Distributed Dynamic Condition Response Structures
Hildebrandt, Thomas; Mukkamala, Raghava Rao
We present distributed dynamic condition response structures as a declarative process model inspired by the workflow language employed by our industrial partner and conservatively generalizing labelled event structures. The model adds to event structures the possibility to 1) finitely specify...... as a labelled transition system. Exploration of the relationship between dynamic condition response structures and traditional models for concurrency, application to more complex scenarios, and further extensions of the model is left to future work....
Dynamic Response of a Floating Bridge Structure
Viuff, Thomas; Leira, Bernt Johan; Øiseth, Ole; Xiang, Xu
2016-01-01
A theoretical overview of the stochastic dynamic analysis of a floating bridge structure is presented. Emphasis is on the wave-induced response and the waves on the sea surface are idealized as a zero mean stationary Gaussian process. The first-order wave load processes are derived using linear potential theory and the structural idealization is based on the Finite Element Method. A frequency response calculation is presented for a simplified floating bridge structure example emphasising the ...
Dynamic response of structures with uncertain parameters
Cai, Z H; Liu, Y; Yang, Y
2010-01-01
In this paper, an interval method for the dynamic response of structures with uncertain parameters is presented. In the presented method, the structural physical and geometric parameters and loads can be considered as interval variables. The structural stiffness matrix, mass matrix and loading vectors are described as the sum of two parts corresponding to the deterministic matrix and the uncertainty of the interval parameters. The interval problem is then transformed into approximate deterministic one. The Laplace transform is used to transform the equations of the dynamic system into linear algebra equations. The Maclaurin series expansion is applied on the modified dynamic equation in order to deal with the linear algebra equations. Numerical examples are studied by the presented interval method for the cases with and without damping. The upper bound and lower bound of the dynamic responses of the examples are compared, and it shows that the presented method is effective.
Structural optimization for nonlinear dynamic response
Dou, Suguang; Strachan, B. Scott; Shaw, Steven W.
2015-01-01
by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance......Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear...... resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described...
From Dynamic Condition Response Structures to Büchi Automata
Mukkamala, Raghava Rao; Hildebrandt, Thomas
2010-01-01
Recently we have presented distributed dynamic condition response structures (DCR structures) as a declarative process model conservatively generalizing labelled event structures to allow for finite specifications of repeated, possibly infinite behavior. The key ideas are to split the causality...... relation of event structures in two dual relations: the condition relation and the response relation, to split the conflict relation in two relations: the dynamic exclusion and dynamic inclusion, and finally to allow configurations to be multi sets of events. In the present abstract we recall the model...... and show how to characterise the execution of DCR structures and the acceptance condition for infinite runs by giving a map to Bu ̈chi-automata. This is the first step towards automatic verification of processes specified as DCR structures....
Effect of support conditions on structural response under dynamic loading
Akram, T.; Memon, S.A.
2008-01-01
In design practice, dynamic structural analysis is carried out with base of structure considered as fixed; this means that foundation is placed on rock like soil material. While conducting this type of analyses the role of foundation and soil behaviour is totally neglected. The actions in members and loads transferred at foundation level obtained in this manner do not depict the true structural behaviour. FEM (Finite Element Methods) analysis where both superstructure and foundation soil are coupled together is quite complicated and expensive for design environments. A simplified model is required to depict dynamic response of structures with foundations based on flexible soils. The primary purpose of this research is to compare the superstructure dynamic responses of structural systems with fixed base to that of simple soil model base. The selected simple soil model is to be suitable for use in a design environment to give more realistic results. For this purpose building models are idealized with various heights and structural systems in both 2D (Two Dimensional) and 3D (Three Dimensional) space. These models are then provided with visco-elastic supports representing three soil bearing capacities and the analysis results are compared to that of fixed supports models. The results indicate that fixed support system underestimates natural time period of the structures. Dynamic behavior and force response of visco-elastic support is different from fixed support model. Fixed support models result in over designed base columns and under designed beams. (author)
The Response of Simple Polymer Structures Under Dynamic Loading
Proud, William; Ellison, Kay; Yapp, Su; Cole, Cloe; Galimberti, Stefano; Institute of Shock Physics Team
2017-06-01
The dynamic response of polymeric materials has been widely studied with the effects of degree of crystallinity, strain rate, temperature and sample size being commonly reported. This study uses a simple PMMA structure, a right cylindrical sample, with structural features such as holes. The features are added an varied in a systematic fashion. Samples were dynamically loaded using a Split Hopkinson Pressure Bar up to failure. The resulting stress-strain curves are presented showing the change in sample response. The strain to failure is shown to increase initially with the presence of holes, while failure stress is relatively unaffected. The fracture patterns seen in the failed samples change, with tensile cracks, Hertzian cones, shear effects being dominant for different holes sizes and geometries. The sample were prepared by laser cutting and checked for residual stress before experiment. The data is used to validate predictive model predictions where material, structure and damage are included.. The Institute of Shock Physics acknowledges the support of Imperial College London and the Atomic Weapons Establishment.
Plasma turbulence. Structure formation, selection rule, dynamic response and dynamics transport
Ito, Sanae I.
2010-01-01
The five-year project of Grant-in-Aid for Specially Promoted Research entitled general research on the structure formation and selection rule in plasma turbulence had brought many outcomes. Based on these outcomes, the Grant-in-Aid for Scientific Research (S) program entitled general research on dynamic response and dynamic transport in plasma turbulence has started. In the present paper, the state-of-the-art of the research activities on the structure formation, selection rule and dynamics in plasma turbulence are reviewed with reference to outcomes of these projects. (author)
Pan Dan-guang
2015-01-01
Full Text Available For realizing the variation of structural dynamic characteristics due to neighbor structure in buildings group, the surface structure is idealized as an equivalent single degree of freedom system with rigid base whose site consists of a single homogeneous layer. Based on the model, a equivalent method on the equivalent seismic excitation is proposed. Then, the differences of seismic response and equivalent seismic input between soil - structure interaction (SSI system and structure -soil-structure interaction (SSSI system are investigated by harmonic analysis. The numerical results show that dynamic responses would be underestimated in SSSI system when the forcing frequencies are close to the Natural frequency if the effects of neighborhood structure were ignored. Neighborhood structure would make the translational displacement increase and rocking vibration decrease. When establishing an effective seismic input, it is necessary to consider the impact of inertia interaction.
Nguyen, T. P.; Pham, D. T.; Ngo, K. T.
2018-04-01
Reducing vibration in structures under lateral load always attracts many researchers in during pastime, hence the mainly purpose of paper analyzes effectiveness of multiple-tuned liquid dampers for reducing dynamic responses of structures under ground acceleration of earthquakes. In this study, the multi-tuned liquid damper with slat screens (M-TLDWSS) is considered in detail for analyzing dynamic response of multi-degrees of freedom structure due to earthquake, which is more different previous studies. Then, the general equation of motion of the structure and M-TLDWSS under ground acceleration of earthquake is established based on dynamic balance of principle and solved by numerical method in the time domain. The effects of characteristic parameters of M-TLDWSS on dynamic response of the structure are investigated. The results obtained in this study demonstrate that the M-TLDWSS has significantly effectiveness for reducing dynamic response of the structure.
Enhancing response coordination through the assessment of response network structural dynamics.
Alireza Abbasi
Full Text Available Preparing for intensifying threats of emergencies in unexpected, dangerous, and serious natural or man-made events, and consequent management of the situation, is highly demanding in terms of coordinating the personnel and resources to support human lives and the environment. This necessitates prompt action to manage the uncertainties and risks imposed by such extreme events, which requires collaborative operation among different stakeholders (i.e., the personnel from both the state and local communities. This research aims to find a way to enhance the coordination of multi-organizational response operations. To do so, this manuscript investigates the role of participants in the formed coordination response network and also the emergence and temporal dynamics of the network. By analyzing an inter-personal response coordination operation to an extreme bushfire event, the networks' and participants' structural change is evaluated during the evolution of the operation network over four time durations. The results reveal that the coordination response network becomes more decentralized over time due to the high volume of communication required to exchange information. New emerging communication structures often do not fit the developed plans, which stress the need for coordination by feedback in addition to by plan. In addition, we find that the participant's brokering role in the response operation network identifies a formal and informal coordination role. This is useful for comparison of network structures to examine whether what really happens during response operations complies with the initial policy.
Covariance of dynamic strain responses for structural damage detection
Li, X. Y.; Wang, L. X.; Law, S. S.; Nie, Z. H.
2017-10-01
A new approach to address the practical problems with condition evaluation/damage detection of structures is proposed based on the distinct features of a new damage index. The covariance of strain response function (CoS) is a function of modal parameters of the structure. A local stiffness reduction in structure would cause monotonous increase in the CoS. Its sensitivity matrix with respect to local damages of structure is negative and narrow-banded. The damage extent can be estimated with an approximation to the sensitivity matrix to decouple the identification equations. The CoS sensitivity can be calibrated in practice from two previous states of measurements to estimate approximately the damage extent of a structure. A seven-storey plane frame structure is numerically studied to illustrate the features of the CoS index and the proposed method. A steel circular arch in the laboratory is tested. Natural frequencies changed due to damage in the arch and the damage occurrence can be judged. However, the proposed CoS method can identify not only damage happening but also location, even damage extent without need of an analytical model. It is promising for structural condition evaluation of selected components.
Strømmen, Einar N
2014-01-01
This book introduces to the theory of structural dynamics, with focus on civil engineering structures that may be described by line-like beam or beam-column type of systems, or by a system of rectangular plates. Throughout this book the mathematical presentation contains a classical analytical description as well as a description in a discrete finite element format, covering the mathematical development from basic assumptions to the final equations ready for practical dynamic response predictions. Solutions are presented in time domain as well as in frequency domain. Structural Dynamics starts off at a basic level and step by step brings the reader up to a level where the necessary safety considerations to wind or horizontal ground motion induced dynamic design problems can be performed. The special theory of the tuned mass damper has been given a comprehensive treatment, as this is a theory not fully covered elsewhere. For the same reason a chapter on the problem of moving loads on beams has been included.
Wei, Xiaojun; Živanović, Stana
2018-05-01
The aim of this paper is to propose a novel theoretical framework for dynamic identification in a structure occupied by a single human. The framework enables the prediction of the dynamics of the human-structure system from the known properties of the individual system components, the identification of human body dynamics from the known dynamics of the empty structure and the human-structure system and the identification of the properties of the structure from the known dynamics of the human and the human-structure system. The novelty of the proposed framework is the provision of closed-form solutions in terms of frequency response functions obtained by curve fitting measured data. The advantages of the framework over existing methods are that there is neither need for nonlinear optimisation nor need for spatial/modal models of the empty structure and the human-structure system. In addition, the second-order perturbation method is employed to quantify the effect of uncertainties in human body dynamics on the dynamic identification of the empty structure and the human-structure system. The explicit formulation makes the method computationally efficient and straightforward to use. A series of numerical examples and experiments are provided to illustrate the working of the method.
Dynamic characteristics and structural response of the SWR 1000 under earthquake loading conditions
Bielor, E.; Brettschuh, W.; Krutzik, N.J.; Tropp, R.
2001-01-01
Based on the conceptual design documentation of the SWR 1000 reactor building as well as specified representative seismological, and soil-dynamic input data, corresponding to prospective sites as a basis, the dynamic characteristics, as well as the in-structure dynamic response of the coupled vibrating structures have been elaborated. The structural design analysis was based on a 3-dimensional mathematical model of the building in which all details of the internal structures as well as the containment including the water in the pools were represented adequately. In order to demonstrate the influence of the soil-structure interaction effects on the dynamic response results, the soil was represented by two different assumptions. At first, considering the state of the art procedures, assuming frequency independent soil capabilities (equivalent stiffnesses and damping values), time domain calculations were carried out. In the second step, based on the frequency-dependency of the soil capabilities, frequency domain calculations were performed. The structural responses obtained by means of both procedures and the same mathematical model of the structures were evaluated and compared. The suitability of the preliminary design concept are discussed and the structural response results obtained on the basis of the bearing capacity and the stresses in the characteristic regions of the structure
Dynamic response analysis of a 24-story damped steel structure
Feng, Demin; Miyama, Takafumi
2017-10-01
In Japanese and Chinese building codes, a two-stage design philosophy, damage limitation (small earthquake, Level 1) and life safety (extreme large earthquake, Level 2), is adopted. It is very interesting to compare the design method of a damped structure based on the two building codes. In the Chinese code, in order to be consistent with the conventional seismic design method, the damped structure is also designed at the small earthquake level. The effect of damper systems is considered by the additional damping ratio concept. The design force will be obtained from the damped design spectrum considering the reduction due to the additional damping ratio. The additional damping ratio by the damper system is usually calculated by a time history analysis method at the small earthquake level. The velocity dependent type dampers such as viscous dampers can function well even in the small earthquake level. But, if steel damper is used, which usually remains elastic in the small earthquake, there will be no additional damping ratio achieved. On the other hand, a time history analysis is used in Japan both for small earthquake and extreme large earthquake level. The characteristics of damper system and ductility of the structure can be modelled well. An existing 24-story steel frame is modified to demonstrate the design process of the damped structure based on the two building codes. Viscous wall type damper and low yield steel panel dampers are studied as the damper system.
Structural dynamic response of target container against proton beam
Kikuchi, Kenji; Ishikura, Syuichi; Futakawa, Masatoshi; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-11-01
Stress waves were analyzed for a target container of neutron science research project using a high-intensity proton accelerator that generates high energy and high current proton beam. In the mercury target, the pulsed proton beam generates intense power density in the course of spallation reaction and causes pressure wave in the mercury and stress wave in the target container due to a sudden temperature change. Structural integrity of the target container depends on the power intensity at a maximum energy deposit. A broad proton profile is favorable to the structural assessment of the container rather than narrow one. Stress wave have propagated in the target container at a speed of sound. It only takes 0.1 ms for the size of 40 cm length stainless steel container. Further assessment is necessary to optimize a geometry of the container and establish a method to evaluate a life time. (author)
Structural dynamic response of target container against proton beam
Kikuchi, Kenji; Ishikura, Syuichi; Futakawa, Masatoshi; Hino, Ryutaro
1997-01-01
Stress waves were analyzed for a target container of neutron science research project using a high-intensity proton accelerator that generates high energy and high current proton beam. In the mercury target, the pulsed proton beam generates intense power density in the course of spallation reaction and causes pressure wave in the mercury and stress wave in the target container due to a sudden temperature change. Structural integrity of the target container depends on the power intensity at a maximum energy deposit. A broad proton profile is favorable to the structural assessment of the container rather than narrow one. Stress wave have propagated in the target container at a speed of sound. It only takes 0.1 ms for the size of 40 cm length stainless steel container. Further assessment is necessary to optimize a geometry of the container and establish a method to evaluate a life time. (author)
Static contribution of the higher modes in the dynamic response of structures
Barbosa, H.J.C.
1982-03-01
In the dynamic response of structures by the modal superposition method usually only the lower modes are taken into account and a procedure that could estimate the contribution due to the higher modes without calculating them would be useful. The technique which consists of assuming that the higher modes respond statically is discussed here. Structures subjected to support motion which are analysed by response spectra techniques are considered and some numerical results are presented. (Author) [pt
On the influence of the foundation stiffness in the structural dynamic response
Halbritter, A.L.; Koishi, N.; Stukart, R.N.L.
1984-01-01
To consider the influence of the foundation on the structural dynamic analysis, it is usual to represent the foundation stiffness by springs and the damping by snubbers, in the structural model. The stiffness and the damping values of the foundation can be determined by approximate methods based on simplifying assumptions, using, for example, the formula derived from the half space theory or numerical methods. The foundation stiffness has a great influence on the dynamic characteristics of the structure (eigenvalues and eigenvectors), and together with the damping influence the structural dynamic response. In this paper the influence of the foundation stiffness on the floor response spectra of the reactor building of a NPP of 1300 MW PWR of KWU type is studied. (Author) [pt
Kim, Du Gi
2005-08-01
This book introduces summary of structural dynamics, the reason of learning of structural dynamics, single-degree of freedom system, simple harmonic vibration and application, numerical analysis method, such as time domain and frequency domain and nonlinear system, multi-degree of freedom system random vibration over discrete distribution, continuous distribution and extreme value distribution, circumstance vibration, earth quake vibration, including input earthquake, and earthquake-resistant design and capacity spectrum method, wind oscillation wave vibration, vibration control and maintenance control.
Lin, H.C.; Hsieh, B.J.; Valentin, R.A.
1981-01-01
The endochronic theory of plasticity proposed by Valanis has been applied in predicting the inelastic responses of structural systems. A recently developed convected coordinates finite-element program has been modified to use an endochronic constitutive law. A series of sample problems for a variety of dynamic loadings are presented. The calculations that have been performed comparing classical and endochronic plasticity theories have revealed that the endochronic approach can result in a substantial reduction in computer time for equivalent solution accuracy. This result, combined with the apparent accuracy of material representation indicate that the use of endochronic plasticity has great potential in evaluating the dynamic response of structural systems. (orig.)
Reduction of the dynamic response by aircraft crash on building structures
Krutzik, N.J.
1988-01-01
Through the use of the double-shell concept the dynamic loads applied by a hypothetical aircraft impact as well as the response of the structure can be reduced significantly. Steel-fiber-reinforced concrete shells with thicknesses of about 0.8 m have a sufficient nonlinear capacity for loads applied by a military airplane such as the Phantom jet. The secondary impact after damage of the outer shell as well as the dynamic response of the structure can be additionally reduced using damping material supporting the impacted shell. Construction of the double shell design does not result in any practical problems. (orig./HP)
Heo, G; Jeon, J; Son, B; Kim, C; Jeon, S; Lee, C
2016-01-01
In this study, a cochlea-inspired artificial filter bank (CAFB) was developed to efficiently obtain dynamic response of a structure, and a dynamic response measurement of a cable-stayed bridge model was also carried out to evaluate the performance of the developed CAFB. The developed CAFB used a band-pass filter optimizing algorithm (BOA) and peakpicking algorithm (PPA) to select and compress dynamic response signal containing the modal information which was significant enough. The CAFB was then optimized about the El-Centro earthquake wave which was often used in the construction research, and the software implementation of CAFB was finally embedded in the unified structural management system (USMS). For the evaluation of the developed CAFB, a real time dynamic response experiment was performed on a cable-stayed bridge model, and the response of the cable-stayed bridge model was measured using both the traditional wired system and the developed CAFB-based USMS. The experiment results showed that the compressed dynamic response acquired by the CAFB-based USMS matched significantly with that of the traditional wired system while still carrying sufficient modal information of the cable-stayed bridge. (paper)
Zheng, Z.C.; Xie, G.; Du, Q.H.
1987-01-01
Because of the existence of nonlinear characteristics in practical engineering structures, such as large steam turbine-foundation system and offshore platform, it is necessary to predict nonlinear dynamic responses for these very large and complex structural systems subjected extreme load. Due to the limited storage and high executing cost of computers, there are still some difficulties in the analysis for such systems although the traditional finite element methods provide basic available methods to the problems. The dynamic substructure methods, which were developed as a branch of general structural dynamics in the past more than 20 years and have been widely used from aircraft, space vehicles to other mechanical and civil engineering structures, present a powerful method to the analysis of very large structural systems. The key to success is due to the considerable reduction in the number of degrees of freedom while not changing the physical essence of the problems investigated. The dynamic substructure method has been extended to nonlinear system and applicated to the analysis of nonlinear dynamic response of an offshore platform by Z.C. Zheng, et al. (1983, 1985a, b, c). In this paper, the method is presented to analyze dynamic responses of the systems contained intrinsic nonlinearities and with nonlinear attachments and nonlinear supports of nuclear structural systems. The efficiency of the method becomes more clear for nonlinear dynamic problems due to the adoption of iterating processes. For simplicity, the analysis procedure is demonstrated briefly. The generalized substructure method of nonlinear systems is similar to linear systems, only the nonlinear terms are treated as pseudo-forces. Interface coordinates are classified into two categories, the connecting interface coordinates which connect with each other directly in the global system and the linking interface coordinates which link to each other through attachments. (orig./GL)
2010-08-18
Spectral domain response calculated • Time domain response obtained through inverse transform Approach 4: WASABI Wavelet Analysis of Structural Anomalies...differences at unity scale! Time Function Transform Apply Spectral Domain Transfer Function Time Function Inverse Transform Transform Transform mtP
Effects of foundation modeling on dynamic response of a soil- structure system
Chen, J.C.; Tabatabaie, M.
1996-07-01
This paper presents the results of our investigation to evaluate the effectiveness of different foundation modeling techniques used in soil-structure interaction analyses. The study involved analysis of three different modeling techniques applied to two different foundation configurations (one with a circular and one with a square shape). The results of dynamic response of a typical nuclear power plant structure supported on such foundations are presented
Dynamic response analysis of an aircraft structure under thermal-acoustic loads
Cheng, H; Li, H B; Zhang, W; Wu, Z Q; Liu, B R
2016-01-01
Future hypersonic aircraft will be exposed to extreme combined environments includes large magnitude thermal and acoustic loads. It presents a significant challenge for the integrity of these vehicles. Thermal-acoustic test is used to test structures for dynamic response and sonic fatigue due to combined loads. In this research, the numerical simulation process for the thermal acoustic test is presented, and the effects of thermal loads on vibro-acoustic response are investigated. To simulate the radiation heating system, Monte Carlo theory and thermal network theory was used to calculate the temperature distribution. Considering the thermal stress, the high temperature modal parameters are obtained with structural finite element methods. Based on acoustic finite element, modal-based vibro-acoustic analysis is carried out to compute structural responses. These researches are very vital to optimum thermal-acoustic test and structure designs for future hypersonic vehicles structure (paper)
Pedersen, Lars
2007-01-01
A flooring-system, e.g. a floor in a building, is excited dynamically when a person walks across the floor, and resonant excitation might bring structural vibrations to unacceptable levels. Stationary (non-moving) crowds of people might be present on the same floor and they will sense the floor...... vibrations, but they will also interact dynamically with the floor in a passive sense, thus altering the dynamic system excited to vibration by the walking person. Consequently, the vibration level of the floor is likely to depend on the presence and size of the stationary crowd. It is also known...... that different techniques (different parameters calculated from structural response time series) are proposed for assessing floor serviceability. The paper looks into the influence of the stationary crowd of people on the floor response to walking excitation and into the influence of the crowd on different...
Tunable dynamic response of magnetic gels: Impact of structural properties and magnetic fields
Tarama, Mitsusuke; Cremer, Peet; Borin, Dmitry Y.; Odenbach, Stefan; Löwen, Hartmut; Menzel, Andreas M.
2014-10-01
Ferrogels and magnetic elastomers feature mechanical properties that can be reversibly tuned from outside through magnetic fields. Here we concentrate on the question of how their dynamic response can be adjusted. The influence of three factors on the dynamic behavior is demonstrated using appropriate minimal models: first, the orientational memory imprinted into one class of the materials during their synthesis; second, the structural arrangement of the magnetic particles in the materials; and third, the strength of an external magnetic field. To illustrate the latter point, structural data are extracted from a real experimental sample and analyzed. Understanding how internal structural properties and external influences impact the dominant dynamical properties helps to design materials that optimize the requested behavior.
Predicting Dynamic Response of Structures under Earthquake Loads Using Logical Analysis of Data
Ayman Abd-Elhamed
2018-04-01
Full Text Available In this paper, logical analysis of data (LAD is used to predict the seismic response of building structures employing the captured dynamic responses. In order to prepare the data, computational simulations using a single degree of freedom (SDOF building model under different ground motion records are carried out. The selected excitation records are real and of different peak ground accelerations (PGA. The sensitivity of the seismic response in terms of displacements of floors to the variation in earthquake characteristics, such as soil class, characteristic period, and time step of records, peak ground displacement, and peak ground velocity, have also been considered. The dynamic equation of motion describing the building model and the applied earthquake load are presented and solved incrementally using the Runge-Kutta method. LAD then finds the characteristic patterns which lead to forecast the seismic response of building structures. The accuracy of LAD is compared to that of an artificial neural network (ANN, since the latter is the most known machine learning technique. Based on the conducted study, the proposed LAD model has been proven to be an efficient technique to learn, simulate, and blindly predict the dynamic response behaviour of building structures subjected to earthquake loads.
On the equivalent static loads approach for dynamic response structural optimization
Stolpe, Mathias
2014-01-01
The equivalent static loads algorithm is an increasingly popular approach to solve dynamic response structural optimization problems. The algorithm is based on solving a sequence of related static response structural optimization problems with the same objective and constraint functions...... as the original problem. The optimization theoretical foundation of the algorithm is mainly developed in Park and Kang (J Optim Theory Appl 118(1):191–200, 2003). In that article it is shown, for a certain class of problems, that if the equivalent static loads algorithm terminates then the KKT conditions...
Chen Yong Jian
2018-01-01
Full Text Available The Beam String Structure structural system, also called BSS, has the advantages of lighter dead weight and greater flexibility. The wind load is the main design control factor. The dynamic characteristics and wind-induced displacement response of BSS are studied by the finite element method. The roof structure of the stadium roof of the Fuzhou Olympic Sports Center is the engineering background. 1The numerical model was built by ANSYS, by shape finding, determine the initial stress state of structural members such as external cables; 2From the analysis of dynamic characteristics, the main mode of vibration is the vibration of cables; 3The wind speed spectrum of MATLAB generation structure is obtained by AR method, the structural response of the structure under static wind load and fluctuating wind load is calculated. From the analysis result, considering the equivalent static wind load of BSS , the design of adverse wind is not safe, and the fluctuating wind load should be taken into account.
The Evolving Dynamic Response of a Four Storey Reinforced Concrete Structure during Construction
A. Devin
2012-01-01
Full Text Available Structures include elements designated as load bearing and non-load bearing. While non-load bearing elements, such as facades and internal partitions, are acknowledged to add mass to the system, the structural stiffness and strength is generally attributed to load bearing elements only. This paper investigates the contribution of non-load bearing elements to the dynamic response of a new structure, the Charles Institute, in the grounds of University College Dublin (UCD Ireland. The vertical vibration response of the first floor and the lateral response at each floor level were recorded at different construction stages. The evolution of the structural response as well as the generation of a finite element (FE model is discussed. It was found that the addition of the non-load bearing facades increased the first floor natural frequency from 10.7 Hz to 11.4?Hz, a change of approximately +6.5%. Similarly these external facades resulted in the first sway mode having its frequency increased by 6%. The subsequent addition of internal partitions, mechanical services and furnishings resulted in the floor natural frequency reducing to 9.2 Hz. It is concluded that external facades have the net effect of adding stiffness and the effect of internal partitions and furnishings is to add mass. In the context of finite element modelling of structures there is a significant challenge to represent these non-structural elements correctly so as to enable the generation of truly predictive FE models.
Arturo Blazquez-Navarro
2018-05-01
Full Text Available BK virus (BKV associated nephropathy affects 1-10% of kidney transplant recipients, leading to graft failure in about 50% of cases. Immune responses against different BKV antigens have been shown to have a prognostic value for disease development. Data currently suggest that the structural antigens and regulatory antigens of BKV might each trigger a different mode of action of the immune response. To study the influence of different modes of action of the cellular immune response on BKV clearance dynamics, we have analysed the kinetics of BKV plasma load and anti-BKV T cell response (Elispot in six patients with BKV associated nephropathy using ODE modelling. The results show that only a small number of hypotheses on the mode of action are compatible with the empirical data. The hypothesis with the highest empirical support is that structural antigens trigger blocking of virus production from infected cells, whereas regulatory antigens trigger an acceleration of death of infected cells. These differential modes of action could be important for our understanding of BKV resolution, as according to the hypothesis, only regulatory antigens would trigger a fast and continuous clearance of the viral load. Other hypotheses showed a lower degree of empirical support, but could potentially explain the clearing mechanisms of individual patients. Our results highlight the heterogeneity of the dynamics, including the delay between immune response against structural versus regulatory antigens, and its relevance for BKV clearance. Our modelling approach is the first that studies the process of BKV clearance by bringing together viral and immune kinetics and can provide a framework for personalised hypotheses generation on the interrelations between cellular immunity and viral dynamics.
Blazquez-Navarro, Arturo; Schachtner, Thomas; Stervbo, Ulrik; Sefrin, Anett; Stein, Maik; Westhoff, Timm H; Reinke, Petra; Klipp, Edda; Babel, Nina; Neumann, Avidan U; Or-Guil, Michal
2018-05-01
BK virus (BKV) associated nephropathy affects 1-10% of kidney transplant recipients, leading to graft failure in about 50% of cases. Immune responses against different BKV antigens have been shown to have a prognostic value for disease development. Data currently suggest that the structural antigens and regulatory antigens of BKV might each trigger a different mode of action of the immune response. To study the influence of different modes of action of the cellular immune response on BKV clearance dynamics, we have analysed the kinetics of BKV plasma load and anti-BKV T cell response (Elispot) in six patients with BKV associated nephropathy using ODE modelling. The results show that only a small number of hypotheses on the mode of action are compatible with the empirical data. The hypothesis with the highest empirical support is that structural antigens trigger blocking of virus production from infected cells, whereas regulatory antigens trigger an acceleration of death of infected cells. These differential modes of action could be important for our understanding of BKV resolution, as according to the hypothesis, only regulatory antigens would trigger a fast and continuous clearance of the viral load. Other hypotheses showed a lower degree of empirical support, but could potentially explain the clearing mechanisms of individual patients. Our results highlight the heterogeneity of the dynamics, including the delay between immune response against structural versus regulatory antigens, and its relevance for BKV clearance. Our modelling approach is the first that studies the process of BKV clearance by bringing together viral and immune kinetics and can provide a framework for personalised hypotheses generation on the interrelations between cellular immunity and viral dynamics.
Structural damping values as a function of dynamic response stress and deformation levels
Stevenson, J.D.
1980-01-01
Damping as it is normally defined is the means by which the response motion of a structural system is reduced as the result of energy losses. However, as used in the context of nuclear plant design, the effects of changes in structural stiffness, geometry, support configuration, and modulus of elasticity are also usually lumped under the general heading of damping in current design methods. For convenience in structural design, damping in usually assumed as viscous in nature and in recognition of its use in modal response spectrum dynamic analysis is normally expressed as a percent of critical. In general, it should be understood that damping as used in design or analysis of nuclear plants is an experimentally determined factor which is used to make the results of linear elasticity analysis of dynamic systems agree reasonably well with observed experimental results. In this paper, damping data existing in the open literature applicable to nuclear power plant structures and equipment is summarized and statistically analyzed. Results of this analysis are used to develop damping trend curves which predict applicable damping values to be used in design at various levels of stress or deformation. (orig.)
Mike D.R. Zhang
2001-01-01
Full Text Available In this paper, a method for analyzing the dynamic response of a structural system with variable mass, damping and stiffness is first presented. The dynamic equations of the structural system with variable mass and stiffness are derived according to the whole working process of a bridge bucket unloader. At the end of the paper, an engineering numerical example is given.
The effect of rotatory inertia on the dynamic response of cantilever structures
Lin, Y.J.; Hadjian, A.H.
1977-01-01
For the dynamic response of cantilever beams, the error introduced by the bending theory becomes significant as the ratio of the radius of gyration to the beam length (r/l), exceeds 0.1. In this case, the use of Timoshenko's beam equation becomes more appropriate. This equation includes, in addition to the bending effects, both shear deformation and rotatory inertia effects. In the discrete modeling of beam elements, both the shear deformation and rotatory inertia terms play roles in the mass matrix, while only the shear deformation terms appear in the stiffness matrix. The effect of rotatory inertia on the frequencies and dynamic response of cantilever structures subjected to lateral earthquake excitation is thoroughly studied. This is done by using both the consistent and lumped mass matrices and analytical solution. The beam support is treated either as fixed or elastically restrained to consider soil-structure interaction effects. Since containment structures can be treated as hollow beams, the cantilever beam of uniform cross-section is examined first. For those cases where the ratio of the radius of gyration to beam length lies within the range of interest, all the solutions show that rotatory inertia has an important impact on both the frequencies (other than that of the fundamental mode) and the vertical component of the response. However, as the soil-structure interaction effects become significant rotatory inertia effects become secondary. For shear wall structures used in nuclear power plants, the floors may be treated as rigid diaphragms and the shear walls between floors are usually considered to be beam elements of uniform cross-section
Nielsen, Søren R. K.; Peng, Yongbo; Sichani, Mahdi Teimouri
2016-01-01
The paper deals with the response and reliability analysis of hysteretic or geometric nonlinear uncertain dynamical systems of arbitrary dimensionality driven by stochastic processes. The approach is based on the probability density evolution method proposed by Li and Chen (Stochastic dynamics...... of structures, 1st edn. Wiley, London, 2009; Probab Eng Mech 20(1):33–44, 2005), which circumvents the dimensional curse of traditional methods for the determination of non-stationary probability densities based on Markov process assumptions and the numerical solution of the related Fokker–Planck and Kolmogorov......–Feller equations. The main obstacle of the method is that a multi-dimensional convolution integral needs to be carried out over the sample space of a set of basic random variables, for which reason the number of these need to be relatively low. In order to handle this problem an approach is suggested, which...
Dynamic response of tertiary systems in structures subjected to base excitation
Hernried, A.G.; Kai-sing Lau
1988-01-01
The dynamic response of very lightweight equipment (tertiary subsystem) attached to light equipment (secondary subsystem) which in turn is attached to a heavier structure (primary subsystem) that is subjected to ground shock or earthquake excitation is investigated. Both the single-degree-of-freedom and multi-degree-of-freedom subsystem models are considered. The systems are damped as well as undamped, completely detuned (all natural frequencies of the subsystems well spaced), singly tuned (one natural frequency of each subsystem equal or close to one another), or multiply tuned (more than one natural frequency of the subsystems close to each other). Efficient techniques for the determination of the tertiary subsystem response that avoid a computationally intensive numerical integration of the combined system equations are presented. (author)
Synchronization of dynamic response measurements for the purpose of structural health monitoring
Maes, K.; Reynders, E.; De Roeck, G.; Lombaert, G.; Rezayat, A.
2016-01-01
This paper presents a technique for offline time synchronization of data acquisition systems for linear structures with proportional damping. The technique can be applied when direct synchronization of data acquisition systems is impossible or not sufficiently accurate. The synchronization is based on the acquired dynamic response of the structure only, and does not require the acquisition of a shared sensor signal or a trigger signal. The time delay is identified from the spurious phase shift of the mode shape components that are obtained from system identification. A demonstration for a laboratory experiment on a cantilever steel beam shows that the proposed methodology can be used for accurate time synchronization, resulting in a significant improvement of the accuracy of the identified mode shapes. (paper)
Dynamic response of the high flux isotope reactor structure caused by nearby heavy load drop
Chang, Shih-Jung.
1995-01-01
A heavy load of 50,000 lb is assumed to drop from 10 ft above the bottom of the High Flux Isotope Reactor (HFIR) pool at the loading station. The consequences of the dynamic impact to the bottom slab of the pool and to the nearby HFIR reactor vessel are analyzed by applying the ABAQUS computer code The results show that both the BM vessel structure and its supporting legs are subjected to elastic disturbances only and, therefore, will not be damaged. The bottom slab of the pool, however, will be damaged to about half of the slab thickness. The velocity response spectrum at the concrete floor next to the HFIR vessel as a result of the vibration caused by the impact is obtained. It is concluded, that the damage caused by heavy load drop at the loading station is controlled by the slab damage and the nearby HFIR vessel and the supporting legs will not be damaged
Analysis of elastic-plastic dynamic response of reinforced concrete frame structure
Li Zhongcheng
2009-01-01
Based on a set of data from seismic response test on an R/C frame, a force-based R/C beam fibre model with non-linear material properties and bond-slip effects are presented firstly in this paper, and then the applications to the tested R/C frame are presented to illustrate the model characteristics and to show the accuracy of seismic analysis including consideration of non-linear factors. It can be concluded that the elastic-plastic analysis is a potential step toward the accurate modelling for the dynamic analyses of R/C structures. Especially for the seismic safety re-evaluation of the existing NPPs, the elastic-plastic methodology with consideration of different non-linearities should be involved. (author)
Seismic structural response analysis using consistent mass matrices having dynamic coupling
Shaw, D.E.
1977-01-01
The basis for the theoretical development of this paper is the linear matrix equations of motion for an unconstrained structure subject to support excitation. The equations are formulated in terms of absolute displacement, velocity and acceleration vectors. By means of a transformation of the absolute response vectors into displacements, velocities and accelerations relative to the support motions, the homogeneous equations become non-homogeneous and the non-homogeneous boundary conditions become homogeneous with relative displacements, velocities and accelerations being zero at support points. The forcing function or inertial loading vector is shown to consist of two parts. The first part is comprised of the mass matrix times the suppport acceleration function times a vector of structural displacements resulting from a unit vector of support displacements in the direction of excitation. This inertial loading corresponds to the classical seismic loading vector and is indeed the only loading vector for lumped-mass systems. The second part of he inertial loading vectors consists of the mass matrix times the support acceleration function times a vector of structural accelerations resulting from unit support accelerations in the direction of excitation. This term is not present in classical seismic analysis formulations and results from the presence of off-diagonal terms in the mass matrices which give rise to dynamic coupling through the mass matrix. Thus, for lumped-mass models, the classical formulation of the inertial loading vector is correct. However, if dynamic coupling terms are included through off-diagonal terms in the mass matrix, an additional inertia loading vector must be considered
Nielsen, Søren R.K.
The present textbook has been written for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M.Sc. students in structural engineering.......The present textbook has been written for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M.Sc. students in structural engineering....
Chambers, D H
2009-02-24
A new method of locating structural damage using measured differences in vibrational response and a numerical model of the undamaged structure has been presented. This method is particularly suited for complex structures with little or no symmetry. In a prior study the method successively located simulated damage from measurements of the vibrational response on two simple structures. Here we demonstrate that it can locate simulated damage in a complex structure. A numerical model of a complex structure was used to calculate the structural response before and after the introduction of a void. The method can now be considered for application to structures of programmatic interest. It could be used to monitor the structural integrity of complex mechanical structures and assemblies over their lifetimes. This would allow early detection of damage, when repair is relatively easy and inexpensive. It would also allow one to schedule maintenance based on actual damage instead of a time schedule.
Abadi, Mohammad Tahaye
2015-01-01
A recursive solution method is derived for the transient response of one-dimensional structures subjected to the general form of time dependent boundary conditions. Unlike previous solution methods that assumed the separation of variables, the present method involves formulating and solving the dynamic problems using the summation of two single-argument functions satisfying the motion equation. Based on boundary and initial conditions, a recursive procedure is derived to determine the single-argument functions. Such a procedure is applied to the general form of boundary conditions, and an analytical solution is derived by solving the recursive equation. The present solution method is implemented for base excitation problems, and the results are compared with those of the previous analytical solution and the Finite element (FE) analysis. The FE results converge to the present analytical solution, although considerable error is found in predicting a solution method on the basis of the separation of variables. The present analytical solution predicts the transient response for wave propagation problems in broadband excitation frequencies.
Abadi, Mohammad Tahaye [Aerospace Research Institute, Tehran (Iran, Islamic Republic of)
2015-10-15
A recursive solution method is derived for the transient response of one-dimensional structures subjected to the general form of time dependent boundary conditions. Unlike previous solution methods that assumed the separation of variables, the present method involves formulating and solving the dynamic problems using the summation of two single-argument functions satisfying the motion equation. Based on boundary and initial conditions, a recursive procedure is derived to determine the single-argument functions. Such a procedure is applied to the general form of boundary conditions, and an analytical solution is derived by solving the recursive equation. The present solution method is implemented for base excitation problems, and the results are compared with those of the previous analytical solution and the Finite element (FE) analysis. The FE results converge to the present analytical solution, although considerable error is found in predicting a solution method on the basis of the separation of variables. The present analytical solution predicts the transient response for wave propagation problems in broadband excitation frequencies.
Murach, Michelle M; Kang, Yun-Seok; Goldman, Samuel D; Schafman, Michelle A; Schlecht, Stephen H; Moorhouse, Kevin; Bolte, John H; Agnew, Amanda M
2017-09-01
The human thorax is commonly injured in motor vehicle crashes, and despite advancements in occupant safety rib fractures are highly prevalent. The objective of this study was to quantify the ability of gross and cross-sectional geometry, separately and in combination, to explain variation of human rib structural properties. One hundred and twenty-two whole mid-level ribs from 76 fresh post-mortem human subjects were tested in a dynamic frontal impact scenario. Structural properties (peak force and stiffness) were successfully predicted (p rib cross-sectional geometry obtained via direct histological imaging (total area, cortical area, and section modulus) and were improved further when utilizing a combination of cross-sectional and gross geometry (robusticity, whole bone strength index). Additionally, preliminary application of a novel, adaptive thresholding technique, allowed for total area and robusticity to be measured on a subsample of standard clinical CT scans with varied success. These results can be used to understand variation in individual rib response to frontal loading as well as identify important geometric parameters, which could ultimately improve injury criteria as well as the biofidelity of anthropomorphic test devices (ATDs) and finite element (FE) models of the human thorax.
Feng Xiao
2014-01-01
Full Text Available This paper presents an experimental investigation into the dynamic response of three free floating stiffened metal boxes with protective coatings subjected to underwater explosion (UNDEX. One box was kept intact while the other two were, respectively, covered with monolithic coatings and chiral honeycomb coatings. Three groups of live fire tests with different attack angles and stand-off distances were conducted. The acceleration on the stiffener and strain peak on the bottom hull were selected as the major comparative criterions. Test results show that the impulse transmitted to the structure at the initial stage can be reduced, owing to the coating flexibility and fluid-structure interaction mechanism. Consequently, the acceleration peaks induced by both shock wave and bubble pulse were reduced. The shock environment can be more effectively improved by honeycomb coating when compared with monolithic coating. Most of the strain peaks decreased to a certain extent, but some of them were notably manifested, especially for honeycomb coating. The test affirms the fact that soft coating can cause stress concentration on the shell that is in direct contact with the coating due to the impedance mismatch between the interfaces of materials. A softer rubber coating induces a greater magnitude of strain.
Diesselhorst, T.; Diatschuk, P.; Schnellhammer, W.
2005-01-01
Concerning the design for hydraulic load cases there is always a sequence of fluid- and structural dynamic calculations, where the structural vibrations are induced by the time depending fluid forces. Therefore, in order to prevent excessive structural reactions, it is most important to avoid conservative fluid dynamic results. That refers to the maximum value of the pressure surge as well as to the damping of pressure oscillations. This is especially relevant in case of fluid-structure resonance. To meet these requirements the effect of dynamic wall friction was implemented in our fluid dynamic code. Thus, a more realistic damping behavior of the fluid forces was achieved. In the structural analysis code the damping of the pipe structure could be more accurate adapted to the real conditions. Additionally the local damping by viscous damper was included in the model. At supports now non-linear behavior like clearances can be simulated. The possibility of coupled calculation was installed to consider the effect of fluid structure interaction. The programmed effects are validated against measurement results from power plant systems. The favorable effects of the program improvements are demonstrated by typical examples. These included the realistic damping of pressure oscillations as well as a case of fluid-structure resonance. Additionally the effectiveness of the improved models of piping supports is demonstrated. (authors)
Bucinskas, Paulius; Agapii, L.; Sneideris, J.
2015-01-01
is idealized as a multi-degree-of-freedom system, modelled with two layers of spring-dashpot suspension systems. Coupling the vehicle system and railway track is realized through interaction forces between the wheels and the rail, where the irregularities of the track are implemented as a random stationary......The aim of this paper is the dynamic analysis of a multi-support bridge structure exposed to high-speed railway traffic. The proposed computational model has a unified approach for simultaneously accounting for the bridge structure response, soil response and forces induced by the vehicle....... The bridge structure is modelled in three dimensions based on the finite element method using two-noded three-dimensional beam elements. The track structure is composed of three layers: rail, sleepers and deck which are connected through spring-dashpot systems. The vehicle travelling along a bridge...
Strategic and structural responses to international dynamics in the open Dutch economy, 1963-2003
de Jong, Abe; Sluyterman, Keetie; Westerhuis, Gerarda
2011-01-01
This paper investigates the strategies, structures and performance of large Dutch firms in the period 1963-2003, and compares the results with those of other European companies. Did Dutch companies develop corporate strategies and structures comparable to other European companies in response to the
Dynamic response of cylindrical ACS support structures to core energy release
Kennedy, J.M.; Belytschko, T.B.
1985-01-01
The code SAFE/RAS is applied to the analysis of a new design concept for the above-core structures when subjected to the loads of a core disruptive accident. The analysis involves the determination of the postbuckling response of a thin cylinder loaded both axially and vertically. The effects of variation of cylinder thickness and fluid-structure interaction are investigated
Shear response of grain boundaries with metastable structures by molecular dynamics simulations
Zhang, Liang; Lu, Cheng; Shibuta, Yasushi
2018-04-01
Grain boundaries (GBs) can play a role as the favored locations to annihilate point defects, such as interstitial atoms and vacancies. It is thus highly probable that different boundary structures can be simultaneously present in equilibrium with each other in the same GB, and thus the GB achieves a metastable state. However, the structural transition and deformation mechanism of such GBs are currently not well understood. In this work, molecular dynamics simulations were carried out to study the multiple structures of a Σ5(310)/[001] GB in bicrystal Al and to investigate the effect of structural multiplicity on the mechanical and kinetic properties of such a GB. Different GB structures were obtained by changing the starting atomic configuration of the bicrystal model, and the GB structures had significantly different atomic density. For the Σ5(310) GB with metastable structures, GB sliding was the dominant mechanism at a low temperature (T = 10 K) under shear stress. The sliding mechanism resulted from the uncoordinated transformation of the inhomogeneous structural units. The nucleation of voids was observed during GB sliding at the low temperature, and the voids subsequently evolved to a nanocrack at the boundary plane. Increasing the temperature can induce the structural transition of local GB structures and can change their overall kinetic properties. GB migration with occasional GB sliding dominated the deformation mechanism at elevated temperatures (T = 300 and 600 K), and the migration process of the metastable GB structures is closely related to the thermally assisted diffusion mechanism.
Fundamentals of structural dynamics
Craig, Roy R
2006-01-01
From theory and fundamentals to the latest advances in computational and experimental modal analysis, this is the definitive, updated reference on structural dynamics.This edition updates Professor Craig's classic introduction to structural dynamics, which has been an invaluable resource for practicing engineers and a textbook for undergraduate and graduate courses in vibrations and/or structural dynamics. Along with comprehensive coverage of structural dynamics fundamentals, finite-element-based computational methods, and dynamic testing methods, this Second Edition includes new and e
Stoykovich, M.
1982-01-01
This paper presents the evaluation of the effects of supporting structures in dynamic analysis of equipment or piping systems, which involves formulations for determining reduced stiffness and mass matrices associated with the number of degrees of freedom corresponding to the support nodal points of a finite element model. Also, evaluation of a composite damping matrix associated with different damping properties of supporting structures, equipment, and piping systems is considered. Determination of spring constants, effective masses and mass moments of inertia, and damping values as fractions of critical damping on the basis of the theory of rigid bases on the surfaces of an elastic halfspace is demonstrated
Jaksic, Vesna; Mandic, Danilo P.; Karoumi, Raid; Basu, Bidroha; Pakrashi, Vikram
2016-01-01
Analysis of the variability in the responses of large structural systems and quantification of their linearity or nonlinearity as a potential non-invasive means of structural system assessment from output-only condition remains a challenging problem. In this study, the Delay Vector Variance (DVV) method is used for full scale testing of both pseudo-dynamic and dynamic responses of two bridges, in order to study the degree of nonlinearity of their measured response signals. The DVV detects the presence of determinism and nonlinearity in a time series and is based upon the examination of local predictability of a signal. The pseudo-dynamic data is obtained from a concrete bridge during repair while the dynamic data is obtained from a steel railway bridge traversed by a train. We show that DVV is promising as a marker in establishing the degree to which a change in the signal nonlinearity reflects the change in the real behaviour of a structure. It is also useful in establishing the sensitivity of instruments or sensors deployed to monitor such changes.
Ambriashvili, Y.K.; Krutzik, N.J.
1993-01-01
In order to verify the structural capacity of standardized WWER-1000 MW nuclear power plants, comprehensive static and dynamic analyses were performed in cooperation between Siemens and Atomenergoprojekt. The main goal of these investigations was to perform of a number of seismic analyses of standardized WWER-1000 reactor buildings on the basis of 13 given seismological inputs, taking into account the local soil conditions at 17 different sites defined by in-situ investigations. The analyses were based on appropriate mathematical models (equivalent beam models as well as detailed spatial surface element models) of the coupled vibrating structures (base structure, outer structure, containment, inner structure) and of the layered soil. The analyses were mainly performed using the indirect method (substructure method). Based on the results of the seismic analysis as well as the results of static analysis (pressure and temperature due to LOCA, dead weight, prestressing) an assessment was made of the seismic safety of the containment and the reactor building. Using a complex 3-dimensional model of the structure and the soil, the influence of the flexibility of the basement structure on the structural response was also studied. The structural analyses of the WWER-1000 reactor building led to the conclusion that its design accounts well for the main factors governing the dynamic behavior of the building. The assessment of the forces acting in the structures shows that the bearing capacity of the analyzed building structure corresponds to an earthquake intensity of about 0.2 g to 0.25 g
Valentín, D; Presas, A; Egusquiza, E; Valero, C
2014-01-01
The dynamic response of submerged and confined disk-like structures is of interest in the flied of hydraulic machinery, especially in hydraulic turbine runners. This response is difficult to be estimated with accuracy due to the strong influence of the boundary conditions. Small radial gaps as well as short axial distances to rigid surfaces greatly modify the dynamic response because the fact of the added mass and damping effects. Moreover, the effect of the shaft coupling is also important for certain mode-shapes of the structure. In the present study, the influence of the added mass effect and boundary conditions on the dynamic behavior of a submerged disk attached to a shaft is evaluated through experimental tests and structural- acoustic coupling numerical simulations. For the experimentation, a test rig has been developed. It consists of a confined disk attached to a shaft inside a cylindrical container full of water. The disk can be fixed at different axial positions along the shaft. Piezoelectric patches are used to excite the disk and the response is measured with submersible accelerometers. For each configuration tested, the natural frequencies of the disk and the shaft are studied. Numerical results have been compared with experimental results
Dynamic response of piping system on rack structure with gaps and frictions
Kobayashi, Hiroe; Yoshida, Misutoyo; Ochi, Yoshio
1989-01-01
In the seismic design of a piping system on a rack structure, the interaction between the piping system and the rack structure must be evaluated under the condition that the rack structure is not stiff and heavy enough compared with the piping system. Moreover, there are local nonlinearities due to the gap and friction between the piping system and the rack structure. This paper presents the influence of the interaction and the local nonlinearities upon the seismic response by numerical study and a vibration test using a shaking table. In the numerical study, the piping system and the rack structure were represented by the three degrees of freedom mass-spring model taking a vibration mode of the piping system into account. The nonlinearities due to gap and friction were defined as a function of motion and treated as the pseudo force vector (additional applied force) in an equation of motion. From the results of the numerical study and the vibration test, it was clarified that seismic response of both the rack structure and the piping system is reduced by gap and friction. Moreover, the piping system and rack structure can be represented by the three degrees of freedom mass spring model. And the local nonlinearities can be treated by the pseudo force in an equation of motion. (orig.)
Kaneda, Shogo; Hayashi, Kazuhiro; Hachimori, Wataru; Tamura, Shuji; Saito, Taiki
2017-10-01
In past earthquake disasters, numerous building structure piles were damaged by soil liquefaction occurring during the earthquake. Damage to these piles, because they are underground, is difficult to find. The authors aim to develop a monitoring method of pile damage based on superstructure dynamic response. This paper investigated the relationship between the damage of large cross section cementitious piles and the dynamic response of the super structure using a centrifuge test apparatus. A dynamic specimen used simple cross section pile models consisting of aluminum rod and mortar, a saturated soil (Toyoura sand) of a relative density of 40% and a super structure model of a natural period of 0.63sec. In the shaking table test under a 50G field (length scale of 1/50), excitation was a total of 3 motions scaled from the Rinkai wave at different amplitudes. The maximum acceleration of each of the excitations was 602gal, 336gal and 299gal. The centrifuge test demonstrated the liquefaction of saturated soil and the failure behavior of piles. In the test result, the damage of piles affected the predominant period of acceleration response spectrum on the footing of the superstructure.
Effect of Piers Shape on the Dynamic Structural Responses of Prestressed Concrete Bridge: Part II
Ali Fadhil Naser
2016-03-01
Full Text Available Pier of bridge is usually used as a general term for any type of substructure located between horizontal spans and foundations. Piers give vertical supports for spans at intermediate points and perform two main functions. The objective of this study is to inspect the effect of piers shape on the dynamic structural performance by adopting theoretical dynamic analysis. The results of dynamic analysis of 25 bridges models show that the maximum value of natural frequency is equal to 5.64Hz in two circles piers bridge model. Therefore, this type of model has good stiffness and bearing capacity. The two square piers model, the one circle pier model, and the two circles piers model appear good stiffness because of the natural frequencies (5.30Hz, 5.52Hz, and 5.64Hz are more than the maximum forced frequencies (4.52Hz, 5.45Hz, and 4.52Hz respectively. According to the comparison between all models results, the two circles piers model has the higher stiffness because of this model has the maximum value of natural frequency (5.64Hz and it is more than all forced vibration frequencies of all others models. Therefore, this study recommends that using the bridge model of two circles piers in the bridges construction that consists of three spans (30m+40m+30m with section of box girder.
Effect of Piers Shape on the Dynamic Structural Responses of Prestressed Concrete Bridge: Part II
Ali Fadhil Naser
2016-12-01
Full Text Available Pier of bridge is usually used as a general term for any type of substructure located between horizontal spans and foundations. Piers give vertical supports for spans at intermediate points and perform two main functions. The objective of this study is to inspect the effect of piers shape on the dynamic structural performance by adopting theoretical dynamic analysis. The results of dynamic analysis of 25 bridges models show that the maximum value of natural frequency is equal to 5.64Hz in two circles piers bridge model. Therefore, this type of model has good stiffness and bearing capacity. The two square piers model, the one circle pier model, and the two circles piers model appear good stiffness because of the natural frequencies (5.30Hz, 5.52Hz, and 5.64Hz are more than the maximum forced frequencies (4.52Hz, 5.45Hz, and 4.52Hz respectively. According to the comparison between all models results, the two circles piers model has the higher stiffness because of this model has the maximum value of natural frequency (5.64Hz and it is more than all forced vibration frequencies of all others models. Therefore, this study recommends that using the bridge model of two circles piers in the bridges construction that consists of three spans (30m+40m+30m with section of box girder.
Frady, Greg; Nesman, Thomas; Zoladz, Thomas; Szabo, Roland
2010-01-01
For many years, the capabilities to determine the root-cause failure of component failures have been limited to the analytical tools and the state of the art data acquisition systems. With this limited capability, many anomalies have been resolved by adding material to the design to increase robustness without the ability to determine if the design solution was satisfactory until after a series of expensive test programs were complete. The risk of failure and multiple design, test, and redesign cycles were high. During the Space Shuttle Program, many crack investigations in high energy density turbomachines, like the SSME turbopumps and high energy flows in the main propulsion system, have led to the discovery of numerous root-cause failures and anomalies due to the coexistences of acoustic forcing functions, structural natural modes, and a high energy excitation, such as an edge tone or shedding flow, leading the technical community to understand many of the primary contributors to extremely high frequency high cycle fatique fluid-structure interaction anomalies. These contributors have been identified using advanced analysis tools and verified using component and system tests during component ground tests, systems tests, and flight. The structural dynamics and fluid dynamics communities have developed a special sensitivity to the fluid-structure interaction problems and have been able to adjust and solve these problems in a time effective manner to meet budget and schedule deadlines of operational vehicle programs, such as the Space Shuttle Program over the years.
Structure, Reactivity and Dynamics
Understanding structure, reactivity and dynamics is the core issue in chemical ... functional theory (DFT) calculations, molecular dynamics (MD) simulations, light- ... between water and protein oxygen atoms, the superionic conductors which ...
Damgaard, M.; Zania, Varvara; Andersen, L.V.
2014-01-01
, a computationally efficient modelling approach of including the dynamic soil–structure interaction into aeroelastic codes is presented with focus on monopile foundations. Semi-analytical frequency-domain solutions are applied to evaluate the dynamic impedance functions of the soil–pile system at a number...... of discrete frequencies. Based on a general and very stable fitting algorithm, a consistent lumped-parameter model of optimal order is calibrated to the impedance functions and implemented into the aeroelastic nonlinear multi-body code HAWC2 to facilitate the time domain analysis of a wind turbine under...... normal operating mode. The aeroelastic response is evaluated for three different foundation conditions, i.e. apparent fixity length, the consistent lumped-parameter model and fixed support at the seabed. The effect of soil–structure interaction is shown to be critical for the design, estimated in terms...
Pfeiffer, P.A.; Kulak, R.F.
1993-01-01
This paper presents a two-dimensional structural analysis for the evaluation of a single core subassembly due to internal overpressure associated with possible failure of fuel pins having high fission gas plenum pressure. Structural models are developed for the subassemblies and their surroundings with emphasis on the critical physical aspects of the problem. With these models the strains, deformations and the extent of permanent damage (plastic strain) to the subassemblies can be assessed. The nonlinear structural analyses was performed with a finite element program called STRAW (Structural Transient Response of Assembly Wrappers). This finite element program is applicable to nonlinear large displacement problems. The results of this study indicate that the permanent deformation (damage) is strongly influenced by the rise time (time to reach peak pressure) of the pressure pulse and the pressure in the fuel pin. The rise time is influenced by the opening time of the flow path for release of gas from the fuel pin plenum. Several examples are illustrated with various rise times and pressure magnitudes and the resulting permanent deformation of the hexcan wall. (author)
Pfeiffer, P.A.; Kulak, R.F.
1993-01-01
This paper presents a two-dimensional structural analysis for the evaluation of a single core subassembly due to internal overpressure associated with possible failure of fuel pins having high fission gas plenum pressure. Structural models are developed for the subassemblies and their surroundings with emphasis on the critical physical aspects of the problem. With these models the strains, deformations and the extent of permanent damage (plastic strain) to the subassemblies can be assessed. The nonlinear structural analyses was performed with a finite element program called STRAW (Structural Transient Response of Assembly Wrappers). This finite element program is applicable to nonlinear large displacement problems. The results of this study indicate that the permanent deformation (damage) is strongly influenced by the rise time (time to reach peak pressure) of the pressure pulse and the pressure in the fuel pin. The rise time is influenced by the opening time of the flow path for release of gas from the fuel pin plenum. Several examples are illustrated with various rise times and pressure magnitudes and the resulting permanent deformation of the hexcan wall
Pfeiffer, P.A.; Kulak, R.F.
1993-01-01
This paper presents a two-dimensional structural analysis for the evaluation of a single core subassembly due to internal overpressure associated with possible failure of fuel pins having high fission gas plenum pressure. Structural models are developed for the subassemblies and their surroundings with emphasis on the critical physical aspects of the problem. With these models the strains, deformations and the extent of permanent damage (plastic strain) to the subassemblies can be assessed. The nonlinear structural analyses was performed with a finite element program called STRAW (Structural Transient Response of Assembly Wrappers). This finite element program is applicable to nonlinear large displacement problems. The results of this study indicate that the permanent deformation (damage) is strongly influenced by the rise time (time to reach peak pressure) of the pressure pulse and the pressure in the fuel pin. The rise time is influenced by the opening time of the flow path for release of gas from the fuel pin plenum. Several examples are illustrated with various rise times and pressure magnitudes and the resulting permanent deformation of the hexcan wall
Optimal Reference Strain Structure for Studying Dynamic Responses of Flexible Rockets
Tsushima, Natsuki; Su, Weihua; Wolf, Michael G.; Griffin, Edwin D.; Dumoulin, Marie P.
2017-01-01
In the proposed paper, the optimal design of reference strain structures (RSS) will be performed targeting for the accurate observation of the dynamic bending and torsion deformation of a flexible rocket. It will provide the detailed description of the finite-element (FE) model of a notional flexible rocket created in MSC.Patran. The RSS will be attached longitudinally along the side of the rocket and to track the deformation of the thin-walled structure under external loads. An integrated surrogate-based multi-objective optimization approach will be developed to find the optimal design of the RSS using the FE model. The Kriging method will be used to construct the surrogate model. For the data sampling and the performance evaluation, static/transient analyses will be performed with MSC.Natran/Patran. The multi-objective optimization will be solved with NSGA-II to minimize the difference between the strains of the launch vehicle and RSS. Finally, the performance of the optimal RSS will be evaluated by checking its strain-tracking capability in different numerical simulations of the flexible rocket.
Hoell, Simon; Omenzetter, Piotr
2015-03-01
The development of large wind turbines that enable to harvest energy more efficiently is a consequence of the increasing demand for renewables in the world. To optimize the potential energy output, light and flexible wind turbine blades (WTBs) are designed. However, the higher flexibilities and lower buckling capacities adversely affect the long-term safety and reliability of WTBs, and thus the increased operation and maintenance costs reduce the expected revenue. Effective structural health monitoring techniques can help to counteract this by limiting inspection efforts and avoiding unplanned maintenance actions. Vibration-based methods deserve high attention due to the moderate instrumentation efforts and the applicability for in-service measurements. The present paper proposes the use of cross-correlations (CCs) of acceleration responses between sensors at different locations for structural damage detection in WTBs. CCs were in the past successfully applied for damage detection in numerical and experimental beam structures while utilizing only single lags between the signals. The present approach uses vectors of CC coefficients for multiple lags between measurements of two selected sensors taken from multiple possible combinations of sensors. To reduce the dimensionality of the damage sensitive feature (DSF) vectors, principal component analysis is performed. The optimal number of principal components (PCs) is chosen with respect to a statistical threshold. Finally, the detection phase uses the selected PCs of the healthy structure to calculate scores from a current DSF vector, where statistical hypothesis testing is performed for making a decision about the current structural state. The method is applied to laboratory experiments conducted on a small WTB with non-destructive damage scenarios.
Structural Dynamics Laboratory (SDL)
Federal Laboratory Consortium — Structural dynamic testing is performed to verify the survivability of a component or assembly when exposed to vibration stress screening, or a controlled simulation...
Costello, J.F.; Ludwigsen, J.S.; Luk, V.K.; Hessheimer, M.F.
2000-01-01
The Nuclear Power Engineering Corporation of Japan and the US Nuclear Regulatory Commission Office of Nuclear Regulatory Research, are co-sponsoring and jointly funding a Cooperative Containment Research Program at Sandia National Laboratories, Albuquerque, New Mexico, USA. As a part of this program, a steel containment vessel model and contact structure assembly was tested to failure with over pressurization at Sandia on December 11--12, 1996. The steel containment vessel model was a mixed-scale model (1:10 in geometry and 1:4 in shell thickness) of a steel containment for an improved Mark-II Boiling Water Reactor plant in Japan. The contact structure, which is a thick, bell-shaped steel shell separated at a nominally uniform distance from the model, provides a simplified representation of features of the concrete reactor shield building in the actual plant. The objective of the internal pressurization test was to provide measurement data of the structural response of the model up to its failure in order to validate analytical modeling, to find its pressure capacity, and to observe the failure model and mechanisms
Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P; Jansson, Janet K; Hopkins, David W; Aspray, Thomas J; Seely, Mary; Trindade, Marla I; Cowan, Don A
2016-09-29
The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO 2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.
Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P.; Jansson, Janet K.; Hopkins, David W.; Aspray, Thomas J.; Seely, Mary; Trindade, Marla I.; Cowan, Don A.
2016-09-29
The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.
Anderson, James C
2012-01-01
A concise introduction to structural dynamics and earthquake engineering Basic Structural Dynamics serves as a fundamental introduction to the topic of structural dynamics. Covering single and multiple-degree-of-freedom systems while providing an introduction to earthquake engineering, the book keeps the coverage succinct and on topic at a level that is appropriate for undergraduate and graduate students. Through dozens of worked examples based on actual structures, it also introduces readers to MATLAB, a powerful software for solving both simple and complex structural d
Yue, Cong; Ren, Xingmin; Yang, Yongfeng; Deng, Wangqun
2016-01-01
This paper provides a precise and efficacious methodology for manifesting forced vibration response with respect to the time-variant linear rotational structure subjected to unbalanced excitation. A modified algorithm based on time step precise integration method and Magnus expansion is developed for instantaneous dynamic problems. The iterative solution is achieved by the ideology of transition and dimensional increment matrix. Numerical examples on a typical accelerating rotation system considering gyroscopic moment and mass unbalance force comparatively demonstrate the validity, effectiveness and accuracy with Newmark-β method. It is shown that the proposed algorithm has high accuracy without loss efficiency.
Nielsen, Søren R.K.
This book has been prepared for the course on Computational Dynamics given at the 8th semester at the structural program in civil engineering at Aalborg University.......This book has been prepared for the course on Computational Dynamics given at the 8th semester at the structural program in civil engineering at Aalborg University....
Li, Yan
1997-01-01
...) structural dynamic responses and damages after the part is placed in service. The sensor has a low profile and is embedded in the composites manufactured through processes such as Resin Transfer Molding (RTM...
Nonlinear dynamics of structures
Oller, Sergio
2014-01-01
This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics. This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects. Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution are studied, and the theoretical concepts and its programming algorithms are presented.
Creamer, Courtney A.; Filley, Timothy R.; Boutton, Thomas W.; Rowe, Helen I.
2016-06-01
Woodland encroachment into grasslands is a globally pervasive phenomenon attributed to land use change, fire suppression, and climate change. This vegetation shift impacts ecosystem services such as ground water allocation, carbon (C) and nutrient status of soils, aboveground and belowground biodiversity, and soil structure. We hypothesized that woodland encroachment would alter microbial community structure and function and would be related to patterns in soil C accumulation. To address this hypothesis, we measured the composition and δ13C values of soil microbial phospholipids (PLFAs) along successional chronosequences from C4-dominated grasslands to C3-dominated woodlands (small discrete clusters and larger groves) spanning up to 134 years. Woodland development increased microbial biomass, soil C and nitrogen (N) concentrations, and altered microbial community composition. The relative abundance of gram-negative bacteria (cy19:0) increased linearly with stand age, consistent with decreases in soil pH and/or greater rhizosphere development and corresponding increases in C inputs. δ13C values of all PLFAs decreased with time following woody encroachment, indicating assimilation of woodland C sources. Among the microbial groups, fungi and actinobacteria in woodland soils selectively assimilated grassland C to a greater extent than its contribution to bulk soil. Between the two woodland types, microbes in the groves incorporated relatively more of the relict C4-C than those in the clusters, potentially due to differences in below ground plant C allocation and organo-mineral association. Changes in plant productivity and C accessibility (rather than C chemistry) dictated microbial C utilization in this system in response to shrub encroachment.
Effects of Added Mass and Structural Damping on Dynamic Responses of a 3D Wedge Impacting on Water
Pengyao Yu
2018-05-01
Full Text Available The impact between the wave and the bottom of a high-speed vessel is often simplified as water-entry problems of wedges. Most investigations focus on the water entry of two dimensional (2D wedges. The effects of added mass and structural damping are still not fully investigated. By combining the normal mode method, the hydrodynamic impact model of rigid wedges and the potential flow theory, a dynamic model for predicting the response of a three dimensional (3D wedge impacting on water with a constant velocity is established in this paper. The present model can selectively consider the effects of the added mass and the structural damping. The present method has been validated through comparisons with results of published literatures and commercial software. It is found that the added mass can increase the stress response before the flow separation, and reduce the vibration frequency after the flow separation. Due to the effect of the added mass, the stress response of some positions after the flow separation is even higher than that before the flow separation. The structural damping has a negligible effect on the stress before the flow separation, but it can reduce vibration stress after the flow separation.
Zhifa Zhan
2017-07-01
Full Text Available Several post-earthquake investigations have indicated that the slope structure plays a leading role in the stability of rock slopes under dynamic loads. In this paper, the dynamic response of a horizontal layered-structure rock slope under harmonic Sv wave is studied by making use of the Fast Lagrangian Analysis of Continua method (FLAC. The suitability of FLAC for studying wave transmission across rock joints is validated through comparison with analytical solutions. After parametric studies on Sv wave transmission across the horizontal layered-structure rock slope, it is found that the acceleration amplification coefficient η, which is defined as the ratio of the acceleration at the monitoring point to the value at the toe, wavily increases with an increase of the height along the slope surface. Meanwhile, the fluctuation weakens with normalized joint stiffness K increasing and enhances with normalized joint spacing ξ increasing. The acceleration amplification coefficient of the slope crest ηcrest does not monotonously increase with the increase of ξ, but decreases with the increase of K. Additionally, ηcrest is more sensitive to ξ compared to K. From the contour figures, it can also be found that the contour figures of η take on rhythm, and the effects of ξ on the acceleration amplification coefficient are more obvious compared to the effects on K.
Methodology for combining dynamic responses
Cudlin, R.; Hosford, S.; Mattu, R.; Wichman, K.
1978-09-01
The NRC has historically required that the structural/mechanical responses due to various accident loads and loads caused by natural phenomena, (such as earthquakes) be combined when analyzing structures, systems, and components important to safety. Several approaches to account for the potential interaction of loads resulting from accidents and natural phenomena have been used. One approach, the so-called absolute or linear summation (ABS) method, linearly adds the peak structural responses due to the individual dynamic loads. In general, the ABS method has also reflected the staff's conservative preference for the combination of dynamic load responses. A second approach, referred to as SRSS, yields a combined response equal to the square root of the sum of the squares of the peak responses due to the individual dynamic loads. The lack of a physical relationship between some of the loads has raised questions as to the proper methodology to be used in the design of nuclear power plants. An NRR Working Group was constituted to examine load combination methodologies and to develop a recommendation concerning criteria or conditions for their application. Evaluations of and recommendations on the use of the ABS and SRSS methods are provided in the report
Fluid-structure coupled dynamic response of PWR core barrel during LOCA
Lu, M.W.; Zhang, Y.G.; Shi, F.
1991-01-01
This paper is engaged in the Fluid-Structure Interaction LOCA analysis of the core barrel of PWR. The analysis is performed by a multipurpose computer code SANES. The FSI inside the pressure vessel is treated by a FEM code including some structural and acoustic elements. The transient in the primary loop is solved by a two-phase flow code. Both codes are coupled one another. Some interesting conclusions are drawn. (author)
2015-07-01
entitled “Design guidelines for blast strengthening of concrete and masonry structures using Fiber - Reinforced Polymer (FRP).” Seismic provision...2 Reinforced Concrete Fiber Reinforced Polymers are frequently used to retrofit and repair reinforced concrete structures. Most of the work...tested 72 laboratory-size beams (3-in. by 3-in. cross-section and 30–in. long) of unreinforced and nylon fiber reinforced light-weight concrete that
Andreasen, Martin Møller; Meldrum, Andrew
This paper studies whether dynamic term structure models for US nominal bond yields should enforce the zero lower bound by a quadratic policy rate or a shadow rate specification. We address the question by estimating quadratic term structure models (QTSMs) and shadow rate models with at most four...
Derkevorkian, Armen; Peterson, Lee; Kolaini, Ali R.; Hendricks, Terry J.; Nesmith, Bill J.
2016-01-01
An analytic approach is demonstrated to reveal potential pyroshock -driven dynamic effects causing power losses in the Thermo -Electric (TE) module bars of the Mars Science Laboratory (MSL) Multi -Mission Radioisotope Thermoelectric Generator (MMRTG). This study utilizes high- fidelity finite element analysis with SIERRA/PRESTO codes to estimate wave propagation effects due to large -amplitude suddenly -applied pyro shock loads in the MMRTG. A high fidelity model of the TE module bar was created with approximately 30 million degrees -of-freedom (DOF). First, a quasi -static preload was applied on top of the TE module bar, then transient tri- axial acceleration inputs were simultaneously applied on the preloaded module. The applied input acceleration signals were measured during MMRTG shock qualification tests performed at the Jet Propulsion Laboratory. An explicit finite element solver in the SIERRA/PRESTO computational environment, along with a 3000 processor parallel super -computing framework at NASA -AMES, was used for the simulation. The simulation results were investigated both qualitatively and quantitatively. The predicted shock wave propagation results provide detailed structural responses throughout the TE module bar, and key insights into the dynamic response (i.e., loads, displacements, accelerations) of critical internal spring/piston compression systems, TE materials, and internal component interfaces in the MMRTG TE module bar. They also provide confidence on the viability of this high -fidelity modeling scheme to accurately predict shock wave propagation patterns within complex structures. This analytic approach is envisioned for modeling shock sensitive hardware susceptible to intense shock environments positioned near shock separation devices in modern space vehicles and systems.
Analysis of Nonlinear Dynamic Structures
Bheema
work a two degrees of freedom nonlinear system with zero memory was ... FRF is the most widely used method in structural dynamics which gives information about the ..... 3.6, which is the waterfall diagram of the same response, as well.
Grossi, D.; Royakkers, L.M.M.; Dignum, F.P.M.
2007-01-01
Aim of the present paper is to provide a formal characterization of various different notions of responsibility within groups of agents (Who did that? Who gets the blame? Who is accountable for that? etc.). To pursue this aim, the papers proposes an organic analysis of organized collective agency by
Minh, Nguyen Nguyen; Aoyagi, Yukio; Kanazu, Tsutomu; Ohtomo, Keizo; Matsumoto, Yasuaki
2000-01-01
Dynamic numerical simulation of a coupled soil-structure system by non-linear finite element method is presented. The target structure is the underground duct-type structure for emergency services in nuclear power plants. By appropriately modeling, including refinements in dynamic soil model and introduction of interface element, etc., the simulated results are in a very good agreement with the experimental results in terms of dynamic amplitudes and damaging process. A simple mesh generation program specific for the system with optimization concern is made. Some issues on computational aspects are then addressed. (author)
Bhoje, S.B.
2003-01-01
In view of thin walled large diameter shell structures with associated fluid effects, structural dynamics problems are very critical in a fast breeder reactor. Structural characteristics and consequent structural dynamics problems in typical pool type Fast Breeder Reactor are highlighted. A few important structural dynamics problems are pump induced as well as flow induced vibrations, seismic excitations, pressure transients in the intermediate heat exchangers and pipings due to a large sodium water reaction in the steam generator, and core disruptive accident loadings. The vibration problems which call for identification of excitation forces, formulation of special governing equations and detailed analysis with fluid structure interaction and sloshing effects, particularly for the components such as PSP, inner vessel, CP, CSRDM and TB are elaborated. Seismic design issues are presented in a comprehensive way. Other transient loadings which are specific to FBR, resulting from sodium-water reaction and core disruptive accident are highlighted. A few important results of theoretical as well as experimental works carried out for 500 MWe Prototype Fast Breeder Reactor (PFBR), in the domain of structural dynamics are presented. (author)
Intermediate disconnection of structures to improve the dynamic and the seismic response
Fabrizio, Cristiano; De Leo, Andrea M.; Di Egidio, Angelo
2016-01-01
In the last years some studies have started to investigate the opportunity to improve the seismic behavior of conventional structures by disconnecting one or more upper stories. An archetype model, constituted by a simple two-degree of freedom system, has been taken as representative of structures where a base isolation or a tuned mass damper scheme is used. The system has a constant total mass, while stiffness and mass ratios are taken as variable parameters. An extensive parametric analysis has been performed to characterize the system. Two different types of behavior maps, one referring to the base isolation and the other to the tuned mass damper, have been obtained. In these maps the regions where a base isolation or a tuned mass damper system works properly are well recognizable and it is also possible to point out some other regions of the parameters space where both systems work well. Some numerical simulations, performed on shear-type systems, have been performed to confirm the results provided by the archetype model.
Paultre, Patrick
2013-01-01
This book covers structural dynamics from a theoretical and algorithmic approach. It covers systems with both single and multiple degrees-of-freedom. Numerous case studies are given to provide the reader with a deeper insight into the practicalities of the area, and the solutions to these case studies are given in terms of real-time and frequency in both geometric and modal spaces. Emphasis is also given to the subject of seismic loading. The text is based on many lectures on the subject of structural dynamics given at numerous institutions and thus will be an accessible and practical aid to
Grant, Christopher James; Lutz, Allison K; Kulig, Aaron D; Stanton, Mitchell R
2016-12-01
Unconventional natural gas development and hydraulic fracturing practices (fracking) are increasing worldwide due to global energy demands. Research has only recently begun to assess fracking impacts to surrounding environments, and very little research is aimed at determining effects on aquatic biodiversity and contaminant biomagnification. Twenty-seven remotely-located streams in Pennsylvania's Marcellus Shale basin were sampled during June and July of 2012 and 2013. At each stream, stream physiochemical properties, trophic biodiversity, and structure and mercury levels were assessed. We used δ15N, δ13C, and methyl mercury to determine whether changes in methyl mercury biomagnification were related to the fracking occurring within the streams' watersheds. While we observed no difference in rates of biomagnificaion related to within-watershed fracking activities, we did observe elevated methyl mercury concentrations that were influenced by decreased stream pH, elevated dissolved stream water Hg values, decreased macroinvertebrate Index for Biotic Integrity scores, and lower Ephemeroptera, Plecoptera, and Trichoptera macroinvertebrate richness at stream sites where fracking had occurred within their watershed. We documented the loss of scrapers from streams with the highest well densities, and no fish or no fish diversity at streams with documented frackwater fluid spills. Our results suggest fracking has the potential to alter aquatic biodiversity and methyl mercury concentrations at the base of food webs.
Hassoon, O. H.; Tarfaoui, M.; El Moumen, A.; Benyahia, H.; Nachtane, M.
2018-06-01
The deformable composite structures subjected to water-entry impact can be caused a phenomenon called hydroelastic effect, which can modified the fluid flow and estimated hydrodynamic loads comparing with rigid body. This is considered very important for ship design engineers to predict the global and the local hydrodynamic loads. This paper presents a numerical model to simulate the slamming water impact of flexible composite panels using an explicit finite element method. In order to better describe the hydroelastic influence and mechanical properties, composite materials panels with different stiffness and under different impact velocities with deadrise angle of 100 have been studied. In the other hand, the inertia effect was observed in the early stage of the impact that relative to the loading rate. Simulation results have been indicated that the lower stiffness panel has a higher hydroelastic effect and becomes more important when decreasing of the deadrise angle and increasing the impact velocity. Finally, the simulation results were compared with the experimental data and the analytical approaches of the rigid body to describe the behavior of the hydroelastic influence.
Dynamic alarm response procedures
Martin, J.; Gordon, P.; Fitch, K.
2006-01-01
The Dynamic Alarm Response Procedure (DARP) system provides a robust, Web-based alternative to existing hard-copy alarm response procedures. This paperless system improves performance by eliminating time wasted looking up paper procedures by number, looking up plant process values and equipment and component status at graphical display or panels, and maintenance of the procedures. Because it is a Web-based system, it is platform independent. DARP's can be served from any Web server that supports CGI scripting, such as Apache R , IIS R , TclHTTPD, and others. DARP pages can be viewed in any Web browser that supports Javascript and Scalable Vector Graphics (SVG), such as Netscape R , Microsoft Internet Explorer R , Mozilla Firefox R , Opera R , and others. (authors)
Guo, C.; Yu, J.; Ho, T.-Y.; Wang, L.; Song, S.; Kong, L.; Liu, H.
2012-04-01
Recent studies have demonstrated atmospheric deposition as an important source of bioreactive compounds to the ocean. The South China Sea (SCS), where aerosol loading is among the highest in the world, however, is poorly studied, particularly on the in situ response of phytoplankton community structures to atmospheric deposition. By conducting a series of microcosm bioassays at different hydrographical locations and simulating different aerosol event scales, we observed both positive and negative responses to the input of East Asian (EA) aerosol with high nitrogen (N) and trace metal contents, in terms of biomass, composition and physiological characteristics of phytoplankton communities. High levels of aerosol loading relieved phytoplankton nitrogen and trace metal limitations in SCS, and thus increased total phytoplankton biomass, enhanced their physiological indicators (e.g. photosynthetic efficiency) and shifted phytoplankton assemblages from being dominated by picoplankton to microphytoplanton, especially diatoms. However, under low levels of aerosol loading, the composition shift and biomass accumulation were not apparent, suggesting that the stimulation effects might be counterbalanced by enhanced grazing mortality indicated by increased abundance of protist grazers. Trace metal toxicity of the aerosols might also be the reason for the reduction of picocyanobacteria when amended with high EA aerosols. The magnitude and duration of the deposition event, as well as the hydrographical and trophic conditions of receiving waters are also important factors when predicting the influence of an aerosol deposition event. Our results demonstrated different responses of phytoplankton and microbial food web dynamics to different scales of atmospheric input events in SCS and highlighted the need for achieving an accurate comprehension of atmospheric nutrient on the biogeochemical cycles of the oceans.
Kejlberg-Rasmussen, Casper
statements about our data structure, which are based on the structure of the underlying problem, that we are trying to solve. We can rely on the properties of the invariants when performing queries, and in return we need to ensure that the invariants remain true after we perform updates. When designing data......In this thesis I will address three dynamic data structure problems using the concept of invariants. The first problem is maintaining a dynamically changing set of keys – a dictionary – where the queries we can ask are: does it contain a given key? and what is the preceding (or succeeding) key...... to a given key? The updates we can do are: inserting a new key or deleting a given key. Our dictionary has the working set property, which means that the running time of a query depends on the query distribution. Specifically the time to search for a key depends on when we last searched for it. Our data...
Dynamic response of the electronic structure of Bi2Sr2CaCu2O8+δ
Freutel, Simon
2015-01-01
This work investigates the dynamic response of the electronic system of the high critical temperature superconductor Bi 2 Sr 2 CaCu 2 O 8+δ (Bi2212) due to the optical excitation by ultra short laser pulses. By using time- and angle-resolved photoemission spectroscopy on optimally and underdoped Bi2212 in the pseudogap phase two effects revealed by changes in the electronic structure are being discussed which, due to their different temporal behaviors, can be considered as independent. First, this is an photoinduced change of the effective mass m* around the kink energy of E - E F = -70 meV, that occurs during the experiment's time resolution of ∝100 fs and therefore can be interpreted as perturbation of the underlying electronic interaction caused directly by the pump pulse. Second, a shift of the Fermi surface vector k F is observed, that can be interpreted as an effective change of hole doping that gives rise to new opportunities for possible ultrafast optoelectronic devices based on optically induced phase transitions. Furthermore, the energy- and fluence-dependent dynamics of excited electrons are investigated, which exhibit a biexponential behavior. While the slow component of this decay seems to be independent from the excitation fluence, the fast component shows a pronounced jump in the corresponding decay time above and below the material's characteristic energy of 70 meV. This jump is most pronounced for the low fluences, which will be discussed in the context of an appropriate theoretical model system. Moreover, a major part of this work was the construction and build up of an entirely new experimental setup for photoemission spectroscopy. The main part regarding this issue consists of the design of 6-axis manipulator which is capable of moving the sample at low temperature independently in all 3 rotational and translational degrees of freedom. In the context of this work first tests and characterization measurements has been performed using
Shi, Chunhua; Gao, Yannan; Cai, Juan; Guo, Dong; Lu, Yan
2018-04-01
The response of the dynamic and thermodynamic structure of the stratosphere to the solar cycle in the boreal winter is investigated based on measurements of the solar cycle by the Spectral Irradiance Monitor onboard the SORCE satellite, monthly ERA-Interim Reanalysis data from the European Center for Medium-Range Weather Forecasts, the radiative transfer scheme of the Beijing Climate Center (BCC-RAD) and a multiple linear regression model. The results show that during periods of strong solar activity, the solar shortwave heating anomaly from the climatology in the tropical upper stratosphere triggers a local warm anomaly and strong westerly winds in mid-latitudes, which strengthens the upward propagation of planetary wave 1 but prevents that of wave 2. The enhanced westerly jet makes a slight adjustment to the propagation path of wave 1, but prevents wave 2 from propagating upward, decreases the dissipation of wave 2 in the extratropical upper stratosphere and hence weakens the Brewer-Dobson circulation. The adiabatic heating term in relation to the Brewer-Dobson circulation shows anomalous warming in the tropical lower stratosphere and anomalous cooling in the mid-latitude upper stratosphere.
Song, Hyun-Seob; Thomas, Dennis G.; Stegen, James C.; Li, Minjing; Liu, Chongxuan; Song, Xuehang; Chen, Xingyuan; Fredrickson, Jim K.; Zachara, John M.; Scheibe, Timothy D.
2017-09-29
In a recent study of denitrification dynamics in hyporheic zone sediments, we observed a significant time lag (up to several days) in enzymatic response to the changes in substrate concentration. To explore an underlying mechanism and understand the interactive dynamics between enzymes and nutrients, we developed a trait-based model that associates a community’s traits with functional enzymes, instead of typically used species guilds (or functional guilds). This enzyme-based formulation allows to collectively describe biogeochemical functions of microbial communities without directly parameterizing the dynamics of species guilds, therefore being scalable to complex communities. As a key component of modeling, we accounted for microbial regulation occurring through transcriptional and translational processes, the dynamics of which was parameterized based on the temporal profiles of enzyme concentrations measured using a new signature peptide-based method. The simulation results using the resulting model showed several days of a time lag in enzymatic responses as observed in experiments. Further, the model showed that the delayed enzymatic reactions could be primarily controlled by transcriptional responses and that the dynamics of transcripts and enzymes are closely correlated. The developed model can serve as a useful tool for predicting biogeochemical processes in natural environments, either independently or through integration with hydrologic flow simulators.
Structural system identification: Structural dynamics model validation
Red-Horse, J.R.
1997-04-01
Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.
Radiation response and chromatin dynamics
Ikura, Tsuyoshi
2009-01-01
Described is a recent progress in studies of chromatin structural alterations induced by DNA damage by radiation. DNA in eukaryotes exists in the chromatin structure and different mechanisms of response to damage and repair of DNA from those in prokaryotes have been recognized. Chromatin is composed from its unit structure of mono-nucleosome, which is formed from DNA and an octamer of core histones of H2A, H2B, H3 and H4. When DNA is damaged, histone structural alterations are required for repair factors and checkpoint proteins to access the damaged site. At the actual genome damage, chemical modification of histone to work as a code occurs dependently on the damage where chromatin remodeling factors and histone chaperone participate for structural alteration and remodeling. As well, the exchange of histone variants and fluidization of histones are recently reported. Known chemical modification involves phosphorylation, acetylation and ubiquitination of H2AX (a variant of H2A), and acetylation and methylation of H3. Each complex of TIP60, NuA4 and INO80 is known to be included in the regulation of chromatin with damaged/repaired DNA for remodeling, but little is known about recruitment of the factors concerned at the damage site. Regulatory mechanisms in above chromatin dynamics with consideration of quality and timing of radiation should be further elucidated for understanding the precise response to DNA damage. (K.T.)
Jahangir Khazaei
2017-08-01
Full Text Available In dynamic analysis, modeling of soil medium is ignored because of the infinity and complexity of the soil behavior and so the important effects of these terms are neglected, while the behavior of the soil under the structure plays an important role in the response of the structure during an earthquake. In fact, the soil layers and soil foundation structure interaction phenomena can increase the applied seismic forces during earthquakes that has been examined with different methods. In this paper, effects of soil foundation structure interaction on a steel high rise building has been modeled using Abaqus software for nonlinear dynamic analysis with finite element direct method and simulation of infinite boundary condition for soil medium and also approximate Cone model. In the direct method, soil, structure and foundation are modeled altogether. In other hand, for using Cone model as a simple model, dynamic stiffness coefficients have been employed to simulate soil with considering springs and dashpots in all degree of freedom. The results show that considering soil foundation structure interaction cause increase in maximum lateral displacement of structure and the friction coefficient of soil-foundation interface can alter the responses of structure. It was also observed that the results of the approximate methods have good agreement for engineering demands.
Schrader, K.-H.; Kaiser, A.; Krutzik, N.
1978-01-01
For the design of equipment and components of nuclear power plants with respect to their dynamic behavior it is necessary to know the dynamic load due to shock, or vibrating excitations, which might arise during the life time of the plant. In Germany these load cases are those listed in the heading. The objective of the paper is to compare the characteristics of the responses of the structure, which then have to serve as dynamic loads for the equipment. The paper deals with the following subjects:-survey and introduction of the code in Germany -conclusions concerning the mathematical model and the mechanical system for the computation of the dynamic response-comparison of the results which includes eigensystems, an overall picture of max/min values for displacements, as well as times histories and response spectra for critical points of the structure. For the F.E. Model, composed structures of ring elements and the method of the modal analysis have been used. (Author)
Structural building response review
1980-01-01
The integrity of a nuclear power plant during a postulated seismic event is required to protect the public against radiation. Therefore, a detailed set of seismic analyses of various structures and equipment is performed while designing a nuclear power plant. This report describes the structural response analysis method, including the structural model, soil-structure interaction as it relates to structural models, methods for seismic structural analysis, numerical integration methods, methods for non-seismic response analysis approaches for various response combinations, structural damping values, nonlinear response, uncertainties in structural properties, and structural response analysis using random properties. The report describes the state-of-the-art in these areas for nuclear power plants. It also details the past studies made at Sargent and Lundy to evaluate different alternatives and the conclusions reached for the specific purposes that those studies were intended. These results were incorporated here because they fall into the general scope of this report. The scope of the present task does not include performing new calculations
Dynamic analysis and design of offshore structures
Chandrasekaran, Srinivasan
2015-01-01
This book attempts to provide readers with an overall idea of various types of offshore platform geometries. It covers the various environmental loads encountered by these structures, a detailed description of the fundamentals of structural dynamics in a class-room style, estimate of damping in offshore structures and their applications in the preliminary analysis and design. Basic concepts of structural dynamics are emphasized through simple illustrative examples and exercises. Design methodologies and guidelines, which are FORM based concepts are explained through a few applied example structures. Each chapter also has tutorials and exercises for self-learning. A dedicated chapter on stochastic dynamics will help the students to extend the basic concepts of structural dynamics to this advanced domain of research. Hydrodynamic response of offshore structures with perforated members is one of the recent research applications, which is found to be one of the effective manner of retrofitting offshore structur...
Subudhi, M.; Bezler, P.
1984-01-01
Multiple independent support excitation time history formulations have been used to investigate simplified methods to predict the inertial (or dynamic) component of response as well as the pseudo-static (or static) component of response of secondary structures subjected to seismic excitations. For the dynamic component the independent response spectrum method is used with current industry practice for the modal and direction of excitation combinations being adopted and various procedures for the group combination and sequence being investigated. SRSS combination between support groups is found to yield satisfactory results. For the static component, support grouping by elevation for preliminary design followed by support grouping by attachment point for final design assure overall safety in the design
Structural stability of nonlinear population dynamics.
Cenci, Simone; Saavedra, Serguei
2018-01-01
In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.
Structural stability of nonlinear population dynamics
Cenci, Simone; Saavedra, Serguei
2018-01-01
In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.
Zhixiang Ju
2015-01-01
Full Text Available Based on the biological resource management of natural resources, a stage-structured predator-prey model with Holling type III functional response, birth pulse, and impulsive harvesting at different moments is proposed in this paper. By applying comparison theorem and some analysis techniques, the global attractivity of predator-extinction periodic solution and the permanence of this system are studied. At last, examples and numerical simulations are given to verify the validity of the main results.
Mollaioli, F.; Bruno, S.; Decanini, L.D.; Panza, G.F.
2006-12-01
The presence of long-period pulses in near-fault records can be considered as an important factor in causing damage due to the transmission of large amounts of energy to the structures in a very short time. Under such circumstances high-energy dissipation demands usually occur, which are likely to concentrate in the weakest parts of the structure. The maximum nonlinear response or collapse often happens at the onset of directivity pulse and fling, and this time is not predicted by the natural structural vibration periods. Nonlinear response leading to collapse may in most cases occur only during one large amplitude pulse of displacement. From the study of the response of both linear and nonlinear SDOF systems, the effects of these distinctive long-period pulses have been assessed by means of: (i) synthetic parameters directly derived from the strong ground motion records, and (ii) elastic and inelastic spectra of both conventional and energy-based seismic demand parameters. SDOF systems have first been subjected to records obtained during recent earthquakes in near-fault areas in forward directivity conditions. The results indicate that long duration pulses strongly affect the inelastic response, with very high energy and displacement demands which may be several times larger than the limit values specified by the majority of codes. In addition, from the recognition of the fundamental importance of velocity and energy-based parameters in the characterization of near-fault signals, idealized pulses equivalent to near-fault signals have been defined on account of such parameters. Equivalent pulses are capable of representing the salient observed features of the response to near-fault recorded ground motions. (author)
Zeng, Zhihui; Liu, Menglong; Xu, Hao; Liu, Weijian; Liao, Yaozhong; Jin, Hao; Zhou, Limin; Zhang, Zhong; Su, Zhongqing
2016-06-01
Inspired by an innovative sensing philosophy, a light-weight nanocomposite sensor made of a hybrid of carbon black (CB)/polyvinylidene fluoride (PVDF) has been developed. The nanoscalar architecture and percolation characteristics of the hybrid were optimized in order to fulfil the in situ acquisition of dynamic elastic disturbance from low-frequency vibration to high-frequency ultrasonic waves. Dynamic particulate motion induced by elastic disturbance modulates the infrastructure of the CB conductive network in the sensor, with the introduction of the tunneling effect, leading to dynamic alteration in the piezoresistivity measured by the sensor. Electrical analysis, morphological characterization, and static/dynamic electromechanical response interrogation were implemented to advance our insight into the sensing mechanism of the sensor, and meanwhile facilitate understanding of the optimal percolation threshold. At the optimal threshold (˜6.5 wt%), the sensor exhibits high fidelity, a fast response, and high sensitivity to ultrafast elastic disturbance (in an ultrasonic regime up to 400 kHz), yet with an ultralow magnitude (on the order of micrometers). The performance of the sensor was evaluated against a conventional strain gauge and piezoelectric transducer, showing excellent coincidence, yet a much greater gauge factor and frequency-independent piezoresistive behavior. Coatable on a structure and deployable in a large quantity to form a dense sensor network, this nanocomposite sensor has blazed a trail for implementing in situ sensing for vibration- or ultrasonic-wave-based structural health monitoring, by striking a compromise between ‘sensing cost’ and ‘sensing effectiveness’.
Modeling and identification in structural dynamics
Jayakumar, Paramsothy
1987-01-01
Analytical modeling of structures subjected to ground motions is an important aspect of fully dynamic earthquake-resistant design. In general, linear models are only sufficient to represent structural responses resulting from earthquake motions of small amplitudes. However, the response of structures during strong ground motions is highly nonlinear and hysteretic. System identification is an effective tool for developing analytical models from experimental data. Testing of full-scale prot...
Almomania, Belal; Kang, Hyun Gook; Lee, Sanghoon
2015-01-01
Several numerical methods and tests have been carried out to measure the capability of storage cask to withstand extreme impact loads. Testing methods are often constrained by cost, and difficulty in preparation for several impact conditions with different applied loads, and areas of impact. Instead, analytic method is an acceptable process that can easily apply different impact conditions for the evaluation of cask integrity. The aircraft engine impact is considered as one of the most critical impact accidents on the storage cask that significantly affects onto the lid closure system and may cause a considerable release of radioactive materials. This paper presents a method for evaluating the dynamic responses of one upper metal cask lid closure without impact limiters subjected to lateral impact of an aircraft engine with respect to variation of the impact velocity. An assessment method to predict damage response due to the lateral engine impact onto metal storage cask has been studied by using computer code LS-DYNA. The dynamic behavior of the lid movements was successfully calculated by utilizing a simplified finite element cask model, which showed a good agreement with the previous research. The simulation analyses results showed that no significant plastic deformation for bolts, lid, and the cask body. In this study, the lid opening and sliding displacements are considered as the major factors in initiating the leakage path. This analysis may be useful for evaluating the instantaneous leakage rates in a connection with the sliding and opening displacements between the lid and the flange to ensure that the radiological consequences caused by an aircraft engine crash accident during the storage phase are within the permissible level
Almomania, Belal; Kang, Hyun Gook [KAIST, Daejeon (Korea, Republic of); Lee, Sanghoon [Keimyung Univ., Daegu (Korea, Republic of)
2015-10-15
Several numerical methods and tests have been carried out to measure the capability of storage cask to withstand extreme impact loads. Testing methods are often constrained by cost, and difficulty in preparation for several impact conditions with different applied loads, and areas of impact. Instead, analytic method is an acceptable process that can easily apply different impact conditions for the evaluation of cask integrity. The aircraft engine impact is considered as one of the most critical impact accidents on the storage cask that significantly affects onto the lid closure system and may cause a considerable release of radioactive materials. This paper presents a method for evaluating the dynamic responses of one upper metal cask lid closure without impact limiters subjected to lateral impact of an aircraft engine with respect to variation of the impact velocity. An assessment method to predict damage response due to the lateral engine impact onto metal storage cask has been studied by using computer code LS-DYNA. The dynamic behavior of the lid movements was successfully calculated by utilizing a simplified finite element cask model, which showed a good agreement with the previous research. The simulation analyses results showed that no significant plastic deformation for bolts, lid, and the cask body. In this study, the lid opening and sliding displacements are considered as the major factors in initiating the leakage path. This analysis may be useful for evaluating the instantaneous leakage rates in a connection with the sliding and opening displacements between the lid and the flange to ensure that the radiological consequences caused by an aircraft engine crash accident during the storage phase are within the permissible level.
Dynamic analysis program for frame structure
Ando, Kozo; Chiba, Toshio
1975-01-01
A general purpose computer program named ISTRAN/FD (Isub(HI) STRucture ANalysis/Frame structure, Dynamic analysis) has been developed for dynamic analysis of three-dimensional frame structures. This program has functions of free vibration analysis, seismic response analysis, graphic display by plotter and CRT, etc. This paper introduces ISTRAN/FD; examples of its application are shown with various problems : idealization of the cantilever, dynamic analysis of the main tower of the suspension bridge, three-dimensional vibration in the plate girder bridge, seismic response in the boiler steel structure, and dynamic properties of the underground LNG tank. In this last example, solid elements, in addition to beam elements, are especially used for the analysis. (auth.)
Mahmoudpour, Sanaz; Attarnejad, Reza; Behnia, Cambyse
2011-01-01
Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite el...
Structural Dynamic Behavior of Wind Turbines
Thresher, Robert W.; Mirandy, Louis P.; Carne, Thomas G.; Lobitz, Donald W.; James, George H. III
2009-01-01
The structural dynamicist s areas of responsibility require interaction with most other members of the wind turbine project team. These responsibilities are to predict structural loads and deflections that will occur over the lifetime of the machine, ensure favorable dynamic responses through appropriate design and operational procedures, evaluate potential design improvements for their impact on dynamic loads and stability, and correlate load and control test data with design predictions. Load prediction has been a major concern in wind turbine designs to date, and it is perhaps the single most important task faced by the structural dynamics engineer. However, even if we were able to predict all loads perfectly, this in itself would not lead to an economic system. Reduction of dynamic loads, not merely a "design to loads" policy, is required to achieve a cost-effective design. The two processes of load prediction and structural design are highly interactive: loads and deflections must be known before designers and stress analysts can perform structural sizing, which in turn influences the loads through changes in stiffness and mass. Structural design identifies "hot spots" (local areas of high stress) that would benefit most from dynamic load alleviation. Convergence of this cycle leads to a turbine structure that is neither under-designed (which may result in structural failure), nor over-designed (which will lead to excessive weight and cost).
Structural dynamic modification
and stiffness matrices) andaor modal parameters, in order to acquire some ... For the above reasons, another modification approach is presented here ... The data necessary to solve the direct problem are dynamic behaviour of the original.
Dynamic testing of cable structures
Caetano Elsa
2015-01-01
Full Text Available The paper discusses the role of dynamic testing in the study of cable structures. In this context, the identification of cable force based on vibration measurements is discussed. Vibration and damping assessment are then introduced as the focus of dynamic monitoring systems, and particular aspects of the structural behaviour under environmental loads are analysed. Diverse application results are presented to support the discussion centred on cable-stayed bridges, roof structures, a guyed mast and a transmission line.
Dynamic epigenetic responses to muscle contraction
Rasmussen, Morten; Zierath, Juleen R; Barrès, Romain
2014-01-01
Skeletal muscle is a malleable organ that responds to a single acute exercise bout by inducing the expression of genes involved in structural, metabolic and functional adaptations. Several epigenetic mechanisms including histone H4 deacetylation and loss of promoter methylation have been implicated...... in modifying exercise-responsive gene expression. These transient changes suggest that epigenetic mechanisms are not restricted to early stages of human development but are broad dynamic controllers of genomic plasticity in response to environmental factors....
Dynamic analysis of embedded structures
Kausel, E.; Whitman, R.V.; Morray, J.P.
1977-01-01
The paper presents simplified rules to account for embeddment and soil layering in the soil-structure interaction problem, to be used in dynamic analysis. The relationship between the spring method, and a direct solution (in which both soil and structure are modeled with finite elements and linear members) is first presented. It is shown that for consistency of the results with the two solution methods the spring method should be performed in the following three steps: 1. Determination of the motion of the massless foundation (having the same shape as the actual one) when subjected to the same input motion as the direct solution. 2. Determination of the frequency dependent subgrade stiffness for the relevant degrees of freedom. 3. Computations of the response of the real structure supported on frequency dependent soil springs and subjected at the base of these springs to the motion computed in step 1. The first two steps require, in general, finite element methods, which would make the procedure not attractive. It is shown in the paper, however, that excellent approximations can be obtained, on the basis of 1-dimensional wave propagation theory for the solution of step 1, and correction factors modifying for embeddment the corresponding springs of a surface footing on a layered stratum, for the solution of step 2. (Auth.)
Nested Dynamic Condition Response Graphs
Hildebrandt, Thomas; Mukkamala, Raghava Rao; Slaats, Tijs
2012-01-01
We present an extension of the recently introduced declarative process model Dynamic Condition Response Graphs ( DCR Graphs) to allow nested subgraphs and a new milestone relation between events. The extension was developed during a case study carried out jointly with our industrial partner...
Structural dynamic modifications via models
The study shows that as many as half of the matrix ... the dynamicist's analytical modelling skill which would appear both in the numerator as. Figure 2. ..... Brandon J A 1990 Strategies for structural dynamic modification (New York: John Wiley).
De Canio, G.; Ranieri, N.
2009-01-01
Shake table tests allow to assess the effectiveness of technologies for structures protection from natural events such as earthquakes. The article summarizes the remarkable results of the most significant projects. [it
Barrett, Frederick S; Janata, Petr
2016-10-01
Nostalgia is an emotion that is most commonly associated with personally and socially relevant memories. It is primarily positive in valence and is readily evoked by music. It is also an idiosyncratic experience that varies between individuals based on affective traits. We identified frontal, limbic, paralimbic, and midbrain brain regions in which the strength of the relationship between ratings of nostalgia evoked by music and blood-oxygen-level-dependent (BOLD) signal was predicted by affective personality measures (nostalgia proneness and the sadness scale of the Affective Neuroscience Personality Scales) that are known to modulate the strength of nostalgic experiences. We also identified brain areas including the inferior frontal gyrus, substantia nigra, cerebellum, and insula in which time-varying BOLD activity correlated more strongly with the time-varying tonal structure of nostalgia-evoking music than with music that evoked no or little nostalgia. These findings illustrate one way in which the reward and emotion regulation networks of the brain are recruited during the experiencing of complex emotional experiences triggered by music. These findings also highlight the importance of considering individual differences when examining the neural responses to strong and idiosyncratic emotional experiences. Finally, these findings provide a further demonstration of the use of time-varying stimulus-specific information in the investigation of music-evoked experiences. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nielsen, Søren R.K.
The present textbook has been written for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M.Sc. students in structural engineering.......The present textbook has been written for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M.Sc. students in structural engineering....
The Structure and Dynamics of GRB Jets
Granot, Jonathan; /KIPAC, Menlo Park
2006-10-25
There are several lines of evidence which suggest that the relativistic outflows in gamma-ray bursts (GRBs) are collimated into narrow jets. The jet structure has important implications for the true energy release and the event rate of GRBs, and can constrain the mechanism responsible for the acceleration and collimation of the jet. Nevertheless, the jet structure and its dynamics as it sweeps up the external medium and decelerates, are not well understood. In this review I discuss our current understanding of GRB jets, stressing their structure and dynamics.
Structural-Vibration-Response Data Analysis
Smith, W. R.; Hechenlaible, R. N.; Perez, R. C.
1983-01-01
Computer program developed as structural-vibration-response data analysis tool for use in dynamic testing of Space Shuttle. Program provides fast and efficient time-domain least-squares curve-fitting procedure for reducing transient response data to obtain structural model frequencies and dampings from free-decay records. Procedure simultaneously identifies frequencies, damping values, and participation factors for noisy multiple-response records.
Tsakalidis, Konstantinos
multi-versioned indexing database. We ﬁrst present a generic method for making data structures fully persistent in external memory. This method can render any database multi-versioned, as long as its implementation abides by our assumptions. We obtain the result by presenting an implementation of B...
Cantat, Isabelle; Graner, François; Pitois, Olivier; Höhler, Reinard; Elias, Florence; Saint-Jalmes, Arnaud; Rouyer, Florence
2013-01-01
This book is the first to provide a thorough description of all aspects of the physico-chemical properties of foams. It sets out what is known about their structure, their stability, and their rheology. Engineers, researchers and students will find descriptions of all the key concepts, illustrated by numerous applications, as well as experiments and exercises for the reader. A solutions manual for lecturers is available via the publisher's web site.
Dynamical response of vibrating ferromagnets
Gaganidze, E; Ziese, M
2000-01-01
The resonance frequency of vibrating ferromagnetic reeds in a homogeneous magnetic field can be substantially modified by intrinsic and extrinsic field-related contributions. Searching for the physical reasons of the field-induced resonance frequency change and to study the influence of the spin glass state on it, we have measured the low-temperature magnetoelastic behavior and the dynamical response of vibrating amorphous and polycrystalline ferromagnetic ribbons. We show that the magnetoelastic properties depend strongly on the direction of the applied magnetic field. The influence of the re-entrant spin glass transition on these properties is discussed. We present clear experimental evidence that for applied fields perpendicular to the main area of the samples the behavior of ferromagnetic reeds is rather independent of the material composition and magnetic state, exhibiting a large decrease of the resonance frequency. This effect can be very well explained with a model based on the dynamical response of t...
Voltage Controlled Dynamic Demand Response
Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Mahat, Pukar
2013-01-01
Future power system is expected to be characterized by increased penetration of intermittent sources. Random and rapid fluctuations in demands together with intermittency in generation impose new challenges for power balancing in the existing system. Conventional techniques of balancing by large...... central or dispersed generations might not be sufficient for future scenario. One of the effective methods to cope with this scenario is to enable demand response. This paper proposes a dynamic voltage regulation based demand response technique to be applied in low voltage (LV) distribution feeders....... An adaptive dynamic model has been developed to determine composite voltage dependency of an aggregated load on feeder level. Following the demand dispatch or control signal, optimum voltage setting at the LV substation is determined based on the voltage dependency of the load. Furthermore, a new technique...
The Dynamic Responsiveness of Organizations
Andersen, Torben Juul
Organizational studies should address contemporary challenges of dealing effectively with the increasingly complex and dynamic business conditions. In this context we argue that structural features are linked to the corporate strategy process and affect the organization’s ability to respond...... to respond to uncertain and changing conditions. We apply this model to interactions among individuals in organizations where ongoing experiential insights among dispersed operating managers interact with the forward-looking planning considerations around top-management. This identifies an organization...... identifies a dynamic system of interacting fast and slow processes. The fast system observes and reacts to environmental stimuli and the slow system interprets events and reasons about future actions. When the fast and slow processes interact they form a dynamic adaptive system that allows the organization...
Silvia eBongiorno
2016-02-01
Full Text Available The knowledge of the molecular effects of the C313Y mutation, responsible for the double muscle phenotype in Piedmontese cattle, can help understanding the actual mechanism of phenotype determination and paves the route for a better modulation of the positive effects of this economic important phenotype in the beef industry, while minimizing the negative side effects, now inevitably intersected.The structure and dynamic behaviour of the active dimeric form of Myostatin in cattle was analyzed by means of three state-of-the-art Molecular Dynamics simulations, 200-ns long, of wild-type and C313Y mutants. Our results highlight a role for the conserved Arg333 in establishing a network of short and long range interactions between the two monomers in the wild-type protein that is destroyed upon the C313Y mutation even in a single monomer. Furthermore, the native protein shows an asymmetry in residue fluctuation that is absent in the double monomer mutant. Time window analysis on further 200-ns of simulation demonstrates that this is a characteristic behaviour of the protein, likely depended from the long range communications between monomers. The same behaviour, in fact, has already been observed in other mutated dimers. Finally, the mutation does not produce alterations in the secondary structure elements that compose the characteristic TGF-β cystine-knot motif.
Disruptions, loads, and dynamic response of ITER
Nelson, B.; Riemer, B.; Sayer, R.; Strickler, D.; Barabaschi, P.; Ioki, K.; Johnson, G.; Shimizu, K.; Williamson, D.
1995-01-01
Plasma disruptions and the resulting electromagnetic loads are critical to the design of the vacuum vessel and in-vessel components of the International Thermonuclear Experimental Reactor (ITER). This paper describes the status of plasma disruption simulations and related analysis, including the dynamic response of the vacuum vessel and in-vessel components, stresses and deflections in the vacuum vessel, and reaction loads in the support structures
Unifying dynamical and structural stability of equilibria
Arnoldi, Jean-François; Haegeman, Bart
2016-09-01
We exhibit a fundamental relationship between measures of dynamical and structural stability of linear dynamical systems-e.g. linearized models in the vicinity of equilibria. We show that dynamical stability, quantified via the response to external perturbations (i.e. perturbation of dynamical variables), coincides with the minimal internal perturbation (i.e. perturbations of interactions between variables) able to render the system unstable. First, by reformulating a result of control theory, we explain that harmonic external perturbations reflect the spectral sensitivity of the Jacobian matrix at the equilibrium, with respect to constant changes of its coefficients. However, for this equivalence to hold, imaginary changes of the Jacobian's coefficients have to be allowed. The connection with dynamical stability is thus lost for real dynamical systems. We show that this issue can be avoided, thus recovering the fundamental link between dynamical and structural stability, by considering stochastic noise as external and internal perturbations. More precisely, we demonstrate that a linear system's response to white-noise perturbations directly reflects the intensity of internal white-noise disturbance that it can accommodate before becoming stochastically unstable.
Butler, T.A.; Bennett, J.G.
1981-01-01
A nonlinear finite element model of a nuclear power plant containment building was developed to determine its ultimate pressure capability under quasistatic and impulsive dynamic loads. The ADINA finite element computer code was used to develop the model because of its capability to handle concrete cracking and crushing. Results indicate that, even though excessive concrete cracking occurs, failure is ultimately caused by rupture of post-tensioning tendons
Coherent structures and dynamical systems
Jimenez, Javier
1987-01-01
Any flow of a viscous fluid has a finite number of degrees of freedom, and can therefore be seen as a dynamical system. A coherent structure can be thought of as a lower dimensional manifold in whose neighborhood the dynamical system spends a substantial fraction of its time. If such a manifold exists, and if its dimensionality is substantially lower that that of the full flow, it is conceivable that the flow could be described in terms of the reduced set of degrees of freedom, and that such a description would be simpler than one in which the existence of structure was not recognized. Several examples are briefly summarized.
Relating structure and dynamics in organisation models
Jonkers, C.M.; Treur, J.
2002-01-01
To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems,
The dynamical conductance of graphene tunnelling structures
Zhang Huan; Chan, K S; Lin Zijing
2011-01-01
The dynamical conductances of graphene tunnelling structures were numerically calculated using the scattering matrix method with the interaction effect included in a phenomenological approach. The overall single-barrier dynamical conductance is capacitative. Transmission resonances in the single-barrier structure lead to dips in the capacitative imaginary part of the response. This is different from the ac responses of typical semiconductor nanostructures, where transmission resonances usually lead to inductive peaks. The features of the dips depend on the Fermi energy. When the Fermi energy is below half of the barrier height, the dips are sharper. When the Fermi energy is higher than half of the barrier height, the dips are broader. Inductive behaviours can be observed in a double-barrier structure due to the resonances formed by reflection between the two barriers.
The dynamical conductance of graphene tunnelling structures.
Zhang, Huan; Chan, K S; Lin, Zijing
2011-12-16
The dynamical conductances of graphene tunnelling structures were numerically calculated using the scattering matrix method with the interaction effect included in a phenomenological approach. The overall single-barrier dynamical conductance is capacitative. Transmission resonances in the single-barrier structure lead to dips in the capacitative imaginary part of the response. This is different from the ac responses of typical semiconductor nanostructures, where transmission resonances usually lead to inductive peaks. The features of the dips depend on the Fermi energy. When the Fermi energy is below half of the barrier height, the dips are sharper. When the Fermi energy is higher than half of the barrier height, the dips are broader. Inductive behaviours can be observed in a double-barrier structure due to the resonances formed by reflection between the two barriers.
Static and Dynamic Membrane Structures
Sergiu Ivanov
2012-10-01
Full Text Available While originally P systems were defined to contain multiset rewriting rules, it turned out that considering different types of rules may produce important results, such as increasing the computational power of the rules. This paper focuses on factoring out the concept of a membrane structure out of various P system models with the goal of providing useful formalisations. Both static and dynamic membrane structures are considered.
Li, Weibin; Hartmann, Henrik; Adams, Henry D; Zhang, Hongxia; Jin, Changjie; Zhao, Chuanyan; Guan, Dexin; Wang, Anzhi; Yuan, Fenghui; Wu, Jiabing
2018-06-11
Non-structural carbohydrates (NSC) play a central role in plant functioning as energy carriers and building blocks for primary and secondary metabolism. Many studies have investigated how environmental and anthropogenic changes, like increasingly frequent and severe drought episodes, elevated CO2 and atmospheric nitrogen (N) deposition, influence NSC concentrations in individual trees. However, this wealth of data has not been analyzed yet to identify general trends using a common statistical framework. A thorough understanding of tree responses to global change is required for making realistic predictions of vegetation dynamics. Here we compiled data from 57 experimental studies on 71 tree species and conducted a meta-analysis to evaluate general responses of stored soluble sugars, starch and total NSC (soluble sugars + starch) concentrations in different tree organs (foliage, above-ground wood and roots) to drought, elevated CO2 and N deposition. We found that drought significantly decreased total NSC in roots (-17.3%), but not in foliage and above-ground woody tissues (bole, branch, stem and/or twig). Elevated CO2 significantly increased total NSC in foliage (+26.2%) and roots (+12.8%), but not in above-ground wood. By contrast, total NSC significantly decreased in roots (-17.9%), increased in above-ground wood (+6.1%), but was unaffected in foliage from N fertilization. In addition, the response of NSC to three global change drivers was strongly affected by tree taxonomic type, leaf habit, tree age and treatment intensity. Our results pave the way for a better understanding of general tree function responses to drought, elevated CO2 and N fertilization. The existing data also reveal that more long-term studies on mature trees that allow testing interactions between these factors are urgently needed to provide a basis for forecasting tree responses to environmental change at the global scale.
Ma, Song; Li, Yajin; Li, Yang; Luo, Yunjun
2016-02-01
To improve the practicality and safety of a novel explosive dihydroxylamm onium 5,5'-bis (tetrazole)-1,1'-diolate (TKX-50), polyvinylidene difluoride (PVDF) and polychlorotrifluoroe-thylene (PCTFE) were respectively added to the TKX-50, forming the polymer-bonded explosives (PBX). Interfacial and mechanical properties of PBX were investigated through molecular dynamics (MD) method, desensitizing mechanisms of fluorine-polymers for TKX-50 were researched by compression and bulk shear simulations. Results show that the binding energies (E bind ) between polymers (PVDF or PCTFE) and TKX-50 surfaces all rank in order of (011) > (100) > (010), shorter interatomic distance and the resulted higher potentials lead to higher E bind on TKX-50/PVDF interfaces than that on PCTFE/TKX-50 interfaces. Compared with TKX-50, the ductility of PBX is improved due to the isotropic mechanical property and flexibility of fluorine-polymers especially the PCTFE. Desensitizing effect of fluorine-polymers for TKX-50 is found under loading condition, which is attributed to the enhanced compressibility and buffer capacity against external pressure in compression, as well as the improved lubricity to reduce the sliding potentials in bulk shear process. Graphical Abstract Comparisons of the internal stress and slide potentials of the novel explosive,TKX-50 and its based PBX. Desensitizing effects can be found by the adding of fluorine-polymers, it owes to their better flexibility and lubricity as well as the amorphous nature.
Dynamic lateral response of suction caissons
Latini, Chiara; Zania, Varvara
2017-01-01
Deeper water installations of offshore wind turbines may be supported by jacket structures. This study investigates the dynamic response of suction caissons for jackets by analysing 3D finite element models in the frequency domain. The numerical modelling was firstly validated by analytical...... solutions for pile foundations. Groups of crucial dimensionless parameters related to the soil profile and the foundation geometry are identified and their effects on the response of suction caissons are studied. Static stiffness coefficients are presented in a form of mathematical formulas obtained...... by fitting the numerical results, pertaining foundations with different slenderness ratios and embedded in different soil profiles. Sensitivity of the dynamic impedances of suction caissons on the skirt length was showed in this study. Moreover, the results for the suction caissons indicated that the overall...
Sharmeen, F.; Arentze, T.A.; Timmermans, H.J.P.
2014-01-01
Several studies in transportation literature have shown that in the short-term social networks play an important role in discretionary activity and travel decisions of an individual. However, social networks may not remain unchanged in the long term, particularly in response to life-cycle events
Dynamic Soil-Structure-Interaction
Kellezi, Lindita
1998-01-01
The aim of this thesis is to investigate and develop alternative methods of analyzing problems in dynamic soil-structure-interaction. The main focus is the major difficulty posed by such an analysis - the phenomenon of waves which radiate outward from the excited structures towards infinity....... In numerical calculations, only a finite region of the foundation metium is analyzed and something is done to prevent the outgoing radiating waves to reflect from the regions's boundary. The prosent work concerns itself with the study of such effects, using the finite element method, and artificial...... transmitting boundary at the edges of the computational mesh. To start with, an investigation of the main effects of the interaction phenomena is carried out employing a widely used model, considering dynamic stiffness of the unbounded soil as frequency independent. Then a complete description...
Dynamic analysis of the BPX machine structure
Dahlgen, F.; Citrolo, J.; Knutson, D.; Kalish, M.
1992-01-01
A preliminary analysis of the response of the BPX machine structure to a seismic input was performed. MSC/NASTRAN 5 , a general purpose XXX element computer code, has been used. The purpose of this paper is to assess the probable range of seismically induced stresses and deflections in the machine substructure which connects the machine to the test cell floor, with particular emphasis on the shear pins which will be used to attach the TF coil modules to the machine substructure (for a more detailed description of the shear pins and structure see ref. 4 in these proceedings). The model was developed with sufficient detail to be used subsequently to investigate the transient response to various dynamic loading conditions imposed on the structure by the PF, TF, and Vacuum Vessel, during normal and off-normal operations. The model does not include the mass and stiffness of the building or the building-soil interaction and as such can only be considered an interim assessment of the dynamic response of the machine to the S.S.E.(this is the Safe Shutdown Earthquake which is also the Design XXX Earthquake for all major structural components)
Dynamics of Quantum Causal Structures
Castro-Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav
2018-01-01
It was recently suggested that causal structures are both dynamical, because of general relativity, and indefinite, because of quantum theory. The process matrix formalism furnishes a framework for quantum mechanics on indefinite causal structures, where the order between operations of local laboratories is not definite (e.g., one cannot say whether operation in laboratory A occurs before or after operation in laboratory B ). Here, we develop a framework for "dynamics of causal structures," i.e., for transformations of process matrices into process matrices. We show that, under continuous and reversible transformations, the causal order between operations is always preserved. However, the causal order between a subset of operations can be changed under continuous yet nonreversible transformations. An explicit example is that of the quantum switch, where a party in the past affects the causal order of operations of future parties, leading to a transition from a channel from A to B , via superposition of causal orders, to a channel from B to A . We generalize our framework to construct a hierarchy of quantum maps based on transformations of process matrices and transformations thereof.
Dynamics of Quantum Causal Structures
Esteban Castro-Ruiz
2018-03-01
Full Text Available It was recently suggested that causal structures are both dynamical, because of general relativity, and indefinite, because of quantum theory. The process matrix formalism furnishes a framework for quantum mechanics on indefinite causal structures, where the order between operations of local laboratories is not definite (e.g., one cannot say whether operation in laboratory A occurs before or after operation in laboratory B. Here, we develop a framework for “dynamics of causal structures,” i.e., for transformations of process matrices into process matrices. We show that, under continuous and reversible transformations, the causal order between operations is always preserved. However, the causal order between a subset of operations can be changed under continuous yet nonreversible transformations. An explicit example is that of the quantum switch, where a party in the past affects the causal order of operations of future parties, leading to a transition from a channel from A to B, via superposition of causal orders, to a channel from B to A. We generalize our framework to construct a hierarchy of quantum maps based on transformations of process matrices and transformations thereof.
Ozisik, H.; Keltie, R.F.
1988-12-01
The open loop control technique of predicting a conditioned input signal based on a specified output response for a second order system has been analyzed both analytically and numerically to gain a firm understanding of the method. Differences between this method of control and digital closed loop control using pole cancellation were investigated as a follow up to previous experimental work. Application of the technique to diamond turning using a fast tool is also discussed.
近海风电机结构动力响应极值预报%Prediction of Structural Dynamic Response Extreme Values of Offshore Wind Turbine
王立夫
2017-01-01
鉴于国内外在预报风浪共同作用下近海风电机的极限结构动力响应方面仍然面临挑战的现状,提出用最小二乘法高效精确地求解广义柏拉图分布中的待定参数,预报某5 MW漂浮式风电机塔筒平台接合处的前后向弯矩极值,并用蒙特卡罗仿真和诊断图证明了最小二乘法与传统的矩方法相比的优越性.可为浮式海上风电机的结构设计提供参考.%Due to the fact that it is still a challenge at both home and abroad on how to predict the extreme structural dynamic responses of an offshore wind turbine under the con current action of wind and waves,the method of least squares is used to more efficiently and accurately estimate the unknown parameters in the Generalized Pareto distribution so that the extreme values of the fore-aft bending moments at the tower-Spar interface of a 5 MW floating wind turbine are predicted.Monte Carlo simulation and diagnostic plots are used to test the advantages of the method of least squares over the traditional method of moments.The new method proposed will become a powerful tool for the people in their structural design of a floating offshore wind turbine.
Zhu Dapeng
2015-01-01
Full Text Available Presently, foundation pit support structures are generally regarded as the temporary structures and the impact of vibration loads is often overlooked. As opposed to static and seismic loads, the vibration loads of subway trains are a type of cyclic load with a relatively long duration of action and a definite cycle; it is of great importance for the design of foundation pit support structures to correctly evaluate the impact of subway train vibrations on deep foundation pit and support works. In this paper, a dynamic three-dimensional numerical model is built that considers the vibration load of subway trains on the basis of the static numerical model for deep foundation pit support structures and simplified train loads to study the impact of train vibrations on deep foundation pit and permanent support structures. Studies have shown that the dynamic response of surface displacement mainly occurs in the early period of dynamic load, the vibration load of subway trains has little impact on ground subsidence, the support pile structure is in an elastic state during dynamic response under the action of subway train vibrations, and the action of train vibration loads is inimical to the safety of foundation pit support structures and should be closely studied.
Structure and dynamics of solutions
Ohtaki, H
2013-01-01
Recent advances in the study of structural and dynamic properties of solutions have provided a molecular picture of solute-solvent interactions. Although the study of thermodynamic as well as electronic properties of solutions have played a role in the development of research on the rate and mechanism of chemical reactions, such macroscopic and microscopic properties are insufficient for a deeper understanding of fast chemical and biological reactions. In order to fill the gap between the two extremes, it is necessary to know how molecules are arranged in solution and how they change their pos
Sierra Structural Dynamics Theory Manual
Reese, Garth M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-10-19
Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD , we refer the reader to Sierra/SD, User's Notes . Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature. This page intentionally left blank.
Dynamics and structure of stretched flames
Law, C.K. [Princeton Univ., NJ (United States)
1993-12-01
This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.
Dynamic response function and large-amplitude dissipative collective motion
Wu Xizhen; Zhuo Yizhong; Li Zhuxia; Sakata, Fumihiko.
1993-05-01
Aiming at exploring microscopic dynamics responsible for the dissipative large-amplitude collective motion, the dynamic response and correlation functions are introduced within the general theory of nuclear coupled-master equations. The theory is based on the microscopic theory of nuclear collective dynamics which has been developed within the time-dependent Hartree-Fock (TDHF) theory for disclosing complex structure of the TDHF-manifold. A systematic numerical method for calculating the dynamic response and correlation functions is proposed. By performing numerical calculation for a simple model Hamiltonian, it is pointed out that the dynamic response function gives an important information in understanding the large-amplitude dissipative collective motion which is described by an ensemble of trajectories within the TDHF-manifold. (author)
Handbook on dynamics of jointed structures.
Ames, Nicoli M.; Lauffer, James P.; Jew, Michael D.; Segalman, Daniel Joseph; Gregory, Danny Lynn; Starr, Michael James; Resor, Brian Ray
2009-07-01
The problem of understanding and modeling the complicated physics underlying the action and response of the interfaces in typical structures under dynamic loading conditions has occupied researchers for many decades. This handbook presents an integrated approach to the goal of dynamic modeling of typical jointed structures, beginning with a mathematical assessment of experimental or simulation data, development of constitutive models to account for load histories to deformation, establishment of kinematic models coupling to the continuum models, and application of finite element analysis leading to dynamic structural simulation. In addition, formulations are discussed to mitigate the very short simulation time steps that appear to be required in numerical simulation for problems such as this. This handbook satisfies the commitment to DOE that Sandia will develop the technical content and write a Joints Handbook. The content will include: (1) Methods for characterizing the nonlinear stiffness and energy dissipation for typical joints used in mechanical systems and components. (2) The methodology will include practical guidance on experiments, and reduced order models that can be used to characterize joint behavior. (3) Examples for typical bolted and screw joints will be provided.
Dynamic response of a multielement HTGR core
Reich, M.; Bezler, P.; Koplik, B.; Curreri, J.; Goradia, H.; Lasker, L.
1977-01-01
One of the primary factors in determining the structural integrity and consequently the safety of a High Temperature Gas-Cooled Reactor (HTGR) is the dynamic response of the core when subjected to a seismic excitation. The HTGR core under consideration consists of several thousands of hexagonal elements arranged in vertical stacks containing about eight elements per stack. There are clearance gaps between adjacent elements, which can change substantially due to radiation effects produced during their active lifetime. Surrounding the outer periphery of the core are reflector blocks and restraining spring-pack arrangements which bear against the reactor vessel structure (PCRV). Earthquake input motions to this type of core arrangement will result in multiple impacts between adjacent elements as well as between the reflector blocks and the restraining spring packs. The highly complex nonlinear response associated with the multiple collisions across the clearance gaps and with the spring packs is the subject matter of this paper. Of particular importance is the ability to analyze a complex nonlinear system with gaps by employing a model with a reduced number of masses. This is necessary in order to obtain solutions in a time-frame and at a cost which is not too expensive. In addition the effect of variations in total clearance as well as the initial distribution of clearances between adjacent elements is of primary concern. Both of these aspects of the problem are treated in the present analysis. Finally, by constraining the motion of the reflector blocks, a more realistic description of the dynamic response of the multi-element HTGR core is obtained
Dynamic buckling of inelastic structures
Pegon, P.; Guelin, P.
1983-01-01
The aim of this paper is to provide research engineers with a method of approach, qualitative feature and order of magnitude of the relevant parameters in the field of dynamic buckling of structures exhibiting constitutive irreversibility and geometrical, constitutive or loading imperfections. It is difficult to adjust some of the classical analysis of the quasi-static elastic case. There remain also some difficulties in justifying the choice of constitutive schemes and in dealing with general kinematic formulation. Moreover, the interpretation of dynamical experimental data is not an easy matter. Consequently, the attempts described here use a simple symbolic model including all essential physical aspects. This symbolic model, of discrete character, is an n-hinged strut with masses located at each n+1 joint. The constitutive properties of the strut and hinge are defined using the same method: a dash-pot is in parallel with a two fold element (spring and friction-slider in series). The intrinsic restrictions are: the two dimensionality assumption, however no additional hypothesis are made concerning the kinematic of the constitutive elements; the use of simple sources of intrinsic dissipation. The relevant question of the longitudinal-transverse coupling effects is studied. Then, after various validation, we verify that a Lagrange resolution of this n+1 body problem gives physical relevant qualitative results concerning rods and cylindrical shells subjected to impact loading. (orig./RW)
Relating structure and dynamics in organisation models
Jonker, C.M.; Treur, J.
2003-01-01
To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems, on
Fluid structural response of axially cracked cylinders
Garnich, M.R.; Simonen, F.A.
1985-03-01
The fluid structural (FS) response of a cylindrical pressure vessel to a suddenly occurring longitudinal through-wall crack is predicted. The effects of vessel internals and depressurization of the compressed water on dynamic crack opening displacements are investigated. A three dimensional (3D) structural finite element model is used as a basis for the development of a two dimensional (2D) FS model. A slice of the vessel taken at the crack midspan and normal to the cylinder axis is modeled. Crack opening displacements are compared between the 2D and 3D models, between the different assumptions about fluid depressurization, and between the static and dynamic solutions. The results show that effects of dynamic amplification associated with the sudden opening of the crack in the cylinder are largely offset by the local depressurization of the fluid adjacent to the crack
Discretization model for nonlinear dynamic analysis of three dimensional structures
Hayashi, Y.
1982-12-01
A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt
Gradient-based optimization in nonlinear structural dynamics
Dou, Suguang
The intrinsic nonlinearity of mechanical structures can give rise to rich nonlinear dynamics. Recently, nonlinear dynamics of micro-mechanical structures have contributed to developing new Micro-Electro-Mechanical Systems (MEMS), for example, atomic force microscope, passive frequency divider......, frequency stabilization, and disk resonator gyroscope. For advanced design of these structures, it is of considerable value to extend current optimization in linear structural dynamics into nonlinear structural dynamics. In this thesis, we present a framework for modelling, analysis, characterization......, and optimization of nonlinear structural dynamics. In the modelling, nonlinear finite elements are used. In the analysis, nonlinear frequency response and nonlinear normal modes are calculated based on a harmonic balance method with higher-order harmonics. In the characterization, nonlinear modal coupling...
Langevin dynamics for ramified structures
Méndez, Vicenç; Iomin, Alexander; Horsthemke, Werner; Campos, Daniel
2017-06-01
We propose a generalized Langevin formalism to describe transport in combs and similar ramified structures. Our approach consists of a Langevin equation without drift for the motion along the backbone. The motion along the secondary branches may be described either by a Langevin equation or by other types of random processes. The mean square displacement (MSD) along the backbone characterizes the transport through the ramified structure. We derive a general analytical expression for this observable in terms of the probability distribution function of the motion along the secondary branches. We apply our result to various types of motion along the secondary branches of finite or infinite length, such as subdiffusion, superdiffusion, and Langevin dynamics with colored Gaussian noise and with non-Gaussian white noise. Monte Carlo simulations show excellent agreement with the analytical results. The MSD for the case of Gaussian noise is shown to be independent of the noise color. We conclude by generalizing our analytical expression for the MSD to the case where each secondary branch is n dimensional.
Dynamic Failure of Composite and Sandwich Structures
Abrate, Serge; Rajapakse, Yapa D S
2013-01-01
This book presents a broad view of the current state of the art regarding the dynamic response of composite and sandwich structures subjected to impacts and explosions. Each chapter combines a thorough assessment of the literature with original contributions made by the authors. The first section deals with fluid-structure interactions in marine structures. The first chapter focuses on hull slamming and particularly cases in which the deformation of the structure affects the motion of the fluid during the water entry of flexible hulls. Chapter 2 presents an extensive series of tests underwater and in the air to determine the effects of explosions on composite and sandwich structures. Full-scale structures were subjected to significant explosive charges, and such results are extremely rare in the open literature. Chapter 3 describes a simple geometrical theory of diffraction for describing the interaction of an underwater blast wave with submerged structures. The second section addresses the problem of...
Lee, Hyun Ah; Kim, Yong Il; Park, Gyung Jin; Kang, Byung Soo; Kim, Joo Sung
2006-01-01
All the loads in the real world are dynamic loads and structural optimization under dynamic loads is very difficult. Thus the dynamic loads are often transformed to static loads by dynamic factors, which are believed equivalent to the dynamic loads. However, due to the difference of load characteristics, there can be considerable differences between the results from static and dynamic analyses. When the natural frequency of a structure is high, the dynamic analysis result is similar to that of static analysis due to the small inertia effect on the behavior of the structure. However, if the natural frequency of the structure is low, the inertia effect should not be ignored. then, the behavior of the dynamic system is different from that of the static system. The difference of the two cases can be explained from the relationship between the homogeneous and the particular solutions of the differential equation that governs the behavior of the structure. Through various examples, the difference between the dynamic analysis and the static analysis are shown. Also dynamic response optimization results are compared with the results with static loads transformed from dynamic loads by dynamic factors, which show the necessity of the design considering dynamic loads
LOFT system structural response during subcooled blowdown
Martinell, J.S.
1978-01-01
The Loss-of-Fluid Test (LOFT) facility is a highly instrumented, pressurized water reactor test system designed to be representative of large pressurized water reactors (LPWRs) for the simulation of loss-of-coolant accidents (LOCAs). Detailed structural analysis and appropriate instrumentation (accelerometers and strain gages) on the LOFT system provided information for evaluation of the structural response of the LOFT facility for loss-of-coolant experiment (LOCE) induced loads. In general, the response of the system during subcooled blowdown was small with typical structural accelerations below 2.0 G's and dynamic strains less than 150 x 10 - 6 m/m. The accelerations measured at the steam generator and simulated steam generator flange exceeded LOCE design values; however, integration of the accelerometer data at these locations yielded displacements which were less than one half of the design values associated with a safe shutdown earthquake (SSE), which assures structural integrity for LOCE loads. The existing measurement system was adequate for evaluation of the LOFT system response during the LOCEs. The conditions affecting blowdown loads during nuclear LOCEs will be nearly the same as those experienced during the nonnuclear LOCEs, and the characteristics of the structural response data in both types of experiments are expected to be the same. The LOFT system is concluded to be adequately designed and further analysis of the LOFT system with structural codes is not required for future LOCE experiments
Analog circuit design designing dynamic circuit response
Feucht, Dennis
2010-01-01
This second volume, Designing Dynamic Circuit Response builds upon the first volume Designing Amplifier Circuits by extending coverage to include reactances and their time- and frequency-related behavioral consequences.
Full scale dynamic testing of Kozloduy NPP unit 5 structures
Da Rin, E.M.
1999-01-01
As described in this report, the Kozloduy NPP western site has been subjected to low level earthquake-like ground shaking - through appropriately devised underground explosions - and the resulting dynamic response of the NPP reactor Unit 5 important structures appropriately measured and digitally recorded. In-situ free-field response was measured concurrently more than 100 m aside the main structures of interest. The collected experimental data provide reference information on the actual dynamic characteristics of the Kozloduy NPPs main structures, as well as give some useful indications on the dynamic soil-structure interaction effects for the case of low level excitation. Performing the present full-scale dynamic structural testing activities took advantage of the experience gained by ISMES during similar tests, lately performed in Italy and abroad (in particular, at the Paks NPP in 1994). The IAEA promoted dynamic testing of the Kozloduy NPP Unit 5 by means of pertinently designed buried explosion-induced ground motions which has provided a large amount of data on the dynamic structural response of its major structures. In the present report, the conducted investigation is described and the acquired digital data presented. A series of preliminary analyses were undertaken for examining in detail the ground excitation levels that were produced by these weak earthquake simulation experiments, as well as for inferring some structural characteristics and behaviour information from the collected data. These analyses ascertained the high quality of the collected digital data. Presumably due to soil-structure dynamic interaction effects, reduced excitation levels were observed at the reactor building foundation raft level with respect to the concurrent free-field ground motions. measured at a 140 m distance from the reactor building centre. Further more detailed and systematic analyses are worthwhile to be performed for extracting more complete information about the
Generation of equipment response spectrum considering equipment-structure interaction
Lee, Sang Hoon; Yoo, Kwang Hoon
2005-01-01
Floor response spectra for dynamic response of subsystem such as equipment, or piping in nuclear power plant are usually generated without considering dynamic interaction between main structure and subsystem. Since the dynamic structural response generally has the narrow-banded shapes, the resulting floor response spectra developed for various locations in the structure usually have high spectral peak amplitudes in the narrow frequency bands corresponding to the natural frequencies of the structural system. The application of such spectra for design of subsystems often leads to excessive design conservatisms, especially when the equipment frequency and structure are at resonance condition. Thus, in order to provide a rational and realistic design input for dynamic analysis and design of equipment, dynamic equipment-structure interaction (ESI) should be considered in developing equipment response spectrum which is particularly important for equipment at the resonance condition. Many analytical methods have been proposed in the past for developing equipment response spectra considering ESI. However, most of these methods have not been adapted to the practical applications because of either the complexities or the lack of rigorousness of the methods. At one hand, mass ratio among the equipment and structure was used as an important parameter to obtain equipment response spectra. Similarly, Tseng has also proposed the analytical method for developing equipment response spectra using mass ratio in the frequency domain. This method is analytically rigorous and can be easily validated. It is based on the dynamic substructuring method as applied to the dynamic soil-structure interaction (SSI) analysis, and can relatively easily be implemented for practical applications without to change the current dynamic analysis and design practice for subsystems. The equipment response spectra derived in this study are also based on Tseng's proposed method
Structural and dynamical properties of Yukawa balls
Block, D; Kroll, M; Arp, O; Piel, A; Kaeding, S; Ivanov, Y; Melzer, A; Henning, C; Baumgartner, H; Ludwig, P; Bonitz, M
2007-01-01
To study the structural and dynamical properties of finite 3D dust clouds (Yukawa balls) new diagnostic tools have been developed. This contribution describes the progress towards 3D diagnostics for measuring the particle positions. It is shown that these diagnostics are capable of investigating the structural and dynamical properties of Yukawa balls and gaining insight into their basic construction principles
Earthquake response of inelastic structures
Parulekar, Y.M.; Vaity, K.N.; Reddy, .R.; Vaze, K.K.; Kushwaha, H.S.
2004-01-01
The most commonly used method in the seismic analysis of structures is the response spectrum method. For seismic re-evaluation of existing facilities elastic response spectrum method cannot be used directly as large deformation above yield may be observed under Safe Shutdown Earthquake (SSE). The plastic deformation, i.e. hysteretic characteristics of various elements of the structure cause dissipation of energy. Hence the values of damping given by the code, which does not account hysteretic energy dissipation cannot be directly used. In this paper, appropriate damping values are evaluated for 5-storey, 10-storey and 15-storey shear beam structures, which deform beyond their yield limit. Linear elastic analysis is performed for the same structures using these damping values and the storey forces are compared with those obtained using inelastic time history analysis. A damping model, which relates ductility of the structure and damping, is developed. Using his damping model, a practical structure is analysed and results are compared with inelastic time history analysis and the comparison is found to be good
Structural biology by NMR: structure, dynamics, and interactions.
Phineus R L Markwick
2008-09-01
Full Text Available The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time-scales from picoseconds to seconds. Nuclear Magnetic Resonance (NMR spectroscopy has emerged as the method of choice for studying both protein structure and dynamics in solution. Typically, NMR experiments are sensitive both to structural features and to dynamics, and hence the measured data contain information on both. Despite major progress in both experimental approaches and computational methods, obtaining a consistent view of structure and dynamics from experimental NMR data remains a challenge. Molecular dynamics simulations have emerged as an indispensable tool in the analysis of NMR data.
Limitations and corrections in measuring dynamic characteristics of structural systems
Walter, P.L.
1978-10-01
The work deals with limitations encountered in measuring the dynamic characteristics of structural systems. Structural loading and response are measured by transducers possessing multiple resonant frequencies in their transfer function. In transient environments, the resultant signals from these transducers are shown to be analytically unpredictable in amplitude level and frequency content. Data recorded during nuclear effects simulation testing on structures are analyzed. Results of analysis can be generalized to any structure which encounters dynamic loading. Methods to improve the recorded data are described which can be implemented on a frequency selective basis during the measurement process. These improvements minimize data distortion attributable to the transfer characteristics of the measuring transducers
Mid-frequency Band Dynamics of Large Space Structures
Coppolino, Robert N.; Adams, Douglas S.
2004-01-01
High and low intensity dynamic environments experienced by a spacecraft during launch and on-orbit operations, respectively, induce structural loads and motions, which are difficult to reliably predict. Structural dynamics in low- and mid-frequency bands are sensitive to component interface uncertainty and non-linearity as evidenced in laboratory testing and flight operations. Analytical tools for prediction of linear system response are not necessarily adequate for reliable prediction of mid-frequency band dynamics and analysis of measured laboratory and flight data. A new MATLAB toolbox, designed to address the key challenges of mid-frequency band dynamics, is introduced in this paper. Finite-element models of major subassemblies are defined following rational frequency-wavelength guidelines. For computational efficiency, these subassemblies are described as linear, component mode models. The complete structural system model is composed of component mode subassemblies and linear or non-linear joint descriptions. Computation and display of structural dynamic responses are accomplished employing well-established, stable numerical methods, modern signal processing procedures and descriptive graphical tools. Parametric sensitivity and Monte-Carlo based system identification tools are used to reconcile models with experimental data and investigate the effects of uncertainties. Models and dynamic responses are exported for employment in applications, such as detailed structural integrity and mechanical-optical-control performance analyses.
Experimental study of structural response to earthquakes
Clough, R.W.; Bertero, V.V.; Bouwkamp, J.G.; Popov, E.P.
1975-01-01
The objectives, methods, and some of the principal results obtained from experimental studies of the behavior of structures subjected to earthquakes are described. Although such investigations are being conducted in many laboratories throughout the world, the information presented deals specifically with projects being carried out at the Earthquake Engineering Research Center (EERC) of the University of California, Berkeley. A primary purpose of these investigations is to obtain detailed information on the inelastic response mechanisms in typical structural systems so that the experimentally observed performance can be compared with computer generated analytical predictions. Only by such comparisons can the mathematical models used in dynamic nonlinear analyses be verified and improved. Two experimental procedures for investigating earthquake structural response are discussed: the earthquake simulator facility which subjects the base of the test structure to acceleration histories similar to those recorded in actual earthquakes, and systems of hydraulic rams which impose specified displacement histories on the test components, equivalent to motions developed in structures subjected to actual'quakes. The general concept and performance of the 20ft square EERC earthquake simulator is described, and the testing of a two story concrete frame building is outlined. Correlation of the experimental results with analytical predictions demonstrates that satisfactory agreement can be obtained only if the mathematical model incorporates a stiffness deterioration mechanism which simulates the cracking and other damage suffered by the structure
Nonlinear Dynamic Response of Compliant Journal Bearings
Glavatskih S.
2012-07-01
Full Text Available This paper investigates the dynamic response of the compliant tilting pad journal bearings subjected to synchronous excitation. Bearing compliance is affected by the properties of pad liner and pad support geometry. Different unbalance eccentricities are considered. It is shown that bearing dynamic response is non-linear. Journal orbit complexity increases with pad compliance though the orbit amplitudes are marginally affected at low loads. At high loads, the journal is forced to operate outside the bearing clearance. The polymer liner reduces the maximum oil film pressure by a factor of 2 when compared to the white metal liner. The nonlinear dynamic response of compliant tilting pad journal bearings is thoroughly discussed.
Rouzaud, C.; Gatuingt, F.; Hervé, G.; Moussallam, N.; Dorival, O.
2016-01-01
Highlights: • Structures could resist to the induced accelerations which they might undergo. • The characterization of non-linearities in the signal of an aircraft impact. • The non linear impact area are studied through a sensitivity analysis. • This analysis should allow to achieve a link between aircraft impact parameters. - Abstract: In the process of nuclear power plant design, the safety of structures is an important aspect. Civil engineering structures have to resist the accelerations induced by, for example, seismic loads or shaking loads resulting from the aircraft impact. This is even more important for the in-structures equipments that have also to be qualified against the vibrations generated by this kind of hazards. In the case of aircraft crash, as a large variety of scenarios has to be envisaged, it is necessary to use methods that are less CPU-time consuming and that consider appropriately the nonlinearities. The analysis presented in this paper deals with the problem of the characterization of nonlinearities (damaged area, transmitted force) in the response of a structure subjected to an aircraft impact. The purpose of our study is part of the development of a new decoupled nonlinear and elastic way for calculating the shaking of structures following an aircraft impact which could be very numerically costly if studied with classical finite element methods. The aim is to identify which parameters control the dimensions of the nonlinear zone and so will have a direct impact on the induced vibrations. In a design context, several load cases (and simulations) are analyzed in order to consider a wide range of impact (different loading surfaces, momentum) and data sets of the target (thickness, reinforcements). In this work, the nonlinear area generated by the impact is localized and studied through a parametric analysis associated with a sensitivity analysis to identify the boundaries between the elastic domain and this nonlinear area.
Chowdhary, Surabhi; Kainth, Amoldeep S; Gross, David S
2017-12-15
Three-dimensional (3D) chromatin organization is important for proper gene regulation, yet how the genome is remodeled in response to stress is largely unknown. Here, we use a highly sensitive version of chromosome conformation capture in combination with fluorescence microscopy to investigate Heat Shock Protein ( HSP ) gene conformation and 3D nuclear organization in budding yeast. In response to acute thermal stress, HSP genes undergo intense intragenic folding interactions that go well beyond 5'-3' gene looping previously described for RNA polymerase II genes. These interactions include looping between upstream activation sequence (UAS) and promoter elements, promoter and terminator regions, and regulatory and coding regions (gene "crumpling"). They are also dynamic, being prominent within 60 s, peaking within 2.5 min, and attenuating within 30 min, and correlate with HSP gene transcriptional activity. With similarly striking kinetics, activated HSP genes, both chromosomally linked and unlinked, coalesce into discrete intranuclear foci. Constitutively transcribed genes also loop and crumple yet fail to coalesce. Notably, a missense mutation in transcription factor TFIIB suppresses gene looping, yet neither crumpling nor HSP gene coalescence is affected. An inactivating promoter mutation, in contrast, obviates all three. Our results provide evidence for widespread, transcription-associated gene crumpling and demonstrate the de novo assembly and disassembly of HSP gene foci. Copyright © 2017 American Society for Microbiology.
POSTER : Identifying dynamic data structures in Malware
Rupprecht, Thomas; Chen, Xi; White, David H.; Mühlberg, Jan Tobias; Bos, Herbert; Lüttgen, Gerald
2016-01-01
As the complexity of malware grows, so does the necessity of employing program structuring mechanisms during development. While control ow structuring is often obfuscated, the dynamic data structures employed by the program are typically untouched. We report on work in progress that exploits this
Konda, Aravind Kumar; Farmer, Rohit; Soren, Khela Ram; P S, Shanmugavadivel; Setti, Aravind
2017-07-28
Chickpea is a premier food legume crop with high nutritional quality and attains prime importance in the current era of 795 million people being undernourished worldwide. Chickpea production encounters setbacks due to various stresses and understanding the role of key transcription factors (TFs) involved in multiple stresses becomes inevitable. We have recently identified a multi-stress responsive WRKY TF in chickpea. The present study was conducted to predict the structure of WRKY TF to identify the DNA-interacting residues and decipher DNA-protein interactions. Comparative modelling approach produced 3D model of the WRKY TF with good stereochemistry, local/global quality and further revealed W19, R20, K21, and Y22 motifs within a vicinity of 5 Å to the DNA amongst R18, G23, Q24, K25, Y36, Y37, R38 and K47 and these positions were equivalent to the 2LEX WRKY domain of Arabidopsis. Molecular simulations analysis of reference protein -PDB ID 2LEX, along with Car-WRKY TF modelled structure with the DNA coordinates derived from PDB ID 2LEX and docked using HADDOCK were executed. Root Mean Square (RMS) Deviation and RMS Fluctuation values yielded consistently stable trajectories over 50 ns simulation. Strengthening the obtained results, neither radius of gyration, distance and total energy showed any signs of DNA-WRKY complex falling apart nor any significant dissociation event over 50 ns run. Therefore, the study provides first insights into the structural properties of multi-stress responsive WRKY TF-DNA complex in chickpea, enabling genome wide identification of TF binding sites and thereby deciphers their gene regulatory networks.
The response dynamics of preferential choice.
Koop, Gregory J; Johnson, Joseph G
2013-12-01
The ubiquity of psychological process models requires an increased degree of sophistication in the methods and metrics that we use to evaluate them. We contribute to this venture by capitalizing on recent work in cognitive science analyzing response dynamics, which shows that the bearing information processing dynamics have on intended action is also revealed in the motor system. This decidedly "embodied" view suggests that researchers are missing out on potential dependent variables with which to evaluate their models-those associated with the motor response that produces a choice. The current work develops a method for collecting and analyzing such data in the domain of decision making. We first validate this method using widely normed stimuli from the International Affective Picture System (Experiment 1), and demonstrate that curvature in response trajectories provides a metric of the competition between choice options. We next extend the method to risky decision making (Experiment 2) and develop predictions for three popular classes of process model. The data provided by response dynamics demonstrate that choices contrary to the maxim of risk seeking in losses and risk aversion in gains may be the product of at least one "online" preference reversal, and can thus begin to discriminate amongst the candidate models. Finally, we incorporate attentional data collected via eye-tracking (Experiment 3) to develop a formal computational model of joint information sampling and preference accumulation. In sum, we validate response dynamics for use in preferential choice tasks and demonstrate the unique conclusions afforded by response dynamics over and above traditional methods. Copyright © 2013 Elsevier Inc. All rights reserved.
Dynamic response of the thermometric net radiometer
J. D. Wilson; W. J. Massman; G. E. Swaters
2009-01-01
We computed the dynamic response of an idealized thermometric net radiometer, when driven by an oscillating net longwave radiation intended roughly to simulate rapid fluctuations of the radiative environment such as might be expected during field use of such devices. The study was motivated by curiosity as to whether non-linearity of the surface boundary conditions...
Dynamic response of tunnels in jointed rocks
Heuze, F.E.; Shaffer, R.J.; Walton, O.R.; Maddix, D.M.
1992-03-01
We describe the application of the Discrete Element Method (DEM) to the dynamic analysis of the response of tunnels in jointed rocks to earthquake loading. In situations where large motions of many blocks and collapse occur, the discontinuum-based DEM approach appears superior to other methods of analysis
Dynamics and acceleration in linear structures
Le Duff, J.
1985-06-01
Basic methods of linear acceleration are reviewed. Both cases of non relativistic and ultra relativistic particles are considered. Induction linac, radiofrequency quadrupole are mentioned. Fundamental parameters of accelerating structures are recalled; they are transit time factor, shunt impedance, quality factor and stored energy, phase velocity and group velocity, filling time, space harmonics in loaded waveguides. Energy gain in linear accelerating structures is considered through standing wave structures and travelling wave structures. Then particle dynamics in linear accelerators is studied: longitudinal motion, transverse motion and dynamics in RFQ
Dynamic response analysis of the PSE torus
Arthur, D.F.
1977-01-01
The paper describes a structural dynamic analysis of the 1 / 5 -scale BWR toroidal wetwell. The subscale toroidal wetwell is part of the Pressure Suppression Experiment Facility at Lawrence Livermore Laboratory. The analysis objective is to show that experimental structural loads measured by load cells in the wetwell supports are consistent with the internal hydrodynamic forcing function measured by pressure transducers. Finite element analysis of the wetwell indicates that the load and pressure measurements are consistent
Structural and containment response to LMFBR accidents
Marchaterre, J.F.; Fistedis, S.H.; Baker, L. Jr.; Stepnewski, D.D.; Peak, R.D.; Gluekler, E.L.
1978-01-01
The results of current developments in analysing the response of reactor structures and containment to LMFBR accidents are presented. The current status of analysis of the structural response of LMFBR's to core disruptive accidents, including head response, potential missile generation and the effects of internal structures are presented. The results of recent experiments to help clarify the thermal response of reactor structures to molten core debris are summarized, including the use of this data to calculate the response of the secondary containment. (author)
31st IMAC Conference on Structural Dynamics
Adams, Douglas; Carrella, Alex; Mayes, Randy; Rixen, Daniel; Allen, Matt; Cunha, Alvaro; Catbas, Fikret; Pakzad, Shamim; Racic, Vitomir; Pavic, Aleksandar; Reynolds, Paul; Simmermacher, Todd; Cogan, Scott; Moaveni, Babak; Papadimitriou, Costas; Allemang, Randall; Clerck, James; Niezrecki, Christopher; Wicks, Alfred
2013-01-01
Topics in Nonlinear Dynamics, Volume 1: Proceedings of the 31st IMAC, A Conference and Exposition on Structural Dynamics, 2013, the first volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Nonlinear Oscillations Nonlinearities In Practice Nonlinear System Identification: Methods Nonlinear System Identification: Friction & Contact Nonlinear Modal Analysis Nonlinear Modeling & Simulation Nonlinear Vibration Absorbers Constructive Utilization of Nonlinearity.
Network structure shapes spontaneous functional connectivity dynamics.
Shen, Kelly; Hutchison, R Matthew; Bezgin, Gleb; Everling, Stefan; McIntosh, Anthony R
2015-04-08
The structural organization of the brain constrains the range of interactions between different regions and shapes ongoing information processing. Therefore, it is expected that large-scale dynamic functional connectivity (FC) patterns, a surrogate measure of coordination between brain regions, will be closely tied to the fiber pathways that form the underlying structural network. Here, we empirically examined the influence of network structure on FC dynamics by comparing resting-state FC (rsFC) obtained using BOLD-fMRI in macaques (Macaca fascicularis) to structural connectivity derived from macaque axonal tract tracing studies. Consistent with predictions from simulation studies, the correspondence between rsFC and structural connectivity increased as the sample duration increased. Regions with reciprocal structural connections showed the most stable rsFC across time. The data suggest that the transient nature of FC is in part dependent on direct underlying structural connections, but also that dynamic coordination can occur via polysynaptic pathways. Temporal stability was found to be dependent on structural topology, with functional connections within the rich-club core exhibiting the greatest stability over time. We discuss these findings in light of highly variable functional hubs. The results further elucidate how large-scale dynamic functional coordination exists within a fixed structural architecture. Copyright © 2015 the authors 0270-6474/15/355579-10$15.00/0.
ORGANIZATIONAL STRUCTURE AND INTERORGANIZATIONAL DYNAMICS.
AIKEN, MICHAEL; HAGE, JERALD
IN A STUDY OF ORGANIZATIONAL INTERDEPENDENCE, INTERVIEW RESPONSE DATA WERE OBTAINED IN A LARGE MIDWEST CITY FROM 520 STAFF MEMBERS OF TEN PRIVATE AND SIX PUBLIC SOCIAL WELFARE AND HEALTH ORGANIZATIONS PROVIDING SPECIAL SERVICES FOR THE MENTALLY RETARDED. INFORMATION OBTAINED FROM RESPONDENTS WAS POOLED TO REFLECT PROPERTIES OF THE 16…
Indoor footstep localization from structural dynamics instrumentation
Poston, Jeffrey D.; Buehrer, R. Michael; Tarazaga, Pablo A.
2017-05-01
Measurements from accelerometers originally deployed to measure a building's structural dynamics can serve a new role: locating individuals moving within a building. Specifically, this paper proposes measurements of footstep-generated vibrations as a novel source of information for localization. The complexity of wave propagation in a building (e.g., dispersion and reflection) limits the utility of existing algorithms designed to locate, for example, the source of sound in a room or radio waves in free space. This paper develops enhancements for arrival time determination and time difference of arrival localization in order to address the complexities posed by wave propagation within a building's structure. Experiments with actual measurements from an instrumented public building demonstrate the potential of locating footsteps to sub-meter accuracy. Furthermore, this paper explains how to forecast performance in other buildings with different sensor configurations. This localization capability holds the potential to assist public safety agencies in building evacuation and incidence response, to facilitate occupancy-based optimization of heating or cooling and to inform facility security.
Design optimization applied in structural dynamics
Akcay-Perdahcioglu, Didem; de Boer, Andries; van der Hoogt, Peter; Tiskarna, T
2007-01-01
This paper introduces the design optimization strategies, especially for structures which have dynamic constraints. Design optimization involves first the modeling and then the optimization of the problem. Utilizing the Finite Element (FE) model of a structure directly in an optimization process
Dynamical structure of space and time
Sannikov-Proskuryakov, S.S.
2000-01-01
A mathematically correct solution of the problem of ultraviolet divergences requires a radical change of our ideas on space and matter. We show that the space is a discontinuum in small which is the carrier of a new dynamical structure. Taking into account this structure, a new theory of elementary particles can be suggested
Rush, J.; Kerans, C.
2010-01-01
The uppermost Yates and Tansill formations (Late Permian), as exposed along Walnut Canyon in Carlsbad Caverns National Park, New Mexico, USA, provide a unique opportunity to document the depositional architecture of a progradational, oversteepened, and mechanically failure-prone carbonate platform. Detailed facies mapping permitted critical assessment of depositional processes operating along this structurally dynamic platform margin. At the shelf crest, thick (12 m), vertically stacked fenestral-pisolite-tepee complexes indicate a stable shoreline. Early lithification of sediments and extensive cementation fostered rapid vertical accretion and allowed the shelf crest to easily adjust to base-level oscillations by stepping landward, stepping seaward, or aggrading. This production imbalance-in combination with syndepositional brittle failure and down-to-the-basin tilting(architecture, fracture properties, and a highly refined fusulinid biostratigraphic framework. Where fractures tip out, down-to-the-basin rotation is often observed with concurrent seaward thickening of overlying beds, indicating that such fractures functioned as a syndepositional hinge. A facies disjunction and horizontally juxtaposed fusulinid zonation were documented across an 80?? seaward-dipping dilational fracture filled with polymict breccia. An overlying damage zone consisting of spar-cemented fractures nested within silt-filled fractures illustrates periodic reactivation. Field relationships indicate that the dilational fracture approximates a paleoescarpment that resulted from catastrophic failure of the Capitan platform margin. Younger strata onlapped the paleoescarpment and gradually filled the reentrant. This mechanically compromised paleoescarpment was subsequently reactivated during the latest Guadalupian lowstand and was subaerially filled by siliciclastics and polymict breccia derived from the platform top. Results from Walnut Canyon indicate that shelf crest aggradation dominantly
Modeling of Dynamic Responses in Building Insulation
Anna Antonyová
2015-10-01
Full Text Available In this research a measurement systemwas developedfor monitoring humidity and temperature in the cavity between the wall and the insulating material in the building envelope. This new technology does not disturb the insulating material during testing. The measurement system can also be applied to insulation fixed ten or twenty years earlier and sufficiently reveals the quality of the insulation. A mathematical model is proposed to characterize the dynamic responses in the cavity between the wall and the building insulation as influenced by weather conditions.These dynamic responses are manifested as a delay of both humidity and temperature changes in the cavity when compared with the changes in the ambient surrounding of the building. The process is then modeled through numerical methods and statistical analysis of the experimental data obtained using the new system of measurement.
Dynamic response analysis of DFB fibre lasers
Yujun, Qian; Varming, Poul; Povlsen, Jørn Hedegaard
1998-01-01
We present a model for relative intensity noise (RIN) in DFB fibre lasers which predicts measured characteristics accurately. Calculation results implies that the RIN decreases rapidly with stronger Bragg grating and higher pump power. We propose here a simplified model based on three spatially...... independent rate equations to describe the dynamic response of erbium doped DFB fibre lasers on pump power fluctuations, using coupled-mode theory to calculate the steady-state hole-burning of the erbium ion inversion...
Floor response spectra of buildings with uncertain structural properties
Chen, P.C.
1975-01-01
All Category I equipment, such as reactors, vessels, and major piping systems of nuclear power plants, is required to withstand earthquake loadings in order to minimize risk of seismic damage. The equipment is designed by using response spectra of the floor on which the equipment is mounted. The floor response spectra are constructed usually from the floor response time histories which are obtained through a deterministic dynamic analysis. This analysis assumes that all structural parameters, such as mass, stiffness, and damping have been calculated precisely, and that the earthquakes are known. However, structural parameters are usually difficult to determine precisely if the structures are massive and/or irregular, such as nuclear containments and its internal structures with foundation soil incorporated into the analysis. Faced with these uncertainties, it has been the practice to broaden the floor response spectra peaks by +-10 percent of the peak frequencies on the basis of conservatism. This approach is based on engineering judgement and does not have an analytical basis to provide a sufficient level of confidence in using these spectra for equipment design. To insure reliable design, it is necessary to know structural response variations due to variations in structural properties. This consideration leads to the treatment of structural properties as random variables and the use of probabilistic methods to predict structural response more accurately. New results on floor response spectra of buildings with uncertain structural properties obtained by determining the probabilistic dynamic response from the deterministic dynamic response and its standard deviation are presented. The resulting probabilistic floor response spectra are compared with those obtained deterministically, and are shown to provide a more reliable method for determining seismic forces
Dynamic Response of Three-Layered Annular Plate with Imperfections
Pawlus Dorota
2015-02-01
Full Text Available This paper presents the imperfection sensitivity of annular plate with three-layered structure. The plate composed of thin elastic facings and a thicker elastic core is loaded in facing plane. The classical issue of a three-layered plate was solved for dynamic deflection problem using the approximation methods: orthogonalization and finite difference. The solution includes the axisymmetric and asymmetric plate modes of the dynamic stability loss. The evaluation of the rate of plate sensitivity to imperfection of plate preliminary geometry has been enriched by the analysis of plate models built of finite elements. The ABAQUS program has been used. The numerous calculation results in the form of deflection characteristics, buckling modes, values of critical parameters create the view of response of dynamic plate structure with different rate of imperfection and linear in time loading growth, too.
Dynamic characteristics analysis of deployable space structures considering joint clearance
Li, Tuanjie; Guo, Jian; Cao, Yuyan
2011-04-01
The clearance in joints influences the dynamic stability and the performance of deployable space structures (DSS). A virtual experimental modal analysis (VEMA) method is proposed to deal with the effects of joint clearance and link flexibility on the dynamic characteristics of the DSS in this paper. The focus is on the finite element modeling of the clearance joint, VEMA and the modal parameters identification of the DSS. The finite element models (FEM) of the clearance joint and the deployable structure are established in ANSYS. The transient dynamic analysis is conducted to provide the time history data of excitation and response for the VEMA. The fast Fourier transform (FFT) technique is used to transform the data from time domain to frequency domain. The frequency response function is calculated to identify the modal parameters of the deployable structure. Experimental verification is provided to indicate the VEMA method is both a cost and time efficient approach to obtain the dynamic characteristics of the DSS. Finally, we analyze the effects of clearance size and gravity on the dynamic characteristics of the DSS. The analysis results indicate that the joint clearance and gravity strongly influence the dynamic characteristics of the DSS.
Suzuki, H.; Yoshida, K. [The University of Tokyo, Tokyo (Japan)
1996-12-31
A policy of improving a very large floating body was planned based on its dynamic characteristics, and a proposal was made thereon. Furthermore, discussions were given on stability that considers effect of elastic deformation required when a structure is mounted on a floating body. With respect to a structural design of a very large floating body in which elastic response is governing, and upon modeling the very large floating body into an aeolotropic plate on an elastic supporting floor, it was shown that the existing range of natural vibration speed in the elastic response is in higher range than the natural vibration speed of heave. It was also indicated that the peak height of response to waves in resonance is inversely proportional to wave frequency, and furthermore, degree of flowing in of vibration energy during the resonance is determined by an inner product of spatial vibration patterns of wave force and the excited mode shape. A proposal was made on a floating body improved of excessive response in the floating body edges by changing the characteristics of the floating body edges. In addition, discussions were given on stability that considers elastic deformation of a floating body that becomes necessary when a structure, such as a building, is built on a very large floating body. 9 refs., 9 figs., 3 tabs.
Suzuki, H; Yoshida, K [The University of Tokyo, Tokyo (Japan)
1997-12-31
A policy of improving a very large floating body was planned based on its dynamic characteristics, and a proposal was made thereon. Furthermore, discussions were given on stability that considers effect of elastic deformation required when a structure is mounted on a floating body. With respect to a structural design of a very large floating body in which elastic response is governing, and upon modeling the very large floating body into an aeolotropic plate on an elastic supporting floor, it was shown that the existing range of natural vibration speed in the elastic response is in higher range than the natural vibration speed of heave. It was also indicated that the peak height of response to waves in resonance is inversely proportional to wave frequency, and furthermore, degree of flowing in of vibration energy during the resonance is determined by an inner product of spatial vibration patterns of wave force and the excited mode shape. A proposal was made on a floating body improved of excessive response in the floating body edges by changing the characteristics of the floating body edges. In addition, discussions were given on stability that considers elastic deformation of a floating body that becomes necessary when a structure, such as a building, is built on a very large floating body. 9 refs., 9 figs., 3 tabs.
About the dynamics of structural phase transitions
Medeiros, J.T.N.
1975-01-01
The dynamics of structural phase transitions with a fourth order interaction between the soft phonon fields is studied in the 1/n approximation, using many body methods at finite temperatures. Two limits are considered: high transition temperature T sub(c) (classical limit) and T sub(c) = 0 (quantum limit). The dynamical contribution to the critical coefficient eta of the correlation function is calculated in these limits. It is found that there is no dynamical contribution to eta in the classical limit, whereas in the quantum limit eta is non-zero only for dimensions of the system d [pt
Simultaneous determination of protein structure and dynamics
Lindorff-Larsen, Kresten; Best, Robert B.; DePristo, M. A.
2005-01-01
at the atomic level about the structural and dynamical features of proteins-with the ability of molecular dynamics simulations to explore a wide range of protein conformations. We illustrate the method for human ubiquitin in solution and find that there is considerable conformational heterogeneity throughout......We present a protocol for the experimental determination of ensembles of protein conformations that represent simultaneously the native structure and its associated dynamics. The procedure combines the strengths of nuclear magnetic resonance spectroscopy-for obtaining experimental information...... the protein structure. The interior atoms of the protein are tightly packed in each individual conformation that contributes to the ensemble but their overall behaviour can be described as having a significant degree of liquid-like character. The protocol is completely general and should lead to significant...
Structural dynamics and vibration 1995. PD-Volume 70
Ovunc, B.A.; Esat, I.I.; Sabir, A.B.; Karadag, V.
1995-01-01
The themes of this symposium focused on: dynamic responses to temperature cycles and wind excitation; the influence of the hydraulic feedback on stability; structural reliability; vibratory stress relief; fault detection by signal processing; dynamic contact in mechanisms; vibration of thick flexible mechanisms; higher order mechanisms in flexible mechanisms; natural circular frequencies by finite element method; elastic buckling, stability, and vibration of linear and nonlinear structures; buckling of stiffened plates and rings; mixed variable optimization; vibration optimization; and optimization in a constrained space. Separate abstracts were prepared for 20 papers in this book
Full scale dynamic testing of Paks nuclear power plant structures
Da Rin, E.M.
1995-01-01
This report refers to the full-scale dynamic structural testing activities that have been performed in December 1994 at the Paks (H) Nuclear Power Plant, within the framework of: the IAEA Coordinated research Programme 'Benchmark Study for the Seismic Analysis and Testing of WWER-type Nuclear Power Plants, and the nuclear research activities of ENEL-WR/YDN, the Italian National Electricity Board in Rome. The specific objective of the conducted investigation was to obtain valid data on the dynamic behaviour of the plant's major constructions, under normal operating conditions, for enabling an assessment of their actual seismic safety to be made. As described in more detail hereafter, the Paks NPP site has been subjected to low level earthquake like ground shaking, through appropriately devised underground explosions, and the dynamic response of the plant's 1 st reactor unit important structures was appropriately measured and digitally recorded. In-situ free field response was measured concurrently and, moreover, site-specific geophysical and seismological data were simultaneously acquired too. The above-said experimental data is to provide basic information on the geophysical and seismological characteristics of the Paks NPP site, together with useful reference information on the true dynamic characteristics of its main structures and give some indications on the actual dynamic soil-structure interaction effects for the case of low level excitation
Structure and Dynamics of Negative Ions
None
2000-01-01
This report describes progress made during the final three-year grant period 1997-2000. During this period, we experimentally investigated the structure and dynamics of negative ions by detaching the outermost electron in controlled processes induced by photon-, electron- and heavy particle-impact. In this manner we studied, at a fundamental level, the role of electron correlation in the structure and dynamics of simple, few-particle atomic systems. Our measurements have provided sensitive tests of the ability of theory to go beyond the independent electron model
Structural dynamics of electronic and photonic systems
Suhir, Ephraim; Steinberg, David S
2011-01-01
The proposed book will offer comprehensive and versatile methodologies and recommendations on how to determine dynamic characteristics of typical micro- and opto-electronic structural elements (printed circuit boards, solder joints, heavy devices, etc.) and how to design a viable and reliable structure that would be able to withstand high-level dynamic loading. Particular attention will be given to portable devices and systems designed for operation in harsh environments (such as automotive, aerospace, military, etc.) In-depth discussion from a mechanical engineer's viewpoint will be conducte
Two stage approach to dynamic soil structure interaction
Nelson, I.
1981-01-01
A two stage approach is used to reduce the effective size of soil island required to solve dynamic soil structure interaction problems. The ficticious boundaries of the conventional soil island are chosen sufficiently far from the structure so that the presence of the structure causes only a slight perturbation on the soil response near the boundaries. While the resulting finite element model of the soil structure system can be solved, it requires a formidable computational effort. Currently, a two stage approach is used to reduce this effort. The combined soil structure system has many frequencies and wavelengths. For a stiff structure, the lowest frequencies are those associated with the motion of the structure as a rigid body. In the soil, these modes have the longest wavelengths and attenuate most slowly. The higher frequency deformational modes of the structure have shorter wavelengths and their effect attenuates more rapidly with distance from the structure. The difference in soil response between a computation with a refined structural model, and one with a crude model, tends towards zero a very short distance from the structure. In the current work, the 'crude model' is a rigid structure with the same geometry and inertial properties as the refined model. Preliminary calculations indicated that a rigid structure would be a good low frequency approximation to the actual structure, provided the structure was much stiffer than the native soil. (orig./RW)
Structural Dynamics and Data Analysis
Luthman, Briana L.
2013-01-01
This project consists of two parts, the first will be the post-flight analysis of data from a Delta IV launch vehicle, and the second will be a Finite Element Analysis of a CubeSat. Shock and vibration data was collected on WGS-5 (Wideband Global SATCOM- 5) which was launched on a Delta IV launch vehicle. Using CAM (CAlculation with Matrices) software, the data is to be plotted into Time History, Shock Response Spectrum, and SPL (Sound Pressure Level) curves. In this format the data is to be reviewed and compared to flight instrumentation data from previous flights of the same launch vehicle. This is done to ensure the current mission environments, such as shock, random vibration, and acoustics, are not out of family with existing flight experience. In family means the peaks on the SRS curve for WGS-5 are similar to the peaks from the previous flights and there are no major outliers. The curves from the data will then be compiled into a useful format so that is can be peer reviewed then presented before an engineering review board if required. Also, the reviewed data will be uploaded to the Engineering Review Board Information System (ERBIS) to archive. The second part of this project is conducting Finite Element Analysis of a CubeSat. In 2010, Merritt Island High School partnered with NASA to design, build and launch a CubeSat. The team is now called StangSat in honor of their mascot, the mustang. Over the past few years, the StangSat team has built a satellite and has now been manifested for flight on a SpaceX Falcon 9 launch in 2014. To prepare for the final launch, a test flight was conducted in Mojave, California. StangSat was launched on a Prospector 18D, a high altitude rocket made by Garvey Spacecraft Corporation, along with their sister satellite CP9 built by California Polytechnic University. However, StangSat was damaged during an off nominal landing and this project will give beneficial insights into what loads the CubeSat experienced during the crash
Chemical structure and dynamics: Annual report 1993
Colson, S.D.
1994-07-01
The Chemical Structure and Dynamics program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally-important interfaces. The research program is built around the established relationship between structure, thermodynamics, and kinetics. This research effort continues to evolve into a program of rigorous studies of fundamental molecular processes in model systems (e.g., well-characterized surfaces, single-component solutions, clusters, and biological molecules), and studies of complex systems found in the environment. Experimental studies of molecular and supramolecular structures and thermodynamics are key to understanding the nature of matter, and lead to direct comparison with computational results. Kinetic and mechanistic measurements, combined with real-time dynamics measurements of atomic and molecular motions during chemical reactions, provide for a molecular-level description of chemical reactions. The anticipated results of this work are the achievement of a quantitative understanding of chemical processes at complex interfaces, the development of new techniques for the detection and measurement of species at such interfaces, and the interpretation and extrapolation of the observations in terms of models of interfacial chemistry. The Chemical Structure and Dynamics research program includes five areas described in detail in this report: Reaction mechanisms at solid interfaces; Solution and solution interfaces; Structure and dynamics of biological systems; Analytical methods development; and atmospheric chemistry. Extended abstracts are presented for 23 studies.
Multiscale structure in eco-evolutionary dynamics
Stacey, Blake C.
In a complex system, the individual components are neither so tightly coupled or correlated that they can all be treated as a single unit, nor so uncorrelated that they can be approximated as independent entities. Instead, patterns of interdependency lead to structure at multiple scales of organization. Evolution excels at producing such complex structures. In turn, the existence of these complex interrelationships within a biological system affects the evolutionary dynamics of that system. I present a mathematical formalism for multiscale structure, grounded in information theory, which makes these intuitions quantitative, and I show how dynamics defined in terms of population genetics or evolutionary game theory can lead to multiscale organization. For complex systems, "more is different," and I address this from several perspectives. Spatial host--consumer models demonstrate the importance of the structures which can arise due to dynamical pattern formation. Evolutionary game theory reveals the novel effects which can result from multiplayer games, nonlinear payoffs and ecological stochasticity. Replicator dynamics in an environment with mesoscale structure relates to generalized conditionalization rules in probability theory. The idea of natural selection "acting at multiple levels" has been mathematized in a variety of ways, not all of which are equivalent. We will face down the confusion, using the experience developed over the course of this thesis to clarify the situation.
Structural dynamics in fast reactor accident analysis
Fistedis, S.H.
1975-01-01
Analyses and codes are under development combining the hydrodynamics and solid mechanics (and more recently the bubble dynamics) phenomena to gage the stresses, strains, and deformations of important primary components, as well as the overall adequacy of primary and secondary containments. An arbitrary partition of the structural components treated evolves into (1) a core mechanics effort; and (2) a primary system and containment program. The primary system and containment program treats the structural response of components beyond the core, starting with the core barrel. Combined hydrodynamics-solid mechanics codes provide transient stresses and strains and final deformations for components such as the reactor vessel, reactor cover, cover holddown bolts, as well as the pulses for which the primary piping system is to be analyzed. Both, Lagrangian and Eulerian two-dimensional codes are under development, which provide greater accuracy and longer durations for the treatment of HCDA. The codes are being augmented with bubble migration capability pertaining to the latter stages of the HCDA, after slug impact. Recent developments involve the adaptation of the 2-D Eulerian primary system code to the 2-D elastic-plastic treatment of primary piping. Pulses are provided at the vessel-primary piping interfaces of the inlet and outlet nozzles, calculation includes the elbows and pressure drops along the components of the primary piping system. Recent improvements to the primary containment codes include introduction of bending strength in materials, Langrangian mesh regularization techniques, and treatment of energy absorbing materials for the slug impact. Another development involves the combination of a 2-D finite element code for the reactor cover with the hydrodynamic containment code
Dynamic response of cracked hexagonal subassembly ducts
Glazik, J.L.; Petroski, H.J.
1979-01-01
The hexagonal subassembly ducts (hexcans) of current Liquid Metal Fast Breeder Reactor (LMFBR) designs are typically made of 20% coldworked Type 316 stainless steel. Prolonged exposure of this initially tough and ductile material to a fast neutron flux at high temperatures can result in severe embrittlement. Under these conditions, the unstable crack propagation of flaws, which may have been introduced during fabrication or transportation of the hexcans, is a problem of interest in LMFBR safety analysis. The abnormal overpressurization resulting from certain interactions within a subassembly, or the rupture of one or more fuel pins, may be sufficient to overload an otherwise subcritical crack in an embrittled hexcan. This paper examines the dynamic elastic response of flawed and unflawed fast reactor subassembly ducts. A plane-strain finite element analysis was performed for ducts containing internal corner cracks, as well as external midflat cracks. Two worst case loading situations were considered: rapid uniform internal pressurization and suddenly applied point loads at opposite midflats. The finite-element code CHILES, which can accomodate the stress singularities that occur at crack tips, was given dynamic capabilities through the inclusion of a consistent mass matrix and step-by-step time integration scheme. The SAP IV code was also employed for eigenvalue analysis and modal response. Although this code does not contain singular elements in its element library, dynamic stress intensity factors were calculated by a technique requiring only ordinary isoparametric quadrilaterals
Sanaz Mahmoudpour
2011-01-01
Full Text Available Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite element method and scaled boundary finite element method is applied. Finite element method is used to analyze the structure, and scaled boundary finite element method is applied in the analysis of unbounded soil region. Due to analytical solution in the radial direction, the radiation condition is satisfied exactly. The material behavior of soil and structure is assumed to be linear. The soil region is considered as a homogeneous half-space. The analysis is performed in time domain. A computer program is prepared to analyze the soil-structure system. Comparing the results with those in literature shows the exactness and competency of the proposed method.
Structure and dynamics of the solar chromosphere
Krijger, Johannes Mattheus
2002-01-01
The thesis "Structure and dynamics of the solar chromosphere" of J.M. Krijger is a study on the behavior of the solar chromosphere, the thin layer just above the solar surface (photosphere) visible in purple red light during a total solar eclipse. The most important result of this thesis is that the
Natural Poisson structures of nonlinear plasma dynamics
Kaufman, A.N.
1982-01-01
Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering. (Auth.)
Natural Poisson structures of nonlinear plasma dynamics
Kaufman, A.N.
1982-06-01
Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering
Structural dynamic modification using additive damping
elements, FEM and perturbation methods for reanalysis or structural dynamic modification ... to a system changes its mass, stiffness and damping. Thus ... due to the phase difference between stress ' and strain or 'a И E1 З iE2 for direct strain.
Proteins with Novel Structure, Function and Dynamics
Pohorille, Andrew
2014-01-01
Recently, a small enzyme that ligates two RNA fragments with the rate of 10(exp 6) above background was evolved in vitro (Seelig and Szostak, Nature 448:828-831, 2007). This enzyme does not resemble any contemporary protein (Chao et al., Nature Chem. Biol. 9:81-83, 2013). It consists of a dynamic, catalytic loop, a small, rigid core containing two zinc ions coordinated by neighboring amino acids, and two highly flexible tails that might be unimportant for protein function. In contrast to other proteins, this enzyme does not contain ordered secondary structure elements, such as alpha-helix or beta-sheet. The loop is kept together by just two interactions of a charged residue and a histidine with a zinc ion, which they coordinate on the opposite side of the loop. Such structure appears to be very fragile. Surprisingly, computer simulations indicate otherwise. As the coordinating, charged residue is mutated to alanine, another, nearby charged residue takes its place, thus keeping the structure nearly intact. If this residue is also substituted by alanine a salt bridge involving two other, charged residues on the opposite sides of the loop keeps the loop in place. These adjustments are facilitated by high flexibility of the protein. Computational predictions have been confirmed experimentally, as both mutants retain full activity and overall structure. These results challenge our notions about what is required for protein activity and about the relationship between protein dynamics, stability and robustness. We hypothesize that small, highly dynamic proteins could be both active and fault tolerant in ways that many other proteins are not, i.e. they can adjust to retain their structure and activity even if subjected to mutations in structurally critical regions. This opens the doors for designing proteins with novel functions, structures and dynamics that have not been yet considered.
Component mode synthesis in structural dynamics
Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.
1993-01-01
In seismic analysis of Nuclear Reactor Structures and equipments eigen solution requires large computer time. Component mode synthesis is an efficient technique with which one can evaluate dynamic characteristics of a large structure with minimum computer time. Due to this reason it is possible to do a coupled analysis of structure and equipment which takes into account the interaction effects. Basically in this the method large size structure is divided into small substructures and dynamic characteristics of individual substructure are determined. The dynamic characteristics of entire structure are evaluated by synthesising the individual substructure characteristics. Component mode synthesis has been applied in this paper to the analysis of a tall heavy water upgrading tower. Use of fixed interface normal modes, constrained modes, attachment modes in the component mode synthesis using energy principle and using Ritz vectors have been discussed. The validity of this method is established by solving fixed-fixed beam and comparing the results obtained by conventional and classical method. The eigen value problem has been solved using simultaneous iteration method. (author)
Response of sliding structures to seismic excitation: bibliographical study
Sarh, K.; Duval, C.
1992-11-01
Calculation of the seismic response of structures on sliding supports involves the dual problem of ''non-linear'' and ''random'' dynamic behaviour. After a review of the non-linearities common in dynamics, slipping is compared with a hysteresis phenomenon. Simple examples are then used to present the Fokker-Planck equation and the equivalent linearization method. Finally, the methods for modification of the excitation spectrum intended for the engineering calculations are recalled. (authors). 21 figs., 23 refs
The assessment of structural dynamics problems in nuclear reactor safety
Liebe, R.
1978-10-01
The paper discusses important physical features of structural dynamics problems in reactor safety. First a general characterization is given of the following problems: Containment deformation due to pool-dynamics during BWR-blowdown; behavior of the core internals due to PWR-blowdown loads; dynamic response of a nuclear power plant during an earthquake; fuel element deformation due to local pressure pulses in an LMFBR core. Several criterias are formulated to classify typical problems so that a better choise can be made both of appropriate mathematical/numerical as well as experimental techniques. The degree of physical coupling between structural dynamics and fluid dynamics is discussed in more detail since it requires particular attention when selecting problem-oriented methods of solution. Some examples are given to illustrate the application and to compare advantages and disadvantages of several numerical methods. Then description is given of experimental techniques in structural dynamics and typical problem areas are identified. Finally some results are presented concerning the fuel element deformation problem in LMFBRs and from the general considerations some important conclusions are summarized. (orig.) 891 RW 892 AP [de
Dynamic Frequency Response of Wind Power Plants
Altin, Müfit
according to their grid codes. In these scenarios particularly with high wind power penetration cases, conventional power plants (CPPs) such as old thermal power plants are planned to be replaced with wind power plants (WPPs). Consequently, the power system stability will be affected and the control...... to maintain sustainable and reliable operation of the power system for these targets, transmission system operators (TSOs) have revised the grid code requirements. Also, the TSOs are planning the future development of the power system with various wind penetration scenarios to integrate more wind power...... capability of WPPs would be investigated. The objective of this project is to analyze and identify the power system requirements for the synchronizing power support and inertial response control of WPPs in high wind power penetration scenarios. The dynamic frequency response of WPPs is realized...
Dynamical Response near Quantum Critical Points.
Lucas, Andrew; Gazit, Snir; Podolsky, Daniel; Witczak-Krempa, William
2017-02-03
We study high-frequency response functions, notably the optical conductivity, in the vicinity of quantum critical points (QCPs) by allowing for both detuning from the critical coupling and finite temperature. We consider general dimensions and dynamical exponents. This leads to a unified understanding of sum rules. In systems with emergent Lorentz invariance, powerful methods from quantum field theory allow us to fix the high-frequency response in terms of universal coefficients. We test our predictions analytically in the large-N O(N) model and using the gauge-gravity duality and numerically via quantum Monte Carlo simulations on a lattice model hosting the interacting superfluid-insulator QCP. In superfluid phases, interacting Goldstone bosons qualitatively change the high-frequency optical conductivity and the corresponding sum rule.
Methodology for combining dynamic responses. Technical report
Mattu, R.K.
1980-05-01
Procedures in accordance with Appendix A of 10 CFR 50, GDC 2, call for an appropriate combination of the effects of the accident loads and loads caused by natural phenomena (such as earthquakes) to be reflected in the design bases of safety equipment. This requirement of interaction of loads has been implemented in various ways both within the NRC and the Nuclear Industry. An NRR Working Group constituted to examine load combination methodologies developed recommendations which were published in September 1978 as NUREG-0484, (PB-287 432). Revision 1 of NUREG-0484 extends the conclusions of the original NUREG-0484 on the use of SRSS methodology for the combination of SSE and LOCA responses beyond RCPB to any other ASME Section III, Class 1, 2, or 3 affected system, component or support, and provides criteria for the combination of dynamic responses other than SSE and LOCA
Dynamic structural disorder in supported nanoscale catalysts
Rehr, J. J.; Vila, F. D.
2014-01-01
We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale
Dynamic structural disorder in supported nanoscale catalysts
Rehr, J. J.; Vila, F. D. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States)
2014-04-07
We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.
Dynamic Analysis of Wind Turbines Including Soil-Structure Interaction
Harte, M.; Basu, B.; Nielsen, Søren R.K.
2012-01-01
This paper investigates the along-wind forced vibration response of an onshore wind turbine. The study includes the dynamic interaction effects between the foundation and the underlying soil, as softer soils can influence the dynamic response of wind turbines. A Multi-Degree-of-Freedom (MDOF......) horizontal axes onshore wind turbine model is developed for dynamic analysis using an Euler–Lagrangian approach. The model is comprised of a rotor blade system, a nacelle and a flexible tower connected to a foundation system using a substructuring approach. The rotor blade system consists of three rotating...... for displacement of the turbine system are obtained and the modal frequencies of the combined turbine-foundation system are estimated. Simulations are presented for the MDOF turbine structure subjected to wind loading for different soil stiffness conditions. Steady state and turbulent wind loading, developed using...
Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure.
Liu, Shanbiao; Wu, Xing; Zhang, Dongdong; Guo, Congwei; Wang, Peng; Hu, Weida; Li, Xinming; Zhou, Xiaofeng; Xu, Hejun; Luo, Chen; Zhang, Jian; Chu, Junhao
2017-07-19
Mechanical flexible electronic skin has been focused on sensing various physical parameters, such as pressure and temperature. The studies of material design and array-accessible devices are the building blocks of strain sensors for subtle pressure sensing. Here, we report a new and facile preparation of a graphene hybrid structure with an ultrafast dynamic pressure response. Graphene oxide nanosheets are used as a surfactant to prevent graphene restacking in aqueous solution. This graphene hybrid structure exhibits a frequency-independent pressure resistive sensing property. Exceeding natural skin, such pressure sensors, can provide transient responses from static up to 10 000 Hz dynamic frequencies. Integrated by the controlling system, the array-accessible sensors can manipulate a robot arm and self-rectify the temperature of a heating blanket. This may pave a path toward the future application of graphene-based wearable electronics.
Verification of the Wind Response of a Stack Structure
D. Makovička
2003-01-01
Full Text Available This paper deals with verification analysis of the wind response of a power plant stack structure. Over a period two weeks the actual history of the dynamic response of the structure, and the direction and intensity of the actual wind load was measured, reported and processed with the use of a computer. The resulting data was used to verify the design stage data of the structure, with the natural frequencies and modes assumed by the design and with the dominant effect of other sources on the site. In conclusion the standard requirements are compared with the actual results of measurements and their expansion to the design load.
Chemical structure and dynamics. Annual report 1995
Colson, S.D.; McDowell, R.S.
1996-05-01
The Chemical Structure and Dynamics program is a major component of Pacific Northwest National Laboratory`s Environmental Molecular Sciences Laboratory (EMSL), providing a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for the characterization of waste tanks and pollutant distributions, and for detection and monitoring of trace atmospheric species.
Chemical structure and dynamics: Annual report 1996
Colson, S.D.; McDowell, R.S.
1997-03-01
The Chemical Structure and Dynamics (CS ampersand D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species
Annual Report 2000. Chemical Structure and Dynamics
Colson, Steven D.; McDowell, Robin S.
2001-04-15
This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS&D) program is meeting the need for a fundamental, molecular-level understanding by 1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; 2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and 3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.
Chemical structure and dynamics: Annual report 1996
Colson, S.D.; McDowell, R.S.
1997-03-01
The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species.
On R factors for dynamic structure crystallography
Coppens, Philip; Kaminski, Radoslaw; Schmøkel, Mette Stokkebro
2010-01-01
In studies of dynamic changes in crystals in which induced metastable species may have lifetimes of microseconds or less, refinements are most sensitive if based on the changes induced in the measured intensities. Agreement factors appropriate for such refinements, based on the ratios of the inte...... of the intensities before and after the external perturbation is applied, are discussed and compared with R factors commonly applied in static structure crystallography....
Feature Extraction for Structural Dynamics Model Validation
Farrar, Charles [Los Alamos National Laboratory; Nishio, Mayuko [Yokohama University; Hemez, Francois [Los Alamos National Laboratory; Stull, Chris [Los Alamos National Laboratory; Park, Gyuhae [Chonnam Univesity; Cornwell, Phil [Rose-Hulman Institute of Technology; Figueiredo, Eloi [Universidade Lusófona; Luscher, D. J. [Los Alamos National Laboratory; Worden, Keith [University of Sheffield
2016-01-13
As structural dynamics becomes increasingly non-modal, stochastic and nonlinear, finite element model-updating technology must adopt the broader notions of model validation and uncertainty quantification. For example, particular re-sampling procedures must be implemented to propagate uncertainty through a forward calculation, and non-modal features must be defined to analyze nonlinear data sets. The latter topic is the focus of this report, but first, some more general comments regarding the concept of model validation will be discussed.
Structural dynamic analysis of turbine blade
Antony, A. Daniel; Gopalsamy, M.; Viswanadh, Chaparala B. V.; Krishnaraj, R.
2017-10-01
In any gas turbine design cycle, blade design is a crucial element which needs maximum attention to meet the aerodynamic performance, structural safety margins, manufacturing feasibility, material availability etc. In present day gas turbine engines, most of the failures occur during engine development test and in-service, in rotor and stator blades due to fatigue and resonance failures. To address this issue, an extensive structural dynamic analysis is carried out to predict the natural frequencies and mode shapes using FE methods. Using the dynamics characteristics, the Campbell diagram is constructed to study the possibility of resonance at various operating speeds. In this work, the feasibility of using composite material in place of titanium alloy from the structural dynamics point of view. This is being attempted in a Low-pressure compressor where the temperatures are relatively low and fixed with the casings. The analysis will be carried out using FE method for different composite material with different lamina orientations chosen through the survey. This study will focus on the sensitivity of blade mode shapes to different laminae orientations, which will be used to alter the natural frequency and tailor the mode shapes. Campbell diagrams of existing titanium alloy are compared with the composite materials with different laminae at all critical operating conditions. The existing manufacturing methods and the proven techniques for blade profiles will also be discussed in this report.
Interfacial ionic 'liquids': connecting static and dynamic structures.
Uysal, Ahmet; Zhou, Hua; Feng, Guang; Lee, Sang Soo; Li, Song; Cummings, Peter T; Fulvio, Pasquale F; Dai, Sheng; McDonough, John K; Gogotsi, Yury; Fenter, Paul
2015-01-28
It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. We used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene-RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (∼0.15 eV).
Dynamics and control of twisting bi-stable structures
Arrieta, Andres F.; van Gemmeren, Valentin; Anderson, Aaron J.; Weaver, Paul M.
2018-02-01
Compliance-based morphing structures have the potential to offer large shape adaptation, high stiffness and low weight, while reducing complexity, friction, and scalability problems of mechanism based systems. A promising class of structure that enables these characteristics are multi-stable structures given their ability to exhibit large deflections and rotations without the expensive need for continuous actuation, with the latter only required intermittently. Furthermore, multi-stable structures exhibit inherently fast response due to the snap-through instability governing changes between stable states, enabling rapid configuration switching between the discrete number of programmed shapes of the structure. In this paper, the design and utilisation of the inherent nonlinear dynamics of bi-stable twisting I-beam structures for actuation with low strain piezoelectric materials is presented. The I-beam structure consists of three compliant components assembled into a monolithic single element, free of moving parts, and showing large deflections between two stable states. Finite element analysis is utilised to uncover the distribution of strain across the width of the flange, guiding the choice of positioning for piezoelectric actuators. In addition, the actuation authority is maximised by calculating the generalised coupling coefficient for different positions of the piezoelectric actuators. The results obtained are employed to tailor and test I-beam designs exhibiting desired large deflection between stable states, while still enabling the activation of snap-through with the low strain piezoelectric actuators. To this end, the dynamic response of the I-beams to piezoelectric excitation is investigated, revealing that resonant excitations are insufficient to dynamically trigger snap-through. A novel bang-bang control strategy, which exploits the nonlinear dynamics of the structure successfully triggers both single and constant snap-through between the stable states
Dynamic response of Hovercraft lift fans
Moran, D. D.
1981-08-01
Hovercraft lift fans are subjected to varying back pressure due to wave action and craft motions when these vehicles are operating in a seaway. The oscillatory back pressure causes the fans to perform dynamically, exhibiting a hysteresis type of response and a corresponding degradation in mean performance. Since Hovercraft motions are influenced by variations in lift fan pressure and discharge, it is important to understand completely the nature of the dynamic performance of lift fans in order to completely solve the Hovercraft seakeeping problem. The present study was performed to determine and classify the instabilities encountered in a centrifugal fan operating against time-varying back pressure. A model-scale experiment was developed in which the fan discharge was directed into a flow-measuring device, terminating in a rotating valve which produced an oscillatory back pressure superimposed upon a mean aerodynamic resistance. Pressure and local velocity were measured as functions of time at several locations in the fan volute. The measurements permitted the identification of rotating (or propagating) stall in the impeller. One cell and two cell configurations were classified and the transient condition connecting these two configurations was observed. The mechanisms which lead to rotating stall in a centrifugal compressor are presented and discussed with specific reference to Hovercraft applications.
DYNAMIC CINEMATIC TO A STRUCTURE 2R
Florian Ion Tiberiu Petrescu
2016-06-01
Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Flat structures 2R can solve all the problems posed by all the robotic anthropomorphic structures. The study of the anthropomorphic robots by the use of a flat structure 2R is a much easier method than classical used spatial methods. The paper outlines a method for the determination of dynamic to a robotic structure 2R balanced. 2R plane structures are used in practice only in the form balanced, for which in this paper will be made, initial, the total balance, and then the study cinematico-dynamic will only develop on the model already balanced. Dynamic relations presented then briefly without deduction will be explained and discussed with regard to their application. On the basis of the model presented and following calculations performed can be chosen correctly the two electric motors in the actuator. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}
Dynamic analysis on market structure of China's coal industry
Yang, Qing; Zhang, Lei; Wang, Xin
2017-01-01
According to industrial organization theory, market structure is a crucial factor to market performance. Based on the VAR model and the data from 1994 to 2014, we revealed the dynamic response route of the market structure to these factors and the change process of contribution rate of these factors to the market structure. It shows that market structure is inertial adjustment; technology advance and industry policy have continuous effects on improvement of market concentration ratio; market size and production scale have sustained negative effects on market concentration ratio; fixed capital has barrier effect, which is mainly the entry barrier effect at the beginning, and then the exit barrier effect continues to play a leading role. Therefore, the government has no need to introduce special policies to encourage merger or expansion on the capacity as enterprises would do it spontaneously; it is necessary to make market access system stricter, to improve exit compensation mechanism and to promote technological innovation; all these policies need dynamic adjustment based on the stages of economic cycle. - Highlights: • The adjustment mechanism of China's coal market structure is revealed. • Technology and industry policy are significant factors to optimize the market structure. • The government need not introduce special policy to encourage merger. • The market access system should be stricter. • Policies strength should be dynamically adjusted based on the economic cycle.
Torsional structural response from free-field ground motion
Lam, P.C.; Scavuzzo, R.J.
1979-01-01
Torsional response of structures subjected to the action of both the free-field torsional inputs and external torque is investigated. By expanding the work of Scanlan, both lateral and torsional foundation inputs due to a travelling shear wave are derived from the free-field point motion. These free-field torsional motions are used as the basis of numerical studies. Response for different soil stiffness and structural characteristics are studied, as well as different dynamic models. In one dynamic model the structure is coupled to the soil using a compliance spring matrix and in the second model the structure coupled to an elastic half-space. Results of these two basic models are compared and found to be in good agreement. Finally, torsional structural response caused by torsional inputs is compared with lateral response caused by modified lateral inputs to determine the significance of torsional excitation on the seismic response of building structures. Numerical results show that these torsional seismic loads are as large or larger than those from modified lateral inputs. (orig.)
Dynamic response modelling and characterization of a vertical electrothermal actuator
Li, Lijie; Uttamchandani, Deepak
2009-01-01
Mathematical modelling and characterization of the dynamic response of a microelectromechanical system (MEMS) electrothermal actuator are presented in this paper. The mathematical model is based on a second-order partial differential equation (one-dimensional heat transfer) and a second-order ordinary differential equation (mechanical dynamic equation). The simulations are implemented using the piecewise finite difference method and the Runge–Kutta algorithm. The electrothermal modelling includes thermal conduction, convective thermal loss and radiation effects. The temperature dependence of resistivity and thermal conductivity of single crystal silicon have also been taken into consideration in the electrothermal modelling. It is calculated from the simulation results that the 'cold' beam of the electrothermal actuator is not only a mechanical constraint but also a thermal response compensation structure. The 0–90% electrothermal rise times for the individual 'hot' and 'cold' beams are calculated to be 32.9 ms and 42.8 ms, respectively, while the 0–90% electrothermal rise time for the whole actuator is calculated to be 17.3 ms. Nonlinear cubic stiffness has been considered in the thermal-mechanical modelling. Dynamic performances of the device have been characterized using a laser vibrometer, and the 0–90% thermal response time of the whole structure has been measured to be 16.8 ms, which matches well with the modelling results. The displacements of the device under different driving conditions and at resonant frequency have been modelled and measured, and the results from both modelling and experiment agree reasonably well. This work provides a comprehensive understanding of the dynamic behaviour of the electrothermal actuation mechanism. The model will be useful for designing control systems for microelectrothermal actuated devices
Near-infrared light-responsive dynamic wrinkle patterns.
Li, Fudong; Hou, Honghao; Yin, Jie; Jiang, Xuesong
2018-04-01
Dynamic micro/nanopatterns provide an effective approach for on-demand tuning of surface properties to realize a smart surface. We report a simple yet versatile strategy for the fabrication of near-infrared (NIR) light-responsive dynamic wrinkles by using a carbon nanotube (CNT)-containing poly(dimethylsiloxane) (PDMS) elastomer as the substrate for the bilayer systems, with various functional polymers serving as the top stiff layers. The high photon-to-thermal energy conversion of CNT leads to the NIR-controlled thermal expansion of the elastic CNT-PDMS substrate, resulting in dynamic regulation of the applied strain (ε) of the bilayer system by the NIR on/off cycle to obtain a reversible wrinkle pattern. The switchable surface topological structures can transfer between the wrinkled state and the wrinkle-free state within tens of seconds via NIR irradiation. As a proof-of-concept application, this type of NIR-driven dynamic wrinkle pattern was used in smart displays, dynamic gratings, and light control electronics.
Structured population dynamics: continuous size and discontinuous stage structures.
Buffoni, Giuseppe; Pasquali, Sara
2007-04-01
A nonlinear stochastic model for the dynamics of a population with either a continuous size structure or a discontinuous stage structure is formulated in the Eulerian formalism. It takes into account dispersion effects due to stochastic variability of the development process of the individuals. The discrete equations of the numerical approximation are derived, and an analysis of the existence and stability of the equilibrium states is performed. An application to a copepod population is illustrated; numerical results of Eulerian and Lagrangian models are compared.
30th IMAC, A Conference on Structural Dynamics
Catbas, FN; Mayes, R; Rixen, D; Griffith, DT; Allemang, R; Clerck, J; Klerk, D; Simmermacher, T; Cogan, S; Chauhan, S; Cunha, A; Racic, V; Reynolds, P; Salyards, K; Adams, D; Kerschen, G; Carrella, A; Voormeeren, SN; Allen, MS; Horta, LG; Barthorpe, R; Niezrecki, C; Blough, JR; Vol.1 Topics on the Dynamics of Civil Structures; Vol.2 Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics; Vol.3 Topics in Nonlinear Dynamics; Vol.4 Topics in Model Validation and Uncertainty Quantification; Vol.5 Topics in Modal Analysis I; Vol.6 Topics in Modal Analysis II
2012-01-01
Topics on the Dynamics of Civil Structures, Volume 1, Proceedings of the 30th IMAC, A Conference and Exposition on Structural Dynamics, 2012, the first volume of six from the Conference, brings together 45 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Human Induced Vibrations Bridge Dynamics Operational Modal Analysis Experimental Techniques and Modeling for Civil Structures System Identification for Civil Structures Method and Technologies for Bridge Monitoring Damage Detection for Civil Structures Structural Modeling Vibration Control Method and Approaches for Civil Structures Modal Testing of Civil Structures.
Dependence of ICF reaction dynamics on target structure
Kumar, Kamal; Dutt, Sunil; GulI, Muntazir; Ahmad, Tauseef; Rizvi, I.A.; Ali, Sabir; Agarwal, Avinash; Kumar, R.; Chaubey, A.K.
2016-01-01
The projectile structure is also found responsible for the ICF reaction processes. It is found that projectile having bigger alpha cluster is more unstable towards break up. In this context, a comparative study of 12 C and 16 O ion-beams induced reactions with different targets has been done. The deduced ICF contributions for different systems have been plotted against the target charge of different targets. It is observed that target properties may also be responsible for the interplay between CF and ICF reaction dynamics
Dynamics of Correlation Structure in Stock Market
Maman Abdurachman Djauhari
2014-01-01
Full Text Available In this paper a correction factor for Jennrich’s statistic is introduced in order to be able not only to test the stability of correlation structure, but also to identify the time windows where the instability occurs. If Jennrich’s statistic is only to test the stability of correlation structure along predetermined non-overlapping time windows, the corrected statistic provides us with the history of correlation structure dynamics from time window to time window. A graphical representation will be provided to visualize that history. This information is necessary to make further analysis about, for example, the change of topological properties of minimal spanning tree. An example using NYSE data will illustrate its advantages.
Calculating evolutionary dynamics in structured populations.
Charles G Nathanson
2009-12-01
Full Text Available Evolution is shaping the world around us. At the core of every evolutionary process is a population of reproducing individuals. The outcome of an evolutionary process depends on population structure. Here we provide a general formula for calculating evolutionary dynamics in a wide class of structured populations. This class includes the recently introduced "games in phenotype space" and "evolutionary set theory." There can be local interactions for determining the relative fitness of individuals, but we require global updating, which means all individuals compete uniformly for reproduction. We study the competition of two strategies in the context of an evolutionary game and determine which strategy is favored in the limit of weak selection. We derive an intuitive formula for the structure coefficient, sigma, and provide a method for efficient numerical calculation.
The structural dynamics of social class.
Kraus, Michael W; Park, Jun Won
2017-12-01
Individual agency accounts of social class persist in society and even in psychological science despite clear evidence for the role of social structures. This article argues that social class is defined by the structural dynamics of society. Specifically, access to powerful networks, groups, and institutions, and inequalities in wealth and other economic resources shape proximal social environments that influence how individuals express their internal states and motivations. An account of social class that highlights the means by which structures shape and are shaped by individuals guides our understanding of how people move up or down in the social class hierarchy, and provides a framework for interpreting neuroscience studies, experimental paradigms, and approaches that attempt to intervene on social class disparities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamic Response of Functionally Graded Carbon Nanotube Reinforced Sandwich Plate
Mehar, Kulmani; Panda, Subrata Kumar
2018-03-01
In this article, the dynamic response of the carbon nanotube-reinforced functionally graded sandwich composite plate has been studied numerically with the help of finite element method. The face sheets of the sandwich composite plate are made of carbon nanotube- reinforced composite for two different grading patterns whereas the core phase is taken as isotropic material. The final properties of the structure are calculated using the rule of mixture. The geometrical model of the sandwich plate is developed and discretized suitably with the help of available shell element in ANSYS library. Subsequently, the corresponding numerical dynamic responses computed via batch input technique (parametric design language code in ANSYS) of ANSYS including Newmark’s integration scheme. The stability of the sandwich structural numerical model is established through the proper convergence study. Further, the reliability of the sandwich model is checked by comparison study between present and available results from references. As a final point, some numerical problems have been solved to examine the effect of different design constraints (carbon nanotube distribution pattern, core to face thickness ratio, volume fractions of the nanotube, length to thickness ratio, aspect ratio and constraints at edges) on the time-responses of sandwich plate.
Optimization of multi-response dynamic systems integrating multiple ...
regression and Taguchi's dynamic signal-to-noise ratio concept ..... algorithm for dynamic multi-response optimization based on goal programming approach. .... problem-solving confirmation, if no grave infringement of model suppositions is ...
Dynamic Responses of Flexible Cylinders with Low Mass Ratio
Olaoye, Abiodun; Wang, Zhicheng; Triantafyllou, Michael
2017-11-01
Flexible cylinders with low mass ratios such as composite risers are attractive in the offshore industry because they require lower top tension and are less likely to buckle under self-weight compared to steel risers. However, their relatively low stiffness characteristics make them more vulnerable to vortex induced vibrations. Additionally, numerical investigation of the dynamic responses of such structures based on realistic conditions is limited by high Reynolds number, complex sheared flow profile, large aspect ratio and low mass ratio challenges. In the framework of Fourier spectral/hp element method, the current technique employs entropy-viscosity method (EVM) based large-eddy simulation approach for flow solver and fictitious added mass method for structure solver. The combination of both methods can handle fluid-structure interaction problems at high Reynolds number with low mass ratio. A validation of the numerical approach is provided by comparison with experiments.
The tank's dynamic response under nuclear explosion blast wave
Xu Mei; Wang Lianghou; Li Xiaotian; Yu Suyuan; Zhang Zhengming; Wan Li
2005-01-01
To weapons and equipment, blast wave is the primary destructive factor. In this paper, taken the real model-59 tank as an example, we try to transform the damage estimation problem into computing a fluid structure interaction problem with finite element method. The response of tank under nuclear explosion blast wave is computed with the general-coupling algorithm. Also, the dynamical interaction of blast wave and tank is reflected in real time. The deformation of each part of the tank is worked out and the result corresponds to the real-measured data. (authors)
Dynamic response of beams on elastic foundations to impact loading
Prasad, B.B.; Sinha, B.P.
1987-01-01
The beam considered is a Timoshenko beam in which the effects of rotatory inertia and shear deformations are included and the foundation model consists of Winkler-Zimmermann type having Hookean linear elastic springs. The analysis is very useful for predicting the dynamic response of structural components of aircraft or nuclear reactors or even runways if that component may be mathematically idealized as a beam on elastic foundation. The effect of rotatory inertia and shear deformation is very much pronounced and hence should not be neglected in solving such impact problems. In general the effect of foundation modulus is to further increase the values of frequencies of vibrations. (orig./HP)
Dynamic sign structures in visual art and music
Zeller, Jörg
2006-01-01
Seemingly static meaning carriers in visual art are considered as aspects of holistic dynamical sign structures.......Seemingly static meaning carriers in visual art are considered as aspects of holistic dynamical sign structures....
Dynamics of a structured neuron population
Pakdaman, Khashayar; Salort, Delphine; Perthame, Benoît
2010-01-01
We study the dynamics of assemblies of interacting neurons. For large fully connected networks, the dynamics of the system can be described by a partial differential equation reminiscent of age-structure models used in mathematical ecology, where the 'age' of a neuron represents the time elapsed since its last discharge. The nonlinearity arises from the connectivity J of the network. We prove some mathematical properties of the model that are directly related to qualitative properties. On the one hand, we prove that it is well-posed and that it admits stationary states which, depending upon the connectivity, can be unique or not. On the other hand, we study the long time behaviour of solutions; both for small and large J, we prove the relaxation to the steady state describing asynchronous firing of the neurons. In the middle range, numerical experiments show that periodic solutions appear expressing re-synchronization of the network and asynchronous firing
Response of subsystems on inelastic structures
Lin, J.; Mahin, S.A.
1984-01-01
Preliminary analysis are performed to obtain insight into the seismic response of subsystems supported on simple structures that yield during severe earthquake ground motions. Current design recommendations for subsystems accounting for yielding of the supporting structures are assessed and found to be unconservative. An amplification factor is defined to quantify the effects of inelastic deformations of the supporting structure on subsystem response. Design guidelines are formulated for predicting the amplification factor based on statistical evaluation of the results generated for ten earthquake ground motions. Using these values, design floor response spectra can be obtained from conventional linear elastic floor response spectra accounting for yielding of the supporting structure without having to perform inelastic analysis. The effects of non-zero subsystem mass are examined. The recommended amplification factors are found to be applicable even when the mass of subsystem approaches that of the supporting structure
Population and evolutionary dynamics in spatially structured seasonally varying environments.
Reid, Jane M; Travis, Justin M J; Daunt, Francis; Burthe, Sarah J; Wanless, Sarah; Dytham, Calvin
2018-03-25
Increasingly imperative objectives in ecology are to understand and forecast population dynamic and evolutionary responses to seasonal environmental variation and change. Such population and evolutionary dynamics result from immediate and lagged responses of all key life-history traits, and resulting demographic rates that affect population growth rate, to seasonal environmental conditions and population density. However, existing population dynamic and eco-evolutionary theory and models have not yet fully encompassed within-individual and among-individual variation, covariation, structure and heterogeneity, and ongoing evolution, in a critical life-history trait that allows individuals to respond to seasonal environmental conditions: seasonal migration. Meanwhile, empirical studies aided by new animal-tracking technologies are increasingly demonstrating substantial within-population variation in the occurrence and form of migration versus year-round residence, generating diverse forms of 'partial migration' spanning diverse species, habitats and spatial scales. Such partially migratory systems form a continuum between the extreme scenarios of full migration and full year-round residence, and are commonplace in nature. Here, we first review basic scenarios of partial migration and associated models designed to identify conditions that facilitate the maintenance of migratory polymorphism. We highlight that such models have been fundamental to the development of partial migration theory, but are spatially and demographically simplistic compared to the rich bodies of population dynamic theory and models that consider spatially structured populations with dispersal but no migration, or consider populations experiencing strong seasonality and full obligate migration. Second, to provide an overarching conceptual framework for spatio-temporal population dynamics, we define a 'partially migratory meta-population' system as a spatially structured set of locations that can
Dynamic response of wind turbine towers in warm permafrost
Benjamin Still; ZhaoHui Joey Yang; Simon Evans; FuJun Niu
2014-01-01
Wind is a great source of renewable energy in western Alaska. Consistent winds blow across the barren tundra underlain by warm permafrost in the winter season, when the energy demand is the highest. Foundation engineering in warm permafrost has always been a challenge in wind energy development. Degrading warm permafrost poses engineering issues to design, construction, and operation of wind turbines. This paper describes the foundation design of a wind turbine built in western Alaska. It presents a sys-tem for response monitoring and load assessment, and data collected from September 2013 to March 2014. The dynamic proper-ties are assessed based on the monitoring data, and seasonal changes in the dynamic properties of the turbine tower-foundation system and likely resonance between the spinning blades and the tower structure are discussed. These analyses of a wind turbine in warm permafrost are valuable for designing or retrofitting of foundations in warm permafrost.
Prediction Models for Dynamic Demand Response
Aman, Saima; Frincu, Marc; Chelmis, Charalampos; Noor, Muhammad; Simmhan, Yogesh; Prasanna, Viktor K.
2015-11-02
As Smart Grids move closer to dynamic curtailment programs, Demand Response (DR) events will become necessary not only on fixed time intervals and weekdays predetermined by static policies, but also during changing decision periods and weekends to react to real-time demand signals. Unique challenges arise in this context vis-a-vis demand prediction and curtailment estimation and the transformation of such tasks into an automated, efficient dynamic demand response (D^{2}R) process. While existing work has concentrated on increasing the accuracy of prediction models for DR, there is a lack of studies for prediction models for D^{2}R, which we address in this paper. Our first contribution is the formal definition of D^{2}R, and the description of its challenges and requirements. Our second contribution is a feasibility analysis of very-short-term prediction of electricity consumption for D^{2}R over a diverse, large-scale dataset that includes both small residential customers and large buildings. Our third, and major contribution is a set of insights into the predictability of electricity consumption in the context of D^{2}R. Specifically, we focus on prediction models that can operate at a very small data granularity (here 15-min intervals), for both weekdays and weekends - all conditions that characterize scenarios for D^{2}R. We find that short-term time series and simple averaging models used by Independent Service Operators and utilities achieve superior prediction accuracy. We also observe that workdays are more predictable than weekends and holiday. Also, smaller customers have large variation in consumption and are less predictable than larger buildings. Key implications of our findings are that better models are required for small customers and for non-workdays, both of which are critical for D^{2}R. Also, prediction models require just few days’ worth of data indicating that small amounts of
The Dynamics and Structures of Adsorbed Surfaces
Nielsen, M; Ellenson, W. D.; McTague, J. P.
1978-01-01
. Elastic neutron diffraction measurements, determining the two-dimensional structural ordering of the adsorbed films, have been performed on layers of N2, Ar, H2, D2, O2, Kr, and He. Measurements on layers of larger molecules such as CD4 and ND3 have also been reported. Inelastic neutron scattering...... measurements, studying the dynamics of the adsorbed films are only possible in a few especially favourable cases such as 36Ar and D2 films, where the coherent phonon scattering cross-sections are very large. In other cases incoherent scattering from hydrogen can give information about e.g. the mobility...
Structural dynamics of turbo-machines
Rangwala, AS
2009-01-01
The book presents a detailed and comprehensive treatment of structural vibration evaluation of turbo-machines. Starting with the fundamentals of the theory of vibration as related to various aspects of rotating machines, the dynamic analysis procedures of a broad spectrum of turbo-machines is covered. An in-depth procedure for analyzing the torsional and flexural oscillations of the components and of the rotor-bearing system is presented. The latest trends in design and analysis are presented, chief among them: Blade and coupled disk-blade mod
Dynamical structure of pure Lovelock gravity
Dadhich, Naresh; Durka, Remigiusz; Merino, Nelson; Miskovic, Olivera
2016-03-01
We study the dynamical structure of pure Lovelock gravity in spacetime dimensions higher than four using the Hamiltonian formalism. The action consists of a cosmological constant and a single higher-order polynomial in the Riemann tensor. Similarly to the Einstein-Hilbert action, it possesses a unique constant curvature vacuum and charged black hole solutions. We analyze physical degrees of freedom and local symmetries in this theory. In contrast to the Einstein-Hilbert case, the number of degrees of freedom depends on the background and can vary from zero to the maximal value carried by the Lovelock theory.
Krutzik, N.J.; Tropp, R.
1989-01-01
In conventional dynamic structural analyses for determining dynamic system response for various locations at which components are installed inside the structures it is common practice (in order to simplify analytical effort) to assume that the anchorage (anchor plate, anchor bolts or throughbolts, concrete and reinforcement in the area of bound) has rigid body characteristics and that the building structure itself does not display any local response of its own. The influence of the stiffness of the anchor plate as well anchor bolts and its stress level on the dynamic response is also neglected. For a large number of anchoring systems, especially for all those components and systems having only a small mass, this assumption is certainly appropriate. At some locations, particularly at points where heavy components are anchored or when loading input has been increased, this can lead to local loading of the anchor system as well as of the building structure well into the nonlinear range. Often, verification of capability to accommodate these loads is not possible without changing the wall thicknesses or increasing the percentage of reinforcement. Since the presence of linear or nonlinear effects can be expected to result in energy dissipation (increase in damping capacity and also a change in the stiffness of the coupled system) it must be assumed that the dynamic response between the theoretical coupling point A and the real connection point B of the component on the anchor plate can be considerably altered. Some changes of the dynamic response in the connection point B have to be expected generally even in cases of linear-elastic loading of the anchorage. Using typical anchoring systems as an example, the influence of consideration of nonlinear effects in the anchorage area of a typical anchor plate on the dynamic response as well as the conservatism of conventional analytical approaches are investigated
Response of masonry structure under impact load
Makovicka, D.
1993-01-01
The paper deals with interaction of a short gaseous impact wave with a plate structure. Analyses of dynamic bending, depending on the parameters of the structure and the impact wave (i.e. the stress and displacement field produced by the resulting incident and reflected wave) have been made by FEM. The calculated data was based on the real material properties of this structure. Pressures greater than computed limit pressures result in the failure of the structure. The calculated and experimental data are compared. (author)
A Mathematical Model of Cardiovascular Response to Dynamic Exercise
Magosso, E
2001-01-01
A mathematical model of cardiovascular response to dynamic exercise is presented, The model includes the pulsating heart, the systemic and pulmonary, circulation, a functional description of muscle...
Band structure dynamics in indium wires
Chávez-Cervantes, M.; Krause, R.; Aeschlimann, S.; Gierz, I.
2018-05-01
One-dimensional indium wires grown on Si(111) substrates, which are metallic at high temperatures, become insulating below ˜100 K due to the formation of a charge density wave (CDW). The physics of this transition is not conventional and involves a multiband Peierls instability with strong interband coupling. This CDW ground state is readily destroyed with femtosecond laser pulses resulting in a light-induced insulator-to-metal phase transition. The current understanding of this transition remains incomplete, requiring measurements of the transient electronic structure to complement previous investigations of the lattice dynamics. Time- and angle-resolved photoemission spectroscopy with extreme ultraviolet radiation is applied to this end. We find that the transition from the insulating to the metallic band structure occurs within ˜660 fs, which is a fraction of the amplitude mode period. The long lifetime of the transient state (>100 ps) is attributed to trapping in a metastable state in accordance with previous work.
Structure and dynamics of molten salts
Rovere, M.; Tosi, M.P.
1986-02-01
Modern techniques of liquid state physics have been successfully used over the last decade to probe the microscopic structure and dynamics of a variety of multicomponent liquids in which relative ordering of the species is present near freezing. The alkali halides are prototypes for this specific type of short range order in relation to the nature of bonding, but the systems in question include also other monovalent and polyvalent metal-ion halides, alkali-based intermetallic compounds, and chalcogen-based alloys. A viewpoint is taken in this review which gives attention to relations between liquid and solid phase properties across melting for compound systems at stoichiometric composition. In addition, large deviations from stoichiometry can be realized in the liquid phase, to display trends of evolution of structure, bonding and electronic states with composition. (author)
Earthquake engineering and structural dynamics studies at Bhabha Atomic Research Centre
Reddy, G.R.; Parulekar, Y.M.; Sharma, A.; Dubey, P.N.; Vaity, K.N.; Kukreja, Mukhesh; Vaze, K.K.; Ghosh, A.K.; Kushwaha, H.S.
2007-01-01
Earthquake Engineering and structural Dynamics has gained the attention of many researchers throughout the world and extensive research work is performed. Linear behaviour of structures, systems and components (SSCs) subjected to earthquake/dynamic loading is clearly understood. However, nonlinear behaviour of SSCs subjected to earthquake/dynamic loading need to be understood clearly and design methods need to be validated experimentally. In view of this, three major areas in earthquake engineering and structural dynamics identified for research includes: design and development of passive devices to control the seismic/dynamic response of SSCs, nonlinear behaviour of piping systems subjected to earthquake loading and nonlinear behavior of RCC structures under seismic excitation or dynamic loading. BARC has performed extensive work and also being continued in the above-identified areas. The work performed is helping for clearer understanding of nonlinear behavior of SSCs as well as in developing new schemes, methodologies and devices to control the earthquake response of SSCs. (author)
Molecular structures and intramolecular dynamics of pentahalides
Ischenko, A. A.
2017-03-01
This paper reviews advances of modern gas electron diffraction (GED) method combined with high-resolution spectroscopy and quantum chemical calculations in studies of the impact of intramolecular dynamics in free molecules of pentahalides. Some recently developed approaches to the electron diffraction data interpretation, based on direct incorporation of the adiabatic potential energy surface parameters to the diffraction intensity are described. In this way, complementary data of different experimental and computational methods can be directly combined for solving problems of the molecular structure and its dynamics. The possibility to evaluate some important parameters of the adiabatic potential energy surface - barriers to pseudorotation and saddle point of intermediate configuration from diffraction intensities in solving the inverse GED problem is demonstrated on several examples. With increasing accuracy of the electron diffraction intensities and the development of the theoretical background of electron scattering and data interpretation, it has become possible to investigate complex nuclear dynamics in fluxional systems by the GED method. Results of other research groups are also included in the discussion.
Dynamic calculation of structures in seismic zones. 2. ed.
Capra, Alain; Davidovici, Victor
1982-01-01
The aims of this book are both didactic and practical. It is therefore addressed to both experienced engineers and students. Some general information about earthquakes and their occurrence is first given. The problem of a simple oscillator is presented. In this way, the reader is provided with an insight into undestanding the dynamic phenomena taking place and is introduced to the concept of response spectra and to an intuitive comprehension of the behavior of structures during earthquakes. The next chapter is devoted to the cases most frequently encountered with multiple oscillator structures. Theoretical studies are based on the usual modal decomposition method. The various practical methods of calculation employed are then examined, emphasis being given to the various different stages involved and to which of them is the best suited for a particular type of structure. Advise is given on how to select the model whose behavior best describes the real structure, both manual and computer methods of calculation being envisaged [fr
Structural Dynamics of Tropical Moist Forest Gaps
Hunter, Maria O.; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana
2015-01-01
Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height gap at Tapajos National Forest (4.8 %) as compared to Ducke Reserve (2.0 %). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10 % of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6 % at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13 % and 10 %, respectively). At Tapajos, height loss had a much stronger signal (23 % versus 6 %) within gaps. Both sites demonstrate limited gap contagiousness defined by an
Dynamic bioactive stimuli-responsive polymeric surfaces
Pearson, Heather Marie
This dissertation focuses on the design, synthesis, and development of antimicrobial and anticoagulant surfaces of polyethylene (PE), polypropylene (PP), and poly(tetrafluoroethylene) (PTFE) polymers. Aliphatic polymeric surfaces of PE and PP polymers functionalized using click chemistry reactions by the attachment of --COOH groups via microwave plasma reactions followed by functionalization with alkyne moieties. Azide containing ampicillin (AMP) was synthesized and subsequently clicked into the alkyne prepared PE and PP surfaces. Compared to non-functionalized PP and PE surfaces, the AMP clicked surfaces exhibited substantially enhanced antimicrobial activity against Staphylococcus aureus bacteria. To expand the biocompatibility of polymeric surface anticoagulant attributes, PE and PTFE surfaces were functionalized with pH-responsive poly(2-vinyl pyridine) (P2VP) and poly(acrylic acid) (PAA) polyelectrolyte tethers terminated with NH2 and COOH groups. The goal of these studies was to develop switchable stimuli-responsive polymeric surfaces that interact with biological environments and display simultaneous antimicrobial and anticoagulant properties. Antimicrobial AMP was covalently attached to --COOH terminal ends of protected PAA, while anticoagulant heparin (HEP) was attached to terminal --NH2 groups of P2VP. When pH 5.5, they collapse while the PAA segments extend. Such surfaces, when exposed to Staphylococcus aureus, inhibit bacterial growth due to the presence of AMP, as well as are effective anticoagulants due to the presence of covalently attached HEP. Comparison of these "dynamic" pH responsive surfaces with "static" surfaces terminated with AMP entities show significant enhancement of longevity and surface activity against microbial film formation. The last portion of this dissertation focuses on the covalent attachment of living T1 and Φ11 bacteriophages (phages) on PE and PTFE surface. This was accomplished by carbodiimide coupling between --COOH
Chemical Structure and Dynamics annual report 1997
Colson, S.D.; McDowell, R.S.
1998-03-01
The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE's environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous
Modeling Insurgent Network Structure and Dynamics
Gabbay, Michael; Thirkill-Mackelprang, Ashley
2010-03-01
We present a methodology for mapping insurgent network structure based on their public rhetoric. Indicators of cooperative links between insurgent groups at both the leadership and rank-and-file levels are used, such as joint policy statements or joint operations claims. In addition, a targeting policy measure is constructed on the basis of insurgent targeting claims. Network diagrams which integrate these measures of insurgent cooperation and ideology are generated for different periods of the Iraqi and Afghan insurgencies. The network diagrams exhibit meaningful changes which track the evolution of the strategic environment faced by insurgent groups. Correlations between targeting policy and network structure indicate that insurgent targeting claims are aimed at establishing a group identity among the spectrum of rank-and-file insurgency supporters. A dynamical systems model of insurgent alliance formation and factionalism is presented which evolves the relationship between insurgent group dyads as a function of their ideological differences and their current relationships. The ability of the model to qualitatively and quantitatively capture insurgent network dynamics observed in the data is discussed.
Chemical Structure and Dynamics annual report 1997
Colson, S.D.; McDowell, R.S.
1998-03-01
The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE`s environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous.
Dynamical soil-structure interactions: influence of soil behaviour nonlinearities
Gandomzadeh, Ali
2011-01-01
The interaction of the soil with the structure has been largely explored the assumption of material and geometrical linearity of the soil. Nevertheless, for moderate or strong seismic events, the maximum shear strain can easily reach the elastic limit of the soil behavior. Considering soil-structure interaction, the nonlinear effects may change the soil stiffness at the base of the structure and therefore energy dissipation into the soil. Consequently, ignoring the nonlinear characteristics of the dynamic soil-structure interaction (DSSI) this phenomenon could lead to erroneous predictions of structural response. The goal of this work is to implement a fully nonlinear constitutive model for soils into a numerical code in order to investigate the effect of soil nonlinearity on dynamic soil structure interaction. Moreover, different issues are taken into account such as the effect of confining stress on the shear modulus of the soil, initial static condition, contact elements in the soil-structure interface, etc. During this work, a simple absorbing layer method based on a Rayleigh/Caughey damping formulation, which is often already available in existing Finite Element softwares, is also presented. The stability conditions of the wave propagation problems are studied and it is shown that the linear and nonlinear behavior are very different when dealing with numerical dispersion. It is shown that the 10 points per wavelength rule, recommended in the literature for the elastic media is not sufficient for the nonlinear case. The implemented model is first numerically verified by comparing the results with other known numerical codes. Afterward, a parametric study is carried out for different types of structures and various soil profiles to characterize nonlinear effects. Different features of the DSSI are compared to the linear case: modification of the amplitude and frequency content of the waves propagated into the soil, fundamental frequency, energy dissipation in
Dynamic tensile response of alumina-Al composites
Atisivan, R.; Bandyopadhyay, A.; Gupta, Y. M.
2002-01-01
Plate impact experiments were carried out to examine the high strain-rate tensile response of alumina-aluminum (Al) composites with tailored microstructures. A novel processing technique was used to fabricate interpenetrating phase alumina-aluminum composites with controlled microstructures. Fused deposition modeling (FDM), a commercially available rapid prototyping technique, was used to produce the controlled porosity mullite ceramic preforms. Alumina-Al composites were then processed via reactive metal infiltration of porous mullite ceramics. With this approach, both the micro as well as the macro structures can be designed via computer aided design (CAD) to tailor the properties of the composites. Two sets of dynamic tensile experiments were performed. In the first, the metal content was varied between 23 and 39 wt. percent. In the second, the microstructure was varied while holding the metal content nearly constant. Samples with higher metal content, as expected, displayed better spall resistance. For a given metal content, samples with finer metal diameter showed better spall resistance. Relationship of the microstructural parameters on the dynamic tensile response of the structured composites is discussed here
Dynamic characterization of satellite assembly for responsive space applications
Mascarenas, David; Macknelly, David; Mullins, Josh; Wiest, Heather; Park, Gyuhae
2013-01-01
The rapid deployment of satellites for responsive space surveillance applications is hindered by the need to flight-qualify their components and the resulting mechanical assembly. Conventional methods for qualification testing of satellite components are costly and time consuming. Furthermore, full-scale vehicles must be subjected to simulated launch loads during testing, and this harsh testing environment increases the risk of damage to satellite components during qualification. This work focuses on replacing this potentially destructive testing procedure with a non-destructive structural health monitoring (SHM)-based technique while maintaining the same level of confidence in the testing procedure's ability to qualify the satellite for flight. We focus on assessing the performance of SHM techniques to replace the high-cost qualification procedure and to localize faults introduced by improper assembly. The goal of this work is to create a dual-use system that can both assist in the process of qualifying the satellite for launch, as well as provide continuous structural integrity monitoring during manufacture, transport, launch and deployment. SHM techniques were applied on a small-scale structure representative of a responsive satellite. The test structure consisted of an extruded aluminum space-frame covered with aluminum shear plates assembled using bolted joints. Multiple piezoelectric transducers were bonded to the test structure and acted as combined actuators and sensors. Piezoelectric active-sensing based techniques, including measurements of low-frequency global frequency response functions and high-frequency wave propagation techniques, were employed. Using these methods in conjunction with finite element modeling, the dynamic properties of the test structure were established and areas of potential damage could be identified and localized. A procedure for guiding the effective placement of the sensors and actuators is also outlined. (paper)
Dynamic Response and Simulations of Nanoparticle-Enhanced Composites
Mantena, P. R; Al-Ostaz, Ahmed; Cheng, Alexander H
2007-01-01
...) molecular dynamics simulations of nanoparticle-enhanced composites and fly- ash based foams that are being considered for the future generation naval structures or retrofitting of existing ones...
Depireux, Didier A; Simon, Jonathan Z; Klein, David J; Shamma, Shihab A
1999-01-01
.... It is calculated here from the responses to elementary 'ripples,' a family of sounds with drifting, sinusoidal, spectral envelopes - the complex spectrotemporal envelope of any broadband, dynamic...
Seismic response of structures by the response spectrum method
Hadjian, A.H.
1981-01-01
The problems of the acceleration profile at the lower elevations of cantilever structures and the response of relatively rigid structures are explored. It is shown that the use of the conventional methods for the above problems provide very approximate results. An alternate combination of the modal responses is proposed that not only resolves the above problems but also provides better estimates of response for the complete range of structure frequencies. The procedure treats the relative and rigid body responses separately and then appropriately combines the two results. For the rigid range of frequencies (fundamental frequencies greater than about 2 Hz), the proposed procedure does not encounter any numerical difficulties because of the additive nature of the component responses; however, the application of the proposed procedure for very flexible structures causes accuracy problems since the rigid body effects tend to be subtractive from the flexural response of about equal magnitude. For this latter class of problems, the conventional approach of modal combination provides adequate results and avoids the above mentioned numerical difficulties. (orig.)
On Control Strategies for Responsive Architectural Structures
Kirkegaard, Poul Henning; Parigi, Dario
2012-01-01
The present paper considers control of responsive architectural structures for improvement of structural performance by recognizing changes in their environments and loads, adapting to meet goals, and using past events to improve future performance or maintain serviceability. The general scope of...
Dynamic response of railway tracks in tunnel
Hoang , T; Duhamel , Denis; Forêt , Gilles; Yin , H.P.; Joyez , P; Caby , R
2014-01-01
International audience; Periodically supported beams subjected to a moving load are often used for modelling the railway dynamics and analytical solutions have been developed for such modelling [3, 4]. More complex models can be constructed by including supports with damping or non-linear stiffness elements. This study deals with the dynamical modelling of non-ballasted railways, especially railways in tunnels. The model is developed as a dynamical system of multi-degree of freedom. Under the...
Towards Trustworthy Adaptive Case Management with Dynamic Condition Response Graphs
Mukkamala, Raghava Rao; Hildebrandt, Thomas; Slaats, Tijs
2013-01-01
We describe how the declarative Dynamic Condition Response (DCR) Graphs process model can be used for trustworthy adaptive case management by leveraging the flexible execution, dynamic composition and adaptation supported by DCR Graphs. The dynamically composed and adapted graphs are verified for...
Excited State Structural Dynamics of Carotenoids and Charge Transfer Systems
Van Tassle, Aaron Justin
2006-01-01
This dissertation describes the development and implementation of a visible/near infrared pump/mid-infrared probe apparatus. Chapter 1 describes the background and motivation of investigating optically induced structural dynamics, paying specific attention to solvation and the excitation selection rules of highly symmetric molecules such as carotenoids. Chapter 2 describes the development and construction of the experimental apparatus used throughout the remainder of this dissertation. Chapter 3 will discuss the investigation of DCM, a laser dye with a fluorescence signal resulting from a charge transfer state. By studying the dynamics of DCM and of its methyl deuterated isotopomer (an otherwise identical molecule), we are able to investigate the origins of the charge transfer state and provide evidence that it is of the controversial twisted intramolecular (TICT) type. Chapter 4 introduces the use of two-photon excitation to the S1 state, combined with one-photon excitation to the S2 state of the carotenoid beta-apo-8'-carotenal. These 2 investigations show evidence for the formation of solitons, previously unobserved in molecular systems and found only in conducting polymers Chapter 5 presents an investigation of the excited state dynamics of peridinin, the carotenoid responsible for the light harvesting of dinoflagellates. This investigation allows for a more detailed understanding of the importance of structural dynamics of carotenoids in light harvesting
On the dimension of complex responses in nonlinear structural vibrations
Wiebe, R.; Spottswood, S. M.
2016-07-01
The ability to accurately model engineering systems under extreme dynamic loads would prove a major breakthrough in many aspects of aerospace, mechanical, and civil engineering. Extreme loads frequently induce both nonlinearities and coupling which increase the complexity of the response and the computational cost of finite element models. Dimension reduction has recently gained traction and promises the ability to distill dynamic responses down to a minimal dimension without sacrificing accuracy. In this context, the dimensionality of a response is related to the number of modes needed in a reduced order model to accurately simulate the response. Thus, an important step is characterizing the dimensionality of complex nonlinear responses of structures. In this work, the dimensionality of the nonlinear response of a post-buckled beam is investigated. Significant detail is dedicated to carefully introducing the experiment, the verification of a finite element model, and the dimensionality estimation algorithm as it is hoped that this system may help serve as a benchmark test case. It is shown that with minor modifications, the method of false nearest neighbors can quantitatively distinguish between the response dimension of various snap-through, non-snap-through, random, and deterministic loads. The state-space dimension of the nonlinear system in question increased from 2-to-10 as the system response moved from simple, low-level harmonic to chaotic snap-through. Beyond the problem studied herein, the techniques developed will serve as a prescriptive guide in developing fast and accurate dimensionally reduced models of nonlinear systems, and eventually as a tool for adaptive dimension-reduction in numerical modeling. The results are especially relevant in the aerospace industry for the design of thin structures such as beams, panels, and shells, which are all capable of spatio-temporally complex dynamic responses that are difficult and computationally expensive to
Nonparametric inference of network structure and dynamics
Peixoto, Tiago P.
The network structure of complex systems determine their function and serve as evidence for the evolutionary mechanisms that lie behind them. Despite considerable effort in recent years, it remains an open challenge to formulate general descriptions of the large-scale structure of network systems, and how to reliably extract such information from data. Although many approaches have been proposed, few methods attempt to gauge the statistical significance of the uncovered structures, and hence the majority cannot reliably separate actual structure from stochastic fluctuations. Due to the sheer size and high-dimensionality of many networks, this represents a major limitation that prevents meaningful interpretations of the results obtained with such nonstatistical methods. In this talk, I will show how these issues can be tackled in a principled and efficient fashion by formulating appropriate generative models of network structure that can have their parameters inferred from data. By employing a Bayesian description of such models, the inference can be performed in a nonparametric fashion, that does not require any a priori knowledge or ad hoc assumptions about the data. I will show how this approach can be used to perform model comparison, and how hierarchical models yield the most appropriate trade-off between model complexity and quality of fit based on the statistical evidence present in the data. I will also show how this general approach can be elegantly extended to networks with edge attributes, that are embedded in latent spaces, and that change in time. The latter is obtained via a fully dynamic generative network model, based on arbitrary-order Markov chains, that can also be inferred in a nonparametric fashion. Throughout the talk I will illustrate the application of the methods with many empirical networks such as the internet at the autonomous systems level, the global airport network, the network of actors and films, social networks, citations among
Structure, dynamics, and function of biomolecules
Frauenfelder, H.; Berendzen, J.R.; Garcia, A.; Gupta, G.; Olah, G.A.; Terwilliger, T.C.; Trewhella, J.; Wood, C.C.; Woodruff, W.H.
1998-01-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors enhanced Los Alamos' core competency in Bioscience and Biotechnology by building on present strengths in experimental techniques, theory, high-performance computing, modeling, and simulation applied to biomolecular structure, dynamics, and function. Specifically, the authors strengthened their capabilities in neutron/x-ray scattering, x-ray crystallography, NMR, laser, and optical spectroscopies. Initially they focused on supporting the Los alamos Neutron Science Center (LANSCE) in the design and implementation of new neutron scattering instrumentation, they developed new methods for analysis of scattering data, and they developed new projects to study the structures of biomolecular complexes. The authors have also worked to strengthen interactions between theory and experiment, and between the biological and physical sciences. They sponsored regular meetings of members from all interested LANL technical divisions, and supported two lecture series: ''Biology for Physicists'' and ''Issues in Modern Biology''. They also supported the formation of interdisciplinary/inter-divisional teams to develop projects in science-based bioremediation and an integrated structural biology resource. Finally, they successfully worked with a multidisciplinary team to put forward the Laboratory's Genome and Beyond tactical goal
Non-linear dynamic response of reactor containment
Takemori, T.; Sotomura, K.; Yamada, M.
1975-01-01
A computer program was developed to investigate the elasto-plastic behavior of structures. This program is outlined and the problems of non-linear response of structures are discussed. Since the mode superposition method is only valid in an elastic analysis, the direct integration method was adopted here. As the sample model, an actual reactor containment (reactor building) of PWR plant was adopted. This building consists of three components, that is, a concrete internal structure, a steel containment vessel and a concrete outer shield wall. These components are resting on a rigid foundation mat. Therefore they were modeled with a lumped mass model respectively and coupled on the foundation. The following assumptions were employed to establish the properties of dynamic model: rocking and swaying springs of soil can be obtained from an elastic half-space solution, and the hysteretic characteristic of springs is bi-linear; springs connecting each mass are dealt with shear beams so that both bending and shear deflections can be included (Hysteretic characteristics of springs are linear, bi-linear and tri-linear for the internal structure, the containment vessel and the outer shield wall, respectively); generally, each damping coefficient is given for each mode in modal superposition (However, a damping matrix must be made directly in a non-linear response). Therefore the damping matrix of the model was made by combining the damping matrices [C] of each component obtained by Caughy's method and a damping value of the rocking and swaying by the half-space solution. On the basis of above conditions, the non-linear response of the structure was obtained and the difference between elastic and elasto-plastic analysis is presented
2018-01-01
The structural heterogeneity of water at various interfaces can be revealed by time-resolved sum-frequency generation spectroscopy. The vibrational dynamics of the O–H stretch vibration of interfacial water can reflect structural variations. Specifically, the vibrational lifetime is typically found to increase with increasing frequency of the O–H stretch vibration, which can report on the hydrogen-bonding heterogeneity of water. We compare and contrast vibrational dynamics of water in contact with various surfaces, including vapor, biomolecules, and solid interfaces. The results reveal that variations in the vibrational lifetime with vibrational frequency are very typical, and can frequently be accounted for by the bulk-like heterogeneous response of interfacial water. Specific interfaces exist, however, for which the behavior is less straightforward. These insights into the heterogeneity of interfacial water thus obtained contribute to a better understanding of complex phenomena taking place at aqueous interfaces, such as photocatalytic reactions and protein folding. PMID:29490138
Seismic Safety Program: Ground motion and structural response
1993-05-01
In 1964, John A. Blume & Associates Research Division (Blume) began a broad-range structural response program to assist the Nevada Operations Office of the US Atomic Energy Commission (AEC) in ensuring the continued safe conduct of underground nuclear detonation testing at the Nevada Test Site (NTS) and elsewhere. Blume`s long experience in earthquake engineering provided a general basis for the program, but much more specialized knowledge was required for the AEC`s purposes. Over the next 24 years Blume conducted a major research program to provide essential understanding of the detailed nature of the response of structures to dynamic loads such as those imposed by seismic wave propagation. The program`s results have been embodied in a prediction technology which has served to provide reliable advanced knowledge of the probable effects of seismic ground motion on all kinds of structures, for use in earthquake engineering and in building codes as well as for the continuing needs of the US Department of Energy`s Nevada Operations Office (DOE/NV). This report is primarily an accounting of the Blume work, beginning with the setting in 1964 and the perception of the program needs as envisioned by Dr. John A. Blume. Subsequent chapters describe the structural response program in detail and the structural prediction procedures which resulted; the intensive data acquisition program which, as is discussed at some length, relied heavily on the contributions of other consultant-contractors in the DOE/NV Seismic Safety Support Program; laboratory and field studies to provide data on building elements and structures subjected to dynamic loads from sources ranging from testing machines to earthquakes; structural response activities undertaken for testing at the NTS and for off-NTS underground nuclear detonations; and concluding with an account of corollary studies including effects of natural forces and of related studies on building response.
Plasma and current structures in dynamical pinches
Butov, I.Ya.; Matveev, Yu.V.
1981-01-01
Dynamics of plasma layers and current structure in aZ-pinch device has been experimentally investigated. It is found that shaping of a main current envelope is ended with its explosion-like expansion, the pinch decaying after compression to separated current filaments. It is also shown that filling of a region outside the pinch with plasma and currents alternating in directions occurs owing to interaction of current loops (inductions) formed in a magnetic piston during its compression with reflected shock wave. Current circulating in the loops sometimes exceeds 1.5-2 times the current of discharge circuit. The phenomena noted appear during development of superheat instability and can be realized, for example, in theta-pinches, plasma focuses, tokamaks. The experiments were carried out at the Dynamic Zeta-pinch device at an energy reserse of up to 15 kJ (V 0 =24 kV) in a capacitor bank. Half-period of the discharge current is 9 μs; Isub(max)=3.5x10sup(5) A. Back current guide surrounding a china chamber of 28 cm diameter and 50 cm length is made in the form of a hollow cylinder. Initial chamber vacuum is 10 -6 torr [ru
Wheat yield dynamics: a structural econometric analysis.
Sahin, Afsin; Akdi, Yilmaz; Arslan, Fahrettin
2007-10-15
In this study we initially have tried to explore the wheat situation in Turkey, which has a small-open economy and in the member countries of European Union (EU). We have observed that increasing the wheat yield is fundamental to obtain comparative advantage among countries by depressing domestic prices. Also the changing structure of supporting schemes in Turkey makes it necessary to increase its wheat yield level. For this purpose, we have used available data to determine the dynamics of wheat yield by Ordinary Least Square Regression methods. In order to find out whether there is a linear relationship among these series we have checked each series whether they are integrated at the same order or not. Consequently, we have pointed out that fertilizer usage and precipitation level are substantial inputs for producing high wheat yield. Furthermore, in respect for our model, fertilizer usage affects wheat yield more than precipitation level.
Chemical structure and dynamics. Annual report 1994
Colson, S.D.
1995-07-01
The Chemical Structure and Dynamics program was organized as a major component of Pacific Northwest Laboratory`s Environmental and Molecular Sciences Laboratory (EMSL), a state-of-the-art collaborative facility for studies of chemical structure and dynamics. Our program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces, and (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage. This research effort was initiated in 1989 and will continue to evolve over the next few years into a program of rigorous studies of fundamental molecular processes in model systems, such as well-characterized surfaces, single-component solutions, clusters, and biological molecules; and studies of complex systems found in the environment (multispecies, multiphase solutions; solid/liquid, liquid/liquid, and gas/surface interfaces; colloidal dispersions; ultrafine aerosols; and functioning biological systems). The success of this program will result in the achievement of a quantitative understanding of chemical reactions at interfaces, and more generally in condensed media, that is comparable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for predictions of macroscopic chemical behavior in condensed and heterogeneous media, adding significantly to the value of field-scale environmental models, the prediction of short- and long-term nuclear waste storage stabilities, and other problems related to the primary missions of the DOE.
MULTISCALE DYNAMICS OF SOLAR MAGNETIC STRUCTURES
Uritsky, Vadim M.; Davila, Joseph M.
2012-01-01
Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries. We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.
Annual Report 1998: Chemical Structure and Dynamics
SD Colson; RS McDowell
1999-05-10
The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE).
Optical Fibres Contactless Sensor for Dynamic Testing of Lightweight Structures
L. Bregant
2008-01-01
Full Text Available With dynamic testing, engineers describe activities focused on the identification of some properties of vibrating structures. This step requires for the measurements of excitations and responses signals, applying appropriate sensors directly on the test article. These instruments modify the system's mass and stiffness distributions and eventually the eigen-properties of the structure. These errors become unacceptable especially when testing lightweight structures. This paper shows the results of some tests performed on a small compressor with the purpose of identifying the blades’ natural frequencies and modes. It compares the acquisitions performed with standard accelerometers and two different contact-less systems using as exciters either a micro-hammer or a micro inertial shaker. The paper shows how the contact-less sensors provide good quality data and consistent results in the mode identification phase.
A Comparative Study on Optimal Structural Dynamics Using Wavelet Functions
Seyed Hossein Mahdavi
2015-01-01
Full Text Available Wavelet solution techniques have become the focus of interest among researchers in different disciplines of science and technology. In this paper, implementation of two different wavelet basis functions has been comparatively considered for dynamic analysis of structures. For this aim, computational technique is developed by using free scale of simple Haar wavelet, initially. Later, complex and continuous Chebyshev wavelet basis functions are presented to improve the time history analysis of structures. Free-scaled Chebyshev coefficient matrix and operation of integration are derived to directly approximate displacements of the corresponding system. In addition, stability of responses has been investigated for the proposed algorithm of discrete Haar wavelet compared against continuous Chebyshev wavelet. To demonstrate the validity of the wavelet-based algorithms, aforesaid schemes have been extended to the linear and nonlinear structural dynamics. The effectiveness of free-scaled Chebyshev wavelet has been compared with simple Haar wavelet and two common integration methods. It is deduced that either indirect method proposed for discrete Haar wavelet or direct approach for continuous Chebyshev wavelet is unconditionally stable. Finally, it is concluded that numerical solution is highly benefited by the least computation time involved and high accuracy of response, particularly using low scale of complex Chebyshev wavelet.
Dynamic analysis of clustered building structures using substructures methods
Leimbach, K.R.; Krutzik, N.J.
1989-01-01
The dynamic substructure approach to the building cluster on a common base mat starts with the generation of Ritz-vectors for each building on a rigid foundation. The base mat plus the foundation soil is subjected to kinematic constraint modes, for example constant, linear, quadratic or cubic constraints. These constraint modes are also imposed on the buildings. By enforcing kinematic compatibility of the complete structural system on the basis of the constraint modes a reduced Ritz model of the complete cluster is obtained. This reduced model can now be analyzed by modal time history or response spectrum methods
Residual mass considerations in modal analysis of large dynamic structural systems
Shulman, J.S.; Day, J.P.
1991-01-01
Industry guidelines have specified that the seismic evaluation of Moderate and High Hazard Department of Energy (DOE) facilities be accomplished by use of dynamic analysis. The recommended approach is elastic response spectrum dynamic analysis to evaluate the elastic system demand on facility components. The application of modal response spectrum analysis to the seismic evaluation of nuclear facility structures, systems and equipment involves approximations due to limitations on the number of modes typically addressed in the complete dynamic solution. A simplified approach for achieving improved rigor in accounting for responses of the higher frequency modes in a modal response spectrum analysis is demonstrated
Evaluation of dynamic testing of as-built civil engineering structures
Srinivasan, M.G.; Kot, C.A.; Hsieh, B.J.
1985-01-01
This paper summarizes an evaluation of dynamic tests performed on large as-built structures. The objectives and methods (excitation and data analysis) of tests are reviewed. The utility and limitations of dynamic testing in light of actual experience is discussed. Though low-level tests in themselves will not be useful for predicting structural response to strong ground motion, they are useful for verifying linear models and for clarifying physical phenomena related to soil-structure interaction
Population dynamical responses to climate change
Forchhammer, Mads; Schmidt, Niels Martin; Høye, Toke Thomas
2008-01-01
approaches, we analyse concurrently the influence of climatic variability and trophic interactions on the temporal population dynamics of species in the terrestrial vertebrate community at Zackenberg. We describe and contrast the population dynamics of three predator species (arctic fox Alopex lagopus, stoat...... of arctic fox were not significantly related to changes in lemming abundance, both the stoat and the breeding of long-tailed skua were mainly related to lemming dynamics. The predator-prey system at Zackenberg differentiates from previously described systems in high-arctic Greenland, which, we suggest...
Emergence of structured communities through evolutionary dynamics.
Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M
2015-10-21
Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Reduced-Order Model for Evaluating the Dynamic Response of Multilayer Plates to Impulsive Loads
2016-04-12
A REDUCED-ORDER MODEL FOR EVALUATING THE DYNAMIC RESPONSE OF MULTILAYER PLATES TO IMPULSIVE LOADS Weiran Jiang, Alyssa Bennett, Nickolas...innovative multilayer materials or structures to optimize the dynamic performance as a mechanism to absorb and spread energy from an impulsive load...models. • Optimizing the structural weight and levels of protection of the multilayer plates with a good combination of materials. Technical Approach 2016
Dynamic response analysis as a tool for investigating transport mechanisms
Dudok de Wit, Th.; Joye, B.; Lister, J.B.; Moret, J.M.
1990-01-01
Dynamic response analysis provides an attractive method for studying transport mechanisms in tokamak plasmas. The analysis of the radial response has already been widely used for heat and particle transport studies. The frequency dependence of the dynamic response, which is often omitted, reveals further properties of the dominant transport mechanisms. Extended measurements of the soft X-ray emission were carried out on the TCA tokamak in order to determine the underlying transport processes. (author) 5 refs., 2 figs
Challenges in parameter identification of large structural dynamic systems
Koh, C.G.
2001-01-01
In theory, it is possible to determine the parameters of a structural or mechanical system by subjecting it to some dynamic excitation and measuring the response. Considerable research has been carried out in this subject area known as the system identification over the past two decades. Nevertheless, the challenges associated with numerical convergence are still formidable when the system is large in terms of the number of degrees of freedom and number of unknowns. While many methods work for small systems, the convergence becomes difficult, if not impossible, for large systems. In this keynote lecture, both classical and non-classical system identification methods for dynamic testing and vibration-based inspection are discussed. For classical methods, the extended Kalman filter (EKF) approach is used. On this basis, a substructural identification method has been developed as a strategy to deal with large structural systems. This is achieved by reducing the problem size, thereby significantly improving the numerical convergence and efficiency. Two versions of this method are presented each with its own merits. A numerical example of frame structure with 20 unknown parameters is illustrated. For non-classical methods, the Genetic Algorithm (GA) is shown to be applicable with relative ease due to its 'forward analysis' nature. The computational time is, however, still enormous for large structural systems due to the combinatorial explosion problem. A model GA method has been developed to address this problem and tested with considerable success on a relatively large system of 50 degrees of freedom, accounting for input and output noise effects. An advantages of this GA-based identification method is that the objective function can be defined in response measured. Numerical studies show that the method is relatively robust, as it does in response measured. Numerical studies show that the method is relatively robust, as it dos not require good initial guess and the
Final disposal room structural response calculations
Stone, C.M.
1997-08-01
Finite element calculations have been performed to determine the structural response of waste-filled disposal rooms at the WIPP for a period of 10,000 years after emplacement of the waste. The calculations were performed to generate the porosity surface data for the final set of compliance calculations. The most recent reference data for the stratigraphy, waste characterization, gas generation potential, and nonlinear material response have been brought together for this final set of calculations
Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics
2016-01-01
This book focuses on structure-preserving numerical methods for flexible multibody dynamics, including nonlinear elastodynamics and geometrically exact models for beams and shells. It also deals with the newly emerging class of variational integrators as well as Lie-group integrators. It discusses two alternative approaches to the discretization in space of nonlinear beams and shells. Firstly, geometrically exact formulations, which are typically used in the finite element community and, secondly, the absolute nodal coordinate formulation, which is popular in the multibody dynamics community. Concerning the discretization in time, the energy-momentum method and its energy-decaying variants are discussed. It also addresses a number of issues that have arisen in the wake of the structure-preserving discretization in space. Among them are the parameterization of finite rotations, the incorporation of algebraic constraints and the computer implementation of the various numerical methods. The practical application...
Matrix of transmission in structural dynamics
Mukherjee, S.
1975-01-01
Within the last few years numerous papers have been published on the subject of matrix method in elasto-mechanics. 'Matrix of Transmission' is one of the methods in this field which has gained considerable attention in recent years. The basic philosophy adopted in this method is based on the idea of breaking up a complicated system into component parts with simple elastic and dynamic properties which can be readily expressed in matrix form. These component matrices are considered as building blocks, which are fitted together according to a set of predetermined rules which then provide the static and dynamic properties of the entire system. A common type of system occuring in engineering practice consists of a number of elements linked together end to end in the form of a chain. The 'Transfer Matrix' is ideally suited for such a system, because only successive multiplication is necessary to connect these elements together. The number of degrees of freedom and intermediate conditions present no difficulty. Although the 'Transfer Matrix' method is suitable for the treatment of branched and coupled systems its application to systems which do not have predominant chain topology is not effective. Apart from the requirement that the system be linearely elastic, no other restrictions are made. In this paper, it is intended to give a general outline and theoretical formulation of 'Transfer Matrix' and then its application to actual problems in structural dynamics related to seismic analysis. The natural frequencies of a freely vibrating elastic system can be found by applying proper end conditions. The end conditions will yield the frequency determinate to zero. By using a suitable numerical method, the natural frequencies and mode shapes are determined by making a frequency sweep within the range of interest. Results of an analysis of a typical nuclear building by this method show very close agreement with the results obtained by using ASKA and SAP IV program. Therefore
Study on Human-structure Dynamic Interaction in Civil Engineering
Gao, Feng; Cao, Li Lin; Li, Xing Hua
2018-06-01
The research of human-structure dynamic interaction are reviewed. Firstly, the influence of the crowd load on structural dynamic characteristics is introduced and the advantages and disadvantages of different crowd load models are analyzed. Then, discussing the influence of structural vibration on the human-induced load, especially the influence of different stiffness structures on the crowd load. Finally, questions about human-structure interaction that require further study are presented.
Manolis, George
2017-01-01
This book provides state of the art coverage of important current issues in the analysis, measurement, and monitoring of the dynamic response of infrastructure to environmental loads, including those induced by earthquake motion and differential soil settlement. The coverage is in five parts that address numerical methods in structural dynamics, soil–structure interaction analysis, instrumentation and structural health monitoring, hybrid experimental mechanics, and structural health monitoring for bridges. Examples that give an impression of the scope of the topics discussed include the seismic analysis of bridges, soft computing in earthquake engineering, use of hybrid methods for soil–structure interaction analysis, effects of local site conditions on the inelastic dynamic analysis of bridges, embedded models in wireless sensor networks for structural health monitoring, recent developments in seismic simulation methods, and seismic performance assessment and retrofit of structures. Throughout, the empha...
Responses in large-scale structure
Barreira, Alexandre; Schmidt, Fabian, E-mail: barreira@MPA-Garching.MPG.DE, E-mail: fabians@MPA-Garching.MPG.DE [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany)
2017-06-01
We introduce a rigorous definition of general power-spectrum responses as resummed vertices with two hard and n soft momenta in cosmological perturbation theory. These responses measure the impact of long-wavelength perturbations on the local small-scale power spectrum. The kinematic structure of the responses (i.e., their angular dependence) can be decomposed unambiguously through a ''bias'' expansion of the local power spectrum, with a fixed number of physical response coefficients , which are only a function of the hard wavenumber k . Further, the responses up to n -th order completely describe the ( n +2)-point function in the squeezed limit, i.e. with two hard and n soft modes, which one can use to derive the response coefficients. This generalizes previous results, which relate the angle-averaged squeezed limit to isotropic response coefficients. We derive the complete expression of first- and second-order responses at leading order in perturbation theory, and present extrapolations to nonlinear scales based on simulation measurements of the isotropic response coefficients. As an application, we use these results to predict the non-Gaussian part of the angle-averaged matter power spectrum covariance Cov{sup NG}{sub ℓ=0}( k {sub 1}, k {sub 2}), in the limit where one of the modes, say k {sub 2}, is much smaller than the other. Without any free parameters, our model results are in very good agreement with simulations for k {sub 2} ∼< 0.06 h Mpc{sup −1}, and for any k {sub 1} ∼> 2 k {sub 2}. The well-defined kinematic structure of the power spectrum response also permits a quick evaluation of the angular dependence of the covariance matrix. While we focus on the matter density field, the formalism presented here can be generalized to generic tracers such as galaxies.
Responses in large-scale structure
Barreira, Alexandre; Schmidt, Fabian
2017-06-01
We introduce a rigorous definition of general power-spectrum responses as resummed vertices with two hard and n soft momenta in cosmological perturbation theory. These responses measure the impact of long-wavelength perturbations on the local small-scale power spectrum. The kinematic structure of the responses (i.e., their angular dependence) can be decomposed unambiguously through a ``bias'' expansion of the local power spectrum, with a fixed number of physical response coefficients, which are only a function of the hard wavenumber k. Further, the responses up to n-th order completely describe the (n+2)-point function in the squeezed limit, i.e. with two hard and n soft modes, which one can use to derive the response coefficients. This generalizes previous results, which relate the angle-averaged squeezed limit to isotropic response coefficients. We derive the complete expression of first- and second-order responses at leading order in perturbation theory, and present extrapolations to nonlinear scales based on simulation measurements of the isotropic response coefficients. As an application, we use these results to predict the non-Gaussian part of the angle-averaged matter power spectrum covariance CovNGl=0(k1,k2), in the limit where one of the modes, say k2, is much smaller than the other. Without any free parameters, our model results are in very good agreement with simulations for k2 lesssim 0.06 h Mpc-1, and for any k1 gtrsim 2k2. The well-defined kinematic structure of the power spectrum response also permits a quick evaluation of the angular dependence of the covariance matrix. While we focus on the matter density field, the formalism presented here can be generalized to generic tracers such as galaxies.
Dynamic Response of Coarse Granular Material to Wave Load
Ibsen, Lars Bo
1998-01-01
The soil beneath vertical breakwaters is subjected to a combination of forces induced by the waves. The forces acting on the soil can be characterized as 1) static load due to submerged weight of the structure, 2) quasi-static forces induced by cyclic wave loading, and 3) wave impact from breaking...... waves. The stress conditions in the soil below a foundation exposed to these types of loading are very complex. The key to explain and quantify the soil response beneath a vertical breakwater is to understand the role of the volume changes and to be able to model these correctly. It is shown...... that the volume changes in soil subjected to static and dynamic loading are controlled by the characteristic line. Experiments have been performed to study the factors that influence the location of the characteristic line in drained and undrained tests for various types of sand and various types of loading...
Simulating CubeSat Structure Deployment Dynamics, Phase I
National Aeronautics and Space Administration — There is high value in simulating the nonlinear dynamics of stowing, deploying, and performance of deployable space structures, especially given the profound...
Response surface reconciliation method of bolted joints structure
Yunus Mohd Azmi
2017-01-01
Full Text Available Structural joining methods such as bolted joints are commonly used for the assembly of structural components due to their simplicity and easy maintenance. Understandably, the dynamic characteristic of bolted joined structure is mainly influenced by the properties of their joints such as preload on the bolts and joints stiffness which alter the measured dynamics response of the structure. Therefore, the need to include the local effect of the bolted joints into the numerical model of the bolted joined structure is vitally important in order to represent the model accurately. In this paper, a few types of connector elements that can be used to represent the bolted joints such as CBAR, CBEAM and CELAS have been investigated numerically and experimentally. The initial numerical results of these element connectors are compared with the experimental results in term of natural frequencies and mode shapes. The comparative evaluation of numerical and the experimental data are performed in order to provide some insights of inaccuracies in the numerical model due to invalid assumption in the numerical modelling such as geometry, material properties, and boundary conditions. The discrepancies between both results (numerical and experimental data are then corrected using the response surface reconciliation method (RSRM through which the finite element model is altered in order to provide closer agreement with the measured data so that it can be used for subsequence analysis.
AGE STRUCTURE OR FUNCTIONAL RESPONSE? RECONCILING ...
... surplus production that differ from traditional single-species management models. ... Specifically, while the ECOSIM “Arena” functional response and the von ... as a proxy for age structure rather than as a function of predator/prey behaviour, ...
Parallel processors and nonlinear structural dynamics algorithms and software
Belytschko, Ted
1989-01-01
A nonlinear structural dynamics finite element program was developed to run on a shared memory multiprocessor with pipeline processors. The program, WHAMS, was used as a framework for this work. The program employs explicit time integration and has the capability to handle both the nonlinear material behavior and large displacement response of 3-D structures. The elasto-plastic material model uses an isotropic strain hardening law which is input as a piecewise linear function. Geometric nonlinearities are handled by a corotational formulation in which a coordinate system is embedded at the integration point of each element. Currently, the program has an element library consisting of a beam element based on Euler-Bernoulli theory and trianglar and quadrilateral plate element based on Mindlin theory.
Dynamical structure of hadron emission sources
Zhao Xi; Zhao Shu Song
2000-01-01
NA22 experimental data of the triplet seagull effects show that the Doppler effects of hadron emission sources exist exactly in hadron- hadron collisions. Every source possesses the same average energy (CMS) approximately. The collective seagull effects can be also explained by the (aQ)/sup nu /K/sub nu / (aQ) distributions (generalized functions). The dynamical structure of a hadron emission source is described by the (aQ)/sup nu /K/sub nu / (aQ) distributions. The anomalous dimensions of the pionic quantum fields are gamma /sub B/(g/sub R/)=-0.045+or-0.012, which control the singularities of the production amplitude in quantum field theory. The mathematical parameter epsilon =4-D (the dimension D of space time) in the Feynman integrals can be replaced by the anomalous gamma /sub B/(g/sub R/) of the quantum fields for the regularization. (-2 gamma /sub B/(g/sub R/) to or from epsilon /2=1/ln( Lambda /sup 2//m /sup 2/) Lambda to infinity ). (26 refs).
Dynamical structure of hadron emission sources
Zhao Xi; Huang Bangrong; Zhao Shusong
2000-01-01
NA22 experimental data of the triplet seagull effects show that the Doppler effects of the hadron emission sources exist exactly in the hadron-hadron collisions. Every source possesses the same average energy (CMS) approximately. The collective seagull effects can be also explained by the (aQ) ν K ν (aQ) distributions (Generalized functions). The dynamical structure of a hadron emission source is described by the (aQ) ν K ν (aQ) distributions. The anomalous dimensions of the pionic quantum fields are γ B (g R ) = - 0.045 +- 0.012, which control the singularities of the production amplitude in quantum field theory. The mathematical parameter ε = 4-D (the dimension D of space time) in the Feynman integrals can be replaced by the anomalous γ B (g R ) of the quantum fields for the regularization. (-2γ B (g R )↔ε/2 1/ln(Λ 2 /m 2 )Λ→∞)
Dynamical structure of linearized GL(4) gravities
Aragone, C.; Restuccia, A.
1978-01-01
The physical content of the three more natural models of GL(4) gravity is analyzed, for the case of weak fields. It is shown that the first model is the linearized version of Yang's one-tensor-field gravity and is a scalar-tensor theory, with its scalar part contained in a symmetric tensor. The second and the third linearized models, which can both be derived from the fourth-order action postulated by Yang, are two-tensor decoupled systems. In both cases one of the tensors is the symmetric weak metric gravity tensor field. the second tensor appearing in these two models, representing the GL(4)-gauge field, is either a linearized symmetric affinity (in the second model) or a linearized but nonsymmetric affinity (for the third model). It is shown that in these last two cases the affinity contains a helicity-3 propagating field. Owing to the presence of helicity-3 fields it is shown that it is better to regard Yang's action as an action for a two-tensor system instead of trying to recover from a pure gravity (one-tensor-field) action. Finally, it is shown what is the dynamical structure of the second and third linearized two-tensor models which can be derived from Yang's action. (author)
Flexible joints in structural and multibody dynamics
O. A. Bauchau
2013-02-01
Full Text Available Flexible joints, sometimes called bushing elements or force elements, are found in all structural and multibody dynamics codes. In their simplest form, flexible joints simply consist of sets of three linear and three torsional springs placed between two nodes of the model. For infinitesimal deformations, the selection of the lumped spring constants is an easy task, which can be based on a numerical simulation of the joint or on experimental measurements. If the joint undergoes finite deformations, identification of its stiffness characteristics is not so simple, specially if the joint is itself a complex system. When finite deformations occur, the definition of deformation measures becomes a critical issue. This paper proposes a family of tensorial deformation measures suitable for elastic bodies of finite dimension. These families are generated by two parameters that can be used to modify the constitutive behavior of the joint, while maintaining the tensorial nature of the deformation measures. Numerical results demonstrate the objectivity of the deformations measures, a feature that is not shared by the deformations measures presently used in the literature. The impact of the choice of the two parameters on the constitutive behavior of the flexible joint is also investigated.
Touqan, Abdul Razzaq
2008-01-01
Present methods of analysis and mathematical modeling contain so many assumptions that separate them from reality and thus represent a defect in design which makes it difficult to analyze reasons of failure. Three dimensional (3D) modeling is so superior to 1D or 2D modeling, static analysis deviates from the true nature of earthquake load which is ''a dynamic punch'', and conflicting assumptions exist between structural engineers (who assume flexible structures on rigid block foundations) and geotechnical engineers (who assume flexible foundations supporting rigid structures). Thus a 3D dynamic soil-structure interaction is a step that removes many of the assumptions and thus clears reality to a greater extent. However such a model cannot be analytically analyzed. We need to anatomize and analogize it. The paper will represent a conceptual (analogical) 1D model for soil structure interaction and clarifies it by comparing its outcome with 3D dynamic soil-structure finite element analysis of two structures. The aim is to focus on how to calculate the period of the structure and to investigate effect of variation of stiffness on soil-structure interaction
Bmp indicator mice reveal dynamic regulation of transcriptional response.
Anna L Javier
Full Text Available Cellular responses to Bmp ligands are regulated at multiple levels, both extracellularly and intracellularly. Therefore, the presence of these growth factors is not an accurate indicator of Bmp signaling activity. While a common approach to detect Bmp signaling activity is to determine the presence of phosphorylated forms of Smad1, 5 and 8 by immunostaining, this approach is time consuming and not quantitative. In order to provide a simpler readout system to examine the presence of Bmp signaling in developing animals, we developed BRE-gal mouse embryonic stem cells and a transgenic mouse line that specifically respond to Bmp ligand stimulation. Our reporter identifies specific transcriptional responses that are mediated by Smad1 and Smad4 with the Schnurri transcription factor complex binding to a conserved Bmp-Responsive Element (BRE, originally identified among Drosophila, Xenopus and human Bmp targets. Our BRE-gal mES cells specifically respond to Bmp ligands at concentrations as low as 5 ng/ml; and BRE-gal reporter mice, derived from the BRE-gal mES cells, show dynamic activity in many cellular sites, including extraembryonic structures and mammary glands, thereby making this a useful scientific tool.
Response of Rubble Foundation to Dynamic Loading
Burcharth, H. F.; Ibsen, Lars Bo
1993-01-01
The soil beneath vertical monolithic structures is subjected to a combination of static load due to the submerged weight of the structure and stochastic non-stationary loads as a result of the wave loads on the vertical wall. The stress conditions in the soil below a foundation exposed to both...
Response of Rubble Foundation to Dynamic Loading
Burcharth, H. F.; Ibsen, Lars Bo
1994-01-01
The soil beneath vertical monolithic structures is subjected to a combination of static load due to the submerged weight of the structure and stochastic non-stationary loads as a result of the wave loads on the vertical wall. The stress conditions in the soil below a foundation exposed to both...
Knottin cyclization: impact on structure and dynamics
Gracy Jérôme
2008-12-01
Full Text Available Abstract Background Present in various species, the knottins (also referred to as inhibitor cystine knots constitute a group of extremely stable miniproteins with a plethora of biological activities. Owing to their small size and their high stability, knottins are considered as excellent leads or scaffolds in drug design. Two knottin families contain macrocyclic compounds, namely the cyclotides and the squash inhibitors. The cyclotide family nearly exclusively contains head-to-tail cyclized members. On the other hand, the squash family predominantly contains linear members. Head-to-tail cyclization is intuitively expected to improve bioactivities by increasing stability and lowering flexibility as well as sensitivity to proteolytic attack. Results In this paper, we report data on solution structure, thermal stability, and flexibility as inferred from NMR experiments and molecular dynamics simulations of a linear squash inhibitor EETI-II, a circular squash inhibitor MCoTI-II, and a linear analog lin-MCoTI. Strikingly, the head-to-tail linker in cyclic MCoTI-II is by far the most flexible region of all three compounds. Moreover, we show that cyclic and linear squash inhibitors do not display large differences in structure or flexibility in standard conditions, raising the question as to why few squash inhibitors have evolved into cyclic compounds. The simulations revealed however that the cyclization increases resistance to high temperatures by limiting structure unfolding. Conclusion In this work, we show that, in contrast to what could have been intuitively expected, cyclization of squash inhibitors does not provide clear stability or flexibility modification. Overall, our results suggest that, for squash inhibitors in standard conditions, the circularization impact might come from incorporation of an additional loop sequence, that can contribute to the miniprotein specificity and affinity, rather than from an increase in conformational rigidity
A review on the strain rate dependency of the dynamic viscoplastic response of FCC metals
Salvado, F.C.; Teixeira-Dias, Filipe; Walley, S.; Lea, L.J.; Cardoso, J.B.
2017-01-01
The response of structures and materials subject to ballistic impacts or blast loads remains a field of intense research. In a blast or impact load a sharp pressure wave travelling at supersonic speed impinges on the structure surface where deformation will develop at very high strain rates and stress waves may form and travel through the continuum solid. Both the dynamic loading and the temperature increase will significantly affect the mechanical and failure response of the material. This r...
Application of dynamic response analysis to JET heat pulse data
Griguoli, A.; Sips, A.C.C.
1993-09-01
The plasma dynamic response can be used to study transport processes in a tokamak plasma. A method has been developed for the application of dynamic response analysis to study perturbations away from the plasma equilibrium. In this report perturbations on the electron temperature following a sawtooth collapse in the center of the plasma are considered. The method has been used to find mathematical description of a series of heat pulses at the Joint European Torus project (JET). From the plasma dynamic response, the time constants which characterise the heat pulse are obtained. These time constants are compared to the transport coefficients found in previous analysis of the JET heat pulse data. Various methods are discussed for applying dynamic response analysis to JET heat pulse data. (author)
Modal analysis application for dynamic characterization of simple structures
Pastorini, A.J.; Belinco, C.G.
1987-01-01
The knowledge of the dynamic characteristics of a structure helps to foresee the vibrating behaviour under operating conditions. The modal analysis techniques offer a method to perform the dynamic characterization of a studied structure from the vibration modes of such structure. A hammer provided with a loaded cell to excite a wide frequency band and accelerometer and, on the basis of a measurement of the transfer function at different points, various simple structures were given with a dynamic structures analysis (of the type of Fourier's rapidly transformation) and the results were compared with those obtained by other methods. Different fields where these techniques are applied, are also enumerated. (Author)
Nonlinear dynamic analysis of hydrodynamically-coupled stainless steel structures
Zhao, Y.
1996-01-01
Spent nuclear fuel is usually stored temporarily on the site of nuclear power plants. The spent fuel storage racks are nuclear-safety-related stainless steel structures required to be analyzed for seismic loads. When the storage pool is subjected to three-dimensional (3-D) floor seismic excitations, rack modules, stored fuel bundles, adjacent racks and pool walls, and surrounding water are hydrodynamically coupled. Hydrodynamic coupling (HC) significantly affects the dynamic responses of the racks that are free-standing and submerged in water within the pool. A nonlinear time-history dynamic analysis is usually needed to describe the motion behavior of the racks that are both geometrically nonlinear and material nonlinear in nature. The nonlinearities include the friction resistance between the rack supporting legs and the pool floor, and various potential impacts of fuel-rack, rack-rack, and rack-pool wall. The HC induced should be included in the nonlinear dynamic analysis using the added-hydrodynamic-mass concept based on potential theory per the US Nuclear Regulatory Commission (USNRC) acceptance criteria. To this end, a finite element analysis constitutes a feasible and effective tool. However, most people perform somewhat simplified 1-D, or 2-D, or 3-D single rack and 2-D multiple rack analyses. These analyses are incomplete because a 3-D single rack model behaves quite differently from a 2-D mode. Furthermore, a 3-D whole pool multi-rack model behaves differently than a 3-D single rack model, especially when the strong HC effects are unsymmetrical. In this paper 3-D nonlinear dynamic time-history analyses were performed in a more quantitative manner using sophisticated finite element models developed for a single rack as well as all twelve racks in the whole-pool. Typical response results due to different HC effects are determined and discussed
Dynamic Multiaxial Response of a Hot-Pressed Aluminum Nitride
2012-01-05
Hutchinson, Adv. Appl . Mech. 29 (1992). [34] H. Ming-Yuan, J.W. Hutchinson, Int. J. Solids Struct. 25 (1989) 1053. [35] J. Salem , L. Ghosn, Int. J...Dynamic Multiaxial Response of a Hot- Pressed Aluminum Nitride by Guangli Hu, C. Q. Chen, K. T. Ramesh, and J. W. McCauley ARL-RP-0487...Laboratory Aberdeen Proving Ground, MD 21005-5066 ARL-RP-0487 June 2014 Dynamic Multiaxial Response of a Hot- Pressed Aluminum Nitride
The effects of soil-structure interaction modeling techniques on in-structure response spectra
Johnson, J.J.; Wesley, D.A.; Almajan, I.T.
1977-01-01
The structure considered for this investigation consisted of the reactor containment building (RCB) and prestressed concrete reactor vessel (PCRV) for a HTGR plant. A conventional lumped-mass dynamic model in three dimensions was used in the study. The horizontal and vertical response, which are uncoupled due to the symmetry of the structure, were determined for horizontal and vertical excitation. Five different site conditions ranging from competent rock to a soft soil site were considered. The simplified approach to the overall plant analysis utilized stiffness proportional composite damping with a limited amount of soil damping consistent with US NRC regulatory guidelines. Selected cases were also analyzed assuming a soil damping value approximating the theoretical value. The results from the simplified approach were compared to those determined by rigorously coupling the structure to a frequency independent half-space representation of the soil. Finally, equivalent modal damping ratios were found by matching the frequency response at a point within the coupled soil-structure system determined by solution of the coupled and uncoupled equations of motion. The basis for comparison of the aforementioned techniques was the response spectra at selected locations within the soil-structure system. Each of the five site conditions was analyzed and in-structure response spectra were generated. The response spectra were combined to form a design envelope which encompasses the entire range of site parameters. Both the design envelopes and the site-by-site results were compared
Earthquake response analysis considering structure-soil-structure interaction
Shiomi, T.; Takahashi, K.; Oguro, E.
1981-01-01
This paper proposes a numerical method of earthquake response analysis considering the structure-soil-structure interaction between two adjacent buildings. In this paper an analytical study is presented in order to show some typical features of coupling effects of two reactor buildings of the BWR-type nuclear power plant. The technical approach is a kind of substructure method, which at first evaluates the compliance properties with the foundation-soil-foundation interaction and then uses the compliance in determining seismic responses of two super-structures during earthquake motions. For this purpose, it is assumed that the soil medium is an elastic half space for modeling and that the rigidity of any type of structures such as piping facilities connecting the adjacent buildings is negligible. The technical approach is mainly based on the following procedures. Supersturcture stiffness is calculated by using the method which has been developed in our laboratory based on the Thin-Wall Beam Theory. Soil stiffness is expressed by a matrix with 12 x 12 elements as a function of frequency, which is calculated using the soil compliance functions proposed in Dr. Tajimi's Theory. These stiffness values may be expressed by complex numbers for modeling the damping mechanism of superstructures. We can solve eigenvalue problems with frequency dependent stiffness and the large-scale matrix using our method which is based on condensing the matrix to the suitable size by Rayleigh-Ritz method. Earthquake responses can be solved in the frequency domain by Fourier Transform. (orig./RW)
Structure and shear response of lipid monolayers
Dutta, P.; Ketterson, J.B.
1990-02-01
Organic monolayers and multilayers are both scientifically fascinating and technologically promising; they are, however, both complex systems and relatively inaccessible to experimental probes. In this Progress Report, we describe our X-ray diffraction studies, which have given us substantial new information about the structures and phase transitions in monolayers on the surface of water; our use of these monolayers as a unique probe of the dynamics of wetting and spreading; and our studies of monolayer mechanical properties using a simple but effective technique available to anyone using the Wilhelmy method to measure surface tension
Nagasaki, Kazunobu; Takamura, Shuichi; Razzak, Md. Abdur; Uesugi, Yoshihiko; Yoshimura, Yasuo; Cappa, Alvaro
2008-01-01
The dynamics and structure of plasma production are stated by the results of two experiments such as the radio frequency thermal plasmas produced by inductively coupled plasma technique at atmospheric pressure and the second harmonic ECH. The first experiment results explained transition from the electrostatic discharge mode of forming streamer to the induced discharge mode after forming the discharge channel that the streamer connected to in the azimuth direction. The other experiment explained the dynamics which the initial plasma produced at the ECH resonance point spread in the direction of radius. The divergence and transition related to the nonlinear process were observed independently existing the magnetic field or incident power. The experiment devices, conditions, results, and modeling are reported. (S.Y.)
Retail Structured Products for Socially Responsible Investments
Jessen, Pernille
Institutional investors are the main drivers of demand for socially responsible investment (SRI). Preferences for non- nancial goals such as social and environmental sustainability are also held by small retail agents who, nonetheless, are almost non-existent in the market. This paper studies how...... and when it can be utility enhancing to engage in SRI: It proposes a quantitative method to incorporate responsibility into the investment decision and investigates how structured financial instruments can facilitate access to SRI for small retail agents. The goal is to demonstrate market potential...
Structure and dynamics of the magnetopause
Wang, Z.
1992-01-01
This thesis addresses several topics concerning the structure and dynamics of the magnetopause. These topics include the role of the magnetopause in global convection, the Kelvin-Helmholtz (K-H) instability, which accounts for momentum transport at the magnetopause, the formation of flux ropes by the tearing and twisting modes and particle diffusion across the magnetopause resulting from the destruction of magnetic surfaces. The author establishs an analytic electric field model for an open magnetosphere and introduce a magnetopause to control the reconnection rate and momentum transport. A realistic magnetospheric configuration is realized by 'stretch transformation'. The role of magnetic nulls in the electric field is approached with a technique for direct calculation of electric fields along field lines. Results indicate that electric fields associated with A-type or B-type nulls are generally singular. Then the author considers kinetic effects on the K-H instability. Contrary to the logical assumption that Landau damping damps the instability, it can instead enhance the growth and increase the spatial extent of the instability because the heating of resonance particles enhances the pressure perturbation. A gravitational analogy is used to determine the effect of curvature on K-H instability and it is found that the critical Richardson number for stability increases from 1/4 for incompressible fluids to 1/2 for compressible fluids. The flux rope, which accounts for flux transfer events (FTE), can be formed by a tearing or twisting mode. The tearing mode is self excited by the free energy associated with the magnetic configuration, while the twisting mode must be externally driven. The shear flow generates the twisting mode and reduces the growth rate of the tearing mode. The flux ropes resulting from the twisting mode closely resemble FTE's which have a longer pitch length than that from tearing mode
Visualizing Structure and Dynamics of Disaccharide Simulations
Matthews, J. F.; Beckham, G. T.; Himmel, M. E.; Crowley, M. F.
2012-01-01
We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.
Dynamics of Corporate Social Responsibility in Asia
Kim, Rebecca Chunghee; Moon, Jeremy
2015-01-01
This article investigates Corporate Social Responsibility (CSR) in Asia through two related themes: research knowledge and ethical norms. ‘CSR in Asia’ research is shown to be growing, particularly in East Asia. Compared with Western CSR literature, it is shown to be dominated by empirical, parti...
Trombetti, Tomaso
This thesis presents an Experimental/Analytical approach to modeling and calibrating shaking tables for structural dynamic applications. This approach was successfully applied to the shaking table recently built in the structural laboratory of the Civil Engineering Department at Rice University. This shaking table is capable of reproducing model earthquake ground motions with a peak acceleration of 6 g's, a peak velocity of 40 inches per second, and a peak displacement of 3 inches, for a maximum payload of 1500 pounds. It has a frequency bandwidth of approximately 70 Hz and is designed to test structural specimens up to 1/5 scale. The rail/table system is mounted on a reaction mass of about 70,000 pounds consisting of three 12 ft x 12 ft x 1 ft reinforced concrete slabs, post-tensioned together and connected to the strong laboratory floor. The slip table is driven by a hydraulic actuator governed by a 407 MTS controller which employs a proportional-integral-derivative-feedforward-differential pressure algorithm to control the actuator displacement. Feedback signals are provided by two LVDT's (monitoring the slip table relative displacement and the servovalve main stage spool position) and by one differential pressure transducer (monitoring the actuator force). The dynamic actuator-foundation-specimen system is modeled and analyzed by combining linear control theory and linear structural dynamics. The analytical model developed accounts for the effects of actuator oil compressibility, oil leakage in the actuator, time delay in the response of the servovalve spool to a given electrical signal, foundation flexibility, and dynamic characteristics of multi-degree-of-freedom specimens. In order to study the actual dynamic behavior of the shaking table, the transfer function between target and actual table accelerations were identified using experimental results and spectral estimation techniques. The power spectral density of the system input and the cross power spectral
The dynamic response of carbon fiber-filled polymer composites
Patterson B.
2012-08-01
Full Text Available The dynamic (shock responses of two carbon fiber-filled polymer composites have been quantified using gas gun-driven plate impact experimentation. The first composite is a filament-wound, highly unidirectional carbon fiber-filled epoxy with a high degree of porosity. The second composite is a chopped carbon fiber- and graphite-filled phenolic resin with little-to-no porosity. Hugoniot data are presented for the carbon fiber-epoxy (CE composite to 18.6 GPa in the through-thickness direction, in which the shock propagates normal to the fibers. The data are best represented by a linear Rankine-Hugoniot fit: Us = 2.87 + 1.17 ×up(ρ0 = 1.536g/cm3. The shock wave structures were found to be highly heterogeneous, both due to the anisotropic nature of the fiber-epoxy microstructure, and the high degree of void volume. Plate impact experiments were also performed on a carbon fiber-filled phenolic (CP composite to much higher shock input pressures, exceeding the reactants-to-products transition common to polymers. The CP was found to be stiffer than the filament-wound CE in the unreacted Hugoniot regime, and transformed to products near the shock-driven reaction threshold on the principal Hugoniot previously shown for the phenolic binder itself. [19] On-going research is focused on interrogating the direction-dependent dyanamic response and dynamic failure strength (spall for the CE composite in the TT and 0∘ (fiber directions.
Structures in dynamics finite dimensional deterministic studies
Broer, HW; van Strien, SJ; Takens, F
1991-01-01
The study of non-linear dynamical systems nowadays is an intricate mixture of analysis, geometry, algebra and measure theory and this book takes all aspects into account. Presenting the contents of its authors' graduate courses in non-linear dynamical systems, this volume aims at researchers who wish to be acquainted with the more theoretical and fundamental subjects in non-linear dynamics and is designed to link the popular literature with research papers and monographs. All of the subjects covered in this book are extensively dealt with and presented in a pedagogic
Ergodic Theory, Open Dynamics, and Coherent Structures
Bose, Christopher; Froyland, Gary
2014-01-01
This book is comprised of selected research articles developed from a workshop on Ergodic Theory, Probabilistic Methods and Applications, held in April 2012 at the Banff International Research Station. It contains contributions from world leading experts in ergodic theory, dynamical systems, numerical analysis, fluid dynamics, and networks. The volume will serve as a valuable reference for mathematicians, physicists, engineers, physical oceanographers, atmospheric scientists, biologists, and climate scientists, who currently use, or wish to learn how to use, probabilistic techniques to cope with dynamical models that display open, coherent, or non-equilibrium behavior.
Importance of structural damping in the dynamic analysis of compliant deployable structures
Dewalque, Florence; Rochus, Pierre; Brüls, Olivier
2015-06-01
Compliant mechanisms such as tape springs are often used on satellites to deploy appendices, e.g. solar panels, antennas, telescopes and solar sails. Their main advantage comes from the fact that their motion results from the elastic deformation of structural components and the absence of actuators or external energy sources. The mechanical behaviour of a tape spring is intrinsically complex and nonlinear involving buckling, hysteresis and self-locking phenomena. In the majority of the previous works, dynamic simulations were performed without any physical representation of the structural damping. These simulations could be successfully achieved because of the presence of numerical damping in the transient solver. However, in this case, the dynamic response turns out to be quite sensitive to the amount of numerical dissipation, so that the predictive capabilities of the model are questionable. In this work based on numerical case studies, we show that the dynamic simulation of a tape spring can be made less sensitive to numerical parameters when the structural dissipation is taken into account.
The Response Dynamics of Recognition Memory: Sensitivity and Bias
Koop, Gregory J.; Criss, Amy H.
2016-01-01
Advances in theories of memory are hampered by insufficient metrics for measuring memory. The goal of this paper is to further the development of model-independent, sensitive empirical measures of the recognition decision process. We evaluate whether metrics from continuous mouse tracking, or response dynamics, uniquely identify response bias and…
Modelling the Aggregated Dynamic Response of Electric Vehicles
Ziras, Charalampos; Hu, Junjie; You, Shi
2017-01-01
There is an increasing interest in the use of electric vehicles (EVs) for providing fast frequency reserves due to their large installed capacity and their very fast response. Most works focus on scheduling and optimization and usually neglect their aggregated dynamic response, which...
Optimization of multi-response dynamic systems integrating multiple ...
It also results in better optimization performance than back-propagation neural network-based approach and data mining-based approach reported by the past researchers. Keywords: multiple responses, multiple regression, weighted dynamic signal-to-noise ratio, performance measure modelling, response function ...
Dynamic response of IPEN experimental water loop
Faya, A.J.G.; Bassel, W.S.
1982-10-01
A mathematical model has been developed to analyze the transient thermal response of the I.P.E.N. water loop during change of power operations. The model is capable of estimating the necessary test section power and heat exchanger mass flow rate for a given operating temperature. It can also determine the maximum heating or cooling rate to avoid thermal shocks in pipes and components. (Author) [pt
NGC1300 dynamics - II. The response models
Kalapotharakos, C.; Patsis, P. A.; Grosbøl, P.
2010-10-01
We study the stellar response in a spectrum of potentials describing the barred spiral galaxy NGC1300. These potentials have been presented in a previous paper and correspond to three different assumptions as regards the geometry of the galaxy. For each potential we consider a wide range of Ωp pattern speed values. Our goal is to discover the geometries and the Ωp supporting specific morphological features of NGC1300. For this purpose we use the method of response models. In order to compare the images of NGC1300 with the density maps of our models, we define a new index which is a generalization of the Hausdorff distance. This index helps us to find out quantitatively which cases reproduce specific features of NGC1300 in an objective way. Furthermore, we construct alternative models following a Schwarzschild-type technique. By this method we vary the weights of the various energy levels, and thus the orbital contribution of each energy, in order to minimize the differences between the response density and that deduced from the surface density of the galaxy, under certain assumptions. We find that the models corresponding to Ωp ~ 16 and 22 kms-1kpc-1 are able to reproduce efficiently certain morphological features of NGC1300, with each one having its advantages and drawbacks. Based on observations collected at the European Southern Observatory, Chile: programme ESO 69.A-0021. E-mail: ckalapot@phys.uoa.gr (CK); patsis@academyofathens.gr (PAP); pgrosbol@eso.org (PG)
Estimating Reduced Consumption for Dynamic Demand Response
Chelmis, Charalampos [Univ. of Southern California, Los Angeles, CA (United States); Aman, Saima [Univ. of Southern California, Los Angeles, CA (United States); Saeed, Muhammad Rizwan [Univ. of Southern California, Los Angeles, CA (United States); Frincu, Marc [Univ. of Southern California, Los Angeles, CA (United States); Prasanna, Viktor K. [Univ. of Southern California, Los Angeles, CA (United States)
2015-01-30
Growing demand is straining our existing electricity generation facilities and requires active participation of the utility and the consumers to achieve energy sustainability. One of the most effective and widely used ways to achieve this goal in the smart grid is demand response (DR), whereby consumers reduce their electricity consumption in response to a request sent from the utility whenever it anticipates a peak in demand. To successfully plan and implement demand response, the utility requires reliable estimate of reduced consumption during DR. This also helps in optimal selection of consumers and curtailment strategies during DR. While much work has been done on predicting normal consumption, reduced consumption prediction is an open problem that is under-studied. In this paper, we introduce and formalize the problem of reduced consumption prediction, and discuss the challenges associated with it. We also describe computational methods that use historical DR data as well as pre-DR conditions to make such predictions. Our experiments are conducted in the real-world setting of a university campus microgrid, and our preliminary results set the foundation for more detailed modeling.
Investigation on dynamic response with foundation uplift
Ohtomo, Keizo; Iwatate, Hisahiro
1987-01-01
In order to rationalize the aseismatic design of nuclear power stations, it is necessary to elucidate the characteristics of effective input when the earthquake motion for the design is inputted in the foundations of nuclear power stations. In this study, among the research subjects concerning the reduction of effective earthquake input, regarding the uplift of foundations, its response characteristics and the method of the rational evaluation of earth contact ratio were experimentally examined, and the method of analysis which can evaluate the damping effect due to the uplift was proposed. The experimental method is reported. It was found that accompanying the uplift of foundations, vertical motion was induced, and horizontal motion showed nonlinear response. It was confirmed that the nonlinear response accompanying the uplift can be approximately evaluated by the conventional analysis technique using the S-R model. The current equation for evaluating earth contact ratio is adequate for a soft ground model, and tends to undervaluate for a hard ground model. The S-R analysis model introducing the experimentally obtained characteristics in the dampling coefficient of a nonlinear rocking spring was newly made. (Kako, I.)
Thermo-visco-plasticity and creep in structural-material response of folded-plate structures
Milašinović Dragan D.
2017-01-01
Full Text Available Many structural parts are exposed to high temperatures and loading. It is then important to have data about material inelastic behaviour under such exploiting conditions. Influence of temperature on mechanical characteristics of a material may be inserted via the creep coefficient in the range of visco-elasto-plastic (VEP strains. This damage parameter is implemented in this paper in conjunction with mathematical material modelling approach named rheological-dynamical analogy (RDA in order to address structural stiffness reduction due to inelastic material behaviour. The aim of this paper is to define structural-material internal damping based on both the RDA dynamic modulus and modal damping ratio, by modelling critically damped dynamic systems in the steady-state response. These systems are credible base for explanation of the phenomenon of thermo-visco-plasticity and creep in structural-material response due to high temperatures and loading. Though elastic buckling information for folded-plate structures is not a direct predictor of capacity or collapse behaviour on its own, both the mode and the load (moment are important proxies for the actual behaviour. In current design codes, such as AISI S100, New Zealand/Australia, and European Union, the design formulae are calibrated through the calculation of elastic critical buckling loads (or moments to predict the ultimate strength, thus the ability to calculate the associated elastic buckling loads (or moments has great importance. Moreover, the buckling mode shapes are commonly employed into non-linear collapse modelling as initial geometric imperfections and thermal performance of folded-plate structures in fire. To examine the buckling behaviour of folded-plate structures, the main numerical solution methods are used such as the finite element method (FEM and finite strip method (FSM. This paper aims at providing a unified frame for quasi-static inelastic buckling and thermal loading of
Static/dynamic fluid-structure interaction analysis for 3-D rotary blade model
Kim, Dong Hyun; Kim, Yu Sung; Kim, Dong Man; Park, Kang Kyun
2009-01-01
In this study, static/dynamic fluid-structure interaction analyses have been conducted for a 3D rotary blade model like a turbo-machinery or wind turbine blade. Advanced computational analysis system based on Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD) has been developed in order to investigate detailed dynamic responses of rotary type models. Fluid domains are modeled using the computational grid system with local grid deforming techniques. Reynolds-averaged Navier-Stokes equations with various turbulence model are solved for unsteady flow problems of the rotating blade model. Detailed static/dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating blades.
Model reduction tools for nonlinear structural dynamics
Slaats, P.M.A.; Jongh, de J.; Sauren, A.A.H.J.
1995-01-01
Three mode types are proposed for reducing nonlinear dynamical system equations, resulting from finite element discretizations: tangent modes, modal derivatives, and newly added static modes. Tangent modes are obtained from an eigenvalue problem with a momentary tangent stiffness matrix. Their
Estimation of the Rotational Terms of the Dynamic Response Matrix
D. Montalvão
2004-01-01
Full Text Available The dynamic response of a structure can be described by both its translational and rotational receptances. The latter ones are frequently not considered because of the difficulties in applying a pure moment excitation or in measuring rotations. However, in general, this implies a reduction up to 75% of the complete model. On the other hand, if a modification includes a rotational inertia, the rotational receptances of the unmodified system are needed. In one method, more commonly found in the literature, a so called T-block is attached to the structure. Then, a force, applied to an arm of the T-block, generates a moment together with a force at the connection point. The T-block also allows for angular displacement measurements. Nevertheless, the results are often not quite satisfactory. In this work, an alternative method based upon coupling techniques is developed, in which rotational receptances are estimated without the need of applying a moment excitation. This is accomplished by introducing a rotational inertia modification when rotating the T-block. The force is then applied in its centroid. Several numerical and experimental examples are discussed so that the methodology can be clearly described. The advantages and limitations are identified within the practical application of the method.
EURDYN, Nonlinear Transient Analysis of Structure with Dynamic Loads
Donea, J.; Giuliani, S.; Halleux, J.P.
1987-01-01
1 - Description of program or function: The EURDYN computer codes are under development at JRC-Ispra since 1973 for the simulation of non- linear dynamic response of fast-reactor components submitted to impulsive loading due to abnormal working conditions. They are thus mainly used in reactor safety analysis but can apply to other fields. Indeed the codes compute the elasto-plastic transient response of 2-D and thin 3-D structures submitted to fast dynamic loading generated by explosions, impacts... and represented by time dependent pressures, concentrated loads and prescribed displacements, or by initial speeds. Two releases of the structural computer codes EURDYN 01 (2-D beams and triangles and axisymmetric conical shells and triangular tori), 02 (axisymmetric and 2-D quadratic iso-parametric elements) and 03 (triangular plate elements) have already been produced in 1976(1) and 1980(2). They include material (elasto-plasticity using the classical flow theory approach) and geometrical (large displacements and rotations treated by a co-rotational technique) nonlinearities. The present version (Release 3) has been completed mid-1982 and is documented in EUR 8357 EN. The new features of Release 3, as compared to the former ones, roughly consist in: - full large strain capability for 9-node iso-parametric elements (EURDYN 02), - generalized array dimensions, - introduction of the radial return algorithm for elasto-plastic material modelling, - extension of the energy check facility to the case of prescribed displacements, - possible interface to a post-processing package including time plot facilities (TPLOT). The theoretical aspects can be found in refs. 2,4,5,6,7,8. 2 - Method of solution: - Finite element space discretization. - Explicit time integration. - Lumped masses. - EURDYN 01: 2-D co-rotational formulation including constant strain triangles (plane or axisymmetric), beams and conical shells, this last element being particularly useful for the study of thin
System-spanning dynamically jammed region in response to impact of cornstarch and water suspensions
Allen, Benjamin; Sokol, Benjamin; Mukhopadhyay, Shomeek; Maharjan, Rijan; Brown, Eric
2018-05-01
We experimentally characterize the structure of concentrated suspensions of cornstarch and water in response to impact. Using surface imaging and particle tracking at the boundary opposite the impactor, we observed that a visible structure and particle flow at the boundary occur with a delay after impact. We show the delay time is about the same time as the strong stress response, confirming that the strong stress response results from deformation of the dynamically jammed structure once it spans between the impactor and a solid boundary. A characterization of this strong stress response is reported in a companion paper [Maharjan, Mukhopadhyay, Allen, Storz, and Brown, Phys. Rev. E 97, 052602 (2018), 10.1103/PhysRevE.97.052602]. We observed particle flow in the outer part of the dynamically jammed region at the bottom boundary, with a net transverse displacement of up to about 5% of the impactor displacement, indicating shear at the boundary. Direct imaging of the surface of the outer part of the dynamically jammed region reveals a change in surface structure that appears the same as the result of dilation in other cornstarch suspensions. Imaging also reveals cracks, like a brittle solid. These observations suggest the dynamically jammed structure can temporarily support stress according to an effective modulus, like a soil or dense granular material, along a network of frictional contacts between the impactor and solid boundary.
4th International Conference on Structural Nonlinear Dynamics and Diagnosis
2018-01-01
This book presents contributions on the most active lines of recent advanced research in the field of nonlinear mechanics and physics selected from the 4th International Conference on Structural Nonlinear Dynamics and Diagnosis. It includes fifteen chapters by outstanding scientists, covering various aspects of applications, including road tanker dynamics and stability, simulation of abrasive wear, energy harvesting, modeling and analysis of flexoelectric nanoactuator, periodic Fermi–Pasta–Ulam problems, nonlinear stability in Hamiltonian systems, nonlinear dynamics of rotating composites, nonlinear vibrations of a shallow arch, extreme pulse dynamics in mode-locked lasers, localized structures in a photonic crystal fiber resonator, nonlinear stochastic dynamics, linearization of nonlinear resonances, treatment of a linear delay differential equation, and fractional nonlinear damping. It appeals to a wide range of experts in the field of structural nonlinear dynamics and offers researchers and engineers a...
Bistable responses in bacterial genetic networks: Designs and dynamical consequences
Tiwari, Abhinav; Ray, J. Christian J.; Narula, Jatin; Igoshin, Oleg A.
2011-01-01
A key property of living cells is their ability to react to stimuli with specific biochemical responses. These responses can be understood through the dynamics of underlying biochemical and genetic networks. Evolutionary design principles have been well studied in networks that display graded responses, with a continuous relationship between input signal and system output. Alternatively, biochemical networks can exhibit bistable responses so that over a range of signals the network possesses two stable steady states. In this review, we discuss several conceptual examples illustrating network designs that can result in a bistable response of the biochemical network. Next, we examine manifestations of these designs in bacterial master-regulatory genetic circuits. In particular, we discuss mechanisms and dynamic consequences of bistability in three circuits: two-component systems, sigma-factor networks, and a multistep phosphorelay. Analyzing these examples allows us to expand our knowledge of evolutionary design principles for networks with bistable responses. PMID:21385588
Splitting method for computing coupled hydrodynamic and structural response
Ash, J.E.
1977-01-01
A numerical method is developed for application to unsteady fluid dynamics problems, in particular to the mechanics following a sudden release of high energy. Solution of the initial compressible flow phase provides input to a power-series method for the incompressible fluid motions. The system is split into spatial and time domains leading to the convergent computation of a sequence of elliptic equations. Two sample problems are solved, the first involving an underwater explosion and the second the response of a nuclear reactor containment shell structure to a hypothetical core accident. The solutions are correlated with experimental data
Complex-Dynamic Cosmology and Emergent World Structure
Kirilyuk, Andrei P.
2004-01-01
Universe structure emerges in the unreduced, complex-dynamic interaction process with the simplest initial configuration (two attracting homogeneous fields, quant-ph/9902015). The unreduced interaction analysis gives intrinsically creative cosmology, describing the real, explicitly emerging world structure with dynamic randomness on each scale. Without imposing any postulates or entities, we obtain physically real space, time, elementary particles with their detailed structure and intrinsic p...
Coupled vertical-rocking response of base-isolated structures
Pan, T.C.; Kelly, J.M.
1984-01-01
A base-isolated building can have a small horizontal eccentricity between the center of mass of the superstructure and the center of rigidity of the supporting bearings. The structure can be modeled as a rigid block with tributary masses supported on massless rubber bearings placed at a constant elevation below the center of mass. Perturbation methods are implemented to find the dynamic characteristics for both the detuned and the perfectly tuned cases. The Green's functions for the displacement response of the system are derived for the undamped and the damped conditions. The response spectrum modal superposition method is used in estimating the maximum acceleration. A simple method, accounting for the effect of closely spaced modes, is proposed for combining modal maxima and results in an approximate single-degree-of-freedom solution. This approximate solution may be used for thepreliminary design of a base-isolated structure. Numerical results for a base-isolated building subjected to the vertical component of the El Centro earthquake of 1940 were carried out for comparison with analytical results. It is shown that the effect of rocking coupling on the vertical seismic response of baseisolated structures can generally be neglected because of the combined effects of the time lag between the maximum translational and rotational responses and the influence of damping in the isolation system
On the Dynamics of the Self-organized Structures in a Low-Temperature Diffusion Plasma
Talasman, S.J.
1999-01-01
In this paper we investigate the dynamics of self organized space charge structures a in low-temperature diffusion plasma, in order to see what are the processes responsible for the appearance of such structures. This is performed through the time-resolved axial distributions of the light emitted from the plasma and through a particular cross section of the phase-space. One obtains that excitations, de-excitations and ionizations are implied in both the transient regimes of the formation of these structures, and the oscillating steady states of them. On the other hand it was found that the dynamics of such structures verify the KAM theorem. (author)
Tran Quoc, Tinh; Khong Trong, Toan; Luong Van, Hai
2018-04-01
In this paper, Improved Moving Element Method (IMEM) is used to analyze the dynamic response of Euler-Bernoulli beam structures on the dynamic foundation model subjected to the moving load. The effects of characteristic foundation model parameters such as Winkler stiffness, shear layer based on the Pasternak model, viscoelastic dashpot and characteristic parameter of mass on foundation. Beams are modeled by moving elements while the load is fixed. Based on the principle of the publicly virtual balancing and the theory of moving element method, the motion differential equation of the system is established and solved by means of the numerical integration based on the Newmark algorithm. The influence of mass on foundation and the roughness of the beam surface on the dynamic response of beam are examined in details.
Measurement of resistance switching dynamics in copper sulfide memristor structures
McCreery, Kaitlin; Olson, Matthew; Teitsworth, Stephen
Resistance switching materials are the subject of current research in large part for their potential to enable novel computing devices and architectures such as resistance random access memories and neuromorphic chips. A common feature of memristive structures is the hysteretic switching between high and low resistance states which is induced by the application of a sufficiently large electric field. Here, we describe a relatively simple wet chemistry process to fabricate Cu2 S / Cu memristive structures with Cu2 S film thickness ranging up to 150 micron. In this case, resistance switching is believed to be mediated by electromigration of Cu ions from the Cu substrate into the Cu2 S film. Hysteretic current-voltage curves are measured and reveal switching voltages of about 0.8 Volts with a relatively large variance and independent of film thickness. In order to gain insight into the dynamics and variability of the switching process, we have measured the time-dependent current response to voltage pulses of varying height and duration with a time resolution of 1 ns. The transient response consists of a deterministic RC component as well as stochastically varying abrupt current steps that occur within a few microseconds of the pulse application.
Dynamical load factor of impact loaded shell structures
Hammel, J.
1977-01-01
Dynamical loaded structures can be analysed by spectral representations, which usually lead to an enormous computational effort. If it is possible to find a fitting dynamical load factor, the dynamical problem can be reduced to a statical one. The computation of this statical problem is much simpler. The disadvantage is that the dynamical load factor usually leads to a very rough approximation. In this paper it will be shown, that by combination of these two methods, the approximation of the dynamical load factor can be improved and the consumption of computation time can be enormously reduced. (Auth.)
Fundamental structures of dynamic social networks
Sekara, Vedran; Stopczynski, Arkadiusz; Jørgensen, Sune Lehmann
2016-01-01
Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships...... and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection......, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals...
Researches on modeling of nuclear power plants for dynamic response analysis
Watabe, M.; Fukuzawa, R.; Chiba, O.; Toritani, T.
1983-01-01
The authors tried to establish the rational and economical model due to the vertical component considering the dynamic soil-structure interaction effects and the flexibility of the mat foundation. Three types of models were introduced. 1) Finite element model. Two cases of response analyses due to harmonic excitations with the finite element model were performed in which the mat foundation was treated rigid and elastic body. The dynamic soil-structure interaction effects were evaluated based on the condition that soil was semiinfinite elastic medium. 2) Sophisticated mass-spring-dashpot model. Two cases of response analyses due to harmonic excitations were performed to simulate the dynamic characteristics of the finite element models mentioned above using the sophisticated mass-spring-dashpot model, in which the dynamic soil-structure interaction effects were evaluated with the same procedure applied to the finite element model. 3) Simplified mass-spring-dashpot model. There were introduced three types of the simplified mass-spring-dashpot model in which the dynamic soil-structure interaction effects were simplified. Response analyses due to harmonic excitations and earthquake ground motions were performed in order to establish the rational and economical model. (orig./HP)
THE DYNAMICS OF THE MATRICS STRUCTURE
Dumitru CONSTANTINESCU
2007-01-01
Full Text Available The relationships organization-suppliers-customers have recently known major changes in the structure of services and have made the organization develop its managerial and professional competencies in order to do projects. The qualified organization is the most trust-worthy in the process of doing a project. The participation of an organization in doing projects depends on a multitude of factors. Out of these factors, the structural organization comes forth, as it represents the variable with the most important impact on a project’s quality, costs and lead time. From the organizational point of view, the matrix structure is frequently chosen for projects. The matrix structure generally coexists with the line structure. The two structures are contrastive. The line structure is based on the unity of command principle and is not open to cooperation and dialogue. The matrix structure encourages cooperation and communication, favours conflict, which is considered here a healthy and essential process. The matrix structure and the line structure claim their right to initiative. Conflict and the multidimensional integration of multiple hierarchies can be negotiated through the concept charisma – mediation, sustained by the matrix structure.
Nonlinear structural mechanics theory, dynamical phenomena and modeling
Lacarbonara, Walter
2013-01-01
Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling offers a concise, coherent presentation of the theoretical framework of nonlinear structural mechanics, computational methods, applications, parametric investigations of nonlinear phenomena and their mechanical interpretation towards design. The theoretical and computational tools that enable the formulation, solution, and interpretation of nonlinear structures are presented in a systematic fashion so as to gradually attain an increasing level of complexity of structural behaviors, under the prevailing assumptions on the geometry of deformation, the constitutive aspects and the loading scenarios. Readers will find a treatment of the foundations of nonlinear structural mechanics towards advanced reduced models, unified with modern computational tools in the framework of the prominent nonlinear structural dynamic phenomena while tackling both the mathematical and applied sciences. Nonlinear Structural Mechanics: Theory, Dynamical Phenomena...
Modelling structural systems for transient response analysis
Melosh, R.J.
1975-01-01
This paper introduces and reports success of a direct means of determining the time periods in which a structural system behaves as a linear system. Numerical results are based on post fracture transient analyses of simplified nuclear piping systems. Knowledge of the linear response ranges will lead to improved analysis-test correlation and more efficient analyses. It permits direct use of data from physical tests in analysis and simplication of the analytical model and interpretation of its behavior. The paper presents a procedure for deducing linearity based on transient responses. Given the forcing functions and responses of discrete points of the system at various times, the process produces evidence of linearity and quantifies an adequate set of equations of motion. Results of use of the process with linear and nonlinear analyses of piping systems with damping illustrate its success. Results cover the application to data from mathematical system responses. The process is successfull with mathematical models. In loading ranges in which all modes are excited, eight digit accuracy of predictions are obtained from the equations of motion deduced. Small changes (less than 0.01%) in the norm of the transfer matrices are produced by manipulation errors for linear systems yielding evidence that nonlinearity is easily distinguished. Significant changes (greater than five %) are coincident with relatively large norms of the equilibrium correction vector in nonlinear analyses. The paper shows that deducing linearity and, when admissible, quantifying linear equations of motion from transient response data for piping systems can be achieved with accuracy comparable to that of response data
Dynamic Capital Structure: Dynamics, Determinants and Speed of Adjustment
Tamirat, A.S.; Trujillo Barrera, A.A.; Pennings, J.M.E.
2017-01-01
The corporate finance literature has focused on explaining the determinants of firms target capital structure and speed of adjustment using the well-established theories such as pecking order, signaling and trade-off theories. However, less attention has been paid to understanding the financing
Recent Progress in Heliogyro Solar Sail Structural Dynamics
Wilkie, William K.; Warren, Jerry E.; Horta, Lucas G.; Juang, Jer-Nan; Gibbs, Samuel C.; Dowell, E.; Guerrant, Daniel; Lawrence Dale
2014-01-01
Results from recent National Aeronautics and Space Administration (NASA) research on the structural dynamics and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment, and results from small-scale in vacuo dynamics experiments with spinning high-aspect ratio membranes. A low-cost, rideshare payload heliogyro technology demonstration mission concept, used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, is also described.
Probalistic Finite Elements (PFEM) structural dynamics and fracture mechanics
Liu, Wing-Kam; Belytschko, Ted; Mani, A.; Besterfield, G.
1989-01-01
The purpose of this work is to develop computationally efficient methodologies for assessing the effects of randomness in loads, material properties, and other aspects of a problem by a finite element analysis. The resulting group of methods is called probabilistic finite elements (PFEM). The overall objective of this work is to develop methodologies whereby the lifetime of a component can be predicted, accounting for the variability in the material and geometry of the component, the loads, and other aspects of the environment; and the range of response expected in a particular scenario can be presented to the analyst in addition to the response itself. Emphasis has been placed on methods which are not statistical in character; that is, they do not involve Monte Carlo simulations. The reason for this choice of direction is that Monte Carlo simulations of complex nonlinear response require a tremendous amount of computation. The focus of efforts so far has been on nonlinear structural dynamics. However, in the continuation of this project, emphasis will be shifted to probabilistic fracture mechanics so that the effect of randomness in crack geometry and material properties can be studied interactively with the effect of random load and environment.
Dynamical response of the Arctic winter stratosphere to global warming
Karpechko, A.; Manzini, E.
2017-12-01
Climate models often simulate dynamical warming of the Arctic stratosphere as a response to global warming in association with a strengthening of the deep branch of the Brewer-Dobson circulation; however until now, no satisfactory mechanism for such a response has been suggested. Here we investigate the role of stationary planetary waves in the dynamical response of the Arctic winter stratosphere circulation to global warming by analysing simulations performed with atmosphere-only Coupled Model Intercomparison Project Phase 5 (CMIP5) models driven by prescribed sea surface temperatures (SSTs). We focus on December-February (DJF) because this is the period when the troposphere and stratosphere are strongly coupled. When forced by increased SSTs, all the models analysed here simulate Arctic stratosphere dynamical warming, mostly due to increased upward propagation of quasi-stationary wave number 1, as diagnosed by the meridional eddy heat flux. By analysing intermodel spread in the response we show that the stratospheric warming and increased wave flux to the stratosphere correlate with the strengthening of the zonal winds in subtropics and mid-latitudes near the tropopause- a robust response to global warming. These results support previous studies of future Arctic stratosphere changes and suggest a dynamical warming of the Arctic wintertime polar vortex as the most likely response to global warming.
Ma, D.C.; Shin, Y.S.; Brochard, D.; Fujita, K.
1994-01-01
This volume is comprised of papers presented in two symposia at the 1994 ASME Pressure Vessels and Piping Conference. These sessions, sponsored by the Fluid-Structure Interaction and Seismic Engineering Technical Committees, provided a forum for the discussion of recent advances in sloshing, fluid-structure interaction, and structural dynamics produced by high energy excitations. The papers presented at the four technical sessions on Sloshing and Fluid-Structure Interaction represent a broad spectrum of fluid-structure systems: sloshing, fluid-structure interaction, and dynamic and seismic response of various fluid-structure systems such as reactor components, liquid storage tanks, submerged structures and piping systems, etc. The paper presented at the session on Structural Dynamics Produced by High-Energy Excitations cover underwater explosion effects on submerged structures, bubble loading phenomena, finite element mesh refinements on failure predictions, penetration and impact problems, and dynamic design of blast containment vessels. Also included are numerical analysis, design, and testing to understand difficult transient response phenomena. Separate abstracts were prepared for 24 papers in this volume
"Chameleon" Macromolecules: Synthesis, Structures and Applications of Stimulus Responsive Polymers
Sui, Xiaofeng
2012-01-01
This thesis describes the preparation and characterization of addressable responsive polymer structures and their versatile applications. Stimuli responsive polymer chains including temperature responsive poly(N-isopropylacrylamide), PNIPAM, pH responsive poly(methacrylic acid), PMAA and redox
Boundary element method in dynamic interaction of structures with multilayers media
Mihalache, N.; Poterasu, V.F.
1993-01-01
The paper presents the problems of dynamic interaction between the multilayers media and structure by means of B.E.M., using Green's functions. The structure considered by the authors as a particular problem concerns a reinforced concrete shear wall and soil foundation of three layers having different thickness and mechanical characteristics. The authors will present comparatively the stresses and the displacements in static and dynamic regime interaction response of the structure. Theoretical part of the paper presents: Green's functions for the multilayers media in dynamic regime, stiffness matrices, stresses and displacements in the multilayers media exprimed by means of the Green's functions induced by the shear and horizontal forces, computer program, consideration for dynamic, structure-foundation-multilayers soil foundation interaction. (author)
Friends and foes : The dynamics of dual social structures
Sytch, M.; Tatarynowicz, A.
2014-01-01
This paper investigates the evolutionary dynamics of a dual social structure encompassing collaboration and conflict among corporate actors. We apply and advance structural balance theory to examine the formation of balanced and unbalanced dyadic and triadic structures, and to explore how these
DSIbin : Identifying dynamic data structures in C/C++ binaries
Rupprecht, Thomas; Chen, Xi; White, David H.; Boockmann, Jan H.; Luttgen, Gerald; Bos, Herbert
2017-01-01
Reverse engineering binary code is notoriously difficult and, especially, understanding a binary's dynamic data structures. Existing data structure analyzers are limited wrt. program comprehension: they do not detect complex structures such as skip lists, or lists running through nodes of different
Dynamic fracture toughness testing of structural steels
Debel, C.P.
1978-01-01
Two candidate test methods aimed at producing materials properties of interest in connection with crack arrest assessments are currently under evaluation. These methods and the significance of the results are described. The quasi-static as well as the dynamic fracture toughness of a plain C-Mn steel in the as-quenched and tempered condition have been examined at temperatures between -115 0 C and the ambient temperature. Wedge-loaded duplex DCB-specimens were used in dynamic tests. The crack extension velocity was measured using a surface deposited grid and a registration circuit based on TTL-electronics. The toughness transition-temperature at quasi-static loading rate is found to be low; but during dynamic crack-extension a substantial shift of the transition-region to higher temperatures is produced, and fast fracture was obtained even at ambient temperature. Even though the dynamic fracture toughness Ksub(ID) increases with temperature, it decreases with increasing crack-extension velocity at a given temperature and the rate of decrease with respect to crack-extension velocity seems to be independent of temperature. Ksub(ID) appears to be insensitive to heat treatments. Test results indicate insufficient load-train stiffness, and problems due to crack branching were encountered. (author)
A system dynamics case study of resilient response to IP theft from a cyber- attack
Sepúlveda Estay, Daniel Alberto; Khan, Omera
2017-01-01
and swiftness of the supply chain response (resilience). However, current resilience frameworks are qualitative, do not address evolution over time as a relevant aspect, and thus do not provide indications on how to design a resilient response. This paper contributes to closing this gap by developing a system...... dynamics model from an actual case of resilient response after a cyber-attack. Both casespecific and generic structures are extracted from the case data analysis, and a reaction mechanism is proposed that results in the observed behavior. The identification of these structures should eventually aid...
Impact of the variation in dynamic vehicle load on flexible pavement responses
Ahsanuzzaman, Md
The purpose of this research was to evaluate the dynamic variation in asphalt pavement critical responses due to dynamic tire load variations. An attempt was also made to develop generalized regression equations to predict the dynamic response variation in flexible pavement under various dynamic load conditions. The study used an extensive database of computed pavement response histories for five different types of sites (smooth, rough, medium rough, very rough and severely rough), two different asphalt pavement structures (thin and thick) at two temperatures (70 °F and 104 °F), subjected to a tandem axle dual tire at three speeds 25, 37 and 50 mph (40, 60 and 80 km/h). All pavement responses were determined using the 3D-Move Analysis program (Version 1.2) developed by University of Nevada, Reno. A new term called Dynamic Response Coefficient (DRC) was introduced in this study to address the variation in critical pavement responses due to dynamic loads as traditionally measured by the Dynamic Load Coefficient (DLC). While DLC represents the additional varying component of the tire load, DRC represents the additional varying component of the response value (standard deviation divided by mean response). In this study, DRC was compared with DLC for five different sites based on the roughness condition of the sites. Previous studies showed that DLC varies with vehicle speed and suspension types, and assumes a constant value for the whole pavement structure (lateral and vertical directions). On the other hand, in this study, DRC was found to be significantly varied with the asphalt pavement and function of pavement structure, road roughness conditions, temperatures, vehicle speeds, suspension types, and locations of the point of interest in the pavement. A major contribution of the study is that the variation of pavement responses due to dynamic load in a flexible pavement system can be predicted with generalized regression equations. Fitting parameters (R2) in the
Invariant molecular-dynamics approach to structural phase transitions
Wentzcovitch, R.M.
1991-01-01
Two fictitious Lagrangians to be used in molecular-dynamics simulations with variable cell shape and suitable to study problems like structural phase transitions are introduced. Because they are invariant with respect to the choice of the simulation cell edges and eliminate symmetry breaking associated with the fictitious part of the dynamics, they improve the physical content of numerical simulations that up to now have been done by using Parrinello-Rahman dynamics
Quantifying and modeling soil structure dynamics
Characterization of soil structure has been a topic of scientific discussions ever since soil structure has been recognized as an important factor affecting soil physical, mechanical, chemical, and biological processes. Beyond semi-quantitative soil morphology classes, it is a challenge to describe ...
Dynamical community structure of populations evolving on genotype networks
Capitán, José A.; Aguirre, Jacobo; Manrubia, Susanna
2015-01-01
Neutral evolutionary dynamics of replicators occurs on large and heterogeneous networks of genotypes. These networks, formed by all genotypes that yield the same phenotype, have a complex architecture that conditions the molecular composition of populations and their movements on genome spaces. Here we consider as an example the case of populations evolving on RNA secondary structure neutral networks and study the community structure of the network revealed through dynamical properties of the population at equilibrium and during adaptive transients. We unveil a rich hierarchical community structure that, eventually, can be traced back to the non-trivial relationship between RNA secondary structure and sequence composition. We demonstrate that usual measures of modularity that only take into account the static, topological structure of networks, cannot identify the community structure disclosed by population dynamics
Structure for the decomposition of safeguards responsibilities
Dugan, V.L.; Chapman, L.D.
1977-01-01
A major mission of safeguards is to protect against the use of nuclear materials by adversaries to harm society. A hierarchical structure of safeguards responsibilities and activities to assist in this mission is defined. The structure begins with the definition of international or multi-national safeguards and continues through domestic, regional, and facility safeguards. The facility safeguards is decomposed into physical protection and material control responsibilities. In addition, in-transit safeguards systems are considered. An approach to the definition of performance measures for a set of Generic Adversary Action Sequence Segments (GAASS) is illustrated. These GAASS's begin outside facility boundaries and terminate at some adversary objective which could lead to eventual safeguards risks and societal harm. Societal harm is primarily the result of an adversary who is successful in the theft of special nuclear material or in the sabotage of vital systems which results in the release of material in situ. With the facility safeguards system, GAASS's are defined in terms of authorized and unauthorized adversary access to materials and components, acquisition of material, unauthorized removal of material, and the compromise of vital components. Each GAASS defines a set of ''paths'' (ordered set of physical protection components) and each component provides one or more physical protection ''functions'' (detection, assessment, communication, delay, neutralization). Functional performance is then developed based upon component design features, the environmental factors, and the adversary attributes. An example of this decomposition is presented
Structure for the decomposition of safeguards responsibilities
Dugan, V.L.; Chapman, L.D.
1977-08-01
A major mission of safeguards is to protect against the use of nuclear materials by adversaries to harm society. A hierarchical structure of safeguards responsibilities and activities to assist in this mission is defined. The structure begins with the definition of international or multi-national safeguards and continues through domestic, regional, and facility safeguards. The facility safeguards is decomposed into physical protection and material control responsibilities. In addition, in-transit safeguards systems are considered. An approach to the definition of performance measures for a set of Generic Adversary Action Sequence Segments (GAASS) is illustrated. These GAASS's begin outside facility boundaries and terminate at some adversary objective which could lead to eventual safeguards risks and societal harm. Societal harm is primarily the result of an adversary who is successful in the theft of special nuclear material or in the sabotage of vital systems which results in the release of material in situ. With the facility safeguards system, GAASS's are defined in terms of authorized and unauthorized adversary access to materials and components, acquisition of material, unauthorized removal of material, and the compromise of vital components. Each GAASS defines a set of ''paths'' (ordered set of physical protection components) and each component provides one or more physical protection ''functions'' (detection, assessment, communication, delay, neutralization). Functional performance is then developed based upon component design features, the environmental factors, and the adversary attributes. An example of this decomposition is presented
Effect of dynamic strain aging on cyclic stress response and deformation behavior of Zircaloy-2
Sudhakar Rao, G.; Verma, Preeti; Mahobia, G.S.; Santhi Srinivasa, N.C.; Singh, Vakil; Chakravartty, J.K.; Nudurupatic, Saibaba
2016-01-01
The effect of strain rate and temperature was studied on cyclic stress response and deformation behavior of annealed Zircaloy-2. Dynamic strain aging was exhibited under some test conditions. The cyclic stress response was found to be dependent on temperature and strain rate. At 300 °C, with decrease in strain rate, there was decrease in the rate as well as the degree of cyclic hardening. However, at 400°C, there was opposite trend and with decrease in strain rate both the rate as well as the degree of hardening increased. The deformation substructure showed dislocation bands, dislocation vein structure, PSB wall structure at both the temperatures. Irrespective of the temperature, there was dislocation loop structure, known as corduroy structure, at both the test temperatures. Based on the dislocation structure, the initial linear hardening is attributed to development of veins and PSB wall structure and the secondary hardening to the Corduroy structure. (author)
Dynamic analysis of CHASNUPP steam generator structure during shipping
Han Liangbi; Xu Jinkang; Zhou Meiwu; He Yinbiao
1998-07-01
The dynamic analysis of CHASNUPP steam generator during shipping is described, including the simplified mathematical model, acceleration power spectrum of ocean wave induced random vibration, the dynamic analysis of steam generator structure under random loading, the applied computer code and calculated results
Dynamic response of a typical synchrotron magnet/girder assembly
Jendrzejczyk, J.A.; Smith, R.K.; Vogt, M.E.
1993-06-01
In the Advanced Photon Source, the synchrotron booster ring accelerates positrons to the required energy level of 7 GeV. The positrons are then injected into the storage ring where they continue to orbit for 10--15 h. The storage ring quadrupoles have very stringent vibration criteria that must be satisfied to ensure that beam emittance growth is within acceptable limits, viz., <10%. Because the synchrotron booster ring is not operated after particle insertion into the storage ring, its vibration response is not a critical issue relative to the performance of the storage ring beam. Nevertheless, the synchrotron pulses at a frequency of 2 Hz, and if a vibration response frequency of the synchrotron magnet/girder assembly were to coincide with the pulsation frequency or its near harmonics, large-amplitude motion could result, with the effect that it could compromise the operation of the synchrotron. Due to the complex dynamics of the synchrotron magnet/girder assembly, it is necessary to measure the dynamic response of a prototypic assembly and its components to ensure that the inherent dynamic response frequencies are not equal to 2 Hz or any near harmonics. Dynamic-response measurement of the synchrotron girder assembly and component magnets is the subject of this report
Crystal structure and pair potentials: A molecular-dynamics study
Parrinello, M.; Rahman, A.
1980-10-06
With use of a Lagrangian which allows for the variation of the shape and size of the periodically repeating molecular-dynamics cell, it is shown that different pair potentials lead to different crystal structures.
Simulation of Protein Structure, Dynamics and Function in Organic Media
Daggett, Valerie
1998-01-01
The overall goal of our ONR-sponsored research is to pursue realistic molecular modeling strudies pertinnent to the related properties of protein stability, dynamics, structure, function, and folding in aqueous solution...
Artificial Neural Networks for Nonlinear Dynamic Response Simulation in Mechanical Systems
Christiansen, Niels Hørbye; Høgsberg, Jan Becker; Winther, Ole
2011-01-01
It is shown how artificial neural networks can be trained to predict dynamic response of a simple nonlinear structure. Data generated using a nonlinear finite element model of a simplified wind turbine is used to train a one layer artificial neural network. When trained properly the network is ab...... to perform accurate response prediction much faster than the corresponding finite element model. Initial result indicate a reduction in cpu time by two orders of magnitude....
Seismic response Analyses of Hanaro in-chimney bracket structures
Lee, Jae Han; Ryu, J.S.; Cho, Y.G.; Lee, H.Y.; Kim, J.B.
1999-05-01
The in-chimney bracket will be installed in the upper part of chimney, which holds the capsule extension pipes in upper one-third of length. For evaluating the effects on the capsules and related reactor structures, ANSYS finite element analysis model is developed and the dynamic characteristics are analyzed. The seismic response anlayses of in-chimney bracket and related reactor structures of HANARO under the design earthquake response spectrum loads of OBE (0.1 g) and SSE (0.2 g) are performed. The maximum horizontal displacements of the flow tubes are within the minimum half gaps between close flow tubes, it is expected that these displacement will not produce any contact between neighbor flow tubes. The stress values in main points of reactor structures and in-chimney bracket for the seismic loads are also within the ASME Code limits. It is also confirmed that the fatigue usage factor is much less than 1.0. So, any damage on structural integrity is not expected when an in-chimney bracket is installed to upper part of the reactor chimney. (author). 12 refs., 24 tabs., 37 figs
Induced dynamic nonlinear ground response at Gamer Valley, California
Lawrence, Z.; Bodin, P.; Langston, C.A.; Pearce, F.; Gomberg, J.; Johnson, P.A.; Menq, F.-Y.; Brackman, T.
2008-01-01
We present results from a prototype experiment in which we actively induce, observe, and quantify in situ nonlinear sediment response in the near surface. This experiment was part of a suite of experiments conducted during August 2004 in Garner Valley, California, using a large mobile shaker truck from the Network for Earthquake Engineering Simulation (NEES) facility. We deployed a dense accelerometer array within meters of the mobile shaker truck to replicate a controlled, laboratory-style soil dynamics experiment in order to observe wave-amplitude-dependent sediment properties. Ground motion exceeding 1g acceleration was produced near the shaker truck. The wave field was dominated by Rayleigh surface waves and ground motions were strong enough to produce observable nonlinear changes in wave velocity. We found that as the force load of the shaker increased, the Rayleigh-wave phase velocity decreased by as much as ???30% at the highest frequencies used (up to 30 Hz). Phase velocity dispersion curves were inverted for S-wave velocity as a function of depth using a simple isotropic elastic model to estimate the depth dependence of changes to the velocity structure. The greatest change in velocity occurred nearest the surface, within the upper 4 m. These estimated S-wave velocity values were used with estimates of surface strain to compare with laboratory-based shear modulus reduction measurements from the same site. Our results suggest that it may be possible to characterize nonlinear soil properties in situ using a noninvasive field technique.
Study on dynamic characteristics of reduced analytical model for PWR reactor internal structures
Yoo, Bong; Lee, Jae Han; Kim, Jong Bum; Koo, Kyeong Hoe
1993-01-01
The objective of this study is to establish the procedure of the reduced analytical modeling technique for the PWR reactor internal(RI) structures and to carry out the sensitivity study of the dynamic characteristics of the structures by varying the structural parameters such as the stiffness, the mass and the damping. Modeling techniques for the PWR reactor internal structures and computer programs used for the dynamic analysis of the reactor internal structures are briefly investigated. Among the many components of RI structures, the dynamic characteristics for CSB was performed. The sensitivity analysis of the dynamic characteristics for the reduced analytical model considering the variations of the stiffnesses for the lower and upper flanges of the CSB and for the RV Snubber were performed to improve the dynamic characteristics of the RI structures against the external loadings given. In order to enhance the structural design margin of the RI components, the nonlinear time history analyses were attempted for the RI reduced models to compare the structural responses between the reference model and the modified one. (Author)
Past and future trends in structures and dynamics
Bader, R.M.; Goesch, W.H.; Olsen, J.J.
1981-01-01
An historical review and a series of prognostications based on current developments are presented for the fields of structural design and structural dynamics analysis. It is shown that while weight and cost reduction and improved durability have been the primary forces in structural technology development in the past, emphasis has shifted to such things as productivity, quality assurance, low observables for military aircraft and increased fuel efficiency. Prominent among recent advances in future developments are damage tolerance durability, computer-aided design, active flutter suppression, adhesive bonding of primary structures, cast aluminum structures, titanium and graphite-epoxy primary aircraft structures, aeroelastic tailoring composites, metal matrix composites, and radar-absorbing structures
Declarative Event-Based Workflow as Distributed Dynamic Condition Response Graphs
Hildebrandt, Thomas; Mukkamala, Raghava Rao
2010-01-01
We present Dynamic Condition Response Graphs (DCR Graphs) as a declarative, event-based process model inspired by the workflow language employed by our industrial partner and conservatively generalizing prime event structures. A dynamic condition response graph is a directed graph with nodes repr...... exemplify the use of distributed DCR Graphs on a simple workflow taken from a field study at a Danish hospital, pointing out their flexibility compared to imperative workflow models. Finally we provide a mapping from DCR Graphs to Buchi-automata....
Dynamic Response of Underground Circular Lining Tunnels Subjected to Incident P Waves
Hua Xu
2014-01-01
Full Text Available Dynamic stress concentration in tunnels and underground structures during earthquakes often leads to serious structural damage. A series solution of wave equation for dynamic response of underground circular lining tunnels subjected to incident plane P waves is presented by Fourier-Bessel series expansion method in this paper. The deformation and stress fields of the whole medium of surrounding rock and tunnel were obtained by solving the equations of seismic wave propagation in an elastic half space. Based on the assumption of a large circular arc, a series of solutions for dynamic stress were deduced by using a wave function expansion approach for a circular lining tunnel in an elastic half space rock medium subjected to incident plane P waves. Then, the dynamic response of the circular lining tunnel was obtained by solving a series of algebraic equations after imposing its boundary conditions for displacement and stress of the circular lining tunnel. The effects of different factors on circular lining rock tunnels, including incident frequency, incident angle, buried depth, rock conditions, and lining stiffness, were derived and several application examples are presented. The results may provide a good reference for studies on the dynamic response and aseismic design of tunnels and underground structures.
Tsubogo, T.; Okada, H. [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering
1997-08-01
A very large floating structure was replaced with the beam on an elastic foundation to examine the response characteristics in waves. Another evidence was regularly and numerically given for the basic characteristics of a very large floating body Suzuki found. New information was also obtained. The frequency response is mainly classified into a wave number control area and proper frequency control area when buoyancy elasticity exists. When the buoyancy structure is long and flexible, the proper frequency becomes continuous and the frequency control area becomes a resonance area. In the wave number control area, the Suzuki`s characteristic wave number becomes a control parameter, and various characteristic values are indicated by characteristic wave numbers. The response in the wave number control area becomes quasi-static when the distribution mass of buoyancy is fully small. The design in which the distribution mass of buoyancy is fully large must be avoided. In the displacement amplitude, the mass on the free end is severest. The proper frequency of vertical vibration relatively moves to the high-frequency side when buoyancy is considered as an elastic foundation. Attention must be thus paid to the proper frequency of vibration on the horizontal surface. 9 refs., 12 figs., 3 tabs.
Response analysis of the dynamic excitation of hen eggs
Libor Severa
2007-01-01
Commercially produced hen eggs have been tested by means of dynamic excitation of the egg-shells with following analysis of their response. The falling steel ball have been chosen as a exciting instrument and the laser vibrometer have been used as a measuring device for the egg response. The reproductibility of the experiments has been relatively high and the surface velocity has been found to be significantly dependent on the position around the meridian. Analysed frequency spectrum has show...
THE DYNAMICS OF THE MATRICS STRUCTURE
Dumitru CONSTANTINESCU
2007-01-01
The relationships organization-suppliers-customers have recently known major changes in the structure of services and have made the organization develop its managerial and professional competencies in order to do projects. The qualified organization is the most trust-worthy in the process of doing a project. The participation of an organization in doing projects depends on a multitude of factors. Out of these factors, the structural organization comes forth, as it represents the variable with...
Studies on Pounding Response Considering Structure-Soil-Structure Interaction under Seismic Loads
Peizhen Li
2017-12-01
Full Text Available Pounding phenomena considering structure–soil–structure interaction (SSSI under seismic loads are investigated in this paper. Based on a practical engineering project, this work presents a three-dimensional finite element numerical simulation method using ANSYS software. According to Chinese design code, the models of adjacent shear wall structures on Shanghai soft soil with the rigid foundation, box foundation and pile foundation are built respectively. In the simulation, the Davidenkov model of the soil skeleton curve is assumed for soil behavior, and the contact elements with Kelvin model are adopted to simulate pounding phenomena between adjacent structures. Finally, the dynamic responses of adjacent structures considering the pounding and SSSI effects are analyzed. The results show that pounding phenomena may occur, indicating that the seismic separation requirement for adjacent buildings of Chinese design code may not be enough to avoid pounding effect. Pounding and SSSI effects worsen the adjacent buildings’ conditions because their acceleration and shear responses are amplified after pounding considering SSSI. These results are significant for studying the effect of pounding and SSSI phenomena on seismic responses of structures and national sustainable development, especially in earthquake prevention and disaster reduction.
Dynamic Response of Dam-Reservoir Systems: Review and a Semi-Analytical Proposal
Paulo Marcelo Vieira Ribeiro
Full Text Available Abstract This paper presents a review of current techniques employed for dynamic analysis of concrete gravity dams under seismic action. Traditional procedures applied in design bureaus, such as the Pseudo-Static method, often neglect structural dynamic properties, as well as ground amplification effects. A practical alternative arises with the Pseudo-Dynamic method, which considers a simplified spectrum response in the fundamental mode. The authors propose a self-contained development and detailed examples of this latter method, including a comparison with finite element models using transient response of fluid-structure systems. It is verified that application of the traditional procedure should be done carefully and limited to extremely rigid dams. On the other hand, the proposed development is straightforward and in agreement with finite element results for general cases where dam flexibility plays an important role.
Dynamic response of single hexagonal LMFBR core subassembly wrappers
Ash, J. E.; Marciniak, T. J.; (Argonne National Lab., IL (United States))
1977-07-01
To analyze the dynamic structural response of the LMFBR core subassembly hexagonal wrappers to postulated local energy releases and the sensitivity of the response to variations in both the pressure loading and the material properties of the stainless steel, a finite-element computer code STRAW has been developed. A series of experiments was performed to study the effects of variations in material properties. The amount of coldworking to which the Type 316 stainless steel is subjected has a strong influence upon the ductility and the elastic yield point. The usual fabrication process produced a nominally 20% coldworking with a yield point of about 680 MPa. By designing a special set of dies for the drawing process, a very low ductility hexcan was produced for which the yield point was raised to 820 MPa. Conversely, the yield point was lowered to 170 MPa by a solution annealing process producing a highly ductile test hexcan. A metallurgical study was conducted to find a representative brittle simulant material for the irradiated end-of-life steel properties. An aging treatment for Type 446 stainless steel was developed which reproduced the expected tensile-flow behavior of the in-pile subassembly. Further study is underway to investigate the fracture properties of the simulant material. The pressure pulses were generated by the controlled expansion of high-pressure detonation poducts from low-density explosives detonated inside a vented steel cannister. The orifice configuration of the cannister and the charge mixture ratio were designed to produce two specified pulse shapes. A charge containing 37,7 g PETN mixed with 35 wt % inert, hollow-glass microballoons developed a pressure pulse peak of 9.5 MPa at 1.0 ms. Increasing the PETN to 41 g resulted in a 14.6 MPa peak pressure, and increasing the explosive concentration to 90 wt % in the mixture increased the burning rate and the pulse risetime, so that the peak occurred at 0.6 ms.
Dynamic response of domes in CANDU 600 MWe containments
Aziz, T.S.; Meng, V.; Alizadeh, A.
1981-01-01
CANDU reactors of the 600 MWe type are typically housed in a cylindrical prestressed concrete containment structure; rising from a flat slab and ending in a domed roof. The principal components of this structure are: (a) a circular base slab, (b) a vertical cylinder and (c) a spherical dome cap. A unique feature of a CANDU 600 MWe containment structure is the existence of an inner spherical concrete dome, located below the outer spherical dome, which serves as the bottom of a reservoir for the storage of 560,000 imperial gallons of douzing water. The thickness of the prestressed cylinder wall is approximately doubled between the two domes to create a ring beam. Inside the containment there exists an internal concrete structure which is independent of the containment structure except for support on the base slab. The containment boundary is a fully prestressed concrete structure. This paper deals with the seismic behaviour of the CANDU 600 MWe containment structure and the effect of its unique features; such as the lower dome and the douzing water on this behaviour. The objective of the study is to evaluate the interaction (coupling) effects between the different components of the structure. The approach taken is to study each component of the structure individually, then an assembly of the different components, and finally the total containment structure. This presentation is limited to the vertical response of the structure under a vertical earthquake only. Axisymmetric finite elements were used in all models. The vertical responses at selected points of the structure were obtained by the response spectrum method as well as the time-history method. It was observed that the response spectrum method over-estimates the vertical response of the domes and under-estimates the vertical responses of the ring girder and the containment cylinder compared to the time-history method. (orig./RW)
Dynamic Response Testing in an Electrically Heated Reactor Test Facility
Bragg-Sitton, Shannon M.; Morton, T. J.
2006-01-01
Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and full nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system (Bragg-Sitton, 2005). The current paper applies the same testing methodology to a direct drive gas cooled reactor system, demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. In each testing application, core power transients were controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. Although both system designs utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility.
Dynamical stability in fluid-structure interaction
Planchard, J.; Thomas, B.
1991-01-01
The aim of the paper is to investigate the dynamical stability of a group of elastic tubes placed in a cross-flow which obeys to the Navier-Stokes equations. The stability of this coupled system is deduced from the study of a quadratic eigenvalue problem arising in the linearized equations. The instability occurs when the real part of one of the eigenvalues becomes positive; the steady state is then replaced by a time-periodic state which is stable (Hopf bifurcation phenomenon). Some numerical methods for solving the quadratic eigenvalue problem are described [fr
Atomic probes of surface structure and dynamics
Heller, E.J.; Jonsson, H.
1992-01-01
Progress for the period Sept. 15, 1992 to Sept. 14, 1993 is discussed. Semiclassical methods that will allow much faster and more accurate three-dimensional atom--surface scattering calculations, both elastic and inelastic, are being developed. The scattering of He atoms from buckyballs is being investigated as a test problem. Somewhat more detail is given on studies of He atom scattering from defective Pt surfaces. Molecular dynamics simulations of He + and Ar + ion sputtering of Pt surfaces are also being done. He atom scattering from Xe overlayers on metal surfaces and the thermalized dissociation of H 2 on Cu(110) are being studied. (R.W.R.) 64 refs
Dynamics of structures '89. Vol. 3
1989-01-01
The proceedings, comprising 3 volumes published by the Plzen Centre of the Czechoslovak Society for Science and Technology (Vol. 1 and 2) and by Skoda Works in Plzen (Vol. 3), contain 107 papers, out of which 8 fall within the INIS Subject Scope; these deal with problems related to the earthquake resistance of nuclear power plants. Attention is paid to the evaluation of seismic characteristics of nuclear power plant equipment, to the equipment testing and to calculations of its dynamic characteristics under simulated seismic stress. (Z.M.)
Dynamic isoperimetry and the geometry of Lagrangian coherent structures
Froyland, Gary
2015-01-01
The study of transport and mixing processes in dynamical systems is particularly important for the analysis of mathematical models of physical systems. We propose a novel, direct geometric method to identify subsets of phase space that remain strongly coherent over a finite time duration. This new method is based on a dynamic extension of classical (static) isoperimetric problems; the latter are concerned with identifying submanifolds with the smallest boundary size relative to their volume.The present work introduces dynamic isoperimetric problems; the study of sets with small boundary size relative to volume as they are evolved by a general dynamical system. We formulate and prove dynamic versions of the fundamental (static) isoperimetric (in)equalities; a dynamic Federer–Fleming theorem and a dynamic Cheeger inequality. We introduce a new dynamic Laplace operator and describe a computational method to identify coherent sets based on eigenfunctions of the dynamic Laplacian.Our results include formal mathematical statements concerning geometric properties of finite-time coherent sets, whose boundaries can be regarded as Lagrangian coherent structures. The computational advantages of our new approach are a well-separated spectrum for the dynamic Laplacian, and flexibility in appropriate numerical approximation methods. Finally, we demonstrate that the dynamic Laplace operator can be realised as a zero-diffusion limit of a newly advanced probabilistic transfer operator method [9] for finding coherent sets, which is based on small diffusion. Thus, the present approach sits naturally alongside the probabilistic approach [9], and adds a formal geometric interpretation. (paper)
Wave Propagation and Dynamics of Lattice Structures.
1984-05-01
Progress in Solid Mechanics, North Holand Publishing Company, Amsterdam, 1960. [7) Y. K. Linn, and T. J. McDaniel, ’n)amics of Beam Type Periodic...deformation. -99- APPENDIX F FREQUENCY RESPONSE AND IMPULSE RESPONSE FUNCTIONS FOR LONGITUDINAL VIBRATION IN AN ELASTIC ROD Figure F1 shows the elastic rod to b...6 (F38) Rearranging eqn. (F38), .HE(w) = e’ 4e~3 ~e e 2 e1" +e " 6 e r (F39) Mlultiplying eqn. ( F1 =39) by 6Ŕ 6- and aragn te - . e 6 -e _ aix
Predicting responsiveness to intervention in dyslexia using dynamic assessment
Aravena, S.; Tijms, J.; Snellings, P.; van der Molen, M.W.
In the current study we examined the value of a dynamic test for predicting responsiveness to reading intervention for children diagnosedwith dyslexia. The test consisted of a 20-minute training aimed at learning eight basic letter–speech sound correspondences within an artificial orthography,
Dynamic response of ultrathin highly dense ZIF-8 nanofilms.
Cookney, Joanna; Ogieglo, Wojciech; Hrabanek, Pavel; Vankelecom, Ivo; Fila, Vlastimil; Benes, Nieck E
2014-10-11
Ultrathin ZIF-8 nanofilms are prepared by facile step-by-step dip coating. A critical withdrawal speed allows for films with a very uniform minimum thickness. The high refractive index of the films denotes the absence of mesopores. The dynamic response of the films to CO2 exposure resembles behaviour observed for non-equilibrium organic polymers.
Dynamic response of ultrathin highly dense ZIF-8 nanofilms
Cookney, J.; Ogieglo, Wojciech; Hrabanek, P.; Vankelecom, I.; Fila, V.; Benes, Nieck Edwin
2014-01-01
Ultrathin ZIF-8 nanofilms are prepared by facile step-by-step dip coating. A critical withdrawal speed allows for films with a very uniform minimum thickness. The high refractive index of the films denotes the absence of mesopores. The dynamic response of the films to CO2 exposure resembles behaviour observed for nonequilibrium organic polymers.
Dynamic response of ultrathin highly dense ZIF-8 nanofilms
Cookney, J.; Ogieglo, Wojciech; Hrabanek, P.; Vankelecom, I.; Fila, V.; Benes, Nieck Edwin
2014-01-01
Ultrathin ZIF-8 nanofilms are prepared by facile step-by-step dip coating. A critical withdrawal speed allows for films with a very uniform minimum thickness. The high refractive index of the films denotes the absence of mesopores. The dynamic response of the films to CO2 exposure resembles
Cardiolipin effects on membrane structure and dynamics.
Unsay, Joseph D; Cosentino, Katia; Subburaj, Yamunadevi; García-Sáez, Ana J
2013-12-23
Cardiolipin (CL) is a lipid with unique properties solely found in membranes generating electrochemical potential. It contains four acyl chains and tends to form nonlamellar structures, which are believed to play a key role in membrane structure and function. Indeed, CL alterations have been linked to disorders such as Barth syndrome and Parkinson's disease. However, the molecular effects of CL on membrane organization remain poorly understood. Here, we investigated the structure and physical properties of CL-containing membranes using confocal microscopy, fluorescence correlation spectroscopy, and atomic force microscopy. We found that the fluidity of the lipid bilayer increased and its mechanical stability decreased with CL concentration, indicating that CL decreases the packing of the membrane. Although the presence of up to 20% CL gave rise to flat, stable bilayers, the inclusion of 5% CL promoted the formation of flowerlike domains that grew with time. Surprisingly, we often observed two membrane-piercing events in atomic force spectroscopy experiments with CL-containing membranes. Similar behavior was observed with a lipid mixture mimicking the mitochondrial outer membrane composition. This suggests that CL promotes the formation of membrane areas with apposed double bilayers or nonlamellar structures, similar to those proposed for mitochondrial contact sites. All together, we show that CL induces membrane alterations that support the role of CL in facilitating bilayer structure remodeling, deformation, and permeabilization.
Chaos, dynamical structure and climate variability
Stewart, H.B. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science
1995-09-01
Deterministic chaos in dynamical systems offers a new paradigm for understanding irregular fluctuations. Techniques for identifying deterministic chaos from observed data, without recourse to mathematical models, are being developed. Powerful methods exist for reconstructing multidimensional phase space from an observed time series of a single scalar variable; these methods are invaluable when only a single scalar record of the dynamics is available. However, in some applications multiple concurrent time series may be available for consideration as phase space coordinates. Here the authors propose some basic analytical tools for such multichannel time series data, and illustrate them by applications to a simple synthetic model of chaos, to a low-order model of atmospheric circulation, and to two high-resolution paleoclimate proxy data series. The atmospheric circulation model, originally proposed by Lorenz, has 27 principal unknowns; they establish that the chaotic attractor can be embedded in a subspace of eight dimensions by exhibiting a specific subset of eight unknowns which pass multichannel tests for false nearest neighbors. They also show that one of the principal unknowns in the 27-variable model--the global mean sea surface temperature--is of no discernible usefulness in making short-term forecasts.
Nonlinear and stochastic dynamics of coherent structures
Rasmussen, Kim
1997-01-01
This Thesis deals with nonlinear and stochastic dynamics in systems which can be described by nonlinear Schrödinger models. Basically three different models are investigated. The first is the continuum nonlinear Schröndinger model in one and two dimensions generalized by a tunable degree of nonli......This Thesis deals with nonlinear and stochastic dynamics in systems which can be described by nonlinear Schrödinger models. Basically three different models are investigated. The first is the continuum nonlinear Schröndinger model in one and two dimensions generalized by a tunable degree...... introduces the nonlinear Schrödinger model in one and two dimensions, discussing the soliton solutions in one dimension and the collapse phenomenon in two dimensions. Also various analytical methods are described. Then a derivation of the nonlinear Schrödinger equation is given, based on a Davydov like...... system described by a tight-binding Hamiltonian and a harmonic lattice coupled b y a deformation-type potential. This derivation results in a two-dimensional nonline ar Schrödinger model, and considering the harmonic lattice to be in thermal contact with a heat bath w e show that the nonlinear...
Structural response of a rail acceleration
Wang, S.Y.
1984-01-01
The transient response of a 0.4 by 0.6 cm rectangular bore rail accelerator was analyzed by a three dimensional finite element code. The copper rail deflected to a peak value of 0.08 mm in compression and then oscillated at an amplitude of 0.02 mm. Simultaneously the insulating side wall of glass fabric base, epoxy resin laminate (G-10) was compressed to a peak value of 0.13 mm and rebounded to a steady state in extension. Projectile pinch or blowby due to the rail extension or compression, respectively, can be identified by examining the time history of the rail displacement. The effect of blowby was most significant at the side wall characterized by mm size displacement in compression. Dynamic stress calculations indicate that the G-10 supporting material behind the rail is subjected to over 21 MPa at which the G-10 could fail if the laminate was not carefully oriented. Results for a polycarbonate resin (Lexan) side wall show much larger displacements and stresses than for G-10. The tradeoff between the transparency of Lexan and the mechanical strength of G-10 for sidewall material is obvious. Displacement calculations from the modal method are smaller than the results from the direct integration method by almost an order of magnitude, because the high frequency effect is neglected. 12 references
Analyzing and comparing the dynamic response of test reactor main workshop
Wang Jiachun; Fu Jiyang; Cai Laizhong
2001-01-01
Analyzing soil-structure interaction is an important section in anti-seismic design and analysis of nuclear engineering. The factors that influence on the response of nuclear structures include the properties of earthquake, soil and structures. So the soil-structure interaction in the non-rock foundation is different from that in the surface free field. And the interaction must be considered under the anti-seismic design standard of test reactors. The FLUSH program and SASSI2000 are applied to dynamic analysis. Moreover, comparing the obtained data and diagrams draws some conclusions
Assessment of the dynamic response of systems and measures to enhance their safety
Serban, Viorel; Androne, Marian; Ciocan, George Alexandru; Zamfir, Madalina; Florea, Ioana; Panait, Adrian; Prisecaru, Ilie
2007-01-01
Buildings, equipment and pipe networks are dynamically, oscillating structures that may build-up energy or not, from the excitation, amplifying or damping their response as a function of the rate between the system vibration Eigen period and the repetition period of the dynamic excitation and the system damping capacity. This paper is an analysis in time and frequency of the dynamic response of an oscillating system subject to a periodic excitation. The results of the conducted analysis show how a system must be sized for the transfer of energy from excitation to the system be minimized, the system builds-up as less kinetic and elastic energy as possible and the system response to accelerations, velocity and distortions be also minimal. (author)
Dynamic response of the target container under pulsed heating
Liping Ni [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-09-01
The structural mechanics of a liquid target container for pulsed spallation sources have been simulated using both a commercial code and a PSI-developed program. Results from the transient thermal-structural analysis showed that, due to inertia effects, the dynamic stress in the target container is contributed mainly from direct heating in the initial time stage, and later from the pressure wave in the target liquid once it reaches the wall. (author) figs., tab., refs.
Hadron structure with light dynamical quarks
Edwards, R.G.; Richards, D.G.; Fleming, G.T.; Haegler, P.; Negele, J.W.; Orginos, K.; Pochinsky, A.; Renner, D.B.; Schroers, W.
2005-09-01
Generalized parton distributions encompass a wealth of information concerning the three-dimensional quark and gluon structure of the nucleon, and thus provide an ideal focus for the study of hadron structure using lattice QCD. The special limits corresponding to form factors and parton distributions are well explored experimentally, providing clear tests of lattice calculations, and the lack of experimental data for more general cases provides opportunities for genuine predictions and for guiding experiment. We present results from hybrid calculations with improved staggered (Asqtad) sea quarks and domain wall valence quarks at pion masses down to 350 MeV. (orig.)
Analysis of Dynamic Properties of Piezoelectric Structure under Impact Load
Taotao Zhang
2015-10-01
Full Text Available An analytical model of the dynamic properties is established for a piezoelectric structure under impact load, without considering noise and perturbations in this paper. Based on the general theory of piezo-elasticity and impact mechanics, the theoretical solutions of the mechanical and electrical fields of the smart structure are obtained with the standing and traveling wave methods, respectively. The comparisons between the two methods have shown that the standing wave method is better for studying long-time response after an impact load. In addition, good agreements are found between the theoretical and the numerical results. To simulate the impact load, both triangle and step pulse loads are used and comparisons are given. Furthermore, the influence of several parameters is discussed so as to provide some advices for practical use. It can be seen that the proposed analytical model would benefit, to some extent, the design and application (especially the airport runway of the related smart devices by taking into account their impact load performance.
A framework of DYNAMIC data structures for string processing
Prezza, Nicola
2017-01-01
implemented using DYNAMIC with those of stateof-the-art tools performing the same task. Our experiments show that algorithms making use of dynamic compressed data structures can be up to three orders of magnitude more space-efficient (albeit slower) than classical ones performing the same tasks.......In this paper we present DYNAMIC, an open-source C++ library implementing dynamic compressed data structures for string manipulation. Our framework includes useful tools such as searchable partial sums, succinct/gap-encoded bitvectors, and entropy/run-length compressed strings and FM indexes. We...... prove close-to-optimal theoretical bounds for the resources used by our structures, and show that our theoretical predictions are empirically tightly verified in practice. To conclude, we turn our attention to applications. We compare the performance of five recently-published compression algorithms...
Structural Identifiability of Dynamic Systems Biology Models.
Villaverde, Alejandro F; Barreiro, Antonio; Papachristodoulou, Antonis
2016-10-01
A powerful way of gaining insight into biological systems is by creating a nonlinear differential equation model, which usually contains many unknown parameters. Such a model is called structurally identifiable if it is possible to determine the values of its parameters from measurements of the model outputs. Structural identifiability is a prerequisite for parameter estimation, and should be assessed before exploiting a model. However, this analysis is seldom performed due to the high computational cost involved in the necessary symbolic calculations, which quickly becomes prohibitive as the problem size increases. In this paper we show how to analyse the structural identifiability of a very general class of nonlinear models by extending methods originally developed for studying observability. We present results about models whose identifiability had not been previously determined, report unidentifiabilities that had not been found before, and show how to modify those unidentifiable models to make them identifiable. This method helps prevent problems caused by lack of identifiability analysis, which can compromise the success of tasks such as experiment design, parameter estimation, and model-based optimization. The procedure is called STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition), and it is implemented in a MATLAB toolbox which is available as open source software. The broad applicability of this approach facilitates the analysis of the increasingly complex models used in systems biology and other areas.
Oxide Interfaces: emergent structure and dynamics
Clarke, Roy [Univ. of Michigan, Ann Arbor, MI (United States)
2016-08-16
This Final Report describes the scientific accomplishments that have been achieved with support from grant DE-FG02-06ER46273 during the period 6/1/2012– 5/31/2016. The overall goals of this program were focused on the behavior of epitaxial oxide heterostructures at atomic length scales (Ångstroms), and correspondingly short time-scales (fs -ns). The results contributed fundamentally to one of the currently most active frontiers in condensed matter physics research, namely to better understand the intricate relationship between charge, lattice, orbital and spin degrees of freedom that are exhibited by complex oxide heterostructures. The findings also contributed towards an important technological goal which was to achieve a better basic understanding of structural and electronic correlations so that the unusual properties of complex oxides can be exploited for energy-critical applications. Specific research directions included: probing the microscopic behavior of epitaxial interfaces and buried layers; novel materials structures that emerge from ionic and electronic reconfiguration at epitaxial interfaces; ultrahigh-resolution mapping of the atomic structure of heterointerfaces using synchrotron-based x-ray surface scattering, including direct methods of phase retrieval; using ultrafast lasers to study the effects of transient strain on coherent manipulation of multi-ferroic order parameters; and investigating structural ordering and relaxation processes in real-time.
Structure and dynamics of magnetic nanoparticles
Clausen, K.N.; Bødker, F.; Hansen, M.F.
2000-01-01
In this paper we present X-ray and neutron diffraction data illustrating aspects of crystal and magnetic structures of ferromagnetic alpha-Fe and antiferromagnetic NiO nanoparticles, as well as inelastic neutron scattering studies of the magnetic fluctuations in NiO and in canted antiferromagnetic...
Mencik , Jean-Mathieu
2014-01-01
International audience; The wave finite element (WFE) method is investigated to describe the harmonic forced response of onedimensional periodic structures like those composed of complex substructures and encountered in engineering applications. The dynamic behavior of these periodic structures is analyzed over wide frequency bands where complex spatial dynamics, inside the substructures, are likely to occur.Within theWFE framework, the dynamic behavior of periodic structures is described in ...
Structural Dynamic Analyses And Test Predictions For Spacecraft Structures With Non-Linearities
Vergniaud, Jean-Baptiste; Soula, Laurent; Newerla, Alfred
2012-07-01
The overall objective of the mechanical development and verification process is to ensure that the spacecraft structure is able to sustain the mechanical environments encountered during launch. In general the spacecraft structures are a-priori assumed to behave linear, i.e. the responses to a static load or dynamic excitation, respectively, will increase or decrease proportionally to the amplitude of the load or excitation induced. However, past experiences have shown that various non-linearities might exist in spacecraft structures and the consequences of their dynamic effects can significantly affect the development and verification process. Current processes are mainly adapted to linear spacecraft structure behaviour. No clear rules exist for dealing with major structure non-linearities. They are handled outside the process by individual analysis and margin policy, and analyses after tests to justify the CLA coverage. Non-linearities can primarily affect the current spacecraft development and verification process on two aspects. Prediction of flights loads by launcher/satellite coupled loads analyses (CLA): only linear satellite models are delivered for performing CLA and no well-established rules exist how to properly linearize a model when non- linearities are present. The potential impact of the linearization on the results of the CLA has not yet been properly analyzed. There are thus difficulties to assess that CLA results will cover actual flight levels. Management of satellite verification tests: the CLA results generated with a linear satellite FEM are assumed flight representative. If the internal non- linearities are present in the tested satellite then there might be difficulties to determine which input level must be passed to cover satellite internal loads. The non-linear behaviour can also disturb the shaker control, putting the satellite at risk by potentially imposing too high levels. This paper presents the results of a test campaign performed in
Dynamic structure in self-sustained turbulence
Itoh, K.; Itoh, S.; Yagi, M.; Fukuyama, A.
1995-06-01
Dynamical equation for the self-sustained and pressure-driven turbulence in toroidal plasmas is derived. The growth rate of the dressed-test mode, which belongs to the subcritical turbulence, is obtained as a function of the turbulent transport coefficient. In the limit of the low fluctuation level, the mode has the feature of the nonlinear instability and shows the explosive growth. The growth rate vanishes when the driven transport reaches to the stationarily-turbulent level. The stationary solution is thermodynamically stable. The characteristic time, by which the stationary and self-sustained turbulence is established, scales with the ion-sound transit time and is accelerated by the bad magnetic curvature. Influences of the pressure gradient as well as the radial electric field inhomogeneity are quantified. (author)
Structure an dynamics in cavity quantum electrodynamics
Kimble, H.J.
1994-01-01
Much of the theoretical background related to the radiative processes for atoms in the presence of boundaries comes from two often disjoint areas, namely cavity quantum electrodynamics and optical bistability with two-state atoms. While the former of these areas has been associated to a large degree with studies in a perturbative domain of altered associated to a large degree with studies in a perturbative domain of altered emission processes in the presence of boundaries other than those of free space, the latter is often viewed from the perspective of hysteresis cycles and device applications. With the exception of the laser, however, perhaps the most extensive investigations of quantum statistical processes in quantum optics are to be found in the literature on bistability with two-state atoms and on cavity QED. Unfortunately, the degree of overlap of these two areas has not always been fully appreciated. This circumstance is perhaps due in part to the fact that the investigation of dynamical processes in cavity QED has had as its cornerstone the Jaynes-Cummings problem, with extensions to include, for example, small amounts of dissipation. On the other hand, a principle aspect of the bistability literature has been the study of quantum fluctuations in open systems for which dissipation plays a central role, but for which the coherent quantum dynamics of the Haynes-Cummings model are to a large measure lost due to the usual assumption of large system size and weak coupling (as in the standard theory of the laser). 132 refs., 26 figs., 1 tab
Femtosecond structural dynamics on the atomic length scale
Zhang, Dongfang
2014-03-15
This thesis reports on the development and application of two different but complementary ultrafast electron diffraction setups built at the Max Planck Research Department for Structural Dynamics. One is an ultra-compact femtosecond electron diffraction (FED) setup (Egun300), which is currently operational (with a maximum electron energy of 150 keV) and provides ultrashort (∝300 fs) and bright (∝10 e/μm{sup 2}) electron bunches. The other one, named as Relativistic Electron Gun for Atomic Exploration (REGAE) is a radio frequency driven 2 to 5 MeV FED setup built in collaboration with different groups from DESY. REGAE was developed as a facility that will provide high quality diffraction with sufficient coherence to even address structural protein dynamics and with electron pulses as short as 20 fs (FWHM). As one of the first students in Prof. R.J. Dwayne Miller's group, I led the femtosecond (fs) laser sub-group at REGAE being responsible for the construction of different key optical elements required to drive both of aforementioned FED systems. A third harmonic generation (THG) and a nonlinear optical parametric amplifier (NOPA) have been used for the photo-generation of ultrashort electron bursts as well as sample laser excitation. Different diagnostic tools have been constructed to monitor the performance of the fs optical system. A fast autocorrelator was developed to provide on the fly pulse duration correction. A transient-grating frequency-resolved optical gating (TG-FROG) was built to obtain detail information about the characteristics of fs optical pulse, i.e. phase and amplitude of its spectral components. In addition to these optical setups, I developed a fs optical pump-probe system, which supports broadband probe pulses. This setup was successfully applied to investigate the semiconductor-to-metal photoinduced phase transition in VO{sub 2} and the ultrafast photo-reduction mechanism of graphene oxide. In regard to FED setups, I have been
Femtosecond structural dynamics on the atomic length scale
Zhang, Dongfang
2014-03-01
This thesis reports on the development and application of two different but complementary ultrafast electron diffraction setups built at the Max Planck Research Department for Structural Dynamics. One is an ultra-compact femtosecond electron diffraction (FED) setup (Egun300), which is currently operational (with a maximum electron energy of 150 keV) and provides ultrashort (∝300 fs) and bright (∝10 e/μm 2 ) electron bunches. The other one, named as Relativistic Electron Gun for Atomic Exploration (REGAE) is a radio frequency driven 2 to 5 MeV FED setup built in collaboration with different groups from DESY. REGAE was developed as a facility that will provide high quality diffraction with sufficient coherence to even address structural protein dynamics and with electron pulses as short as 20 fs (FWHM). As one of the first students in Prof. R.J. Dwayne Miller's group, I led the femtosecond (fs) laser sub-group at REGAE being responsible for the construction of different key optical elements required to drive both of aforementioned FED systems. A third harmonic generation (THG) and a nonlinear optical parametric amplifier (NOPA) have been used for the photo-generation of ultrashort electron bursts as well as sample laser excitation. Different diagnostic tools have been constructed to monitor the performance of the fs optical system. A fast autocorrelator was developed to provide on the fly pulse duration correction. A transient-grating frequency-resolved optical gating (TG-FROG) was built to obtain detail information about the characteristics of fs optical pulse, i.e. phase and amplitude of its spectral components. In addition to these optical setups, I developed a fs optical pump-probe system, which supports broadband probe pulses. This setup was successfully applied to investigate the semiconductor-to-metal photoinduced phase transition in VO 2 and the ultrafast photo-reduction mechanism of graphene oxide. In regard to FED setups, I have been deeply involved in
Response of porous beryllium to static and dynamic loading
Isbell, W.M.; Walton, O.R.; Ree, F.H.
1977-07-01
Previous investigstions of the mechanical response of porous materials to dynamic loading have been extended to include the shock wave response of a brittle metal. The complex response of berylliums of 85 to 90 percent porosity in two initial conditions has been examined in a theoretical and experimental program to be described. The study has resulted in the development of constitutive relations placed in hydrocodes which are capable of accurately predicting wave propagation in the berylliums. A comprehensive set of static (0 to 4 Gpa) and dynamic (0 to 35 Gpa) experiments was performed to measure the behavior of these brittle, porous materials to imposed loads. The results of the experiments guided a modeling effort which added several new features to previous models, including deviatoric stresses, porosity-dependent relaxation time of pore closure, elastic-plastic reopening of pores, and improved compaction functions.
Transcriptome dynamics of the microRNA inhibition response
Wen, Jiayu; Leucci, Elenora; Vendramin, Roberto
2015-01-01
We report a high-resolution time series study of transcriptome dynamics following antimiR-mediated inhibition of miR-9 in a Hodgkin lymphoma cell-line-the first such dynamic study of the microRNA inhibition response-revealing both general and specific aspects of the physiological response. We show...... validate the key observations with independent time series qPCR and we experimentally validate key predicted miR-9 targets. Methodologically, we developed sensitive functional data analytic predictive methods to analyse the weak response inherent in microRNA inhibition experiments. The methods...... of this study will be applicable to similar high-resolution time series transcriptome analyses and provides the context for more accurate experimental design and interpretation of future microRNA inhibition studies....
Response of porous beryllium to static and dynamic loading
Isbell, W.M.; Walton, O.R.; Ree, F.H.
1977-07-01
Previous investigstions of the mechanical response of porous materials to dynamic loading have been extended to include the shock wave response of a brittle metal. The complex response of berylliums of 85 to 90 percent porosity in two initial conditions has been examined in a theoretical and experimental program to be described. The study has resulted in the development of constitutive relations placed in hydrocodes which are capable of accurately predicting wave propagation in the berylliums. A comprehensive set of static (0 to 4 Gpa) and dynamic (0 to 35 Gpa) experiments was performed to measure the behavior of these brittle, porous materials to imposed loads. The results of the experiments guided a modeling effort which added several new features to previous models, including deviatoric stresses, porosity-dependent relaxation time of pore closure, elastic-plastic reopening of pores, and improved compaction functions
Dynamic loads during failure risk assessment of bridge crane structures
Gorynin, A. D.; Antsev, V. Yu; Shaforost, A. N.
2018-03-01
The paper presents the method of failure risk assessment associated with a bridge crane metal structure at the design stage. It also justifies the necessity of taking into account dynamic loads with regard to the operational cycle of a bridge crane during failure risk assessment of its metal structure.
Molecular dynamics of the structure and thermodynamics of dusty ...
The static structure and thermodynamic properties of two-dimensional dusty plasma are analyzed for some typical values of coupling and screening parameters using classical molecular dynamics. Radial distribution function and static structure factor are computed. The radial distribution functions display the typical ...
Molecular dynamic analysis of the structure of dendrimers
Canetta, E.; Maino, G. E-mail: maino@bologna.enea.it
2004-01-01
We present main results of molecular dynamics simulations that we have carried out in order to investigate structural properties of polyamidoamine (PAMAM) dendrimers. Obtained data confirm the PAMAM dendrimer structure proposed by experiments, performed by means of X-ray scattering (SAXS) and quasi-elastic light scattering (QELS) techniques.
Molecular dynamic analysis of the structure of dendrimers
Canetta, E.; Maino, G.
2004-01-01
We present main results of molecular dynamics simulations that we have carried out in order to investigate structural properties of polyamidoamine (PAMAM) dendrimers. Obtained data confirm the PAMAM dendrimer structure proposed by experiments, performed by means of X-ray scattering (SAXS) and quasi-elastic light scattering (QELS) techniques
The effect of submergence on structural response in confined pools
Sturm, A.J. Jr.; Song, C.C.S.
1980-01-01
In this paper the response of single and multi degree of submerged systems is investigated. The complete equations of motions including fluid coupling terms are developed for submerged bodies where the surrounding fluid is both moving in phase and out of phase with the support motion. The analysis considers both structural and fluid damping. Also included is an analysis of two degrees of freedom fluid coupling for submerged bodies completely enclosed within another body. In this case limiting conditions of the inner body hydrodynamic mass are examined, along the frequency response characteristics of these systems. The paper developes a simplified forcing function approach for in phase fluid support motion systems. This method is applicable for both modal-spectral and time history dynamic analyses of any linear structure. The results of the analysis are expanded for s structures with non-linear support configuration, i.e. (sliding or rocking bases) to again define a simplified analytical approach accounting for in phase fluid support motion. (orig.)
Dynamic kirigami structures for integrated solar tracking
Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max
2015-01-01
Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820
Structure and dynamics of ringed galaxies
Buta, R.J.
1984-01-01
In many spiral and SO galaxies, single or multiple ring structures are visible in the disk. These inner rings (r), outer rings (R), and nuclear rings (nr) were investigated by means of morphology, photometry, and spectroscopy in order to provide basic data on a long neglected phenomenon. The metric properties of each ring are investigated and found to correlate with the structure of the parent galaxy. When properly calibrated, inner rings in barred (SB) systems can be used as geometric extragalactic distance indicators to distances in excess of 100 Mpc. Other statistics are presented that confirm previous indications that the rings have preferred shapes, relative sizes, and orientations with respect to bars. A survey is made of the less homogeneous non-barred (SA) ringed systems, and the causes of the inhomogeneity are isolated. It is shown that rings can be identified in multiple-ring SA systems that are exactly analogous to those in barred spirals
Iterative analysis of cerebrovascular reactivity dynamic response by temporal decomposition.
van Niftrik, Christiaan Hendrik Bas; Piccirelli, Marco; Bozinov, Oliver; Pangalu, Athina; Fisher, Joseph A; Valavanis, Antonios; Luft, Andreas R; Weller, Michael; Regli, Luca; Fierstra, Jorn
2017-09-01
To improve quantitative cerebrovascular reactivity (CVR) measurements and CO 2 arrival times, we present an iterative analysis capable of decomposing different temporal components of the dynamic carbon dioxide- Blood Oxygen-Level Dependent (CO 2 -BOLD) relationship. Decomposition of the dynamic parameters included a redefinition of the voxel-wise CO 2 arrival time, and a separation from the vascular response to a stepwise increase in CO 2 (Delay to signal Plateau - DTP) and a decrease in CO 2 (Delay to signal Baseline -DTB). Twenty-five (normal) datasets, obtained from BOLD MRI combined with a standardized pseudo-square wave CO 2 change, were co-registered to generate reference atlases for the aforementioned dynamic processes to score the voxel-by-voxel deviation probability from normal range. This analysis is further illustrated in two subjects with unilateral carotid artery occlusion using these reference atlases. We have found that our redefined CO 2 arrival time resulted in the best data fit. Additionally, excluding both dynamic BOLD phases (DTP and DTB) resulted in a static CVR, that is maximal response, defined as CVR calculated only over a normocapnic and hypercapnic calibrated plateau. Decomposition and novel iterative modeling of different temporal components of the dynamic CO 2 -BOLD relationship improves quantitative CVR measurements.
International Conference on Structural Nonlinear Dynamics and Diagnosis
CSNDD 2012; CSNDD 2014
2015-01-01
This book, which presents the peer-reviewed post-proceedings of CSNDD 2012 and CSNDD 2014, addresses the important role that relevant concepts and tools from nonlinear and complex dynamics could play in present and future engineering applications. It includes 22 chapters contributed by outstanding researchers and covering various aspects of applications, including: structural health monitoring, diagnosis and damage detection, experimental methodologies, active vibration control and smart structures, passive control of structures using nonlinear energy sinks, vibro-impact dynamic MEMS/NEMS/AFM, energy-harvesting materials and structures, and time-delayed feedback control, as well as aspects of deterministic versus stochastic dynamics and control of nonlinear phenomena in physics. Researchers and engineers interested in the challenges posed and opportunities offered by nonlinearities in the development of passive and active control strategies, energy harvesting, novel design criteria, modeling and characteriz...
Including dynamic CO2 intensity with demand response
Stoll, Pia; Brandt, Nils; Nordström, Lars
2014-01-01
Hourly demand response tariffs with the intention of reducing or shifting loads during peak demand hours are being intensively discussed among policy-makers, researchers and executives of future electricity systems. Demand response rates have still low customer acceptance, apparently because the consumption habits requires stronger incentive to change than any proposed financial incentive. An hourly CO 2 intensity signal could give customers an extra environmental motivation to shift or reduce loads during peak hours, as it would enable co-optimisation of electricity consumption costs and carbon emissions reductions. In this study, we calculated the hourly dynamic CO 2 signal and applied the calculation to hourly electricity market data in Great Britain, Ontario and Sweden. This provided a novel understanding of the relationships between hourly electricity generation mix composition, electricity price and electricity mix CO 2 intensity. Load shifts from high-price hours resulted in carbon emission reductions for electricity generation mixes where price and CO 2 intensity were positively correlated. The reduction can be further improved if the shift is optimised using both price and CO 2 intensity. The analysis also indicated that an hourly CO 2 intensity signal can help avoid carbon emissions increases for mixes with a negative correlation between electricity price and CO 2 intensity. - Highlights: • We present a formula for calculating hybrid dynamic CO 2 intensity of electricity generation mixes. • We apply the dynamic CO 2 Intensity on hourly electricity market prices and generation units for Great Britain, Ontario and Sweden. • We calculate the spearman correlation between hourly electricity market price and dynamic CO 2 intensity for Great Britain, Ontario and Sweden. • We calculate carbon footprint of shifting 1 kWh load daily from on-peak hours to off-peak hours using the dynamic CO 2 intensity. • We conclude that using dynamic CO 2 intensity for
Purinergic responses of chondrogenic stem cells to dynamic loading
Gađanski Ivana
2013-01-01
Full Text Available In habitually loaded tissues, dynamic loading can trigger ATP (adenosine 5’- triphosphate release to extracellular environment, and result in calcium signaling via ATP binding to purine P2 receptors1. In the current study we have compared purinergic responses (ATP release of two types of cells: bovine chondrocytes (bCHs and human mesenchymal stem cells (hMSC that were encapsulated in agarose and subjected to dynamic loading. Both cell types were cultured under chondrogenic conditions, and their responses to loading were evaluated by ATP release assay in combination with connexin (Cx-sensitive fluorescent dye (Lucifer Yellow - LY and a Cx-hemichannel blocker (Flufenamic acid - FFA. In response to dynamic loading, chondrogenic hMSCs released significantly higher amounts of ATP (5-fold in comparison to the bCHs early in culture (day 2. Triggering of LY uptake in the bCHs and hMSCs by dynamic loading implies opening of the Cx-hemichannels. However, the number of LY-positive cells in hMSC-constructs was 2.5-fold lower compared to the loaded bCH-constructs, suggesting utilization of additional mechanisms of ATP release. Cx-reactive sites were detected in both bCHs and hMSCs-constructs. FFA application led to reduced ATP release both in bCHs and hMSCs, which confirms the involvement of connexin hemichannels, with more prominent effects in bCHs than in hMSCs, further implying the existence of additional mechanism of ATP release in chondrogenic hMSCs. Taken together, these results indicate stronger purinergic response to dynamic loading of chondrogenic hMSCs than primary chondrocytes, by activation of connexin hemichannels and additional mechanisms of ATP release. [Projekat Ministrastva nauke Republike Srbije, ON174028 i br. III41007
Structural dynamics of the cell nucleus
Wiegert, Simon; Bading, Hilmar
2011-01-01
Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons. PMID:21738832
Dynamic Response and Fracture of Composite Gun Tubes
Jerome T. Tzeng
2001-01-01
Full Text Available The fracture behavior due to dynamic response in a composite gun tube subjected to a moving pressure has been investigated. The resonance of stress waves result in very high amplitude and frequency strains in the tube at the instant and location of pressure front passage as the velocity of the projectile approaches a critical value. The cyclic stresses can accelerate crack propagation in the gun tube with an existing imperfection and significantly shorten the fatigue life of gun tubes. The fracture mechanism induced by dynamic amplification effects is particularly critical for composite overwrap barrels because of a multi-material construction, anisotropic material properties, and the potential of thermal degradation.
Time Analysis of Building Dynamic Response Under Seismic Action. Part 1: Theoretical Propositions
Ufimtcev, E. M.
2017-11-01
The first part of the article presents the main provisions of the analytical approach - the time analysis method (TAM) developed for the calculation of the elastic dynamic response of rod structures as discrete dissipative systems (DDS) and based on the investigation of the characteristic matrix quadratic equation. The assumptions adopted in the construction of the mathematical model of structural oscillations as well as the features of seismic forces’ calculating and recording based on the data of earthquake accelerograms are given. A system to resolve equations is given to determine the nodal (kinematic and force) response parameters as well as the stress-strain state (SSS) parameters of the system’s rods.
Dynamic structure factor on liquid Pb
Padureanu, I.; Rapeanu, S.; Rotarascu, G.; Craciun, C.
1979-01-01
Dinamic structure factor S(Q,hω) in liquid Pb has been measured at 350 deg C and 400 deg C using the inelastic scattering of the slow neutrons. The measurements were performed in the momentum transfer range 0.6 A -1 -1 . The intermediate scattering function F(Q,t) is also calculated from S(Q,hω). Multiple scattering calculation shows that it is very large especially at small scattering angles. The comparison of the experimental data with the theory is made in terms of two theoretical models. (author)
Dynamical effects of QCD vacuum structure
Ferreira, Erasmo
1994-01-01
The role of the QCD vacuum structure in the determination of the properties of states and processes occurring in the confinement regime of QCD is reviewed. The finite range of the vacuum correlations is discussed, and an analytical form is suggested for the correlation functions. The role of the vacuum quantum numbers in the phenomenology of high-energy scattering is reviewed. The vacuum correlation model of non-perturbative QCD is mentioned as a bridge between the fundamental theory and the description of the experiments. (author). 13 refs., 1 fig
Dynamical structure of extreme ultraviolet macrospicules
Karovska, Margarita; Habbal, Shadia Rifai
1994-01-01
We describe the substructures forming the macrospicules and their temporal evolution, as revealed by the application of an image enhancement algorithm to extreme ultraviolet (EUV) observations of macrospicules. The enhanced images uncover, for the first time, the substructures forming the column-like structures within the macrospicules and the low-lying arches at their base. The spatial and temporal evolution of macrospicules clearly show continuous interaction between these substructures with occasional ejection of plasma following a ballistic trajectory. We comment on the importance of these results for planning near future space observations of macrospicules with better temporal and spatial resolution.
An Influence of Gas Explosions on Dynamic Responses of a Single Degree of Freedom Model
Ki-Yeob Kang
2016-01-01
Full Text Available Explosion risk analysis (ERA is widely used to derive the dimensioning of accidental loads for design purposes. Computational fluid dynamics (CFD simulations contribute a key part of an ERA and predict possible blast consequences in a hazardous area. Explosion pressures can vary based on the model geometry, the explosion intensity, and explosion scenarios. Dynamic responses of structures under these explosion loads are dependent on a blast wave profile with respect to the magnitude of pressure, duration, and impulse in both positive and negative phases. Understanding the relationship between explosion load profiles and dynamic responses of the target area is important to mitigate the risk of explosion and perform structural design optimization. In the present study, the results of more than 3,000 CFD simulations were considered, and 1.6 million output files were analyzed using a visual basic for applications (VBA tool developed to characterize representative loading shapes. Dynamic response of a structure was investigated in both time and frequency domains using the Fast Fourier Transform (FFT algorithm. In addition, the effects of the residual wave and loading velocity were studied in this paper.
Modeling aspects of wave kinematics in offshore structures dynamics
Spanos, P.D.; Ghanem, R.; Bhattacharjee, S.
1993-01-01
Magnitude and phase related issues of modeling of ocean wave kinematics are addressed. Causal and non-causal filters are examined. It is shown that if for a particular ocean engineering problem only the magnitude representation of wave spectra spatial relation is critical, analog filters can be quite useful models in conjunction with the technique of statistical linearization, for calculating dynamic analyses. This is illustrated by considering the dynamic response of a simple model of a guyed tower
Albertini, C.; Montagnani, M.
1978-01-01
Effects of defects in materials, created by welding processes and irradiation, are examined taking into account the influence of strain-rate. Materials examined are austenitic stainless steels, such as AISI 316 L and H, AISI 304 L. The influence of such parameters on the flow curves of these materials requires the introduction of additional safety coefficients in calculating the response of dynamically loaded structures such as the pressure vessel in the case of an accident. Furthermore the effects of dynamic multi-axial loading and wave propagation should be taken into account in the safety analysis. Running experiments in dynamic biaxial loading conditions are introduced. (author)
PDB2CD visualises dynamics within protein structures.
Janes, Robert W
2017-10-01
Proteins tend to have defined conformations, a key factor in enabling their function. Atomic resolution structures of proteins are predominantly obtained by either solution nuclear magnetic resonance (NMR) or crystal structure methods. However, when considering a protein whose structure has been determined by both these approaches, on many occasions, the resultant conformations are subtly different, as illustrated by the examples in this study. The solution NMR approach invariably results in a cluster of structures whose conformations satisfy the distance boundaries imposed by the data collected; it might be argued that this is evidence of the dynamics of proteins when in solution. In crystal structures, the proteins are often in an energy minimum state which can result in an increase in the extent of regular secondary structure present relative to the solution state depicted by NMR, because the more dynamic ends of alpha helices and beta strands can become ordered at the lower temperatures. This study examines a novel way to display the differences in conformations within an NMR ensemble and between these and a crystal structure of a protein. Circular dichroism (CD) spectroscopy can be used to characterise protein structures in solution. Using the new bioinformatics tool, PDB2CD, which generates CD spectra from atomic resolution protein structures, the differences between, and possible dynamic range of, conformations adopted by a protein can be visualised.
Elements of earthquake engineering and structural dynamics. 2. ed.
Filiatrault, A.
2002-01-01
This book is written for practising engineers, senior undergraduate and junior structural-engineering students, and university educators. Its main goal is to provide basic knowledge to structural engineers who have no previous knowledge about earthquake engineering and structural dynamics. Earthquake engineering is a multidisciplinary science. This book is not limited to structural analysis and design. The basics of other relevant topics (such as geology, seismology, and geotechnical engineering) are also covered to ensure that structural engineers can interact efficiently with other specialists during a construction project in a seismic zone
Latent Growth and Dynamic Structural Equation Models.
Grimm, Kevin J; Ram, Nilam
2018-05-07
Latent growth models make up a class of methods to study within-person change-how it progresses, how it differs across individuals, what are its determinants, and what are its consequences. Latent growth methods have been applied in many domains to examine average and differential responses to interventions and treatments. In this review, we introduce the growth modeling approach to studying change by presenting different models of change and interpretations of their model parameters. We then apply these methods to examining sex differences in the development of binge drinking behavior through adolescence and into adulthood. Advances in growth modeling methods are then discussed and include inherently nonlinear growth models, derivative specification of growth models, and latent change score models to study stochastic change processes. We conclude with relevant design issues of longitudinal studies and considerations for the analysis of longitudinal data.
Fluid-structure interactions of photo-responsive polymer cantilevers
Bin, Jonghoon; Oates, William S.; Yousuff Hussaini, M.
2013-02-01
A new class of photomechanical liquid crystal networks (LCNs) has emerged, which generate large bending deformation and fast response times that scale with the resonance of the polymer films. Here, a numerical study is presented that describes the photomechanical structural dynamic behavior of an LCN in a fluid medium; however, the methodology is also applicable to fluid-structure interactions of a broader range of adaptive structures. Here, we simulate the oscillation of photomechanical cantilevers excited by light while simultaneously modeling the effect of the surrounding fluid at different ambient pressures. The photoactuated LCN is modeled as an elastic thin cantilever plate, and gradients in photostrain from the external light are computed from the assumptions of light absorption and photoisomerization through the film thickness. Numerical approximations of the equations governing the plate are based on cubic B-spline shape functions and a second order implicit Newmark central scheme for time integration. For the fluid, three dimensional unsteady incompressible Navier-Stokes equations are solved using the arbitrary Lagrangian-Eulerian (ALE) method, which employs a structured body-fitted curvilinear coordinate system where the solid-fluid interface is a mesh line of the system, and the complicated interface boundary conditions are accommodated in a conventional finite-volume formulation. Numerical examples are given which provide new insight into material behavior in a fluid medium as a function of ambient pressure.
Concurrent Probabilistic Simulation of High Temperature Composite Structural Response
Abdi, Frank
1996-01-01
A computational structural/material analysis and design tool which would meet industry's future demand for expedience and reduced cost is presented. This unique software 'GENOA' is dedicated to parallel and high speed analysis to perform probabilistic evaluation of high temperature composite response of aerospace systems. The development is based on detailed integration and modification of diverse fields of specialized analysis techniques and mathematical models to combine their latest innovative capabilities into a commercially viable software package. The technique is specifically designed to exploit the availability of processors to perform computationally intense probabilistic analysis assessing uncertainties in structural reliability analysis and composite micromechanics. The primary objectives which were achieved in performing the development were: (1) Utilization of the power of parallel processing and static/dynamic load balancing optimization to make the complex simulation of structure, material and processing of high temperature composite affordable; (2) Computational integration and synchronization of probabilistic mathematics, structural/material mechanics and parallel computing; (3) Implementation of an innovative multi-level domain decomposition technique to identify the inherent parallelism, and increasing convergence rates through high- and low-level processor assignment; (4) Creating the framework for Portable Paralleled architecture for the machine independent Multi Instruction Multi Data, (MIMD), Single Instruction Multi Data (SIMD), hybrid and distributed workstation type of computers; and (5) Market evaluation. The results of Phase-2 effort provides a good basis for continuation and warrants Phase-3 government, and industry partnership.
Functional and structural responses to marine urbanisation
Mayer-Pinto, M.; Cole, V. J.; Johnston, E. L.; Bugnot, A.; Hurst, H.; Airoldi, L.; Glasby, T. M.; Dafforn, K. A.
2018-01-01
Urban areas have broad ecological footprints with complex impacts on natural systems. In coastal areas, growing populations are advancing their urban footprint into the ocean through the construction of seawalls and other built infrastructure. While we have some understanding of how urbanisation might drive functional change in terrestrial ecosystems, coastal systems have been largely overlooked. This study is one of the first to directly assess how changes in diversity relate to changes in ecosystem properties and functions (e.g. productivity, filtration rates) of artificial and natural habitats in one of the largest urbanised estuaries in the world, Sydney Harbour. We complemented our surveys with an extensive literature search. We found large and important differences in the community structure and function between artificial and natural coastal habitats. However, differences in diversity and abundance of organisms do not necessarily match observed functional changes. The abundance and composition of important functional groups differed among habitats with rocky shores having 40% and 70% more grazers than seawalls or pilings, respectively. In contrast, scavengers were approximately 8 times more abundant on seawalls than on pilings or rocky shores and algae were more diverse on natural rocky shores and seawalls than on pilings. Our results confirm previous findings in the literature. Oysters were more abundant on pilings than on rocky shores, but were also smaller. Interestingly, these differences in oyster populations did not affect in situ filtration rates between habitats. Seawalls were the most invaded habitats while pilings supported greater secondary productivity than other habitats. This study highlights the complexity of the diversity-function relationship and responses to ocean sprawl in coastal systems. Importantly, we showed that functional properties should be considered independently from structural change if we are to design and manage artificial
Structure-based control of complex networks with nonlinear dynamics.
Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka
2017-07-11
What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.
DYNAMIC PARTICLE SYSTEMS FOR OBJECT STRUCTURE EXTRACTION
Olivier Lavialle
2011-05-01
Full Text Available A new deformable model based on the use of a particle system is introduced. By defining the local behavior of each particle, the system behaves as an active contour model showing a variable topology and regularization properties. The efficiency of the particle system is illustrated by two applications: the first one concerns the use of the system as a skeleton extractor based on the propagation of particles inside a treeshaped object. Using this method, it is possible to generate a cartography of structures such as veins or channels. In a second illustration, the system avoids the problem of initialization of a piecewise cubic Bspline network used to straighten curved text lines.
Healey, J.J.; Wu, S.T.; Murga, M.
1980-02-01
As part of the Phase I effort of the Seismic Safety Margins Research Program (SSMRP) being performed by the University of California Lawrence Livermore Laboratory for the US Nuclear Regulatory Commission, the basic objective of Subtask IV.1 (Structural Building Response Review) is to review and summarize current methods and data pertaining to seismic response calculations particularly as they relate to the objectives of the SSMRP. This material forms one component in the development of the overall computational methodology involving state of the art computations including explicit consideration of uncertainty and aimed at ultimately deriving estimates of the probability of radioactive releases due to seismic effects on nuclear power plant facilities
Dellerue, Serge
2000-01-01
Understand the structure-dynamics-function relation in the case of proteins is essential. But few experimental techniques allow to have access to knowledge of fast internal movements of biological macromolecules. With the neutron scattering method, it has been possible to study the reorientation dynamics of side chains and of polypeptide skeleton for two proteins in terms of water or detergent and of temperature. With the use of the molecular dynamics method, essential for completing and interpreting the experimental data, it has been possible to assess the different contributions of the whole structure of proteins to the overall dynamics. It has been shown that the polypeptide skeleton presents an energy relaxation comparable to those of the side chains. Moreover, it has been explained that the protein dynamics can only be understood in terms of relaxation time distribution. (author) [fr
Structure and dynamics of weakly bound complexes
Skouteris, D.
1998-01-01
The present thesis deals with the spectroscopic and theoretical investigation of weakly bound complexes involving a methane molecule. Studies of these Van der Waals complexes can give valuable information on the relevant intermolecular dynamics and promote the understanding of the interactions between molecules (which can ultimately lead to chemical reactions). Especially interesting are complexes involving molecules of high symmetry (e.g. tetrahedral, such as methane) because of the unusual effects arising from it (selection rules, nuclear Spin statistical weights etc.). The infrared spectrum of the Van der Waals complex between a CH 4 and a N 2 O molecule has been recorded and most of it has been assigned in the region of the N - O stretch (approximately 2225.0 cm -1 ). Despite the fact that this is really a weakly bound complex, it is nevertheless rigid enough so that the standard model for asymmetric top spectra can be applied to it with the usual quantum numbers. From the value of the inertial defect, it turns out that the methane unit is locked in a rigid configuration within the complex rather than freely rotating. The intermolecular distance as well as the tilting angle of the N 2 O linear unit are determined from the rotational constants. The complex itself turns out to have a T - shaped configuration. The infrared spectrum of the Ar - CH 4 complex at the ν 4 (bending) band of methane is also assigned. This is different from the previous one in that the methane unit rotates almost freely Within the complex. As a result, the quantum numbers used to classify rovibrational energy levels include these of the free unit. The concept of 'overall symmetry' is made use of to rationalise selection rules in various sub-bands of the spectrum. Moreover, new terms in the potential anisotropy Hamiltonian are calculated through the use of the overall symmetry concept. These are termed 'mixed anisotropy' terms since they involve both rotational and vibrational degrees of
PWL approximation of nonlinear dynamical systems, part I: structural stability
Storace, M; De Feo, O
2005-01-01
This paper and its companion address the problem of the approximation/identification of nonlinear dynamical systems depending on parameters, with a view to their circuit implementation. The proposed method is based on a piecewise-linear approximation technique. In particular, this paper describes the approximation method and applies it to some particularly significant dynamical systems (topological normal forms). The structural stability of the PWL approximations of such systems is investigated through a bifurcation analysis (via continuation methods)
The Return to Schooling in Structural Dynamic Models: A Survey
Christian Belzil
2007-01-01
Working paper du GATE 2006-09; This papers contains a survey of the recent literature devoted to the returns to schooling within a dynamic structural framework. I present a historical perspective on the evolution of the literature, from early static models set in a selectivity framework (Willis and Rosen, 1979) to the recent literature, stimulated by Keane and Wolpin (1997), and which uses stochastic dynamic programming techniques. After reviewing the literature thoroughly, I compare the stru...
Dynamic response of high speed centrifuge for reprocessing plant
Rajput, Gaurav; Satish Kumar, V.; Selvaraj, T.; Ananda Rao, S.M.; Ravisankar, A.
2012-01-01
The standard for balancing the rotating bowl describes only the details about the selection of balance quality grade and the permissible residual unbalance for different operating speeds. This paper presents the effects of unbalance on the rotating bowl of high speed centrifuge used in reprocessing of spent nuclear fuel. In this study, the residual unbalance is evaluated for different recommended balancing grades in accordance with the ISO 1940. This unbalance mass generates dynamic force which acts on the rotor. The dynamic response of the rotor like displacements and stresses under this dynamic force are studied by numerical simulation. Finally, the effect of residual unbalance on the rotating bowl performance for different balancing grades is discussed. The experimental measurements are also carried out for the case of G 1.0 grade balanced rotating bowl to validate the resonance frequency as well as vibration amplitudes. (author)
Dynamics of a bistable Miura-origami structure
Fang, Hongbin; Li, Suyi; Ji, Huimin; Wang, K. W.
2017-05-01
Origami-inspired structures and materials have shown extraordinary properties and performances originating from the intricate geometries of folding. However, current state of the art studies have mostly focused on static and quasistatic characteristics. This research performs a comprehensive experimental and analytical study on the dynamics of origami folding through investigating a stacked Miura-Ori (SMO) structure with intrinsic bistability. We fabricate and experimentally investigated a bistable SMO prototype with rigid facets and flexible crease lines. Under harmonic base excitation, the SMO exhibits both intrawell and interwell oscillations. Spectrum analyses reveal that the dominant nonlinearities of SMO are quadratic and cubic, which generate rich dynamics including subharmonic and chaotic oscillations. The identified nonlinearities indicate that a third-order polynomial can be employed to approximate the measured force-displacement relationship. Such an approximation is validated via numerical study by qualitatively reproducing the phenomena observed in the experiments. The dynamic characteristics of the bistable SMO resemble those of a Helmholtz-Duffing oscillator (HDO); this suggests the possibility of applying the established tools and insights of HDO to predict origami dynamics. We also show that the bistability of SMO can be programmed within a large design space via tailoring the crease stiffness and initial stress-free configurations. The results of this research offer a wealth of fundamental insights into the dynamics of origami folding, and provide a solid foundation for developing foldable and deployable structures and materials with embedded dynamic functionalities.
Dynamics of a bistable Miura-origami structure.
Fang, Hongbin; Li, Suyi; Ji, Huimin; Wang, K W
2017-05-01
Origami-inspired structures and materials have shown extraordinary properties and performances originating from the intricate geometries of folding. However, current state of the art studies have mostly focused on static and quasistatic characteristics. This research performs a comprehensive experimental and analytical study on the dynamics of origami folding through investigating a stacked Miura-Ori (SMO) structure with intrinsic bistability. We fabricate and experimentally investigated a bistable SMO prototype with rigid facets and flexible crease lines. Under harmonic base excitation, the SMO exhibits both intrawell and interwell oscillations. Spectrum analyses reveal that the dominant nonlinearities of SMO are quadratic and cubic, which generate rich dynamics including subharmonic and chaotic oscillations. The identified nonlinearities indicate that a third-order polynomial can be employed to approximate the measured force-displacement relationship. Such an approximation is validated via numerical study by qualitatively reproducing the phenomena observed in the experiments. The dynamic characteristics of the bistable SMO resemble those of a Helmholtz-Duffing oscillator (HDO); this suggests the possibility of applying the established tools and insights of HDO to predict origami dynamics. We also show that the bistability of SMO can be programmed within a large design space via tailoring the crease stiffness and initial stress-free configurations. The results of this research offer a wealth of fundamental insights into the dynamics of origami folding, and provide a solid foundation for developing foldable and deployable structures and materials with embedded dynamic functionalities.
Algorithm of Dynamic Model Structural Identification of the Multivariable Plant
Л.М. Блохін
2004-02-01
Full Text Available The new algorithm of dynamic model structural identification of the multivariable stabilized plant with observable and unobservable disturbances in the regular operating modes is offered in this paper. With the help of the offered algorithm it is possible to define the “perturbed” models of dynamics not only of the plant, but also the dynamics characteristics of observable and unobservable casual disturbances taking into account the absence of correlation between themselves and control inputs with the unobservable perturbations.
Structure Learning in Stochastic Non-linear Dynamical Systems
Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.
2005-12-01
A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.
Coppolino, Robert N.
2018-01-01
Verification and validation (V&V) is a highly challenging undertaking for SLS structural dynamics models due to the magnitude and complexity of SLS subassemblies and subassemblies. Responses to challenges associated with V&V of Space Launch System (SLS) structural dynamics models are presented in Volume I of this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA). (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976). (3) Mode Consolidation (MC). Finally, (4) Experimental Mode Verification (EMV). This document contains the appendices to Volume I.
Exploring the Dynamics of Responses to Food Production Shocks
Aled Jones
2017-06-01
Full Text Available Food production shocks can lead to food crises where access to appropriate quantities and quality of food become inadequate, unaffordable, or unreliable on a major scale. While the physical causes of food production shocks are well researched, the dynamics of responses to them are less well understood. This paper reviews those dynamics and includes evidence gathered via interviews of 44 expert practitioners sourced globally from academia, government, industry, think-tanks, and development/relief organizations. The paper confirms that policy interventions are often prioritised for national interests and poorly coordinated at regional and global scales. The paper acknowledges future compounding trends such as climate change and demographic shifts and suggests that while there are signs of incremental progress in better managing the impacts of shock events, coordinated responses at scale will require a paradigm shift involving major policy, market, and technological advancements, and a wide range of public and private sector stakeholders.
Matrix of transmission in structural dynamics
Mukherjee, S.
1975-01-01
The problem of close-coupled systems and cantilever type buildings can be treated efficiently by means of the very general and versatile method of transmission matrix. The expression 'matrix of transmission' is used to point out the fact that the method to be described differs fundamentally from another method related to matrix calculus, and also successfully used in vibration problem. In this method, forces and displacements are introduced as the 'unknowns' of the problem. The 'matrix of transmission' relates these quantities at one point of the structure to those at the neighbouring point. The natural frequencies of a freely vibrating elastic system can be found by applying proper end conditions. The end conditions will yield the frequency determinate to zero. By using suitable numerical method, the natural frequencies and mode shapes are determined, by making a frequency sweep within the range of interest. Results of analysis of a typical nuclear building by this method show very close agreement with the results obtained by using ASKA and SAP IV Program
Organoactinide chemistry: synthesis, structure, and solution dynamics
Brennan, J.G.
1985-12-01
This thesis considers three aspects of organoactinide chemistry. In chapter one, a bidentate phosphine ligand was used to kinetically stabilize complexes of the type Cp 2 MX 2 . Ligand redistribution processes are present throughout the synthetic work, as has often been observed in uranium cyclopentadienyl chemistry. The effects of covalent M-L bonding on the solution and solid state properties of U(III) coordination complexes are considered. In particular, the nature of the more subtle interaction between the metal and the neutral ligand are examined. Using relative basicity data obtained in solution, and solid state structural data (and supplemented by gas phase photoelectron measurements), it is demonstrated that the more electron rich U(III) centers engage in significant U → L π-donation. Trivalent uranium is shown to be capable of acting either as a one- or two-electron reducing agent toward a wide variety of unsaturated organic and inorganic molecules, generating molecular classes unobtainable via traditional synthetic approaches, as well as offering an alternative synthetic approach to molecules accessible via metathesis reactions. Ligand redistribution processes are again observed, but given the information concerning ligand lability, this reactivity pattern is applied to the synthesis of pure materials inaccessible from redox chemistry. 214 refs., 33 figs., 10 tabs
In situ structure and dynamics of DNA origami determined through molecular dynamics simulations.
Yoo, Jejoong; Aksimentiev, Aleksei
2013-12-10
The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects.
Ha, Jeong Gon, E-mail: jgha87@kaist.ac.kr; Kim, Dong-Soo, E-mail: dskim@kaist.ac.kr
2014-10-01
Highlights: • A series of dynamic centrifuge tests were performed for NPP structure to investigate the soil–foundation-structure interaction with various soil conditions from loose sand to weathered rock. • SFSI phenomena for NPP structure were observed directly using experimental method. • Effect of the soil stiffness and nonlinear characteristics on SFSI was estimated. • There are comparisons of the control motions for seismic design of a NPP structure. • Subsoil condition, earthquake intensity and control motion affected to seismic load. - Abstract: To evaluate the earthquake loads for the seismic design of a nuclear containment structure, it is necessary to consider the soil–foundation-structure interaction (SFSI) due to their interdependent behavior. Especially, understanding the effects of soil stiffness under the structure and the location of control motion to SFSI are very important. Motivated by these requirements, a series of dynamic centrifuge tests were performed with various soil conditions from loose sand to weathered rock (WR), as well as different seismic intensities for the bedrock motion. The different amplification characteristics in peak-accelerations profile and effects of soil-nonlinearity in response spectrum were observed. The dynamic behaviors were compared between surface of free-field and foundation of the structure for the evaluation of the control motion for seismic design. It was found that dynamic centrifuge test has potentials to estimate the seismic load considering SFSI.
Ha, Jeong Gon; Kim, Dong-Soo
2014-01-01
Highlights: • A series of dynamic centrifuge tests were performed for NPP structure to investigate the soil–foundation-structure interaction with various soil conditions from loose sand to weathered rock. • SFSI phenomena for NPP structure were observed directly using experimental method. • Effect of the soil stiffness and nonlinear characteristics on SFSI was estimated. • There are comparisons of the control motions for seismic design of a NPP structure. • Subsoil condition, earthquake intensity and control motion affected to seismic load. - Abstract: To evaluate the earthquake loads for the seismic design of a nuclear containment structure, it is necessary to consider the soil–foundation-structure interaction (SFSI) due to their interdependent behavior. Especially, understanding the effects of soil stiffness under the structure and the location of control motion to SFSI are very important. Motivated by these requirements, a series of dynamic centrifuge tests were performed with various soil conditions from loose sand to weathered rock (WR), as well as different seismic intensities for the bedrock motion. The different amplification characteristics in peak-accelerations profile and effects of soil-nonlinearity in response spectrum were observed. The dynamic behaviors were compared between surface of free-field and foundation of the structure for the evaluation of the control motion for seismic design. It was found that dynamic centrifuge test has potentials to estimate the seismic load considering SFSI
Note: A high dynamic range, linear response transimpedance amplifier.
Eckel, S; Sushkov, A O; Lamoreaux, S K
2012-02-01
We have built a high dynamic range (nine decade) transimpedance amplifier with a linear response. The amplifier uses junction-gate field effect transistors (JFETs) to switch between three different resistors in the feedback of a low input bias current operational amplifier. This allows for the creation of multiple outputs, each with a linear response and a different transimpedance gain. The overall bandwidth of the transimpedance amplifier is set by the bandwidth of the most sensitive range. For our application, we demonstrate a three-stage amplifier with transimpedance gains of approximately 10(9)Ω, 3 × 10(7)Ω, and 10(4)Ω with a bandwidth of 100 Hz.
A Dynamic Market Mechanism for Markets with Shiftable Demand Response
Hansen, Jacob; Knudsen, Jesper Viese; Kiani, Arman
2014-01-01
renewables, this mechanism accommodates both consumers with a shiftable Demand Response and an adjustable Demand Response. The overall market mechanism is evaluated in a Day Ahead Market and is shown in a numerical example to result in a reduction of the cost of electricity for the consumer, as well......In this paper, we propose a dynamic market mechanism that converges to the desired market equilibrium. Both locational marginal prices and the schedules for generation and consumption are determined through a negotiation process between the key market players. In addition to incorporating...
Entrepreneurial dynamics and social responsibility: mapping an expanded intellectual territory
Blundel, Richard; Spence, Laura J.
2009-01-01
Objectives: (1) To provide a constructive critique of the interface between the entrepreneurial growth dynamics research and social responsibility literatures; (2) to explore opportunities for making new connections between these literatures in order to address substantive ‘gaps’ in research and policy-making ; (3) to map the broader intellectual territory implied by this critique; (4) to outline a tentative research agenda. \\ud Prior work: The paper draws on two main strands of research: ent...
Dynamic strategic responses among advertisers: the case of meat products
Jeffrey Hyde; Brent Gloy
2007-01-01
The case of strategic advertising response is examined for branded and generic meat products (beef, pork, and poultry). A dynamic conceptual model is developed to identify the determinants of advertising expenditures. A time-series model is then used to examine the competitive behavior of branded and generic meat advertisers. The results identify two types of advertising strategies those based upon changes in revenues and those based upon changes in competitor advertising expenditures. Most g...
Dynamics of a physiologically structured population in a time-varying environment
Heilmann, Irene Louise Torpe; Starke, Jens; Andersen, Ken Haste
2016-01-01
Physiologically structured population models have become a valuable tool to model the dynamics of populations. In a stationary environment such models can exhibit equilibrium solutions as well as periodic solutions. However, for many organisms the environment is not stationary, but varies more...... or less regularly. In order to understand the interaction between an external environmental forcing and the internal dynamics in a population, we examine the response of a physiologically structured population model to a periodic variation in the food resource. We explore the addition of forcing in two...... cases: (A) where the population dynamics is in equilibrium in a stationary environment, and (B) where the population dynamics exhibits a periodic solution in a stationary environment. When forcing is applied in case A, the solutions are mainly periodic. In case B the forcing signal interacts...
Dynamic Response Analysis of Microflow Electrochemical Sensors with Two Types of Elastic Membrane
Qiuzhan Zhou
2016-05-01
Full Text Available The Molecular Electric Transducer (MET, widely applied for vibration measurement, has excellent sensitivity and dynamic response at low frequencies. The elastic membrane in the MET is a significant factor with an obvious effect on the performance of the MET in the low frequency domain and is the focus of this paper. In simulation experiments, the elastic membrane and the reaction cavity of the MET were analysed in a model based on the multiphysics finite element method. Meanwhile, the effects caused by the elastic membrane elements are verified in this paper. With the numerical simulation and practical experiments, a suitable elastic membrane can be designed for different cavity structures. Thus, the MET can exhibit the best dynamic response characteristics to measure the vibration signals. With the new method presented in this paper, it is possible to develop and optimize the characteristics of the MET effectively, and the dynamic characteristics of the MET can be improved in a thorough and systematic manner.