov (United States)

    Nieto, Jose; Yuste, Laura; Pipo, Alvaro; Santarsiero, Pablo; Bureo, Rafael

    2014-06-01

    Carbon Fiber Reinforced Plastic (CFRP) is commonly used in space applications to get structures with good mechanical performances and a reduced mass. Most of larger parts of spatial structures are already made of CFRP but the achieved weight saving may be jeopardized by the use of metallic brackets as joining elements. This paper describes the work carried out to study and evaluate ways of reducing weight and costs of the joints between structural elements commonly used in space applications.The main objective of this project is to adapt design solutions coming from the racing sailing boats technology to space applications: the use of out-of autoclave (OoA) cured CFRP joints. In addition to that other CFRP solution common in space business, 3D- RTM Bracket, has been evaluated.This development studies the manufacturing and assembly feasibility making use of these CFRP technologies.This study also compares traditional metallic solutions with innovative CFRP ones in terms of mechanical performances at elementary level. Weight and cost of presented solutions are also compared.

  18. Significance of structure–soil–structure interaction for closely spaced structures

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Christine, E-mail: chroy@sgh.com; Bolourchi, Said, E-mail: sbolourchi@sgh.com; Eggers, Daniel, E-mail: dweggers@sgh.com

    2015-12-15

    Nuclear facilities typically consist of many closely spaced structures with different sizes and depths of embedment. Seismic response of each structure could be influenced by dynamic structure–soil–structure interaction (SSSI) behavior of adjacent closely spaced structures. This paper examines the impact of SSSI on the in-structure response spectra (ISRS) and peak accelerations of a light structure adjacent to a heavy structure and of a heavy structure adjacent to a similar heavy structure for several soil cases, foundation embedment depths, and separation distances. The impacts of a heavy surface or embedded structure on adjacent ground motions were studied. The analyses demonstrated the adjacent ground motions are sensitive to foundation embedment, soil profile, response frequency, and distance from the structure. Seismic responses of a light structure located near a heavy structure are calculated either by modeling both structures subjected to free field motions, or performing a cascade analysis by considering the light structure model subjected to modified ground motions due to the heavy structure. Cascade SSSI analyses are shown to adequately account for the effect of the heavy structure on the light structure without explicitly modeling both structures together in a single analysis. To further study the influence of SSSI behavior, this paper examines dynamic response of two adjacent heavy structures and compares this response to response of a single heavy structure neglecting adjacent structures. The SSSI responses of the two heavy structures are evaluated for varying soil conditions and structure separation distances using three-dimensional linear SSI analyses and considering anti-symmetry boundary conditions. The analyses demonstrate that the SSSI response of a light or a heavy structure can be influenced by the presence of a nearby heavy structure. Although this study considers linear analysis methodology, the conclusion of SSSI influences on dynamic

  19. Spaced Seed Data Structures for De Novo Assembly

    Directory of Open Access Journals (Sweden)

    Inanç Birol

    2015-01-01

    Full Text Available De novo assembly of the genome of a species is essential in the absence of a reference genome sequence. Many scalable assembly algorithms use the de Bruijn graph (DBG paradigm to reconstruct genomes, where a table of subsequences of a certain length is derived from the reads, and their overlaps are analyzed to assemble sequences. Despite longer subsequences unlocking longer genomic features for assembly, associated increase in compute resources limits the practicability of DBG over other assembly archetypes already designed for longer reads. Here, we revisit the DBG paradigm to adapt it to the changing sequencing technology landscape and introduce three data structure designs for spaced seeds in the form of paired subsequences. These data structures address memory and run time constraints imposed by longer reads. We observe that when a fixed distance separates seed pairs, it provides increased sequence specificity with increased gap length. Further, we note that Bloom filters would be suitable to implicitly store spaced seeds and be tolerant to sequencing errors. Building on this concept, we describe a data structure for tracking the frequencies of observed spaced seeds. These data structure designs will have applications in genome, transcriptome and metagenome assemblies, and read error correction.

  20. The global structure of simple space-times

    International Nuclear Information System (INIS)

    Newman, R.P.A.C.

    1989-01-01

    According to a standard definition of Penrose, a space-time admitting well-defined future and past null infinities I + and I - is asymptotically simple if it has no closed timelike curves, and all its endless null geodesics originate from I - and terminate at I + . The global structure of such space-times has previously been successfully investigated only in the presence of additional constraints. The present paper deals with the general case. It is shown that I + is diffeomorphic to the complement of a point in some contractible open 3-manifold, the strongly causal region I 0 + of I + is diffeomorphic to S 2 xR, and every compact connected spacelike 2-surface in I + is contained in I 0 + and is a strong deformation retract of both I 0 + and I + . Moreover the space-time must be globally hyperbolic with Cauchy surfaces which, subject to the truth of the Poincare conjecture, are diffeomorphic to R 3 . (orig.)

  1. Space Assembly of Large Structural System Architectures (SALSSA)

    Science.gov (United States)

    Dorsey, John T.; Watson, Judith J.

    2016-01-01

    Developing a robust capability for Space Assembly of Large Spacecraft Structural System Architectures (SALSSA) has the potential to drastically increase the capabilities and performance of future space missions and spacecraft while significantly reducing their cost. Currently, NASA architecture studies and space science decadal surveys identify new missions that would benefit from SALSSA capabilities, and the technologies that support SALSSA are interspersed throughout the fourteen NASA Technology Roadmaps. However, a major impediment to the strategic development of cross-cutting SALSSA technologies is the lack of an integrated and comprehensive compilation of the necessary information. This paper summarizes the results of a small study that used an integrated approach to formulate a SALSSA roadmap and associated plan for developing key SALSSA technologies.

  2. Multivariate time series with linear state space structure

    CERN Document Server

    Gómez, Víctor

    2016-01-01

    This book presents a comprehensive study of multivariate time series with linear state space structure. The emphasis is put on both the clarity of the theoretical concepts and on efficient algorithms for implementing the theory. In particular, it investigates the relationship between VARMA and state space models, including canonical forms. It also highlights the relationship between Wiener-Kolmogorov and Kalman filtering both with an infinite and a finite sample. The strength of the book also lies in the numerous algorithms included for state space models that take advantage of the recursive nature of the models. Many of these algorithms can be made robust, fast, reliable and efficient. The book is accompanied by a MATLAB package called SSMMATLAB and a webpage presenting implemented algorithms with many examples and case studies. Though it lays a solid theoretical foundation, the book also focuses on practical application, and includes exercises in each chapter. It is intended for researchers and students wor...

  3. Globalisation and health inequalities: can a human rights paradigm create space for civil society action?

    Science.gov (United States)

    London, Leslie; Schneider, Helen

    2012-01-01

    While neoliberal globalisation is associated with increasing inequalities, global integration has simultaneously strengthened the dissemination of human rights discourse across the world. This paper explores the seeming contradiction that globalisation is conceived as disempowering nations states' ability to act in their population's interests, yet implementation of human rights obligations requires effective states to deliver socio-economic entitlements, such as health. Central to the actions required of the state to build a health system based on a human rights approach is the notion of accountability. Two case studies are used to explore the constraints on states meeting their human rights obligations regarding health, the first drawing on data from interviews with parliamentarians responsible for health in East and Southern Africa, and the second reflecting on the response to the HIV/AIDS epidemic in South Africa. The case studies illustrate the importance of a human rights paradigm in strengthening parliamentary oversight over the executive in ways that prioritise pro-poor protections and in increasing leverage for resources for the health sector within parliamentary processes. Further, a rights framework creates the space for civil society action to engage with the legislature to hold public officials accountable and confirms the importance of rights as enabling civil society mobilization, reinforcing community agency to advance health rights for poor communities. In this context, critical assessment of state incapacity to meet claims to health rights raises questions as to the diffusion of accountability rife under modern international aid systems. Such diffusion of accountability opens the door to 'cunning' states to deflect rights claims of their populations. We argue that human rights, as both a normative framework for legal challenges and as a means to create room for active civil society engagement provide a means to contest both the real and the

  4. Capturing structure-activity relationships from chemogenomic spaces.

    Science.gov (United States)

    Wendt, Bernd; Uhrig, Ulrike; Bös, Fabian

    2011-04-25

    Modeling off-target effects is one major goal of chemical biology, particularly in its applications to drug discovery. Here, we describe a new approach that allows the extraction of structure-activity relationships from large chemogenomic spaces starting from a single chemical structure. Several public source databases, offering a vast amount of data on structure and activity for a large number of different targets, have been investigated for their usefulness in automated structure-activity relationships (SAR) extraction. SAR tables were constructed by assembling similar structures around each query structure that have an activity record for a particular target. Quantitative series enrichment analysis (QSEA) was applied to these SAR tables to identify trends and to transform these trends into topomer CoMFA models. Overall more than 1700 SAR tables with topomer CoMFA models have been obtained from the ChEMBL, PubChem, and ChemBank databases. These models were able to highlight the structural trends associated with various off-target effects of marketed drugs, including cases where other structural similarity metrics would not have detected an off-target effect. These results indicate the usefulness of the QSEA approach, particularly whenever applicable with public databases, in providing a new means, beyond a simple similarity between ligand structures, to capture SAR trends and thereby contribute to success in drug discovery.

  5. Structural alphabets derived from attractors in conformational space

    Directory of Open Access Journals (Sweden)

    Kleinjung Jens

    2010-02-01

    Full Text Available Abstract Background The hierarchical and partially redundant nature of protein structures justifies the definition of frequently occurring conformations of short fragments as 'states'. Collections of selected representatives for these states define Structural Alphabets, describing the most typical local conformations within protein structures. These alphabets form a bridge between the string-oriented methods of sequence analysis and the coordinate-oriented methods of protein structure analysis. Results A Structural Alphabet has been derived by clustering all four-residue fragments of a high-resolution subset of the protein data bank and extracting the high-density states as representative conformational states. Each fragment is uniquely defined by a set of three independent angles corresponding to its degrees of freedom, capturing in simple and intuitive terms the properties of the conformational space. The fragments of the Structural Alphabet are equivalent to the conformational attractors and therefore yield a most informative encoding of proteins. Proteins can be reconstructed within the experimental uncertainty in structure determination and ensembles of structures can be encoded with accuracy and robustness. Conclusions The density-based Structural Alphabet provides a novel tool to describe local conformations and it is specifically suitable for application in studies of protein dynamics.

  6. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction

    KAUST Repository

    Cui, Xuefeng

    2016-06-15

    Motivation: Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. Method: We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence–structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. Results: We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM–HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods.

  7. Rollback of the Rotating Service Structure from Space Shuttle Discovery

    Science.gov (United States)

    1999-01-01

    The Rotating Service Structure is rolled back at Launch Pad 39B to reveal the Space Shuttle Discovery, scheduled to launch on mission STS-96 at 6:49 a.m. EDT on May 27. STS-96 is a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies to be stored aboard the station, for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student- involved experiment. The mission will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Space Shuttle Discovery is due to launch on May 27 at 6:49 a.m. EDT. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  8. Classification of compact homogeneous spaces with invariant G(2)-structures

    Czech Academy of Sciences Publication Activity Database

    Le, Hong-Van; Munir, M.

    2012-01-01

    Roč. 12, č. 2 (2012), s. 303-328 ISSN 1615-715X R&D Projects: GA AV ČR IAA100190701 Institutional support: RVO:67985840 Keywords : compact homogeneous space * G(2)-structure Subject RIV: BA - General Mathematics Impact factor: 0.371, year: 2012 http://www.degruyter.com/view/j/advg.2012.12.issue-2/advgeom.2011.054/advgeom.2011.054. xml

  9. Conceptual Inflatable Fabric Structures for Protective Crew Quarters Systems in Space Vehicles and Space Habitat Structures

    Science.gov (United States)

    2015-11-30

    for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of...structures and their components and evaluates their system behaviors using the Abaqus /Explicit finite element analysis (FEA) code.14 Additionally, the...each PCQS concept was performed using Abaqus /Explicit. Model details such as drop-stitch material properties, skin thicknesses, drop-yarn cross

  10. Trajectory Space: A Dual Representation for Nonrigid Structure from Motion.

    Science.gov (United States)

    Akhter, Ijaz; Sheikh, Yaser; Khan, Sohaib; Kanade, Takeo

    2011-07-01

    Existing approaches to nonrigid structure from motion assume that the instantaneous 3D shape of a deforming object is a linear combination of basis shapes. These bases are object dependent and therefore have to be estimated anew for each video sequence. In contrast, we propose a dual approach to describe the evolving 3D structure in trajectory space by a linear combination of basis trajectories. We describe the dual relationship between the two approaches, showing that they both have equal power for representing 3D structure. We further show that the temporal smoothness in 3D trajectories alone can be used for recovering nonrigid structure from a moving camera. The principal advantage of expressing deforming 3D structure in trajectory space is that we can define an object independent basis. This results in a significant reduction in unknowns and corresponding stability in estimation. We propose the use of the Discrete Cosine Transform (DCT) as the object independent basis and empirically demonstrate that it approaches Principal Component Analysis (PCA) for natural motions. We report the performance of the proposed method, quantitatively using motion capture data, and qualitatively on several video sequences exhibiting nonrigid motions, including piecewise rigid motion, partially nonrigid motion (such as a facial expressions), and highly nonrigid motion (such as a person walking or dancing).

  11. Earth & Space Science in the Next Generation Science Standards: Promise, Challenge, and Future Actions. (Invited)

    Science.gov (United States)

    Pyle, E. J.

    2013-12-01

    The Next Generation Science Standards (NGSS) are a step forward in ensuring that future generations of students become scientifically literate. The NGSS document builds from the National Science Education Standards (1996) and the National Assessment of Educational Progress (NAEP) science framework of 2005. Design teams for the Curriculum Framework for K-12 Science Education were to outline the essential content necessary for students' science literacy, considering the foundational knowledge and the structure of each discipline in the context of learning progressions. Once draft standards were developed, two issues emerged from their review: (a) the continual need to prune 'cherished ideas' within the content, such that only essential ideas were represented, and (b) the potential for prior conceptions of Science & Engineering Practices (SEP) and cross-cutting concepts (CCC) to limit overly constrain performance expectations. With the release of the NGSS, several challenges are emerging for geoscience education. First, the traditional emphasis of Earth science in middle school has been augmented by new standards for high school that require major syntheses of concepts. Second, the integration of SEPs into performance expectations places an increased burden on teachers and curriculum developers to organize instruction around the nature of inquiry in the geosciences. Third, work is needed to define CCCs in Earth contexts, such that the unique structure of the geosciences is best represented. To ensure that the Earth & Space Science standards are implemented through grade 12, two supporting structures must be developed. In the past, many curricular materials claimed that they adhered to the NSES, but in some cases this match was a simple word match or checklist that bore only superficial resemblance to the standards. The structure of the performance expectations is of sufficient sophistication to ensure that adherence to the standards more than a casual exercise. Claims

  12. Sensitivity to structure in action sequences: An infant event-related potential study.

    Science.gov (United States)

    Monroy, Claire D; Gerson, Sarah A; Domínguez-Martínez, Estefanía; Kaduk, Katharina; Hunnius, Sabine; Reid, Vincent

    2017-05-06

    Infants are sensitive to structure and patterns within continuous streams of sensory input. This sensitivity relies on statistical learning, the ability to detect predictable regularities in spatial and temporal sequences. Recent evidence has shown that infants can detect statistical regularities in action sequences they observe, but little is known about the neural process that give rise to this ability. In the current experiment, we combined electroencephalography (EEG) with eye-tracking to identify electrophysiological markers that indicate whether 8-11-month-old infants detect violations to learned regularities in action sequences, and to relate these markers to behavioral measures of anticipation during learning. In a learning phase, infants observed an actor performing a sequence featuring two deterministic pairs embedded within an otherwise random sequence. Thus, the first action of each pair was predictive of what would occur next. One of the pairs caused an action-effect, whereas the second did not. In a subsequent test phase, infants observed another sequence that included deviant pairs, violating the previously observed action pairs. Event-related potential (ERP) responses were analyzed and compared between the deviant and the original action pairs. Findings reveal that infants demonstrated a greater Negative central (Nc) ERP response to the deviant actions for the pair that caused the action-effect, which was consistent with their visual anticipations during the learning phase. Findings are discussed in terms of the neural and behavioral processes underlying perception and learning of structured action sequences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The course of experimental staphylococcus infection in albino mice during action of certain factors of space flight

    Science.gov (United States)

    Prokhorov, V. Y.; Shilov, V. M.; Borman, E. A.

    1980-01-01

    A study was made of the effect of certain factors of space flight, acceleration and hypokinesia, on the course of experimental staphylococcus infection in mice. Combined action of hypokinesia and acceleration caused a marked depression of the phagocytic activity of leukocytes and formation of a considerable amount of alpha toxin.

  14. Phase-space-Lagrangian action principle and the generalized K-X theorem. [in covariant coupled equations for plasma dynamics

    Science.gov (United States)

    Kaufman, Allan N.

    1987-01-01

    The covariant coupled equations for plasma dynamics and the Maxwell field are expressed as a phase-space-Lagrangian action principle. The linear interaction is transformed to the bilinear beat Hamiltonian by a gauge-invariant Lagrangian Lie transform. The result yields the generalized linear susceptibility directly.

  15. Nanotube structures, methods of making nanotube structures, and methods of accessing intracellular space

    Science.gov (United States)

    VanDersarl, Jules J.; Xu, Alexander M.; Melosh, Nicholas A.; Tayebi, Noureddine

    2016-02-23

    In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to methods of making a structure including nanotubes, a structure including nanotubes, methods of delivering a fluid to a cell, methods of removing a fluid to a cell, methods of accessing intracellular space, and the like.

  16. Exploring space-time structure of human mobility in urban space

    Science.gov (United States)

    Sun, J. B.; Yuan, J.; Wang, Y.; Si, H. B.; Shan, X. M.

    2011-03-01

    Understanding of human mobility in urban space benefits the planning and provision of municipal facilities and services. Due to the high penetration of cell phones, mobile cellular networks provide information for urban dynamics with a large spatial extent and continuous temporal coverage in comparison with traditional approaches. The original data investigated in this paper were collected by cellular networks in a southern city of China, recording the population distribution by dividing the city into thousands of pixels. The space-time structure of urban dynamics is explored by applying Principal Component Analysis (PCA) to the original data, from temporal and spatial perspectives between which there is a dual relation. Based on the results of the analysis, we have discovered four underlying rules of urban dynamics: low intrinsic dimensionality, three categories of common patterns, dominance of periodic trends, and temporal stability. It implies that the space-time structure can be captured well by remarkably few temporal or spatial predictable periodic patterns, and the structure unearthed by PCA evolves stably over time. All these features play a critical role in the applications of forecasting and anomaly detection.

  17. Composite material designs for lightweight space packaging structures

    Directory of Open Access Journals (Sweden)

    Mihaela Raluca CONDRUZ

    2018-03-01

    Full Text Available This paper presents a study on advanced material designs suitable for lightweight space packaging structures. During this study, several material designs were proposed, evaluated and in the end three packaging structures were designed, manufactured and validated through a test campaign. The material designs proposed consisted in hybrid laminates composed of a composite substrate and integrating metallic foils with high atomic number (Low Z - High Z - Low Z concept and metallic coatings to increase the structure’s protection against harsh space conditions. The packaging structure design selected was a 2U CubeSat. A FEM analysis was performed on two different designs which showed good mechanical resistance under static loads, and regarding the modal analysis, the natural vibration frequencies of the CubeSat were in the imposed limits (outside of the critical range of 1-125 Hz. To reproduce the dynamic environment encountered during launching stage, vibration tests were performed. The structures were validated through a test campaign (vibration tests and their first vibration mode overcomes 100 Hz, results predicted by the FEM analysis.

  18. Condition Based Maintenance of Space Exploration Vehicles Using Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Acellent Technologies proposes to develop an autonomous and automated diagnostic system for condition based maintenance (CBM) of safety critical structures for space...

  19. Condition Based Maintenance of Space Exploration Vehicles Using Structural Health Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Acellent Technologies proposes to develop an autonomous and automated diagnostic system for condition based maintenance (CBM) of safety critical structures for space...

  20. Enhanced surface structuring by ultrafast XUV/NIR dual action

    Czech Academy of Sciences Publication Activity Database

    Jakubczak, Krzysztof; Mocek, Tomáš; Chalupský, Jaromír; Lee, G.H.; Kim, T.K.; Park, S.B.; Nam, Ch. H.; Hájková, Věra; Toufarová, Martina; Juha, Libor; Rus, Bedřich

    2011-01-01

    Roč. 13, č. 5 (2011), s. 1-12 ISSN 1367-2630 R&D Projects: GA AV ČR KAN300100702; GA MŠk(CZ) LC528; GA MŠk LA08024; GA ČR GC202/07/J008 Grant - others:AV ČR(CZ) M100100911 Institutional research plan: CEZ:AV0Z10100523 Keywords : XUV beam * ultrafast NIR laser pulses * high-order harmonics * laser-induced periodic surface structures Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.177, year: 2011 http://iopscience.iop.org/1367-2630/13/5/053049

  1. Genetics, Biosynthesis, Structure, and Mode of Action of Lantibiotics

    Science.gov (United States)

    Kuipers, Anneke; Rink, Rick; Moll, Gert N.

    Lantibiotics are lanthionine-containing peptide antibiotics. They are characterized by having meso-lanthionine(s) and/or β-methyllanthionine(s) or both. These intramolecular monosulfide cross-links render the peptide resistant against breakdown by peptidases. Moreover, in several cases, the (methyl)lanthionines are essential for interaction with the so-called docking molecule lipid II. The best known lantibiotic, nisin, highly effectively inhibits growth of target cells via two mechanisms: (1) abduction of the cell wall precursor lipid II from the septum and (2) formation of pores composed of lipid II and nisin. (Methyl)lanthionines result from two enzyme-catalyzed posttranslational modifications: dehydration of serines/threonines and coupling of the resulting dehydro amino acids to cysteines. Besides the localization of the thioether bridges and dehydro amino acids in the lantibiotics, also the three-dimensional structure of some lantibiotics has been resolved by NMR. Genes encoding proteins involved in the biosynthesis of lantibiotics are present in clusters and may comprise combinations of the following genes in varying order: a structural gene that encodes a leader peptide and the lantibiotic propeptide, modification enzyme(s), a transporter responsible for the export of the lantibiotic and in some cases for cleavage of the leader peptide, a leader peptidase, a so-called immunity protein involved in self-protection of the host cell, components of a transporter also involved in self-protection, and two components of an autoinduction system.

  2. Effects of thermal cycling on composite materials for space structures

    Science.gov (United States)

    Tompkins, Stephen S.

    1989-01-01

    The effects of thermal cycling on the thermal and mechanical properties of composite materials that are candidates for space structures are briefly described. The results from a thermal analysis of the orbiting Space Station Freedom is used to define a typical thermal environment and the parameters that cause changes in the thermal history. The interactions of this environment with composite materials are shown and described. The effects of this interaction on the integrity as well as the properties of GR/thermoset, Gr/thermoplastic, Gr/metal and Gr/glass composite materials are discussed. Emphasis is placed on the effects of the interaction that are critical to precision spacecraft. Finally, ground test methodology are briefly discussed.

  3. Pre-Big Bang, space-time structure, asymptotic Universe

    Directory of Open Access Journals (Sweden)

    Gonzalez-Mestres Luis

    2014-04-01

    Full Text Available Planck and other recent data in Cosmology and Particle Physics can open the way to controversial analyses concerning the early Universe and its possible ultimate origin. Alternatives to standard cosmology include pre-Big Bang approaches, new space-time geometries and new ultimate constituents of matter. Basic issues related to a possible new cosmology along these lines clearly deserve further exploration. The Planck collaboration reports an age of the Universe t close to 13.8 Gyr and a present ratio H between relative speeds and distances at cosmic scale around 67.3 km/s/Mpc. The product of these two measured quantities is then slightly below 1 (about 0.95, while it can be exactly 1 in the absence of matter and cosmological constant in patterns based on the spinorial space-time we have considered in previous papers. In this description of space-time we first suggested in 1996-97, the cosmic time t is given by the modulus of a SU(2 spinor and the Lundmark-Lemaître-Hubble (LLH expansion law turns out to be of purely geometric origin previous to any introduction of standard matter and relativity. Such a fundamental geometry, inspired by the role of half-integer spin in Particle Physics, may reflect an equilibrium between the dynamics of the ultimate constituents of matter and the deep structure of space and time. Taking into account the observed cosmic acceleration, the present situation suggests that the value of 1 can be a natural asymptotic limit for the product H t in the long-term evolution of our Universe up to possible small corrections. In the presence of a spinorial space-time geometry, no ad hoc combination of dark matter and dark energy would in any case be needed to get an acceptable value of H and an evolution of the Universe compatible with observation. The use of a spinorial space-time naturally leads to unconventional properties for the space curvature term in Friedmann-like equations. It therefore suggests a major modification of

  4. Structural Health Monitoring of the Space Shuttle's Wing Leading Edge

    Science.gov (United States)

    Madaras, Eric I.; Prosser, William H.; Studor, George; Gorman, Michael R.; Ziola, Steven M.

    2006-03-01

    In a response to the Columbia Accident Investigation Board's recommendations following the loss of the Space Shuttle Columbia in 2003, NASA developed methods to monitor the orbiters while in flight so that on-orbit repairs could be made before reentry if required. One method that NASA investigated was an acoustic based impact detection system. A large array of ground tests successfully demonstrated the capability to detect and localize impact events on the Shuttle's wing structure. Subsequently, a first generation impact sensing system was developed and deployed on the Shuttle Discovery, the first Shuttle scheduled for return to flight.

  5. Bubble dynamics and space-time structure in extended inflation

    Science.gov (United States)

    Sakai, Nobuyuki; Maeda, Kei-Ichi

    1993-12-01

    Developing a thin-wall formalism, we study the evolution of bubbles in extended inflation. We find the following two results. (1) Any true vacuum bubble expands, contrary to the results of Goldwirth and Zaglauer, who claim that bubbles created initially later collapse. We show that their initial conditions for collapsing bubbles are physically inconsistent. (2) Concerning the global space-time structure of the Universe in extended inflation, we show that workholes are produced as in old inflation, resulting in the multiproduction of universes.

  6. Dynamics Analysis of Origami-Folded Deployable Space Structures with Elastic Hinges

    Data.gov (United States)

    National Aeronautics and Space Administration — The future of space exploration needs highly sophisticated deployable space structure technology in order to achieve the ambitious goals being set today. Several...

  7. Unibody Composite Pressurized Structure (UCPS) for In-Space Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm, in conjunction with the Scoprius Space Launch Company (SSLC), will develop a Unibody Composite Pressurized Structure (UCPS) for in-space propulsion that...

  8. Unibody Composite Pressurized Structure (UCPS) for In-Space Propulsion, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm, in conjunction with the Scoprius Space Launch Company (SSLC), will develop a Unibody Composite Pressurized Structure (UCPS) for in-space propulsion that...

  9. Parieto-frontal gradients and domains underlying eye and hand operations in the action space.

    Science.gov (United States)

    Battaglia-Mayer, Alexandra; Babicola, Lucy; Satta, Eleonora

    2016-10-15

    In monkeys, motor intention in its different forms emerges from a parietal-frontal gradient of visual, eye and hand signals, containing discrete dominant domains. These are formed by areas sharing cortical connections and functional properties. Within this gradient, the combination of different inputs determines the tuning properties of neurons, while local and long cortico-cortical connections shape the structure and temporal delays of the network. The pathways linking similar functional domains in parietal and frontal cortex sculpt information processing systems related to different functions, all requiring eye-hand coordination. fMRI experiments show that similar gradients lay at the core of cognitive-motor control in humans as well. This eye-hand matrix provides a framework to address, within a unitary frame, not only basic forms of motor behavior, such as reaching and grasping, but also actions of increasing complexity, such as interception of moving targets, tool use, construction of complex objects, maze analysis and solution, among others. The organization of the cerebral cortex into functional gradients and domains, beyond frontal and parietal cortices, is common to other brain regions, such as prefrontal cortex and hippocampus, and does not support views of the parieto-frontal operations based on specific and strictly segregated eye and hand modules. These can only be found at the eye and hand motor output domains in the frontal cortex, that is in the frontal eye fields and in the primary motor cortex, respectively. Copyright © 2016. Published by Elsevier Ltd.

  10. Milestones Towards Hot CMC Structures for Operational Space Rentry Vehicles

    Science.gov (United States)

    Hald, H.; Weihs, H.; Reimer, T.

    2002-01-01

    Hot structures made of ceramic matrix composites (CMC) for space reentry vehicles play a key role regarding feasibility of advanced and reusable future space transportation systems. Thus realization of applicable flight hardware concerning hot primary structures like a nose cap or body flaps and thermal protection systems (TPS) requires system competence w.r.t. sophisticated know how in material processing, manufacturing and qualification of structural components and in all aspects from process control, use of NDI techniques, arc jet testing, hot structure testing to flight concept validation. This goal has been achieved so far by DLR while following a dedicated development road map since more than a decade culminating at present in the supply of the nose cap system for NASA's X-38; the flight hardware has been installed successfully in October 2001. A number of unique hardware development milestones had to be achieved in the past to finally reach this level of system competence. It is the intention of this paper to highlight the most important technical issues and achievements from the essential projects and developments to finally provide a comprehensive insight into DLR's past and future development road map w.r.t. CMC hot structures for space reentry vehicles. Based on DLR's C/C-SiC material which is produced with the inhouse developed liquid silicon infiltration process (LSI) the development strategy first concentrated on basic material properties evaluation in various arc jet testing facilities. As soon as a basic understanding of oxidation and erosion mechanisms had been achieved further efforts concentrated on inflight verification of both materials and design concepts for hot structures. Consequently coated and uncoated C/C-SiC specimens were integrated into the ablative heat shield of Russian FOTON capsules and they were tested during two missions in 1992 and 1994. Following on, a hot structure experiment called CETEX which principally was a kind of a

  11. Loop Quantum Cosmology, Space-Time Structure, and Falsifiability

    Science.gov (United States)

    Bojowald, Martin

    Loop quantum cosmology attempts to understand the full dynamics of loop quantum gravity by realizing crucial effects in simpler, usually symmetric settings. Several subtleties arise especially when cosmological questions are to be addressed, related to possible mini-superspace artefacts, consistent cosmological perturbation theory, and quantum space-time structure. Recent work on inhomogeneous perturbations has highlighted some of the dangers of an over-reliance on simple models, sometimes not just reduced by symmetry but also in the possible forms of matter or quantum corrections. Only a consistent treatment of inhomogeneity, taking into account the full gauge structure related to general covariance, can show what happens at high densities in quantum gravity. The relevant methods and results (especially effective equations, potential observational signatures, singularity resolution and signature change) are surveyed in here.

  12. Space Launch System, Core Stage, Structural Test Design and Implementation

    Science.gov (United States)

    Shaughnessy, Ray

    2017-01-01

    As part of the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, engineers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama are working to design, develop and implement the SLS Core Stage structural testing. The SLS will have the capability to return humans to the Moon and beyond and its first launch is scheduled for December of 2017. The SLS Core Stage consist of five major elements; Forward Skirt, Liquid Oxygen (LOX) tank, Intertank (IT), Liquid Hydrogen (LH2) tank and the Engine Section (ES). Structural Test Articles (STA) for each of these elements are being designed and produced by Boeing at Michoud Assembly Facility located in New Orleans, La. The structural test for the Core Stage STAs (LH2, LOX, IT and ES) are to be conducted by the MSFC Test Laboratory. Additionally, the MSFC Test Laboratory manages the Structural Test Equipment (STE) design and development to support the STAs. It was decided early (April 2012) in the project life that the LH2 and LOX tank STAs would require new test stands and the Engine Section and Intertank would be tested in existing facilities. This decision impacted schedules immediately because the new facilities would require Construction of Facilities (C of F) funds that require congressional approval and long lead times. The Engine Section and Intertank structural test are to be conducted in existing facilities which will limit lead times required to support the first launch of SLS. With a SLS launch date of December, 2017 Boeing had a need date for testing to be complete by September of 2017 to support flight certification requirements. The test facilities were required to be ready by October of 2016 to support test article delivery. The race was on to get the stands ready before Test Article delivery and meet the test complete date of September 2017. This paper documents the past and current design and development phases and the supporting processes, tools, and

  13. Experiences with integral microelectronics on smart structures for space

    Science.gov (United States)

    Nye, Ted; Casteel, Scott; Navarro, Sergio A.; Kraml, Bob

    1995-05-01

    One feature of a smart structure implies that some computational and signal processing capability can be performed at a local level, perhaps integral to the controlled structure. This requires electronics with a minimal mechanical influence regarding structural stiffening, heat dissipation, weight, and electrical interface connectivity. The Advanced Controls Technology Experiment II (ACTEX II) space-flight experiments implemented such a local control electronics scheme by utilizing composite smart members with integral processing electronics. These microelectronics, tested to MIL-STD-883B levels, were fabricated with conventional thick film on ceramic multichip module techniques. Kovar housings and aluminum-kapton multilayer insulation was used to protect against harsh space radiation and thermal environments. Development and acceptance testing showed the electronics design was extremely robust, operating in vacuum and at temperature range with minimal gain variations occurring just above room temperatures. Four electronics modules, used for the flight hardware configuration, were connected by a RS-485 2 Mbit per second serial data bus. The data bus was controlled by Actel field programmable gate arrays arranged in a single master, four slave configuration. An Intel 80C196KD microprocessor was chosen as the digital compensator in each controller. It was used to apply a series of selectable biquad filters, implemented via Delta Transforms. Instability in any compensator was expected to appear as large amplitude oscillations in the deployed structure. Thus, over-vibration detection circuitry with automatic output isolation was incorporated into the design. This was not used however, since during experiment integration and test, intentionally induced compensator instabilities resulted in benign mechanical oscillation symptoms. Not too surprisingly, it was determined that instabilities were most detectable by large temperature increases in the electronics, typically

  14. [A Structural Equation Model of Pressure Ulcer Prevention Action in Clinical Nurses].

    Science.gov (United States)

    Lee, Sook Ja; Park, Ok Kyoung; Park, Mi Yeon

    2016-08-01

    The purpose of this study was to construct and test a structural equation model for pressure ulcer prevention action by clinical nurses. The Health Belief Model and the Theory of Planned Behavior were used as the basis for the study. A structured questionnaire was completed by 251 clinical nurses to analyze the relationships between concepts of perceived benefits, perceived barriers, attitude, subjective norm, perceived control, intention to perform action and behavior. SPSS 22.0 and AMOS 22.0 programs were used to analyze the efficiency of the hypothesized model and calculate the direct and indirect effects of factors affecting pressure ulcer prevention action among clinical nurses. The model fitness statistics of the hypothetical model fitted to the recommended levels. Attitude, subjective norm and perceived control on pressure ulcer prevention action explained 64.2% for intention to perform prevention action. The major findings of this study indicate that it is essential to recognize improvement in positive attitude for pressure ulcer prevention action and a need for systematic education programs to increase perceived control for prevention action.

  15. On Space Efficient Two Dimensional Range Minimum Data Structures

    DEFF Research Database (Denmark)

    Davoodi, Pooya; Brodal, Gerth Stølting; Rao, S. Srinivasa

    2010-01-01

    , the lower bound is tight up to a constant factor. In two dimensions, we complement the lower bound with an indexing data structure of size O(N/c) bits additional space which can be preprocessed in O(N) time and achieves O(clog2 c) query time. For c = O(1), this is the first O(1) query time algorithm using......The two dimensional range minimum query problem is to preprocess a static two dimensional m by n array A of size N = m · n, such that subsequent queries, asking for the position of the minimum element in a rectangular range within A, can be answered efficiently. We study the trade-off between...... optimal O(N) bits additional space. For the case where queries can not probe A, we give a data structure of size O(N· min {m,logn}) bits with O(1) query time, assuming m ≤ n. This leaves a gap to the lower bound of Ω(Nlogm) bits for this version of the problem....

  16. A Study of Flexible Composites for Expandable Space Structures

    Science.gov (United States)

    Scotti, Stephen J.

    2016-01-01

    Payload volume for launch vehicles is a critical constraint that impacts spacecraft design. Deployment mechanisms, such as those used for solar arrays and antennas, are approaches that have successfully accommodated this constraint, however, providing pressurized volumes that can be packaged compactly at launch and expanded in space is still a challenge. One approach that has been under development for many years is to utilize softgoods - woven fabric for straps, cloth, and with appropriate coatings, bladders - to provide this expandable pressure vessel capability. The mechanics of woven structure is complicated by a response that is nonlinear and often nonrepeatable due to the discrete nature of the woven fiber architecture. This complexity reduces engineering confidence to reliably design and certify these structures, which increases costs due to increased requirements for system testing. The present study explores flexible composite materials systems as an alternative to the heritage softgoods approach. Materials were obtained from vendors who utilize flexible composites for non-aerospace products to determine some initial physical and mechanical properties of the materials. Uniaxial mechanical testing was performed to obtain the stress-strain response of the flexible composites and the failure behavior. A failure criterion was developed from the data, and a space habitat application was used to provide an estimate of the relative performance of flexible composites compared to the heritage softgoods approach. Initial results are promising with a 25% mass savings estimated for the flexible composite solution.

  17. The Structural Basis of Action of Vanadyl (VO2+) Chelates in Cells.

    Science.gov (United States)

    Makinen, Marvin W; Salehitazangi, Marzieh

    2014-11-01

    Much emphasis has been given to vanadium compounds as potential therapeutic reagents for the treatment of diabetes mellitus. Thus far, no vanadium compound has proven efficacious for long-term treatment of this disease in humans. Therefore, in review of the research literature, our goal has been to identify properties of vanadium compounds that are likely to favor physiological and biochemical compatibility for further development as therapeutic reagents. We have, therefore, limited our review to those vanadium compounds that have been used in both in vivo experiments with small, laboratory animals and in in vitro studies with primary or cultured cell systems and for which pharmacokinetic and pharmacodynamics results have been reported, including vanadium tissue content, vanadium and ligand lifetime in the bloodstream, structure in solution, and interaction with serum transport proteins. Only vanadyl (VO 2+ ) chelates fulfill these requirements despite the large variety of vanadium compounds of different oxidation states, ligand structure, and coordination geometry synthesized as potential therapeutic agents. Extensive review of research results obtained with use of organic VO 2+ -chelates shows that the vanadyl chelate bis (acetylacetonato)oxidovanadium(IV) [hereafter abbreviated as VO(acac) 2 ], exhibits the greatest capacity to enhance insulin receptor kinase activity in cells compared to other organic VO 2+ -chelates, is associated with a dose-dependent capacity to lower plasma glucose in diabetic laboratory animals, and exhibits a sufficiently long lifetime in the blood stream to allow correlation of its dose-dependent action with blood vanadium content. The properties underlying this behavior appear to be its high stability and capacity to remain intact upon binding to serum albumin. We relate the capacity to remain intact upon binding to serum albumin to the requirement to undergo transcytosis through the vascular endothelium to gain access to target tissues

  18. Structuration, space and time: the reconstruction of Anthony Giddens’ «structure-agency» synthesis theory

    Directory of Open Access Journals (Sweden)

    A. D. Osypchuk

    2014-10-01

    Full Text Available The article presents a theoretical and analytical reconstruction of A.Giddens’ Structuration theory as an attempt of ‘structure-agency’ synthesis in sociology. The concept of structuration is introduced by Giddens to solve the problem of duality of structure and agency where the former is defined as rules and resources. Structuration can’t be understood without reference to Giddens’ use of ‘time-space’ concept and related locality and regionalization concepts. Article analyses in details which theoretical and methodological possibilities and limitations comes out of defining structuration as constant flux of conducts in time-space, especially in regard to snapshots of previous conditions of system or structure and memories about them. The article also deals with the concepts of presence, locality, and regionalization that are the result of critical development of time geography approach and are based on combining time and space into one inseparable dimension. The main types and modes of regionalization are reviewed. It is emphasized that through regionalization, locality, and forms of presence and of routine practices Giddens defines not only social institutions but also social system. There is a brief theoretical and methodological discussion of correlation between social structure and social system and of the potential application of Structuration theory to analysis of social change.

  19. Inflatable shape changing colonies assembling versatile smart space structures

    Science.gov (United States)

    Sinn, Thomas; Hilbich, Daniel; Vasile, Massimiliano

    2014-11-01

    Various plants have the ability to follow the sun with their flowers or leaves during the course of a day via a mechanism known as heliotropism. This mechanism is characterised by the introduction of pressure gradients between neighbouring motor cells in the plant's stem, enabling the stem to bend. By adapting this bio-inspired mechanism to mechanical systems, a new class of smart structures can be created. The developed overall structure is made up of a number of cellular colonies, each consisting of a central pressure source surrounded by multiple cells. After launch, the cellular arrays are deployed in space and are either preassembled or alternatively are attached together during their release or afterwards. A central pressure source is provided by a high-pressure storage unit with an integrated valve, which provides ingress gas flow to the system; the gas is then routed through the system via a sequence of valve operations and cellular actuations, allowing for any desired shape to be achieved within the constraints of the deployed array geometry. This smart structure consists of a three dimensional adaptable cellular array with fluid controlling Micro Electromechanical Systems (MEMS) components enabling the structure to change its global shape. The proposed MEMS components include microvalves, pressure sensors, mechanical interconnect structures, and electrical routing. This paper will also give an overview of the system architecture and shows the feasibility and shape changing capabilities of the proposed design with multibody dynamic simulations. Example applications of this lightweight shape changing structure include concentrators, mirrors, and communications antennas that are able to dynamically change their focal point, as well as substructures for solar sails that are capable of steering through solar winds by altering the sails' subjected area.

  20. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction.

    Science.gov (United States)

    Cui, Xuefeng; Lu, Zhiwu; Wang, Sheng; Jing-Yan Wang, Jim; Gao, Xin

    2016-06-15

    Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence-structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM-HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods. Our program is freely available for download from http://sfb.kaust.edu.sa/Pages/Software.aspx : xin.gao@kaust.edu.sa Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  1. Ultra-Light “Photonic Muscle” Space Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — Fabrication of large space optics that are accurately shaped to better than a 1,000th of the width of a human hair is an enormous challenge. Traditional space...

  2. Dynamic characteristics analysis of deployable space structures considering joint clearance

    Science.gov (United States)

    Li, Tuanjie; Guo, Jian; Cao, Yuyan

    2011-04-01

    The clearance in joints influences the dynamic stability and the performance of deployable space structures (DSS). A virtual experimental modal analysis (VEMA) method is proposed to deal with the effects of joint clearance and link flexibility on the dynamic characteristics of the DSS in this paper. The focus is on the finite element modeling of the clearance joint, VEMA and the modal parameters identification of the DSS. The finite element models (FEM) of the clearance joint and the deployable structure are established in ANSYS. The transient dynamic analysis is conducted to provide the time history data of excitation and response for the VEMA. The fast Fourier transform (FFT) technique is used to transform the data from time domain to frequency domain. The frequency response function is calculated to identify the modal parameters of the deployable structure. Experimental verification is provided to indicate the VEMA method is both a cost and time efficient approach to obtain the dynamic characteristics of the DSS. Finally, we analyze the effects of clearance size and gravity on the dynamic characteristics of the DSS. The analysis results indicate that the joint clearance and gravity strongly influence the dynamic characteristics of the DSS.

  3. Structuring and sampling complex conformation space: Weighted ensemble dynamics simulations.

    Science.gov (United States)

    Gong, Linchen; Zhou, Xin

    2009-08-01

    Based on multiple simulation trajectories, which started from dispersively selected initial conformations, the weighted ensemble dynamics method is designed to robustly and systematically explore the hierarchical structure of complex conformational space through the spectral analysis of the variance-covariance matrix of trajectory-mapped vectors. The nondegenerate ground state of the matrix directly predicts the ergodicity of simulation data. The ground state could be adopted as statistical weights of trajectories to correctly reconstruct the equilibrium properties, even though each trajectory only explores part of the conformational space. Otherwise, the degree of degeneracy simply gives the number of metastable states of the system under the time scale of individual trajectory. Manipulation on the eigenvectors leads to the classification of trajectories into nontransition ones within the states and transition ones between them. The transition states may also be predicted without a priori knowledge of the system. We demonstrate the application of the general method both to the system with a one-dimensional glassy potential and with the one of alanine dipeptide in explicit solvent.

  4. EFT of large scale structures in redshift space

    Science.gov (United States)

    Lewandowski, Matthew; Senatore, Leonardo; Prada, Francisco; Zhao, Cheng; Chuang, Chia-Hsun

    2018-03-01

    We further develop the description of redshift-space distortions within the effective field theory of large scale structures. First, we generalize the counterterms to include the effect of baryonic physics and primordial non-Gaussianity. Second, we evaluate the IR resummation of the dark matter power spectrum in redshift space. This requires us to identify a controlled approximation that makes the numerical evaluation straightforward and efficient. Third, we compare the predictions of the theory at one loop with the power spectrum from numerical simulations up to ℓ=6 . We find that the IR resummation allows us to correctly reproduce the baryon acoustic oscillation peak. The k reach—or, equivalently, the precision for a given k —depends on additional counterterms that need to be matched to simulations. Since the nonlinear scale for the velocity is expected to be longer than the one for the overdensity, we consider a minimal and a nonminimal set of counterterms. The quality of our numerical data makes it hard to firmly establish the performance of the theory at high wave numbers. Within this limitation, we find that the theory at redshift z =0.56 and up to ℓ=2 matches the data at the percent level approximately up to k ˜0.13 h Mpc-1 or k ˜0.18 h Mpc-1 , depending on the number of counterterms used, with a potentially large improvement over former analytical techniques.

  5. THE MODEL CHARACTERISTICS OF JUMP ACTIONS STRUCTURE OF HIGH PERFORMANCE FEMALE VOLLEYBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Stech M.

    2012-12-01

    Full Text Available The purpose of this study was to develop generalized and individual models of the jump actions of skilled female volleyball players. The main prerequisite for the development of the jump actions models were the results of our earlier studies of factor structure of jump actions of 10 sportswomen of the Polish volleyball team "Gedania" (Premier League in the preparatory and competitive periods of the annual cycle of preparation. The athletes age was 22.0 +- 2.9 years, the sports experience - 8.1 +- 3.1 years, body height - 181.9 +- 8.4 years and body weight - 72.8 +- 10.8 kg. Mathematical and statistical processing of the data (the definition of M ± SD and significant differences between the samples was performed using a standard computer program "STATISTICA 7,0". Based on the analysis of the factor structure of 20 jump actions of skilled women volleyball players determined to within 5 of the most informative indexes and their tentative values recommended for the formation of a generalized model of this structure. Comparison of individual models of jump actions of skilled women volleyball players with their generalized models in different periods of preparation can be used for the rational choice of means and methods for the increasing of the training process efficiency.

  6. Virtual Black Holes and Space-Time Structure

    Science.gov (United States)

    't Hooft, Gerard

    2018-01-01

    In the standard formalism of quantum gravity, black holes appear to form statistical distributions of quantum states. Now, however, we can present a theory that yields pure quantum states. It shows how particles entering a black hole can generate firewalls, which however can be removed, replacing them by the `footprints' they produce in the out-going particles. This procedure can preserve the quantum information stored inside and around the black hole. We then focus on a subtle but unavoidable modification of the topology of the Schwarzschild metric: antipodal identification of points on the horizon. If it is true that vacuum fluctuations include virtual black holes, then the structure of space-time is radically different from what is usually thought.

  7. Automatic classification of protein structures using low-dimensional structure space mappings.

    Science.gov (United States)

    Asarnow, Daniel; Singh, Rahul

    2014-01-01

    Protein function is closely intertwined with protein structure. Discovery of meaningful structure-function relationships is of utmost importance in protein biochemistry and has led to creation of high-quality, manually curated classification databases, such as the gold-standard SCOP (Structural Classification of Proteins) database. The SCOP database and its counterparts such as CATH provide a detailed and comprehensive description of the structural and evolutionary relationships of the proteins of known structure and are widely employed in structural and computational biology. Since manual classification is both subjective and highly laborious, automated classification of novel structures is increasingly an active area of research. The design of methods for automated structure classification has been rendered even more important since the recent past, due to the explosion in number of solved structures arising out of various structural biology initiatives. In this paper we propose an approach to the problem of structure classification based on creating and tessellating low dimensional maps of the protein structure space (MPSS). Given a set of protein structures, an MPSS is a low dimensional embedding of structural similarity-based distances between the molecules. In an MPSS, a group of proteins (such as all the proteins in the PDB or sub-samplings thereof) under consideration are represented as point clouds and structural relatedness maps to spatial adjacency of the points. In this paper we present methods and results that show that MPSS can be used to create tessellations of the protein space comparable to the clade systems within SCOP. Though we have used SCOP as the gold standard, the proposed approach is equally applicable for other structural classifications. In the proposed approach, we first construct MPSS using pairwise alignment distances obtained from four established structure alignment algorithms (CE, Dali, FATCAT and MATT). The low dimensional

  8. The approximate inverse in action: IV. Semi-discrete equations in a Banach space setting

    International Nuclear Information System (INIS)

    Schuster, T; Schöpfer, F; Rieder, A

    2012-01-01

    This article concerns the method of approximate inverse to solve semi-discrete, linear operator equations in Banach spaces. Semi-discrete means that we search for a solution in an infinite-dimensional Banach space having only a finite number of data available. In this sense the situation is applicable to a large variety of applications where a measurement process delivers a discretization of an infinite-dimensional data space. The method of approximate inverse computes scalar products of the data with pre-computed reconstruction kernels which are associated with mollifiers and the dual of the model operator. The convergence, approximation power and regularization property of this method when applied to semi-discrete operator equations in Hilbert spaces has been investigated in three prequels to this paper. Here we extend these results to a Banach space setting. We prove convergence and stability for general Banach spaces and reproduce the results specifically for the integration operator acting on the space of continuous functions. (paper)

  9. Structure resonances due to space charge in periodic focusing channels

    Science.gov (United States)

    Li, Chao; Jameson, R. A.

    2018-02-01

    The Vlasov-Poisson model is one of the most effective methods to study the space charge dominated beam evolution self-consistently in a periodic focusing channel. Since the approach to get the solution with this model is not trivial, previous studies are limited in degenerated conditions, either in smoothed channel (constant focusing) [I. Hofmann, Phys. Rev. E 57, 4713 (1998)] or in alternating gradient focusing channel with equal initial beam emittance condition in the degrees of freedom [I. Hofmann et al., Part. Accel. 13, 145 (1983); Chao Li et al., THOBA02, IPAC2016]. To establish a basis, we intentionally limit this article to the study of the pure transverse periodic focusing lattice with arbitrary initial beam condition, and the same lattice structure in both degrees of freedom, but with possibility of different focusing strengths. This will show the extension of the existing work. The full Hamiltonian is invoked for a pure transverse focusing lattice in various initial beam conditions, revealing different mode structure and additional modes beyond those of the degenerated cases. Application of the extended method to realistic lattices (including longitudinal accelerating elements) and further details will then reveal many new insights, and will be presented in later work.

  10. Phase Space Dissimilarity Measures for Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bubacz, Jacob A [ORNL; Chmielewski, Hana T [ORNL; Pape, Alexander E [ORNL; Depersio, Andrew J [ORNL; Hively, Lee M [ORNL; Abercrombie, Robert K [ORNL; Boone, Shane [ORNL

    2011-11-01

    A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placement sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results.

  11. On Space Efficient Two Dimensional Range Minimum Data Structures

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Davoodi, Pooya; Rao, S. Srinivasa

    2012-01-01

    of the problem, the lower bound is tight up to a constant factor. In two dimensions, we complement the lower bound with an indexing data structure of size O(N/c) bits which can be preprocessed in O(N) time to support O(clog 2 c) query time. For c=O(1), this is the first O(1) query time algorithm using a data......The two dimensional range minimum query problem is to preprocess a static m by n matrix (two dimensional array) A of size N=m⋅n, such that subsequent queries, asking for the position of the minimum element in a rectangular range within A, can be answered efficiently. We study the trade-off between...... the space and query time of the problem. We show that every algorithm enabled to access A during the query and using a data structure of size O(N/c) bits requires Ω(c) query time, for any c where 1≤c≤N. This lower bound holds for arrays of any dimension. In particular, for the one dimensional version...

  12. Defining soldier equipment trade space: load effects on combat marksmanship and perception-action coupling.

    Science.gov (United States)

    Palmer, Christopher J; Bigelow, Carol; Van Emmerik, Richard E A

    2013-01-01

    Soldier equipment compromises task performance as temporal constraints during critical situations and load increase inertial and interactive forces during movement. Methods are necessary to optimise equipment that relate task performance to underlying coordination and perception-action coupling. Employing ecological task analysis and methods from dynamical systems theory, equipment load and coordination was examined during two sub-tasks embedded in combat performance, threat discrimination and dynamic marksmanship. Perception-action coupling was degraded with load during threat discrimination, leading to delays in functional reaction time. Reduced speed and accuracy during dynamic marksmanship under load was related to disrupted segmental coordination and adaptability during postural transitions between targets. These results show how reduced performance under load relates to coordination changes and perception-action coupling. These changes in functional capability are directly related to soldier survivability in combat. The methods employed may aid equipment design towards more optimised performance by modifying equipment or its distribution on humans.

  13. The Lagrangian-space Effective Field Theory of Large Scale Structures

    CERN Document Server

    Porto, Rafael A.; Zaldarriaga, Matias

    2014-01-01

    We introduce a Lagrangian-space Effective Field Theory (LEFT) formalism for the study of cosmological large scale structures. Unlike the previous Eulerian-space construction, it is naturally formulated as an effective field theory of extended objects in Lagrangian space. In LEFT the resulting finite size effects are described using a multipole expansion parameterized by a set of time dependent coefficients and organized in an expansion in powers of the ratio of the wavenumber of interest $k$ over the non-linear scale $k_{\\rm NL}$. The multipoles encode the effects of the short distance modes on the long-wavelength Universe and absorb UV divergences when present. There are no IR divergences in LEFT. Some of the parameters that control the perturbative approach are not assumed to be small and can be automatically resummed. We present an illustrative one-loop calculation for a power law Universe. We describe the dynamics both at the level of the equations of motion and through an action formalism.

  14. A Novel Reinforcement Learning Architecture for Continuous State and Action Spaces

    Directory of Open Access Journals (Sweden)

    Víctor Uc-Cetina

    2013-01-01

    in two actors the work required to learn the final policy. One actor decides what action must be performed; meanwhile, a second actor determines the right parameters for the selected action. We tested our architecture and one algorithm based on it solving the robot dribbling problem, a challenging robot control problem taken from the RoboCup competitions. Our experimental work with three different function approximators provides enough evidence to prove that the proposed architecture can be used to implement fast, robust, and reliable reinforcement learning algorithms.

  15. White Oak Creek Embayment time-critical CERCLA removal action sediment-retention structure

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Over a 20-month period between September 1990 and April 1992, the Department of Energy (DOE), acting through Martin Marietta Energy Systems, Inc., managing contractor for the DOE Oak Ridge Field Office (DOE-OR), conducted a DOE-lead and DOE-funded time-critical removal action at the White Oak Creek Embayment (WOCE), pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The time-critical removal action specifically consisted of the design and construction of a sediment-retention structure across the mouth of WOCE to prevent off-site migration of sediments contaminated by cesium ([sup 137]Cs) into the Clinch River. Construction of a sediment-retention structure was completed in mid-April 1992. The purpose of this report is to meet the substantive requirements of 40 CFR 300.165 describing a complete report on the removal operation and the actions taken.'' This section of the NCP specifically addresses on-scene coordinator reports for the Environmental Protection Agency (EPA) Superfund-lead actions and includes several elements that are not applicable to this DOE-lead action. Only those sections that are pertinent and applicable are addressed in this final report.

  16. Interfaith Groups as Mediating Structures for Political Action: A Multilevel Analysis.

    Science.gov (United States)

    Todd, Nathan R; Boeh, Brett A; Houston-Kolnik, Jaclyn D; Suffrin, Rachael L

    2017-03-01

    This study investigates interfaith groups from across the United States to understand how these religious settings may serve as mediating structures to facilitate individual political action. Based on a multilevel modeling analysis with 169 individuals from 25 interfaith groups, we found that core activities of the group, such as group members sharing community information (e.g., announcing upcoming events, political meetings, community issues) or sharing religious information (e.g., educating members about their religion) positively and negatively predicted individual political action as a result of group participation, respectively. Moreover, a sense that the interfaith group served as a community to work for local change, but not trust within the group, predicted political action as a result of group participation. However, this effect for a sense the group served as a community to work for local change was stronger and more positive as the degree of community information sharing in the group increased. These results show that a core activity of sharing community information may enhance the ability of a group to mediate political action. Overall, these findings demonstrate the potential role of interfaith groups to mediate political action, and show the importance of considering both individual and group characteristics when understanding these religious settings. Limitations and directions for future research are also discussed. © Society for Community Research and Action 2017.

  17. Generalization of Newmann-Penrose diads and action integral for supermembranes in 11-dimensional space

    International Nuclear Information System (INIS)

    Bandos, I.A.; Zheltukhin, A.A.

    1992-01-01

    Twistor-like formulation for supermembranes in 11-dimensional space (D = 11) is proposed. Spinor harmonics, generalizing the Newmann-Penrose diads for D = 11 cfst, necessary for covariant quantization are introduced

  18. Adaptive coding of orofacial and speech actions in motor and somatosensory spaces with and without overt motor behavior.

    Science.gov (United States)

    Sato, Marc; Vilain, Coriandre; Lamalle, Laurent; Grabski, Krystyna

    2015-02-01

    Studies of speech motor control suggest that articulatory and phonemic goals are defined in multidimensional motor, somatosensory, and auditory spaces. To test whether motor simulation might rely on sensory-motor coding common with those for motor execution, we used a repetition suppression (RS) paradigm while measuring neural activity with sparse sampling fMRI during repeated overt and covert orofacial and speech actions. RS refers to the phenomenon that repeated stimuli or motor acts lead to decreased activity in specific neural populations and are associated with enhanced adaptive learning related to the repeated stimulus attributes. Common suppressed neural responses were observed in motor and posterior parietal regions in the achievement of both repeated overt and covert orofacial and speech actions, including the left premotor cortex and inferior frontal gyrus, the superior parietal cortex and adjacent intraprietal sulcus, and the left IC and the SMA. Interestingly, reduced activity of the auditory cortex was observed during overt but not covert speech production, a finding likely reflecting a motor rather an auditory imagery strategy by the participants. By providing evidence for adaptive changes in premotor and associative somatosensory brain areas, the observed RS suggests online state coding of both orofacial and speech actions in somatosensory and motor spaces with and without motor behavior and sensory feedback.

  19. On the existence of star products on quotient spaces of linear Hamiltonian torus actions

    DEFF Research Database (Denmark)

    Herbig, Hans-Christian; Iyengar, Srikanth B.; Pflaum, Markus J.

    2009-01-01

    We discuss BFV deformation quantization (Bordemann et al. in A homological approach to singular reduction in deformation quantization, singularity theory, pp. 443–461. World Scientific, Hackensack, 2007) in the special case of a linear Hamiltonian torus action. In particular, we show...

  20. New Designs for Modular Ultra-Light Precision Space Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — In a shared effort of advancing our scientific understanding of planets, stars, and galaxies, space agencies and astronomical centers have been building increasingly...

  1. Bitopological spaces theory, relations with generalized algebraic structures and applications

    CERN Document Server

    Dvalishvili, Badri

    2005-01-01

    This monograph is the first and an initial introduction to the theory of bitopological spaces and its applications. In particular, different families of subsets of bitopological spaces are introduced and various relations between two topologies are analyzed on one and the same set; the theory of dimension of bitopological spaces and the theory of Baire bitopological spaces are constructed, and various classes of mappings of bitopological spaces are studied. The previously known results as well the results obtained in this monograph are applied in analysis, potential theory, general topology, a

  2. Renormalization-group flow of the effective action of cosmological large-scale structures

    CERN Document Server

    Floerchinger, Stefan

    2017-01-01

    Following an approach of Matarrese and Pietroni, we derive the functional renormalization group (RG) flow of the effective action of cosmological large-scale structures. Perturbative solutions of this RG flow equation are shown to be consistent with standard cosmological perturbation theory. Non-perturbative approximate solutions can be obtained by truncating the a priori infinite set of possible effective actions to a finite subspace. Using for the truncated effective action a form dictated by dissipative fluid dynamics, we derive RG flow equations for the scale dependence of the effective viscosity and sound velocity of non-interacting dark matter, and we solve them numerically. Physically, the effective viscosity and sound velocity account for the interactions of long-wavelength fluctuations with the spectrum of smaller-scale perturbations. We find that the RG flow exhibits an attractor behaviour in the IR that significantly reduces the dependence of the effective viscosity and sound velocity on the input ...

  3. Low-energy effective action in nonperturbative electrodynamics in curved space-time

    International Nuclear Information System (INIS)

    Avramidi, Ivan G.; Fucci, Guglielmo

    2009-01-01

    We study the heat kernel for the Laplace-type partial differential operator acting on smooth sections of a complex spin-tensor bundle over a generic n-dimensional Riemannian manifold. Assuming that the curvature of the U(1) connection (that we call the electromagnetic field) is constant, we compute the first two coefficients of the nonperturbative asymptotic expansion of the heat kernel which are of zero and the first order in Riemannian curvature and of arbitrary order in the electromagnetic field. We apply these results to the study of the effective action in nonperturbative electrodynamics in four dimensions and derive a generalization of the Schwinger's result for the creation of scalar and spinor particles in electromagnetic field induced by the gravitational field. We discover a new infrared divergence in the imaginary part of the effective action due to the gravitational corrections, which seems to be a new physical effect.

  4. Homogeneous Quaternionic Kaehler Structures on Eight-Dimensional Non-Compact Quaternion-Kaehler Symmetric Spaces

    International Nuclear Information System (INIS)

    Castrillon Lopez, M.; Gadea, P. M.; Oubina, J. A.

    2009-01-01

    For each non-compact quaternion-Kaehler symmetric space of dimension eight, all of its descriptions as a homogeneous Riemannian space, and the associated homogeneous quaternionic Kaehler structures obtained through the Witte's refined Langlands decomposition, are studied

  5. A learning oriented subjective action space as an indicator of giftedness

    OpenAIRE

    ALBERT ZIEGLER; HEIDRUN STOEGER

    2008-01-01

    Traditionally, in giftedness research, the intelligence quotient has been presumed to be the best predictor of high achievement levels. From the perspective of the Actiotope Model of Giftedness, however, it is merely one indicator among several on the effectiveness of the academic action repertoire. In this model, learning is considered to be more important than personal traits for attaining high levels of achievement. This is confirmed with three studies conducted with pupils in grades 8 thr...

  6. Competition for space and the structure of ecological communities

    CERN Document Server

    Yodzis, Peter

    1978-01-01

    This volume is an investigation of interspecific competition for space, particularly among sessile organisms, both plant and animal, and its consequences for community structure. While my own contribu­ tion ----and the bulk of this volume --- lies in mathematical analysis of the phenomenon, I have also tried to summarize the most important natural historical aspects of these communities, and have devoted much effort to relating the mathematical results to observations of the natural world. Thus, the volume has both a synthetic and an analytic aspect. On the one hand, I have been struck by certain similarities among many communities, from forests to mussel beds, in which spatial com­ petition is important. On the other hand, I have analyzed this pheno­ menon by means of reaction-dispersal models. Finally, the mathematical analysis has suggested a conceptual framework for these communities which, I believe, further unifies and illuminates the field data. A focal perception of this work is that, just as niche...

  7. Influence of liquid sloshing on dynamics of flexible space structures

    Science.gov (United States)

    Chiba, M.; Magata, H.

    2017-08-01

    This study involved an analysis of the influence of liquid sloshing on the dynamics of flexible space structures with liquid on-board by considering the main body of a spacecraft as a rigid tank, the flexible appendages as two elastic beams, and on-board liquid as an ideal liquid. The meniscus of the free surface of the liquid due to surface tension was considered. The Lagrangians of the main body of the spacecraft (rigid tank), liquid, and two beams (flexible appendages) were used in addition to assuming symmetric motion of the system; the frequency equations of the coupled system were obtained by applying the Rayleigh-Ritz method. The influence of sloshing motion on the motions of the main body and flexible appendages of the spacecraft was investigated. The results indicated that the vibration characteristics of the coupled system were dependent on the static contact angle of the liquid, irrespective of whether the angle was larger/smaller than θ0=90°.

  8. Argument structure effects in action verb naming in static and dynamic conditions.

    Science.gov (United States)

    den Ouden, Dirk-Bart; Fix, Steve; Parrish, Todd B; Thompson, Cynthia K

    2009-03-01

    Argument structure, as in the participant roles entailed within the lexical representation of verbs, affects verb processing. Recent neuroimaging studies show that when verbs are heard or read, the posterior temporoparietal region shows increased activation for verbs with greater versus lesser argument structure complexity, usually bilaterally. In addition, patients with agrammatic aphasia show verb production deficits, graded based on argument structure complexity. In the present study, we used fMRI to examine the neural correlates of verb production in overt action naming conditions. In addition, we tested the differential effects of naming when verbs were presented dynamically in video segments versus statically in line drawings. Results showed increased neuronal activity associated with production of transitive as compared to intransitive verbs not only in posterior regions, but also in left inferior frontal cortex. We also found significantly greater activation for transitive versus intransitive action naming for videos compared to pictures in the right inferior and superior parietal cortices, areas associated with object manipulation. These findings indicate that verbs with greater argument structure density engender graded activation of both anterior and posterior portions of the language network and support verb naming deficit patterns reported in lesion studies. In addition, the similar findings derived under video and static picture naming conditions provide validity for using videos in neuroimaging studies, which are more naturalistic and perhaps ecologically valid than using static pictures to investigate action naming.

  9. Einstein's ``Spooky Action at a Distance'' in the Light of Kant's Transcendental Doctrine of Space and Time

    Science.gov (United States)

    Hacyan, Shahen

    2006-11-01

    Since the famous Einstein-Podolsky-Rosen (EPR) paper, it is clear that there is a serious incompatibility between local realism and quantum mechanics. Einstein believed that a complete quantum theory should be free of what he once called "spooky actions at distance". However, all experiments in quantum optics and atomic physics performed in the last two decades confirm the existence of quantum correlations that seem to contradict local realism. According to Bohr, the apparent contradictions disclose only the inadequacy of our customary concepts for the description of the quantum world. Are space and time such customary concepts? In this presentation, I argue that the Copenhagen interpretation is compatible with Kant's transcendental idealism and that, in particular, EPR type paradoxes are consistent with Kant's transcendental aesthetics, according to which space and time have no objective reality but are pure forms of sensible intuition.

  10. OCCAMS: Optically Controlled and Corrected Active Meta-material Space Structures (Ultra-Lightweight Photonic Muscle Space Structures Phase II)

    Data.gov (United States)

    National Aeronautics and Space Administration — Photons weigh nothing. Why must even small space telescopes have high mass? Our team has demonstrated this is not the case using a completely novel approach to...

  11. Twistor space structure of one-loop amplitudes in gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Cachazo, Freddy [School of Natural Sciences, Institute for Advanced Study, Princeton NJ 08540 (United States)]. E-mail: cachazo@ias.edu; Witten, Edward [School of Natural Sciences, Institute for Advanced Study, Princeton NJ 08540 (United States); Svrcek, Peter [Department of Physics, Joseph Henry Laboratories, Princeton NJ 08540 (United States)

    2004-10-01

    We analyze the twistor space structure of certain one-loop amplitudes in gauge theory. For some amplitudes, we find decompositions that make the twistor structure manifest; for others, we explore the twistor space structure by finding differential equations that the amplitudes obey. (author)

  12. Modelling of Structural Loads in Drag Augmented Space Debris Removal Concepts

    DEFF Research Database (Denmark)

    Kristensen, Anders Schmidt; Nikolajsen, Jan Ánike; Lauridsen, Peter Riddersholm

    2017-01-01

    A Self-deployable Deorbiting Space Structure (SDSS) is used for drag augmented space debris removal. A highly flexible frame allows for a folding of the structure by bifurcation. This research models the structural loads during the deployment and unfolding of the drag sail in Low Earth Orbit (LEO...

  13. ACTION-SPACE CLUSTERING OF TIDAL STREAMS TO INFER THE GALACTIC POTENTIAL

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, Robyn E.; Helmi, Amina [Kapteyn Astronomical Institute, P.O. Box 800, 9700 AV Groningen (Netherlands); Hogg, David W., E-mail: robyn@astro.columbia.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2015-03-10

    We present a new method for constraining the Milky Way halo gravitational potential by simultaneously fitting multiple tidal streams. This method requires three-dimensional positions and velocities for all stars to be fit, but does not require identification of any specific stream or determination of stream membership for any star. We exploit the principle that the action distribution of stream stars is most clustered when the potential used to calculate the actions is closest to the true potential. Clustering is quantified with the Kullback-Leibler Divergence (KLD), which also provides conditional uncertainties for our parameter estimates. We show, for toy Gaia-like data in a spherical isochrone potential, that maximizing the KLD of the action distribution relative to a smoother distribution recovers the input potential. The precision depends on the observational errors and number of streams; using K III giants as tracers, we measure the enclosed mass at the average radius of the sample stars accurate to 3% and precise to 20%-40%. Recovery of the scale radius is precise to 25%, biased 50% high by the small galactocentric distance range of stars in our mock sample (1-25 kpc, or about three scale radii, with mean 6.5 kpc). 20-25 streams with at least 100 stars each are required for a stable confidence interval. With radial velocities (RVs) to 100 kpc, all parameters are determined with ∼10% accuracy and 20% precision (1.3% accuracy for the enclosed mass), underlining the need to complete the RV catalog for faint halo stars observed by Gaia.

  14. Ultra-Lightweight Nanocomposite Foams and Sandwich Structures for Space Structure Applications

    Science.gov (United States)

    Tan, Seng

    2012-01-01

    Microcellular nanocomposite foams and sandwich structures have been created to have excellent electrical conductivity and radiation-resistant properties using a new method that does not involve or release any toxicity. The nanocomposite structures have been scaled up in size to 12 X 12 in. (30 X 30 cm) for components fabrication. These sandwich materials were fabricated mainly from PE, CNF, and carbon fibers. Test results indicate that they have very good compression and compression-after-impact properties, excellent electrical conductivity, and superior space environment durability. Compression tests show that 1000 ESH (equivalent Sun hours) of UV exposure has no effect on the structural properties of the sandwich structures. The structures are considerably lighter than aluminum alloy (= 36 percent lighter), which translates to 36 percent weight savings of the electronic enclosure and its housing. The good mechanical properties of the materials may enable the electronic housing to be fabricated with a thinner structure that further reduces the weight. There was no difficulty in machining the sandwich specimens into electronic enclosure housing.

  15. Integral group actions on symmetric spaces and discrete duality symmetries of supergravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Carbone, Lisa [Mathematics Rutgers University, Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, New Jersey 08854 (United States); Murray, Scott H. [Mathematics & Statistics, University of Canberra, ACT 2601 (Australia); Sati, Hisham [Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, Pennsylvania 15260 (United States)

    2015-10-15

    For G = G(ℝ), a split, simply connected, semisimple Lie group of rank n and K the maximal compact subgroup of G, we give a method for computing Iwasawa coordinates of K∖G using the Chevalley generators and the Steinberg presentation. When K∖G is a scalar coset for a supergravity theory in dimensions ≥3, we determine the action of the integral form G(ℤ) on K∖G. We give explicit results for the action of the discrete U-duality groups SL{sub 2}(ℤ) and E{sub 7}(ℤ) on the scalar cosets SO(2)∖SL{sub 2}(ℝ) and [SU(8)/( ± Id)]∖E{sub 7(+7)}(ℝ) for type IIB supergravity in ten dimensions and 11-dimensional supergravity reduced to D = 4 dimensions, respectively. For the former, we use this to determine the discrete U-duality transformations on the scalar sector in the Borel gauge and we describe the discrete symmetries of the dyonic charge lattice. We determine the spectrum-generating symmetry group for fundamental BPS solitons of type IIB supergravity in D = 10 dimensions at the classical level and we propose an analog of this symmetry at the quantum level. We indicate how our methods can be used to study the orbits of discrete U-duality groups in general.

  16. Development, Fabrication and Ground Test of an Inflatable Structure Space-Flight Experiment

    National Research Council Canada - National Science Library

    Philley, Thomas

    2003-01-01

    Inflatable, rigidizable structures provide a solution to reduce the costs associated with design, fabrication and launch of a space system while simultaneously increasing the deployment reliability...

  17. Composite load spectra for select space propulsion structural components

    Science.gov (United States)

    Newell, J. F.; Ho, H. W.; Kurth, R. E.

    1991-01-01

    The work performed to develop composite load spectra (CLS) for the Space Shuttle Main Engine (SSME) using probabilistic methods. The three methods were implemented to be the engine system influence model. RASCAL was chosen to be the principal method as most component load models were implemented with the method. Validation of RASCAL was performed. High accuracy comparable to the Monte Carlo method can be obtained if a large enough bin size is used. Generic probabilistic models were developed and implemented for load calculations using the probabilistic methods discussed above. Each engine mission, either a real fighter or a test, has three mission phases: the engine start transient phase, the steady state phase, and the engine cut off transient phase. Power level and engine operating inlet conditions change during a mission. The load calculation module provides the steady-state and quasi-steady state calculation procedures with duty-cycle-data option. The quasi-steady state procedure is for engine transient phase calculations. In addition, a few generic probabilistic load models were also developed for specific conditions. These include the fixed transient spike model, the poison arrival transient spike model, and the rare event model. These generic probabilistic load models provide sufficient latitude for simulating loads with specific conditions. For SSME components, turbine blades, transfer ducts, LOX post, and the high pressure oxidizer turbopump (HPOTP) discharge duct were selected for application of the CLS program. They include static pressure loads and dynamic pressure loads for all four components, centrifugal force for the turbine blade, temperatures of thermal loads for all four components, and structural vibration loads for the ducts and LOX posts.

  18. Structure of spectra of linear operators in Banach spaces

    International Nuclear Information System (INIS)

    Smolyanov, O G; Shkarin, S A

    2001-01-01

    Descriptive characterizations of the point, the continuous, and the residual spectra of operators in Banach spaces are put forward. In particular, necessary and sufficient conditions for three disjoint subsets of the complex plane to be the point spectrum, the continuous spectrum, and the residual spectrum of a linear continuous operator in a separable Banach space are obtained

  19. Fourth Smissman Award Address. The long search for valid structure-action relationships in drugs.

    Science.gov (United States)

    Albert, A

    1982-01-01

    In 1869, Crum Brown discovered the first structure-activity link by showing that alkaloids, even convulsive ones, were converted by N-methylation to muscle relaxants resembling curarine (itself a quaternary amine). This led to an attempt to link every type of drug action to its own cluster of atoms. This quest was jolted when Loewi (1926) found that a quaternary amine (acetylcholine) was the principal activator of muscle! Suddenly it was seen that a chemical group could be either an agonist or antagonist, depending on its molecular setting. That the agonists were smaller molecules suggested operation of a steric factor. Moreover, Cushny (1926) had focused attention on optical enantiomers: usually only one member of each pair had biological activity, although both were identical in all other properties. The stage was now set for physical properties to play the leading role in relating structure to activity. People recalled the demonstration by Overton and Meyer (1900) that the depressant action of a drug was linked to its lipophilicity. Unhappily, further physical correlations were slow to appear. My colleagues and I, who had been studying (from 1941) the antimicrobial action of aminoacridines and hydroxyquinolines, established quantitatively the role of ionization and chelation (two electronic influences) in the action of drugs. Today most people would agree that the most important properties in determining the action of drugs are not some particular nucleus or substituent but a trio of physical properties: lipophilicity, electron distribution, and shape. Although these properties govern the activity of drugs, their selectivity is due, as I have long maintained, to another trio of properties, namely, comparative distribution (not necessarily lipophilic), comparative biochemistry, and comparative cytology.

  20. A{sub ∞}/L{sub ∞} structure and alternative action for WZW-like superstring field theory

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Keiyu [Institute of Physics, University of Tokyo,Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Matsunaga, Hiroaki [Institute of Physics, Academy of Sciences of the Czech Republic,Na Slovance 2, Prague 8 (Czech Republic); Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan)

    2017-01-09

    We propose new gauge invariant actions for open NS, heterotic NS, and closed NS-NS superstring field theories. They are based on the large Hilbert space, and have Wess-Zumino-Witten-like expressions which are the ℤ{sub 2}-reversed versions of the conventional WZW-like actions. On the basis of the procedure proposed in https://arxiv.org/abs/1505.01659, we show that our new WZW-like actions are completely equivalent to A{sub ∞}/L{sub ∞} actions proposed in https://arxiv.org/abs/1403.0940 respectively.

  1. Krein Spectral Triples and the Fermionic Action

    International Nuclear Information System (INIS)

    Dungen, Koen van den

    2016-01-01

    Motivated by the space of spinors on a Lorentzian manifold, we define Krein spectral triples, which generalise spectral triples from Hilbert spaces to Krein spaces. This Krein space approach allows for an improved formulation of the fermionic action for almost-commutative manifolds. We show by explicit calculation that this action functional recovers the correct Lagrangians for the cases of electrodynamics, the electro-weak theory, and the Standard Model. The description of these examples does not require a real structure, unless one includes Majorana masses, in which case the internal spaces also exhibit a Krein space structure.

  2. Space education and outreach symposium (E1.). Structures for space education (2.)

    Science.gov (United States)

    Rodrigues, Ivette; Carvalho, Himilcon

    2008-07-01

    The Brazilian Space Agency (AEB) sponsors an outreach program aimed at promoting Brazilian space activities among students and teachers of primary and secondary schools. The program, called AEB Escola (Brazilian Space Agency School), was created in 2003 and, since then, has taken the space theme to thousands of students and teachers. The main goal of the AEB Escola Program is to make the Brazilian Space Program known among students and teachers. Additionally, it intends to use the space theme as a way to increase youth interest in studies in general, and in sciences in particular. The program focuses on teachers who, ultimately, are the ones responsible for introducing the subject to their students. And who also guarantee the continuity of the Program. An Astronautics and Space Science course is given to teachers by researchers involved with the Brazilian Space Program activities. The course has over 100 h of activities covering the following themes: Astronomy, Satellite Launcher Vehicles, Satellites and Space Platforms, Remote Sensing, Meteorology and Environmental Sciences, and Projects's Learning. The AEB Escola Program also promotes many other activities among students including lectures, contests, interactive exhibitions and hands-on activities. One of the consequences of such initiatives was the creation of two experiments taken to the International Space Station in April 2006 by the Brazilian astronaut, Marcos Pontes. Moreover, a nationwide contest called Brazilian Astronomy and Astronautical Olympics (OBA) is held every year involving nearly half a million students, with ages ranging from 7 to 17. The top five students are taken to the International Astronomy Olympics, where Brazil has obtained many medals. The top 50 students of OBA are taken, along with their teachers, to the city of São José dos Campos, in the state of São Paulo, to participate in the Space Journey event. The journey lasts a week during which the participants get a chance to learn

  3. Spacing extinction sessions as a behavioral technique for preventing relapse in an animal model of voluntary actions.

    Science.gov (United States)

    Bernal-Gamboa, Rodolfo; Gámez, A Matías; Nieto, Javier

    2018-06-01

    Instrumental extinction has been proposed as a model for understanding the suppression of problematic voluntary actions. Consequently, it has been suggested that response recovery after extinction could model relapse. Four experiments with rats used a free operant procedure to explore the impact of spacing extinction sessions on spontaneous recovery, renewal, reinstatement, and rapid reacquisition of extinguished lever-pressing. Initially, in all experiments, hungry rats were trained to perform two responses (R1 and R2) for food. Then, all responses underwent extinction. For R1, rats experienced a longer intersession interval (72 h) than for R2 (24 h). During the final restoration test, it was observed that using spaced extinction sessions reduced spontaneous recovery, renewal, and reinstatement. However, implementing a longer intersession interval throughout extinction exposure did not slow the rate of reacquisition of operant responses. The present findings suggest that in most cases extinction is more enduring when the extinction sessions are spaced. Since expanding the intersession interval during extinction might be interpreted as conducting extinction in multiple temporal contexts, the overall pattern of results was explained based on contextual modulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Composite Structures Repair Development at Kennedy Space Center

    Science.gov (United States)

    Cox, Sarah B.

    2015-01-01

    This presentation discusses the development and results of composite patch repair perfromed at Kennedy Space Center. This includes impact damage, patch repair methods, nondestructive evaluation, and edgewise compression testing.

  5. Integrated Structural Health Sensors for Inflatable Space Habitats, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development of integrated high-definition fiber optic sensors (HD-FOS) and carbon nanotube (CNT)-graphene piezoresistive sensors for...

  6. Geometrical Models of the Phase Space Structures Governing Reaction Dynamics

    Science.gov (United States)

    2009-08-01

    of Mathematical Sciences . Springer, Berlin. [Child & Pollak(1980)] Child, M. S. & Pollak, E. (1980). Analytical reaction dynamics: Origin and implica...state region, i.e. the phase space point at which a trajectory enters the transition state region can be mapped analytically to the phase space point...Neishtadt, A. I. (1988). Mathematical aspects of classical and celestial mechanics. In V. I. Arnol’d, editor, Dynamical Systems III, volume 3 of Encyclopaedia

  7. Some remarks on the structure of Lipschitz-free spaces

    Czech Academy of Sciences Publication Activity Database

    Hájek, Petr Pavel; Novotný, M.

    2017-01-01

    Roč. 24, č. 2 (2017), s. 283-304 ISSN 1370-1444 R&D Projects: GA ČR GA16-07378S Institutional support: RVO:67985840 Keywords : free Banach spaces * compact metric-spaces * approximation properties Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.375, year: 2016 https://projecteuclid.org/euclid.bbms/1503453711

  8. Entre structure et action : la compétence communicative des TIC

    Directory of Open Access Journals (Sweden)

    Serge Agostinelli

    2011-06-01

    Full Text Available Cet article théorique explore comment les concepts de structure et d’action permettent une approche originale du concept de compétence dans le domaine des TIC. Cette approche relève d’une recherche de compatibilité entre des modèles issus des Technologies qui proposent les structures socio-techniques et ceux des Sciences Humaines qui organisent l’action des individus. Les modèles théoriques invoqués de domaines disciplinaires différents (sociologie, ethnométhodologie, psychologie sociale, linguistique, sciences de l’éducation et sciences de l’information-communication donnent au concept de compétence en TIC une nouvelle consistance, plus anthropocentrée et moins technico-pratique. Ils posent la question du rapport entre micro et macro, du rapport de l’individu au groupe, et posent aussi la question ontologique des structures. Les compétences ne se réduisent pas à la seule connaissance des aspects techniques, mais sont élargies à la maîtrise des conditions d’utilisation adéquate et des possibilités offertes par la technique. Utiliser les technologies, c’est construire de la relation grâce aux compétences communicatives des TIC.This theoretical article investigates how the concepts of structure and action allow an original approach of the concept of skill in the field of ICT. This approach concerns a search for compatibility between stemming models Technologies which propose the socio-technical structures and those of the Human Sciences who organize the action of the individuals. The theoretical models called by different disciplinary domains (sociology, ethnomethodology, social psychology, linguistic, education, communication and information science give to the concept of skill in ICT a new consistency, more anthropology centred and less technico-practical. They ask the question of the relationship between micro and macro, the relationship of the individual to the group, and also ask the ontological question

  9. Neutral Buoyancy Simulator - NB32 - Large Space Structure

    Science.gov (United States)

    1980-01-01

    The Hubble Space Telescope (HST) is a cooperative program of the European Space Agency (ESA) and the National Aeronautical and Space Administration (NASA) to operate a long-lived space-based observatory; it was the flagship mission of NASA's Great Observatories program. The HST program began as an astronomical dream in the 1940s. During the 1970s and 1980s, HST was finally designed and built; and it finally became operational in the 1990s. HST was deployed into a low-Earth orbit on April 25, 1990 from the cargo bay of the Space Shuttle Discovery (STS-31). The design of the HST took into consideration its length of service and the necessity of repairs and equipment replacement by making the body modular. In doing so, subsequent shuttle missions could recover the HST, replace faulty or obsolete parts and be re-released. MSFC's Neutral Buoyancy Simulator served as the training facility for shuttle astronauts for Hubble related missions. Shown is astronaut Sharnon Lucid having her life support system being checked prior to entering the NBS to begin training on the space telescope axial scientific instrument changeout.

  10. Structural Degradation and Swelling of Lipid Bilayer under the Action of Benzene.

    Science.gov (United States)

    Odinokov, Alexey; Ostroumov, Denis

    2015-12-03

    Benzene and other nonpolar organic solvents can accumulate in the lipid bilayer of cellular membranes. Their effect on the membrane structure and fluidity determines their toxic properties and antibiotic action of the organic solvents on the bacteria. We performed molecular dynamics simulations of the interaction of benzene with the dimyristoylphosphatidylcholine (DMPC) bilayer. An increase in the membrane surface area and fluidity was clearly detected. Changes in the acyl chain ordering, tilt angle, and overall bilayer thickness were, however, much less marked. The dependence of all computed quantities on the benzene content showed two regimes separated by the solubility limit of benzene in water. When the amount of benzene exceeded this point, a layer of almost pure benzene started to grow between the membrane leaflets. This process corresponds to the nucleation of a new phase and provides a molecular mechanism for the mechanical rupture of the bilayer under the action of nonpolar compounds.

  11. Organizational Structure Analysis: Space and Missile Defense Command - Sensors Directorate

    National Research Council Canada - National Science Library

    Blake, Stephen

    1999-01-01

    .... Why make things difficult and change? Through the responses from a survey instrument, this capstone project assesses an Army organization and defines the current organizational structure, the advantages and disadvantages of the structure...

  12. A new topology for curved space--time which incorporates the causal, differential, and conformal structures

    International Nuclear Information System (INIS)

    Hawking, S.W.; King, A.R.; McCarthy, P.J.

    1976-01-01

    A new topology is proposed for strongly causal space--times. Unlike the standard manifold topology (which merely characterizes continuity properties), the new topology determines the causal, differential, and conformal structures of space--time. The topology is more appealing, physical, and manageable than the topology previously proposed by Zeeman for Minkowski space. It thus seems that many calculations involving the above structures may be made purely topological

  13. Properties of Floquet-Bloch space harmonics in 1D periodic magneto-dielectric structures

    DEFF Research Database (Denmark)

    Breinbjerg, O.

    2012-01-01

    Recent years have witnessed a significant research interest in Floquet-Bloch analysis for determining the homogenized permittivity and permeability of metamaterials consisting of periodic structures. This work investigates fundamental properties of the Floquet-Bloch space harmonics in a 1......-dimensional magneto-dielectric lossless structure supporting a transverse-electric-magnetic Floquet-Bloch wave; in particular, the space harmonic permittivity and permeability, as well as the space harmonic Poynting vector....

  14. On the structure of space-time caustics

    International Nuclear Information System (INIS)

    Rosquist, K.

    1983-01-01

    Caustics formed by timelike and null geodesics in a space-time M are investigated. Care is taken to distinguish the conjugate points in the tangent space (T-conjugate points) from conjugate points in the manifold (M-conjugate points). It is shown that most nonspacelike conjugate points are regular, i.e. with all neighbouring conjugate points having the same degree of degeneracy. The regular timelike T-conjugate locus is shown to be a smooth 3-dimensional submanifold of the tangent space. Analogously, the regular null T-conjugate locus is shown to be a smooth 2-dimensional submanifold of the light cone in the tangent space. The smoothness properties of the null caustic are used to show that if an observer sees focusing in all directions, then there will necessarily be a cusp in the caustic. If, in addition, all the null conjugate points have maximal degree of degeneracy (as in the closed Friedmann-Robertson-Walker universes), then the space-time is closed. (orig.)

  15. In search of the structure of human olfactory space

    Directory of Open Access Journals (Sweden)

    Alexei eKoulakov

    2011-09-01

    Full Text Available We analyze the responses of human observers to an ensemble of monomolecular odorants. Each odorant is characterized by a set of 146 perceptual descriptors obtained from a database of odor character profiles. Each odorant is therefore represented by a point in a highly multidimensional sensory space. In this work we study the arrangement of odorants in this perceptual space. We argue that odorants densely sample a two-dimensional curved surface embedded in the multidimensional sensory space. This surface can account for more than half of the variance of the perceptual data. We also show that only 12% of experimental variance cannot be explained by curved surfaces of substantially small dimensionality (<10. We suggest that these curved manifolds represent the relevant spaces sampled by the human olfactory system, thereby providing surrogates for olfactory sensory space. For the case of 2D approximation, we relate the two parameters on the curved surface to the physico-chemical parameters of odorant molecules. We show that one of the dimensions is related to eigenvalues of molecules’ connectivity matrix, while the other is correlated with measures of molecules’ polarity. We discuss the behavioral significance of these findings.

  16. Nonlinear Dynamics of Deployable and Maneuverable Space Structures

    Science.gov (United States)

    1993-12-10

    arm structure, 5) completed the structural modelling, attribute assignment and visulization capabilities of an interactive graphic 3-D system for...structural component such as an edge or surface element. An Inquiry menu page has been implemented to satisfy such queries. with the associated information

  17. Dissemination actions and the popularization of the Exact Sciences by virtual environments and non-formal spaces of education

    Directory of Open Access Journals (Sweden)

    Carlos Coimbra-Araujo

    2017-08-01

    Full Text Available For several reasons, the Exact Sciences have been shown as one of the areas of scientific knowledge that most demand actions in non-formal spaces of education. One of the main reasons lies in the fact that Mathematics, Physics, Chemistry and Astronomy are traditionally addressed, within the school environment and in the formal curriculum, unrelated to the student reality. Such subjects are often seen as a set of inflexible and incomprehensible principles. In this aspect, the present work reviews the main problems surrounding the teaching of the mentioned scientific areas, highlighting non-formal tools for the teaching of Mathematics, Physics, Chemistry, Astronomy and, in particular, the modern virtual environments of teaching modeled by Computing Science. Other historical difficulties that the formal education of Exact Sciences has suffered in Brazil are also presented, as well some of the main non-formal resources sought to complement the curriculum that is usually presented in the classroom.

  18. ASSESSMENT FORM - NEW IMPROVEMENT OF ACTIONS: CONCENTRATION AND RESEARCH AREAS / CURRICULUM STRUCTURE / FUNDRAISING

    Directory of Open Access Journals (Sweden)

    Iracema MP Calderon

    Full Text Available Objective: This review aims to develop a critical and current analysis of the basic structure of a Postgraduate program for proposing improvement actions and new evaluation criteria. Method: To examine the items that are areas of concentration (AC, research lines (LP, research projects (PP, curricular structure and fundraising were consulted the Area Document, the 2013 Evaluation Report and the Assessment Sheets of Medicine III programs, evaluated in the 2010-2012 period. Results: Consistency is recommended especially among AC, LP and PP, with genuine link between activities and permanent teachers skills and based on structured curriculum in the education of the student. The Program Proposal interfere, and much, in qualifying a program. The curriculum should provide subsidy to the formation of the researcher, through the core subjects, and development of PP, being the concept of disciplines to support lines and research projects. Fundraise should be set out in research projects and in the CV-Lattes. The area recommended that at least 40-50% of permanent teachers present fundraising and the minimum 20-25% of these teachers to have productivity scholarship PQ / CNPq during the triennium. Conclusion: It is necessary to promote wide discussion and find a consensus denominator for these issues. The actions should contribute to the improvement of evaluation forms and certainly for the qualification of the programs but graduate.

  19. On the differential structure of metric measure spaces and applications

    CERN Document Server

    Gigli, Nicola

    2015-01-01

    The main goals of this paper are: (i) To develop an abstract differential calculus on metric measure spaces by investigating the duality relations between differentials and gradients of Sobolev functions. This will be achieved without calling into play any sort of analysis in charts, our assumptions being: the metric space is complete and separable and the measure is Radon and non-negative. (ii) To employ these notions of calculus to provide, via integration by parts, a general definition of distributional Laplacian, thus giving a meaning to an expression like \\Delta g=\\mu, where g is a functi

  20. Is there a domain-general cognitive structuring system? Evidence from structural priming across music, math, action descriptions, and language.

    Science.gov (United States)

    Van de Cavey, Joris; Hartsuiker, Robert J

    2016-01-01

    Cognitive processing in many domains (e.g., sentence comprehension, music listening, and math solving) requires sequential information to be organized into an integrational structure. There appears to be some overlap in integrational processing across domains, as shown by cross-domain interference effects when for example linguistic and musical stimuli are jointly presented (Koelsch, Gunter, Wittfoth, & Sammler, 2005; Slevc, Rosenberg, & Patel, 2009). These findings support theories of overlapping resources for integrational processing across domains (cfr. SSIRH Patel, 2003; SWM, Kljajevic, 2010). However, there are some limitations to the studies mentioned above, such as the frequent use of unnaturalistic integrational difficulties. In recent years, the idea has risen that evidence for domain-generality in structural processing might also be yielded though priming paradigms (cfr. Scheepers, 2003). The rationale behind this is that integrational processing across domains regularly requires the processing of dependencies across short or long distances in the sequence, involving respectively less or more syntactic working memory resources (cfr. SWM, Kljajevic, 2010), and such processing decisions might persist over time. However, whereas recent studies have shown suggestive priming of integrational structure between language and arithmetics (though often dependent on arithmetic performance, cfr. Scheepers et al., 2011; Scheepers & Sturt, 2014), it remains to be investigated to what extent we can also find evidence for priming in other domains, such as music and action (cfr. SWM, Kljajevic, 2010). Experiment 1a showed structural priming from the processing of musical sequences onto the position in the sentence structure (early or late) to which a relative clause was attached in subsequent sentence completion. Importantly, Experiment 1b showed that a similar structural manipulation based on non-hierarchically ordered color sequences did not yield any priming effect

  1. A New International Standard for "Actions from Waves and Currents on Coastal Structures"

    DEFF Research Database (Denmark)

    Tørum, Alf; Burcharth, Hans F.; Goda, Yoshimi

    2007-01-01

    The International Organization for Standardization (ISO) is going to issue a new standard concerning "Actions from Waves and Currents on Coastal Structures," which becomes the first international standard in coastal engineering. It is composed of a normative part (29 pages), an informative part (80...... pages) and Bibliography ( 17 pages). The normative part describes what is considered as the norm of the matters in concern, while the informative part provides the information on recommended practice. The paper introduces the main points of the normative part and discusses the influence of the new...

  2. On the Space-Time Structure of Sheared Turbulence

    DEFF Research Database (Denmark)

    de Mare, Martin Tobias; Mann, Jakob

    2016-01-01

    We develop a model that predicts all two-point correlations in high Reynolds number turbulent flow, in both space and time. This is accomplished by combining the design philosophies behind two existing models, the Mann spectral velocity tensor, in which isotropic turbulence is distorted according...

  3. Recovering a Probabilistic Knowledge Structure by Constraining Its Parameter Space

    Science.gov (United States)

    Stefanutti, Luca; Robusto, Egidio

    2009-01-01

    In the Basic Local Independence Model (BLIM) of Doignon and Falmagne ("Knowledge Spaces," Springer, Berlin, 1999), the probabilistic relationship between the latent knowledge states and the observable response patterns is established by the introduction of a pair of parameters for each of the problems: a lucky guess probability and a careless…

  4. Stress Analysis and Testing at the Marshall Space Flight Center to Study Cause and Corrective Action of Space Shuttle External Tank Stringer Failures

    Science.gov (United States)

    Wingate, Robert J.

    2012-01-01

    After the launch scrub of Space Shuttle mission STS-133 on November 5, 2010, large cracks were discovered in two of the External Tank intertank stringers. The NASA Marshall Space Flight Center, as managing center for the External Tank Project, coordinated the ensuing failure investigation and repair activities with several organizations, including the manufacturer, Lockheed Martin. To support the investigation, the Marshall Space Flight Center formed an ad-hoc stress analysis team to complement the efforts of Lockheed Martin. The team undertook six major efforts to analyze or test the structural behavior of the stringers. Extensive finite element modeling was performed to characterize the local stresses in the stringers near the region of failure. Data from a full-scale tanking test and from several subcomponent static load tests were used to confirm the analytical conclusions. The analysis and test activities of the team are summarized. The root cause of the stringer failures and the flight readiness rationale for the repairs that were implemented are discussed.

  5. Enabling robots to make use of the structure of human actions - a user study employing Acoustic Packaging

    NARCIS (Netherlands)

    Lohse, M.; Wrede, Britta; Schillingmann, Lars

    2013-01-01

    Human learning strongly depends on the ability to structure the actions of teachers in order to identify relevant parts. We propose that this is also true for learning in robots. Therefore, we apply a method for multimodal action segmentation called Acoustic Packaging to a corpus of pairs of users

  6. Research of features and structure of electoral space of Ukraine in 2014 with the use of synthetic approach

    Directory of Open Access Journals (Sweden)

    M. M. Shelemba

    2015-02-01

    Full Text Available The article is aimed at the ground of expediency of the use of synthetic authorial model for research of features and structure of electoral space of Ukraine in 2014 year. Methodological principles of the use of synthetic model are expounded with the use of quality and quantitative methods researches of electoral space, among that methods of factor and cross­correlation analysis. A synthetic model (approach that is built on the basis of the use of the best scientific approaches takes into account features and progress of electoral space of Ukraine trends. The analysis of features and structure of electoral space of Ukraine is conducted in 2014 with the use of an offer model. The application author synthetic model allows the study of the use of association factor and correlation analysis to justify support to political parties during election campaigns, respectively, depending on the factors and the most important correlates. It was found that electoral choice depends on the actions of those factors in the highest degree the expectations of the region. This article has shown that the use of Ukraine at this stage of the investigated during election campaigns as the most significant social correlates of «Human Development Index» is reasonable and one that makes it possible to obtain reliable results. It is proved that a high level of correlation holds at a high level of support the party and, consequently, high sense of social correlates all variants of expert research.

  7. Tools for analysis of Dirac structures on banach spaces

    NARCIS (Netherlands)

    Iftime, Orest V.; Sandovici, Adrian; Golo, Goran

    2005-01-01

    Power-conserving and Dirac structures are known as an approach to mathematical modeling of physical engineering systems. In this paper connections between Dirac structures and well known tools from standard functional analysis are presented. The analysis can be seen as a possible starting framework

  8. The use of an electric field in increasing the resistance of plants to the action of unfavorable space flight factors

    Science.gov (United States)

    Nechitailo, G.; Gordeev, A.

    2004-01-01

    The key role in increasing the resistance of plants to unfavorable space flight factors is assigned to biomembranes of root cells. It is these biomembranes in which numerous biochemical and biophysical processes determining the adaptive capacity of plant organisms occur. In the initial period of exposure to unfavorable space flight factors the adaptation reactions of the plant organism undoubtedly increase its resistance. But the intensification of removal of H + ions through the plasmalemma with an increase of the external influence sharply raises the quantity of cations leaving the cell, which leads to the accumulation of a considerable quantity of intracellular negative charges. These charges together with negative charges built in the membrane force protons to concentrate on the external surface of the membrane. Since protons have a very strong electric field, they form such a charge of which the electric field is about from several to hundreds of V/cm. The concentration of positive charges of protons entails the formation of a double electric field which extremely impedes the diffusion of other ions. Thus, a proton barrier is formed. Its length can be very considerable due to which the whole process of transmembrane energy and mass-transfer is disturbed. The proton barrier is easily destroyed by a weak electric field created in the root zone. In experiments on electrostimulation of different plants under space flight conditions at the orbital station MIR the absorption of nutrient elements by the root system increased to the optimal level, the ratio of physiologically active substances in the rhizosphere was normalized, the content of chlorophyll, carotin, and ascorbic acid in leaves corresponded to the ground-based control. Understanding of the mechanism of formation of a proton barrier on the plasmalemma of root cells as a result of the response of plants to the negative action of external factors (microgravity) is of great importance. It allows the

  9. Social Structure and Depression in TrevorSpace.

    Science.gov (United States)

    Homan, Christopher M; Lu, Naiji; Tu, Xin; Lytle, Megan C; Silenzio, Vincent M B

    2014-02-01

    We discover patterns related to depression in the social graph of an online community of approximately 20,000 lesbian, gay, and bisexual, transgender, and questioning youth. With survey data on fewer than two hundred community members and the network graph of the entire community (which is completely anonymous except for the survey responses), we detected statistically significant correlations between a number of graph properties and those TrevorSpace users showing a higher likelihood of depression, according to the Patient Healthcare Questionnaire-9, a standard instrument for estimating depression. Our results suggest that those who are less depressed are more deeply integrated into the social fabric of TrevorSpace than those who are more depressed. Our techniques may apply to other hard-to-reach online communities, like gay men on Facebook, where obtaining detailed information about individuals is difficult or expensive, but obtaining the social graph is not.

  10. The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic Changes.

    Science.gov (United States)

    San Martin, Alvaro; Rela, Lorena; Gelb, Bruce; Pagani, Mario Rafael

    2017-05-10

    In contrast to trials of training without intervals (massed training), training trials spaced over time (spaced training) induce a more persistent memory identified as long-term memory (LTM). This phenomenon, known as the spacing effect for memory, is poorly understood. LTM is supported by structural synaptic plasticity; however, how synapses integrate spaced stimuli remains elusive. Here, we analyzed events of structural synaptic plasticity at the single-synapse level after distinct patterns of stimulation in motoneurons of Drosophila We found that the spacing effect is a phenomenon detected at synaptic level, which determines the specificity and the precision in structural synaptic plasticity. Whereas a single pulse of stimulation (massed) induced structural synaptic plasticity, the same amount of stimulation divided in three spaced stimuli completely prevented it. This inhibitory effect was determined by the length of the interstimulus intervals. The inhibitory effect of the spacing was lost by suppressing the activity of Ras or mitogen-activated protein kinase, whereas the overexpression of Ras-WT enhanced it. Moreover, dividing the same total time of stimulation into five or more stimuli produced a higher precision in the number of events of plasticity. Ras mutations associated with intellectual disability abolished the spacing effect and led neurons to decode distinct stimulation patterns as massed stimulation. This evidence suggests that the spacing effect for memory may result from the effect of the spacing in synaptic plasticity, which appears to be a property not limited to neurons involved in learning and memory. We propose a model of spacing-dependent structural synaptic plasticity. SIGNIFICANCE STATEMENT Long-term memory (LTM) induced by repeated trials spaced over time is known as the spacing effect, a common property in the animal kingdom. Altered mechanisms in the spacing effect have been found in animal models of disorders with intellectual

  11. Product numerical range in a space with tensor product structure

    OpenAIRE

    Puchała, Zbigniew; Gawron, Piotr; Miszczak, Jarosław Adam; Skowronek, Łukasz; Choi, Man-Duen; Życzkowski, Karol

    2010-01-01

    We study operators acting on a tensor product Hilbert space and investigate their product numerical range, product numerical radius and separable numerical range. Concrete bounds for the product numerical range for Hermitian operators are derived. Product numerical range of a non-Hermitian operator forms a subset of the standard numerical range containing the barycenter of the spectrum. While the latter set is convex, the product range needs not to be convex nor simply connected. The product ...

  12. Structural actions toward HIV/AIDS prevention in Cartagena, Colombia: a qualitative study.

    Science.gov (United States)

    Quevedo-Gómez, María Cristina; Krumeich, Anja; Abadía-Barrero, César Ernesto; Pastrana-Salcedo, Eduardo Manuel; van den Borne, Hubertus

    2011-07-01

    To obtain a thorough understanding of the complexity and dynamics of the social determination of HIV infection among inhabitants of Cartagena, Colombia, as well as their views on necessary actions and priorities. In a five-year ethnography of HIV/AIDS in collaboration with 96 citizens of Cartagena, different methods and data collection techniques were used. Through 40 in-depth interviews and 30 life histories of inhabitants, the scenario of HIV vulnerability was summarized in a diagram. This diagram was evaluated and complemented through group discussions with key representatives of local governmental and nongovernmental organizations and with people who were interested in the epidemic or affected by it. The diagram illustrates the dynamic and complex interrelationships among structural factors (i.e., social determinants) of HIV infection, such as machismo; lack of work, money, and social services; local dynamics of the performance of the state; and international dynamics of the sexual tourism industry. On the basis of the diagram, groups of key representatives proposed prioritizing structural actions such as reducing socioeconomic inequalities and providing access to health care and education. The social determinants displayed in the diagram relate to historic power forces that have shaped vulnerable scenarios in Cartagena. Collaboration between participants and researchers generates conceptual frameworks that make it possible to understand and manage the complexity of HIV's social determination. This way of understanding effectively connects local inequalities with international flows of power such as sexual tourism and makes evident the strengths and limitations of current approaches to HIV prevention.

  13. Mitigation of seismic action on engineering structure by innovative SERB - CITON Solution

    International Nuclear Information System (INIS)

    Serban, V.; Panait, A.; Androne, M.; Ciocan, G. A.

    2009-01-01

    The paper presents the advantage of the SERB-CITON innovative solution for increasing the seismic resistance of engineering structures as compared with other solutions for seismic protection of buildings. SERB devices (telescopic and isolation) used in an innovative solution to control, limit and damp the seismic building movement, have a capsulated structure and are capable to overtake large compression and tension loads with controlled deflection and large damping. The great difference in the building behavior during an earthquake results from the fact that a building (along with its foundation ground) make-up an oscillating system which represents a built-up of kinetic and potential energy of repeated seismic movement oscillations. The oscillating system may or not overtake and built-up the seismic energy from each soil oscillation, as a function of the location of the important Eigen vibration periods of the building within the spectral component of the seismic action. The main problem that needs to be solved by the seismic design of buildings consists in the transfer of a minimum amount of seismic energy from the ground to the building and in doing so for the transferred energy should not build-up in the building-ground oscillating system. The paper presents the classical, modern and innovative solution for mitigation of seismic actions. (authors)

  14. Recent developments in low cost stable structures for space

    International Nuclear Information System (INIS)

    Thompson, T.C.; Grastataro, C.; Smith, B.G.

    1994-01-01

    The Los Alamos National Laboratory (LANL) in partnership with Composite Optics Incorporated (COI) is advancing the development of low cost, lightweight, composite technology for use in spacecraft and stable structures. The use of advanced composites is well developed, but the application of an all-composite tracker structure has never been achieved. This paper investigates the application of composite technology to the design and fabrication of an all-composite spacecraft bus for small satellites, using technology directly applicable to central tracking in a high luminosity environment. The satellite program Fast On-Orbit Recording of Transient Events (FORTE) is the second in a series of satellites to be launched into orbit for the US Department of Energy (DOE). This paper will discuss recent developments in the area of low cost composites, used for either spacecraft or ultra stable applications in high energy physics (HEP) detectors. The use of advanced composites is a relatively new development in the area of HEP. The Superconducting Super Collider (SSC) spawned a new generation of Trackers which made extensive use of graphite fiber reinforced plastic (GFRP) composite systems. LANL has designed a structure employing new fabrication technology. This concept will lower the cost of composite structures to a point that they may now compete with conventional materials. This paper will discuss the design, analysis and proposed fabrication of a small satellite structure. Central tracking structures using advanced materials capable of operating in an adverse environment typical of that found in a high luminosity collider could use identical concepts

  15. The distribution function of a probability measure on a space with a fractal structure

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Granero, M.A.; Galvez-Rodriguez, J.F.

    2017-07-01

    In this work we show how to define a probability measure with the help of a fractal structure. One of the keys of this approach is to use the completion of the fractal structure. Then we use the theory of a cumulative distribution function on a Polish ultrametric space and describe it in this context. Finally, with the help of fractal structures, we prove that a function satisfying the properties of a cumulative distribution function on a Polish ultrametric space is a cumulative distribution function with respect to some probability measure on the space. (Author)

  16. Technology Challenges and Opportunities for Very Large In-Space Structural Systems

    Science.gov (United States)

    Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.

    2009-01-01

    Space solar power satellites and other large space systems will require creative and innovative concepts in order to achieve economically viable designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment/construction will be enabling design attributes. While current space systems allocate nearly 20 percent of the mass to the primary structure, the very large space systems of the future must overcome subsystem mass allocations by achieving a level of functional integration not yet realized. A proposed building block approach with two phases is presented to achieve near-term solar power satellite risk reduction with accompanying long-term technology advances. This paper reviews the current challenges of launching and building very large space systems from a structures and materials perspective utilizing recent experience. Promising technology advances anticipated in the coming decades in modularity, material systems, structural concepts, and in-space operations are presented. It is shown that, together, the current challenges and future advances in very large in-space structural systems may provide the technology pull/push necessary to make solar power satellite systems more technically and economically feasible.

  17. Structural Basis for Flip-Flop Action of Thiamin-Dependent Enzymes Revealed by Crystal Structure of Human Pyruvate Dehydrogenase

    Science.gov (United States)

    Ciszak, Ewa; Korotchkina, Lioubov G.; Dominiak, Paulina M.; Sidhu, Sukdeep; Patel, Mulchand S.

    2003-01-01

    The biologically active derivative of vitamin B1; thiamin pyrophosphate; is used as cofactor by many enzymes that perform a wide range of catalytic functions in the pathways of energy production. In alpha2beta2-heterotetrameric human pyruvate dehydrogenase, the first catalytic component enzyme of human pyruvate dehydrogenase complex, this cofactor is used to cleave the C(sup alpha)-C(=0) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase, the second catalytic component of the complex. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites have puzzled researchers from earlier functional studies of this enzyme. In order to gain insight into the mechanism of action of this enzyme, we determined the crystal structure of the holoform of human pyruvate dehydrogenase at 1.958, resolution. We propose a kinetic model for the flip-flop action of this enzyme through the concerted approx. 2A, shuttle-like motion of the heterodimers. The similarity of thiamin pyrophosphate binding in human pyruvate dehydrogenase and other functionally related enzymes suggests this newly defined mechanism of shuttle-like motion of domains to be common for the family of thiamin pyrophosphate-dependent enzymes.

  18. Diverse Actions and Target-Site Selectivity of Neonicotinoids: Structural Insights

    Science.gov (United States)

    Matsuda, Kazuhiko; Kanaoka, Satoshi; Akamatsu, Miki; Sattelle, David B.

    2009-01-01

    The nicotinic acetylcholine receptors (nAChRs) are targets for human and veterinary medicines as well as insecticides. Subtype-selectivity among the diverse nAChR family members is important for medicines targeting particular disorders, and pest-insect selectivity is essential for the development of safer, environmentally acceptable insecticides. Neonicotinoid insecticides selectively targeting insect nAChRs have important applications in crop protection and animal health. Members of this class exhibit strikingly diverse actions on their nAChR targets. Here we review the chemistry and diverse actions of neonicotinoids on insect and mammalian nAChRs. Electrophysiological studies on native nAChRs and on wild-type and mutagenized recombinant nAChRs have shown that basic residues particular to loop D of insect nAChRs are likely to interact electrostatically with the nitro group of neonicotinoids. In 2008, the crystal structures were published showing neonicotinoids docking into the acetylcholine binding site of molluscan acetylcholine binding proteins with homology to the ligand binding domain (LBD) of nAChRs. The crystal structures showed that 1) glutamine in loop D, corresponding to the basic residues of insect nAChRs, hydrogen bonds with the NO2 group of imidacloprid and 2) neonicotinoid-unique stacking and CH-π bonds at the LBD. A neonicotinoid-resistant strain obtained by laboratory-screening has been found to result from target site mutations, and possible reasons for this are also suggested by the crystal structures. The prospects of designing neonicotinoids that are safe not only for mammals but also for beneficial insects such as honey bees (Apis mellifera) are discussed in terms of interactions with non-α nAChR subunits. PMID:19321668

  19. Raman scattering characterization of space solar cell structures

    Science.gov (United States)

    Mintairov, Alexander M.; Khvostikov, V. P.; Paleeva, E. V.; Sorokina, S. V.

    1995-01-01

    A contactless method for the determination of the free-carrier density and the composition distribution across the thickness of 3-5 multi-layer solar cell structures, using the Raman scattering method, is developed. The method includes a step analysis of Raman spectra from optical phonons and phonon-plasmon modes of different layers. The method provides simultaneous measurements of the element composition and the thickness of the structure's layers together with the free-carrier density. The results of measurements of the free-carrier density composition distributions of the liquid phase epitaxy grown AlGaAs/GaAs and GaSb solar cell structures are presented and discussed.

  20. Structure-based design in the GPCR target space.

    Science.gov (United States)

    Kontoyianni, M; Liu, Z

    2012-01-01

    The G protein-coupled receptors (GPCRs) are membrane proteins that transmit signals via G-protein coupling. They have long been the target of small molecule therapeutics accounting for 30% of the launched drug targets. They are subdivided into several classes, with rhodopsins corresponding to the largest class. Furthermore, a high number of new rhodopsin-like GPCR proteins are included in the druggable genome, thus they are projected to continue being of value to the pharmaceutical and biotechnology sectors. We present a comprehensive review of the structural information pertaining to GPCRs, in light of the most recently deposited crystal structures, along with comparisons of the available to-date structures at different activation states. Finally, computational approaches to GPCR modeling are discussed in conjunction with critical perspectives regarding feasibility and limitations.

  1. High resolution soil moisture radiometer. [large space structures

    Science.gov (United States)

    Wilheit, T. T.

    1978-01-01

    An electrically scanned pushbroom phased antenna array is described for a microwave radiometer which can provide agriculturally meaningful measurements of soil moisture. The antenna size of 100 meters at 1400 MHz or 230 meters at 611 MHz requires several shuttle launches and orbital assembly. Problems inherent to the size of the structure and specific instrument problems are discussed as well as the preliminary design.

  2. Firm entry diversity, resource space heterogeneity and market structure

    NARCIS (Netherlands)

    Garcia-Diaz, C.; van Witteloostuijn, A.; Osinga, S.; Hofstede, G.J.; Verwaart, T.

    2011-01-01

    Evolutionary explanations of market structures have usually focused on the selection pressures impacted by a number of factors such as scale economies, niche width, firm size and consumer heterogeneity. How selection processes work in markets is highly dependent on the available firm type variation

  3. Space-time-matter analytic and geometric structures

    CERN Document Server

    Brüning, Jochen

    2018-01-01

    At the boundary of mathematics and mathematical physics, this monograph explores recent advances in the mathematical foundations of string theory and cosmology. The geometry of matter and the evolution of geometric structures as well as special solutions, singularities and stability properties of the underlying partial differential equations are discussed.

  4. Motion tracking in narrow spaces: A structured light approach

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus Reinhold; Højgaard, Liselotte

    2010-01-01

    We present a novel tracking system for patient head motion inside 3D medical scanners. Currently, the system is targeted at the Siemens High Resolution Research Tomograph (HRRT) PET scanner. Partial face surfaces are reconstructed using a miniaturized structured light system. The reconstructed 3D...

  5. State Space identification of Civil Engineering Structures from Output Measurements

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Andersen, P.

    1997-01-01

    for identification of civil engineering structures. The SST is compared with the stochastic realization estimator Matrix Block Hankel (MBH) and a prediction error method (PEM). The results show that the investigated techniques give good results in terms of estimated modal parameters and mode shapes. Especially...

  6. State Space identification of Civil Engineering Structures from Output Measurements

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Andersen, P.

    for identification of civil engineering structures. The SST is compared with the stochastic realization estimator Matrix Block Hankel (MBH) and a prediction error method (PEM). The results show that the investigated techniques give good results in terms of estimated modal parameters and mode shapes. Especially...

  7. Motion tracking in narrow spaces: a structured light approach

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Paulsen, Rasmus; Højgaard, Liselotte

    2010-01-01

    point clouds are matched to a reference surface using a robust iterative closest point algorithm. A main challenge is the narrow geometry requiring a compact structured light system and an oblique angle of observation. The system is validated using a mannequin head mounted on a rotary stage. We compare...

  8. Two-Phase Gas-Liquid Flow Structure Characteristics under Periodic Cross Forces Action

    Directory of Open Access Journals (Sweden)

    V. V. Perevezentsev

    2015-01-01

    Full Text Available The article presents a study of two-phase gas-liquid flow under the action of periodic cross forces. The work objective is to obtain experimental data for further analysis and have structure characteristics of the two-phase flow movement. For research, to obtain data without disturbing effect on the flow were used optic PIV (Particle Image Visualization methods because of their noninvasiveness. The cross forces influence was provided by an experimental stand design to change the angular amplitudes and the periods of channel movement cycle with two-phase flow. In the range of volume gas rates was shown a water flow rate versus the inclination angle of immovable riser section and the characteristic angular amplitudes and periods of riser section inclination cycle under periodic cross forces. Data on distribution of average water velocity in twophase flow in abovementioned cases were also obtained. These data allowed us to draw a conclusion that a velocity distribution depends on the angular amplitude and on the period of the riser section roll cycle. This article belongs to publications, which study two-phase flows with no disturbing effect on them. Obtained data give an insight into understanding a pattern of twophase gas-liquid flow under the action of periodic cross forces and can be used to verify the mathematical models of the CFD thermo-hydraulic codes. In the future, the work development expects taking measurements with more frequent interval in the ranges of angular amplitudes and periods of the channel movement cycle and create a mathematical model to show the action of periodic cross forces on two-phase gas-liquid flow.

  9. On the structure of the space of geometric product-form models

    NARCIS (Netherlands)

    Bayer, Nimrod; Boucherie, Richardus J.

    2002-01-01

    This article deals with Markovian models defined on a finite-dimensional discrete state space and possess a stationary state distribution of a product-form. We view the space of such models as a mathematical object and explore its structure. We focus on models on an orthant [script Z]+n, which are

  10. The Structure-Agency Dialectic in Contested Science Spaces: "Do Earthworms Eat Apples?"

    Science.gov (United States)

    Kane, Justine M.

    2015-01-01

    Focusing on a group of African American third graders who attend a high-poverty urban school, I explore the structure-agency dialectic within contested spaces situated in a dialogically oriented science classroom. Contested spaces entail the moments in which the students challenge each other's and their teacher's science ideas and, in the process,…

  11. 10th meeting of the International Conference on Protection of Materials and Structures from Space Environment

    CERN Document Server

    Tagawa, Masahito; Kimoto, Yugo; Protection of Materials and Structures From the Space Environment

    2013-01-01

    The goals of the 10th International Space Conference on “Protection of Materials and Structures from Space Environment” ICPMSE-10J, since its inception in 1992, have been to facilitate exchanges between members of the various engineering and science disciplines involved in the development of space materials, including aspects of LEO, GEO and Deep Space environments, ground-based qualification, and in-flight experiments and lessons learned from operational vehicles that are closely interrelated to disciplines of the atmospheric sciences, solar-terrestrial interactions and space life sciences. The knowledge of environmental conditions on and around the Moon, Mars, Venus and the low Earth orbit as well as other possible candidates for landing such as asteroids have become an important issue, and protecting both hardware and human life from the effects of space environments has taken on a new meaning in light of the increased interest in space travel and colonization of other planets.  And while many materia...

  12. Unitized Textile Composite Stiffened Panels for Space Structures; Manufacturing, Characterization, Modeling, and Analysis

    Data.gov (United States)

    National Aeronautics and Space Administration — When composites were first implemented, structures were pieced together from smaller, more manageable constituents. Thought was not given on how best to create the...

  13. Passive Wireless Sensor System for Space and Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aviana Molecular (Aviana) and the University of Central Florida (UCF) propose to develop a Passive Wireless Sensor System (PWSS) for Structural Health Monitoring...

  14. Battle Space Action Centers

    Science.gov (United States)

    2011-05-14

    Briggs, R.O., & Vreede, G.J. de (2009). A Diagnostic to Identify and Resolve Different Sources of Disagreement in Collaborative Requirements...G.J. DE (2009), A Diagnostic To Identify And Resolve Different Sources of Disagreement in Requirements Engineering, In: Kilgour, M., Wang, Q. (Eds...Systems 3RD Annual Conference, Eau Claire, Wisconsin, May 2008. 57. VREEDE, G.J. DE , BRIGGS, R.O. REINIG, B. (2008), E-Collaboration Satisfaction

  15. In-situ investigations of structural changes during cyclic loading by high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Diederichs, Annika M.; Thiel, Felix; Lienert, Ulrich

    2017-01-01

    Abstract A major failure reason for structural materials is fatigue-related damage due to repeatedly changing mechanical loads. During cyclic loading dislocations self-organize into characteristic ordered structures, which play a decisive role for the materials lifetime. These heterogeneous...... the materials behavior during cyclic deformation and to improve the material design. While monitoring macroscopic stress and strain during cyclic loading, reciprocal space maps of diffraction peaks from single grains are obtained with high resolution. High Resolution Reciprocal Space Mapping was applied...

  16. ALICE's main austenitic stainless steel support structure (the Space Frame)

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    This structure is constructed to hold the large volume detectors, such as the Time Projection Chamber, Transition Radiation Detector and Time of Flight inside the ALICE solenoid magnet. After the final assembly at CERN, two large mobile cranes were needed for the job of lifting and turning the 14 tonne frame onto its side. Once shifted, it was placed in Building SX2, one of the surface assembly areas designated for ALICE.

  17. The structure and properties of color spaces and the representation of color images

    CERN Document Server

    Dubois, Eric

    2009-01-01

    This lecture describes the author's approach to the representation of color spaces and their use for color image processing. The lecture starts with a precise formulation of the space of physical stimuli (light). The model includes both continuous spectra and monochromatic spectra in the form of Dirac deltas. The spectral densities are considered to be functions of a continuous wavelength variable. This leads into the formulation of color space as a three-dimensional vector space, with all the associated structure. The approach is to start with the axioms of color matching for normal human vie

  18. Space partitioning strategies for indoor WLAN positioning with cascade-connected ANN structures.

    Science.gov (United States)

    Borenović, Miloš; Nešković, Aleksandar; Budimir, Djuradj

    2011-02-01

    Position information in indoor environments can be procured using diverse approaches. Due to the ubiquitous presence of WLAN networks, positioning techniques in these environments are the scope of intense research. This paper explores two strategies for space partitioning when utilizing cascade-connected Artificial Neural Networks (ANNs) structures for indoor WLAN positioning. A set of cascade-connected ANN structures with different space partitioning strategies are compared mutually and to the single ANN structure. The benefits of using cascade-connected ANNs structures are shown and discussed in terms of the size of the environment, number of subspaces and partitioning strategy. The optimal cascade-connected ANN structures with space partitioning show up to 50% decrease in median error and up to 12% decrease in the average error with respect to the single ANN model. Finally, the single ANN and the optimal cascade-connected ANN model are compared against other well-known positioning techniques.

  19. Simulation and analysis of tape spring for deployed space structures

    Science.gov (United States)

    Chang, Wei; Cao, DongJing; Lian, MinLong

    2018-03-01

    The tape spring belongs to the configuration of ringent cylinder shell, and the mechanical properties of the structure are significantly affected by the change of geometrical parameters. There are few studies on the influence of geometrical parameters on the mechanical properties of the tape spring. The bending process of the single tape spring was simulated based on simulation software. The variations of critical moment, unfolding moment, and maximum strain energy in the bending process were investigated, and the effects of different radius angles of section and thickness and length on driving capability of the simple tape spring was studied by using these parameters. Results show that the driving capability and resisting disturbance capacity grow with the increase of radius angle of section in the bending process of the single tape spring. On the other hand, these capabilities decrease with increasing length of the single tape spring. In the end, the driving capability and resisting disturbance capacity grow with the increase of thickness in the bending process of the single tape spring. The research has a certain reference value for improving the kinematic accuracy and reliability of deployable structures.

  20. Ultrafast electron diffraction: oriented molecular structures in space and time.

    Science.gov (United States)

    Baskin, J Spencer; Zewail, Ahmed H

    2005-11-11

    The technique of ultrafast electron diffraction allows direct measurement of changes which occur in the molecular structures of isolated molecules upon excitation by femtosecond laser pulses. The vectorial nature of the molecule-radiation interaction also ensures that the orientation of the transient populations created by the laser excitation is not isotropic. Here, we examine the influence on electron diffraction measurements--on the femtosecond and picosecond timescales--of this induced initial anisotropy and subsequent inertial (collision-free) molecular reorientation, accounting for the geometry and dynamics of a laser-induced reaction (dissociation). The orientations of both the residual ground-state population and the excited- or product-state populations evolve in time, with different characteristic rotational dephasing and recurrence times due to differing moments of inertia. This purely orientational evolution imposes a corresponding evolution on the electron scattering pattern, which we show may be similar to evolution due to intrinsic structural changes in the molecule, and thus potentially subject to misinterpretation. The contribution of each internuclear separation is shown to depend on its orientation in the molecular frame relative to the transition dipole for the photoexcitation; thus not only bond lengths, but also bond angles leave a characteristic imprint on the diffraction. Of particular note is the fact that the influence of anisotropy persists at all times, producing distinct differences between the asymptotic "static" diffraction image and the predictions of isotropic diffraction theory.

  1. The Production and the Uneven Valorization of Urban Space in Campos Dos Goytacazes-RJ: An Analysis of State and Real Estate Developers Actions

    Directory of Open Access Journals (Sweden)

    Marcos Antônio Silvestre Gomes

    2015-07-01

    Full Text Available This article discusses some aspects of the production of urban space considering the social agents actions. The methodology was based on literature searches, data surveys and interviews in public and private agencies, empirical observations and mapping of the urban area. The methodology was based on literature searches, data surveys and interviews in public and private agencies, empirical observations and mapping of the urban area. The objective is to present an analysis of state and real estate developers actions in the production and uneven valorization of urban space in Campos dos Goytacazes-RJ. The results of work indicate the intensification and complexification of actions of these agents with the advent of the oil economy. In the period 1981-2011 there was an intense valuation of South West-East axis of the city, with a vertiginous process of vertical integration and deployment of a high standard closed allotments, which has

  2. Formation of Fine Structures in Uniform Suspension under Standing Waves Action

    Science.gov (United States)

    Kalinichenko, V. F.; Chashechkin, Yu. D.

    2012-04-01

    Structurization of initially uniform suspension in fields of standing gravity waves was studied in a rectangular tank oscillating in vertical direction. The tank with aspect ratio of 50:4 was placed at shaker table with a low level of horizontal components of acceleration during the motion. Diluted aluminum powder suspension in water filled in tank with was undergone wave action in frequency range corresponding to first and second modes of intrinsic oscillations. For visualizations and tracers velocity measurements a digital high-speed video camera was used. The formation of large and small scale structures in initially uniform suspension was registered. Experiments were performed in tanks with flat smooth and rough bottom as well as with water above stationary ripples and deformable sand riffles. Large and small scales irregularities of initially smooth field of concentration were observed in the whole volume of the fluid. Large voids with shapes reminding the bottom topography features were formed first. Later the fine extended filaments were observed. Their horizontal scales were determined by bed forms extension, and the vertical scale grows in time. Depending on the wave mode the filament structures arose from the bottom or sank from the free surface. The evolution of the structure geometrical parameters were measured both in vertical and horizontal directions. The difference of dynamical behaviour of suspension concentration in vicinity and far from free surface, flat bottom or bed topography was determined and discussed. In theoretical description of the flow compete fundamental set of governing equations. Complete solution of the set contains family of thin singular perturbed components which are characterized by singular perturbed functions. These flow components can accumulate of admixtures and maintain non-uniform pattern of admixture concentration. The presented experiments were performed on set-up USU "HPC IPMec RAS" under support of Ministry of

  3. SPACE: a suite of tools for protein structure prediction and analysis based on complementarity and environment.

    Science.gov (United States)

    Sobolev, Vladimir; Eyal, Eran; Gerzon, Sergey; Potapov, Vladimir; Babor, Mariana; Prilusky, Jaime; Edelman, Marvin

    2005-07-01

    We describe a suite of SPACE tools for analysis and prediction of structures of biomolecules and their complexes. LPC/CSU software provides a common definition of inter-atomic contacts and complementarity of contacting surfaces to analyze protein structure and complexes. In the current version of LPC/CSU, analyses of water molecules and nucleic acids have been added, together with improved and expanded visualization options using Chime or Java based Jmol. The SPACE suite includes servers and programs for: structural analysis of point mutations (MutaProt); side chain modeling based on surface complementarity (SCCOMP); building a crystal environment and analysis of crystal contacts (CryCo); construction and analysis of protein contact maps (CMA) and molecular docking software (LIGIN). The SPACE suite is accessed at http://ligin.weizmann.ac.il/space.

  4. STS-61B Astronaut Ross Works on Assembly Concept for Construction of Erectable Space Structure

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo astronaut Ross, located on the Manipulator Foot Restraint (MFR) over the cargo bay, erects ACCESS. The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  5. Ross Works on the Assembly Concept for Construction of Erectable Space Structure (ACCESS) During

    Science.gov (United States)

    1985-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross works on ACCESS high above the orbiter. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  6. Astronaut Ross Approaches Assembly Concept for Construction of Erectable Space Structure (ACCESS)

    Science.gov (United States)

    1999-01-01

    The crew assigned to the STS-61B mission included Bryan D. O'Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission's primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross, perched on the Manipulator Foot Restraint (MFR) approaches the erected ACCESS. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  7. Progress of the COST Action TU1402 on the Quantification of the Value of Structural Health Monitoring

    DEFF Research Database (Denmark)

    Thöns, Sebastian; Limongelli, Maria Pina; Ivankovic, Ana Mandic

    2017-01-01

    This paper summarizes the development of Value of Structural Health Monitoring (SHM) Information analyses and introduces the development, objectives and approaches of the COST Action TU1402 on this topic. SHM research and engineering has been focused on the extraction of loading, degradation...... encompassing the infrastructure and the SHM systems, their functionality and thus require the interaction of several research disciplines. For progressing on these points, a scientific networking and dissemination project namely the COST Action TU1402 has been initiated....

  8. Low Complexity Receiver Structures for Space-Time Coded Multiple-Access Systems

    Directory of Open Access Journals (Sweden)

    Sudharman K. Jayaweera

    2002-03-01

    Full Text Available Multiuser detection for space-time coded synchronous multiple-access systems in the presence of independent Rayleigh fading is considered. Under the assumption of quasi-static fading, it is shown that optimal (full diversity achieving space-time codes designed for single-user channels, can still provide full diversity in the multiuser channel. The joint optimal maximum likelihood multiuser detector, which can be implemented with a Viterbi-type algorithm, is derived for such space-time coded systems. Low complexity, partitioned detector structures that separate the multiuser detection and space-time decoding into two stages are also developed. Both linear and nonlinear multiuser detection schemes are considered for the first stage of these partitioned space-time multiuser receivers. Simulation results show that these latter methods achieve performance competitive with the single-user bound for space-time coded systems.

  9. Crossing Phenomena in Overhead Line Equipment (OHLE) Structure in 3D Space Considering Soil-Structure Interaction

    Science.gov (United States)

    Ngamkhanong, Chayut; Kaewunruen, Sakdirat; Baniotopoulos, Charalampos; Papaelias, Mayorkinos

    2017-10-01

    Nowadays, the electric train becomes one of the efficient railway systems that are lighter, cleaner, quieter, cheaper and faster than a conventional train. Overhead line equipment (OHLE), which supplies electric power to the trains, is designed on the principle of overhead wires placed over the railway track. The OHLE is supported by mast structure which located at the lineside along the track. Normally, mast structure is a steel column or truss structure which supports the overhead wire carrying the power. Due to the running train and severe periodic force, such as an earthquake, in surrounding area may cause damage to the OHLE structure especially mast structure which leads to the failure of the electrical system. The mast structure needs to be discussed in order to resist the random forces. Due to the vibration effect, the natural frequencies of the structure are necessary. This is because when the external applied force occurs within a range of frequency of the structure, resonance effect can be expected which lead to the large oscillations and deflections. The natural frequency of a system is dependent only on the stiffness of the structure and the mass which participates with the structure, including self-weight. The modal analysis is used in order to calculate the mode shapes and natural frequencies of the mast structure during free vibration. A mast structure with varying rotational soil stiffness is used to observe the influence of soil-structure action. It is common to use finite element analysis to perform a modal analysis. This paper presents the fundamental mode shapes, natural frequencies and crossing phenomena of three-dimensional mast structure considering soil-structure interaction. The sensitivity of mode shapes to the variation of soil-structure interaction is discussed. The outcome of this study will improve the understanding of the fundamental dynamic behaviour of the mast structure which supports the OHLE. Moreover, this study will be a

  10. From Dualism of Structure-Action to the Theory of Social Domain

    Directory of Open Access Journals (Sweden)

    İbrahim Yücedağ

    2011-12-01

    Full Text Available This study addressing the Derek Layer’s theory of social domains and the dualism between structure and action in social theory, aims to display the distinction between micro and macro analysis in sociology, emphasized frequently. Arguments on the crisis of sociology because of its problematic nature have brought the questions on how the social reality should be understood. Therefore, the claim that social reality should be understood by analyzing the structure is confronted by the claim that social reality can be understood with a reference to the individual. Thus both discourses having a single channel to understand and to explain society produce onesided explanation of social reality. Undoubtedly, theories aiming to combine macro and micro have gained significance against these discourses. In this study based on Layder’s theory of social domains, efforts for building bridges between notions of “structure” and “action” in social theory are evaluated, and basic ideas and shortcomings of the “theory of social domains” are discussed

  11. Structural Dynamics of the Oxygen-Evolving Complex of Photosystem II in Water-Splitting Action.

    Science.gov (United States)

    Wilson, Andrew J; Jain, Prashant K

    2018-04-17

    Oxygenic photosynthesis in nature occurs via water splitting catalyzed by the oxygen-evolving complex (OEC) of photosystem II. To split water, the OEC cycles through a sequence of oxidation states (S i , i = 0-4), the structural mechanism of which is not fully understood under physiological conditions. We monitored the OEC in visible-light-driven water-splitting action by using in situ, aqueous-environment surface-enhanced Raman scattering (SERS). In the unexplored low-frequency region of SERS, we found dynamic vibrational signatures of water binding and splitting. Specific snapshots in the dynamic SERS correspond to intermediate states in the catalytic cycle, as determined by density functional theory and isotopologue comparisons. We assign the previously ambiguous protonation configuration of the S 0 -S 3 states and propose a structural mechanism of the OEC's catalytic cycle. The findings address unresolved questions about photosynthetic water splitting and introduce spatially resolved, low-frequency SERS as a chemically sensitive tool for interrogating homogeneous catalysis in operando.

  12. Quantum theory in real Hilbert space: How the complex Hilbert space structure emerges from Poincaré symmetry

    Science.gov (United States)

    Moretti, Valter; Oppio, Marco

    As earlier conjectured by several authors and much later established by Solèr (relying on partial results by Piron, Maeda-Maeda and other authors), from the lattice theory point of view, Quantum Mechanics may be formulated in real, complex or quaternionic Hilbert spaces only. Stückelberg provided some physical, but not mathematically rigorous, reasons for ruling out the real Hilbert space formulation, assuming that any formulation should encompass a statement of Heisenberg principle. Focusing on this issue from another — in our opinion, deeper — viewpoint, we argue that there is a general fundamental reason why elementary quantum systems are not described in real Hilbert spaces. It is their basic symmetry group. In the first part of the paper, we consider an elementary relativistic system within Wigner’s approach defined as a locally-faithful irreducible strongly-continuous unitary representation of the Poincaré group in a real Hilbert space. We prove that, if the squared-mass operator is non-negative, the system admits a natural, Poincaré invariant and unique up to sign, complex structure which commutes with the whole algebra of observables generated by the representation itself. This complex structure leads to a physically equivalent reformulation of the theory in a complex Hilbert space. Within this complex formulation, differently from what happens in the real one, all selfadjoint operators represent observables in accordance with Solèr’s thesis, and the standard quantum version of Noether theorem may be formulated. In the second part of this work, we focus on the physical hypotheses adopted to define a quantum elementary relativistic system relaxing them on the one hand, and making our model physically more general on the other hand. We use a physically more accurate notion of irreducibility regarding the algebra of observables only, we describe the symmetries in terms of automorphisms of the restricted lattice of elementary propositions of the

  13. Novikov, LR- and post-Lie algebra structures, and their relation to NIL-affine crystallographic actions

    OpenAIRE

    Vercammen, Kim

    2013-01-01

    The study of simply transitive and crystallographic NIL-affine actions on the Lie algebra level leads to different concepts, including Novikov, LR- and post-Lie algebra structures, which are studied in this thesis. In our research we can distinguish three aspects: construction, existence and structure. In the construction aspect, we search for examples by using different techniques as the lifting of such structures, using theoretical considerations and using computer experiments. In the exist...

  14. Duality and free measures in vector spaces, the spectral theory of actions of non-locally compact groups

    OpenAIRE

    Vershik, A.

    2017-01-01

    The paper presents a general duality theory for vector measure spaces taking its origin in the author's papers written in the 1960s. The main result establishes a direct correspondence between the geometry of a measure in a vector space and the properties of the space of measurable linear functionals on this space regarded as closed subspaces of an abstract space of measurable functions. An example of useful new features of this theory is the notion of a free measure and its applications.

  15. Guiding exploration in conformational feature space with Lipschitz underestimation for ab-initio protein structure prediction.

    Science.gov (United States)

    Hao, Xiaohu; Zhang, Guijun; Zhou, Xiaogen

    2018-04-01

    Computing conformations which are essential to associate structural and functional information with gene sequences, is challenging due to the high dimensionality and rugged energy surface of the protein conformational space. Consequently, the dimension of the protein conformational space should be reduced to a proper level, and an effective exploring algorithm should be proposed. In this paper, a plug-in method for guiding exploration in conformational feature space with Lipschitz underestimation (LUE) for ab-initio protein structure prediction is proposed. The conformational space is converted into ultrafast shape recognition (USR) feature space firstly. Based on the USR feature space, the conformational space can be further converted into Underestimation space according to Lipschitz estimation theory for guiding exploration. As a consequence of the use of underestimation model, the tight lower bound estimate information can be used for exploration guidance, the invalid sampling areas can be eliminated in advance, and the number of energy function evaluations can be reduced. The proposed method provides a novel technique to solve the exploring problem of protein conformational space. LUE is applied to differential evolution (DE) algorithm, and metropolis Monte Carlo(MMC) algorithm which is available in the Rosetta; When LUE is applied to DE and MMC, it will be screened by the underestimation method prior to energy calculation and selection. Further, LUE is compared with DE and MMC by testing on 15 small-to-medium structurally diverse proteins. Test results show that near-native protein structures with higher accuracy can be obtained more rapidly and efficiently with the use of LUE. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Neutral Buoyancy Simulator: MSFC-Langley joint test of large space structures component assembly:

    Science.gov (United States)

    1979-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, VA and MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  17. Sparse RNA folding revisited: space-efficient minimum free energy structure prediction.

    Science.gov (United States)

    Will, Sebastian; Jabbari, Hosna

    2016-01-01

    RNA secondary structure prediction by energy minimization is the central computational tool for the analysis of structural non-coding RNAs and their interactions. Sparsification has been successfully applied to improve the time efficiency of various structure prediction algorithms while guaranteeing the same result; however, for many such folding problems, space efficiency is of even greater concern, particularly for long RNA sequences. So far, space-efficient sparsified RNA folding with fold reconstruction was solved only for simple base-pair-based pseudo-energy models. Here, we revisit the problem of space-efficient free energy minimization. Whereas the space-efficient minimization of the free energy has been sketched before, the reconstruction of the optimum structure has not even been discussed. We show that this reconstruction is not possible in trivial extension of the method for simple energy models. Then, we present the time- and space-efficient sparsified free energy minimization algorithm SparseMFEFold that guarantees MFE structure prediction. In particular, this novel algorithm provides efficient fold reconstruction based on dynamically garbage-collected trace arrows. The complexity of our algorithm depends on two parameters, the number of candidates Z and the number of trace arrows T; both are bounded by [Formula: see text], but are typically much smaller. The time complexity of RNA folding is reduced from [Formula: see text] to [Formula: see text]; the space complexity, from [Formula: see text] to [Formula: see text]. Our empirical results show more than 80 % space savings over RNAfold [Vienna RNA package] on the long RNAs from the RNA STRAND database (≥2500 bases). The presented technique is intentionally generalizable to complex prediction algorithms; due to their high space demands, algorithms like pseudoknot prediction and RNA-RNA-interaction prediction are expected to profit even stronger than "standard" MFE folding. SparseMFEFold is free

  18. Evidence for the embodiment of space perception: Concurrent hand but not arm action moderates reachability and egocentric distance perception.

    Directory of Open Access Journals (Sweden)

    Stephane eGrade

    2015-06-01

    Full Text Available The perception of reachability (i.e., whether an object is within reach relies on body representations and action simulation. Similarly, egocentric distance estimation (i.e., the perception of the distance an object is from the self is thought to be partly derived from embodied action simulation. Although motor simulation is important for both, it is unclear whether the cognitive processes underlying these behaviors rely on the same motor processes. To investigate this, we measured the impact of a motor interference dual-task paradigm on reachability judgment, egocentric distance estimation, and allocentric length estimation (i.e., how distant two stimuli are from each other independent from the self used as a control task. Participants were required to make concurrent actions with either hand actions of foam ball grip squeezing or arm actions of weight lifting, or no concurrent actions. Results showed that concurrent squeeze actions significantly slowed response speed in the reachability judgment and egocentric distance estimation tasks, but that there was no impact of the concurrent actions on allocentric length estimation. Together, these results suggest that reachability and distance perception, both egocentric perspective tasks, and in contrast to the allocentric perspective task, involve action simulation cognitive processes. The results are discussed in terms of the implication of action simulation when evaluating the position of a target relative to the observer’s body, supporting an embodied view of spatial cognition.

  19. Finding Chemical Structures Corresponding to a Set of Coordinates in Chemical Descriptor Space.

    Science.gov (United States)

    Miyao, Tomoyuki; Funatsu, Kimito

    2017-08-01

    When chemical structures are searched based on descriptor values, or descriptors are interpreted based on values, it is important that corresponding chemical structures actually exist. In order to consider the existence of chemical structures located in a specific region in the chemical space, we propose to search them inside training data domains (TDDs), which are dense areas of a training dataset in the chemical space. We investigated TDDs' features using diverse and local datasets, assuming that GDB11 is the chemical universe. These two analyses showed that considering TDDs gives higher chance of finding chemical structures than a random search-based method, and that novel chemical structures actually exist inside TDDs. In addition to those findings, we tested the hypothesis that chemical structures were distributed on the limited areas of chemical space. This hypothesis was confirmed by the fact that distances among chemical structures in several descriptor spaces were much shorter than those among randomly generated coordinates in the training data range. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The seesaw space, a vector space to identify and characterize large-scale structures at 1 AU

    Science.gov (United States)

    Lara, A.; Niembro, T.

    2017-12-01

    We introduce the seesaw space, an orthonormal space formed by the local and the global fluctuations of any of the four basic solar parameters: velocity, density, magnetic field and temperature at any heliospheric distance. The fluctuations compare the standard deviation of a moving average of three hours against the running average of the parameter in a month (consider as the local fluctuations) and in a year (global fluctuations) We created this new vectorial spaces to identify the arrival of transients to any spacecraft without the need of an observer. We applied our method to the one-minute resolution data of WIND spacecraft from 1996 to 2016. To study the behavior of the seesaw norms in terms of the solar cycle, we computed annual histograms and fixed piecewise functions formed by two log-normal distributions and observed that one of the distributions is due to large-scale structures while the other to the ambient solar wind. The norm values in which the piecewise functions change vary in terms of the solar cycle. We compared the seesaw norms of each of the basic parameters due to the arrival of coronal mass ejections, co-rotating interaction regions and sector boundaries reported in literature. High seesaw norms are due to large-scale structures. We found three critical values of the norms that can be used to determined the arrival of coronal mass ejections. We present as well general comparisons of the norms during the two maxima and the minimum solar cycle periods and the differences of the norms due to large-scale structures depending on each period.

  1. Major alternatives for government policies, organizational structures, and actions in civilian nuclear reactor emergency management in the United States

    International Nuclear Information System (INIS)

    1980-01-01

    The purpose of this report is to identify and assess major alternatives for governmental policies, organizational structures, and actions in civilian nuclear reactor emergency management in the United States. The National Academy of Public Administration agreed to identify and evaluate alternatives for governmental policies, organizational structures, and actions in civilian nuclear reactor emergency management. It agreed to review present policies and practices in civilian nuclear reactor emergency management, to review selected experiences and practices of governmental agencies other than the Nuclear Regulatory Commission, and industries other than the nuclear power industry, and to identify alternatives to the present nuclear emergency system

  2. Mutlifunctional Energy Storage-Structure Modules for Advanced Space Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ITN Energy Systems, Inc., in collaboration with the Center for Composite Materials (CCM) at the University of Delaware, proposes to design and develop...

  3. Spaces for the Social Shaping of Information Technology and Work. A reassessment of Scandinavian action research and its implications for action

    DEFF Research Database (Denmark)

    Clausen, Christian

    2004-01-01

    This contribution explores a range of social spaces where unions and workers have played or potential can play a role in the local social shaping of IT and work. It will mainly be based on the authors own research and experiences within Scandinavian research on technology and working from the pas...

  4. Topology optimization and digital assembly of advanced space-frame structures

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Amir, Oded; Michael, Knauss

    2014-01-01

    this paper presents a novel method for integrated design, optimization and fabrication of optimized space-frame structures in an autonomous, digital process. Comparative numerical studies are presented, demonstrating achievable mass reduction by application of the method by comparison to equivalent...... to normative space truss designs and dimensions. As such, a principal digital fabrication and assembly scheme is developed, where an architectural design methodology relative to the described process is established, and the proposed process demonstrated through scaled digital fabrication experiments....

  5. Structure Determination of Ornithine-Linked Cisplatin by Infrared Multiple Photon Dissociation Action Spectroscopy

    Science.gov (United States)

    He, Chenchen; Kimutai, Bett; Hamlow, Lucas; Roy, Harrison; Nei, Y.-W.; Bao, Xun; Gao, Juehan; Martens, Jonathan K.; Berden, Giel; Oomens, Jos; Maitre, Philippe; Steinmetz, Vincent; McNary, Christopher P.; Armentrout, Peter B.; Chow, C. S.; Rodgers, M. T.

    2016-06-01

    Cisplatin [(NH_3)_2PtCl_2], the first FDA-approved platinum-based anticancer drug, has been widely used in cancer chemotherapy. Its pharmacological mechanism has been identified as its ability to coordinate to genomic DNA with guanine as its major target. Amino acid-linked cisplatin derivatives are being investigated as alternatives for cisplatin that may exhibit altered binding selectivity such as that found for ornithine-linked cisplatin (Ornplatin, [(Orn)PtCl_2]), which exhibits a preference for adenine over guanine in RNA. Infrared multiple photon dissociation (IRMPD) action spectroscopy experiments and complementary electronic structure calculations are performed on a series of Ornplatin complexes to elucidate the nature of binding of the Orn amino acid to the Pt center and how that binding is influenced by the local environment. The complexes examined in the work include: [(Orn-H)PtCl_2]-, [(Orn)PtCl]+, [(Orn)Pt(H_2O)Cl]+, and [(Orn)PtCl_2+Na]+. In contrast to that found previously for the glycine-linked cisplatin complex (Glyplatin), which binds via the backbone amino and carboxylate groups, binding of Orn in these complexes is found to involve both the backbone and sidechain amino groups. Extensive broadening of the IRMPD spectrum for the [(Orn)Pt(H_2O)Cl]+ complex suggests that either multiple structures are contributing to the measured spectrum or strong intra-molecular hydrogen-binding interactions are present. The results for Ornplatin lead to an interesting discussion about the differences in selectivity and reactivity versus cisplatin.

  6. Structure Determination of Cisplatin-Amino Acid Analogues by Infrared Multiple Photon Dissociation Action Spectroscopy

    Science.gov (United States)

    He, Chenchen; Bao, Xun; Zhu, Yanlong; Strobehn, Stephen; Kimutai, Bett; Nei, Y.-W.; Chow, C. S.; Rodgers, M. T.; Gao, Juehan; Oomens, J.

    2015-06-01

    To gain a better understanding of the binding mechanism and assist in the optimization of relevant drug and chemical probe design, both experimental and theoretical studies were performed on a series of amino acid-linked cisplatin derivatives, including glycine-, lysine-, and ornithine-linked cisplatin, Gplatin, Kplatin, and Oplatin, respectively. Cisplatin, the first FDA-approved platinum-based anticancer drug, has been widely used in cancer chemotherapy. Its pharmacological mechanism has been identified as its ability to coordinate to genomic DNA, and guanine is its major target. In previous reports, cisplatin was successfully utilized as a chemical probe to detect solvent accessible sites in ribosomal RNA (rRNA). Among the amino-acid-linked cisplatin derivatives, Oplatin exhibits preference for adenine over guanine. The mechanism behind its different selectivity compared to cisplatin may relate to its potential of forming a hydrogen bond between the carboxylate group in Pt (II) complex and the 6-amino moiety of adenosine stabilizes A-Oplatin products. Tandem mass spectrometry analysis also indicates that different coordination sites of Oplatin on adenosine affect glycosidic bond stability. Infrared multiple photon dissociation (IRMPD) action spectroscopy experiments were performed on all three amino acid-linked cisplatin to characterize their structures. An extensive theoretical study has been performed on Gplatin to guide the selection of the most effective theory and basis set based on its geometric information. The results for Gplatin provide the foundation for characterization of the more complex amino acid-linked cisplatin derivatives, Oplatin and Kplatin. Structural and energetic information elucidated for these compounds, particularly Oplatin reveal the reason for its alternative selectivity compared to cisplatin.

  7. Is recursion language-specific? Evidence of recursive mechanisms in the structure of intentional action.

    Science.gov (United States)

    Vicari, Giuseppe; Adenzato, Mauro

    2014-05-01

    In their 2002 seminal paper Hauser, Chomsky and Fitch hypothesize that recursion is the only human-specific and language-specific mechanism of the faculty of language. While debate focused primarily on the meaning of recursion in the hypothesis and on the human-specific and syntax-specific character of recursion, the present work focuses on the claim that recursion is language-specific. We argue that there are recursive structures in the domain of motor intentionality by way of extending John R. Searle's analysis of intentional action. We then discuss evidence from cognitive science and neuroscience supporting the claim that motor-intentional recursion is language-independent and suggest some explanatory hypotheses: (1) linguistic recursion is embodied in sensory-motor processing; (2) linguistic and motor-intentional recursions are distinct and mutually independent mechanisms. Finally, we propose some reflections about the epistemic status of HCF as presenting an empirically falsifiable hypothesis, and on the possibility of testing recursion in different cognitive domains. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Predictive Measurement of the Structure of Land Use in an Urban Agglomeration Space

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2017-12-01

    Full Text Available The scientific measurement of land use in space is an essential task in urban agglomeration studies, and the fractal feature is one of the most powerful tools for describing the phenomenon of space. However, previous research on the fractal feature of land use has mostly been conducted in urban space, and examines the fractal feature of different land use types, respectively; thus, the measurement of the relationship between different land use types was not realized. Meanwhile, previous prediction methods used for spatial land use mostly relied on subjective abstraction of the evolution, theoretically, regardless of whether they were calibrated, so that complete coverage of all the mechanisms could not be guaranteed. Based on this, here, we treat the land use structure in urban agglomeration space as the research object, and attempt to establish a fractal measure method for the relationship between different land use types in the space of urban agglomeration. At the same time, we use the allometric relationship between “entirety” and “local” to establish an objective forecast model for the land use structure in urban agglomeration space based on gray prediction theory, to achieve a predictive measurement of the structure of land use in urban agglomeration space. Finally, this study applied the methods on the Beijing–Tianjin–Hebei urban agglomeration to analyze the evolution of the stability of the structure of land use and achieve predictive measurement of the structure of land use. The results of the case study show that the methods proposed in this study can obtain the measurement of the relationship between different land use types and the land use prediction that does not depend on the subjective exploration of the evolution law. Compared with the measurement methods that analyzed the fractal feature of different land types, respectively, and the prediction methods that rely on subjective choice, the methods presented in this

  9. Structural similarity and descriptor spaces for clustering and development of QSAR models.

    Science.gov (United States)

    Ruiz, Irene Luque; García, Gonzalo Cerruela; Gómez-Nieto, Miguel Angel

    2013-06-01

    In this paper we study and analyze the behavior of different representational spaces for the clustering and building of QSAR models. Representational spaces based on fingerprint similarity, structural similarity using maximum common subgraphs (MCS) and all maximum common subgraphs (AMCS) approaches are compared against representational spaces based on structural fragments and non-isomorphic fragments (NIF), built using different molecular descriptors. Algorithms for extraction of MCS, AMCS and NIF are described and support vector machine is used for the classification of a dataset corresponding with 74 compounds of 1,4-benzoquinone derivatives. Molecular descriptors are tested in order to build QSAR models for the prediction of the antifungal activity of the dataset. Descriptors based on the consideration of graph connectivity and distances are the most appropriate for building QSAR models. Moreover, models based on approximate similarity improve the statistical of the equations thanks to combining structural similarity, nonisomorphic fragments and descriptors approaches for the creation of more robust and finer prediction equations.

  10. Structural Sizing Methodology for the Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN) System

    Science.gov (United States)

    Jones, Thomas C.; Dorsey, John T.; Doggett, William R.

    2015-01-01

    The Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN) is a versatile long-reach robotic manipulator that is currently being tested at NASA Langley Research Center. TALISMAN is designed to be highly mass-efficient and multi-mission capable, with applications including asteroid retrieval and manipulation, in-space servicing, and astronaut and payload positioning. The manipulator uses a modular, periodic, tension-compression design that lends itself well to analytical modeling. Given the versatility of application for TALISMAN, a structural sizing methodology was developed that could rapidly assess mass and configuration sensitivities for any specified operating work space, applied loads and mission requirements. This methodology allows the systematic sizing of the key structural members of TALISMAN, which include the truss arm links, the spreaders and the tension elements. This paper summarizes the detailed analytical derivations and methodology that support the structural sizing approach and provides results from some recent TALISMAN designs developed for current and proposed mission architectures.

  11. Formation and interaction of multiple coherent phase space structures in plasma

    Science.gov (United States)

    Kakad, Amar; Kakad, Bharati; Omura, Yoshiharu

    2017-06-01

    The head-on collision of multiple counter-propagating coherent phase space structures associated with the ion acoustic solitary waves (IASWs) in plasmas composed of hot electrons and cold ions is studied here by using one-dimensional Particle-in-Cell simulation. The chains of counter-propagating IASWs are generated in the plasma by injecting the Gaussian perturbations in the equilibrium electron and ion densities. The head-on collisions of the counter-propagating electron and ion phase space structures associated with IASWs are allowed by considering the periodic boundary condition in the simulation. Our simulation shows that the phase space structures are less significantly affected by their collision with each other. They emerge out from each other by retaining their characteristics, so that they follow soliton type behavior. We also find that the electrons trapped within these IASW potentials are accelerated, while the ions are decelerated during the course of their collisions.

  12. Comparison of Requirements for Composite Structures for Aircraft and Space Applications

    Science.gov (United States)

    Raju, Ivatury S.; Elliot, Kenny B.; Hampton, Roy W.; Knight, Norman F., Jr.; Aggarwal, Pravin; Engelstad, Stephen P.; Chang, James B.

    2010-01-01

    In this report, the aircraft and space vehicle requirements for composite structures are compared. It is a valuable exercise to study composite structural design approaches used in the airframe industry and to adopt methodology that is applicable for space vehicles. The missions, environments, analysis methods, analysis validation approaches, testing programs, build quantities, inspection, and maintenance procedures used by the airframe industry, in general, are not transferable to spaceflight hardware. Therefore, while the application of composite design approaches from aircraft and other industries is appealing, many aspects cannot be directly utilized. Nevertheless, experiences and research for composite aircraft structures may be of use in unexpected arenas as space exploration technology develops, and so continued technology exchanges are encouraged.

  13. PREPARING THE PUBLIC FOR COMMERCIALIZATION AND GUIDANCE OF STRUCTURAL MEDIA SPACE TOWARDS ITS FUSION WITH ADVERTISING SPACE

    Directory of Open Access Journals (Sweden)

    Marina Đukić

    2015-07-01

    Full Text Available Through genre structure analysis of the Television´s Zagreb First Channel schedule from the beginning of 1970´s till the end of the 1980´s accompanied by analysis of advertising in same period, the paper will examine the ways and intensity of commercialization entrance in Croatian media space dominated then by state media. Television schedule genre change and the broadcast of economic propaganda program will point out the different character of the television. It can be said that it will serve for preparing the public for commercialization entrance and guidance of structural media space towards its fusion with advertising one. The assumption is that in spite of the TV schedule change, which was in economic sense accompanied by economy reforms in order to establish market economy, the public wasn´t yet delivered to advertisers. One of the clarification lies in the role of the media, which then had revolutionary function with main purpose of not the voters’ generation but only to create patriots. The paper will reproduce a kind of public transformation genesis from latent status in state guided media system to same status of latent consumers in dual media model.

  14. Associated quantum vector bundles and symplectic structure on a quantum space

    International Nuclear Information System (INIS)

    Coquereaux, R.; Garcia, A.O.; Trinchero, R.

    2000-01-01

    We define a quantum generalization of the algebra of functions over an associated vector bundle of a principal bundle. Here the role of a quantum principal bundle is played by a Hopf-Galois extension. Smash products of an algebra times a Hopf algebra H are particular instances of these extensions, and in these cases we are able to define a differential calculus over their associated vector bundles without requiring the use of a (bicovariant) differential structure over H. Moreover, if H is coquasitriangular, it coacts naturally on the associated bundle, and the differential structure is covariant. We apply this construction to the case of the finite quotient of the SL q (2) function Hopf algebra at a root of unity (q 3 = 1) as the structure group, and a reduced 2-dimensional quantum plane as both the 'base manifold' and fibre, getting an algebra which generalizes the notion of classical phase space for this quantum space. We also build explicitly a differential complex for this phase space algebra, and find that levels 0 and 2 support a (co)representation of the quantum symplectic group. On this phase space we define vector fields, and with the help of the Sp q structure we introduce a symplectic form relating 1-forms to vector fields. This leads naturally to the introduction of Poisson brackets, a necessary step to do 'classical' mechanics on a quantum space, the quantum plane. (author)

  15. Predicate Structures, Gesture, and Simultaneity in the Representation of Action in British Sign Language: Evidence From Deaf Children and Adults

    Science.gov (United States)

    Cormier, Kearsy

    2013-01-01

    British Sign Language (BSL) signers use a variety of structures, such as constructed action (CA), depicting constructions (DCs), or lexical verbs, to represent action and other verbal meanings. This study examines the use of these verbal predicate structures and their gestural counterparts, both separately and simultaneously, in narratives by deaf children with various levels of exposure to BSL (ages 5;1 to 7;5) and deaf adult native BSL signers. Results reveal that all groups used the same types of predicative structures, including children with minimal BSL exposure. However, adults used CA, DCs, and/or lexical signs simultaneously more frequently than children. These results suggest that simultaneous use of CA with lexical and depicting predicates is more complex than the use of these predicate structures alone and thus may take deaf children more time to master. PMID:23670881

  16. Spooky action at a distance the phenomenon that reimagines space and time, and what it means for black holes, the big bang, and theories of everything

    CERN Document Server

    Musser, George

    2015-01-01

    What is space? It isn't a question that most of us normally stop to ask. Space is the venue of physics; it's where things exist, where they move and take shape. Yet over the past few decades, physicists have discovered a phenomenon that operates outside the confines of space and time. The phenomenon, the ability of one particle to affect another instantly across the vastness of space appears to be almost magical. Einstein grappled with this oddity and couldn't quite resolve it, describing it as "spooky action at a distance." But this strange occurrence has direct connections to black holes, particle collisions, and even the workings of gravity. If space isn't what we thought it was, then what is it? In Spooky Action at a Distance, George Musser sets out to answer that question, offering a provocative exploration of non locality and a celebration of the scientists who are trying to understand it. Musser guides us on an epic journey of scientific discovery into the lives of experimental physicists observing par...

  17. ASSESSMENT FORM - NEW IMPROVEMENT OF ACTIONS: CONCENTRATION AND RESEARCH AREAS / CURRICULUM STRUCTURE / FUNDRAISING.

    Science.gov (United States)

    Calderon, Iracema Mp

    2015-01-01

    This review aims to develop a critical and current analysis of the basic structure of a Postgraduate program for proposing improvement actions and new evaluation criteria. To examine the items that are areas of concentration (AC), research lines (LP), research projects (PP), curricular structure and fundraising were consulted the Area Document, the 2013 Evaluation Report and the Assessment Sheets of Medicine III programs, evaluated in the 2010-2012 period. Consistency is recommended especially among AC, LP and PP, with genuine link between activities and permanent teachers skills and based on structured curriculum in the education of the student. The Program Proposal interfere, and much, in qualifying a program. The curriculum should provide subsidy to the formation of the researcher, through the core subjects, and development of PP, being the concept of disciplines to support lines and research projects. Fundraise should be set out in research projects and in the CV-Lattes. The area recommended that at least 40-50% of permanent teachers present fundraising and the minimum 20-25% of these teachers to have productivity scholarship PQ / CNPq during the triennium. It is necessary to promote wide discussion and find a consensus denominator for these issues. The actions should contribute to the improvement of evaluation forms and certainly for the qualification of the programs but graduate. Essa revisão tem como objetivo elaborar uma análise crítica e atual da estrutura básica de um programa de Pós-Graduação para a proposição de ações de aperfeiçoamento e novos critérios de avaliação. Para analisarem-se os itens áreas de concentração (AC), linhas de pesquisa (LP), projetos de pesquisa (PP), estrutura curricular e captação de recursos/fomentos foram consultados o documento de área, o relatório de avaliação 2013 e as fichas de avaliação dos programas da Medicina III, avaliados no triênio 2010-2012. A coerência é recomendada especialmente entre

  18. An optimum organizational structure for a large earth-orbiting multidisciplinary Space Base

    Science.gov (United States)

    Ragusa, J. M.

    1973-01-01

    The purpose of this exploratory study was to identify an optimum hypothetical organizational structure for a large earth-orbiting multidisciplinary research and applications (R&A) Space Base manned by a mixed crew of technologists. Since such a facility does not presently exist, in situ empirical testing was not possible. Study activity was, therefore, concerned with the identification of a desired organizational structural model rather than the empirical testing of it. The essential finding of this research was that a four-level project type 'total matrix' model will optimize the efficiency and effectiveness of Space Base technologists.

  19. Some consequences of a non-commutative space-time structure

    International Nuclear Information System (INIS)

    Vilela Mendes, R.

    2005-01-01

    The existence of a fundamental length (or fundamental time) has been conjectured in many contexts. Here we discuss some consequences of a fundamental constant of this type, which emerges as a consequence of deformation-stability considerations leading to a non-commutative space-time structure. This mathematically well defined structure is sufficiently constrained to allow for unambiguous experimental predictions. In particular we discuss the phase-space volume modifications and their relevance for the calculation of the Greisen-Zatsepin-Kuz'min sphere. The (small) corrections to the spectrum of the Coulomb problem are also computed. (orig.)

  20. Interactive computer graphics and its role in control system design of large space structures

    Science.gov (United States)

    Reddy, A. S. S. R.

    1985-01-01

    This paper attempts to show the relevance of interactive computer graphics in the design of control systems to maintain attitude and shape of large space structures to accomplish the required mission objectives. The typical phases of control system design, starting from the physical model such as modeling the dynamics, modal analysis, and control system design methodology are reviewed and the need of the interactive computer graphics is demonstrated. Typical constituent parts of large space structures such as free-free beams and free-free plates are used to demonstrate the complexity of the control system design and the effectiveness of the interactive computer graphics.

  1. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action.

    Science.gov (United States)

    Slepicka, Petr; Kasalkova, Nikola Slepickova; Siegel, Jakub; Kolska, Zdenka; Bacakova, Lucie; Svorcik, Vaclav

    2015-11-01

    The field of material surface modification with the aim of biomaterial construction involves several approaches of treatments that allow the preparation of materials, which positively influence adhesion of cells and their proliferation and thus aid and improve tissue formation. Modified materials have a surface composition and morphology intended to interact with biological systems and cellular functions. Not only surface chemistry has an effect on material biological response, surface structures of different morphology can be constructed to guide a desirable biological outcome. Nano-patterned material surfaces have been tested with the aim of how surface geometry and physical properties on a micro- and nano-scale can affect cellular response and influence cell adhesion and proliferation. Biological functionality of solid state substrates was significantly improved by the irradiation of material with plasma discharge or laser treatment. Commonly used "artificial" polymers (e.g. polyethylene (PE), polystyrene (PS), polytetrafluoroethylene (PTFE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN)) and biopolymers (e.g. Poly-l-Lactic acid (PLLA), polymethylpentene (PMP)) were treated with aim of biocompatibility improvement. The treatment of polymer/biopolymer substrates leads to formation of ripple or wrinkle-like structures, supported also with heat treatment or other subsequent surface processing. Several types of chemically different substances (e.g. metal or carbon nano-particles, proteins) were grafted onto material surfaces or built into material structures by different processes. Surface physico-chemical properties (e.g. chemistry, charge, morphology, wettability, electrical conductivity, optical and mechanical properties) of treated surfaces were determined. The enhancement of adhesion and proliferation of cells on modified substrates was investigated in vitro. Bactericidal action of noble metal nano-particles (e.g. Au, Ag) on polymers was

  2. Space-planning and structural solutions of low-rise buildings: Optimal selection methods

    Science.gov (United States)

    Gusakova, Natalya; Minaev, Nikolay; Filushina, Kristina; Dobrynina, Olga; Gusakov, Alexander

    2017-11-01

    The present study is devoted to elaboration of methodology used to select appropriately the space-planning and structural solutions in low-rise buildings. Objective of the study is working out the system of criteria influencing the selection of space-planning and structural solutions which are most suitable for low-rise buildings and structures. Application of the defined criteria in practice aim to enhance the efficiency of capital investments, energy and resource saving, create comfortable conditions for the population considering climatic zoning of the construction site. Developments of the project can be applied while implementing investment-construction projects of low-rise housing at different kinds of territories based on the local building materials. The system of criteria influencing the optimal selection of space-planning and structural solutions of low-rise buildings has been developed. Methodological basis has been also elaborated to assess optimal selection of space-planning and structural solutions of low-rise buildings satisfying the requirements of energy-efficiency, comfort and safety, and economical efficiency. Elaborated methodology enables to intensify the processes of low-rise construction development for different types of territories taking into account climatic zoning of the construction site. Stimulation of low-rise construction processes should be based on the system of approaches which are scientifically justified; thus it allows enhancing energy efficiency, comfort, safety and economical effectiveness of low-rise buildings.

  3. ProtNN: fast and accurate protein 3D-structure classification in structural and topological space.

    Science.gov (United States)

    Dhifli, Wajdi; Diallo, Abdoulaye Baniré

    2016-01-01

    Studying the functions and structures of proteins is important for understanding the molecular mechanisms of life. The number of publicly available protein structures has increasingly become extremely large. Still, the classification of a protein structure remains a difficult, costly, and time consuming task. The difficulties are often due to the essential role of spatial and topological structures in the classification of protein structures. We propose ProtNN, a novel classification approach for protein 3D-structures. Given an unannotated query protein structure and a set of annotated proteins, ProtNN assigns to the query protein the class with the highest number of votes across the k nearest neighbor reference proteins, where k is a user-defined parameter. The search of the nearest neighbor annotated structures is based on a protein-graph representation model and pairwise similarities between vector embedding of the query and the reference protein structures in structural and topological spaces. We demonstrate through an extensive experimental evaluation that ProtNN is able to accurately classify several datasets in an extremely fast runtime compared to state-of-the-art approaches. We further show that ProtNN is able to scale up to a whole PDB dataset in a single-process mode with no parallelization, with a gain of thousands order of magnitude in runtime compared to state-of-the-art approaches.

  4. White Oak Creek Embayment time-critical CERCLA removal action sediment-retention structure. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Over a 20-month period between September 1990 and April 1992, the Department of Energy (DOE), acting through Martin Marietta Energy Systems, Inc., managing contractor for the DOE Oak Ridge Field Office (DOE-OR), conducted a DOE-lead and DOE-funded time-critical removal action at the White Oak Creek Embayment (WOCE), pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The time-critical removal action specifically consisted of the design and construction of a sediment-retention structure across the mouth of WOCE to prevent off-site migration of sediments contaminated by cesium ({sup 137}Cs) into the Clinch River. Construction of a sediment-retention structure was completed in mid-April 1992. The purpose of this report is to meet the substantive requirements of 40 CFR 300.165 describing ``a complete report on the removal operation and the actions taken.`` This section of the NCP specifically addresses on-scene coordinator reports for the Environmental Protection Agency (EPA) Superfund-lead actions and includes several elements that are not applicable to this DOE-lead action. Only those sections that are pertinent and applicable are addressed in this final report.

  5. Structure of glutaminyl cyclase from Drosophila melanogaster in space group I4

    International Nuclear Information System (INIS)

    Kolenko, Petr; Koch, Birgit; Rahfeld, Jens-Ulrich; Schilling, Stephan; Demuth, Hans-Ulrich; Stubbs, Milton T.

    2013-01-01

    The structure of ligand-free glutaminyl cyclase from D. melanogaster has been determined in a novel crystal form belonging to space group I4. The structure of ligand-free glutaminyl cyclase (QC) from Drosophila melanogaster (DmQC) has been determined in a novel crystal form. The protein crystallized in space group I4, with unit-cell parameters a = b = 122.3, c = 72.7 Å. The crystal diffracted to a resolution of 2 Å at the home source. The structure was solved by molecular replacement and was refined to an R factor of 0.169. DmQC exhibits a typical α/β-hydrolase fold. The electron density of three monosaccharides could be localized. The accessibility of the active site will facilitate structural studies of novel inhibitor-binding modes

  6. Electrofluidics fabricated by space-selective metallization in glass microfluidic structures using femtosecond laser direct writing.

    Science.gov (United States)

    Xu, Jian; Wu, Dong; Hanada, Yasutaka; Chen, Chi; Wu, Sizhu; Cheng, Ya; Sugioka, Koji; Midorikawa, Katsumi

    2013-12-07

    Space-selective metallization of the inside of glass microfluidic structures using femtosecond laser direct-write ablation followed by electroless plating is demonstrated. Femtosecond laser direct writing followed by thermal treatment and successive chemical etching allows us to fabricate three-dimensional microfluidic structures inside photosensitive glass. Then, femtosecond laser ablation followed by electroless metal plating enables flexible deposition of patterned metal films on desired locations of not only the top and bottom walls but also the sidewalls of fabricated microfluidic structures. A volume writing scheme for femtosecond laser irradiation inducing homogeneous ablation on the sidewalls of microfluidic structures is proposed for sidewall metallization. The developed technique is used to fabricate electrofluidics in which microelectric components are integrated into glass microchannels. The fabricated electrofluidics are applied to control the temperature of liquid samples in the microchannels for the enhancement of chemical reactions and to manipulate the movement of biological samples in the microscale space.

  7. The SPIRIT Action Framework: A structured approach to selecting and testing strategies to increase the use of research in policy.

    Science.gov (United States)

    Redman, Sally; Turner, Tari; Davies, Huw; Williamson, Anna; Haynes, Abby; Brennan, Sue; Milat, Andrew; O'Connor, Denise; Blyth, Fiona; Jorm, Louisa; Green, Sally

    2015-07-01

    The recent proliferation of strategies designed to increase the use of research in health policy (knowledge exchange) demands better application of contemporary conceptual understandings of how research shapes policy. Predictive models, or action frameworks, are needed to organise existing knowledge and enable a more systematic approach to the selection and testing of intervention strategies. Useful action frameworks need to meet four criteria: have a clearly articulated purpose; be informed by existing knowledge; provide an organising structure to build new knowledge; and be capable of guiding the development and testing of interventions. This paper describes the development of the SPIRIT Action Framework. A literature search and interviews with policy makers identified modifiable factors likely to influence the use of research in policy. An iterative process was used to combine these factors into a pragmatic tool which meets the four criteria. The SPIRIT Action Framework can guide conceptually-informed practical decisions in the selection and testing of interventions to increase the use of research in policy. The SPIRIT Action Framework hypothesises that a catalyst is required for the use of research, the response to which is determined by the capacity of the organisation to engage with research. Where there is sufficient capacity, a series of research engagement actions might occur that facilitate research use. These hypotheses are being tested in ongoing empirical work. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Nurse-led action research project for expanding nurses′ role in patient education in Iran: Process, structure, and outcomes

    Directory of Open Access Journals (Sweden)

    Parvaneh Khorasani

    2015-01-01

    Full Text Available Background: Patient education is among the lowest met need of patients in Iran; therefore, expansion of that role can result in greater professional accountability. This study aimed to explain the practical science of the process, structure, and outcomes of a nurse-led action research project to expand the nurses′ role in patient education in Iran. Materials and Methods: This study was part of a participatory action research. Daily communications and monthly joint meetings were held from January 2012 to February 2014 for planning and management. These were based on the research protocol, and the conceptual framework included the Mobilizing for Action through Planning and Partnerships process by means of Leadership for Change skills. Data were produced and gathered through participant observations. Administrative data included project records, official documents, artifacts, news, and reports, which were analyzed through qualitative content analysis. Results: A participatory project was established with three groups of participants organized from both academic and clinical fields. These consisted of a "core research support team," "two steering committees," and community representatives of clients and professionals as "feedback groups." A seven-stage process, named the "Nurse Educators: Al-Zahra Role Expansion Action Research" (NEAREAR process, resulted from the project, in which strategic issues were gradually developed and implemented through 32 action plans and quality improvement cycles of action research. Audits and supervision evaluations showed meaningful changes in capacity building components. Conclusions: A nurse-led ad hoc structure with academic-clinical partnerships and strategic management process was suggested as a possible practical model for expanding nurses′ educational role in similar contexts. Implications and practical science introduced in this action research could also be applicable for top managers and health system

  9. Nurse-led action research project for expanding nurses' role in patient education in Iran: Process, structure, and outcomes.

    Science.gov (United States)

    Khorasani, Parvaneh; Rassouli, Maryam; Parvizy, Soroor; Zagheri-Tafreshi, Mansoureh; Nasr-Esfahani, Mahmood

    2015-01-01

    Patient education is among the lowest met need of patients in Iran; therefore, expansion of that role can result in greater professional accountability. This study aimed to explain the practical science of the process, structure, and outcomes of a nurse-led action research project to expand the nurses' role in patient education in Iran. This study was part of a participatory action research. Daily communications and monthly joint meetings were held from January 2012 to February 2014 for planning and management. These were based on the research protocol, and the conceptual framework included the Mobilizing for Action through Planning and Partnerships process by means of Leadership for Change skills. Data were produced and gathered through participant observations. Administrative data included project records, official documents, artifacts, news, and reports, which were analyzed through qualitative content analysis. A participatory project was established with three groups of participants organized from both academic and clinical fields. These consisted of a "core research support team," "two steering committees," and community representatives of clients and professionals as "feedback groups." A seven-stage process, named the "Nurse Educators: Al-Zahra Role Expansion Action Research" (NEAREAR) process, resulted from the project, in which strategic issues were gradually developed and implemented through 32 action plans and quality improvement cycles of action research. Audits and supervision evaluations showed meaningful changes in capacity building components. A nurse-led ad hoc structure with academic-clinical partnerships and strategic management process was suggested as a possible practical model for expanding nurses' educational role in similar contexts. Implications and practical science introduced in this action research could also be applicable for top managers and health system policy makers in a wider range of practice.

  10. Nurse-led action research project for expanding nurses’ role in patient education in Iran: Process, structure, and outcomes

    Science.gov (United States)

    Khorasani, Parvaneh; Rassouli, Maryam; Parvizy, Soroor; Zagheri-Tafreshi, Mansoureh; Nasr-Esfahani, Mahmood

    2015-01-01

    Background: Patient education is among the lowest met need of patients in Iran; therefore, expansion of that role can result in greater professional accountability. This study aimed to explain the practical science of the process, structure, and outcomes of a nurse-led action research project to expand the nurses’ role in patient education in Iran. Materials and Methods: This study was part of a participatory action research. Daily communications and monthly joint meetings were held from January 2012 to February 2014 for planning and management. These were based on the research protocol, and the conceptual framework included the Mobilizing for Action through Planning and Partnerships process by means of Leadership for Change skills. Data were produced and gathered through participant observations. Administrative data included project records, official documents, artifacts, news, and reports, which were analyzed through qualitative content analysis. Results: A participatory project was established with three groups of participants organized from both academic and clinical fields. These consisted of a “core research support team,” “two steering committees,” and community representatives of clients and professionals as “feedback groups.” A seven-stage process, named the “Nurse Educators: Al-Zahra Role Expansion Action Research” (NEAREAR) process, resulted from the project, in which strategic issues were gradually developed and implemented through 32 action plans and quality improvement cycles of action research. Audits and supervision evaluations showed meaningful changes in capacity building components. Conclusions: A nurse-led ad hoc structure with academic–clinical partnerships and strategic management process was suggested as a possible practical model for expanding nurses’ educational role in similar contexts. Implications and practical science introduced in this action research could also be applicable for top managers and health system

  11. K-causal structure of space-time in general relativity

    Indian Academy of Sciences (India)

    We note here that to define K+, we need I+ and the topology of space- time manifold. I+ can be defined if, a priori, a cone structure is given. Thus a cone structure and topology are sufficient to define K+. DEFINITION III. An open set O is K-causal iff the relation ≺ induces a reflexive partial ordering on. O, i.e., p ≺ q and q ≺ p ...

  12. Coherent Structures and Spectral Energy Transfer in Turbulent Plasma: A Space-Filter Approach

    Science.gov (United States)

    Camporeale, E.; Sorriso-Valvo, L.; Califano, F.; Retinò, A.

    2018-03-01

    Plasma turbulence at scales of the order of the ion inertial length is mediated by several mechanisms, including linear wave damping, magnetic reconnection, the formation and dissipation of thin current sheets, and stochastic heating. It is now understood that the presence of localized coherent structures enhances the dissipation channels and the kinetic features of the plasma. However, no formal way of quantifying the relationship between scale-to-scale energy transfer and the presence of spatial structures has been presented so far. In the Letter we quantify such a relationship analyzing the results of a two-dimensional high-resolution Hall magnetohydrodynamic simulation. In particular, we employ the technique of space filtering to derive a spectral energy flux term which defines, in any point of the computational domain, the signed flux of spectral energy across a given wave number. The characterization of coherent structures is performed by means of a traditional two-dimensional wavelet transformation. By studying the correlation between the spectral energy flux and the wavelet amplitude, we demonstrate the strong relationship between scale-to-scale transfer and coherent structures. Furthermore, by conditioning one quantity with respect to the other, we are able for the first time to quantify the inhomogeneity of the turbulence cascade induced by topological structures in the magnetic field. Taking into account the low space-filling factor of coherent structures (i.e., they cover a small portion of space), it emerges that 80% of the spectral energy transfer (both in the direct and inverse cascade directions) is localized in about 50% of space, and 50% of the energy transfer is localized in only 25% of space.

  13. Computer-aided design and distributed system technology development for large space structures

    Science.gov (United States)

    Armstrong, Ernest S.; Joshi, Suresh M.

    1986-01-01

    Proposed large space structures have many characteristics that make them difficult to analyze and control. They are highly flexible, with components mathematically modeled by partial differential equations or very large systems of ordinary differential equations. They have many resonant frequencies, typically low and closely spaced. Natural damping may be low and/or improperly modeled. Coupled with stringent operational requirements of orientation, shape control, and vibration suppression, and the inability to perform adequate ground testing, these characteristics present an unconventional identification and control design problem to the systems theorist. Some of the research underway within Langley's Spacecraft Control Branch, Guidance and Control Division aimed at developing theory and algorithms to treat large space structures systems identification and control problems is described. The research areas to be considered are computer-aided design algorithms, and systems identification and control of distributed systems.

  14. Structural Design of Glass and Ceramic Components for Space System Safety

    Science.gov (United States)

    Bernstein, Karen S.

    2007-01-01

    Manned space flight programs will always have windows as part of the structural shell of the crew compartment. Astronauts and cosmonauts need to and enjoy looking out of the spacecraft windows at Earth, at approaching vehicles, at scientific objectives and at the stars. With few exceptions spacecraft windows have been made of glass, and the lessons learned over forty years of manned space flight have resulted in a well-defined approach for using this brittle, unforgiving material in NASA's vehicles, in windows and other structural applications. This chapter will outline the best practices that have developed at NASA for designing, verifying and accepting glass (and ceramic) windows and other components for safe and reliable use in any space system.

  15. Direct space representation of metallicity and structural stability in SiO solids

    CERN Document Server

    Jenkins, S

    2002-01-01

    First principles calculations are performed on possible structures of silicon monoxide solids. The chemical character of all of the bonding interactions is systematically quantified in real space. It is found that the most stable SiO structure possesses the highest number of inequivalent bond paths. This process reveals a novel metallic Si-Si interaction and provides an explanation for the origin of the unexpectedly high conductivity in thin silicon oxide layers. In this paper a new measure for quantifying metallic character (in direct space) present in a bond has been introduced. Furthermore it has been possible to determine the directional properties of this metallic character in real space using the charge density. This finding is very important for future complementary metal oxide semiconductor technology.

  16. Equivalence and Differences between Structural Equation Modeling and State-Space Modeling Techniques

    Science.gov (United States)

    Chow, Sy-Miin; Ho, Moon-ho R.; Hamaker, Ellen L.; Dolan, Conor V.

    2010-01-01

    State-space modeling techniques have been compared to structural equation modeling (SEM) techniques in various contexts but their unique strengths have often been overshadowed by their similarities to SEM. In this article, we provide a comprehensive discussion of these 2 approaches' similarities and differences through analytic comparisons and…

  17. Does space structure spatial language? A comparison of spatial expression across sign languages

    NARCIS (Netherlands)

    Perniss, P.M.; Zwitserlood, I.E.P.; Özyürek, A.

    2015-01-01

    The spatial affordances of the visual modality give rise to a high degree of similarity between sign languages in the spatial domain. This stands in contrast to the vast structural and semantic diversity in linguistic encoding of space found in spoken languages. However, the possibility and nature

  18. Some applications of nanometer scale structures for current and future X-ray space research

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Abdali, S; Frederiksen, P K

    1994-01-01

    Nanometer scale structures such as multilayers, gratings and natural crystals are playing an increasing role in spectroscopic applications for X-ray astrophysics. A few examples are briefly described as an introduction to current and planned applications pursued at the Danish Space Research Insti...

  19. The CFRP primary structure of the MIRI instrument onboard the James Webb Space Telescope

    DEFF Research Database (Denmark)

    Jessen, Niels Christian; Nørgaard-Nielsen, Hans Ulrik; Schroll, J

    2004-01-01

    The design of the Primary Structure of the Mid Infra-Red Instrument (MIRI) onboard the NASA/ESA James Webb Space Telescope will be presented. The main design driver is the energy flow from the 35 K "hot" satellite interface to the 7 K "cold" MIRI interface. Carbon fibre reinforced plastic (CFRP...

  20. Phase space interrogation of the empirical response modes for seismically excited structures

    Science.gov (United States)

    Paul, Bibhas; George, Riya C.; Mishra, Sudib K.

    2017-07-01

    Conventional Phase Space Interrogation (PSI) for structural damage assessment relies on exciting the structure with low dimensional chaotic waveform, thereby, significantly limiting their applicability to large structures. The PSI technique is presently extended for structure subjected to seismic excitations. The high dimensionality of the phase space for seismic response(s) are overcome by the Empirical Mode Decomposition (EMD), decomposing the responses to a number of intrinsic low dimensional oscillatory modes, referred as Intrinsic Mode Functions (IMFs). Along with their low dimensionality, a few IMFs, retain sufficient information of the system dynamics to reflect the damage induced changes. The mutually conflicting nature of low-dimensionality and the sufficiency of dynamic information are taken care by the optimal choice of the IMF(s), which is shown to be the third/fourth IMFs. The optimal IMF(s) are employed for the reconstruction of the Phase space attractor following Taken's embedding theorem. The widely referred Changes in Phase Space Topology (CPST) feature is then employed on these Phase portrait(s) to derive the damage sensitive feature, referred as the CPST of the IMFs (CPST-IMF). The legitimacy of the CPST-IMF is established as a damage sensitive feature by assessing its variation with a number of damage scenarios benchmarked in the IASC-ASCE building. The damage localization capability, remarkable tolerance to noise contamination and the robustness under different seismic excitations of the feature are demonstrated.

  1. System Identification of Civil Engineering Structures using State Space and ARMAV Models

    DEFF Research Database (Denmark)

    Andersen, P.; Kirkegaard, Poul Henning; Brincker, Rune

    In this paper the relations between an ambient excited structural system, represented by an innovation state space system, and the Auto-Regressive Moving Average Vector (ARMAV) model are considered. It is shown how to obtain a multivariate estimate of the ARMAV model from output measurements, usi...

  2. Space platform expendables resupply concept definition study. Volume 3: Work breakdown structure and work breakdown structure dictionary

    Science.gov (United States)

    1984-01-01

    The work breakdown structure (WBS) for the Space Platform Expendables Resupply Concept Definition Study is described. The WBS consists of a list of WBS elements, a dictionary of element definitions, and an element logic diagram. The list and logic diagram identify the interrelationships of the elements. The dictionary defines the types of work that may be represented by or be classified under each specific element. The Space Platform Expendable Resupply WBS was selected mainly to support the program planning, scheduling, and costing performed in the programmatics task (task 3). The WBS is neither a statement-of-work nor a work authorization document. Rather, it is a framework around which to define requirements, plan effort, assign responsibilities, allocate and control resources, and report progress, expenditures, technical performance, and schedule performance. The WBS element definitions are independent of make-or-buy decisions, organizational structure, and activity locations unless exceptions are specifically stated.

  3. Non-perturbative renormalization in coordinate space for N{sub f}=2 maximally twisted mass fermions with tree-level Symanzik improved gauge action

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof, E-mail: krzysztof.cichy@desy.de [NIC, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Adam Mickiewicz University, Faculty of Physics, Umultowska 85, 61-614 Poznan (Poland); Jansen, Karl, E-mail: karl.jansen@desy.de [NIC, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Korcyl, Piotr, E-mail: piotr.korcyl@desy.de [NIC, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland)

    2012-12-11

    We present results of a Lattice QCD application of a coordinate space renormalization scheme for the extraction of renormalization constants for flavour non-singlet bilinear quark operators. The method consists in the analysis of the small-distance behaviour of correlation functions in Euclidean space and has several theoretical and practical advantages, in particular: it is gauge invariant, easy to implement and has relatively low computational cost. The values of renormalization constants in the X-space scheme can be converted to the MS{sup Macron} scheme via 4-loop continuum perturbative formulae. Our results for N{sub f}=2 maximally twisted mass fermions with tree-level Symanzik improved gauge action are compared to the ones from the RI-MOM scheme and show full agreement with this method.

  4. Damage of Metal Structures Under the Action of Hydrogen Sulfide Containing Environments

    Science.gov (United States)

    Kushnarenko, V. M.; Uzyakov, R. N.; Repyakh, V. S.

    2018-01-01

    The effect of hydrogen sulfide containing environments, stress-strain states, stress concentration and external actions on the hydrogen sulfide cracking of steels is considered. Examples of typical and atypical action of hydrogen sulfide containing environments on carbon and stainless steels are presented. The factors responsible for hydrogen sulfide cracking are determined. Recommendations are given on design and production of equipment contacting hydrogen sulfide environments.

  5. The structure of affective action representations: temporal binding of affective response codes.

    Science.gov (United States)

    Eder, Andreas B; Müsseler, Jochen; Hommel, Bernhard

    2012-01-01

    Two experiments examined the hypothesis that preparing an action with a specific affective connotation involves the binding of this action to an affective code reflecting this connotation. This integration into an action plan should lead to a temporary occupation of the affective code, which should impair the concurrent representation of affectively congruent events, such as the planning of another action with the same valence. This hypothesis was tested with a dual-task setup that required a speeded choice between approach- and avoidance-type lever movements after having planned and before having executed an evaluative button press. In line with the code-occupation hypothesis, slower lever movements were observed when the lever movement was affectively compatible with the prepared evaluative button press than when the two actions were affectively incompatible. Lever movements related to approach and avoidance and evaluative button presses thus seem to share a code that represents affective meaning. A model of affective action control that is based on the theory of event coding is discussed.

  6. The Conservation of Structure and Mechanism of Catalytic Action in a Family of Thiamin Pyrophosphate (TPP)-dependent Enzymes

    Science.gov (United States)

    Dominiak, P.; Ciszak, Ewa

    2004-01-01

    Thiamin pyrophosphate (TPP)-dependent enzymes are a divergent family of TPP and metal ion binding proteins that perform a wide range of functions with the common decarboxylation steps of a -(O=)C-C(OH)- fragment of alpha-ketoacids and alpha- hydroxyaldehydes. To determine how structure and catalytic action are conserved in the context of large sequence differences existing within this family of enzymes, we have carried out an analysis of TPP-dependent enzymes of known structures. The common structure of TPP-dependent enzymes is formed at the interface of four alpha/beta domains from at least two subunits, which provide for two metal and TPP-binding sites. Residues around these catalytic sites are conserved for functional purpose, while those further away from TPP are conserved for structural reasons. Together they provide a network of contacts required for flip-flop catalytic action within TPP-dependent enzymes. Thus our analysis defines a TPP-action motif that is proposed for annotating TPP-dependent enzymes for advancing functional proteomics.

  7. Multispacecraft Observations and 3D Structure of Electromagnetic Electron Phase-Space Holes

    Science.gov (United States)

    Holmes, J.; Ahmadi, N.; Ergun, R.; Wilder, F. D.; Newman, D. L.; Le Contel, O.; Torbert, R. B.; Burch, J. L.

    2017-12-01

    Electron phase-space holes are nonlinear plasma structures characterized by a unipolar trapping potential with a radial electric field. They commonly form from beam instabilities and other turbulent processes in many plasma environments. Due to their strong fields and long lifetimes, it has been hypothesized that phase-space holes can carry energy over long distances, contribute to large-scale currents, and accelerate individual particles to high energies. With electromagnetic field measurements at high cadence and precision on more than two spacecraft, we can compare the real 3D structure of electron phase-space holes to the models suggested by Andersson et al. (2009) and Treumann and Baumjohann (2012). In this case study, we consider a train of correlated electron phase-space holes observed by all four MMS spacecraft on the dusk flank within the magnetosphere. A number of the holes appear to pass directly through the 7 km tetrahedron formation. We use this data to compute the holes' phase velocity vector relative to the background magnetic field, and quantify their internal currents and associated magnetic moments. For these weak magnetic signatures, we find that the contribution from internal E×B0 currents is comparable to the v×E effect. This study will be interesting to compare with MMS observations in the magnetotail, which are expected to capture large, semi-relativistic phase-space holes with a strong magnetic component.

  8. Toward a standardized structural-functional group connectome in MNI space.

    Science.gov (United States)

    Horn, Andreas; Blankenburg, Felix

    2016-01-01

    The analysis of the structural architecture of the human brain in terms of connectivity between its subregions has provided profound insights into its underlying functional organization and has coined the concept of the "connectome", a structural description of the elements forming the human brain and the connections among them. Here, as a proof of concept, we introduce a novel group connectome in standard space based on a large sample of 169 subjects from the Enhanced Nathan Kline Institute-Rockland Sample (eNKI-RS). Whole brain structural connectomes of each subject were estimated with a global tracking approach, and the resulting fiber tracts were warped into standard stereotactic (MNI) space using DARTEL. Employing this group connectome, the results of published tracking studies (i.e., the JHU white matter and Oxford thalamic connectivity atlas) could be largely reproduced directly within MNI space. In a second analysis, a study that examined structural connectivity between regions of a functional network, namely the default mode network, was reproduced. Voxel-wise structural centrality was then calculated and compared to others' findings. Furthermore, including additional resting-state fMRI data from the same subjects, structural and functional connectivity matrices between approximately forty thousand nodes of the brain were calculated. This was done to estimate structure-function agreement indices of voxel-wise whole brain connectivity. Taken together, the combination of a novel whole brain fiber tracking approach and an advanced normalization method led to a group connectome that allowed (at least heuristically) performing fiber tracking directly within MNI space. Such an approach may be used for various purposes like the analysis of structural connectivity and modeling experiments that aim at studying the structure-function relationship of the human connectome. Moreover, it may even represent a first step toward a standard DTI template of the human brain

  9. The structure of technical actions in the all-in wrestling on the example of Cadets' European Championships - Warsaw 2007

    Directory of Open Access Journals (Sweden)

    Kruchewskij A.

    2010-06-01

    Full Text Available Successive significant amendments to wrestling regulations made competitors and coaches adapt technical-tactical actions to the needs of the new situation of the fight. The main objective of the study is an analysis of the course of a wrestling match in events of the rank of the European championships allowing a determination of dominant technical actions of Greco-Roman wrestlers at the age of 14-16 years. 221 competitors from 33 countries took part in Cadets' European Championships in the Greco-Roman style in Warsaw. An analysis of technical actions comprised all offensive and defensive actions both in the standing and in the kneeling position during every round of the fight. In 255 fights athletes performed 1500 technical actions and tactical operations, for which they received 2891 points in total. A method of secondary direct observation was used for observation of the course of a wrestling match. During Cadets' European Championships athletes most often used the technique "taking down" in the standing position (13%, and the "cart" during the fight in the kneeling position (27%. Key words: combat sports, structure of a fight, Greco-Roman wrestling

  10. Recent advance on design and manufacturing of composite anisogrid structures for space launchers

    Science.gov (United States)

    Totaro, G.; De Nicola, F.

    2012-12-01

    Anisogrid composite shells have been developed and applied since the eighties by the Russian technology aiming at critical weight structures for space launchers, as interstages and cone adapters. The manufacturing process commonly applied is based on the wet filament winding. The paper concerns with some developments of design and manufacturing recently performed at the Italian Aerospace Research Center on a cylindrical structural model representative of this kind of structures. The framework of preliminary design is improved by introducing the concept of suboptimal configuration in order to match the stiffness requirement of the shell and minimise the mass, in conjunction with the typical strength constraints. The undertaken manufacturing process is based on dry robotic winding for the lattice structure and for the outer skin, with the aid of usual rubber tooling and new devices for the automated deposition strategy. Resin infusion under vacuum bag and co-cure of the system of ribs and skin is finally applied out-of-autoclave, with the aid of a heated mandrel. With such approach an interstage structural model (scale factor 1:1.5) has been designed, manufactured and tested. Design requirements and loads refer to a typical space launcher whose baseline configuration is made in aluminium. The global mechanical test of the manufactured structure has confirmed the expected high structural performance. The possibility to reach substantial weight savings in comparison with the aluminium benchmark has been fully demonstrated.

  11. Structural assessment of a space station solar dynamic heat receiver thermal energy storage canister

    Science.gov (United States)

    Thompson, R. L.; Kerslake, T. W.; Tong, M. T.

    1988-01-01

    The structural performance of a space station thermal energy storage (TES) canister subject to orbital solar flux variation and engine cold start up operating conditions was assessed. The impact of working fluid temperature and salt-void distribution on the canister structure are assessed. Both analytical and experimental studies were conducted to determine the temperature distribution of the canister. Subsequent finite element structural analyses of the canister were performed using both analytically and experimentally obtained temperatures. The Arrhenius creep law was incorporated into the procedure, using secondary creep data for the canister material, Haynes 188 alloy. The predicted cyclic creep strain accumulations at the hot spot were used to assess the structural performance of the canister. In addition, the structural performance of the canister based on the analytically determined temperature was compared with that based on the experimentally measured temperature data.

  12. Renormalization of the one-loop effective action on an arbitrary curved space-time: A general method

    International Nuclear Information System (INIS)

    Cognola, G.

    1994-01-01

    Using ζ-function regularization for the one-loop effective action, we carry out the renormalization of the one-loop effective Lagrangian for a self-interacting scalar field theory in an arbitrary gravitational background. We give very general expressions and recover known results as special cases

  13. Block-structured grids in full velocity space for Eulerian gyrokinetic simulations

    Science.gov (United States)

    Jarema, D.; Bungartz, H. J.; Görler, T.; Jenko, F.; Neckel, T.; Told, D.

    2017-06-01

    Global, i.e., full-torus, gyrokinetic simulations play an important role in exploring plasma microturbulence in magnetic fusion devices with strong radial variations. In the presence of steep temperature profiles, grid-based Eulerian approaches can become quite challenging as the correspondingly varying velocity space structures need to be accommodated and sufficiently resolved. A rigid velocity space grid then requires a very high number of discretization nodes resulting in enormous computational costs. To tackle this issue and reduce the computational demands, we introduce block-structured grids in the all velocity space dimensions. The construction of these grids is based on a general approach, making them suitable for various Eulerian implementations. In the current study, we explain the rationale behind the presented approach, detail the implementation, and provide simulation results obtained with the block-structured grids. The achieved reduction in the number of computational nodes depends on the temperature profile and simulation scenario provided. In the test cases at hand, about ten times fewer grid points are required for nonlinear simulations performed with block-structured grids in the plasma turbulence code GENE (http://genecode.org). With the speed-up found to scale almost exactly reciprocal to the number of grid points, the new implementation greatly reduces the computational costs and therefore opens new possibilities for applications of this software package.

  14. Experimental validation of tape springs to be used as thin-walled space structures

    Science.gov (United States)

    Oberst, S.; Tuttle, S. L.; Griffin, D.; Lambert, A.; Boyce, R. R.

    2018-04-01

    With the advent of standardised launch geometries and off-the-shelf payloads, space programs utilising nano-satellite platforms are growing worldwide. Thin-walled, flexible and self-deployable structures are commonly used for antennae, instrument booms or solar panels owing to their lightweight, ideal packaging characteristics and near zero energy consumption. However their behaviour in space, in particular in Low Earth Orbits with continually changing environmental conditions, raises many questions. Accurate numerical models, which are often not available due to the difficulty of experimental testing under 1g-conditions, are needed to answer these questions. In this study, we present on-earth experimental validations, as a starting point to study the response of a tape spring as a representative of thin-walled flexible structures under static and vibrational loading. Material parameters of tape springs in a singly (straight, open cylinder) and a doubly curved design, are compared to each other by combining finite element calculations, with experimental laser vibrometry within a single and multi-stage model updating approach. While the determination of the Young's modulus is unproblematic, the damping is found to be inversely proportional to deployment length. With updated material properties the buckling instability margin is calculated using different slenderness ratios. Results indicate a high sensitivity of thin-walled structures to miniscule perturbations, which makes proper experimental testing a key requirement for stability prediction on thin-elastic space structures. The doubly curved tape spring provides closer agreement with experimental results than a straight tape spring design.

  15. Nucleon structure from mixed action calculations using 2+1 flavors of asqtad sea and domain wall valence fermions

    CERN Document Server

    Bratt, J.D.; Engelhardt, M.; Hagler, Ph.; Lin, H.W.; Lin, M.F.; Meyer, H.B.; Musch, B.; Negele, J.W.; Orginos, K.; Pochinsky, A.V.; Procura, M.; Richards, D.G.; Schroers, W.; Syritsyn, S.N.

    2010-01-01

    We present high statistics results for the structure of the nucleon from a mixed-action calculation using 2+1 flavors of asqtad sea and domain wall valence fermions. We perform extrapolations of our data based on different chiral effective field theory schemes and compare our results with available information from phenomenology. We discuss vector and axial form factors of the nucleon, moments of generalized parton distributions, including moments of forward parton distributions, and implications for the decomposition of the nucleon spin.

  16. Nucleon structure from mixed action calculations using 2+1 flavors of asqtad sea and domain wall valence fermions

    Energy Technology Data Exchange (ETDEWEB)

    Bratt, Jonathan; Engelhardt, Michael; Haegler, Philipp; Huey-Wen, Lin; Lin, Meifeng; Meyer, Harvey; Musch, Bernhard; Negele, John; Orginos, Konstantinos; Pochinsky, Andrew; Procura, Massimiliano; Richards, David; Schroers, Wolfram; Syritsyn, Sergey

    2010-11-01

    We present high statistics results for the structure of the nucleon from a mixed-action calculation using 2+1 flavors of asqtad sea and domain wall valence fermions. We perform extrapolations of our data based on different chiral effective field theory schemes and compare our results with available information from phenomenology. We discuss vector and axial form factors of the nucleon, moments of generalized parton distributions, including moments of forward parton distributions, and implications for the decomposition of the nucleon spin.

  17. Space structures, power, and power conditioning; Proceedings of the Meeting, Los Angeles, CA, Jan. 11-13, 1988

    International Nuclear Information System (INIS)

    Askew, R.F.

    1988-01-01

    Various papers on space structures, power, and power conditioning are presented. Among the topics discussed are: heterogeneous gas core reaction for space nuclear power, pulsed gas core reactor for burst power, fundamental considerations of gas core reactor systems, oscillating thermionic conversion for high-density space power, thermoelectromagnetic pumps for space nuclear power systems, lightweight electrochemical converter for space power applications, ballistic acceleration by superheated hydrogen, laser-induced current switching in gaseous discharge, electron-beam-controlled semiconductor switches, laser-controlled semiconductor closing and opening switch. Also addressed are: semiconductor-metal eutectic composites for high-power switching, optical probes for the characterization of surface breakdown, 40 kV/20 kA pseudospark switch for laser applications, insulation direction for high-power space systems, state space simulation of spacecraft power systems, structural vibration of space power station systems, minimum-time control of large space structures, novel fusion reaction for space power and propulsion, repetition rate system evaluations, cryogenic silicon photoconductive switches for high-power lasers, multilevel diamondlike carbon capacitor structure, surface breakdown of prestressed insulators, C-Mo and C-Zr alloys for space power systems, magnetic insulation for the space environment

  18. Permittivity and Permeability for Floquet-Bloch Space Harmonics in Infinite 1D Magneto-Dielectric Periodic Structures

    DEFF Research Database (Denmark)

    Breinbjerg, Olav; Yaghjian, Arthur D.

    2014-01-01

    -Bloch space harmonics. We discuss how space harmonic permittivity and permeability can be expressed in seemingly different though equivalent forms, and we investigate these parameters of the zeroeth order space harmonic for a particular 1D periodic structure that is based on a previously reported 3D periodic...

  19. Algebras with actions and automata

    Directory of Open Access Journals (Sweden)

    W. Kühnel

    1982-01-01

    Full Text Available In the present paper we want to give a common structure theory of left action, group operations, R-modules and automata of different types defined over various kinds of carrier objects: sets, graphs, presheaves, sheaves, topological spaces (in particular: compactly generated Hausdorff spaces. The first section gives an axiomatic approach to algebraic structures relative to a base category B, slightly more powerful than that of monadic (tripleable functors. In section 2 we generalize Lawveres functorial semantics to many-sorted algebras over cartesian closed categories. In section 3 we treat the structures mentioned in the beginning as many-sorted algebras with fixed “scalar” or “input” object and show that they still have an algebraic (or monadic forgetful functor (theorem 3.3 and hence the general theory of algebraic structures applies. These structures were usually treated as one-sorted in the Lawvere-setting, the action being expressed by a family of unary operations indexed over the scalars. But this approach cannot, as the one developed here, describe continuity of the action (more general: the action to be a B-morphism, which is essential for the structures mentioned above, e.g. modules for a sheaf of rings or topological automata. Finally we discuss consequences of theorem 3.3 for the structure theory of various types of automata. The particular case of algebras with fixed “natural numbers object” has been studied by the authors in [23].

  20. Structure of Pareto Solutions of Generalized Polyhedral-Valued Vector Optimization Problems in Banach Spaces

    Directory of Open Access Journals (Sweden)

    Qinghai He

    2013-01-01

    Full Text Available In general Banach spaces, we consider a vector optimization problem (SVOP in which the objective is a set-valued mapping whose graph is the union of finitely many polyhedra or the union of finitely many generalized polyhedra. Dropping the compactness assumption, we establish some results on structure of the weak Pareto solution set, Pareto solution set, weak Pareto optimal value set, and Pareto optimal value set of (SVOP and on connectedness of Pareto solution set and Pareto optimal value set of (SVOP. In particular, we improved and generalize, Arrow, Barankin, and Blackwell’s classical results in Euclidean spaces and Zheng and Yang’s results in general Banach spaces.

  1. An application of MSC/NASTRAN in the interdisciplinary analysis of large space-based structures

    Science.gov (United States)

    Stockwell, Alan E.; Chambers, Mareta W.; Cooper, Paul A.

    1988-01-01

    The Integrated Multidisciplinary Analysis Tool (IMAT), a computer software system developed at NASA Langley to analyze and simulate the dynamics of space-structure/control-system interactions, is described, and its application to the MAST problem (a 60-m truss with fundamental frequency less than 200 mHz and equipped with linear proof-mass actuators, to be deployed from the Space Shuttle as part of COFS-I flight experiment) is demonstrated. Particular attention is given to the IMAT procedures which facilitate the use of the MCS/NASTRAN code to recover physical results from time-domain state-space solutions obtained with an FEM control-design code. Diagrams, drawings, and graphs are provided.

  2. Neutral Buoyancy Simulator-NB32-Assembly of Large Space Structure

    Science.gov (United States)

    1980-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, theprospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA's Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. Pictured is a Massachusetts Institute of Technology (MIT) student working in a spacesuit on the Experimental Assembly of Structures in Extravehicular Activity (EASE) project which was developed as a joint effort between MFSC and MIT. The EASE experiment required that crew members assemble small components to form larger components, working from the payload bay of the space shuttle. The MIT student in this photo is assembling two six-beam tetrahedrons.

  3. Thermal morphing anisogrid smart space structures: thermal isolation design and linearity evaluation

    Science.gov (United States)

    Phoenix, Austin A.

    2017-04-01

    To meet the requirements for the next generation of space missions, a paradigm shift is required from current structures that are static, heavy and stiff, toward innovative structures that are adaptive, lightweight, versatile, and intelligent. A novel morphing structure, the thermally actuated anisogrid morphing boom, can be used to meet the design requirements by making the primary structure actively adapt to the on-orbit environment. The anisogrid structure is able to achieve high precision morphing control through the intelligent application of thermal gradients. This active primary structure improves structural and thermal stability performance, reduces mass, and enables new mission architectures. This effort attempts to address limits to the author's previous work by incorporating the impact of thermal coupling that was initially neglected. This paper introduces a thermally isolated version of the thermal morphing anisogrid structure in order to address the thermal losses between active members. To evaluate the isolation design the stiffness and thermal conductivity of these isolating interfaces need to be addressed. This paper investigates the performance of the thermal morphing system under a variety of structural and thermal isolation interface properties.

  4. Momentum-Space Imaging of the Dirac Band Structure in Molecular Graphene via Quasiparticle Interference

    Science.gov (United States)

    Stephenson, Anna; Gomes, Kenjiro K.; Ko, Wonhee; Mar, Warren; Manoharan, Hari C.

    2014-03-01

    Molecular graphene is a nanoscale artificial lattice composed of carbon monoxide molecules arranged one by one, realizing a dream of exploring exotic quantum materials by design. This assembly is done by atomic manipulation with a scanning tunneling microscope (STM) on a Cu(111) surface. To directly probe the transformation of normal surface state electrons into massless Dirac fermions, we map the momentum space dispersion through the Fourier analysis of quasiparticle scattering maps acquired at different energies with the STM. The Fourier analysis not only bridges the real-space and momentum-space data but also reveals the chiral nature of those quasiparticles, through a set of selection rules of allowed scattering involving the pseudospin and valley degrees of freedom. The graphene-like band structure can be reshaped with simple alterations to the lattice, such as the addition of a strain. We analyze the effect on the momentum space band structure of multiple types of strain on our system. Supported by DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under contract DE-AC02-76SF00515.

  5. Three-dimensionality of space in the structure of the periodic table of chemical elements

    International Nuclear Information System (INIS)

    Veremeichik, T. F.

    2006-01-01

    The effect of the dimension of the 3D homogeneous and isotropic Euclidean space, and the electron spin on the self-organization of the electron systems of atoms of chemical elements is considered. It is shown that the finite dimension of space creates the possibility of periodicity in the structure of an electron cloud, while the value of the dimension determines the number of stable systems of electrons at different levels of the periodic table of chemical elements and some characteristics of the systems. The conditions for the stability of systems of electrons and the electron system of an atom as a whole are considered. On the basis of the results obtained, comparison with other hierarchical systems (nanostructures and biological structures) is performed

  6. Application of optical distributed sensing and computation to control of large space structures

    Science.gov (United States)

    Balakrishnan, A. V.

    1992-01-01

    A real time holographic sensing technique is introduced and its advantages are investigated from the filtering and control point of view. A feature of holographic sensing is its capability to make distributed measurements of the position and velocity of moving objects, such as a vibrating flexible space structure. This work is based upon the distributed parameter models of linear time invariant systems, particularly including the linear oscillator equations describing the vibration of large flexible space structures. The general conclusion is that application of optical distributed sensors bring gains in the situation where Kalman filtering is necessary for state estimation. In this case, both steady state and transient filtering error covariance become smaller. This in turn results in smaller cost in the LQG problem.

  7. The phase-space structure of nearby dark matter as constrained by the SDSS

    Science.gov (United States)

    Leclercq, Florent; Jasche, Jens; Lavaux, Guilhem; Wandelt, Benjamin; Percival, Will

    2017-06-01

    Previous studies using numerical simulations have demonstrated that the shape of the cosmic web can be described by studying the Lagrangian displacement field. We extend these analyses, showing that it is now possible to perform a Lagrangian description of cosmic structure in the nearby Universe based on large-scale structure observations. Building upon recent Bayesian large-scale inference of initial conditions, we present a cosmographic analysis of the dark matter distribution and its evolution, referred to as the dark matter phase-space sheet, in the nearby universe as probed by the Sloan Digital Sky Survey main galaxy sample. We consider its stretchings and foldings using a tetrahedral tessellation of the Lagrangian lattice. The method provides extremely accurate estimates of nearby density and velocity fields, even in regions of low galaxy density. It also measures the number of matter streams, and the deformation and parity reversals of fluid elements, which were previously thought inaccessible using observations. We illustrate the approach by showing the phase-space structure of known objects of the nearby Universe such as the Sloan Great Wall, the Coma cluster and the Boötes void. We dissect cosmic structures into four distinct components (voids, sheets, filaments, and clusters), using the Lagrangian classifiers DIVA, ORIGAMI, and a new scheme which we introduce and call LICH. Because these classifiers use information other than the sheer local density, identified structures explicitly carry physical information about their formation history. Accessing the phase-space structure of dark matter in galaxy surveys opens the way for new confrontations of observational data and theoretical models. We have made our data products publicly available.

  8. Advances in deployable structures and surfaces for large apertures in space

    Science.gov (United States)

    Santiago-Prowald, J.; Baier, H.

    2013-12-01

    Large apertures in space have applications for telecommunications, Earth observation and scientific missions. This paper reviews advances in mechanical architectures and technologies for large deployable apertures for space antennas and telescopes. Two complementary approaches are described to address this challenge: the deployment of structures based on quasi-rigid members and highly flexible structures. Regarding the first approach, deployable articulated structures are classified in terms of their kinematics as 3D or planar linkages in multiple variants, resulting in different architectures of radial, peripheral or modular constructions. A dedicated discussion on the number of degrees of freedom and constraints addresses the deployment reliability and thermo-elastic stability of large elastic structures in the presence of thermal gradients. This aspect has been identified as a design driver for new developments of peripheral ring and modular structures. Meanwhile, other design drivers are maintained, such as the optimization of mass and stiffness, overall accuracy and stability, and pragmatic aspects including controlled industrial development and a commitment to operators' needs. Furthermore, reflecting surface technologies and concepts are addressed with a view to the future, presenting advances in technical solutions for increasing apertures and reducing areal mass densities to affordable levels for future missions. Highly flexible materials capable of producing ultra-stable shells are described with reference to the state of the art and new developments. These concepts may enable large deployable surfaces for antennas and telescopes, as well as innovative optical concepts such as photon sieves. Shape adjustment and shape control of these surfaces are described in terms of available technologies and future needs, particularly for the reconfiguration of telecommunications antennas. In summary, the two complementary approaches described and reviewed cover the

  9. The phase-space structure of nearby dark matter as constrained by the SDSS

    International Nuclear Information System (INIS)

    Leclercq, Florent; Percival, Will; Jasche, Jens; Lavaux, Guilhem; Wandelt, Benjamin

    2017-01-01

    Previous studies using numerical simulations have demonstrated that the shape of the cosmic web can be described by studying the Lagrangian displacement field. We extend these analyses, showing that it is now possible to perform a Lagrangian description of cosmic structure in the nearby Universe based on large-scale structure observations. Building upon recent Bayesian large-scale inference of initial conditions, we present a cosmographic analysis of the dark matter distribution and its evolution, referred to as the dark matter phase-space sheet, in the nearby universe as probed by the Sloan Digital Sky Survey main galaxy sample. We consider its stretchings and foldings using a tetrahedral tessellation of the Lagrangian lattice. The method provides extremely accurate estimates of nearby density and velocity fields, even in regions of low galaxy density. It also measures the number of matter streams, and the deformation and parity reversals of fluid elements, which were previously thought inaccessible using observations. We illustrate the approach by showing the phase-space structure of known objects of the nearby Universe such as the Sloan Great Wall, the Coma cluster and the Boötes void. We dissect cosmic structures into four distinct components (voids, sheets, filaments, and clusters), using the Lagrangian classifiers DIVA, ORIGAMI, and a new scheme which we introduce and call LICH. Because these classifiers use information other than the sheer local density, identified structures explicitly carry physical information about their formation history. Accessing the phase-space structure of dark matter in galaxy surveys opens the way for new confrontations of observational data and theoretical models. We have made our data products publicly available.

  10. CALCULATED TEMPERATURE RISE AND THERMAL ELONGATION OF STRUCTURAL COMPONENTS, DEPENDING ON ACTION INTEGRAL OF INJECTED LIGHTNING CURRENTS

    DEFF Research Database (Denmark)

    Madsen, Søren Find

    2005-01-01

    In the initial phase of an aircraft design, it is valuable to be capable of predicting temperature rise and thermal elongation depending on the actual threat from lightning currents. In this paper equations are stated to calculate the temperature rise of different structures. The analytical...... expressions established, accounts for the geometry of the structure (round conductor, rectangular cross section, pipe, plane sheet, etc), the material properties (Aluminum, Copper, Carbon Fiber Composites, etc.), the frequency of the current (skin depth) and the Specific Energy (Action Integral). For linear...... structures (wires, bars etc.), the result is the resistance of the structure, the final temperature, and the thermal elongation depending on geometry and material properties. Regarding arc injection in the centre of plane specimens the equations enables calculation of the temperature as a function...

  11. Local deformation method for measuring element tension in space deployable structures

    Directory of Open Access Journals (Sweden)

    Belov Sergey

    2017-01-01

    Full Text Available The article describes the local deformation method to determine the tension of cord and thin membrane elements in space deployable structure as antenna reflector. Possible measuring instrument model, analytical and numerical solutions and experimental results are presented. The boundary effects on measurement results of metallic mesh reflector surface tension are estimated. The study case depicting non-uniform reflector surface tension is considered.

  12. A two-level structure for advanced space power system automation

    Science.gov (United States)

    Loparo, Kenneth A.; Chankong, Vira

    1990-01-01

    The tasks to be carried out during the three-year project period are: (1) performing extensive simulation using existing mathematical models to build a specific knowledge base of the operating characteristics of space power systems; (2) carrying out the necessary basic research on hierarchical control structures, real-time quantitative algorithms, and decision-theoretic procedures; (3) developing a two-level automation scheme for fault detection and diagnosis, maintenance and restoration scheduling, and load management; and (4) testing and demonstration. The outlines of the proposed system structure that served as a master plan for this project, work accomplished, concluding remarks, and ideas for future work are also addressed.

  13. Methodologies for Verification and Validation of Space Launch System (SLS) Structural Dynamic Models: Appendices

    Science.gov (United States)

    Coppolino, Robert N.

    2018-01-01

    Verification and validation (V&V) is a highly challenging undertaking for SLS structural dynamics models due to the magnitude and complexity of SLS subassemblies and subassemblies. Responses to challenges associated with V&V of Space Launch System (SLS) structural dynamics models are presented in Volume I of this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA). (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976). (3) Mode Consolidation (MC). Finally, (4) Experimental Mode Verification (EMV). This document contains the appendices to Volume I.

  14. Preliminary results on the dynamics of large and flexible space structures in Halo orbits

    Science.gov (United States)

    Colagrossi, Andrea; Lavagna, Michèle

    2017-05-01

    The global exploration roadmap suggests, among other ambitious future space programmes, a possible manned outpost in lunar vicinity, to support surface operations and further astronaut training for longer and deeper space missions and transfers. In particular, a Lagrangian point orbit location - in the Earth- Moon system - is suggested for a manned cis-lunar infrastructure; proposal which opens an interesting field of study from the astrodynamics perspective. Literature offers a wide set of scientific research done on orbital dynamics under the Three-Body Problem modelling approach, while less of it includes the attitude dynamics modelling as well. However, whenever a large space structure (ISS-like) is considered, not only the coupled orbit-attitude dynamics should be modelled to run more accurate analyses, but the structural flexibility should be included too. The paper, starting from the well-known Circular Restricted Three-Body Problem formulation, presents some preliminary results obtained by adding a coupled orbit-attitude dynamical model and the effects due to the large structure flexibility. In addition, the most relevant perturbing phenomena, such as the Solar Radiation Pressure (SRP) and the fourth-body (Sun) gravity, are included in the model as well. A multi-body approach has been preferred to represent possible configurations of the large cis-lunar infrastructure: interconnected simple structural elements - such as beams, rods or lumped masses linked by springs - build up the space segment. To better investigate the relevance of the flexibility effects, the lumped parameters approach is compared with a distributed parameters semi-analytical technique. A sensitivity analysis of system dynamics, with respect to different configurations and mechanical properties of the extended structure, is also presented, in order to highlight drivers for the lunar outpost design. Furthermore, a case study for a large and flexible space structure in Halo orbits around

  15. Revealing the correlation between real-space structure and chiral magnetic order at the atomic scale

    Science.gov (United States)

    Hauptmann, Nadine; Dupé, Melanie; Hung, Tzu-Chao; Lemmens, Alexander K.; Wegner, Daniel; Dupé, Bertrand; Khajetoorians, Alexander A.

    2018-03-01

    We image simultaneously the geometric, the electronic, and the magnetic structures of a buckled iron bilayer film that exhibits chiral magnetic order. We achieve this by combining spin-polarized scanning tunneling microscopy and magnetic exchange force microscopy (SPEX) to independently characterize the geometric as well as the electronic and magnetic structures of nonflat surfaces. This new SPEX imaging technique reveals the geometric height corrugation of the reconstruction lines resulting from strong strain relaxation in the bilayer, enabling the decomposition of the real-space from the electronic structure at the atomic level and the correlation with the resultant spin-spiral ground state. By additionally utilizing adatom manipulation, we reveal the chiral magnetic ground state of portions of the unit cell that were not previously imaged with spin-polarized scanning tunneling microscopy alone. Using density functional theory, we investigate the structural and electronic properties of the reconstructed bilayer and identify the favorable stoichiometry regime in agreement with our experimental result.

  16. Imitation of the sequential structure of actions by chimpanzees (Pan troglodytes).

    Science.gov (United States)

    Whiten, A

    1998-09-01

    Imitation was studied experimentally by allowing chimpanzees (Pan troglodytes) to observe alternative patterns of actions for opening a specially designed "artificial fruit." Like problematic foods primates deal with naturally, with the test fruit several defenses had to be removed to gain access to an edible core, but the sequential order and method of defense removal could be systematically varied. Each subject repeatedly observed 1 of 2 alternative techniques for removing each defense and 1 of 2 alternative sequential patterns of defense removal. Imitation of sequential organization emerged after repeated cycles of demonstration and attempts at opening the fruit. Imitation in chimpanzees may thus have some power to produce cultural convergence, counter to the supposition that individual learning processes corrupt copied actions. Imitation of sequential organization was accompanied by imitation of some aspects of the techniques that made up the sequence.

  17. Structural requirements for the action of parathyroid hormone-related protein (PTHrP) on bone resorption by isolated osteoclasts

    Energy Technology Data Exchange (ETDEWEB)

    Evely, R.S.; Bonomo, A.; Schneider, H.G.; Moseley, J.M.; Gallagher, J.; Martin, T.J. (St. Vincent' s Institute of Medical Research, Melbourne (Australia))

    1991-01-01

    Parathyroid hormone-related protein (PTHrP) plays a major role in the syndrome of humoral hypercalcemia of malignancy (HHM) by its actions on bone and kidney. In this study an isolated osteoclast bone resorption assay was used to investigate the actions of this peptide and the structure-activity relationships for its resorption effect. As with PTH, neither synthetic nor recombinant PTHrP preparations stimulated resorption within highly purified osteoclast populations. Resorption was stimulated only in the presence of contaminating osteoblasts or in cocultures with the osteoblast-like cell line UMR-106. In the presence of osteoblasts PTHrP-(1-34) and PTHrP-(1-84) stimulated bone resorption in a dose-dependent manner with a potency comparable to that of PTH-(1-34) on a molar basis. The biologic activity of the PTHrP was shown to reside in the first 34 amino acids, and within that region the structural requirements for promotion of osteoclastic resorption resembled closely those for promotion of cyclic AMP formation in osteoblast-like cells. Using emulsion autoradiography with iodinated PTHrP-(1-34) and PTHrP-(1-84) on mixed bone cell preparations from neonatal rats, specific binding was demonstrated only to osteoblasts, not to osteoclasts. These results clearly demonstrate that PTHrP is a potent stimulator of bone resorption and that these effects are, like those of PTH, mediated by initial actions upon cells of the osteoblast lineage.

  18. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?

    Directory of Open Access Journals (Sweden)

    Christopher E Doughty

    Full Text Available Sagan et al. (1993 used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993 could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993 noted a red edge in the reflectance spectrum, indicative of photosynthesis as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0-20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary.

  19. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?

    Science.gov (United States)

    Doughty, Christopher E; Wolf, Adam

    2016-01-01

    Sagan et al. (1993) used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993) could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993) noted a red edge in the reflectance spectrum, indicative of photosynthesis) as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position) which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0-20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary.

  20. A structure-based distance metric for high-dimensional space exploration with multidimensional scaling.

    Science.gov (United States)

    Lee, Jenny Hyunjung; McDonnell, Kevin T; Zelenyuk, Alla; Imre, Dan; Mueller, Klaus

    2014-03-01

    Although the euclidean distance does well in measuring data distances within high-dimensional clusters, it does poorly when it comes to gauging intercluster distances. This significantly impacts the quality of global, low-dimensional space embedding procedures such as the popular multidimensional scaling (MDS) where one can often observe nonintuitive layouts. We were inspired by the perceptual processes evoked in the method of parallel coordinates which enables users to visually aggregate the data by the patterns the polylines exhibit across the dimension axes. We call the path of such a polyline its structure and suggest a metric that captures this structure directly in high-dimensional space. This allows us to better gauge the distances of spatially distant data constellations and so achieve data aggregations in MDS plots that are more cognizant of existing high-dimensional structure similarities. Our biscale framework distinguishes far-distances from near-distances. The coarser scale uses the structural similarity metric to separate data aggregates obtained by prior classification or clustering, while the finer scale employs the appropriate euclidean distance.

  1. A Reference Database for Circular Dichroism Spectroscopy Covering Fold and Secondary Structure Space

    International Nuclear Information System (INIS)

    Lees, J.; Miles, A.; Wien, F.; Wallace, B.

    2006-01-01

    Circular Dichroism (CD) spectroscopy is a long-established technique for studying protein secondary structures in solution. Empirical analyses of CD data rely on the availability of reference datasets comprised of far-UV CD spectra of proteins whose crystal structures have been determined. This article reports on the creation of a new reference dataset which effectively covers both secondary structure and fold space, and uses the higher information content available in synchrotron radiation circular dichroism (SRCD) spectra to more accurately predict secondary structure than has been possible with existing reference datasets. It also examines the effects of wavelength range, structural redundancy and different means of categorizing secondary structures on the accuracy of the analyses. In addition, it describes a novel use of hierarchical cluster analyses to identify protein relatedness based on spectral properties alone. The databases are shown to be applicable in both conventional CD and SRCD spectroscopic analyses of proteins. Hence, by combining new bioinformatics and biophysical methods, a database has been produced that should have wide applicability as a tool for structural molecular biology

  2. Lost in folding space? Comparing four variants of the thermodynamic model for RNA secondary structure prediction

    Directory of Open Access Journals (Sweden)

    Janssen Stefan

    2011-11-01

    Full Text Available Abstract Background Many bioinformatics tools for RNA secondary structure analysis are based on a thermodynamic model of RNA folding. They predict a single, "optimal" structure by free energy minimization, they enumerate near-optimal structures, they compute base pair probabilities and dot plots, representative structures of different abstract shapes, or Boltzmann probabilities of structures and shapes. Although all programs refer to the same physical model, they implement it with considerable variation for different tasks, and little is known about the effects of heuristic assumptions and model simplifications used by the programs on the outcome of the analysis. Results We extract four different models of the thermodynamic folding space which underlie the programs RNAFOLD, RNASHAPES, and RNASUBOPT. Their differences lie within the details of the energy model and the granularity of the folding space. We implement probabilistic shape analysis for all models, and introduce the shape probability shift as a robust measure of model similarity. Using four data sets derived from experimentally solved structures, we provide a quantitative evaluation of the model differences. Conclusions We find that search space granularity affects the computed shape probabilities less than the over- or underapproximation of free energy by a simplified energy model. Still, the approximations perform similar enough to implementations of the full model to justify their continued use in settings where computational constraints call for simpler algorithms. On the side, we observe that the rarely used level 2 shapes, which predict the complete arrangement of helices, multiloops, internal loops and bulges, include the "true" shape in a rather small number of predicted high probability shapes. This calls for an investigation of new strategies to extract high probability members from the (very large level 2 shape space of an RNA sequence. We provide implementations of all four

  3. Finite-temperature phase structure of lattice QCD with Wilson quark action

    International Nuclear Information System (INIS)

    Aoki, S.; Ukawa, A.; Umemura, T.

    1996-01-01

    The long-standing issue of the nature of the critical line of lattice QCD with the Wilson quark action at finite temperatures, defined to be the line of vanishing pion screening mass, and its relation to the line of finite-temperature chiral transition is examined. Presented are both analytical and numerical evidence that the critical line forms a cusp at a finite gauge coupling, and that the line of chiral transition runs past the tip of the cusp without touching the critical line. Implications on the continuum limit and the flavor dependence of chiral transition are discussed. copyright 1996 The American Physical Society

  4. Limits on nonlocal correlations from the structure of the local state space

    International Nuclear Information System (INIS)

    Janotta, Peter; Gogolin, Christian; Barrett, Jonathan; Brunner, Nicolas

    2011-01-01

    The outcomes of measurements on entangled quantum systems can be nonlocally correlated. However, while it is easy to write down toy theories allowing arbitrary nonlocal correlations, those allowed in quantum mechanics are limited. Quantum correlations cannot, for example, violate a principle known as macroscopic locality, which implies that they cannot violate Tsirelson's bound. This paper shows that there is a connection between the strength of nonlocal correlations in a physical theory and the structure of the state spaces of individual systems. This is illustrated by a family of models in which local state spaces are regular polygons, where a natural analogue of a maximally entangled state of two systems exists. We characterize the nonlocal correlations obtainable from such states. The family allows us to study the transition between classical, quantum and super-quantum correlations by varying only the local state space. We show that the strength of nonlocal correlations - in particular whether the maximally entangled state violates Tsirelson's bound or not-depends crucially on a simple geometric property of the local state space, known as strong self-duality. This result is seen to be a special case of a general theorem, which states that a broad class of entangled states in probabilistic theories-including, by extension, all bipartite classical and quantum states-cannot violate macroscopic locality. Finally, our results show that models exist that are locally almost indistinguishable from quantum mechanics, but can nevertheless generate maximally nonlocal correlations.

  5. Biased Tracers in Redshift Space in the EFT of Large-Scale Structure

    Energy Technology Data Exchange (ETDEWEB)

    Perko, Ashley [Stanford U., Phys. Dept.; Senatore, Leonardo [KIPAC, Menlo Park; Jennings, Elise [Chicago U., KICP; Wechsler, Risa H. [Stanford U., Phys. Dept.

    2016-10-28

    The Effective Field Theory of Large-Scale Structure (EFTofLSS) provides a novel formalism that is able to accurately predict the clustering of large-scale structure (LSS) in the mildly non-linear regime. Here we provide the first computation of the power spectrum of biased tracers in redshift space at one loop order, and we make the associated code publicly available. We compare the multipoles $\\ell=0,2$ of the redshift-space halo power spectrum, together with the real-space matter and halo power spectra, with data from numerical simulations at $z=0.67$. For the samples we compare to, which have a number density of $\\bar n=3.8 \\cdot 10^{-2}(h \\ {\\rm Mpc}^{-1})^3$ and $\\bar n=3.9 \\cdot 10^{-4}(h \\ {\\rm Mpc}^{-1})^3$, we find that the calculation at one-loop order matches numerical measurements to within a few percent up to $k\\simeq 0.43 \\ h \\ {\\rm Mpc}^{-1}$, a significant improvement with respect to former techniques. By performing the so-called IR-resummation, we find that the Baryon Acoustic Oscillation peak is accurately reproduced. Based on the results presented here, long-wavelength statistics that are routinely observed in LSS surveys can be finally computed in the EFTofLSS. This formalism thus is ready to start to be compared directly to observational data.

  6. Metal-wool heat shields for space shuttle. [design, fabrication, and attachment to structure

    Science.gov (United States)

    Miller, R. C.; Clure, J. L.

    1974-01-01

    The packaging of metal wool for reusable thermal heat shields applied to aerodynamic and other surfaces for the space shuttle was analyzed and designed, and samples were fabricated and experimentally studied. Parametric trends were prepared for selected configurations. An all-metal thermally efficient, reliable, reusable and producible heat shield system was designed and structurally tested for use on spacecraft aerodynamic surfaces where temperatures do not exceed 810 K. Stainless steel sheet, primarily for structure and secondarily in the transverse plane for thermal expansion, was shown to accommodate thermal expansion in all directions when restrained at the edges and heated to 1360 K. Aerodynamic loads of 0.35 x 1000,000 newtons/sq meter, and higher, may be easily accepted by structures of this design. Seven all-metal thermal protection specimens, 12.7 cm square and 2.5 cm thick were fabricated and are being experimentally evaluated at simulated shuttle entry conditions in an arc jet facility.

  7. Efficient eigenvalue assignment by state and output feedback with applications for large space structures

    Science.gov (United States)

    Vannell, Eric C.; Kenny, Sean P.; Maghami, Peiman G.

    1995-03-01

    The erection and deployment of large flexible structures having thousands of degrees of freedom requires controllers based on new techniques of eigenvalue assignment that are computationally stable and more efficient. Scientists at NASA Langley Research Center have developed a novel and efficient algorithm for the eigenvalue assignment of large, time-invariant systems using full-state and output feedback. The objectives of this research were to improve upon the output feedback version of this algorithm, to produce a toolbox of MATLAB functions based on the efficient eigenvalue assignment algorithm, and to experimentally verify the algorithm and software by implementing controllers designed using the MATLAB toolbox on the phase 2 configuration of NASA Langley's controls-structures interaction evolutionary model, a laboratory model used to study space structures. Results from laboratory tests and computer simulations show that effective controllers can be designed using software based on the efficient eigenvalue assignment algorithm.

  8. Topological structure of the space of phenotypes: the case of RNA neutral networks.

    Directory of Open Access Journals (Sweden)

    Jacobo Aguirre

    Full Text Available The evolution and adaptation of molecular populations is constrained by the diversity accessible through mutational processes. RNA is a paradigmatic example of biopolymer where genotype (sequence and phenotype (approximated by the secondary structure fold are identified in a single molecule. The extreme redundancy of the genotype-phenotype map leads to large ensembles of RNA sequences that fold into the same secondary structure and can be connected through single-point mutations. These ensembles define neutral networks of phenotypes in sequence space. Here we analyze the topological properties of neutral networks formed by 12-nucleotides RNA sequences, obtained through the exhaustive folding of sequence space. A total of 4(12 sequences fragments into 645 subnetworks that correspond to 57 different secondary structures. The topological analysis reveals that each subnetwork is far from being random: it has a degree distribution with a well-defined average and a small dispersion, a high clustering coefficient, and an average shortest path between nodes close to its minimum possible value, i.e. the Hamming distance between sequences. RNA neutral networks are assortative due to the correlation in the composition of neighboring sequences, a feature that together with the symmetries inherent to the folding process explains the existence of communities. Several topological relationships can be analytically derived attending to structural restrictions and generic properties of the folding process. The average degree of these phenotypic networks grows logarithmically with their size, such that abundant phenotypes have the additional advantage of being more robust to mutations. This property prevents fragmentation of neutral networks and thus enhances the navigability of sequence space. In summary, RNA neutral networks show unique topological properties, unknown to other networks previously described.

  9. A Systems Biology Approach for Identifying Hepatotoxicant Groups Based on Similarity in Mechanisms of Action and Chemical Structure.

    Science.gov (United States)

    Hebels, Dennie G A J; Rasche, Axel; Herwig, Ralf; van Westen, Gerard J P; Jennen, Danyel G J; Kleinjans, Jos C S

    2016-01-01

    When evaluating compound similarity, addressing multiple sources of information to reach conclusions about common pharmaceutical and/or toxicological mechanisms of action is a crucial strategy. In this chapter, we describe a systems biology approach that incorporates analyses of hepatotoxicant data for 33 compounds from three different sources: a chemical structure similarity analysis based on the 3D Tanimoto coefficient, a chemical structure-based protein target prediction analysis, and a cross-study/cross-platform meta-analysis of in vitro and in vivo human and rat transcriptomics data derived from public resources (i.e., the diXa data warehouse). Hierarchical clustering of the outcome scores of the separate analyses did not result in a satisfactory grouping of compounds considering their known toxic mechanism as described in literature. However, a combined analysis of multiple data types may hypothetically compensate for missing or unreliable information in any of the single data types. We therefore performed an integrated clustering analysis of all three data sets using the R-based tool iClusterPlus. This indeed improved the grouping results. The compound clusters that were formed by means of iClusterPlus represent groups that show similar gene expression while simultaneously integrating a similarity in structure and protein targets, which corresponds much better with the known mechanism of action of these toxicants. Using an integrative systems biology approach may thus overcome the limitations of the separate analyses when grouping liver toxicants sharing a similar mechanism of toxicity.

  10. On the Nature of the Semiotic Structure of the Didactic Action: The Joint Action Theory in Didactics within a Comparative Approach

    Science.gov (United States)

    Sensevy, Gérard; Gruson, Brigitte; Forest, Dominique

    2015-01-01

    In this paper, we first sketch the joint action theory paradigm from a general viewpoint in sciences of culture. Then we specify this generic description by focusing on the joint action theory in didactics (JATD). We elaborate on three currently developed elements of the theory: the reticence-expression dialectics; the contract-milieu dialectics,…

  11. Floating wind generators offshore wind farm: Implications for structural loads and control actions

    International Nuclear Information System (INIS)

    Garcia, E.; Morant F, Quiles E.; Correcher, A.

    2009-01-01

    This paper describes the work currently carried out in the design of floating wind generators and their involvement in the future development of power generation in marine farms in depths exceeding 20 m. We discuss the main issues to be taken into account in the design of floating platforms, including the involvement of structural loads they bear. Also from a standpoint of control engineering are discussed strategies to reduce structural loads such a system to ensure adequate durability and therefore ensuring their economic viability. Finally, the abstract modeling tools for floating wind turbines that can be used in both structural design and the design of appropriate control algorithms

  12. Dynamics and vibration suppression of space structures with control moment gyroscopes

    Science.gov (United States)

    Hu, Quan; Jia, Yinghong; Xu, Shijie

    2014-03-01

    This paper presents a new and effective approach for vibration suppression of large space structures. Collocated pairs of control moment gyroscope (CMG) and angular rate sensor are adopted as actuators/sensors. The equations of motion of a flexible structure with a set of arbitrarily distributed CMGs are developed. The detailed dynamics of the CMGs and their interactions between the flexibilities of the structure are incorporated in the formulation. Then, the equations of motion are linearized to describe the small-scale motion of the system. The optimal placement problem of the actuators/sensors on the flexible structures is solved from the perspective of system controllability and observability. The controller for the vibration suppression is synthesized using the angular rates of the locations where the CMGs are mounted and the gimbal angles of the CMGs. The stability of the controller is proved by the Lyapunov theorem. Numerical examples of a beam structure and a plate structure validate the efficacy of the proposed method.

  13. Optics. Spatially structured photons that travel in free space slower than the speed of light.

    Science.gov (United States)

    Giovannini, Daniel; Romero, Jacquiline; Potoček, Václav; Ferenczi, Gergely; Speirits, Fiona; Barnett, Stephen M; Faccio, Daniele; Padgett, Miles J

    2015-02-20

    That the speed of light in free space is constant is a cornerstone of modern physics. However, light beams have finite transverse size, which leads to a modification of their wave vectors resulting in a change to their phase and group velocities. We study the group velocity of single photons by measuring a change in their arrival time that results from changing the beam's transverse spatial structure. Using time-correlated photon pairs, we show a reduction in the group velocity of photons in both a Bessel beam and photons in a focused Gaussian beam. In both cases, the delay is several micrometers over a propagation distance of ~1 meter. Our work highlights that, even in free space, the invariance of the speed of light only applies to plane waves. Copyright © 2015, American Association for the Advancement of Science.

  14. Imaging the real space structure of the spin fluctuations in an iron-based superconductor.

    Science.gov (United States)

    Chi, Shun; Aluru, Ramakrishna; Grothe, Stephanie; Kreisel, A; Singh, Udai Raj; Andersen, Brian M; Hardy, W N; Liang, Ruixing; Bonn, D A; Burke, S A; Wahl, Peter

    2017-06-29

    Spin fluctuations are a leading candidate for the pairing mechanism in high temperature superconductors, supported by the common appearance of a distinct resonance in the spin susceptibility across the cuprates, iron-based superconductors and many heavy fermion materials. The information we have about the spin resonance comes almost exclusively from neutron scattering. Here we demonstrate that by using low-temperature scanning tunnelling microscopy and spectroscopy we can characterize the spin resonance in real space. We show that inelastic tunnelling leads to the characteristic dip-hump feature seen in tunnelling spectra in high temperature superconductors and that this feature arises from excitations of the spin fluctuations. Spatial mapping of this feature near defects allows us to probe non-local properties of the spin susceptibility and to image its real space structure.

  15. Imaging the real space structure of the spin fluctuations in an iron-based superconductor

    Science.gov (United States)

    Chi, Shun; Aluru, Ramakrishna; Grothe, Stephanie; Kreisel, A.; Singh, Udai Raj; Andersen, Brian M.; Hardy, W. N.; Liang, Ruixing; Bonn, D. A.; Burke, S. A.; Wahl, Peter

    2017-06-01

    Spin fluctuations are a leading candidate for the pairing mechanism in high temperature superconductors, supported by the common appearance of a distinct resonance in the spin susceptibility across the cuprates, iron-based superconductors and many heavy fermion materials. The information we have about the spin resonance comes almost exclusively from neutron scattering. Here we demonstrate that by using low-temperature scanning tunnelling microscopy and spectroscopy we can characterize the spin resonance in real space. We show that inelastic tunnelling leads to the characteristic dip-hump feature seen in tunnelling spectra in high temperature superconductors and that this feature arises from excitations of the spin fluctuations. Spatial mapping of this feature near defects allows us to probe non-local properties of the spin susceptibility and to image its real space structure.

  16. Design, analysis, and testing of a hybrid scale structural dynamic model of a Space Station

    Science.gov (United States)

    Gronet, Marc J.; Crawley, Edward F.; Allen, Bradley R.

    1989-01-01

    The impracticality of testing the fully-assembled on-orbit configurations of future large erectable space platforms fosters an increased reliance on other means for verifying predicted structural dynamic performance. One option is scale modeling. This paper discusses the design of a hybrid scale dynamic test model of the Freedom Space Station and its associated suspension system. Hybrid scaling laws are reviewed, followed by scale factor trades, component design examples, and an analytical evaluation of the overall model fidelity. Component and subassembly test results from a six-bay hybrid scale model truss are presented. Potential interactions of gravity and the suspension system with the free-free dynamics of the scale model are investigated. Suspension system design parameters, such as the number, location, mass, and stiffness of the suspension devices are traded to minimize undesirable interactions and form the basis for an overall suspension system concept for the scale model.

  17. On the collaborative design and simulation of space camera: stop structural/thermal/optical) analysis

    Science.gov (United States)

    Duan, Pengfei; Lei, Wenping

    2017-11-01

    A number of disciplines (mechanics, structures, thermal, and optics) are needed to design and build Space Camera. Separate design models are normally constructed by each discipline CAD/CAE tools. Design and analysis is conducted largely in parallel subject to requirements that have been levied on each discipline, and technical interaction between the different disciplines is limited and infrequent. As a result a unified view of the Space Camera design across discipline boundaries is not directly possible in the approach above, and generating one would require a large manual, and error-prone process. A collaborative environment that is built on abstract model and performance template allows engineering data and CAD/CAE results to be shared across above discipline boundaries within a common interface, so that it can help to attain speedy multivariate design and directly evaluate optical performance under environment loadings. A small interdisciplinary engineering team from Beijing Institute of Space Mechanics and Electricity has recently conducted a Structural/Thermal/Optical (STOP) analysis of a space camera with this collaborative environment. STOP analysis evaluates the changes in image quality that arise from the structural deformations when the thermal environment of the camera changes throughout its orbit. STOP analyses were conducted for four different test conditions applied during final thermal vacuum (TVAC) testing of the payload on the ground. The STOP Simulation Process begins with importing an integrated CAD model of the camera geometry into the collaborative environment, within which 1. Independent thermal and structural meshes are generated. 2. The thermal mesh and relevant engineering data for material properties and thermal boundary conditions are then used to compute temperature distributions at nodal points in both the thermal and structures mesh through Thermal Desktop, a COTS thermal design and analysis code. 3. Thermally induced structural

  18. Intelligent Flexible Materials for Space Structures: Expandable Habitat Engineering Development Unit

    Science.gov (United States)

    Hinkle, Jon; Sharpe, George; Lin, John; Wiley, Cliff; Timmers, Richard

    2010-01-01

    Expandable habitable elements are an enabling technology for human exploration in space and on planetary surfaces. Large geometries can be deployed from a small launch volume, allowing greater mission capability while reducing mass and improving robustness over traditional rigid shells. This report describes research performed by ILC Dover under the Intelligent Flexible Materials for Space Structures program on the design and manufacture of softgoods for LaRC's Expandable Habitat Engineering Development Unit (EDU). The EDU is a full-scale structural test article of an expandable hybrid habitat, integrating an expandable softgoods center section with two rigid end caps. The design of the bladder, restraint layer and a mock-up Thermal Micrometeoroid Cover is detailed together with the design of the interface hardware used to attach them to the end caps. The integration and design of two windows and a floor are also covered. Analysis was performed to study the effects of the open weave design, and to determine the correct webbing and fabric configuration. Stress analyses were also carried out on the interfaces between the softgoods and the end caps and windows. Testing experimentally determined the strength of the fabric and straps, and component testing was used to proof several critical parts of the design. This program established new manufacturing and design techniques that can be applied to future applications in expandable structures.

  19. White Oak Creek embayment sediment retention structure: The Oak Ridge model in action

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Kimmel, B.L.; Page, D.G.; Hudson, G.R.; Wilkerson, R.B.; Zocolla, M.

    1992-01-01

    White Oak Creek is the major surface-water drainage through the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL). Samples taken from the lower portion of the creek revealed high levels of Cesium-137, and lower levels of Cobalt-60 in near-surface sediment. Other contaminants present in the sediment included: lead, mercury, chromium, and PCBS. In October 1990, DOE, US Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (DEC) agreed to initiate a time-critical removal action in accordance with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) to prevent transport of the contaminated sediments into the Clinch River system. This paper discusses the environmental, regulatory, design, and construction issues that were encountered in conducting the remediation work

  20. Sex and muscle structural lipids in obese subjects - an impact on insulin action?

    DEFF Research Database (Denmark)

    Haugaard, SB; Vaag, A.; Høy, Carl-Erik

    2008-01-01

    resistance, despite the fact that an android fat distribution is detrimental to insulin action. The increased extramyocellular fat mass of obese women may act in a paracrine manner such that its release of free FA and cytokines may hamper in situ desaturation and elongation of FA in skeletal muscle...... distribution, nine non-diabetic obese men with a typical android fat distribution and 12 (seven females) lean age matched healthy controls (body mass index 34.6 +/- 1.0 kg m(-2), 36.5 +/- 1.2 and 22.5 +/- 0.5; age 47 +/- 2 years, 51 +/- 3 and 49 +/- 2). RESULTS: Obese women displayed decreased LCPUFA n-3...... to controls (Ps android...

  1. X-ray structures define human P2X3 receptor gating cycle and antagonist action

    Science.gov (United States)

    Mansoor, Steven E.; Lü, Wei; Oosterheert, Wout; Shekhar, Mrinal; Tajkhorshid, Emad; Gouaux, Eric

    2016-10-01

    P2X receptors are trimeric, non-selective cation channels activated by ATP that have important roles in the cardiovascular, neuronal and immune systems. Despite their central function in human physiology and although they are potential targets of therapeutic agents, there are no structures of human P2X receptors. The mechanisms of receptor desensitization and ion permeation, principles of antagonism, and complete structures of the pore-forming transmembrane domains of these receptors remain unclear. Here we report X-ray crystal structures of the human P2X3 receptor in apo/resting, agonist-bound/open-pore, agonist-bound/closed-pore/desensitized and antagonist-bound/closed states. The open state structure harbours an intracellular motif we term the ‘cytoplasmic cap’, which stabilizes the open state of the ion channel pore and creates lateral, phospholipid-lined cytoplasmic fenestrations for water and ion egress. The competitive antagonists TNP-ATP and A-317491 stabilize the apo/resting state and reveal the interactions responsible for competitive inhibition. These structures illuminate the conformational rearrangements that underlie P2X receptor gating and provide a foundation for the development of new pharmacological agents.

  2. Interactive Spaces: Towards Collaborative structuring and Ubiquitous Presentation in Domestic Environment

    DEFF Research Database (Denmark)

    Petersen, Marianne Graves; Grønbæk, Kaj

    2004-01-01

    This paper analyses the use of media and material in private homes based on empirical studies in a project on designing interactive domestic environments. Based on the analyses we propose a Domestic Hypermedia infrastructure (DoHM) combining spatial, context-aware and physical hypermedia to support...... collaborative structuring and ubiquitous presentation of materials in private homes. With DoHM we propose establishing new relationship between digital and physical hyperspaces, folding hyperspaces into the physical space of the household. Thus we strive to combine the qualities of physical domestic materials...

  3. Mixed H2/H-Infinity Control of a Flexible Space Structure

    Science.gov (United States)

    Whorton, Mark; Calise, Anthony J.

    1997-01-01

    As theory progresses for design and analysis of robust multivariable control laws, synthesis procedures and to a larger extent, experimental verification generally lags behind. Recent developments in robust control theory have extended the H-infinity and mu-synthesis methods to incorporate H2 properties in the control synthesis. A major difficulty in implementing robust controllers is the order of the compensator and associated complexity of the computation required for synthesis, especially when order constraints are imposed. This paper presents results of system identification and robust control design for the Controls/Structures Interaction Ground Test Facility at NASA/Marshall Space Flight Center.

  4. Integrated Analysis Capability pilot computer program. [large space structures and data management

    Science.gov (United States)

    Vos, R. G.

    1981-01-01

    An integrated analysis capability (IAC) computer software package was developed for the design analysis and performance evaluation of large space systems. The IAC aids the user in coupling the required technical disciplines (initially structures, thermal and controls), providing analysis solution paths which reveal critical interactive effects in order to study loads, stability and mission performance. Existing technical software modules, having a wide existing user community, are combined with the interface software to bridge between the different technologies and mathematical modeling techniques. The package is supported by executive, data management and interactive graphics software, with primary development within the superminicomputer environment.

  5. Modelling and Analysis of the Folding Principle used in Selv-Deployable Deorbiting Space Structures

    DEFF Research Database (Denmark)

    Nikolajsen, Jan Ánike; Lauridsen, Peter Riddersholm; Kristensen, Anders Schmidt

    2017-01-01

    An initial prototype of the Self-deployable Deorbiting Space Structure (SDSS) for semi-controlled debris removal was launched in 2014. The SDSS module consists of 3 main systems, i.e. the Drag Sail Unit (DSU), the Release Unit (RU) and the Housing Unit (HU). In the redesign, a storage lid is intr...... is introduced whereby the folded drag sail is completely separated from the HU during the release process. During the research, an updated version of the SDSS version is made for CubeSat. The prototype is for a CubeSat which will be scalable....

  6. Dynamics of sexual populations structured by a space variable and a phenotypical trait

    KAUST Repository

    Mirrahimi, Sepideh

    2013-03-01

    We study sexual populations structured by a phenotypic trait and a space variable, in a non-homogeneous environment. Departing from an infinitesimal model, we perform an asymptotic limit to derive the system introduced in Kirkpatrick and Barton (1997). We then perform a further simplification to obtain a simple model. Thanks to this simpler equation, we can describe rigorously the dynamics of the population. In particular, we provide an explicit estimate of the invasion speed, or extinction speed of the species. Numerical computations show that this simple model provides a good approximation of the original infinitesimal model, and in particular describes quite well the evolution of the species\\' range. © 2013 Elsevier Inc.

  7. Global stability analysis of structures and actions to control their effects

    Directory of Open Access Journals (Sweden)

    F. C. Freitas

    Full Text Available ABSTRACT In this moment in which civil engineering is undergoing a phase where structural projects have been developed with structural systems composed of different and complex elements, some methods and criteria are used for the purpose of evaluating important aspects with regard to global and local stability. Among them, it is necessary to mention the parameters of instability a and ?z. In this sense, this work has the objective to present the basic concepts of the instability parameters a and ?z in accordance with what is clearly defined in the Brazilian standard ABNT NBR 6118; to present the results of simulations of models in the Brazilian structural software TQS varying the stress of compression in the columns in order to relate these values with the stability parameters.

  8. [Implementation of the Mobile Emergency Medical Service in Brazil: action strategies and structural dimension].

    Science.gov (United States)

    O'Dwyer, Gisele; Konder, Mariana Teixeira; Reciputti, Luciano Pereira; Macedo, Cesar; Lopes, Monica Guimarães Macau

    2017-08-07

    The Mobile Emergency Medical Service (SAMU) was the first component of the National Policy for Emergency Care implemented in Brazil in the early 2000. The article analyzed the implementation of mobile pre-hospital emergency care in Brazil. The methods included document analysis, interviews with state emergency care coordinators, and an expert panel. The theoretical reference was the strategic conduct analysis from Giddens' Structuration Theory. The results showed uneven implementation of the SAMU between states and regions of Brazil, identifying six patterns of implementation, considering the states' capacity to expand the population coverage and regionalize the service. Structural difficulties included physician retention, poorly equipped dispatch centers, and shortage of ambulances. The North and Northeast were the country's most heavily affected regions. SAMU is formatted as a structuring strategy in the emergency care network, but its performance suffered the impact of limited participation by primary care in the emergency network and especially the lack of hospital beds.

  9. The novel support structure design of high stability for space borne primary reflector

    Science.gov (United States)

    Yu, Fei; Ding, Lin; Tan, Ting; Pei, Jing-yang.; Zhao, Xue-min; Bai, Shao-jun

    2018-01-01

    The novel support structure design of high stability for space borne primary mirror is presented. The structure is supported by a ball head support rod, for statically determinate support of reflector. The ball head assembly includes the supporting rod, nesting, bushing and other important parts. The liner bushing of the resistant material is used to fit for ball head approximated with the reflector material, and then the bad impact of thermal mismatch could be minimized to minimum. In order to ensure that the structure of the support will not be damaged, the glue spots for limitation is added around the reflector, for position stability of reflector. Through analysis and calculation, it can be seen that the novel support structure would not transfer the external stresses to the reflector, and the external stresses usually result from thermal mismatch and assembly misalignment. The novel method is useful for solving the problem of the bad influence form thermal stress and assembly force. In this paper, the supporting structure is introduced and analyzed in detail. The simulation results show that the ball head support reflector works more stably.

  10. Identification of Self-Similar Regular Structures in Space: Tubules, Cages, etc.

    Science.gov (United States)

    Rantsev-Kartinov, V. A.; Kukushkin, A. B.

    1999-11-01

    The results of processing the available databases, including the NASA Hubble Space Telescope public library, with the help of the method of multilevel dynamical contrasting of the images [1,2a], are presented which demonstrate the abundancy of the regular self-similar structures, in a very broad range of length scales, far beyond the limits predicted by the chaotic mechanisms of their formation. Typical examples of tubules, cages and close types of structuring are given. The influence of such a structuring on the fractality of the visible matter is discussed. The similarity of observed structures to those revealed recently in various laboratory discharges [1,2] suggests (i) the presence of a long-range electromagnetism in the universe, up to superclusters of galaxies' length scales, and (ii) quantum (molecular) nature [3] of the observable rigid-body structures, which is based on the carbon nanotubes, or similar macromolecules, and their assemblies of the respective macroscopic length (see also [4] and this conference). REFERENCES: Kukushkin A.B., Rantsev-Kartinov V.A., [1] Laser and Part. Beams, 16 (1998) 445. [2] Rev. Sci. Instrum., 70 (1999) (a) p.1387, (b) p.1421. [3] Proc. 17th IAEA Fusion Energy Conf., Yokohama, October 1998, IAEA-F1-CN-69/IFP/17. [4] Proc. 26-th EPS conf., Maastricht, June 1999, P2-087.

  11. A Systematic Investigation of the Effect of Action Observation Training and Motor Imagery Training on the Development of Mental Representation Structure and Skill Performance.

    Science.gov (United States)

    Kim, Taeho; Frank, Cornelia; Schack, Thomas

    2017-01-01

    Action observation training and motor imagery training have independently been studied and considered as an effective training strategy for improving motor skill learning. However, comparative studies of the two training strategies are relatively few. The purpose of this study was to investigate the effects of action observation training and motor imagery training on the development of mental representation structure and golf putting performance as well as the relation between the changes in mental representation structure and skill performance during the early learning stage. Forty novices were randomly assigned to one of four groups: action observation training, motor imagery training, physical practice and no practice. The mental representation structure and putting performance were measured before and after 3 days of training, then after a 2-day retention period. The results showed that mental representation structure and the accuracy of the putting performance were improved over time through the two types of cognitive training (i.e., action observation training and motor imagery training). In addition, we found a significant positive correlation between changes in mental representation structure and skill performance for the action observation training group only. Taken together, these results suggest that both cognitive adaptations and skill improvement occur through the training of the two simulation states of action, and that perceptual-cognitive changes are associated with the change of skill performance for action observation training.

  12. Influence effect of electric action on the micro structure of steel in crystallization

    Directory of Open Access Journals (Sweden)

    Zhbanova O. M.

    2017-12-01

    Full Text Available The dependence of physical and mechanical properties of manganese steel grade 110H13L on the effect of electrical activity during crystallization of the casting is considered. Treatment of the melt by electric current increases the speed of dissolution of metallic impurities and other components in the melt many times, providing not only finely crystalline structure, but also improving the homogeneity of metal casting. Improvement of mechanical properties is a consequence of crushing those which constitute microstructure. Processing by electric current does a beneficial effect on the process of crystallization of metal melts during casting, which significantly improves the structure of the ingot and its mechanical properties.

  13. Numerical and Experimental Study on Integration of Control Actions into the Finite Element Solutions in Smart Structures

    Directory of Open Access Journals (Sweden)

    L. Malgaca

    2009-01-01

    Full Text Available Piezoelectric smart structures can be modeled using commercial finite element packages. Integration of control actions into the finite element model solutions (ICFES can be done in ANSYS by using parametric design language. Simulation results can be obtained easily in smart structures by this method. In this work, cantilever smart structures consisting of aluminum beams and lead-zirconate-titanate (PZT patches are considered. Two cases are studied numerically and experimentally in parallel. In the first case, a smart structure with a single PZT patch is used for the free vibration control under an initial tip displacement. In the second case, a smart structure with two PZT patches is used for the forced vibration control under harmonic excitation, where one of the PZT patches is used as vibration generating shaker while the other is used as vibration controlling actuator. For the two cases, modal analyses are done using chirp signals; Control OFF and Control ON responses in the time domain are obtained for various controller gains. A non-contact laser displacement sensor and strain gauges are utilized for the feedback signals. It is observed that all the simulation results agree with the experimental results.

  14. Combining QSAR Modeling and Text-Mining Techniques to Link Chemical Structures and Carcinogenic Modes of Action.

    Science.gov (United States)

    Papamokos, George; Silins, Ilona

    2016-01-01

    There is an increasing need for new reliable non-animal based methods to predict and test toxicity of chemicals. Quantitative structure-activity relationship (QSAR), a computer-based method linking chemical structures with biological activities, is used in predictive toxicology. In this study, we tested the approach to combine QSAR data with literature profiles of carcinogenic modes of action automatically generated by a text-mining tool. The aim was to generate data patterns to identify associations between chemical structures and biological mechanisms related to carcinogenesis. Using these two methods, individually and combined, we evaluated 96 rat carcinogens of the hematopoietic system, liver, lung, and skin. We found that skin and lung rat carcinogens were mainly mutagenic, while the group of carcinogens affecting the hematopoietic system and the liver also included a large proportion of non-mutagens. The automatic literature analysis showed that mutagenicity was a frequently reported endpoint in the literature of these carcinogens, however, less common endpoints such as immunosuppression and hormonal receptor-mediated effects were also found in connection with some of the carcinogens, results of potential importance for certain target organs. The combined approach, using QSAR and text-mining techniques, could be useful for identifying more detailed information on biological mechanisms and the relation with chemical structures. The method can be particularly useful in increasing the understanding of structure and activity relationships for non-mutagens.

  15. Insights into the Antimicrobial Mechanism of Action of Human RNase6: Structural Determinants for Bacterial Cell Agglutination and Membrane Permeation

    Science.gov (United States)

    Pulido, David; Arranz-Trullén, Javier; Prats-Ejarque, Guillem; Velázquez, Diego; Torrent, Marc; Moussaoui, Mohammed; Boix, Ester

    2016-01-01

    Human Ribonuclease 6 is a secreted protein belonging to the ribonuclease A (RNaseA) superfamily, a vertebrate specific family suggested to arise with an ancestral host defense role. Tissue distribution analysis revealed its expression in innate cell types, showing abundance in monocytes and neutrophils. Recent evidence of induction of the protein expression by bacterial infection suggested an antipathogen function in vivo. In our laboratory, the antimicrobial properties of the protein have been evaluated against Gram-negative and Gram-positive species and its mechanism of action was characterized using a membrane model. Interestingly, our results indicate that RNase6, as previously reported for RNase3, is able to specifically agglutinate Gram-negative bacteria as a main trait of its antimicrobial activity. Moreover, a side by side comparative analysis with the RN6(1–45) derived peptide highlights that the antimicrobial activity is mostly retained at the protein N-terminus. Further work by site directed mutagenesis and structural analysis has identified two residues involved in the protein antimicrobial action (Trp1 and Ile13) that are essential for the cell agglutination properties. This is the first structure-functional characterization of RNase6 antimicrobial properties, supporting its contribution to the infection focus clearance. PMID:27089320

  16. X-ray structures define human P2X3 receptor gating cycle and antagonist action

    NARCIS (Netherlands)

    Mansoor, Steven E.; Lü, Wei; Oosterheert, W.; Shekhar, Mrinal; Tajkhorshid, Emad; Gouaux, Eric

    2016-01-01

    P2X receptors are trimeric, non-selective cation channels activated by ATP that have important roles in the cardiovascular, neuronal and immune systems. Despite their central function in human physiology and although they are potential targets of therapeutic agents, there are no structures of human

  17. Nano-scale structure in membranes in relation to enzyme action - computer simulation vs. experiment

    DEFF Research Database (Denmark)

    Høyrup, P.; Jørgensen, Kent; Mouritsen, O.G.

    2002-01-01

    lengths are in the nano-meter range. The nano-scale structure is believed to be important for controlling the activity of enzymes, specifically phospholipases, which act at bilayer membranes. We propose here a lattice-gas statistical mechanical model with appropriate dynamics to account for the non...

  18. Materials Cartography: Representing and Mining Material Space Using Structural and Electronic Fingerprints

    Science.gov (United States)

    Oses, Corey; Isayev, Olexandr; Fourches, Denis; Muratov, Eugene; Rasch, Kevin; Tropsha, Alexander; Curtarolo, Stefano; CenterMaterials Genomics, Duke University Collaboration; LaboratoryMolecular Modeling, UNC Chapel Hill Collaboration

    2015-03-01

    As the proliferation of high-throughput approaches in materials science is increasing the wealth of data in the field, the gap between accumulated-information and derived-knowledge widens. We address the issue of scientific discovery in materials databases by introducing novel analytical approaches based on structural and electronic materials fingerprints. The framework is employed to (i) query large databases of materials using similarity concepts, (ii) map the connectivity of the materials space (i.e., as a materials cartogram) for rapidly identifying regions with unique organizations/properties, and (iii) develop predictive Quantitative Materials Structure-Property Relationships (QMSPR) models for guiding materials design. In this study, we test these fingerprints by seeking target material properties. As a quantitative example, we model the critical temperatures of known superconductors. Our novel materials fingerprinting and materials cartography approaches contribute to the emerging field of materials informatics by enabling effective computational tools to analyze, visualize, model, and design new materials.

  19. A massively-parallel electronic-structure calculations based on real-space density functional theory

    International Nuclear Information System (INIS)

    Iwata, Jun-Ichi; Takahashi, Daisuke; Oshiyama, Atsushi; Boku, Taisuke; Shiraishi, Kenji; Okada, Susumu; Yabana, Kazuhiro

    2010-01-01

    Based on the real-space finite-difference method, we have developed a first-principles density functional program that efficiently performs large-scale calculations on massively-parallel computers. In addition to efficient parallel implementation, we also implemented several computational improvements, substantially reducing the computational costs of O(N 3 ) operations such as the Gram-Schmidt procedure and subspace diagonalization. Using the program on a massively-parallel computer cluster with a theoretical peak performance of several TFLOPS, we perform electronic-structure calculations for a system consisting of over 10,000 Si atoms, and obtain a self-consistent electronic-structure in a few hundred hours. We analyze in detail the costs of the program in terms of computation and of inter-node communications to clarify the efficiency, the applicability, and the possibility for further improvements.

  20. From bare to renormalized order parameter in gauge space: Structure and reactions

    Science.gov (United States)

    Potel, G.; Idini, A.; Barranco, F.; Vigezzi, E.; Broglia, R. A.

    2017-09-01

    It is not physically obvious why one can calculate with similar accuracy, as compared to the experimental data, the absolute cross section associated with two-nucleon transfer processes between members of pairing rotational bands, making use of simple BCS (constant matrix elements) or of many-body [Nambu-Gorkov (NG), nuclear field theory (NFT)] spectroscopic amplitudes. Restoration of spontaneous symmetry breaking and associated emergent generalized rigidity in gauge space provides the answer and points to a new emergence: A physical sum rule resulting from the intertwining of structure and reaction processes, closely connected with the central role induced pairing interaction plays in structure, together with the fact that successive transfer dominates Cooper pair tunneling.

  1. Simulation of free-space optical guiding structure based on colliding gas flows.

    Science.gov (United States)

    Kaganovich, D; Palastro, J P; Chen, Y-H; Gordon, D F; Helle, M H; Ting, A

    2015-11-01

    Preformed plasma channels with parabolic radial density profiles enable the extended and stable optical guiding of high-intensity laser pulses. High-voltage discharge capillaries, commonly used for channel formation, have limited guiding length and opaque walls, complicating the diagnosis of the plasma within. This paper proposes a free-space gas channel produced by the collision of several gas flows. The collision of the gas flows forms an on-axis density depression surrounded by higher density walls. By offsetting the flows, we demonstrated the creation of what we believe is a novel vortex structure that exhibits a long-lived parabolic density profile. Once ionized, the resulting plasma density profile has a near-parabolic dependence appropriate for guiding. We then performed detailed two-dimensional (2D) fluid dynamics simulations to examine the properties and stability of the guiding structure.

  2. Numerical Simulation of Blast Action on Civil Structures in Urban Environment

    Science.gov (United States)

    Valger, Svetlana A.; Fedorova, Natalya N.; Fedorov, Alexander V.

    2017-10-01

    Nowadays, a lot of industrial accidents accompanied by explosions are happening throughout the world. Also, increase in the number of terrorist acts committed by means of explosions is observed. For improving safety of buildings and structures it is necessary to raise their resistance to explosive effects, as well as to be able to predict degree of potential damage upon explosive loads of various intensities. One of the principal goals in designing the structure resistant to explosive effects is to determine the dynamic response of structures to the impact of the blast wave. To this end, the transient pressure loads on the walls of the civil engineering structures are to be determined. The simulation of explosion is highly complicated, involving an explosion causing the shock wave propagation in air and then interaction with a structure. The engineering-level techniques permit one to estimate an explosive shock impact only for isolated buildings. The complexity of the building, the presence of nearby structures and the surrounding environment cannot be taken into account. Advanced computer aid engineering (CAE) software techniques combined with the latest methods of discrete three-dimensional city modelling permits one to simulate and analyse the effects of explosions in urban areas with a precision which previously was not possible. In the paper, the simulation results are presented of shock wave forming due to a spherical explosive charge and its propagation in the vicinity of geometrical configuration imitating an urban environment. The numerical simulation of a flow in the vicinity of prisms of different cross-sections and heights located on a flat plate was performed. The calculations are carried out in a three-dimensional non-viscous formulation using ANSYS software. On a basis of simulation results, a complex wave structures were analysed, and all the peculiarities of flows and pressure history records on building walls were described and explained. The

  3. Shape component analysis: structure-preserving dimension reduction on biological shape spaces.

    Science.gov (United States)

    Lee, Hao-Chih; Liao, Tao; Zhang, Yongjie Jessica; Yang, Ge

    2016-03-01

    Quantitative shape analysis is required by a wide range of biological studies across diverse scales, ranging from molecules to cells and organisms. In particular, high-throughput and systems-level studies of biological structures and functions have started to produce large volumes of complex high-dimensional shape data. Analysis and understanding of high-dimensional biological shape data require dimension-reduction techniques. We have developed a technique for non-linear dimension reduction of 2D and 3D biological shape representations on their Riemannian spaces. A key feature of this technique is that it preserves distances between different shapes in an embedded low-dimensional shape space. We demonstrate an application of this technique by combining it with non-linear mean-shift clustering on the Riemannian spaces for unsupervised clustering of shapes of cellular organelles and proteins. Source code and data for reproducing results of this article are freely available at https://github.com/ccdlcmu/shape_component_analysis_Matlab The implementation was made in MATLAB and supported on MS Windows, Linux and Mac OS. geyang@andrew.cmu.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. CeSiCò - a new technology for lightweight and cost effective space instruments structures and mirrors

    Science.gov (United States)

    Devilliers, Christophe; Krödel, Matthias

    2017-11-01

    Alcatel Alenia Space and ECM have jointly developed a new ceramic material to produce lightweight, stiff, stable and cost effective structures and mirrors for space instrument the CesicÒ. Its intrinsic properties, added to ample manufacturing capabilities allow to manufacture stiff and lightweight cost effective mirrors and structure for space instruments. Different scale 1 flight representative CesicÒ optical structures have been manufactured and successfully tested under very strong dynamic environment and cryogenic condition down to 30K CesicÒ is also envisaged for large and lightweight space telescopes mirrors, a large CesicÒ 1 meter class mirror with an area mass of less than 25 Kg/m2 has been sized again launch loads and WFE performance and manufactured. CesicÒ applicability for large focal plane have been demonstrated through different scale 1 breadboards. Based on these successful results, AlcatelAleniaSpace and ECM are now in position to propose for space this technology with new innovative concepts thanks to the CesicÒ manufacturing capabilities. CesicÒ has therefore been selected for the structure and mirrors parts of a flight instrument payload and the manufacturing of the flight hardware is already underway. An high temperature high gain lightweight antenna breadboard is also under manufacturing for Bepi colombo mission. CesicÒ is therefore a good candidate for future challenging space instruments and is currently proposed for Japan and US space projects.

  5. Teoretski pogled na razvojne strukture slovenskega podeželja = Theoretical view on the development structures of Slovenian rural space

    Directory of Open Access Journals (Sweden)

    Marijan M. Klemenčič

    2006-01-01

    Full Text Available Theoretical concepts and research problems of contemporary rural space are presented in the first part of the article, following with the attempt of defining the crucial factors of development and basic structures of Slovenian rural space after the 2nd World War as a starting-point for defining theoretically more advanced concepts in Slovenian geography.

  6. Fabrication, characterization, and heuristic trade space exploration of magnetically actuated Miura-Ori origami structures

    Science.gov (United States)

    Cowan, Brett; von Lockette, Paris R.

    2017-04-01

    The authors develop magnetically actuated Miura-Ori structures through observation, experiment, and computation using an initially heuristic strategy followed by trade space visualization and optimization. The work is novel, especially within origami engineering, in that beyond final target shape approximation, Miura-Ori structures in this work are additionally evaluated for the shape approximation while folding and for their efficient use of their embedded actuators. The structures consisted of neodymium magnets placed on the panels of silicone elastomer substrates cast in the Miura-Ori folding pattern. Initially four configurations, arrangements of magnets on the panels, were selected based on heuristic arguments that (1) maximized the amount of magnetic torque applied to the creases and (2) reduced the number of magnets needed to affect all creases in the pattern. The results of experimental and computational performance metrics were used in a weighted sum model to predict the optimum configuration, which was then fabricated and experimentally characterized for comparison to the initial prototypes. As expected, optimization of magnet placement and orientation was effective at increasing the degree of theoretical useful work. Somewhat unexpectedly, however, trade space results showed that even after optimization, the configuration with the most number of magnets was least effective, per magnet, at directing its actuation to the structure’s creases. Overall, though the winning configuration experimentally outperformed its initial, non-optimal counterparts, results showed that the choice of optimum configuration was heavily dependent on the weighting factors. These results highlight both the ability of the Miura-Ori to be actuated with external magnetic stimuli, the effectiveness of a heuristic design approach that focuses on the actuation mechanism, and the need to address path-dependent metrics in assessing performance in origami folding structures.

  7. Toward a dynamic perspective of the relation between entrepreneurial actions and social structure

    DEFF Research Database (Denmark)

    Bjerregaard, Toke; Lauring, Jakob

    2006-01-01

    Much entrepreneurship research is informed by two central lines of thought. One focuses on the role of formal and informal social networks for mobilising resources and obtaining information about new markets etc. The other departs from assumptions about individual personality traits as the indepe......Much entrepreneurship research is informed by two central lines of thought. One focuses on the role of formal and informal social networks for mobilising resources and obtaining information about new markets etc. The other departs from assumptions about individual personality traits...... as the independent variable behind entrepreneurship activity. Elaborating on anthropological theories, this paper presents a coherent theoretical framework for entrepreneurship research embracing the social dimensions as well as individual factors involved in the phenomenon of entrepreneurship. We argue that central...... and interactions of actors. On the other hand, entrepreneurial actions do not happen in a social vacuum. To gain success they must be supported by formal and often informal access to resources and information through social and business relations. Social relations in local clusters of actors or transnational...

  8. Computational exploration of the chemical structure space of possible reverse tricarboxylic acid cycle constituents.

    Science.gov (United States)

    Meringer, Markus; Cleaves, H James

    2017-12-13

    The reverse tricarboxylic acid (rTCA) cycle has been explored from various standpoints as an idealized primordial metabolic cycle. Its simplicity and apparent ubiquity in diverse organisms across the tree of life have been used to argue for its antiquity and its optimality. In 2000 it was proposed that chemoinformatics approaches support some of these views. Specifically, defined queries of the Beilstein database showed that the molecules of the rTCA are heavily represented in such compound databases. We explore here the chemical structure "space," e.g. the set of organic compounds which possesses some minimal set of defining characteristics, of the rTCA cycle's intermediates using an exhaustive structure generation method. The rTCA's chemical space as defined by the original criteria and explored by our method is some six to seven times larger than originally considered. Acknowledging that each assumption in what is a defining criterion making the rTCA cycle special limits possible generative outcomes, there are many unrealized compounds which fulfill these criteria. That these compounds are unrealized could be due to evolutionary frozen accidents or optimization, though this optimization may also be for systems-level reasons, e.g., the way the pathway and its elements interface with other aspects of metabolism.

  9. High Performance, Robust Control of Flexible Space Structures: MSFC Center Director's Discretionary Fund

    Science.gov (United States)

    Whorton, M. S.

    1998-01-01

    Many spacecraft systems have ambitious objectives that place stringent requirements on control systems. Achievable performance is often limited because of difficulty of obtaining accurate models for flexible space structures. To achieve sufficiently high performance to accomplish mission objectives may require the ability to refine the control design model based on closed-loop test data and tune the controller based on the refined model. A control system design procedure is developed based on mixed H2/H(infinity) optimization to synthesize a set of controllers explicitly trading between nominal performance and robust stability. A homotopy algorithm is presented which generates a trajectory of gains that may be implemented to determine maximum achievable performance for a given model error bound. Examples show that a better balance between robustness and performance is obtained using the mixed H2/H(infinity) design method than either H2 or mu-synthesis control design. A second contribution is a new procedure for closed-loop system identification which refines parameters of a control design model in a canonical realization. Examples demonstrate convergence of the parameter estimation and improved performance realized by using the refined model for controller redesign. These developments result in an effective mechanism for achieving high-performance control of flexible space structures.

  10. Processes of Integration and Fragmentation of Economic Space: The Structure of Settlement Systems

    Directory of Open Access Journals (Sweden)

    Alexander Pavlovich Goryunov

    2017-12-01

    Full Text Available This work presents a study of processes of integration and fragmentation caused by the polarization of economic space. Under integration in economic space the authors understand the formation of new and transformation of existing settlement systems, while fragmentation is the dissolution of settlement systems and their transformation into loosely connected settlement networks. The study focuses on the structure of settlement systems. Authors propose a new method for studying the structure of settlement systems, which combines the use of factor analysis, multidimensional scaling, and cluster analysis. The proposed method utilizes the maximum of available information about the social-economic status of settlements to reveal regularities in their spatial organization. The authors test the proposed method on 35 large cities of the Central and Volga federal districts of Russia, which comprise the spatial surroundings of Moscow. The authors find four groups of cities forming the core of the settlement system centered around Moscow, a group of four cities forming a buffer zone around that system, as well as four cities in the studied sample which do not participate in the settlement system

  11. Use of Shuttle Heritage Hardware in Space Launch System (SLS) Application-Structural Assessment

    Science.gov (United States)

    Aggarwal, Pravin; Booker, James N.

    2018-01-01

    NASA is moving forward with the development of the next generation system of human spaceflight to meet the Nation's goals of human space exploration. To meet these goals, NASA is aggressively pursuing the development of an integrated architecture and capabilities for safe crewed and cargo missions beyond low-Earth orbit. Two important tenets critical to the achievement of NASA's strategic objectives are Affordability and Safety. The Space Launch System (SLS) is a heavy-lift launch vehicle being designed/developed to meet these goals. The SLS Block 1 configuration (Figure 1) will be used for the first Exploration Mission (EM-1). It utilizes existing hardware from the Space Shuttle inventory, as much as possible, to save cost and expedite the schedule. SLS Block 1 Elements include the Core Stage, "Heritage" Boosters, Heritage Engines, and the Integrated Spacecraft and Payload Element (ISPE) consisting of the Launch Vehicle Stage Adapter (LVSA), the Multi-Purpose Crew Vehicle (MPCV) Stage Adapter (MSA), and an Interim Cryogenic Propulsion Stage (ICPS) for Earth orbit escape and beyond-Earth orbit in-space propulsive maneuvers. When heritage hardware is used in a new application, it requires a systematic evaluation of its qualification. In addition, there are previously-documented Lessons Learned (Table -1) in this area cautioning the need of a rigorous evaluation in any new application. This paper will exemplify the systematic qualification/assessment efforts made to qualify the application of Heritage Solid Rocket Booster (SRB) hardware in SLS. This paper describes the testing and structural assessment performed to ensure the application is acceptable for intended use without having any adverse impact to Safety. It will further address elements such as Loads, Material Properties and Manufacturing, Testing, Analysis, Failure Criterion and Factor of Safety (FS) considerations made to reach the conclusion and recommendation.

  12. Integration Assessment of Visiting Vehicle Induced Electrical Charging of the International Space Station Structure

    Science.gov (United States)

    Kramer, Leonard; Kerslake, Thomas W.; Galofaro, Joel T.

    2010-01-01

    The International Space Station (ISS) undergoes electrical charging in low Earth orbit (LEO) due to positively biased, exposed conductors on solar arrays that collect electrical charges from the space plasma. Exposed solar array conductors predominately collect negatively charged electrons and thus drive the metal ISS structure electrical ground to a negative floating potential (FP) relative to plasma. This FP is variable in location and time as a result of local ionospheric conditions. ISS motion through Earth s magnetic field creates an addition inductive voltage up to 20 positive and negative volts across ISS structure depending on its attitude and location in orbit. ISS Visiting Vehicles (VVs), such as the planned Orion crew exploration vehicle, contribute to the ISS plasma charging processes. Upon physical contact with ISS, the current collection properties of VVs combine with ISS. This is an ISS integration concern as FP must be controlled to minimize arcing of ISS surfaces and ensure proper management of extra vehicular activity crewman shock hazards. This report is an assessment of ISS induced charging from docked Orion vehicles employing negatively grounded, 130 volt class, UltraFlex (ATK Space Systems) solar arrays. To assess plasma electron current collection characteristics, Orion solar cell test coupons were constructed and subjected to plasma chamber current collection measurements. During these tests, coupon solar cells were biased between 0 and 120 V while immersed in a simulated LEO plasma. Tests were performed using several different simulated LEO plasma densities and temperatures. These data and associated theoretical scaling of plasma properties, were combined in a numerical model which was integrated into the Boeing Plasma Interaction Model. It was found that the solar array design for Orion will not affect the ISS FP by more than about 2 V during worst case charging conditions. This assessment also motivated a trade study to determine

  13. A New Energy-Based Structural Design Optimization Concept under Seismic Actions

    Directory of Open Access Journals (Sweden)

    George Papazafeiropoulos

    2017-07-01

    Full Text Available A new optimization concept is introduced which involves the optimization of non-linear planar shear buildings by using gradients based on equivalent linear structures, instead of the traditional practice of calculating the gradients from the non-linear objective function. The optimization problem is formulated as an equivalent linear system of equations in which a target fundamental eigenfrequency and equal dissipated energy distribution within the storeys of the building are the components of the objective function. The concept is applied in a modified Newton–Raphson algorithm in order to find the optimum stiffness distribution of two representative linear or non-linear MDOF shear buildings, so that the distribution of viscously damped and hysteretically dissipated energy, respectively, over the structural height is uniform. A number of optimization results are presented in which the effect of the earthquake excitation, the critical modal damping ratio, and the normalized yield inter-storey drift limit on the optimum stiffness distributions is studied. Structural design based on the proposed approach is more rational and technically feasible compared to other optimization strategies (e.g., uniform ductility concept, whereas it is expected to provide increased protection against global collapse and loss of life during strong earthquake events. Finally, it is proven that the new optimization concept not only reduces running times by as much as 91% compared to the classical optimization algorithms but also can be applied in other optimization algorithms which use gradient information to proceed to the optimum point.

  14. Structural domains of the human GABAA receptor β3 subunit involved in the actions of pentobarbital

    Science.gov (United States)

    Serafini, Ruggero; Bracamontes, John; Steinbach, Joe Henry

    2000-01-01

    This study was conducted to search for the residues of the β3 subunit which affect pentobarbital action on the γ-aminobutyric acid type A (GABAA) receptor. Three chimeras were constructed by joining the GABAA receptor β3 subunit to the ρ1 subunit. For each chimera, the N-terminal sequence was derived from the β3 subunit and the C-terminal sequence from the ρ1 subunit, with junctions located between the membrane-spanning regions M2 and M3, in the middle of M2, or in M1, respectively.In receptors obtained by the coexpression of α1 with the chimeric subunits, in contrast with those obtained by the coexpression of α1 and β3, pentobarbital exhibited lower potentiation of GABA-evoked responses, and in the direct gating of Cl− currents, an increase in the EC50 together with a marked decrease in the relative maximal efficacy compared with that of GABA.Estimates of the channel opening probability through variance analysis and single-channel recordings of one chimeric subunit showed that the reduced relative efficacy for gating largely resulted from an increase in gating by GABA, with little change in efficacy of pentobarbital.A fit of the time course of the response by the predictions of a class of reaction schemes is consistent with the conclusion that the change in the concentration dependence of activation by pentobarbital is due to a change in pentobarbital affinity for the receptor. Therefore, the data suggest that residues of the β3 subunit involved in pentobarbital binding to GABAA receptors are located downstream from the middle of the M2 region. PMID:10790149

  15. Structural Insights into the Mechanisms of Action of Short-Peptide HIV-1 Fusion Inhibitors Targeting the Gp41 Pocket

    Directory of Open Access Journals (Sweden)

    Xiujuan Zhang

    2018-02-01

    Full Text Available The deep hydrophobic pocket of HIV-1 gp41 has been considered a drug target, but short-peptides targeting this site usually lack potent antiviral activity. By applying the M-T hook structure, we previously generated highly potent short-peptide fusion inhibitors that specifically targeted the pocket site, such as MT-SC22EK, HP23L, and LP-11. Here, the crystal structures of HP23L and LP-11 bound to the target mimic peptide N36 demonstrated the critical intrahelical and interhelical interactions, especially verifying that the hook-like conformation was finely adopted while the methionine residue was replaced by the oxidation-less prone residue leucine, and that addition of an extra glutamic acid significantly enhanced the binding and inhibitory activities. The structure of HP23L bound to N36 with two mutations (E49K and L57R revealed the critical residues and motifs mediating drug resistance and provided new insights into the mechanism of action of inhibitors. Therefore, the present data help our understanding for the structure-activity relationship (SAR of HIV-1 fusion inhibitors and facilitate the development of novel antiviral drugs.

  16. Loss of Progesterone Receptor-Mediated Actions Induce Preterm Cellular and Structural Remodeling of the Cervix and Premature Birth

    Science.gov (United States)

    Yellon, Steven M.; Dobyns, Abigail E.; Beck, Hailey L.; Kurtzman, James T.; Garfield, Robert E.; Kirby, Michael A.

    2013-01-01

    A decline in serum progesterone or antagonism of progesterone receptor function results in preterm labor and birth. Whether characteristics of premature remodeling of the cervix after antiprogestins or ovariectomy are similar to that at term was the focus of the present study. Groups of pregnant rats were treated with vehicle, a progesterone receptor antagonist (onapristone or mifepristone), or ovariectomized on day 17 postbreeding. As expected, controls given vehicle delivered at term while rats delivered preterm after progesterone receptor antagonist treatment or ovariectomy. Similar to the cervix before term, the preterm cervix of progesterone receptor antagonist-treated rats was characterized by reduced cell nuclei density, decreased collagen content and structure, as well as a greater presence of macrophages per unit area. Thus, loss of nuclear progesterone receptor-mediated actions promoted structural remodeling of the cervix, increased census of resident macrophages, and preterm birth much like that found in the cervix at term. In contrast to the progesterone receptor antagonist-induced advance in characteristics associated with remodeling, ovariectomy-induced loss of systemic progesterone did not affect hypertrophy, extracellular collagen, or macrophage numbers in the cervix. Thus, the structure and macrophage census in the cervix appear sufficient for premature ripening and birth to occur well before term. With progesterone receptors predominantly localized on cells other than macrophages, the findings suggest that interactions between cells may facilitate the loss of progesterone receptor-mediated actions as part of a final common mechanism that remodels the cervix in certain etiologies of preterm and with parturition at term. PMID:24339918

  17. Structure and mode of action of cyclic lipopeptide pseudofactin II with divalent metal ions.

    Science.gov (United States)

    Janek, Tomasz; Rodrigues, Lígia R; Gudiña, Eduardo J; Czyżnikowska, Żaneta

    2016-10-01

    The interaction of natural lipopeptide pseudofactin II with a series of doubly charged metal cations was examined by matrix-assisted laser-desorption ionization-time of flight (MALDI-TOF) mass spectrometry and molecular modelling. The molecular modelling for metal-pseudofactin II provides information on the metal-peptide binding sites. Overall, Mg(2+), Ca(2+) and Zn(2+) favor the association with oxygen atoms spanning the peptide backbone, whereas Cu(2+) is coordinated by three nitrogens. Circular dichroism (CD) results confirmed that Zn(2+) and Cu(2+) can disrupt the secondary structure of pseudofactin II at high concentrations, while Ca(2+) and Mg(2+) did not essentially affect the structure of the lipopeptide. Interestingly, our results showed that the addition of Zn(2+) and Cu(2+) helped smaller micelles to form larger micellar aggregates. Since pseudofactin II binds metals, we tested whether this phenomena was somehow related to its antimicrobial activity against Staphylococcus epidermidis and Proteus mirabilis. We found that the antimicrobial effect of pseudofactin II was increased by supplementation of culture media with all tested divalent metal ions. Finally, by using Gram-positive and Gram-negative bacteria we showed that the higher antimicrobial activity of metal complexes of pseudofactin II is attributed to the disruption of the cytoplasmic membrane. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Gravitational fields on a noncommutative space

    International Nuclear Information System (INIS)

    Nair, V.P.

    2003-01-01

    Noncommutative three-dimensional gravity can be described in terms of a noncommutative Chern-Simons theory. We extend this structure and also propose an action for gravitational fields on an even-dimensional noncommutative space. The action is worked out in some detail for fields on a noncommutative CP 2 and on S 4

  19. Action Research for School Improvement.

    Science.gov (United States)

    Calhoun, Emily J.

    2002-01-01

    Describes the use of structured action research for the professional development of teachers. Describes how a high school used structured action research to improve reading comprehension. Includes a sample schoolwide action-research matrix. (Contains 14 references.) (PKP)

  20. Heterocyclic Schiff bases as non toxic antioxidants: Solvent effect, structure activity relationship and mechanism of action

    Science.gov (United States)

    Shanty, Angamaly Antony; Mohanan, Puzhavoorparambil Velayudhan

    2018-03-01

    Phenolic heterocyclic imine based Schiff bases from Thiophene-2-carboxaldehyde and Pyrrole-2-carboxaldehyde were synthesized and characterized as novel antioxidants. The solvent effects of these Schiff bases were determined and compared with standard antioxidants, BHA employing DPPH assay and ABTS assay. Fixed reaction time and Steady state measurement were used for study. IC50 and EC50 were calculated. Structure-activity relationship revealed that the electron donating group in the phenolic ring increases the activity where as the electron withdrawing moiety decreases the activity. The Schiff base derivatives showed antioxidant property by two different pathways namely SPLET and HAT mechanisms in DPPH assay. While in ABTS method, the reaction between ABTS radical and Schiff bases involves electron transfer followed by proton transfer (ET-PT) mechanism. The cytotoxicity of these compounds has been evaluated by MTT assay. The results showed that all these compounds are non toxic in nature.

  1. Component-Level Electronic-Assembly Repair (CLEAR) Analysis of the Problem Reporting and Corrective Action (PRACA) Database of the International Space Station On-Orbit Electrical Systems

    Science.gov (United States)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.

    2011-01-01

    The NASA Constellation Program is investigating and developing technologies to support human exploration of the Moon and Mars. The Component-Level Electronic-Assembly Repair (CLEAR) task is part of the Supportability Project managed by the Exploration Technology Development Program. CLEAR is aimed at enabling a flight crew to diagnose and repair electronic circuits in space yet minimize logistics spares, equipment, and crew time and training. For insight into actual space repair needs, in early 2008 the project examined the operational experience of the International Space Station (ISS) program. CLEAR examined the ISS on-orbit Problem Reporting and Corrective Action database for electrical and electronic system problems. The ISS has higher than predicted reliability yet, as expected, it has persistent problems. A goal was to identify which on-orbit electrical problems could be resolved by a component-level replacement. A further goal was to identify problems that could benefit from the additional diagnostic and test capability that a component-level repair capability could provide. The study indicated that many problems stem from a small set of root causes that also represent distinct component problems. The study also determined that there are certain recurring problems where the current telemetry instrumentation and built-in tests are unable to completely resolve the problem. As a result, the root cause is listed as unknown. Overall, roughly 42 percent of on-orbit electrical problems on ISS could be addressed with a component-level repair. Furthermore, 63 percent of on-orbit electrical problems on ISS could benefit from additional external diagnostic and test capability. These results indicate that in situ component-level repair in combination with diagnostic and test capability can be expected to increase system availability and reduce logistics. The CLEAR approach can increase the flight crew s ability to act decisively to resolve problems while reducing

  2. Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis.

    Science.gov (United States)

    Mkrtchyan, Garik; Aleshin, Vasily; Parkhomenko, Yulia; Kaehne, Thilo; Di Salvo, Martino Luigi; Parroni, Alessia; Contestabile, Roberto; Vovk, Andrey; Bettendorff, Lucien; Bunik, Victoria

    2015-07-27

    Thiamin (vitamin B1) is a pharmacological agent boosting central metabolism through the action of the coenzyme thiamin diphosphate (ThDP). However, positive effects, including improved cognition, of high thiamin doses in neurodegeneration may be observed without increased ThDP or ThDP-dependent enzymes in brain. Here, we determine protein partners and metabolic pathways where thiamin acts beyond its coenzyme role. Malate dehydrogenase, glutamate dehydrogenase and pyridoxal kinase were identified as abundant proteins binding to thiamin- or thiazolium-modified sorbents. Kinetic studies, supported by structural analysis, revealed allosteric regulation of these proteins by thiamin and/or its derivatives. Thiamin triphosphate and adenylated thiamin triphosphate activate glutamate dehydrogenase. Thiamin and ThDP regulate malate dehydrogenase isoforms and pyridoxal kinase. Thiamin regulation of enzymes related to malate-aspartate shuttle may impact on malate/citrate exchange, responsible for exporting acetyl residues from mitochondria. Indeed, bioinformatic analyses found an association between thiamin- and thiazolium-binding proteins and the term acetylation. Our interdisciplinary study shows that thiamin is not only a coenzyme for acetyl-CoA production, but also an allosteric regulator of acetyl-CoA metabolism including regulatory acetylation of proteins and acetylcholine biosynthesis. Moreover, thiamin action in neurodegeneration may also involve neurodegeneration-related 14-3-3, DJ-1 and β-amyloid precursor proteins identified among the thiamin- and/or thiazolium-binding proteins.

  3. Mechanics of Digital Lattice Materials for Re-configurable Space Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — Because of the challenges associated with the inability to resupply for repair, future deep space exploration missions will require innovative material and...

  4. Multifunctional Self-Aligning Reversible Joint using Space-Qualifiable Structural Fasteners, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Cornerstone Research Group (CRG) proposes the development of a multifunctional reversible attachment scheme to facilitate modular in-space construction. CRG will...

  5. The Hidden Flow Structure and Metric Space of Network Embedding Algorithms Based on Random Walks.

    Science.gov (United States)

    Gu, Weiwei; Gong, Li; Lou, Xiaodan; Zhang, Jiang

    2017-10-13

    Network embedding which encodes all vertices in a network as a set of numerical vectors in accordance with it's local and global structures, has drawn widespread attention. Network embedding not only learns significant features of a network, such as the clustering and linking prediction but also learns the latent vector representation of the nodes which provides theoretical support for a variety of applications, such as visualization, link prediction, node classification, and recommendation. As the latest progress of the research, several algorithms based on random walks have been devised. Although those algorithms have drawn much attention for their high scores in learning efficiency and accuracy, there is still a lack of theoretical explanation, and the transparency of those algorithms has been doubted. Here, we propose an approach based on the open-flow network model to reveal the underlying flow structure and its hidden metric space of different random walk strategies on networks. We show that the essence of embedding based on random walks is the latent metric structure defined on the open-flow network. This not only deepens our understanding of random- walk-based embedding algorithms but also helps in finding new potential applications in network embedding.

  6. Impact of Cross-Axis Structural Dynamics on Validation of Linear Models for Space Launch System

    Science.gov (United States)

    Pei, Jing; Derry, Stephen D.; Zhou Zhiqiang; Newsom, Jerry R.

    2014-01-01

    A feasibility study was performed to examine the advisability of incorporating a set of Programmed Test Inputs (PTIs) during the Space Launch System (SLS) vehicle flight. The intent of these inputs is to provide validation to the preflight models for control system stability margins, aerodynamics, and structural dynamics. During October 2009, Ares I-X program was successful in carrying out a series of PTI maneuvers which provided a significant amount of valuable data for post-flight analysis. The resulting data comparisons showed excellent agreement with the preflight linear models across the frequency spectrum of interest. However unlike Ares I-X, the structural dynamics associated with the SLS boost phase configuration are far more complex and highly coupled in all three axes. This presents a challenge when implementing this similar system identification technique to SLS. Preliminary simulation results show noticeable mismatches between PTI validation and analytical linear models in the frequency range of the structural dynamics. An alternate approach was examined which demonstrates the potential for better overall characterization of the system frequency response as well as robustness of the control design.

  7. A State-Space Modeling Approach for Active Structural Acoustic Control

    Directory of Open Access Journals (Sweden)

    Leopoldo P.R. de Oliveira

    2009-01-01

    Full Text Available The demands for improvement in sound quality and reduction of noise generated by vehicles are constantly increasing, as well as the penalties for space and weight of the control solutions. A promising approach to cope with this challenge is the use of active structural-acoustic control. Usually, the low frequency noise is transmitted into the vehicle's cabin through structural paths, which raises the necessity of dealing with vibro-acoustic models. This kind of models should allow the inclusion of sensors and actuators models, if accurate performance indexes are to be accessed. The challenge thus resides in deriving reasonable sized models that integrate structural, acoustic, electrical components and the controller algorithm. The advantages of adequate active control simulation strategies relies on the cost and time reduction in the development phase. Therefore, the aim of this paper is to present a methodology for simulating vibro-acoustic systems including this coupled model in a closed loop control simulation framework that also takes into account the interaction between the system and the control sensors/actuators. It is shown that neglecting the sensor/actuator dynamics can lead to inaccurate performance predictions.

  8. Tropical cloud and precipitation structures and regimes from multiple space-borne active sensors: New insights

    Science.gov (United States)

    Takahashi, H.; Luo, Z. J.; Rossow, W. B.; Anderson, R.

    2017-12-01

    Nearly five years of satellite observations provide a total of 15,986 intersect lines between TRMM and CloudSat/CALIPSO with all measurements made within 20 min of each other. This presents a rare opportunity for studying tropical cloud and precipitation regimes and their internal vertical structure from space-borne active sensors. We apply k-mean cluster analysis to these simultaneous observations and identify repetitive cloud/precipitation patterns and regimes. These radar-lidar based cloud regimes are then compared with ISCCP Weather States (WSs) for the extended tropics; results are generally positive with small discrepancies which can be attributed to the different sampling strategies between ISCCP and active sensors. In this presentation, we emphasize new insights and lessons learned from the study. First, the synergy between TRMM PR (Ku band) and CloudSat CPR (W-band) in depicting tropical convective cloud structures is revealed through the clustering analysis of the joint Height-Reflectivity Histograms. This finding has important implications for future satellite mission designs. Second, we explored a new data analysis approach, namely, a nested cluster analysis or sub-cluster. It is interesting to see that this new way of conducting cluster analysis yield fresh new insights into the structure and distribution of tropical clouds and precipitation. We will also discuss follow-up research that grows from this initial study.

  9. Methodologies for Verification and Validation of Space Launch System (SLS) Structural Dynamic Models

    Science.gov (United States)

    Coppolino, Robert N.

    2018-01-01

    Responses to challenges associated with verification and validation (V&V) of Space Launch System (SLS) structural dynamics models are presented in this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA), which has gained acceptance by various principals in the NASA community, defines efficient and accurate FEM modal sensitivity models that are useful in test-analysis correlation and reconciliation and parametric uncertainty studies. (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976), developed to remedy difficulties encountered with the widely used Classical Guyan Reduction (CGR) method, are presented. MGR and HR are particularly relevant for estimation of "body dominant" target modes of shell-type SLS assemblies that have numerous "body", "breathing" and local component constituents. Realities associated with configuration features and "imperfections" cause "body" and "breathing" mode characteristics to mix resulting in a lack of clarity in the understanding and correlation of FEM- and test-derived modal data. (3) Mode Consolidation (MC) is a newly introduced procedure designed to effectively "de-feature" FEM and experimental modes of detailed structural shell assemblies for unambiguous estimation of "body" dominant target modes. Finally, (4) Experimental Mode Verification (EMV) is a procedure that addresses ambiguities associated with experimental modal analysis of complex structural systems. Specifically, EMV directly separates well-defined modal data from spurious and poorly excited modal data employing newly introduced graphical and coherence metrics.

  10. Structures and dynamics of transnational cooperation networks: evidence based on Local Action Groups in the Veneto Region, Italy

    Directory of Open Access Journals (Sweden)

    Elena Pisani

    2014-12-01

    Full Text Available The paper assesses the structures and dynamics of transnational cooperation projects promoted by Local Action Groups (LAGs in different periods (from LEADER II to LEADER Axis using Social Network Analysis (SNA in a specific case study: the Veneto Region in Italy. The classical indexes of SNA have been critically examined, and the paper also presents innovative indexes that can capture the peculiarity of transnational cooperation: disaggregated densities of the network and transnational centrality of the node. These indexes are useful in order to quantify how transnational a network actually is, and to measure the power-information that each actor (LAG can acquire through its transnational contacts. The methodology can become a tool for Managing Authorities to implement new forms of evaluation of transnational cooperation of LAGs.

  11. Synchronization in area-preserving maps: Effects of mixed phase space and coherent structures.

    Science.gov (United States)

    Mahata, Sasibhusan; Das, Swetamber; Gupte, Neelima

    2016-06-01

    The problem of synchronization of coupled Hamiltonian systems presents interesting features due to the mixed nature (regular and chaotic) of the phase space. We study these features by examining the synchronization of unidirectionally coupled area-preserving maps coupled by the Pecora-Caroll method. The master stability function approach is used to study the stability of the synchronous state and to identify the percentage of synchronizing initial conditions. The transient to synchronization shows intermittency with an associated power law. The mixed nature of the phase space of the studied map has notable effects on the synchronization times as is seen in the case of the standard map. Using finite-time Lyapunov exponent analysis, we show that the synchronization of the maps occurs in the neighborhood of invariant curves in the phase space. The phase differences of the coevolving trajectories show intermittency effects, due to the existence of stable periodic orbits contributing locally stable directions in the synchronizing neighborhoods. Furthermore, the value of the nonlinearity parameter, as well as the location of the initial conditions play an important role in the distribution of synchronization times. We examine drive response combinations which are chaotic-chaotic, chaotic-regular, regular-chaotic, and regular-regular. A range of scaling behavior is seen for these cases, including situations where the distributions show a power-law tail, indicating long synchronization times for at least some of the synchronizing trajectories. The introduction of coherent structures in the system changes the situation drastically. The distribution of synchronization times crosses over to exponential behavior, indicating shorter synchronization times, and the number of initial conditions which synchronize increases significantly, indicating an enhancement in the basin of synchronization. We discuss the implications of our results.

  12. Fluid bilayer structure determination: Joint refinement in composition space using X-ray and neutron diffraction data

    International Nuclear Information System (INIS)

    White, S.H.; Wiener, M.C.

    1994-01-01

    Experimentally-determined structural models of fluid lipid bilayers are essential for verifying molecular dynamics simulations of bilayers and for understanding the structural consequences of peptide interactions. The extreme thermal motion of bilayers precludes the possibility of atomic-level structural models. Defining open-quote the structure close-quote of a bilayer as the time-averaged transbilayer distribution of the water and the principal lipid structural groups such as the carbonyls and double-bonds (quasimolecular fragments), one can represent the bilayer structure as a sum of Gaussian functions referred to collectively as the quasimolecular structure. One method of determining the structure is by neutron diffraction combined with exhaustive specific deuteration. This method is impractical because of the expense of the chemical syntheses and the limited amount of neutron beam time currently available. We have therefore developed the composition space refinement method for combining X-ray and minimal neutron diffraction data to arrive at remarkably detailed and accurate structures of fluid bilayers. The composition space representation of the bilayer describes the probability of occupancy per unit length across the width of the bilayer of each quasimolecular component and permits the joint refinement of X-ray and neutron lamellar diffraction data by means of a single quasimolecular structure that is fitted simultaneously to both data sets. Scaling of each component by the appropriate neutron or X-ray scattering length maps the composition-space profile to the appropriate scattering length space for comparison to experimental data. The difficulty with the method is that fluid bilayer structures are generally only marginally determined by the experimental data. This means that the space of possible solutions must be extensively explored in conjunction with a thorough analysis of errors

  13. A Novel Double-Piston Magnetorheological Damper for Space Truss Structures Vibration Suppression

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2014-01-01

    Full Text Available The design, fabrication, and testing of a new double-piston MR damper for space applications are discussed. The design concept for the damper is described in detail. The electromagnetic analysis of the design and the fabrication of the MR damper are also presented. The design analysis shows that the damper meets the weight and size requirements for being included in a space truss structure. The prototype design is tested in a damper dynamometer. The test results show that the damper can provide nearly 80 N of damping force at its maximum velocity and current. The test results also show that the seal drag could contribute significantly to the damping forces. Additionally, the test results indicate that both the work by the damper and damping force increase rapidly with increasing current at lower currents and taper off at higher currents as the damper starts to saturate. The damper force versus velocity plots show hysteresis in both pre- and postyield regions and asymmetric forces in jounce and rebound. A model is proposed for representing the force-displacement, force-velocity, and asymmetric forces observed in test results. A comparison of the modeling results and test data indicates that the model accurately represents the force characteristics of the damper.

  14. Structure-Based Screening of Uncharted Chemical Space for Atypical Adenosine Receptor Agonists.

    Science.gov (United States)

    Rodríguez, David; Chakraborty, Saibal; Warnick, Eugene; Crane, Steven; Gao, Zhan-Guo; O'Connor, Robert; Jacobson, Kenneth A; Carlsson, Jens

    2016-10-21

    Small molecule screening libraries cover only a small fraction of the astronomical number of possible drug-like compounds, limiting the success of ligand discovery efforts. Computational screening of virtual libraries representing unexplored chemical space could potentially bridge this gap. Drug development for adenosine receptors (ARs) as targets for inflammation and cardiovascular diseases has been hampered by the paucity of agonist scaffolds. To identify novel AR agonists, a virtual library of synthetically tractable nucleosides with alternative bases was generated and structure-based virtual screening guided selection of compounds for synthesis. Pharmacological assays were carried out at three AR subtypes for 13 ribosides. Nine compounds displayed significant activity at the ARs, and several of these represented atypical agonist scaffolds. The discovered ligands also provided insights into receptor activation and revealed unknown interactions of endogenous and clinical compounds with the ARs. The results demonstrate that virtual compound databases provide access to bioactive matter from regions of chemical space that are sparsely populated in commercial libraries, an approach transferrable to numerous drug targets.

  15. Hot electron and real space transfer in double-quantum-well structures

    International Nuclear Information System (INIS)

    Okuno, Eiichi; Sawaki, Nobuhiko; Akasaki, Isamu; Kano, Hiroyuki; Hashimoto, Masafumi.

    1991-01-01

    The hot electron phenomena and real space transfer (RST) effect are studied in GaAs/AlGaAs double-quantum-well (DQW) structures, in which we have two kind of quantum wells with different widths. The drift velocity and the electron temperature at liquid helium temperature are investigated as a function of the external electric field applied parallel to the heterointerface. By increasing the field, the electron temperature rises and reaches a plateau in the intermediate region, followed by further rise in the high-field region. The appearance of the plateau is attributed to the RST effect between the two quantum wells. The threshold field for the appearance of the plateau is determined by the difference energy between the quantized levels in two wells. The energy loss rate as a function of the electron temperature indicates that the RST is assisted by LO phonon scattering. (author)

  16. The calculation technique for accelerating channel of the structure with the space-uniform RFQ focusing

    CERN Document Server

    Tishkin, S S; Kobets, A F; Sanin, V M

    2001-01-01

    Calculations were carried out for the initial part of the heavy ion accelerator with the large mass-to-charge ratio (a/q=46). The process of calculation is divided in four stages.At the first stage the average aperture radius and the field strength are determined according to the initial data. At the second stage the optimization of the accelerating tract is performed. To the purpose, the structure is divided in 6 sections: a funnel (a cone), a bunch former, a prebuncher,an adiabatic buncher, a booster, an accelerating section. At the third stage the obtained data are recalculated in the values of the modulation depth and lengths of the accelerating periods with taking into account the real fields. At the fourth stage the beam parameters at the accelerator output are determined for the tract built with taking into account the space charge forces and the input beam parameters.

  17. Graph theory approach to the eigenvalue problem of large space structures

    Science.gov (United States)

    Reddy, A. S. S. R.; Bainum, P. M.

    1981-01-01

    Graph theory is used to obtain numerical solutions to eigenvalue problems of large space structures (LSS) characterized by a state vector of large dimensions. The LSS are considered as large, flexible systems requiring both orientation and surface shape control. Graphic interpretation of the determinant of a matrix is employed to reduce a higher dimensional matrix into combinations of smaller dimensional sub-matrices. The reduction is implemented by means of a Boolean equivalent of the original matrices formulated to obtain smaller dimensional equivalents of the original numerical matrix. Computation time becomes less and more accurate solutions are possible. An example is provided in the form of a free-free square plate. Linearized system equations and numerical values of a stiffness matrix are presented, featuring a state vector with 16 components.

  18. Real-space grid representation of momentum and kinetic energy operators for electronic structure calculations.

    Science.gov (United States)

    Ninno, Domenico; Cantele, Giovanni; Trani, Fabio

    2018-03-08

    We show that the central finite difference formula for the first and the second derivative of a function can be derived, in the context of quantum mechanics, as matrix elements of the momentum and kinetic energy operators on discrete coordinate eigenkets |xn〉 defined on a uniform grid. Starting from the discretization of integrals involving canonical commutations, simple closed-form expressions of the matrix elements are obtained. A detailed analysis of the convergence toward the continuum limit with respect to both the grid spacing and the derivative approximation order is presented. It is shown that the convergence from below of the eigenvalues in electronic structure calculations is an intrinsic feature of the finite difference method. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  19. Development and verification of a high-performance CFRP structure for the space-borne lidar instrument ALADIN

    Science.gov (United States)

    Kaiser, Clemens; Widani, Christoph; Härtel, Klaus; Haberler, Peter; Lecrenier, Olivier; Buvat, Daniel; Labruyere, Gilles

    2017-11-01

    The paper gives an overview of the development of a high-performance space structure achieving an optimum combination of mass, stiffness and stability to cope with the very stringent performance requirements of ALADIN instrument, the space-borne LIDAR built for ADM-AEOLUS ESA's Earth Explorer Mission. Kayser-Threde has been contracted in 2003 by EADS Astrium Toulouse, ALADIN instrument Prime Contractor, for the Phase C/D of ALADIN Structure PFM. The contract with ASF comprised the detailed design, development, verification, PMP qualification, and MAIV program including ALADIN Structure qualification using a complete and fully representative STM.

  20. Structural and redox requirements for the action of anti-diabetic vanadium compounds.

    Science.gov (United States)

    Yoshikawa, Yutaka; Sakurai, Hiromu; Crans, Debbie C; Micera, Giovanni; Garribba, Eugenio

    2014-05-21

    This study presents the first systematic investigation of the anti-diabetic properties of non-oxido V(IV) complexes. In particular, the insulin-mimetic activity of [V(IV)(taci)2](4+), [V(IV)(inoH-3)2](2-), [V(IV)(dhab)2], [V(IV)(hyph(Ph))2], [V(IV)(cat)3](2-) and [V(IV)(pdbh)2]--where taci is 1,3,5-triamino-1,3,5-trideoxy-cis-inositol, ino is cis-inositol, H2dhab is 2,2'-dihydroxyazobenzene, H2hyph(Ph) is 3,5-bis(2-hydroxyphenyl)-1H-1,2,4-triazole, H2cat is catechol and H2pdbh is pentan-2,4-dione benzoylhydrazone--was evaluated in terms of free fatty acid (FFA) release. Among the six compounds examined, only [V(IV)(pdbh)2], [V(IV)(cat)3](2-) and [V(IV)(hyph(Ph))2], which at the physiological pH convert to the corresponding V(IV)O complexes, were found to exhibit a significant insulin-mimetic activity compared to VOSO4. In contrast, [V(taci)2](4+), [V(inoH-3)2](2-) and [V(dhab)2], which at pH 7.4 keep their 'bare' non-oxido structure, did not cause any inhibition of FFA. The results, therefore, suggest that a V(IV)O functionality is necessary for vanadium complexes to exhibit anti-diabetic effects. This agrees with the notion that the biotransformations of V compounds in the organism are more important than the nature of the species.

  1. Simulation of Floaters in Action

    DEFF Research Database (Denmark)

    Nielsen, Morten Eggert; Ulriksen, Martin Dalgaard; Damkilde, Lars

    This report is the first in a series of three, which altogether documents: 1. theory 2. numerical implementation 3. application for Simulation of Floaters in Action (SOFIA), which is a structural analysis tool for slender offshore structures, such as monopiles, jacket structures and floating space...... frame structures. The current report represents the theoretical basis, while the numerical implementation and application of SOFIA are documented in two individual reports. In relation to other structural analysis tools, the present tool allows for geometrical nonlinearities, which may be exhibited...... by mooring lines and floating structures. Therefore, SOFIA provides an alternative to traditional analysis tools, which may only be able to handle bottom founded structures, exhibiting linear behavior. The work has been conducted in the Department of Civil Engineering, Aalborg University, and as further...

  2. Some structural properties of vector valued φ-function sequence space

    Science.gov (United States)

    Gultom, S. N. R.; Herawati, E.

    2018-01-01

    The sequence space W(M), where M is an Orlicz function was introduced by Parashar and Choudhary [1] and Maddox [2]. Let f be φ-function and X be a Banach space. In this work, we introduce vector valued sequence space defined by f, denoted by W(X, f). We study some topological properties and inclusion relations of this space.

  3. Dissecting the space-time structure of tree-ring datasets using the partial triadic analysis.

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Rossi

    Full Text Available Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA, a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller during the period of 1967-2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967-2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i the temporal evolution of spatial structures and ii the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets.

  4. Dissecting the space-time structure of tree-ring datasets using the partial triadic analysis.

    Science.gov (United States)

    Rossi, Jean-Pierre; Nardin, Maxime; Godefroid, Martin; Ruiz-Diaz, Manuela; Sergent, Anne-Sophie; Martinez-Meier, Alejandro; Pâques, Luc; Rozenberg, Philippe

    2014-01-01

    Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the resulting dataset is a ring variables × trees × time datacube. Multivariate statistical analyses, such as principal component analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-way matrices, such as ring variables × trees or ring variables × time. Here, we explore the potential of the partial triadic analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of European larch (Larix decidua Miller) during the period of 1967-2007. The processing of densitometry profiles led to a set of ring descriptors for each tree and for each year from 1967-2007. The resulting three-way data table was subjected to two distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and hierarchize the different sources of variation within tree-ring datasets.

  5. Conceptual Design Gamma-Ray Large Area Space Telescope (GLAST) Tower Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, Chad

    2002-07-18

    The main objective of this work was to develop a conceptual design and engineering prototype for the Gamma-ray Large Area Space Telescope (GLAST) tower structure. This thesis describes the conceptual design of a GLAST tower and the fabrication and testing of a prototype tower tray. The requirements were that the structure had to support GLAST's delicate silicon strip detector array through ground handling, launch and in orbit operations as well as provide for thermal and electrical pathways. From the desired function and the given launch vehicle for the spacecraft that carries the GLAST detector, an efficient structure was designed which met the requirements. This thesis developed in three stages: design, fabrication, and testing. During the first stage, a general set of specifications was used to develop the initial design, which was then analyzed and shown to meet or exceed the requirements. The second stage called for the fabrication of prototypes to prove manufacturability and gauge cost and time estimates for the total project. The last step called for testing the prototypes to show that they performed as the analysis had shown and prove that the design met the requirements. As a spacecraft engineering exercise, this project required formulating a solution based on engineering judgment, analyzing the solution using advanced engineering techniques, then proving the validity of the design and analysis by the manufacturing and testing of prototypes. The design described here met all the requirements set out by the needs of the experiment and operating concerns. This strawman design is not intended to be the complete or final design for the GLAST instrument structure, but instead examines some of the main challenges involved and demonstrates that there are solutions to them. The purpose of these tests was to prove that there are solutions to the basic mechanical, electrical and thermal problems presented with the GLAST project.

  6. Modelling farmers' action: decision rules capture methodology and formalisation structure: a case of biomass flow operations in dairy farms of a tropical island.

    Science.gov (United States)

    Vayssières, J; Lecomte, P; Guerrin, F; Nidumolu, U B

    2007-06-01

    Studies on decision-making processes are generally aimed at identifying farmers' needs and predicting farmers' reactions to technical innovations. In the present paper we study these decision-making processes, with reference to dairy farms, to build a whole-farm computer model (WFM) which simulates farmers' actions. In this study, (i) a multi-tool and multi-step methodology is proposed, which can also be qualified as an iterative and interactive methodology to reveal decision rules and (ii) a generic structure to formalise how action is conducted, termed 'structure for action modelling' (SAM). In the case of forage crop-dairy cattle systems, we have tested the current methodology to capture the decision rules and the SAM to represent action concerning farm management. An 'immersion' approach, inspired by the ethnographic approach has been adapted to access operational technical decisions (taken on a daily basis). This study helped in understanding how detailed and large approaches can be complementary and can facilitate identification of what can be generalised in a conceptual model. To define the generic structure (SAM), a set of descriptive variables concerning technical operations has been selected. The conceptual model generated is composed of decision rules reconstructed by researchers with farmers' committed participation. The validation method is based on participatory approaches and on comparing of actions simulated by the model with practices on the ground. Not contesting the fact that farmers plan their action, this study also revealed the importance of adjustments in action. For example, 20 to 55% of the time the planned food ration is not distributed to the milking cows because of forage unavailability. We also discuss how this structure can facilitate integration of decision mechanisms in biophysical models and how such an integration of adjustment decision rules can produce more realistic simulations of technical actions. Error of biotechnical

  7. Structural health monitoring using DOG multi-scale space: an approach for analyzing damage characteristics

    Science.gov (United States)

    Guo, Tian; Xu, Zili

    2018-03-01

    Measurement noise is inevitable in practice; thus, it is difficult to identify defects, cracks or damage in a structure while suppressing noise simultaneously. In this work, a novel method is introduced to detect multiple damage in noisy environments. Based on multi-scale space analysis for discrete signals, a method for extracting damage characteristics from the measured displacement mode shape is illustrated. Moreover, the proposed method incorporates a data fusion algorithm to further eliminate measurement noise-based interference. The effectiveness of the method is verified by numerical and experimental methods applied to different structural types. The results demonstrate that there are two advantages to the proposed method. First, damage features are extracted by the difference of the multi-scale representation; this step is taken such that the interference of noise amplification can be avoided. Second, a data fusion technique applied to the proposed method provides a global decision, which retains the damage features while maximally eliminating the uncertainty. Monte Carlo simulations are utilized to validate that the proposed method has a higher accuracy in damage detection.

  8. Expanding the chemical space of polyketides through structure-guided mutagenesis of Vitis vinifera stilbene synthase.

    Science.gov (United States)

    Bhan, Namita; Cress, Brady F; Linhardt, Robert J; Koffas, Mattheos

    2015-08-01

    Several natural polyketides (PKs) have been associated with important pharmaceutical properties. Type III polyketide synthases (PKS) that generate aromatic PK polyketides have been studied extensively for their substrate promiscuity and product diversity. Stilbene synthase-like (STS) enzymes are unique in the type III PKS class as they possess a hydrogen bonding network, furnishing them with thioesterase-like properties, resulting in aldol condensation of the polyketide intermediates formed. Chalcone synthases (CHS) in contrast, lack this hydrogen-bonding network, resulting primarily in the Claisen condensation of the polyketide intermediates formed. We have attempted to expand the chemical space of this interesting class of compounds generated by creating structure-guided mutants of Vitis vinifera STS. Further, we have utilized a previously established workflow to quickly compare the wild-type reaction products to those generated by the mutants and identify novel PKs formed by using XCMS analysis of LC-MS and LC-MS/MS data. Based on this approach, we were able to generate 15 previously unreported PK molecules by exploring the substrate promiscuity of the wild-type enzyme and all mutants using unnatural substrates. These structures were specific to STSs and cannot be formed by their closely related CHS-like counterparts. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. Resistive MHD reconstruction of two-dimensional coherent structures in space

    Directory of Open Access Journals (Sweden)

    W.-L. Teh

    2010-11-01

    Full Text Available We present a reconstruction technique to solve the steady resistive MHD equations in two dimensions with initial inputs of field and plasma data from a single spacecraft as it passes through a coherent structure in space. At least two components of directly measured electric fields (the spacecraft spin-plane components are required for the reconstruction, to produce two-dimensional (2-D field and plasma maps of the cross section of the structure. For convenience, the resistivity tensor η is assumed diagonal in the reconstruction coordinates, which allows its values to be estimated from Ohm's law, E+v×B=η·j. In the present paper, all three components of the electric field are used. We benchmark our numerical code by use of an exact, axi-symmetric solution of the resistive MHD equations and then apply it to synthetic data from a 3-D, resistive, MHD numerical simulation of reconnection in the geomagnetic tail, in a phase of the event where time dependence and deviations from 2-D are both weak. The resistivity used in the simulation is time-independent and localized around the reconnection site in an ellipsoidal region. For the magnetic field, plasma density, and pressure, we find very good agreement between the reconstruction results and the simulation, but the electric field and plasma velocity are not predicted with the same high accuracy.

  10. Notes about the Palais des Machines of 1889 in Paris: space, structure and ornament

    Directory of Open Access Journals (Sweden)

    Oscar Linares de la Torre

    2018-04-01

    Full Text Available The Palais des Machines of the Paris Universal Exposition of 1889, designed by the architect Charles Louis Ferdinand Dutert (1845-1906 and the engineer Victor Contamin (1840-1893, is undoubtedly an icon of the 19th century architecture: its powerful spatiality, its portentous structure and its straightforward tectonics have rightly received high praise by critics and architects from the second half of the 20th century. However, critical tradition and historiography from the end of the last century have frequently offered a biased interpretation of this work, aimed at underlining certain architectonic values for then presenting them as a direct product of the author’s will. The aim of this article is to explain, altogether and with maximum transparency, how the conjunction between certain circumstantial issues and the will/ability of both authors made possible the construction of one of the most important works of the nineteenth-century architecture. To achieve this, the three most celebrated architectural aspects of the building are analysed: the huge scale of the central space, the particular structural system chosen and the uneven usage of ornament.

  11. Structural-electromagnetic bidirectional coupling analysis of space large film reflector antennas

    Science.gov (United States)

    Zhang, Xinghua; Zhang, Shuxin; Cheng, ZhengAi; Duan, Baoyan; Yang, Chen; Li, Meng; Hou, Xinbin; Li, Xun

    2017-10-01

    As used for energy transmission, a space large film reflector antenna (SLFRA) is characterized by large size and enduring high power density. The structural flexibility and the microwave radiation pressure (MRP) will lead to the phenomenon of structural-electromagnetic bidirectional coupling (SEBC). In this paper, the SEBC model of SLFRA is presented, then the deformation induced by the MRP and the corresponding far field pattern deterioration are simulated. Results show that, the direction of the MRP is identical to the normal of the reflector surface, and the magnitude is proportional to the power density and the square of cosine incident angle. For a typical cosine function distributed electric field, the MRP is a square of cosine distributed across the diameter. The maximum deflections of SLFRA linearly increase with the increasing microwave power densities and the square of the reflector diameters, and vary inversely with the film thicknesses. When the reflector diameter becomes 100 m large and the microwave power density exceeds 102 W/cm2, the gain loss of the 6.3 μm-thick reflector goes beyond 0.75 dB. When the MRP-induced deflection degrades the reflector performance, the SEBC should be taken into account.

  12. A Lanczos eigenvalue method on a parallel computer. [for large complex space structure free vibration analysis

    Science.gov (United States)

    Bostic, Susan W.; Fulton, Robert E.

    1987-01-01

    Eigenvalue analyses of complex structures is a computationally intensive task which can benefit significantly from new and impending parallel computers. This study reports on a parallel computer implementation of the Lanczos method for free vibration analysis. The approach used here subdivides the major Lanczos calculation tasks into subtasks and introduces parallelism down to the subtask levels such as matrix decomposition and forward/backward substitution. The method was implemented on a commercial parallel computer and results were obtained for a long flexible space structure. While parallel computing efficiency is problem and computer dependent, the efficiency for the Lanczos method was good for a moderate number of processors for the test problem. The greatest reduction in time was realized for the decomposition of the stiffness matrix, a calculation which took 70 percent of the time in the sequential program and which took 25 percent of the time on eight processors. For a sample calculation of the twenty lowest frequencies of a 486 degree of freedom problem, the total sequential computing time was reduced by almost a factor of ten using 16 processors.

  13. The biological and structural characterization of Mycobacterium tuberculosis UvrA provides novel insights into its mechanism of action.

    Science.gov (United States)

    Rossi, Franca; Khanduja, Jasbeer Singh; Bortoluzzi, Alessio; Houghton, Joanna; Sander, Peter; Güthlein, Carolin; Davis, Elaine O; Springer, Burkhard; Böttger, Erik C; Relini, Annalisa; Penco, Amanda; Muniyappa, K; Rizzi, Menico

    2011-09-01

    Mycobacterium tuberculosis is an extremely well adapted intracellular human pathogen that is exposed to multiple DNA damaging chemical assaults originating from the host defence mechanisms. As a consequence, this bacterium is thought to possess highly efficient DNA repair machineries, the nucleotide excision repair (NER) system amongst these. Although NER is of central importance to DNA repair in M. tuberculosis, our understanding of the processes in this species is limited. The conserved UvrABC endonuclease represents the multi-enzymatic core in bacterial NER, where the UvrA ATPase provides the DNA lesion-sensing function. The herein reported genetic analysis demonstrates that M. tuberculosis UvrA is important for the repair of nitrosative and oxidative DNA damage. Moreover, our biochemical and structural characterization of recombinant M. tuberculosis UvrA contributes new insights into its mechanism of action. In particular, the structural investigation reveals an unprecedented conformation of the UvrB-binding domain that we propose to be of functional relevance. Taken together, our data suggest UvrA as a potential target for the development of novel anti-tubercular agents and provide a biochemical framework for the identification of small-molecule inhibitors interfering with the NER activity in M. tuberculosis.

  14. A production of non-strain spacing of lattice planes measurement equipment and a measurement of general structure material

    International Nuclear Information System (INIS)

    Minakawa, Nobuaki; Moriai, Atsushi; Morii, Yukio

    2001-01-01

    It is necessary to determine Δd/d in the internal stress measurement by the neutron diffraction method. Therefore, in case the non-strain spacing of lattice planes d 0 (hkl) is measured using bulk material, even though it does and attaches in a sample table length or every width and it is performing the diffraction measurement, it is difficult to determine for a true non-strain spacing of lattice planes by a processing strain, the grain-orientation, etc. It is available for the infinite thing spacing of lattice planes near non-strain condition to be measured by doing random rotation for bulk material in a beam center, and measuring an average spacing of lattice planes. Practical non-strain spacing of lattice planes measurement equipment was made, and the measurement was performed about much structure material. (author)

  15. Structural Basis for Flip-Flop Action of Thiamin Pyrophosphate-Dependent Enzymes Revealed by Human Pyruvate Dehydrogenase

    Science.gov (United States)

    Dominiak, Paulina; Ciszak, Ewa M.; Korotchkina, Lioubov; Sidhu, Sukhdeep; Patel, Mulchand

    2003-01-01

    tightly connected domains. The dynamic exchange of those tautomers, in turns, is required during the reactions of pyruvate decarboxylation and reductive acetylation of lipoamide. Thus the shuttle-like motion of the domains is coordinated with the reactions of decarboxylation and acetylation, which are carried out in each of the cofactor sites resulting in a flip-flop action of the enzyme. The structure-derived mechanism of action of human pyruvate dehydrogenase may be likely common for other TPP-dependent enzymes.

  16. Space, time and spooky action

    Science.gov (United States)

    Robinson, Andrew

    2017-04-01

    Albert Einstein's persistent opposition to quantum mechanics is a familiar, if still somewhat surprising, fact to all physicists, as David Bodanis observes in his latest book Einstein's Greatest Mistake: the Life of a Flawed Genius.

  17. Design and verification for front mirror-body structure of on-axis three mirror anastigmatic space camera

    Science.gov (United States)

    Wang, Xiaoyong; Guo, Chongling; Hu, Yongli; He, Hongyan

    2017-11-01

    The primary and secondary mirrors of onaxis three mirror anastigmatic (TMA) space camera are connected and supported by its front mirror-body structure, which affects both imaging performance and stability of the camera. In this paper, the carbon fiber reinforced plastics (CFRP) thin-walled cylinder and titanium alloy connecting rod have been used for the front mirror-body opto-mechanical structure of the long-focus on-axis and TMA space camera optical system. The front mirror-body component structure has then been optimized by finite element analysis (FEA) computing. Each performance of the front mirror-body structure has been tested by mechanics and vacuum experiments in order to verify the validity of such structure engineering design.

  18. Evolution of dislocation structures following a change in loading conditions studied by in situ high resolution reciprocal space mapping

    DEFF Research Database (Denmark)

    Wejdemann, Christian

    or to a strain of 7% at a temperature of -196 ○C, and the samples were characterized by electron microscopy and mechanical tests. Transmission electron microscopy showed that the pre-deformation produced a characteristic dislocation cell structure consisting of regions with relatively high dislocation density...... the pre-deformation axis. In the X-ray diffraction experiments a technique was employed with which it is possible to obtain high-resolution reciprocal space maps from individual bulk grains. The high-resolution reciprocal space maps contain features related to the dislocation structure in the grains......: A spread-out ‘cloud’ of low intensity caused by diffraction from the dislocation walls and a number of sharp peaks of high intensity caused by diffraction from the individual subgrains. By acquiring reciprocal space maps at a number of different strain levels the evolution of the dislocation structures can...

  19. Design and implementation of robust decentralized control laws for the ACES structure at Marshall Space Flight Center

    Science.gov (United States)

    Collins, Emmanuel G., Jr.; Phillips, Douglas; Hyland, David C.

    1990-01-01

    An experiment was conducted to design controllers that would provide substantial reduction of line-of-sight control errors. The satisfaction of this objective required the controllers to attenuate the beam vibration significantly. Particular emphasis was placed on controller simplicity (i.e., reduced-order and decentralized controller architectures). Complexity reduction in control law implementation is of paramount interest due to stringent limitations on throughput of even state-of-the-art space qualified processors. The results of this experiment successfully demonstrate active vibrator control for a flexible structure. The testbed is the ACES structure at the NASA Marshall Space Flight Center. The ACES structure is dynamically traceable to future space systems and especially allows the study of line-of-sight control issues.

  20. Structure Properties and Mechanisms of Action of Naturally Originated Phenolic Acids and Their Derivatives against Human Viral Infections.

    Science.gov (United States)

    Wu, Yi-Hang; Zhang, Bing-Yi; Qiu, Li-Peng; Guan, Rong-Fa; Ye, Zi-Hong; Yu, Xiao-Ping

    2017-01-01

    A great effort has been made to develop efficacious antiviral drugs, but many viral infections are still lack of efficient antiviral therapies so far. The related exploration of natural products to fight viruses has been raised in recent years. Natural compounds with structural diversity and complexity offer a great chance to find new antiviral agents. Particularly, phenolic acids have attracted considerable attention owing to their potent antiviral abilities and unique mechanisms. The aim of this review is to report new discoveries and updates pertaining to antiviral phenolic acids. The relevant references on natural phenolic acids were searched. The antiviral phenolic acids were classified according to their structural properties and antiviral types. Meanwhile, the antiviral characteristics and structure-activity relationships of phenolic acids and their derivatives were summarized. The review finds that natural phenolic acids and their derivatives possessed potent inhibitory effects on multiple virus in humans such as human immunodeficiency virus, hepatitis C virus, hepatitis B virus, herpes simplex virus, influenza virus and respiratory syncytial virus. In particular, caffeic acid/gallic acid and their derivatives exhibited outstanding antiviral properties by a variety of modes of action. Naturally derived phenolic acids especially caffeic acid/gallic acid and their derivatives may be regarded as novel promising antiviral leads or candidates. Additionally, scarcely any of these compounds has been used as antiviral treatment in clinical practice. Therefore, these phenolic acids with diverse skeletons and mechanisms provide us an excellent resource for finding novel antiviral drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.