WorldWideScience

Sample records for strongly orthotropic continuum

  1. A 3D Orthotropic Elastic Continuum Damage Material Model

    Energy Technology Data Exchange (ETDEWEB)

    English, Shawn Allen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Brown, Arthur A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-08-01

    A three dimensional orthotropic elastic constitutive model with continuum damage is implemented for polymer matrix composite lamina. Damage evolves based on a quadratic homogeneous function of thermodynamic forces in the orthotropic planes. A small strain formulation is used to assess damage. In order to account for large deformations, a Kirchhoff material formulation is implemented and coded for numerical simulation in Sandia’s Sierra Finite Element code suite. The theoretical formulation is described in detail. An example of material parameter determination is given and an example is presented.

  2. Response of orthotropic micropolar elastic medium due to time ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    namic response of anisotropic continuum has received the attention of ... linear theory of micropolar elasticity and bending of orthotropic micropolar ... medium due to time harmonic concentrated load, the continuum is divided into two half-.

  3. VARIATIONAL PRINCIPLES FOR NONLOCAL CONTINUUM MODEL OF ORTHOTROPIC GRAPHENE SHEETS EMBEDDED IN AN ELASTIC MEDIUM

    Institute of Scientific and Technical Information of China (English)

    Sarp Adali

    2012-01-01

    Equations governing the vibrations and buckling of multilayered orthotropic graphene sheets can be expressed as a system of n partial differential equations where n refers to the number of sheets.This description is based on the continuum model of the graphene sheets which can also take the small scale effects into account by employing a nonlocal theory.In the present article a variational principle is derived for the nonlocal elastic theory of rectangular graphene sheets embedded in an elastic medium and undergoing transverse vibrations.Moreover the graphene sheets are subject to biaxial compression.Rayleigh quotients are obtained for the frequencies of freely vibrating graphene sheets and for the buckling load. The influence of small scale effects on the frequencies and the buckling load can be observed qualiatively from the expressions of the Rayleigh quotients.Elastic medium is modeled as a combination of Winkler and Pasternak foundations acting on the top and bottom layers of the mutilayered nano-structure.Natural boundary conditions of the problem are derived using the variational principle formulated in the study.It is observed that free boundaries lead to coupled boundary conditions due to nonlocal theory used in the continuum formulation while the local (classical) elasticity theory leads to uncoupled boundary conditions.The mathematical methods used in the study involve calculus of variations and the semi-inverse method for deriving the variational integrals.

  4. A 3D Orthotropic Strain-Rate Dependent Elastic Damage Material Model.

    Energy Technology Data Exchange (ETDEWEB)

    English, Shawn Allen

    2014-09-01

    A three dimensional orthotropic elastic constitutive model with continuum damage and cohesive based fracture is implemented for a general polymer matrix composite lamina. The formulation assumes the possibility of distributed (continuum) damage followed b y localized damage. The current damage activation functions are simply partially interactive quadratic strain criteria . However, the code structure allows for changes in the functions without extraordinary effort. The material model formulation, implementation, characterization and use cases are presented.

  5. Unexpected strong attraction in the presence of continuum bound state

    International Nuclear Information System (INIS)

    Delfino, A.; Frederico, T.

    1992-06-01

    The result of few-particle ground-state calculation employing a two-particle non-local potential supporting a continuum bound state in addition to a negative-energy bound state has occasionally revealed unexpected large attraction in producing a very strongly bound ground state. In the presence of the continuum bound state the difference of phase shift between zero and infinite energies has an extra jump of φ as in the presence of an additional bound state. The wave function of the continuum bound state is identical with that of a strongly bound negative-energy state, which leads us to postulate a pseudo bound state in the two-particle system in order to explain the unexpected attraction. The role of the Pauli forbidden states is expected to be similar to these pseudo states. (author)

  6. Mechanical sources in orthotropic micropolar continua

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    that Iesan (1973, 1974a, 1974b) analyzed the static problems of plane micropolar strain of a homoge- neous and orthotropic elastic solid, torsion prob- lem of homogeneous and orthotropic cylinders in the linear theory of micropolar elasticity and bend- ing of orthotropic micropolar elastic beams by ter- minals couples.

  7. Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas

    International Nuclear Information System (INIS)

    Hu, S. X.

    2017-01-01

    Here, continuum lowering is a well-known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal-/pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K-edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics (QMD) calculations based on the all-electron density-functional theory (DFT). The resulted K-edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of “single atom in box” (SAIB), developed in this work, accurately predicts K-edge locations as what ab-initio calculations provide.

  8. Breakdown of the 1/N expansion in the continuum limit of strong coupling lattice QCD

    International Nuclear Information System (INIS)

    Bralic, N.; Pontificia Universidade Catolica de Chile, Santiago. Facultad de Fisica); Loewe, M.

    1983-08-01

    The restoration of lorentz covariance in the continuum limit of strong coupling lattice QCD is shown to require the breakdown of the 1/N expansion. With the leading 1/N appoximation becoming irrelevant in that limit. To leading order in 1/N lorentz convariance can be restored only as an approximate long distance symmetry a non conventional continuum limit with a non hermitian hamiltonian. (Author) [pt

  9. Strain rate dependent orthotropic properties of pristine and impulsively loaded porcine temporomandibular joint disk.

    Science.gov (United States)

    Beatty, M W; Bruno, M J; Iwasaki, L R; Nickel, J C

    2001-10-01

    The purpose of this study was to characterize the tensile stress-strain behavior of the porcine temporomandibular joint (TMJ) disk with respect to collagen orientation and strain rate dependency. The apparent elastic modulus, ultimate tensile strength, and strain at maximum stress were measured at three elongation rates (0.5, 50, and 500 mm/min) for dumbbell-shaped samples oriented along either anteroposterior or mediolateral axes of the disks. In order to study the effects of impact-induced fissuring on the mechanical behavior, the same properties were measured along each orientation at an elongation rate of 500 mm/min for disks subjected to impulsive loads of 0.5 N. s. The results suggested a strongly orthotropic nature to the healthy pristine disk. The values for the apparent modulus and ultimate strength were 10-fold higher along the anteroposterior axis (p disks for either orientation (p > 0.05). The results demonstrated the importance of choosing an orthotropic model for the TMJ disk to conduct finite element modeling, to develop failure criteria, and to construct tissue-engineered replacements. Impact-induced fissuring requires further study to determine if the TMJ disk is orthotropic with respect to fatigue.

  10. Analysis of an Orthotropic Deck Stiffened with a Cement-Based Overlay

    DEFF Research Database (Denmark)

    Walter, Rasmus; Olesen, John Forbes; Stang, Henrik

    2007-01-01

    decks. A solution might be to enhance the stiffness of the traditional orthotropic bridge deck by using a cement-based overlay. In this paper, an orthotropic steel bridge deck stiffened with a cement-based overlay is analyzed. The analysis is based on nonlinear fracture mechanics, and utilizes......Over the past years, with increasing traffic volumes and higher wheel loads, fatigue damage in steel parts of typical orthotropic steel bridge decks has been experienced on heavily trafficked routes. A demand exists to find a durable system to increase the fatigue safety of orthotropic steel bridge...... the finite-element method. The stiffness of the steel deck reinforced with an overlay depends highly on the composite action. The composite action is closely related to cracking of the overlay and interfacial cracking between the overlay and underlying steel plate (debonding). As an example, a real size...

  11. Remarks on orthotropic elastic models applied to wood

    Directory of Open Access Journals (Sweden)

    Nilson Tadeu Mascia

    2006-09-01

    Full Text Available Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal, R( radial and T(tangential are coincident with the Cartesian axes (x, y, z, is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young´s modulus and shear modulus, with fiber orientation are presented.

  12. Analytical solutions to orthotropic variable thickness disk problems

    Directory of Open Access Journals (Sweden)

    Ahmet N. ERASLAN

    2016-02-01

    Full Text Available An analytical model is developed to estimate the mechanical response of nonisothermal, orthotropic, variable thickness disks under a variety of boundary conditions. Combining basic mechanical equations of disk geometry with the equations of orthotropic material, the elastic equation of the disk is obtained. This equation is transformed into a standard hypergeometric differential equation by means of a suitable transformation. An analytical solution is then obtained in terms of hypergeometric functions. The boundary conditions used to complete the solutions simulate rotating annular disks with two free surfaces, stationary annular disks with pressurized inner and free outer surfaces, and free inner and pressurized outer surfaces. The results of the solutions to each of these cases are presented in graphical forms. It is observed that, for the three cases investigated the elastic orthotropy parameter turns out to be an important parameter affecting the elastic behaviorKeywords: Orthotropic disk, Variable thickness, Thermoelasticity, Hypergeometric equation

  13. An anisotropic elastoplastic constitutive formulation generalised for orthotropic materials

    Science.gov (United States)

    Mohd Nor, M. K.; Ma'at, N.; Ho, C. S.

    2018-03-01

    This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour that involves very high pressures and shockwaves in orthotropic materials using an anisotropic Hill's yield criterion by means of the evolving structural tensors. The yield surface of this hyperelastic-plastic constitutive model is aligned uniquely within the principal stress space due to the combination of Mandel stress tensor and a new generalised orthotropic pressure. The formulation is developed in the isoclinic configuration and allows for a unique treatment for elastic and plastic orthotropy. An isotropic hardening is adopted to define the evolution of plastic orthotropy. The important feature of the proposed hyperelastic-plastic constitutive model is the introduction of anisotropic effect in the Mie-Gruneisen equation of state (EOS). The formulation is further combined with Grady spall failure model to predict spall failure in the materials. The proposed constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM's version, named Material Type 92 (Mat92). The combination of the proposed stress tensor decomposition and the Mie-Gruneisen EOS requires some modifications in the code to reflect the formulation of the generalised orthotropic pressure. The validation approach is also presented in this paper for guidance purpose. The \\varvec{ψ} tensor used to define the alignment of the adopted yield surface is first validated. This is continued with an internal validation related to elastic isotropic, elastic orthotropic and elastic-plastic orthotropic of the proposed formulation before a comparison against range of plate impact test data at 234, 450 and {895 ms}^{-1} impact velocities is performed. A good agreement is obtained in each test.

  14. Elasto/visco-plastic analysis of orthotropic moderately thick shells of revolution

    International Nuclear Information System (INIS)

    Takezono, S.; Tao, K.

    1985-01-01

    This paper describes an analytical formulation and a numerical analysis on the elasto/visco-plastic problems of orthotropic moderately thick shells of revolution under axi-symmetrical loads with applications to a cylindrical shell, and with comparison to experimental results. The analytical formulation is developed by extension of the Reissner-Naghdi theory in elastic shells where a consideration on the effect of shear deformation is given. As the constitutive equation, Hooke's law for orthotropic materials is used in the elastic range, and equations based on the orthotropic visco-plastic theory derived from the orthotropic plastic theory by Hill are employed in the plastic range. The visco-plastic strain rates are related to the stresses by Perzyna's equation. In order to check up the adequacy of the numerical analysis, experiments on elasto/visco-plastic deformation of a titanium cylindrical shell subject to internal axi-symmetrical loads are performed. Good agreement is obtained between experimental results and analytical solution. (orig.)

  15. Static deformation of an orthotropic elastic layered medium due to a ...

    African Journals Online (AJOL)

    Closed-form analytic expressions for the deformation field at any point of a homogeneous, orthotropic, homogeneous elastic layer interfacing differently to a base due to non-uniform discontinuity (slip) along a very long strike-slip fault situated in the orthotropic elastic layer have been obtained. Four non-uniform slip profiles: ...

  16. Strength Calculation of Locally Loaded Orthotropic Shells

    Directory of Open Access Journals (Sweden)

    Yu. I. Vinogradov

    2015-01-01

    Full Text Available The article studies laminated orthotropic cylindrical, conic, spherical, and toroidal shells, which are often locally loaded in the aircraft designs over small areas of their surfaces.The aim of this work is to determine stress concentration in shells versus structure of orthotropic composite material, shell form and parameters, forms of loading areas, which borders do not coincide with lines of main curvatures of shells. For this purpose, an analytical computing algorithm to estimate strength of shells in terms of stress is developed. It enables us to have solution results of the boundary value problem with a controlled error. To solve differential equations an analytical method is used. An algorithm of the boundary value problem solution is multiplicative.The main results of researches are graphs of stress concentration in the orthotropic shells versus their parameters and areas of loading lineated by circles and ellipses.Among the other works aimed at determination of stress concentration in shells, the place of this one is defined by the analytical solution of applied problems for strength estimation in terms of shell stresses of classical forms.The developed effective analytical algorithm to solve the boundary value problem and received results are useful in research and development.

  17. CONCERNING THE ELASTIC ORTHOTROPIC MODEL APPLIED TO WOOD ELASTIC PROPERTIES

    OpenAIRE

    Tadeu Mascia,Nilson

    2003-01-01

    Among the construction materials, wood reveals an orthotropic pattern, because of unique characteristics in its internal structure with three axes of wood biological directions (longitudinal, tangential and radial). elastic symmetry: longitudinal, tangential and radial, reveals an orthotropic pattern. The effect of grain angle orientation onin the elastic modulus constitutes the fundamental cause forof wood anisotropy. It is responsible for the greatest changes in the values of the constituti...

  18. Elastic Constants of Plane Orthotropic Elasticity

    DEFF Research Database (Denmark)

    Krenk, Steen

    1979-01-01

    The four independent material parameters of plane orthotropic elasti city are introduced as the effective stiffness, the effective Poisson ratio, the stiffness ratio and the shear parameter. It is proved that stress boundary value problems with zero resulting force on internal contours lead...

  19. Orthotropic conductivity reconstruction with virtual-resistive network and Faraday's law

    KAUST Repository

    Lee, Min-Gi

    2015-06-01

    We obtain the existence and the uniqueness at the same time in the reconstruction of orthotropic conductivity in two-space dimensions by using two sets of internal current densities and boundary conductivity. The curl-free equation of Faraday\\'s law is taken instead of the elliptic equation in a divergence form that is typically used in electrical impedance tomography. A reconstruction method based on layered bricks-type virtual-resistive network is developed to reconstruct orthotropic conductivity with up to 40% multiplicative noise.

  20. Optimizing rib width to height and rib spacing to deck plate thickness ratios in orthotropic decks

    Directory of Open Access Journals (Sweden)

    Abdullah Fettahoglu

    2016-12-01

    Full Text Available Orthotropic decks are composed of deck plate, ribs, and cross-beams and are frequently used in industry to span long distances, due to their light structures and load carrying capacities. Trapezoidal ribs are broadly preferred as longitudinal stiffeners in design of orthotropic decks. They supply the required stiffness to the orthotropic deck in traffic direction. Trapezoidal ribs are chosen in industrial applications because of their high torsional and buckling rigidity, less material and welding needs. Rib width, height, spacing, thickness of deck plate are important parameters for designing of orthotropic decks. In the scope of this study, rib width to height and rib spacing to deck plate thickness ratios are assessed by means of the stresses developed under different ratios of these parameters. For this purpose a FE-model of orthotropic bridge is generated, which encompasses the entire bridge geometry and conforms to recommendations given in Eurocode 3 Part 2. Afterwards necessary FE-analyses are performed to reveal the stresses developed under different rib width to height and rib spacing to deck plate thickness ratios. Based on the results obtained in this study, recommendations regarding these ratios are provided for orthotropic steel decks occupying trapezoidal ribs.

  1. The Continuum Limit of a Fermion System Involving Leptons and Quarks: Strong, Electroweak and Gravitational Interactions

    OpenAIRE

    Finster, Felix

    2014-01-01

    The causal action principle is analyzed for a system of relativistic fermions composed of massive Dirac particles and neutrinos. In the continuum limit, we obtain an effective interaction described by classical gravity as well as the strong and electroweak gauge fields of the standard model.

  2. On an orthotropic model for progressive degradation

    DEFF Research Database (Denmark)

    Hammer, Velaja B.; Pedersen, Pauli

    1999-01-01

    Progressive degradation in orthotropic materials is modelled from a smear-out point of view, and physical measurable quantities are used as the describing parameters. Evolution of stiffness and evolution of strength are kept uncoupled. For plane problems the stiffness evolution is modelled...

  3. Elasto/visco-plastic analysis of orthotropic moderately thick shells of revolution under asymmetrical loading

    International Nuclear Information System (INIS)

    Tao, K.; Takezono, S.

    1989-01-01

    An analytical method for the elasto/visco-plastic problems of general, orthotropic moderately thick shells of revolution subjected to asymmetrical loads is developed in consideration of the effect of shear deformations. The Reissner-Naghdi theory for elastic moderately thick shells is extended in this analysis. As the constitutive equation, Hooke's law for orthotropic materials is used in the elastic region, and equations based on the orthotropic visco-plastic theory derived from the orthotropic plastic theory by Hill are employed in the plastic range. The visco-plastic strain rates are related to the stresses by Perzyna's equation. The fundamental equations for the increment are numerically solved by a finite difference method and the solutions are obtained by summation of the incremental values. In order to check the adequacy of the numerical analysis, experiments are performed on the elasto/visco-plastic deformation of a titanium cylindrical shell subjected to locally distributed loads. Good agreement is obtained between the experimental results and analytical solutions

  4. Sensitivity analysis on the effective stiffness properties of 3-D orthotropic honeycomb cores

    Science.gov (United States)

    Karakoç, Alp

    2018-01-01

    The present study investigates the influences of representative volume element RVE mesh and material parameters, here cell wall elastic moduli, on the effective stiffness properties of three dimensional orthotropic honeycomb cores through strain driven computational homogenization in the finite element framework. For this purpose, case studies were carried out, for which hexagonal cellular RVEs were generated, meshed with eight node linear brick finite elements of varying numbers. Periodic boundary conditions were then implemented on the RVE boundaries by using one-to-one nodal match for the corresponding corners, edges and surfaces for the imposed macroscopic strains. As a novelty, orthotropic material properties were assigned for each cell wall by means of the transformation matrices following the cell wall orientations. Thereafter, simulations were conducted and volume averaged macroscopic stresses were obtained. Eventually, effective stiffness properties were obtained, through which RVE sensitivity analysis was carried out. The investigations indicate that there is a strong relation between number of finite elements and most of the effective stiffness parameters. In addition to this, cell wall elastic moduli also play critical role on the effective properties of the investigated materials.

  5. Using artificial neural networks in the design of orthotropic bridge decks

    Directory of Open Access Journals (Sweden)

    Ahmed Shamel Fahmy

    2016-12-01

    Full Text Available For orthotropic bridge decks a lot of progress has been made in the development of codes to aid in the design process, in addition to software tools for numerical analysis and design. However, professional software tools will not aid the designer in choosing a preliminary economic layout at the conceptual design stage. Designers would go through iterative, lengthy and expensive procedures to reach the best configuration. The present research provides a methodology to investigate the contingency of using artificial neural networks for conceptual design of orthotropic steel-deck bridge. A neural network model was trained with different combinations of dimensions, and eight types of safety checks were performed on all of them. The resulting network can predict whether the deck is safe or not. It is found that this approach for the selection of orthotropic deck dimensions is a better and cost-effective option compared with international codes or expert opinion.

  6. Creep analysis of orthotropic shells

    International Nuclear Information System (INIS)

    Mehra, V.K.; Ghosh, A.

    1975-01-01

    A method of creep analysis of orthotropic cylindrical shells subjected to axisymmetric loads has been developed. A general study of creep behaviour of cylindrical shells subjected to a uniform internal pressure has been conducted for a wide range of values of anisotropy coefficients and creep law exponent. Analysis includes determination of stress re-distribution, strain rates, stationary state stresses. Application of reference stress technique has been extended to analysis of shells. (author)

  7. Fatigue Properties of Orthotropic Decks on Railway Bridges

    Czech Academy of Sciences Publication Activity Database

    Frýba, Ladislav; Gajdoš, Lubomír

    1999-01-01

    Roč. 21, č. 7 (1999), s. 639-652 ISSN 0141-0296 Grant - others:XX(CZ) ERRI D 191 Keywords : railway bridges * orthotropic decks * fatigue Subject RIV: JM - Building Engineering Impact factor: 0.364, year: 1999

  8. Steel plate reinforcement of orthotropic bridge decks

    NARCIS (Netherlands)

    Teixeira de Freitas, S.

    2012-01-01

    The PhD research is focused on the reinforcement of fatigue cracked orthotropic steel bridge decks (OBD) by adding a second steel plate to the existing deck. The main idea is to stiffen the existing deck plate, which will reduce the stresses at the fatigue sensitive details and extend the fatigue

  9. Thermal stresses in an orthotropic rectangular plate with a rigid ribbonlike inclusion

    International Nuclear Information System (INIS)

    Sumi, N.

    1981-01-01

    On the basis of the complex variable method for determining the stationary two-dimensional thermal stresses, the thermal stresses in an orthotropic rectangular plate with a rigid ribbonlike inclusion under a steady state temperature field is considered. The solution is found by the analytic continuation argument and the modified mapping-collocation technique. Numerical results indicate a dependence of the orthotropic stress intensity factors on the thermal, elastic and geometrical constants over a certain parameter range. (orig.)

  10. NATURAL TRANSVERSE VIBRATIONS OF A PRESTRESSED ORTHOTROPIC PLATE-STRIPE

    Directory of Open Access Journals (Sweden)

    Egorychev Oleg Aleksandrovich

    2012-10-01

    Full Text Available The article represents a new outlook at the boundary-value problem of natural vibrations of a homogeneous pre-stressed orthotropic plate-stripe. In the paper, the motion equation represents a new approximate hyperbolic equation (rather than a parabolic equation used in the majority of papers covering the same problem describing the vibration of a homogeneous orthotropic plate-stripe. The proposed research is based on newly derived boundary conditions describing the pin-edge, rigid, and elastic (vertical types of fixing, as well as the boundary conditions applicable to the unfixed edge of the plate. The paper contemplates the application of the Laplace transformation and a non-standard representation of a homogeneous differential equation with fixed factors. The article proposes a detailed representation of the problem of natural vibrations of a homogeneous orthotropic plate-stripe if rigidly fixed at opposite sides; besides, the article also provides frequency equations (no conclusions describing the plate characterized by the following boundary conditions: rigid fixing at one side and pin-edge fixing at the opposite side; pin-edge fixing at one side and free (unfixed other side; rigid fixing at one side and elastic fixing at the other side. The results described in the article may be helpful if applied in the construction sector whenever flat structural elements are considered. Moreover, specialists in solid mechanics and theory of elasticity may benefit from the ideas proposed in the article.

  11. Free Vibration Analysis of Rectangular Orthotropic Membranes in Large Deflection

    Directory of Open Access Journals (Sweden)

    Zheng Zhou-Lian

    2009-01-01

    Full Text Available This paper reviewed the research on the vibration of orthotropic membrane, which commonly applied in the membrane structural engineering. We applied the large deflection theory of membrane to derive the governing vibration equations of orthotropic membrane, solved it, and obtained the power series formula of nonlinear vibration frequency of rectangular membrane with four edges fixed. The paper gave the computational example and compared the two results from the large deflection theory and the small one, respectively. Results obtained from this paper provide some theoretical foundation for the measurement of pretension by frequency method; meanwhile, the results provide some theoretical foundation for the research of nonlinear vibration of membrane structures and the response solving of membrane structures under dynamic loads.

  12. A local isotropic/global orthotropic finite element technique for modeling the crush of wood in impact limiters

    International Nuclear Information System (INIS)

    Attaway, S.W.; Yoshimura, H.R.

    1989-01-01

    Wood is often used as the energy absorbing material in impact limiters, because it begins to crush at low strains, then maintains a near constant crush stress up to nearly 60% volume reduction, and then locks up. Hill (Hill and Joseph, 1974) has performed tests that show that wood is an excellent absorber. However, wood's orthotropic behavior for large crush is difficult to model. In the past, analysts have used isotropic foam-like material models for modeling wood. A new finite element technique is presented in this paper that gives a better model of wood crush than the model currently in use. The orthotropic technique is based on locally isotropic, but globally orthotropic (LIGO) (Attaway, 1988) assumptions in which alternating layers of hard and soft crushable material are used. Each layer is isotropic; however, by alternating hard and soft thin layers, the resulting global behavior is orthotropic. In the remainder of this paper, the new technique for modeling orthotropic wood crush will be presented. The model is used to predict the crush behavior for different grain orientations of balsa wood. As an example problem, an impact limiter containing balsa wood as the crushable material is analyzed using both an isotropic model and the LIGO model

  13. A plane stress softening plasticity model for orthotropic materials

    NARCIS (Netherlands)

    Lourenço, P.B.; Borst, R. de; Rots, J.G.

    1997-01-01

    A plane stress model has been developed for quasi-brittle orthotropic materials. The theory of plasticity, which is adopted to describe the inelastic behaviour, utilizes modern algorithmic concepts, including an implicit Euler backward return mapping scheme, a local Newton-Raphson method and a

  14. Improvement of fatigue properties of orthotropic decks

    Czech Academy of Sciences Publication Activity Database

    Frýba, Ladislav; Urushadze, Shota

    2011-01-01

    Roč. 33, č. 4 (2011), s. 1166-1169 ISSN 0141-0296 R&D Projects: GA ČR GA103/08/1340; GA MŠk(CZ) 7E08098 Grant - others:BRIFAG -Bridge Fatigue Guidance(XE) RFSR_CT-2008-00033 Institutional research plan: CEZ:AV0Z20710524 Keywords : orthotropic deck * fatigue * prolonged life Subject RIV: JM - Building Engineering Impact factor: 1.351, year: 2011

  15. Rayleigh Waves in a Rotating Orthotropic Micropolar Elastic Solid Half-Space

    Directory of Open Access Journals (Sweden)

    Baljeet Singh

    2013-01-01

    Full Text Available A problem on Rayleigh wave in a rotating half-space of an orthotropic micropolar material is considered. The governing equations are solved for surface wave solutions in the half space of the material. These solutions satisfy the boundary conditions at free surface of the half-space to obtain the frequency equation of the Rayleigh wave. For numerical purpose, the frequency equation is approximated. The nondimensional speed of Rayleigh wave is computed and shown graphically versus nondimensional frequency and rotation-frequency ratio for both orthotropic micropolar elastic and isotropic micropolar elastic cases. The numerical results show the effects of rotation, orthotropy, and nondimensional frequency on the nondimensional speed of the Rayleigh wave.

  16. Integral transform solution of bending problem of clamped orthotropic rectangular plates

    International Nuclear Information System (INIS)

    An, C.; Gu, J.-J.; Su, J.

    2011-01-01

    The generalized integral transform technique (GITT) is employed to obtain an exact solution for the bending problem of fully clamped orthotropic rectangular plates. The use of the GITT approach in the analysis of the transverse deflection equation leads to a coupled system of fourth order differential equations in the dimensionless longitudinal spatial variable. The resulting transformed ODE system is then numerically solved by making use of the subroutine DBVPFD from IMSL Library. Numerical results with automatic global accuracy control are produced for different values of aspect ratio. Critical comparisons with previously reported numerical results are performed with excellent agreement. Several sets of reference results for clamped orthotropic rectangular plates are also provided for future covalidation purposes. (author)

  17. Stresses and strains in thick perforated orthotropic plates

    Science.gov (United States)

    A. Alshaya; John Hunt; R. Rowlands

    2016-01-01

    Stress and strain concentrations and in-plane and out-of-plane stress constraint factors associated with a circular hole in thick, loaded orthotropic composite plates are determined by three-dimensional finite element method. The plate has essentially infinite in-plane geometry but finite thickness. Results for Sitka Spruce wood are emphasized, although some for carbon...

  18. Renovation techniques for fatigue cracked orthotropic steel bridge decks

    NARCIS (Netherlands)

    de Jong, F.B.P.

    2007-01-01

    This dissertation presents the research into renovation techniques for orthotropic steel bridge decks. These techniques are needed to solve fatigue problems in the decks of these bridges, as several fatigue cracks have been detected in the deck structure of these bridges the last decade. A

  19. Static elastic deformation in an orthotropic half-space with rigid ...

    Indian Academy of Sciences (India)

    Yogita Godara

    2017-10-06

    Oct 6, 2017 ... The solution of static elastic deformation of a homogeneous, orthotropic elastic uniform half-space with ... Faults are fractures in Earth's crust where rocks ...... Mavko G M 1981 Mechanics of motion on major faults; Ann. Rev.

  20. Orthotropic conductivity reconstruction with virtual-resistive network and Faraday's law

    KAUST Repository

    Lee, Min-Gi; Ko, Min-Su; Kim, Yong-Jung

    2015-01-01

    We obtain the existence and the uniqueness at the same time in the reconstruction of orthotropic conductivity in two-space dimensions by using two sets of internal current densities and boundary conductivity. The curl-free equation of Faraday's law

  1. Continuum emission in the 1980 July 1 solar flare

    International Nuclear Information System (INIS)

    Zirin, H.; Neidig, D.F.

    1981-01-01

    Comparison of continuum measurements of the 1980 July 1 flare at Big Bear Solar Observatory and Sacramento Peak Observatory show strong blue emission kernels with the ratio of Balmer continuum (Bac):lambda3862 continuum:continuum above 4275 A to be about 10:5:1. The blue continuum at 3862 A is too strong to be explained by unresolved lines. The Bac intensity was 2.5 times the photosphere and the strongest lambda3862 continuum was 2 times the photosphere. The brightest continuum kernel occurred late in the flare, after the hard X-ray peak and related in time to an isolated peak in the 2.2 MeV line, suggesting that the continuum was excited by protons above 20 MeV

  2. Fatigue Assessment of Full-Scale Retrofitted Orthotropic Bridge Decks

    NARCIS (Netherlands)

    Teixeira De Freitas, S.; Kolstein, M.H.; Bijlaard, F.S.K.

    2017-01-01

    Full-scale fatigue tests were performed on two retrofitted orthotropic bridge decks (OBDs). The retrofitting systems consist of adding a second steel plate on the top of the existing deck. The aim is to reduce the stresses at the fatigue-sensitive details and therefore extend the fatigue life of

  3. Transient vibration of thin viscoelastic orthotropic plates

    Czech Academy of Sciences Publication Activity Database

    Soukup, J.; Valeš, František; Volek, J.; Skočilas, J.

    2011-01-01

    Roč. 27, č. 1 (2011), s. 98-107 ISSN 0567-7718. [International Conference on Dynamical Systems - Theory and Applications /10./. Lodz, 07.12.2009-10.12.2009] R&D Projects: GA ČR GA101/07/0946 Institutional research plan: CEZ:AV0Z20760514 Keywords : transient vibration thin plate * orthotropic * general viscoelastic standard solid Subject RIV: BI - Acoustics Impact factor: 0.860, year: 2011 http://www.springerlink.com/content/hn67324178846n4r/

  4. EXACT SOLUTION OF HEAT CONDUCTION IN A TWO-DOMAIN COMPOSITE CYLINDER WITH AN ORTHOTROPIC OUTER LAYER

    International Nuclear Information System (INIS)

    AVILES-RAMOS, C.; RUDY, C.

    2000-01-01

    The transient exact solution of heat conduction in a two-domain composite cylinder is developed using the separation of variables technique. The inner cylinder is isotropic and the outer cylindrical layer is orthotropic. Temperature solutions are obtained for boundary conditions of the first and second kinds at the outer surface of the orthotropic layer. These solutions are applied to heat flow calorimeters modeling assuming that there is heat generation due to nuclear reactions in the inner cylinder. Heat flow calorimeter simulations are carried out assuming that the inner cylinder is filled with plutonium oxide powder. The first objective in these simulations is to predict the onset of thermal equilibrium of the calorimeter with its environment. Two types of boundary conditions at the outer surface of the orthotropic layer are used to predict thermal equilibrium. The procedure developed to carry out these simulations can be used as a guideline for the design of calorimeters. Another important application of these solutions is on the estimation of thermophysical properties of orthotropic cylinders. The thermal conductivities in the vertical, radial and circumferential directions of the orthotropic outer layer can be estimated using this exact solution and experimental data. Simultaneous estimation of the volumetric heat capacity and thermal conductivities is also possible. Furthermore, this solution has potential applications to the solution of the inverse heat conduction problem in this cylindrical geometry. An interesting feature of the construction of this solution is that two different sets of eigenfunctions need to be considered in the eigenfunction expansion. These eigenfunctions sets depend on the relative values of the thermal diffusivity of the inner cylinder and the thermal diffusivity in the vertical direction of the outer cylindrical layer

  5. Research on construction technology for orthotropic steel deck pavement of Haihe River Chunyi Bridge

    Science.gov (United States)

    Xue, Y. C.; Qian, Z. D.; Zhang, M.

    2017-01-01

    In order to ensure the good service quality of orthotropic steel deck pavement of Haihe River Chunyi Bridge in Tianjin, and to reduce the occurrence of pavement diseases like lateral and longitudinal cracks, the key working procedures such as steel deck cleaning, anticorrosive coating, bonding layer spraying, seam cutting, epoxy asphalt concrete’s mixing, transportation, paving and compaction were studied. The study was based on the main features of epoxy asphalt concrete which is the pavement materials of Haihe River Chunyi Bridge, and combined with the basic characteristics and construction conditions of Haihe River Chunyi Bridge. Furthermore, some processing measures like controlling time and temperature, continuous paving with two pavers, lateral feeding, and improving the compaction method were proposed. The project example shows that the processing measures can effectively solve the technical difficulties in the construction of orthotropic steel deck pavement of Haihe River Chunyi Bridge, can greatly improve the construction speed and quality, and can provide reference for the same kinds of orthotropic steel deck pavement construction.

  6. Finite Thin Cover on an Orthotropic Elastic Half Plane

    Directory of Open Access Journals (Sweden)

    Federico Oyedeji Falope

    2016-01-01

    Full Text Available The present work deals with the mechanical behaviour of thin films bonded to a homogeneous elastic orthotropic half plane under plain strain condition and infinitesimal strain. Both the film and semi-infinite substrate display linear elastic orthotropic behaviour. By assuming perfect adhesion between film and half plane together with membrane behaviour of the film, the compatibility condition between the coating and substrate leads to a singular integral equation with Cauchy kernel. Such an equation is straightforwardly solved by expanding the unknown interfacial stress in series of Chebyshev polynomials displaying square-root singularity at the film edges. This approach allows handling the singular behaviour of the shear stress and, in turn, reducing the problem to a linear algebraic system of infinite terms. Results are found for two loading cases, with particular reference to concentrated axial forces acting at the edges of the film. The corresponding mode II stress intensity factor has been assessed, thus providing the stress concentrations at both ends of the covering. Possible applications of the results here obtained range from MEMS, NEMS, and solar Silicon cell for energy harvesting to welded joint and building foundation.

  7. Solvability of Static Contact Problems with Coulomb Friction for Orthotropic Material

    Czech Academy of Sciences Publication Activity Database

    Eck, C.; Jarušek, Jiří

    2008-01-01

    Roč. 93, č. 1 (2008), s. 93-104 ISSN 0374-3535 R&D Projects: GA AV ČR IAA1075402 Institutional research plan: CEZ:AV0Z10190503 Keywords : contact problem * Coulomb friction * orthotropic elasticity Subject RIV: BA - General Mathematics Impact factor: 1.277, year: 2008

  8. Guided ultrasonic waves for determining effective orthotropic material parameters of continuous-fiber reinforced thermoplastic plates.

    Science.gov (United States)

    Webersen, Manuel; Johannesmann, Sarah; Düchting, Julia; Claes, Leander; Henning, Bernd

    2018-03-01

    Ultrasonic methods are widely established in the NDE/NDT community, where they are mostly used for the detection of flaws and structural damage in various components. A different goal, despite the similar technological approach, is non-destructive material characterization, i.e. the determination of parameters like Young's modulus. Only few works on this topic have considered materials with high damping and strong anisotropy, such as continuous-fiber reinforced plastics, but due to the increasing demand in the industry, appropriate methods are needed. In this contribution, we demonstrate the application of laser-induced ultrasonic Lamb waves for the characterization of fiber-reinforced plastic plates, providing effective parameters for a homogeneous, orthotropic material model. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. On the determination of general plane stress states in orthotropic materials from ultrasonic velocity data in non symmetry planes

    International Nuclear Information System (INIS)

    Goncalves Filho, Orlando J.A.

    2015-01-01

    This work reports the progress in the development of a new experimental protocol for plane stress determination in orthotropic materials based on the ultrasonic velocity of bulk waves propagating in non symmetry planes with oblique incidence. The presence of stress-induced deformation introduces an acoustic anisotropy in the material in addition to that defined by its texture. Orthotropic materials under general plane stress states become acoustically monoclic and its orthotropic planes orthogonal to the stress plane become non symmetry planes. The inverse solution of the generalized Christoffel equation for ultrasonic bulk waves propagating in non symmetry planes of anisotropic bodies is known to be numerically unstable. The suggested protocol deals with this numerical instability without recourse to bulk wave propagation in the stress plane as proposed in the literature. Hence, it should be useful for plane stress analysis of thin wall pressure vessels where ultrasonic measurements in the direction of the wall plane are not possible. For the initial validation of the suggested protocol and verification of the stability of the inversion algorithm, computer simulation of stress determination have been performed from synthetic sets of velocity data obtained by the forward solution of the generalized Christoffel equation. Preliminary results for slightly orthotropic aluminium highlight the potential of the suggested protocol. (author)

  10. Pore-fluid effects on seismic waves in vertically fractured earth with orthotropic symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    2010-05-15

    For elastically noninteracting vertical-fracture sets at arbitrary orientation angles to each other, a detailed model is presented in which the resulting anisotropic fractured medium generally has orthorhombic symmetry overall. Some of the analysis methods and ideas of Schoenberg are emphasized, together with their connections to other similarly motivated and conceptually related methods by Sayers and Kachanov, among others. Examples show how parallel vertical-fracture sets having HTI (horizontal transversely isotropic) symmetry transform into orthotropic fractured media if some subsets of the vertical fractures are misaligned with the others, and then the fractured system can have VTI (vertical transversely isotropic) symmetry if all of the fractures are aligned randomly or half parallel and half perpendicular to a given vertical plane. An orthotropic example having vertical fractures in an otherwise VTI earth system (studied previously by Schoenberg and Helbig) is compared with the other examples treated and it is finally shown how fluids in the fractures affect the orthotropic poroelastic system response to seismic waves. The key result is that fracture-influence parameters are multiplied by a factor of (1-B), where 0 {le} B < 1 is Skempton's second coefficient for poroelastic media. Skempton's B coefficient is itself a measurable characteristic of fluid-saturated porous rocks, depending on porosity, solid moduli, and the pore-fluid bulk modulus. For heterogeneous porous media, connections between the present work and earlier related results of Brown and Korringa are also established.

  11. Case Criterion of Crack Onset in Orthotropic Bi-material Notches

    Czech Academy of Sciences Publication Activity Database

    Profant, T.; Klusák, Jan; Kotoul, M.

    2011-01-01

    Roč. 465, - (2011), s. 157-160 ISSN 1013-9826. [Materials Structure and Micromechanics of Fracture. Brno, 28.06.2010-30.06.2010] R&D Projects: GA ČR GA101/08/0994; GA ČR GAP108/10/2049 Institutional research plan: CEZ:AV0Z20410507 Keywords : orthotropic bi-material notch * crack initiation * matched asymptotic procedure Subject RIV: JL - Materials Fatigue, Friction Mechanics

  12. Determination of the threshold values of orthotropic bi-material notches

    Czech Academy of Sciences Publication Activity Database

    Klusák, Jan; Profant, T.; Kotoul, M.

    2010-01-01

    Roč. 2, č. 1 (2010), s. 1635-1642 E-ISSN 1877-7058. [Fatigue 2010. Praha, 06.06.2010-11.06.2010] R&D Projects: GA ČR GA101/08/0994; GA ČR GAP108/10/2049 Institutional research plan: CEZ:AV0Z20410507 Keywords : Bi-material notch es * Generalized singular stress concentrators * Stability criterion * Orthotropic materials Subject RIV: JL - Materials Fatigue, Friction Mechanics

  13. The dynamic response and perturbation of magnetic field vector of orthotropic cylinders under various shock loads

    International Nuclear Information System (INIS)

    Dai, H.L.; Wang, X.

    2006-01-01

    In this paper, an analytical method is introduced to solve the problem for the dynamic stress-focusing and centred-effect of perturbation of the magnetic field vector in orthotropic cylinders under thermal and mechanical shock loads. Analytical expressions for the dynamic stresses and the perturbation of the magnetic field vector are obtained by means of finite Hankel transforms and Laplace transforms. The response histories of dynamic stresses and the perturbation of the field vector are also obtained. In practical examples, the dynamic focusing effect on both magnetoelastic stress and perturbation of the axial magnetic field vector in an orthotropic cylinder subjected to various shock loads is presented and discussed

  14. A robust approach for analysing dispersion of elastic waves in an orthotropic cylindrical shell

    Science.gov (United States)

    Kaplunov, J.; Nobili, A.

    2017-08-01

    Dispersion of elastic waves in a thin orthotropic cylindrical shell is considered, within the framework of classical 2D Kirchhoff-Love theory. In contrast to direct multi-parametric analysis of the lowest propagating modes, an alternative robust approach is proposed that simply requires evaluation of the evanescent modes (quasi-static edge effect), which, at leading order, do not depend on vibration frequency. A shortened dispersion relation for the propagating modes is then derived by polynomial division and its accuracy is numerically tested against the full Kirchhoff-Love dispersion relation. It is shown that the same shortened relation may be also obtained from a refined dynamic version of the semi-membrane theory for cylindrical shells. The presented results may be relevant for modelling various types of nanotubes which, according to the latest experimental findings, possess strong material anisotropy.

  15. Natural Vibration Analysis of Clamped Rectangular Orthotropic Plates

    Science.gov (United States)

    dalaei, m.; kerr, a. d.

    The natural vibrations of clamped rectangular orthotropic plates are analyzed using the extended Kantorovich method. The developed iterative scheme converges very rapidly to the final result. The obtained natural frequencies are evaluated for a square plate made of Kevlar 49 Epoxy and the obtained results are compared with those published by Kanazawa and Kawai, and by Leissa. The agreement was found to be very close. As there are no exact analytical solutions for clamped rectangular plates, the generated closed form expression for the natural modes, and the corresponding natural frequencies, are very suitable for use in engineering analyses.

  16. Concept and development of an orthotropic FE model of the proximal femur.

    Science.gov (United States)

    Wirtz, Dieter Christian; Pandorf, Thomas; Portheine, Frank; Radermacher, Klaus; Schiffers, Norbert; Prescher, Andreas; Weichert, Dieter; Niethard, Fritz Uwe

    2003-02-01

    In contrast to many isotropic finite-element (FE) models of the femur in literature, it was the object of our study to develop an orthotropic FE "model femur" to realistically simulate three-dimensional bone remodelling. The three-dimensional geometry of the proximal femur was reconstructed by CT scans of a pair of cadaveric femurs at equal distances of 2mm. These three-dimensional CT models were implemented into an FE simulation tool. Well-known "density-determined" bony material properties (Young's modulus; Poisson's ratio; ultimate strength in pressure, tension and torsion; shear modulus) were assigned to each FE of the same "CT-density-characterized" volumetric group. In order to fix the principal directions of stiffness in FE areas with the same "density characterization", the cadaveric femurs were cut in 2mm slices in frontal (left femur) and sagittal plane (right femur). Each femoral slice was scanned into a computer-based image processing system. On these images, the principal directions of stiffness of cancellous and cortical bone were determined manually using the orientation of the trabecular structures and the Haversian system. Finally, these geometric data were matched with the "CT-density characterized" three-dimensional femur model. In addition, the time and density-dependent adaptive behaviour of bone remodelling was taken into account by implementation of Carter's criterion. In the constructed "model femur", each FE is characterized by the principal directions of the stiffness and the "CT-density-determined" material properties of cortical and cancellous bone. Thus, on the basis of anatomic data a three-dimensional FE simulation reference model of the proximal femur was realized considering orthotropic conditions of bone behaviour. With the orthotropic "model femur", the fundamental basis has been formed to realize realistic simulations of the dynamical processes of bone remodelling under different loading conditions or operative procedures

  17. Frequency chirpings in Alfven continuum

    Science.gov (United States)

    Wang, Ge; Berk, Herb; Breizman, Boris; Zheng, Linjin

    2017-10-01

    We have used a self-consistent mapping technique to describe both the nonlinear wave-energetic particle resonant interaction and its spatial mode structure that depends upon the resonant energetic particle pressure. At the threshold for the onset of the energetic particle mode (EPM), strong chirping emerges in the lower continuum close to the TAE gap and then, driven by strong continuum damping, chirps rapidly to lower frequencies in the Alfven continuum. An adiabatic theory was developed that accurately replicated the results from the simulation where the nonlinearity was only due to the EPM resonant particles. The results show that the EPM-trapped particles have their action conserved during the time of rapid chirping. This adiabaticity enabled wave trapped particles to be confined within their separatrix, and produce even larger resonant structures, that can produce a large amplitude mode far from linearly predicted frequencies. In the present work we describe the effect of additional MHD nonlinearity to this calculation. We studied how the zonal flow component and its nonlinear feedback to the fundamental frequency and found that the MHD nonlinearity doesn't significantly alter the frequency chirping response that is predicted by the calculation that neglects the MHD nonlinearity.

  18. Orthotropic Piezoelectricity in 2D Nanocellulose.

    Science.gov (United States)

    García, Y; Ruiz-Blanco, Yasser B; Marrero-Ponce, Yovani; Sotomayor-Torres, C M

    2016-10-06

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V -1 , ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  19. Orthotropic Piezoelectricity in 2D Nanocellulose

    Science.gov (United States)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V-1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  20. Effect of Rotation in an Orthotropic Elastic Slab

    Directory of Open Access Journals (Sweden)

    Santra S.

    2017-02-01

    Full Text Available The fundamental equations of the two dimensional generalized thermoelasticity (L-S model with one relaxation time parameter in orthotropic elastic slab has been considered under effect of rotation. The normal mode analysis is used to the basic equations of motion and heat conduction equation. Finally, the resulting equations are written in the form of a vector-matrix differential equation which is then solved by the eigenvalue approach. The field variables in the space time domain are obtained numerically. The results corresponding to the cases of conventional thermoelasticity CTE, extended thermoelasticity (ETE and temperature rate dependent thermoelasticity (TRDTE are compared by means of graphs.

  1. Modelling and fatigue life assessment of orthotropic bridge deck details using FEM

    Czech Academy of Sciences Publication Activity Database

    Aygül, M.; AL-Emrani, M.; Urushadze, Shota

    2012-01-01

    Roč. 40, July (2012), s. 129-142 ISSN 0142-1123 R&D Projects: GA MŠk(CZ) 7E08098 Grant - others:evropská komise(XE) RFSR-CT-2008-00033 (BRIFAG) Institutional support: RVO:68378297 Keywords : orthotropic bridge deck * open ribs * structural hot spot stress * effective notch stress Subject RIV: JM - Building Engineering Impact factor: 1.976, year: 2012

  2. Effect of a growth hormone treatment on bone orthotropic elasticity in dwarf rats

    Science.gov (United States)

    Kohles, S. S.; Martinez, D. A.; Bowers, J. R.; Vailas, A. C.; Vanderby, R. Jr

    1997-01-01

    A refinement of the current ultrasonic elasticity technique was used to measure the orthotropic elastic properties of rat cortical bone as well as to quantify changes in elastic properties, density, and porosity of the dwarf rat cortex after a treatment with recombinant human growth hormone (rhGH). The ultrasonic elasticity technique was refined via optimized signal management of high-frequency wave propagation through cubic cortical specimens. Twenty dwarf rats (37 days old) were randomly assigned to two groups (10 rats each). The dwarf rat model (5-10% of normal GH) was given subcutaneous injections of either rhGH or saline over a 14-day treatment period. Density was measured using Archimedes technique. Porosity and other microstructural characteristics were also explored via scanning electron microscopy and image analysis. Statistical tests verified significant decreases in cortical orthotropic Young's (-26.7%) and shear (-16.7%) moduli and density (-2.42%) concomitant with an increase in porosity (+125%) after rhGH treatments to the dwarf model (p bone properties at this time interval. Structural implications of these changes throughout physiological loading regimens should be explored.

  3. Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption

    Science.gov (United States)

    Ma, Qiancheng

    2014-01-01

    The water-vapor continuum absorption plays an important role in the radiative balance in the Earth's atmosphere. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H2O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: far-wings of allowed transition lines, water dimers, and collision-induced absorption. The first mechanism proposed was the accumulation of absorptions from the far-wings of the strong allowed transition lines. Later, absorption by water dimers was proposed, and this mechanism provides a qualitative explanation for the continuum characters mentioned above. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the continuum absorption.

  4. Study of the stress distribution around an orthotropic bi-material notch tip

    Czech Academy of Sciences Publication Activity Database

    Klusák, Jan; Profant, T.; Kotoul, M.

    417-418, - (2010), s. 385-388 ISSN 1013-9826. [International Conference on Fracture and Damage Mechanics /8./. Malta, 08.09.2009-10.09.2009] R&D Projects: GA ČR GA101/08/0994; GA AV ČR 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : Generalized fracture mechanics * Singular stress distribution * Orthotropic bimaterial notch Subject RIV: JL - Materials Fatigue, Friction Mechanics www.scientific.net

  5. Experimental Investigation of Membrane Materials used in Multilayer Surfacing Systems for Orthotropic Steel Deck Bridges

    NARCIS (Netherlands)

    Tzimiris, G.

    2017-01-01

    In the Netherlands asphaltic surfacings on orthotropic steel deck bridges (OSDB) mostly consist of two structural layers. The upper layer consists of what is known as very open porous asphalt (ZOAB) for noise reduction. For the lower layer Guss Asphalt (GA) is used. Earlier investigations have shown

  6. The Influence of Material Properties on the Behaviour of Rayleigh Edge Waves in Thin Orthotropic Media

    Czech Academy of Sciences Publication Activity Database

    Červ, Jan

    2008-01-01

    Roč. 2, č. 5 (2008), s. 762-772 ISSN 1970-8734 R&D Projects: GA AV ČR(CZ) IAA200760611 Institutional research plan: CEZ:AV0Z20760514 Keywords : rayleigh edge waves * elastic orthotropic material * plane state of stress Subject RIV: BI - Acoustics

  7. Optimization of orthotropic distributed-mode loudspeaker using attached masses and multi-exciters.

    Science.gov (United States)

    Lu, Guochao; Shen, Yong; Liu, Ziyun

    2012-02-01

    Based on the orthotropic model of the plate, the method to optimize the sound response of the distributed-mode loudspeaker (DML) using the attached masses and the multi-exciters has been investigated. The attached masses method will rebuild the modes distribution of the plate, based on which multi-exciter method will smooth the sound response. The results indicate that the method can be used to optimize the sound response of the DML. © 2012 Acoustical Society of America

  8. Energy-Based Yield Criteria for Orthotropic Materials, Exhibiting Strength-Differential Effect. Specification for Sheets under Plane Stress State

    Directory of Open Access Journals (Sweden)

    Szeptyński P.

    2017-06-01

    Full Text Available A general proposition of an energy-based limit condition for anisotropic materials exhibiting strength-differential effect (SDE based on spectral decomposition of elasticity tensors and the use of scaling pressure-dependent functions is specified for the case of orthotropic materials. A detailed algorithm (based on classical solutions of cubic equations for the determination of elastic eigenstates and eigenvalues of the orthotropic stiffness tensor is presented. A yield condition is formulated for both two-dimensional and three-dimensional cases. Explicit formulas based on simple strength tests are derived for parameters of criterion in the plane case. The application of both criteria for the description of yielding and plastic deformation of metal sheets is discussed in detail. The plane case criterion is verified with experimental results from the literature.

  9. Strain Rate Dependant Material Model for Orthotropic Metals

    International Nuclear Information System (INIS)

    Vignjevic, Rade

    2016-01-01

    In manufacturing processes anisotropic metals are often exposed to the loading with high strain rates in the range from 10"2 s"-"1 to 10"6 s"-"1 (e.g. stamping, cold spraying and explosive forming). These types of loading often involve generation and propagation of shock waves within the material. The material behaviour under such a complex loading needs to be accurately modelled, in order to optimise the manufacturing process and achieve appropriate properties of the manufactured component. The presented research is related to development and validation of a thermodynamically consistent physically based constitutive model for metals under high rate loading. The model is capable of modelling damage, failure and formation and propagation of shock waves in anisotropic metals. The model has two main parts: the strength part which defines the material response to shear deformation and an equation of state (EOS) which defines the material response to isotropic volumetric deformation [1]. The constitutive model was implemented into the transient nonlinear finite element code DYNA3D [2] and our in house SPH code. Limited model validation was performed by simulating a number of high velocity material characterisation and validation impact tests. The new damage model was developed in the framework of configurational continuum mechanics and irreversible thermodynamics with internal state variables. The use of the multiplicative decomposition of deformation gradient makes the model applicable to arbitrary plastic and damage deformations. To account for the physical mechanisms of failure, the concept of thermally activated damage initially proposed by Tuller and Bucher [3], Klepaczko [4] was adopted as the basis for the new damage evolution model. This makes the proposed damage/failure model compatible with the Mechanical Threshold Strength (MTS) model Follansbee and Kocks [5], 1988; Chen and Gray [6] which was used to control evolution of flow stress during plastic

  10. Forced Vibrations of a Two-Layer Orthotropic Shell with an Incomplete Contact Between Layers

    Science.gov (United States)

    Ghulghazaryan, L. G.; Khachatryan, L. V.

    2018-01-01

    Forced vibrations of a two-layer orthotropic shell, with incomplete contact conditions between layers, when the upper face of the shell is free and the lower one is subjected to a dynamic action are considered. By an asymptotic method, the solution of the corresponding dynamic equations and correlations of a 3D problem of elasticity theory is obtained. The amplitudes of forced vibrations are determined, and resonance conditions are established.

  11. Stoneley waves in a non-homogeneous orthotropic granular medium under the influence of gravity

    Directory of Open Access Journals (Sweden)

    S. M. Ahmed

    2005-01-01

    Full Text Available The aim of this paper is to investigate the Stoneley waves in a non-homogeneous orthotropic granular medium under the influence of a gravity field. The frequency equation obtained, in the form of a sixth-order determinantal expression, is in agreement with the corresponding result when both media are elastic. The frequency equation when the gravity field is neglected has been deduced as a particular case.

  12. Continuum model for masonry: Parameter estimation and validation

    NARCIS (Netherlands)

    Lourenço, P.B.; Rots, J.G.; Blaauwendraad, J.

    1998-01-01

    A novel yield criterion that includes different strengths along each material axis is presented. The criterion includes two different fracture energies in tension and two different fracture energies in compression. The ability of the model to represent the inelastic behavior of orthotropic materials

  13. Continuum Mechanics

    CERN Document Server

    Romano, Antonio

    2010-01-01

    This book offers a broad overview of the potential of continuum mechanics to describe a wide range of macroscopic phenomena in real-world problems. Building on the fundamentals presented in the authors' previous book, Continuum Mechanics using Mathematica(R), this new work explores interesting models of continuum mechanics, with an emphasis on exploring the flexibility of their applications in a wide variety of fields.Specific topics, which have been chosen to show the power of continuum mechanics to characterize the experimental behavior of real phenomena, include: * various aspects of nonlin

  14. Investigation of the continuum radiation from a high pressure argon arc

    International Nuclear Information System (INIS)

    Glasser, J.; Chapelle, J.

    1975-01-01

    At the high electronic densities existing in high temperature strongly correlated plasmas (with number of electrons in the Debye sphere Nd<<1) it is sometimes difficult to find lines for which Stark broadening allows determination of electronic density. Since the broadening effect is rather strong, the lines overlap or could not be easily extracted from the intense continuous background. The continuum emission in the UV, visible and near infra-red regions, principally due to the radiative recombination, could thus be widely used for the diagnostics of such plasmas. So far a limited number of data on the continuum emission of Argon plasma is available. At the same time certain discrepancies between theoretical predictions and experiments have also been found. The aim of this work is to obtain more elaborated data on the Argon continuum emission at high pressure, where the differences were found to be the largest. (Auth.)

  15. An energetic criterion for a micro-crack of finite length initiated in orthotropic bi-material notches

    Czech Academy of Sciences Publication Activity Database

    Profant, T.; Klusák, Jan; Ševeček, O.; Hrstka, M.; Kotoul, M.

    2013-01-01

    Roč. 110, SEP (2013), s. 396-409 ISSN 0013-7944 R&D Projects: GA ČR(CZ) GAP108/10/2049; GA ČR(CZ) GA101/09/1821 Institutional support: RVO:68081723 Keywords : crack initiation * bi-material notch * orthotropic bi-material notch * singular stress concentrator Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.662, year: 2013

  16. Far-Field Power Transmissions in Orthotropic Plates: A New Approach

    Directory of Open Access Journals (Sweden)

    Nirmal K. Mandal

    2008-01-01

    Full Text Available The structural intensity (SI technique is an essential tool for locating and ranking vibration sources and sinks on structures. It can quantify vibration fields by plotting a vector map of energy transmission on the structures. In this paper, a different strategy, changing coordinate systems of plate equations, is used to develop an intensity equation from shear force components in both x and y directions. The formulation is carried out in the frequency domain considering flexural waves. Orthotropic plate theory, far-field conditions, Fourier transform, and finite difference approximation are considered. The same intensity definition is obtained using this different strategy. A dual-channel FFT analyser is essential for data acquisition to get an intensity vector in a particular direction for far-field conditions.

  17. Transient thermal stresses in an orthotropic rectangular plate with convective heat transfer at upper and lower surfaces

    International Nuclear Information System (INIS)

    Sugano, Yoshihiro; Nakanishi, Takanori; Ito, Masahiko; Saito, Koichi.

    1982-01-01

    Recently, anisotropic materials have been used widely for reactor core elements and fast flying objects, therefore, the problem of thermal stress in anisotropic bodies has been studied actively. In this study, the unsteady plane thermal stress in an orthotropic rectangular thin plate heated by the temperature of ambient medium was analyzed, taking the heat transfer on both surfaces into account. The influence that the anisotropy of material constants and the heat transfer on both surfaces exert on the temperature and thermal stress of the plate was examined. Moreover, in order to investigate into the effect of the aspect ratio of the plate on the temperature and thermal stress, the unsteady distributions of temperature and thermal stress in an orthotropic semi-infinite band, of which the end surfaces are heated by ambient medium, were analyzed. The numerical calculation was carried out, and the results are shown. Before, it was difficult to satisfy the boundary condition related to shearing stress, accordingly, the analysis has not been performed, but in this study, it was shown that the analysis is possible. (Kako, I.)

  18. Guided waves dispersion equations for orthotropic multilayered pipes solved using standard finite elements code.

    Science.gov (United States)

    Predoi, Mihai Valentin

    2014-09-01

    The dispersion curves for hollow multilayered cylinders are prerequisites in any practical guided waves application on such structures. The equations for homogeneous isotropic materials have been established more than 120 years ago. The difficulties in finding numerical solutions to analytic expressions remain considerable, especially if the materials are orthotropic visco-elastic as in the composites used for pipes in the last decades. Among other numerical techniques, the semi-analytical finite elements method has proven its capability of solving this problem. Two possibilities exist to model a finite elements eigenvalue problem: a two-dimensional cross-section model of the pipe or a radial segment model, intersecting the layers between the inner and the outer radius of the pipe. The last possibility is here adopted and distinct differential problems are deduced for longitudinal L(0,n), torsional T(0,n) and flexural F(m,n) modes. Eigenvalue problems are deduced for the three modes classes, offering explicit forms of each coefficient for the matrices used in an available general purpose finite elements code. Comparisons with existing solutions for pipes filled with non-linear viscoelastic fluid or visco-elastic coatings as well as for a fully orthotropic hollow cylinder are all proving the reliability and ease of use of this method. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A constitutive model of soft tissue: From nanoscale collagen to tissue continuum

    KAUST Repository

    Tang, Huang

    2009-04-08

    Soft collagenous tissue features many hierarchies of structure, starting from tropocollagen molecules that form fibrils, and proceeding to a bundle of fibrils that form fibers. Here we report the development of an atomistically informed continuum model of collagenous tissue. Results from full atomistic and molecular modeling are linked with a continuum theory of a fiber-reinforced composite, handshaking the fibril scale to the fiber and continuum scale in a hierarchical multi-scale simulation approach. Our model enables us to study the continuum-level response of the tissue as a function of cross-link density, making a link between nanoscale collagen features and material properties at larger tissue scales. The results illustrate a strong dependence of the continuum response as a function of nanoscopic structural features, providing evidence for the notion that the molecular basis for protein materials is important in defining their larger-scale mechanical properties. © 2009 Biomedical Engineering Society.

  20. Moving Griffith crack in an orthotropic strip with punches at boundary faces

    Directory of Open Access Journals (Sweden)

    S. Mukherjee

    2005-01-01

    Full Text Available Integral transform technique is employed to solve the elastodynamic problem of steady-state propagation of a Griffith crack centrally situated along the midplane of orthotropic strip of finite thickness 2h and subjected to point loading with centrally situated moving punches under constant pressure along the boundaries of the layer. The problem is reduced to the solution of a pair of simultaneous singular integral equations with Cauchy-type singularities which have finally been solved through the finite Hilbert transform technique. For large h, analytical expression for the stress intensity factor at the crack tip is obtained. Graphical plots of the numerical results are also presented.

  1. A continuum-based structural modeling approach for cellulose nanocrystals (CNCs)

    Science.gov (United States)

    Shishehbor, Mehdi; Dri, Fernando L.; Moon, Robert J.; Zavattieri, Pablo D.

    2018-02-01

    We present a continuum-based structural model to study the mechanical behavior of cellulose nanocrystals (CNCs), and analyze the effect of bonded and non-bonded interactions on the mechanical properties under various loading conditions. In particular, this model assumes the uncoupling between the bonded and non-bonded interactions and their behavior is obtained from atomistic simulations. Our results indicates that the major contribution to the tensile and bending stiffness is mainly due to the cellulose chain stiffness, and the shear behavior is mainly governed by Van der Waals (VdW) forces. In addition, we report a negligible torsional stiffness, which may explain the CNC tendency to easily twist under very small or nonexistent torques. In addition, the sensitivity of geometrical imperfection on the mechanical properties using an analytical model of the CNC structure was investigated. Our results indicate that the presence of imperfections have a small influence on the majority of the elastic properties. Finally, it is shown that a simple homogeneous and orthotropic representation of a CNC under bending underestimates the contribution of non-bonded interaction leading up to 60% error in the calculation of the bending stiffness of CNCs. On the other hand, the proposed model can lead to more accurate predictions of the elastic behavior of CNCs. This is the first step toward the development of a more efficient model that can be used to model the inelastic behavior of single and multiple CNCs.

  2. Light radiation pressure upon a wrinkled membrane – parametrization of an optically orthotropic model

    Science.gov (United States)

    Nerovny, N. A.; Zimin, V. N.

    2018-04-01

    In this paper, the problem of representing the light pressure force upon the surface of a thin wrinkled film is discussed. The common source of wrinkles is the shear deformation of the membrane sample. The optical model of such a membrane is assumed to be optically orthotropic and an analytic equation for infinitesimal light pressure force is written. A linear regression model in the case of wrinkle geometry, where a surface element can have different optical parameters, is constructed and the Bayesian approach is used to calculate the parameters of this model.

  3. Development of test method for assessing the bonding characteristics of membrane layers in wearing course laid on orthotropic steel bridge decks

    NARCIS (Netherlands)

    Liu, X.; Scarpas, A.; Li, J.; Tzimiris, G.; Hofman, R.; Voskuilen, J.

    2013-01-01

    In order to adequately characterize the adhesive bonding strength of the various membranes with surrounding materials on orthotropic steel decks and collect the necessary parameters for FE modeling, details of the Membrane Adhesion Test (MAT) are introduced. Analytical constitutive relations of the

  4. Alfven continuum and high-frequency eigenmodes in optimized stellarators

    International Nuclear Information System (INIS)

    Kolesnichenko, Ya.I.; Lutsenko, V.V.; Wobig, H.; Yakovenko, Yu.V.; Fesenyuk, O.P.

    2001-01-01

    An equation of shear Alfven eigenmodes (AE) in optimized stellarators of Wendelstein line (Helias configurations) is derived. The metric tensor coefficients, which are contained in this equation, are calculated analytically. Two numerical codes are developed: the first one, COBRA (COntinuum BRanches of Alfven waves), is intended for the investigation of the structure of Alfven continuum; the second, BOA (Branches Of Alfven modes), solves the eigenvalue problem. The family of possible gaps in Alfven continuum of a Helias configuration is obtained. It is predicted that there exist gaps which arise due to or are strongly affected by the variation of the shape of the plasma cross section along the large azimuth of the torus. In such gaps, discrete eigenmodes, namely, helicity-induced eigenmodes (HAE 21 ) and mirror-induced eigenmodes (MAE) are found. It is shown that plasma inhomogeneity may suppress the AEs with a wide region of localization

  5. Applications of the fundamental solution for a thermal shock on a finite orthotropic cylindrical thin shell

    International Nuclear Information System (INIS)

    Woo, H.K.; Huang, C.L.D.

    1979-01-01

    The authors investigate the temperature variations in a thin cylindrical shell of graphite materials with finite length, subjected to an instantaneous thermal shock. The solutions for the line source and the area source of thermal shock are obtained. Quasi-linear theory for heat transfer is assumed. Grades ATJ and ZTA graphite are used in the numerical examples. As is expected, the orthotropically thermal properties significantly affect the temperature variations in the shell due to the thermal shocks. (Auth.)

  6. A Generalized Orthotropic Elasto-Plastic Material Model for Impact Analysis

    Science.gov (United States)

    Hoffarth, Canio

    Composite materials are now beginning to provide uses hitherto reserved for metals in structural systems such as airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. These structural systems are often subjected to impact loads and there is a pressing need for accurate prediction of deformation, damage and failure. There are numerous material models that have been developed to analyze the dynamic impact response of polymer matrix composites. However, there are key features that are missing in those models that prevent them from providing accurate predictive capabilities. In this dissertation, a general purpose orthotropic elasto-plastic computational constitutive material model has been developed to predict the response of composites subjected to high velocity impacts. The constitutive model is divided into three components - deformation model, damage model and failure model, with failure to be added at a later date. The deformation model generalizes the Tsai-Wu failure criteria and extends it using a strain-hardening-based orthotropic yield function with a non-associative flow rule. A strain equivalent formulation is utilized in the damage model that permits plastic and damage calculations to be uncoupled and capture the nonlinear unloading and local softening of the stress-strain response. A diagonal damage tensor is defined to account for the directionally dependent variation of damage. However, in composites it has been found that loading in one direction can lead to damage in multiple coordinate directions. To account for this phenomena, the terms in the damage matrix are semi-coupled such that the damage in a particular coordinate direction is a function of the stresses and plastic strains in all of the coordinate directions. The overall framework is driven by experimental tabulated temperature and rate-dependent stress-strain data as well as data that characterizes the damage matrix and failure

  7. On the Influence of Clearance in Orthotropic Disc-Pin Contacts

    DEFF Research Database (Denmark)

    Pedersen, Pauli

    2007-01-01

    , an orthotropic disc-pin contact problem. The most simple solutions are named Hertz solutions (from 1882), and we use one of these solutions for comparison with finite element results. As a function of the total contact force we find (inversely) the size of the contact area, the distribution of the contact......Solutions to contact problems are important in mechanical as well as in civil engineering, and even for the most simple problems there is still a need for research results. In the present paper we use an alternative super element procedure to solve directly, without iteration and incrementation...... pressure, and the contact compliance. In models of finite size the compliance depends on the flexibility of the total model, including the boundary condition of the model, and therefore disagreement with the locally based analytical models is expected. The examples of an earlier paper were restricted...

  8. The Charm and Beauty of Strong Interactions

    Science.gov (United States)

    El-Bennich, Bruno

    2018-01-01

    We briefly review common features and overlapping issues in hadron and flavor physics focussing on continuum QCD approaches to heavy bound states, their mass spectrum and weak decay constants in different strong interaction models.

  9. Near-infrared water vapour self-continuum at close to room temperature

    International Nuclear Information System (INIS)

    Ptashnik, I.V.; Petrova, T.M.; Ponomarev, Yu.N.; Shine, K.P.; Solodov, A.A.; Solodov, A.M.

    2013-01-01

    The gaseous absorption of solar radiation within near-infrared atmospheric windows in the Earth's atmosphere is dominated by the water vapour continuum. Recent measurements by Baranov et al. (2011) [17] in 2500 cm −1 (4 μm) window and by Ptashnik et al. (2011) [18] in a few near-infrared windows revealed that the self-continuum absorption is typically an order of magnitude stronger than given by the MT C KD continuum model prior to version 2.5. Most of these measurements, however, were made at elevated temperatures, which makes their application to atmospheric conditions difficult. Here we report new laboratory measurements of the self-continuum absorption at 289 and 318 K in the near-infrared spectral region 1300–8000 cm −1 , using a multipass 30 m base cell with total optical path 612 m. Our results confirm the main conclusions of the previous measurements both within bands and in windows. Of particular note is that we present what we believe to be the first near-room temperature measurement using Fourier Transform Spectrometry of the self-continuum in the 6200 cm −1 (1.6 μm) window, which provides tentative evidence that, at such temperatures, the water vapour continuum absorption may be as strong as it is in 2.1 μm and 4 μm windows and up to 2 orders of magnitude stronger than the MT C KD-2.5 continuum. We note that alternative methods of measuring the continuum in this window have yielded widely differing assessment of its strength, which emphasises the need for further measurements. -- Highlights: ► New lab measurements of the near-infrared water vapour self-continuum absorption. ► First room-temperature data on the self-continuum in the 1.6 μm window. ► In the 1.6 μm window the new data exceed MT C KD-2.5 model by 2 orders of magnitude

  10. The Lyman Continuum Escape Fraction of Emission Line-selected z ∼ 2.5 Galaxies Is Less Than 15%

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, Michael J.; Hayes, Matthew [Department of Astronomy, AlbaNova University Centre, Stockholm University, SE-10691 Stockholm (Sweden); Scarlata, Claudia; Mehta, Vihang [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States); Henry, Alaina; Hathi, Nimish; Koekemoer, Anton M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Cohen, Seth; Windhorst, Rogier [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281 (United States); Teplitz, Harry I. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Haardt, Francesco [DiSAT, Università dellInsubria, via Valleggio 11, I-22100 Como (Italy); Siana, Brian [Department of Physics, University of California, Riverside, CA 92521 (United States)

    2017-06-01

    Recent work suggests that strong emission line, star-forming galaxies (SFGs) may be significant Lyman continuum leakers. We combine archival Hubble Space Telescope broadband ultraviolet and optical imaging (F275W and F606W, respectively) with emission line catalogs derived from WFC3 IR G141 grism spectroscopy to search for escaping Lyman continuum (LyC) emission from homogeneously selected z ∼ 2.5 SFGs. We detect no escaping Lyman continuum from SFGs selected on [O ii] nebular emission ( N = 208) and, within a narrow redshift range, on [O iii]/[O ii]. We measure 1 σ upper limits to the LyC escape fraction relative to the non-ionizing UV continuum from [O ii] emitters, f {sub esc} ≲ 5.6%, and strong [O iii]/[O ii] > 5 ELGs, f {sub esc} ≲ 14.0%. Our observations are not deep enough to detect f {sub esc} ∼ 10% typical of low-redshift Lyman continuum emitters. However, we find that this population represents a small fraction of the star-forming galaxy population at z ∼ 2. Thus, unless the number of extreme emission line galaxies grows substantially to z ≳ 6, such galaxies may be insufficient for reionization. Deeper survey data in the rest-frame ionizing UV will be necessary to determine whether strong line ratios could be useful for pre-selecting LyC leakers at high redshift.

  11. The Lyman Continuum Escape Fraction of Emission Line-selected z ∼ 2.5 Galaxies Is Less Than 15%

    International Nuclear Information System (INIS)

    Rutkowski, Michael J.; Hayes, Matthew; Scarlata, Claudia; Mehta, Vihang; Henry, Alaina; Hathi, Nimish; Koekemoer, Anton M.; Cohen, Seth; Windhorst, Rogier; Teplitz, Harry I.; Haardt, Francesco; Siana, Brian

    2017-01-01

    Recent work suggests that strong emission line, star-forming galaxies (SFGs) may be significant Lyman continuum leakers. We combine archival Hubble Space Telescope broadband ultraviolet and optical imaging (F275W and F606W, respectively) with emission line catalogs derived from WFC3 IR G141 grism spectroscopy to search for escaping Lyman continuum (LyC) emission from homogeneously selected z ∼ 2.5 SFGs. We detect no escaping Lyman continuum from SFGs selected on [O ii] nebular emission ( N = 208) and, within a narrow redshift range, on [O iii]/[O ii]. We measure 1 σ upper limits to the LyC escape fraction relative to the non-ionizing UV continuum from [O ii] emitters, f _e_s_c ≲ 5.6%, and strong [O iii]/[O ii] > 5 ELGs, f _e_s_c ≲ 14.0%. Our observations are not deep enough to detect f _e_s_c ∼ 10% typical of low-redshift Lyman continuum emitters. However, we find that this population represents a small fraction of the star-forming galaxy population at z ∼ 2. Thus, unless the number of extreme emission line galaxies grows substantially to z ≳ 6, such galaxies may be insufficient for reionization. Deeper survey data in the rest-frame ionizing UV will be necessary to determine whether strong line ratios could be useful for pre-selecting LyC leakers at high redshift.

  12. Analysis of B-WIM Signals acquired in Millau Orthotropic Viaduct Using Statistical Classification

    OpenAIRE

    IENG, Sio Song; ZERMANE, Abderraouf; SCHMIDT, Franziska; JACOB, Bernard

    2012-01-01

    Les systèmes B-WIM classiques sont généralement fondés sur les travaux de Moses utilisant la notion de la ligne d'influence. Ces systèmes ont été testés avec succès sur les ponts en béton à travers le monde. Ce papier s'intéresse aux travaux de recherche concernant l'utilisation d'un système B-WIM sur le viaduc de Millau qui est un pont à haubans avec une à dalle orthotrope. Nous montrons d'abord qu'un système de B-WIM ne peut pas être utilisé directement sur ce type de pont sans adaptation d...

  13. A morphing strategy to couple non-local to local continuum mechanics

    KAUST Repository

    Lubineau, Gilles

    2012-06-01

    A method for coupling non-local continuum models with long-range central forces to local continuum models is proposed. First, a single unified model that encompasses both local and non-local continuum representations is introduced. This model can be purely non-local, purely local or a hybrid depending on the constitutive parameters. Then, the coupling between the non-local and local descriptions is performed through a transition (morphing) affecting only the constitutive parameters. An important feature is the definition of the morphing functions, which relies on energy equivalence. This approach is useful in large-scale modeling of materials that exhibit strong non-local effects. The computational cost can be reduced while maintaining a reasonable level of accuracy. Efficiency, robustness and basic properties of the approach are discussed using one- and two-dimensional examples. © 2012 Elsevier Ltd.

  14. A morphing strategy to couple non-local to local continuum mechanics

    KAUST Repository

    Lubineau, Gilles; Azdoud, Yan; Han, Fei; Rey, Christian C.; Askari, Abe H.

    2012-01-01

    A method for coupling non-local continuum models with long-range central forces to local continuum models is proposed. First, a single unified model that encompasses both local and non-local continuum representations is introduced. This model can be purely non-local, purely local or a hybrid depending on the constitutive parameters. Then, the coupling between the non-local and local descriptions is performed through a transition (morphing) affecting only the constitutive parameters. An important feature is the definition of the morphing functions, which relies on energy equivalence. This approach is useful in large-scale modeling of materials that exhibit strong non-local effects. The computational cost can be reduced while maintaining a reasonable level of accuracy. Efficiency, robustness and basic properties of the approach are discussed using one- and two-dimensional examples. © 2012 Elsevier Ltd.

  15. The quantum and the continuum : Einstein's dichotomous legacies

    International Nuclear Information System (INIS)

    Majumdar, Parthasarathi

    2015-01-01

    This talk begins with a summary of some of Einstein's seminal contributions in the quantum domain, like Brownian motion and the Light Quantum Hypothesis, as well as on the spacetime continuum enshrined in the theories of special and general relativity. Following up on Einstein's rationale for postulating the Light Quantum Hypothesis, we attempt to point to a possible dichotomy in his thinking about these two legacies of his, which may have been noticed by him, but was not much discussed by him in the public domain. One may speculate that this may have had something to do with his well-known distaste for the probability interpretation of quantum mechanics as a fundamental interpretation. We argue that Einstein's general relativity theory itself contains the seeds of a dramatic modification of our ideas of the Einsteinian spacetime continuum, thus underlining the dichotomy even more strongly. We then survey one modern attempt to resolve the dichotomy, at least partly, by bringing into the spacetime continuum, aspects of quantum mechanics with its underlying statistical interpretation, an approach which Einstein may not have whole-heartedly endorsed, but which seems to work so far, with good prospects for the future. (author)

  16. Bound states in the continuum on periodic structures surrounded by strong resonances

    Science.gov (United States)

    Yuan, Lijun; Lu, Ya Yan

    2018-04-01

    Bound states in the continuum (BICs) are trapped or guided modes with their frequencies in the frequency intervals of the radiation modes. On periodic structures, a BIC is surrounded by a family of resonant modes with their quality factors approaching infinity. Typically the quality factors are proportional to 1 /|β - β*|2 , where β and β* are the Bloch wave vectors of the resonant modes and the BIC, respectively. But for some special BICs, the quality factors are proportional to 1 /|β - β*|4 . In this paper, a general condition is derived for such special BICs on two-dimensional periodic structures. As a numerical example, we use the general condition to calculate special BICs, which are antisymmetric standing waves, on a periodic array of circular cylinders, and show their dependence on parameters. The special BICs are important for practical applications, because they produce resonances with large quality factors for a very large range of β .

  17. Transport of optical excitations on dendrimers in the continuum approximation

    International Nuclear Information System (INIS)

    Vlaming, S.M.; Heijs, D.J.; Knoester, J.

    2005-01-01

    We study the incoherent transport of optical excitations created at the rim of a dendritic molecule to a trap occurring at the core. The corresponding discrete random walk is treated in a continuum approximation, resulting in a diffusion-like process which admits semi-analytical solutions. The thus obtained arrival time distribution for the excitation at the trap is compared with the one for the original, discrete problem. In the case of an inward bias or even a weak outward one, the agreement is very good and the continuum approximation provides a good alternative description of the energy transfer process, even for small dendrimers. In the case of a strong outward bias, the mean trapping time, which sets the time scale for the entire distribution, depends exponentially on the number of generations in both approaches, but with a different base. The failure of the continuum approximation for this case is explained from the peaked behavior of the excitation density near the rim

  18. Effect of elliptic or circular holes on the stress distribution in plates of wood or plywood considered as orthotropic materials

    Science.gov (United States)

    C. B. Smith

    1944-01-01

    This is a mathematical analysis of the stress distribution existing near a hole in a wood or plywood plate subjected to tension, as, for example, near holes in the tension flanges of wood box beams. It is assumed that the strains are small and remain within the proportional limit. In this analysis a large, rectangular, orthotropic plate with a small elliptic hole at...

  19. Passing waves from atomistic to continuum

    Science.gov (United States)

    Chen, Xiang; Diaz, Adrian; Xiong, Liming; McDowell, David L.; Chen, Youping

    2018-02-01

    Progress in the development of coupled atomistic-continuum methods for simulations of critical dynamic material behavior has been hampered by a spurious wave reflection problem at the atomistic-continuum interface. This problem is mainly caused by the difference in material descriptions between the atomistic and continuum models, which results in a mismatch in phonon dispersion relations. In this work, we introduce a new method based on atomistic dynamics of lattice coupled with a concurrent atomistic-continuum method to enable a full phonon representation in the continuum description. This permits the passage of short-wavelength, high-frequency phonon waves from the atomistic to continuum regions. The benchmark examples presented in this work demonstrate that the new scheme enables the passage of all allowable phonons through the atomistic-continuum interface; it also preserves the wave coherency and energy conservation after phonons transport across multiple atomistic-continuum interfaces. This work is the first step towards developing a concurrent atomistic-continuum simulation tool for non-equilibrium phonon-mediated thermal transport in materials with microstructural complexity.

  20. Continuum robot arms inspired by cephalopods

    Science.gov (United States)

    Walker, Ian D.; Dawson, Darren M.; Flash, Tamar; Grasso, Frank W.; Hanlon, Roger T.; Hochner, Binyamin; Kier, William M.; Pagano, Christopher C.; Rahn, Christopher D.; Zhang, Qiming M.

    2005-05-01

    In this paper, we describe our recent results in the development of a new class of soft, continuous backbone ("continuum") robot manipulators. Our work is strongly motivated by the dexterous appendages found in cephalopods, particularly the arms and suckers of octopus, and the arms and tentacles of squid. Our ongoing investigation of these animals reveals interesting and unexpected functional aspects of their structure and behavior. The arrangement and dynamic operation of muscles and connective tissue observed in the arms of a variety of octopus species motivate the underlying design approach for our soft manipulators. These artificial manipulators feature biomimetic actuators, including artificial muscles based on both electro-active polymers (EAP) and pneumatic (McKibben) muscles. They feature a "clean" continuous backbone design, redundant degrees of freedom, and exhibit significant compliance that provides novel operational capacities during environmental interaction and object manipulation. The unusual compliance and redundant degrees of freedom provide strong potential for application to delicate tasks in cluttered and/or unstructured environments. Our aim is to endow these compliant robotic mechanisms with the diverse and dexterous grasping behavior observed in octopuses. To this end, we are conducting fundamental research into the manipulation tactics, sensory biology, and neural control of octopuses. This work in turn leads to novel approaches to motion planning and operator interfaces for the robots. The paper describes the above efforts, along with the results of our development of a series of continuum tentacle-like robots, demonstrating the unique abilities of biologically-inspired design.

  1. Continuum mechanics of anisotropic materials

    CERN Document Server

    Cowin, Stephen C

    2013-01-01

    Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

  2. Continuum shell-model study of 16O and 40Ca

    International Nuclear Information System (INIS)

    Heil, V.; Stock, W.

    1976-06-01

    Continuum shell-model calculations of the E1 and E2 strengths in 16 O and 40 Ca are presented. A consistent microscopic description of both the giant resonances and isospin forbidden E1- transitions between bound states can be achieved through 1) a careful choice of the single-particle potential, 2) the use of a finite-range residual interaction (including the Coulomb particle-hole force), and 3) the removal of spurious states. The results obtained within the separation expansion approximation of Birkholz are in reasonable agreement with measured photonucleon angular distributions and formfactors for electroexcitation. The influence of the continuum on the isospin mixing in bound states is found to be very strong. (orig.) [de

  3. Coupling effects of resonant and discretized non-resonant continuum states in 4He+6Li scattering at 10 MeV/A

    International Nuclear Information System (INIS)

    Sinha, T.; Kanungo, R.; Samanta, C.; Ghosh, S.; Basu, P.; Rebel, H.

    1996-01-01

    Alpha- particle scattering from the resonant (3 + 1 ) and non-resonant continuum states of 6 Li is studied at incident energy 10 MeV/A. The α+d breakup continuum part within the excitation energy E ex = 1.475-2.475 MeV is discretized in two energy bins. Unlike the results at higher incident energies, here the coupled-channel calculations show significant breakup continuum coupling effects on the elastic and inelastic scattering. It is shown that even when the continuum-continuum coupling effects are strong, the experimental data of the ground state and the resonant as well as discretized non-resonant continuum states impose stringent constraint on the coupling strengths of the non-resonant continuum states. (orig.). With 2 figs., 1 tab

  4. A survey of infrared continuum versus line radiation from metal halide lamps

    International Nuclear Information System (INIS)

    Kato, M; Herd, M T; Lawler, J E

    2008-01-01

    Near-infrared radiation (near-IR) losses from the arcs of six commercial metal halide high intensity discharge (MH-HID) lamps with various power levels and with both Na/Sc and rare earth doses were surveyed in this paper. A radiometrically calibrated Fourier transform infrared spectrometer was used. Lamps with rare earth doses have appreciably better color rendering indices (CRIs) than lamps with Na/Sc doses. The ratios of near-IR continuum emission over near-IR line emission from these six lamps were compared. The near-IR continuum dominates near-IR losses from lamps with rare earth doses and the continuum is significant, but not dominant, from lamps with Na/Sc doses. There was no strong dependence of this ratio on input power or color temperature (T c ). Total near-IR losses were estimated using absolutely calibrated, horizontal irradiance measurements. Estimated total near-IR losses were correlated with CRI. The lamps with rare earth doses yield the best CRIs, but have appreciably higher near-IR losses due primarily to continuum processes. One of these rare earth MH-HID lamps was used in a more detailed study of the microscopic physics of the continuum mechanism (Herd M T and Lawler E 2007 J. Phys. D: Appl. Phys. 40 3386)

  5. Continuum robots and underactuated grasping

    Directory of Open Access Journals (Sweden)

    N. Giri

    2011-02-01

    Full Text Available We discuss the capabilities of continuum (continuous backbone robot structures in the performance of under-actuated grasping. Continuum robots offer the potential of robust grasps over a wide variety of object classes, due to their ability to adapt their shape to interact with the environment via non-local continuum contact conditions. Furthermore, this capability can be achieved with simple, low degree of freedom hardware. However, there are practical issues which currently limit the application of continuum robots to grasping. We discuss these issues and illustrate via an experimental continuum grasping case study.

    This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010, 19 August 2010, Montréal, Canada.

  6. Large magnetic coils-design accompanying calculation and optimization. Regarding orthotropic interlayers, temperature and elastic supports-derivation of a special finite element

    International Nuclear Information System (INIS)

    Stelzer, J.F.; Sievers, A.; Welzel, R.

    1976-10-01

    This paper deals with finite element calculations of large coils as they are used as main coils in Tokamaks. They consist of copper layers with glass fibre reinforced resin interlayers inbedded in a strong steel ring. In a first analysis model the several epoxy layers are condensed to only one the tickness of which is equal to the sum of the single sizes. This fictitious layer is assumed to lie in the middle of the copper and is treated as an orthotropic material. In a following changed model the epoxy layer is situated between the steel ring and the copper. In this location the epoxy was suspected to suffer from the highest shear stresses. Both models employ springy trusses as supporting features which simulate the real elastic behaviour of a sustaining vault. Special attentions are given a) to the shear stresses in the epoxy, b) to the hot and cold states of the coils, and c) to the forces transferred from the coils to the sustaining vault. An optimal structure design is carried out concerning the steel ring. (orig./GG) [de

  7. Non compact continuum limit of two coupled Potts models

    International Nuclear Information System (INIS)

    Vernier, Éric; Jacobsen, Jesper Lykke; Saleur, Hubert

    2014-01-01

    We study two Q-state Potts models coupled by the product of their energy operators, in the regime 2  3 (2) vertex model. It corresponds to a selfdual system of two antiferromagnetic Potts models, coupled ferromagnetically. We derive the Bethe ansatz equations and study them numerically for two arbitrary twist angles. The continuum limit is shown to involve two compact bosons and one non compact boson, with discrete states emerging from the continuum at appropriate twists. The non compact boson entails strong logarithmic corrections to the finite-size behaviour of the scaling levels, an understanding of which allows us to correct an earlier proposal for some of the critical exponents. In particular, we infer the full set of magnetic scaling dimensions (watermelon operators) of the Potts model. (paper)

  8. Analysis and Characterization of Damage Utilizing an Orthotropic Generalized Composite Material Model Suitable for Use in Impact Problems

    Science.gov (United States)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther

    2016-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive communities. In order to address a series of issues identified by the aerospace community as being desirable to include in a next generation composite impact model, an orthotropic, macroscopic constitutive model incorporating both plasticity and damage suitable for implementation within the commercial LS-DYNA computer code is being developed. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain hardening-based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used in which a load in one direction results in a stiffness reduction in multiple material coordinate directions. A detailed analysis is carried out to ensure that the strain equivalence assumption is appropriate for the derived plasticity and damage formulations that are employed in the current model. Procedures to develop the appropriate input curves for the damage model are presented and the process required to develop an appropriate characterization test matrix is discussed

  9. Using a quasi-heat-pulse method to determine heat and moisture transfer properties for porous orthotropic wood products or cellular solid materials

    Science.gov (United States)

    M. A. Dietenberger

    2006-01-01

    Understanding heat and moisture transfer in a wood specimen as used in the K-tester has led to an unconventional numerical solution arid intriguing protocol to deriving the transfer properties. Laplace transform solutions of Luikov’s differential equations are derived for one-dimensional heat and moisture transfer in porous hygroscopic orthotropic materials and for a...

  10. Verification and Validation of a Three-Dimensional Orthotropic Plasticity Constitutive Model Using a Unidirectional Composite

    Directory of Open Access Journals (Sweden)

    Canio Hoffarth

    2017-03-01

    Full Text Available A three-dimensional constitutive model has been developed for modeling orthotropic composites subject to impact loads. It has three distinct components—a deformation model involving elastic and plastic deformations; a damage model; and a failure model. The model is driven by tabular data that is generated either using laboratory tests or via virtual testing. A unidirectional composite—T800/F3900, commonly used in the aerospace industry, is used in the verification and validation tests. While the failure model is under development, these tests indicate that the implementation of the deformation and damage models in a commercial finite element program, LS-DYNA, is efficient, robust and accurate.

  11. Transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations

    International Nuclear Information System (INIS)

    Sugano, Y.

    1980-01-01

    The transient thermal stresses in an orthotropic finite rectangular plate due to arbitrary surface heat-generations on two edges are studied by means of the Airy stress function. The purposes of this paper are to present a method of determing the transient thermal stresses in an orthographic rectangular plate with four edges of distinct thermal boundary condition of the third kind which exactly satisfy the traction-free conditions of shear stress over all boundaries including four corners of the plate, and to consider the effects of the anisotropies of material properties and the convective heat transfer on the upper and lower surfaces on the thermal stress distribution. (orig.)

  12. Kinematics optimization and static analysis of a modular continuum robot used for minimally invasive surgery.

    Science.gov (United States)

    Qi, Fei; Ju, Feng; Bai, Dong Ming; Chen, Bai

    2018-02-01

    For the outstanding compliance and dexterity of continuum robot, it is increasingly used in minimally invasive surgery. The wide workspace, high dexterity and strong payload capacity are essential to the continuum robot. In this article, we investigate the workspace of a cable-driven continuum robot that we proposed. The influence of section number on the workspace is discussed when robot is operated in narrow environment. Meanwhile, the structural parameters of this continuum robot are optimized to achieve better kinematic performance. Moreover, an indicator based on the dexterous solid angle for evaluating the dexterity of robot is introduced and the distal end dexterity is compared for the three-section continuum robot with different range of variables. Results imply that the wider range of variables achieve the better dexterity. Finally, the static model of robot based on the principle of virtual work is derived to analyze the relationship between the bending shape deformation and the driven force. The simulations and experiments for plane and spatial motions are conducted to validate the feasibility of model, respectively. Results of this article can contribute to the real-time control and movement and can be a design reference for cable-driven continuum robot.

  13. Continuum mechanics

    CERN Document Server

    Spencer, A J M

    2004-01-01

    The mechanics of fluids and the mechanics of solids represent the two major areas of physics and applied mathematics that meet in continuum mechanics, a field that forms the foundation of civil and mechanical engineering. This unified approach to the teaching of fluid and solid mechanics focuses on the general mechanical principles that apply to all materials. Students who have familiarized themselves with the basic principles can go on to specialize in any of the different branches of continuum mechanics. This text opens with introductory chapters on matrix algebra, vectors and Cartesian ten

  14. Numerical Simulation of Transitional, Hypersonic Flows using a Hybrid Particle-Continuum Method

    Science.gov (United States)

    Verhoff, Ashley Marie

    Analysis of hypersonic flows requires consideration of multiscale phenomena due to the range of flight regimes encountered, from rarefied conditions in the upper atmosphere to fully continuum flow at low altitudes. At transitional Knudsen numbers there are likely to be localized regions of strong thermodynamic nonequilibrium effects that invalidate the continuum assumptions of the Navier-Stokes equations. Accurate simulation of these regions, which include shock waves, boundary and shear layers, and low-density wakes, requires a kinetic theory-based approach where no prior assumptions are made regarding the molecular distribution function. Because of the nature of these types of flows, there is much to be gained in terms of both numerical efficiency and physical accuracy by developing hybrid particle-continuum simulation approaches. The focus of the present research effort is the continued development of the Modular Particle-Continuum (MPC) method, where the Navier-Stokes equations are solved numerically using computational fluid dynamics (CFD) techniques in regions of the flow field where continuum assumptions are valid, and the direct simulation Monte Carlo (DSMC) method is used where strong thermodynamic nonequilibrium effects are present. Numerical solutions of transitional, hypersonic flows are thus obtained with increased physical accuracy relative to CFD alone, and improved numerical efficiency is achieved in comparison to DSMC alone because this more computationally expensive method is restricted to those regions of the flow field where it is necessary to maintain physical accuracy. In this dissertation, a comprehensive assessment of the physical accuracy of the MPC method is performed, leading to the implementation of a non-vacuum supersonic outflow boundary condition in particle domains, and more consistent initialization of DSMC simulator particles along hybrid interfaces. The relative errors between MPC and full DSMC results are greatly reduced as a

  15. Continuum limbed robots for locomotion

    Science.gov (United States)

    Mutlu, Alper

    This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.

  16. Haro 11: Where is the Lyman Continuum Source?

    Energy Technology Data Exchange (ETDEWEB)

    Keenan, Ryan P.; Oey, M. S. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Jaskot, Anne E. [Department of Astronomy, Smith College, Northampton, MA 01063 (United States); James, Bethan L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2017-10-10

    Identifying the mechanism by which high-energy Lyman continuum (LyC) photons escaped from early galaxies is one of the most pressing questions in cosmic evolution. Haro 11 is the best known local LyC-leaking galaxy, providing an important opportunity to test our understanding of LyC escape. The observed LyC emission in this galaxy presumably originates from one of the three bright, photoionizing knots known as A, B, and C. It is known that Knot C has strong Ly α emission, and Knot B hosts an unusually bright ultraluminous X-ray source, which may be a low-luminosity active galactic nucleus. To clarify the LyC source, we carry out ionization-parameter mapping (IPM) by obtaining narrow-band imaging from the Hubble Space Telescope WFC3 and ACS cameras to construct spatially resolved ratio maps of [O iii]/[O ii] emission from the galaxy. IPM traces the ionization structure of the interstellar medium and allows us to identify optically thin regions. To optimize the continuum subtraction, we introduce a new method for determining the best continuum scale factor derived from the mode of the continuum-subtracted, image flux distribution. We find no conclusive evidence of LyC escape from Knots B or C, but instead we identify a high-ionization region extending over at least 1 kpc from Knot A. This knot shows evidence of an extremely young age (≲1 Myr), perhaps containing very massive stars (>100 M {sub ⊙}). It is weak in Ly α , so if it is confirmed as the LyC source, our results imply that LyC emission may be independent of Ly α emission.

  17. On the direction of a crack initiated from an orthotropic bi-material notch composed of materials with non-uniform fracture mechanics properties

    Czech Academy of Sciences Publication Activity Database

    Profant, T.; Klusák, Jan; Ševeček, O.; Kotoul, M.

    525-526, č. 1 (2013), s. 545-548 ISSN 1013-9826. [Fracture and Damage Mechanics /11./. Xi'an, 18.09.2012-21.09.2012] R&D Projects: GA ČR GA101/09/1821; GA ČR GAP108/10/2049 Institutional support: RVO:68081723 Keywords : Orthotropic bi-material notch * generalized stress intensity factor * complex potentials Subject RIV: JL - Materials Fatigue, Friction Mechanics

  18. The Virtuality Continuum Revisited

    NARCIS (Netherlands)

    Nijholt, Antinus; Traum, D.; Zhai, Sh.; Kellogg, W.

    2005-01-01

    We survey the themes and the aims of a workshop devoted to the state-of-the-art virtuality continuum. In this continuum, ranging from fully virtual to real physical environments, allowing for mixed, augmented and desktop virtual reality, several perspectives can be taken. Originally, the emphasis

  19. Using Tabulated Experimental Data to Drive an Orthotropic Elasto-Plastic Three-Dimensional Model for Impact Analysis

    Science.gov (United States)

    Hoffarth, C.; Khaled, B.; Rajan, S. D.; Goldberg, R.; Carney, K.; DuBois, P.; Blankenhorn, Gunther

    2016-01-01

    An orthotropic elasto-plastic-damage three-dimensional model with tabulated input has been developed to analyze the impact response of composite materials. The theory has been implemented as MAT 213 into a tailored version of LS-DYNA being developed under a joint effort of the FAA and NASA and has the following features: (a) the theory addresses any composite architecture that can be experimentally characterized as an orthotropic material and includes rate and temperature sensitivities, (b) the formulation is applicable for solid as well as shell element implementations and utilizes input data in a tabulated form directly from processed experimental data, (c) deformation and damage mechanics are both accounted for within the material model, (d) failure criteria are established that are functions of strain and damage parameters, and mesh size dependence is included, and (e) the theory can be efficiently implemented into a commercial code for both sequential and parallel executions. The salient features of the theory as implemented in LS-DYNA are illustrated using a widely used composite - the T800S/3900-2B[P2352W-19] BMS8-276 Rev-H-Unitape fiber/resin unidirectional composite. First, the experimental tests to characterize the deformation, damage and failure parameters in the material behavior are discussed. Second, the MAT213 input model and implementation details are presented with particular attention given to procedures that have been incorporated to ensure that the yield surfaces in the rate and temperature dependent plasticity model are convex. Finally, the paper concludes with a validation test designed to test the stability, accuracy and efficiency of the implemented model.

  20. Autobalancing of a rigid rotor in viscoelastic orthotropic supports considering eccentricity of the automatic ball balancer

    Science.gov (United States)

    Bykov, V. G.; Kovachev, A. S.

    2018-05-01

    A statically unbalanced rotor in viscoelastic orthotropic supports equipped with an automatic ball balancer (ABB), the axis of symmetry of which does not coincide with the symmetry axis of the rotor, is considered. Based on an analysis of the equations describing the stationary modes of motion of the system, the principal impossibility of complete balancing of the rotor is shown. The possibility of the existence of two types of stationary modes is established, one of which has a constant average amplitude of residual vibration equal to the eccentricity of the ABB. The solution corresponding to this almost balanced mode is constructed analytically. A study is made of its asymptotic stability.

  1. Brief note on the statistical calculation of final continuum reaction cross sections of light nuclides

    International Nuclear Information System (INIS)

    Murata, Toru

    2003-01-01

    The level density parameters are determined to reproduce level structure and/or resonance level spacing of the nucleus. In the statistical compound nucleus model, cross sections to discrete levels decrease abruptly, and continuum level cross section increase strongly above the energy point where the continuum levels switched on. In the present study, for the nucleus which level scheme were well determined up to higher excitation energy more than 10 MeV, discrete level cross sections were calculated and summed up and compared with the cross section to the assumed continuum level corresponding to the discrete levels above several MeV excitation energy. Calculation of the (n, n') cross sections were made with CASTHY code of Moldauer model option using level density parameters determined with former method. It is shown that the assumed continuum cross section is fairly large compared with the summed up cross section. Origins of the discrepancy were discussed. (J.P.N.)

  2. Equivalence of meson scattering amplitudes in strong coupling lattice and flat space string theory

    Directory of Open Access Journals (Sweden)

    Adi Armoni

    2018-03-01

    Full Text Available We consider meson scattering in the framework of the lattice strong coupling expansion. In particular we derive an expression for the 4-point function of meson operators in the planar limit of scalar Chromodynamics. Interestingly, in the naive continuum limit the expression coincides with an independently known result, that of the worldline formalism. Moreover, it was argued by Makeenko and Olesen that (assuming confinement the resulting scattering amplitude in momentum space is the celebrated expression proposed by Veneziano several decades ago. This motivates us to also use holography in order to argue that the continuum expression for the scattering amplitude is related to the result obtained from flat space string theory. Our results hint that at strong coupling and large-Nc the naive continuum limit of the lattice formalism can be related to a flat space string theory.

  3. Equivalence of meson scattering amplitudes in strong coupling lattice and flat space string theory

    Science.gov (United States)

    Armoni, Adi; Ireson, Edwin; Vadacchino, Davide

    2018-03-01

    We consider meson scattering in the framework of the lattice strong coupling expansion. In particular we derive an expression for the 4-point function of meson operators in the planar limit of scalar Chromodynamics. Interestingly, in the naive continuum limit the expression coincides with an independently known result, that of the worldline formalism. Moreover, it was argued by Makeenko and Olesen that (assuming confinement) the resulting scattering amplitude in momentum space is the celebrated expression proposed by Veneziano several decades ago. This motivates us to also use holography in order to argue that the continuum expression for the scattering amplitude is related to the result obtained from flat space string theory. Our results hint that at strong coupling and large-Nc the naive continuum limit of the lattice formalism can be related to a flat space string theory.

  4. Development of an Input Suite for an Orthotropic Composite Material Model

    Science.gov (United States)

    Hoffarth, Canio; Shyamsunder, Loukham; Khaled, Bilal; Rajan, Subramaniam; Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Blankenhorn, Gunther

    2017-01-01

    An orthotropic three-dimensional material model suitable for use in modeling impact tests has been developed that has three major components elastic and inelastic deformations, damage and failure. The material model has been implemented as MAT213 into a special version of LS-DYNA and uses tabulated data obtained from experiments. The prominent features of the constitutive model are illustrated using a widely-used aerospace composite the T800S3900-2B[P2352W-19] BMS8-276 Rev-H-Unitape fiber resin unidirectional composite. The input for the deformation model consists of experimental data from 12 distinct experiments at a known temperature and strain rate: tension and compression along all three principal directions, shear in all three principal planes, and off axis tension or compression tests in all three principal planes, along with other material constants. There are additional input associated with the damage and failure models. The steps in using this model are illustrated composite characterization tests, verification tests and a validation test. The results show that the developed and implemented model is stable and yields acceptably accurate results.

  5. Notes on continuum mechanics

    CERN Document Server

    Chaves, Eduardo W V

    2013-01-01

    This publication is aimed at students, teachers, and researchers of Continuum Mechanics and focused extensively on stating and developing Initial Boundary Value equations used to solve physical problems. With respect to notation, the tensorial, indicial and Voigt notations have been used indiscriminately.   The book is divided into twelve chapters with the following topics: Tensors, Continuum Kinematics, Stress, The Objectivity of Tensors, The Fundamental Equations of Continuum Mechanics, An Introduction to Constitutive Equations, Linear Elasticity, Hyperelasticity, Plasticity (small and large deformations), Thermoelasticity (small and large deformations), Damage Mechanics (small and large deformations), and An Introduction to Fluids. Moreover, the text is supplemented with over 280 figures, over 100 solved problems, and 130 references.

  6. Changing public stigma with continuum beliefs.

    Science.gov (United States)

    Corrigan, Patrick W; Schmidt, Annie; Bink, Andrea B; Nieweglowski, Katherine; Al-Khouja, Maya A; Qin, Sang; Discont, Steve

    2017-10-01

    Given the egregious effect of public stigma on the lives of people with mental illness, researchers have sought to unpack and identify effective components of anti-stigma programs. We expect to show that continuum messages have more positive effect on stigma and affirming attitudes (beliefs that people with mental illness recover and should be personally empowered) than categorical perspectives. The effect of continuum beliefs will interact with contact strategies. A total of 598 research participants were randomly assigned to online presentations representing one of the six conditions: three messages (continuum, categorical, or neutral control) by two processes (education or contact). Participants completed measures of continuum beliefs (as a manipulation check), stigma and affirming attitudes after viewing the condition. Continuum messages had significantly better effect on views that people with mental illness are "different," a finding that interacted with contact. Continuum messages also had better effects on recovery beliefs, once again an effect that interacted significantly with contact. Implications of these findings for improving anti-stigma programs are discussed.

  7. Extension versus Bending for Continuum Robots

    Directory of Open Access Journals (Sweden)

    George Grimes

    2008-11-01

    Full Text Available In this paper, we analyze the capabilities of a novel class of continuous-backbone ("continuum" robots. These robots are inspired by biological "trunks, and tentacles". However, the capabilities of established continuum robot designs, which feature controlled bending but not extension, fall short of those of their biological counterparts. In this paper, we argue that the addition of controlled extension provides dual and complementary functionality, and correspondingly enhanced performance, in continuum robots. We present an interval-based analysis to show how the inclusion of controllable extension significantly enhances the workspace and capabilities of continuum robots.

  8. Boundary-layer theory, strong-coupling series, and large-order behavior

    International Nuclear Information System (INIS)

    Bender, Carl M.; Pelster, Axel; Weissbach, Florian

    2002-01-01

    The introduction of a lattice converts a singular boundary-layer problem in the continuum into a regular perturbation problem. However, the continuum limit of the discrete problem is extremely nontrivial and is not completely understood. This article examines two singular boundary-layer problems taken from mathematical physics, the instanton problem and the Blasius equation, and in each case examines two strategies, Pade resummation and variational perturbation theory, to recover the solution to the continuum problem from the solution to the associated discrete problem. Both resummation procedures produce good and interesting results for the two cases, but the results still deviate from the exact solutions. To understand the discrepancy a comprehensive large-order behavior analysis of the strong-coupling lattice expansions for each of the two problems is done

  9. Alfven continuum with toroidicity

    International Nuclear Information System (INIS)

    Riyopoulos, S.; Mahajan, S.M.

    1985-06-01

    The symmetry property of the MHD wave propagation operator is utilized to express the toroidal eigenmodes as a superposition of the mutually orthogonal cylindrical modes. Because of the degeneracy among cylindrical modes with the same frequency but resonant surfaces of different helicity the toroidal perturbation produces a zeroth order mixing of the above modes. The toroidal eigenmodes of frequency ω 0 2 have multiple resonant surfaces, with each surface shifted relative to its cylindrical position and carrying a multispectral content. Thus a single helicity toroidal antenna of frequency ω 0 couples strongly to all different helicity resonant surfaces with matching local Alfven frequency. Zeroth order coupling between modes in the continuum and global Alfven modes also results from toroidicity and degeneracy. Our perturbation technique is the MHD counterpart of the quantum mechanical methods and is applicable through the entire range of the MHD spectrum

  10. An algorithm for full parametric solution of problems on the statics of orthotropic plates by the method of boundary states with perturbations

    Science.gov (United States)

    Penkov, V. B.; Ivanychev, D. A.; Novikova, O. S.; Levina, L. V.

    2018-03-01

    The article substantiates the possibility of building full parametric analytical solutions of mathematical physics problems in arbitrary regions by means of computer systems. The suggested effective means for such solutions is the method of boundary states with perturbations, which aptly incorporates all parameters of an orthotropic medium in a general solution. We performed check calculations of elastic fields of an anisotropic rectangular region (test and calculation problems) for a generalized plane stress state.

  11. Characteristic dynamics near two coalescing eigenvalues incorporating continuum threshold effects

    Science.gov (United States)

    Garmon, Savannah; Ordonez, Gonzalo

    2017-06-01

    It has been reported in the literature that the survival probability P(t) near an exceptional point where two eigenstates coalesce should generally exhibit an evolution P (t ) ˜t2e-Γ t, in which Γ is the decay rate of the coalesced eigenstate; this has been verified in a microwave billiard experiment [B. Dietz et al., Phys. Rev. E 75, 027201 (2007)]. However, the heuristic effective Hamiltonian that is usually employed to obtain this result ignores the possible influence of the continuum threshold on the dynamics. By contrast, in this work we employ an analytical approach starting from the microscopic Hamiltonian representing two simple models in order to show that the continuum threshold has a strong influence on the dynamics near exceptional points in a variety of circumstances. To report our results, we divide the exceptional points in Hermitian open quantum systems into two cases: at an EP2A two virtual bound states coalesce before forming a resonance, anti-resonance pair with complex conjugate eigenvalues, while at an EP2B two resonances coalesce before forming two different resonances. For the EP2B, which is the case studied in the microwave billiard experiment, we verify that the survival probability exhibits the previously reported modified exponential decay on intermediate time scales, but this is replaced with an inverse power law on very long time scales. Meanwhile, for the EP2A the influence from the continuum threshold is so strong that the evolution is non-exponential on all time scales and the heuristic approach fails completely. When the EP2A appears very near the threshold, we obtain the novel evolution P (t ) ˜1 -C1√{t } on intermediate time scales, while further away the parabolic decay (Zeno dynamics) on short time scales is enhanced.

  12. Spectral properties of minimal-basis-set orbitals: Implications for molecular electronic continuum states

    Science.gov (United States)

    Langhoff, P. W.; Winstead, C. L.

    Early studies of the electronically excited states of molecules by John A. Pople and coworkers employing ab initio single-excitation configuration interaction (SECI) calculations helped to simulate related applications of these methods to the partial-channel photoionization cross sections of polyatomic molecules. The Gaussian representations of molecular orbitals adopted by Pople and coworkers can describe SECI continuum states when sufficiently large basis sets are employed. Minimal-basis virtual Fock orbitals stabilized in the continuous portions of such SECI spectra are generally associated with strong photoionization resonances. The spectral attributes of these resonance orbitals are illustrated here by revisiting previously reported experimental and theoretical studies of molecular formaldehyde (H2CO) in combination with recently calculated continuum orbital amplitudes.

  13. The continuum of behavior guidance.

    Science.gov (United States)

    Nelson, Travis

    2013-01-01

    Behavior guidance is a continuum of techniques, basic and advanced, fundamental to the provision of quality dental care for pediatric patients. This practice must be individualized, pairing the correct method of behavior guidance with each child. To select the appropriate technique, the clinician must have a thorough understanding of each aspect of the continuum and anticipate parental expectations, child temperament, and the technical procedures necessary to complete care. By effectively using techniques within the continuum of behavior guidance, a healing relationship with the family is maintained while addressing dental disease and empowering the child to receive dental treatment throughout their lifetime. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Performance-based shape optimization of continuum structures

    International Nuclear Information System (INIS)

    Liang Qingquan

    2010-01-01

    This paper presents a performance-based optimization (PBO) method for optimal shape design of continuum structures with stiffness constraints. Performance-based design concepts are incorporated in the shape optimization theory to achieve optimal designs. In the PBO method, the traditional shape optimization problem of minimizing the weight of a continuum structure with displacement or mean compliance constraints is transformed to the problem of maximizing the performance of the structure. The optimal shape of a continuum structure is obtained by gradually eliminating inefficient finite elements from the structure until its performance is maximized. Performance indices are employed to monitor the performance of optimized shapes in an optimization process. Performance-based optimality criteria are incorporated in the PBO method to identify the optimum from the optimization process. The PBO method is used to produce optimal shapes of plane stress continuum structures and plates in bending. Benchmark numerical results are provided to demonstrate the effectiveness of the PBO method for generating the maximum stiffness shape design of continuum structures. It is shown that the PBO method developed overcomes the limitations of traditional shape optimization methods in optimal design of continuum structures. Performance-based optimality criteria presented can be incorporated in any shape and topology optimization methods to obtain optimal designs of continuum structures.

  15. Area Regge calculus and continuum limit

    International Nuclear Information System (INIS)

    Khatsymovsky, V.M.

    2002-01-01

    Encountered in the literature generalisations of general relativity to independent area variables are considered, the discrete (generalised Regge calculus) and continuum ones. The generalised Regge calculus can be either with purely area variables or, as we suggest, with area tensor-connection variables. Just for the latter, in particular, we prove that in analogy with corresponding statement in ordinary Regge calculus (by Feinberg, Friedberg, Lee and Ren), passing to the (appropriately defined) continuum limit yields the generalised continuum area tensor-connection general relativity

  16. Continuum mechanics of single-substance bodies

    CERN Document Server

    Eringen, A Cemal

    1975-01-01

    Continuum Physics, Volume II: Continuum Mechanics of Single-Substance Bodies discusses the continuum mechanics of bodies constituted by a single substance, providing a thorough and precise presentation of exact theories that have evolved during the past years. This book consists of three parts-basic principles, constitutive equations for simple materials, and methods of solution. Part I of this publication is devoted to a discussion of basic principles irrespective of material geometry and constitution that are valid for all kinds of substances, including composites. The geometrical notions, k

  17. Strong Coupling Continuum QCD

    International Nuclear Information System (INIS)

    Pennington, Michael

    2011-01-01

    The Schwinger-Dyson, Bethe-Salpeter system of equations are the link between coloured quarks and gluons, and colourless hadrons and their properties. This talk reviews some aspects of these studies from the infrared behavior of ghosts to the prediction of electromagnetic form-factors.

  18. Continuum of eLearning: 2012 Project Summary Report

    Science.gov (United States)

    2012-10-01

    multimedia, and Continuum of eLearning | Purpose and Vision 19 << UNCLASSIFIED>> (limited) situated learning. Future versions of the CoL self-paced...Continuum of eLearning : 2012 Project Summary Report Continuum of eLearning The Next Evolution of Joint Training on JKO October 2012 Joint...Technical Report November 2011 – August 2012 Continuum of eLearning : 2012 Project Summary Report N00140-06-D-0060 David T. Fautua, Sae Schatz, Andrea

  19. Continuum spectra in light-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, T.; Udagawa, T. [Texas Univ., Austin (USA). Dept. of Physics; Ikegami, H.; Muraoka, M [eds.

    1980-01-01

    Recent developments in the use of multi-step direct reaction method, to fit continuum cross sections of light-ion reactions, are reviewed. There has been a long-standing difficulty in reproducing sufficiently large (p, p') continuum cross section, but it has now been all but removed. It will be discussed in some detail, how this was achieved. Analyses of very recent data on analyzing powers in the continuum of (p, p') and (p, ..cap alpha..) reactions will also be discussed. Finally, analysis of the breakup of h into d and p will be presented.

  20. Giant resonances in the deformed continuum

    International Nuclear Information System (INIS)

    Nakatsukasa, T.; Yabana, K.

    2004-01-01

    Giant resonances in the continuum for deformed nuclei are studied with the time-dependent Hartree-Fock (TDHF) theory in real time and real space. The continuum effect is effectively taken into account by introducing a complex Absorbing Boundary Condition (ABC). (orig.)

  1. Fundamentals of continuum mechanics

    CERN Document Server

    Rudnicki, John W

    2014-01-01

    A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally.  This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energ

  2. Introduction to continuum mechanics

    CERN Document Server

    Lai, W Michael; Rubin, David

    1996-01-01

    Introduction to Continuum Mechanics is a recently updated and revised text which is perfect for either introductory courses in an undergraduate engineering curriculum or for a beginning graduate course.Continuum Mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation, and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, a

  3. The shadow continuum : testing the records continuum model through the Djogdja Documenten and the migrated archives

    NARCIS (Netherlands)

    Karabinos, Michael Joseph

    2015-01-01

    This dissertation tests the universal suitability of the records continuum model by using two cases from the decolonization of Southeast Asia. The continuum model is a new model of records visualization invented in the 1990s that sees records as free to move throughout four ‘dimensions’ rather than

  4. Elementary Continuum Mechanics for Everyone - and Some More

    DEFF Research Database (Denmark)

    Byskov, Esben

    Quite trivially, Continuum mechanics per se deals with the description of deformations of three-dimensional continua i.e. models whose properties are independent of scale in that the continuum does not possess a structure. Thus, continuum mechanics does not try to model the atomic structure...

  5. Elementary Continuum Mechanics for Everyone - And Some More

    DEFF Research Database (Denmark)

    Byskov, Esben

    Quite trivially, Continuum mechanics per se deals with the description of deformations of three-dimensional continua i.e. models whose properties are independent of scale in that the continuum does not possess a structure. Thus, continuum mechanics does not try to model the atomic structure...

  6. Continuum capture in the three-body problem

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1980-01-01

    The three-body problem, especially the problem of electron capture to the continuum in heavy particle collisions is reviewed. Major topics covered include: second born-induced asymmetry in electron capture to the continuum; historical context, links to other tests of atomic scattering theory; experiments characterizing the velocity distribution of ECC electrons; other atomic physics tests of high velocity Born expansions; atom capture; capture by positrons; and pion capture to the continuum

  7. Strong coupling transmutation of Yukawa theory

    International Nuclear Information System (INIS)

    Chiang, C.C.; Chiu, C.B.; Sudarshan, E.C.G.

    1981-01-01

    In the strong coupling limit, it is shown that the Yukawa-type theory can be made to undergo a transmutation into an attractive separable potential theory, provided a single state is removed from the spectrum in the lowest nontrivial sector and the states at infinity which include a continuum in the next sector. If these states are not removed, the two theories are distinct. It is suggested that the full equivalence and the renormalization of four-fermion theories need further examination. (orig.)

  8. Computational Continuum Mechanics

    CERN Document Server

    Shabana, Ahmed A

    2011-01-01

    This text presents the theory of continuum mechanics using computational methods. Ideal for students and researchers, the second edition features a new chapter on computational geometry and finite element analysis.

  9. Poroelastic Response of Orthotropic Fractured Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, James G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2011-12-16

    In this paper, an algorithm is presented for inverting either laboratory or field poroelastic data for all the drained constants of an anisotropic (specifically orthotropic) fractured poroelastic system. While fractures normally weaken the system by increasing the mechanical compliance, any liquids present in these fractures are expected to increase the stiffness somewhat, thus negating to some extent the mechanical weakening influence of the fractures themselves. The analysis presented in this article quantifies these effects and shows that the key physical variable needed to account for the pore-fluid effects is a factor of (1 - B), where B is Skempton’s second coefficient and satisfies 0 ≤ B < 1. This scalar factor uniformly reduces the increase in compliance due to the presence of communicating fractures, thereby stiffening the fractured composite medium by a predictable amount. One further aim of the discussion is to determine the number of the poroelastic constants that needs to be known by other means to determine the rest from remote measurements, such as seismic wave propagation data in the field. Quantitative examples arising in the analysis show that, if the fracture aspect ratio af ≃ 0.1 and the pore fluid is liquid water, then for several cases considered, Skempton’s B ≃ 0.9, and so the stiffening effect of the pore-liquid reduces the change in compliance due to the fractures by a factor 1-B ≃ 0.1, in these examples. The results do, however, depend on the actual moduli of the unfractured elastic material, as well as on the pore-liquid bulk modulus, so these quantitative predictions are just examples, and should not be treated as universal results. Attention is also given to two previously unremarked poroelastic identities, both being useful variants of Gassmann’s equations for homogeneous—but anisotropic—poroelasticity. Relationships to Skempton’s analysis of saturated soils are also noted. Finally, the article concludes

  10. Points-Based Safe Path Planning of Continuum Robots

    Directory of Open Access Journals (Sweden)

    Khuram Shahzad

    2015-07-01

    Full Text Available Continuum robots exhibit great potential in a number of challenging applications where traditional rigid link robots pose certain limitations, e.g., working in unstructured environments. In order to enable the usage of continuum robots in safety-critical applications, such as surgery and nuclear decontamination, it is extremely important to ensure a safe path for the robot's movement. Existing algorithms for continuum robot path planning have certain limitations that need to be addressed. These include the fact that none of the algorithms provide safety assurance parameters and control for path planning. They are computationally expensive, applicable to a specific type of continuum robots, and mostly they do not incorporate design and kinematics constraints. In this paper, we propose a points-based path planning (PoPP algorithm for continuum robots that computes the path by imposing safety constraints and improves upon the limitations of existing approaches. In the algorithm, we exploit the constant curvature-bending property of continuum robots in their path planning process. The algorithm is computationally efficient and provides a good tradeoff between accuracy and efficiency that can be implemented to enable the safety-critical application of continuum robots. This algorithm also provides information regarding path volume and flexibility in movement. Simulation results confirm that the algorithm possesses promising potential for all types of continuum robots (following the constant curvature-bending property. We believe that this effectively balances the desired safety and efficiency requirements.

  11. Scissors strength in the quasi-continuum of actinides

    Directory of Open Access Journals (Sweden)

    Guttormsen M.

    2014-03-01

    Full Text Available The M1-scissors resonance has been measured for the first time in the quasi-continuum of actinides. The strength and position of the resonances in 231,232,233Th were determined by particle-γ coincidences using deuteron induced reactions on a 232Th target. The residual nuclei show a strong integrated strength of BM1 = 9 − 11 µn2 in the Eγ = 1.0 − 3.5 MeV region. The presence of the scissors resonance modifies significantly the (n,γ cross section, which has impact on fuel-cycle simulations of fast nuclear reactors and nucleosynthesis in explosive stellar environments.

  12. Variational principles of continuum mechanics I fundamentals

    CERN Document Server

    Berdichevskii, V L

    2009-01-01

    This is a concise and understandable book about variational principles of continuum mechanics. The book is accessible to applied mathematicians, physicists and engineers who have an interest in continuum mechanics.

  13. Experimental and Numerical Evaluation of the Mechanical Behavior of Strongly Anisotropic Light-Weight Metallic Fiber Structures under Static and Dynamic Compressive Loading

    Directory of Open Access Journals (Sweden)

    Olaf Andersen

    2016-05-01

    Full Text Available Rigid metallic fiber structures made from a variety of different metals and alloys have been investigated mainly with regard to their functional properties such as heat transfer, pressure drop, or filtration characteristics. With the recent advent of aluminum and magnesium-based fiber structures, the application of such structures in light-weight crash absorbers has become conceivable. The present paper therefore elucidates the mechanical behavior of rigid sintered fiber structures under quasi-static and dynamic loading. Special attention is paid to the strongly anisotropic properties observed for different directions of loading in relation to the main fiber orientation. Basically, the structures show an orthotropic behavior; however, a finite thickness of the fiber slabs results in moderate deviations from a purely orthotropic behavior. The morphology of the tested specimens is examined by computed tomography, and experimental results for different directions of loading as well as different relative densities are presented. Numerical calculations were carried out using real structural data derived from the computed tomography data. Depending on the direction of loading, the fiber structures show a distinctively different deformation behavior both experimentally and numerically. Based on these results, the prevalent modes of deformation are discussed and a first comparison with an established polymer foam and an assessment of the applicability of aluminum fiber structures in crash protection devices is attempted.

  14. Variational principles of continuum mechanics II applications

    CERN Document Server

    Berdichevsky, Victor L

    2009-01-01

    This concise and understandable book about variational principles of continuum mechanics presents the classical models. The book is accessible to applied mathematicians, physicists and engineers who have an interest in continuum mechanics.

  15. New composites graphite/salt for high temperature thermal energy storage: From elaboration to development of thermal characterization methods for orthotropic conductive materials

    International Nuclear Information System (INIS)

    Acem, Zoubir

    2007-01-01

    This PhD is carried out within the framework of DISTOR (European) and HTPSTOCK (French) projects, which have for objective to conceive and study new graphite/salt composites dedicated to high temperature energy storage (>200 deg. C). She is split into two distinct part. The first one focused mainly on works linked with elaboration and thermal characterisation of these new composites. The different composites ways of elaboration (Dispersion, uniaxial compression, isostatic) associated to the different kind of graphite (Natural expanded graphite (ENG), synthetic graphite) investigated during the PhD are presented. The results of the thermal characterization campaign of these composites are also presented and permit to highlight the impact of graphite in the thermal behaviour of studied materials. Based on these results, modelling studies of the evolution of the thermal conductivity have been undertaken to deepen the understanding of the effect of graphite (quantity, size of particles) on the effective conductivity composites. The second one describes the thermal characterization devices and associated thermo-kinetics models which had to be developed and adapted to the specificities of newly developed materials. This concerns mainly the materials prepared by compression, which present orthotropic properties and are difficult to reproduce. So, the characterization of this kind of material is very difficult and tedious. That is why we are committed to develop and adapt existing methods of characterization to allow the complete thermal characterisation of an orthotropic conductive material from a single experimentation on a single sample. (author) [fr

  16. Strongly interacting Higgs sector without technicolor

    International Nuclear Information System (INIS)

    Liu Chuan; Kuti, J.

    1994-12-01

    Simulation results are presented on Higgs mass calculations in the spontaneously broken phase of the Higgs sector in the minimal Standard Model with a higher derviative regulator. A heavy Higgs particle is found in the TeV mass range in the presence of a complex conjugate ghost pair at higher energies. The ghost pair evades easy experimental detection. As a finite and unitary theory in the continuum, this model serves as an explicit and simple example of a strong interacting Higgs sector without technicolor. (orig.)

  17. Some topics in continuum theory of liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Claire

    2000-07-01

    Since advancements by Ericksen and Leslie in the 1960's, interest in the continuum theory for liquid crystals has escalated. In this thesis, we present the well established continuum theory for nematics, and apply it to the simple Tsvetkov experiment. This analysis is further extended by studying a similar geometric setup which allows additional degrees of freedom. Steady state solutions are studied, and stable/unstable solutions discussed. The bulk of this thesis however, is concerned with the smectic continuum theory. The theory presented allows variable layer spacing, and hence goes beyond the scope of that proposed by Leslie, Stewart and Nakagawa in 1991. With this theory, we initially study a sample of SmA liquid crystal in the bookshelf geometry between two parallel plates, and subject to a strongly anchored pretilt at the boundaries. Weakly anchored solutions are also briefly discussed at the end of this chapter. This work is extended by considering the same problem with a SmC sample, and the distinct differences between the SmA and SmC solutions are highlighted. Symmetric chevron solutions of C1 and C2 type are discussed fully, and energy considerations are made to find the physically realistic configurations. Again, the last part of this chapter is dedicated to solutions subject to weak anchoring. Finally, we take a brief look at Freedericksz transitions when a magnetic field is applied across a cell containing a SmA sample in the bookshelf geometry. The Freedericksz thresholds for two possible deformations are obtained by linearising the appropriate equation, and solving the resulting eigenvalue problem. Numerical calculations finally show where the transitions occur, and confirm the accuracy of the threshold values obtained analytically. (author)

  18. Some topics in continuum theory of liquid crystals

    International Nuclear Information System (INIS)

    Anderson, Claire

    2000-01-01

    Since advancements by Ericksen and Leslie in the 1960's, interest in the continuum theory for liquid crystals has escalated. In this thesis, we present the well established continuum theory for nematics, and apply it to the simple Tsvetkov experiment. This analysis is further extended by studying a similar geometric setup which allows additional degrees of freedom. Steady state solutions are studied, and stable/unstable solutions discussed. The bulk of this thesis however, is concerned with the smectic continuum theory. The theory presented allows variable layer spacing, and hence goes beyond the scope of that proposed by Leslie, Stewart and Nakagawa in 1991. With this theory, we initially study a sample of SmA liquid crystal in the bookshelf geometry between two parallel plates, and subject to a strongly anchored pretilt at the boundaries. Weakly anchored solutions are also briefly discussed at the end of this chapter. This work is extended by considering the same problem with a SmC sample, and the distinct differences between the SmA and SmC solutions are highlighted. Symmetric chevron solutions of C1 and C2 type are discussed fully, and energy considerations are made to find the physically realistic configurations. Again, the last part of this chapter is dedicated to solutions subject to weak anchoring. Finally, we take a brief look at Freedericksz transitions when a magnetic field is applied across a cell containing a SmA sample in the bookshelf geometry. The Freedericksz thresholds for two possible deformations are obtained by linearising the appropriate equation, and solving the resulting eigenvalue problem. Numerical calculations finally show where the transitions occur, and confirm the accuracy of the threshold values obtained analytically. (author)

  19. MODELING OF RAILWAY TRACK OPERATION AS A SYSTEM OF QUASI-ELASTIC ORTHOTROPIC LAYERS

    Directory of Open Access Journals (Sweden)

    Sychev Vyacheslav Petrovich

    2016-03-01

    Full Text Available In this paper the authors give a solution to the problem of the impact of a rolling stock on the rail track on the basis of modeling a railway track as a multi-layered space, introducing each of the layers is a quasi-elastic orthotropic layer with cylindrical anisotropy in the polar coordinate system. The article describes wave equations, taking into account the rotational inertia of cross sectional and transverse shear strains. From the point of view of classical structural mechanics train path can be represented as a multilayer system comprising separate layers with different stiffness, lying on the foundation being the elastic-isotropic space. Winkler model provides that the basis is linearly deformable space, there are loads influencing its surface. These loads are transferred through a layered deformable half-space. This representation is used in this study as an initial approximation. For more accurate results of the deformation of a railway track because of rolling dynamic loads it is proposed to present a railway track in the form of a layered structure, where each element (assembled rails and sleepers, ballast section, the soil in the embankment, basement soils is modeled as a planar quasi-elastic orthotropic layer with cylindrical anisotropy. The equations describing the dynamic behaviour of flat element in a polar coordinate system are hyperbolic in nature and take into account the rotational inertia of the cross sectional and the transverse shear strains. This allows identifying the impact on the final characteristics of the blade wave effects, and oscillatory processes. In order to determine the unknown functions included in the constitutive equations it is proposed to use decomposition in power series in spatial coordinate and time. In order to determine the coefficients of ray series for the required functions, it is necessary to differentiate the defining wave equations k times on time, to take their difference on the different

  20. Patients' experiences with continuum of care across hospitals. A multilevel analysis of Consumer Quality Index Continuum of Care

    NARCIS (Netherlands)

    Kollen, Boudewijn J.; Groenier, Klaas H.; Berendsen, Annette J.

    Objective: Communication between professionals is essential because it contributes to an optimal continuum of care. Whether patients experience adequate continuum of care is uncertain. To address this, a questionnaire was developed to elucidate this care process from a patients' perspective. In this

  1. Solid-state dewetting and island morphologies in strongly anisotropic materials

    International Nuclear Information System (INIS)

    Jiang, Wei; Wang, Yan; Zhao, Quan; Srolovitz, David J.; Bao, Weizhu

    2016-01-01

    We propose a sharp-interface continuum model based on a thermodynamic variational approach to investigate the strong anisotropic effect on solid-state dewetting including contact line dynamics. For sufficiently strong surface energy anisotropy, we show that multiple equilibrium shapes may appear that cannot be described by the widely employed Winterbottom construction, i.e., the modified Wulff construction for an island on a substrate. We repair the Winterbottom construction to include multiple equilibrium shapes and employ our evolution model to demonstrate that all such shapes are dynamically accessible.

  2. Global distribution of dissolved organic matter along the aquatic continuum: Across rivers, lakes and oceans.

    Science.gov (United States)

    Massicotte, Philippe; Asmala, Eero; Stedmon, Colin; Markager, Stiig

    2017-12-31

    Based on an extensive literature survey containing more than 12,000 paired measurements of dissolved organic carbon (DOC) concentrations and absorption of chromophoric dissolved organic matter (CDOM) distributed over four continents and seven oceans, we described the global distribution and transformation of dissolved organic matter (DOM) along the aquatic continuum across rivers and lakes to oceans. A strong log-linear relationship (R 2 =0.92) between DOC concentration and CDOM absorption at 350nm was observed at a global scale, but was found to be ecosystem-dependent at local and regional scales. Our results reveal that as DOM is transported towards the oceans, the robustness of the observed relation decreases rapidly (R 2 from 0.94 to 0.44) indicating a gradual decoupling between DOC and CDOM. This likely reflects the decreased connectivity between the landscape and DOM along the aquatic continuum. To support this hypothesis, we used the DOC-specific UV absorbance (SUVA) to characterize the reactivity of the DOM pool which decreased from 4.9 to 1.7m 2 × gC -1 along the aquatic continuum. Across the continuum, a piecewise linear regression showed that the observed decrease of SUVA occurred more rapidly in freshwater ecosystems compared to marine water ecosystems, suggesting that the different degradation processes act preferentially on CDOM rather than carbon content. The observed change in the DOM characteristics along the aquatic continuum also suggests that the terrestrial DOM pool is gradually becoming less reactive, which has profound consequences on cycling of organic carbon in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Lattice gravity near the continuum limit

    International Nuclear Information System (INIS)

    Feinberg, G.; Friedberg, R.; Lee, T.D.; Ren, H.C.

    1984-01-01

    We prove that the lattice gravity always approaches the usual continuum limit when the link length l -> 0, provided that certain general boundary conditions are satisfied. This result holds for any lattice, regular or irregular. Furthermore, for a given lattice, the deviation from its continuum limit can be expressed as a power series in l 2 . General formulas for such a perturbative calculation are given, together with a number of illustrative examples, including the graviton propagator. The lattice gravity satisfies all the invariance properties of Einstein's theory of general relativity. In addition, it is symmetric under a new class of transformations that are absent in the usual continuum theory. The possibility that the lattice theory (with a nonzero l) may be more fundamental is discussed. (orig.)

  4. Continuum Level Density in Complex Scaling Method

    International Nuclear Information System (INIS)

    Suzuki, R.; Myo, T.; Kato, K.

    2005-01-01

    A new calculational method of continuum level density (CLD) at unbound energies is studied in the complex scaling method (CSM). It is shown that the CLD can be calculated by employing the discretization of continuum states in the CSM without any smoothing technique

  5. Mechanisms of molecular electronic rectification through electronic levels with strong vibrational coupling

    DEFF Research Database (Denmark)

    Kuznetsov, A.M.; Ulstrup, Jens

    2002-01-01

    We present a new view and an analytical formalism of electron flow through a donor-acceptor molecule inserted between a pair of metal electrodes. The donor and acceptor levels are strongly coupled to an environmental nuclear continuum. The formalism applies to molecular donor-acceptor systems bot...

  6. RENEWAL OF BASIC LAWS AND PRINCIPLES FOR POLAR CONTINUUM THEORIES (Ⅱ)-MICROMORPHIC CONTINUUM THEORY AND COUPLE STRESS THEORY

    Institute of Scientific and Technical Information of China (English)

    戴天民

    2003-01-01

    The purpose is to reestablish the balance laws of momentum, angular momentumand energy and to derive the corresponding local and nonlocal balance equations formicromorphic continuum mechanics and couple stress theory. The desired results formicromorphic continuum mechanics and couple stress theory are naturally obtained via directtransitions and reductions from the coupled conservation law of energy for micropolarcontinuum theory, respectively. The basic balance laws and equation s for micromorphiccontinuum mechanics and couple stress theory are constituted by combining these resultsderived here and the traditional conservation laws and equations of mass and microinertiaand the entropy inequality. The incomplete degrees of the former related continuum theoriesare clarified. Finally, some special cases are conveniently derived.

  7. Interference effects at photoionization of Rydberg atoms by a strong electromagnetic field

    International Nuclear Information System (INIS)

    Movsesyan, A.M.; Fedorov, M.V.

    1989-01-01

    The photoionization of Rydberg atoms in a strong electromagnetic field is considered. Degeneration of the levels with respect to the orbital moment, their Stark splitting and the possibility of resonant interaction with levels of lower energy are taken into account. The complex quasi-energies of the system, photoelectron spectrum in the limit of an infinite duration of interaction and the time dependence of the total ionization probability are found. It is shown that a narrowing of the quasi-energy levels occurs in a strong field. Against a background of the quasi- continuum the quasi-energy spectrum consists of more or less narrow levels. In this case the photoelectron spectrum acquires a multi-peak form. With increasing field strength the height of the peaks increases, whereas their width decreases. The ionization rate decreases with increasing field strength. The presence of a quasi-continuum is the cause of the partially non-exponential nature of the atomic disintegration

  8. Physics of the continuum of borromean nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vaagen, J S; Rogde, T [Dept. of Physics, Univ. of Bergen (Norway); Danilin, B V [RRC The Kurchatov Inst., Kurchatov, Moscow (Russian Federation); Ershov, S N [JINR, Dubna, Moscow (Russian Federation); Thompson, I J [Dept. of Physics, Univ. of Surrey, Guildford (United Kingdom); Zhukov, M V [Chalmers Univ. of Technology and Goeteborg Univ., Goeteborg (Sweden); RNBT Collaboration

    1998-06-01

    The continuum states of two-neutron halo nuclei are calculated in the method of hyperspherical harmonics. Using DWIA theory appropriate for dilute halo matter we have probed the structure of the low-lying {sup 6}He continuum via calculations of charge-exchange and inelastic scattering. (orig.)

  9. Gamma-ray continuum spectra from heavy ion reactions

    International Nuclear Information System (INIS)

    Beene, J.R.; Halbert, M.L.; Hensley, D.C.; Sarantites, D.G.; Westerberg, L.W.; Geoffroy, K.; Woodward, R.

    1979-01-01

    A detailed quantitative analysis of the yrast continuum was attempted by subtracting the underlying statistical continnuum in a way that makes allowance for ignorance of its detailed shape. This procedure makes it possible to obtain the moment of inertia as a function of spin over a wide range of spins. The results of this continuum spectra shape analysis can be used to calculate the first and second moments of the continuum multiplicity distribution. Continuum spectra were taken during the bombardment of 150 Nd by 115- and 130-MeV beams of 20 Ne, also the first and second moments of the γ-ray multiplicity distribution as a function of the gamma energy. The moment of inertia versus spin and the deduced Yrast continuua are shown. 10 references

  10. Loop quantization as a continuum limit

    International Nuclear Information System (INIS)

    Manrique, Elisa; Oeckl, Robert; Weber, Axel; Zapata, Jose A

    2006-01-01

    We present an implementation of Wilson's renormalization group and a continuum limit tailored for loop quantization. The dynamics of loop-quantized theories is constructed as a continuum limit of the dynamics of effective theories. After presenting the general formalism we show as a first explicit example the 2D Ising field theory, an interacting relativistic quantum field theory with local degrees of freedom quantized by loop quantization techniques

  11. Continuum emission from classical nova winds

    International Nuclear Information System (INIS)

    Harkness, R.P.

    1983-01-01

    The emergent continuum of a slow classical nova during outburst is considered in the quasi-steady optically thick, transonic wind model. Models are presented for various steady mass loss rates and are related to the evolution of slow novae during decline and early post-maximum. The continuum emission is found to depart radically from a blackbody spectrum and to exhibit features common to highly extended stellar atmospheres. (author)

  12. Continuum solutions of the Klein-Gordon equation

    International Nuclear Information System (INIS)

    Jansen, G.; Pusch, M.; Soff, G.

    1987-10-01

    We construct explicit solutions of the Klein-Gordon equation for continuum states. The role of the energy in the single-particle Klein-Gordon theory is elucidated. Special emphasis is laid on the determination of resonance states in the continuum for overcritical potentials. As examples for long-range interaction we depict solutions for the Coulomb potential of a point-like nucleus as an extended nucleus. The square-well potential and the exponential potential are treated to exemplify pecularities of short-range interactions. We also derive continuum solutions for a scalar interaction of square-well type. Finally we discuss the behaviour of a spin-0 particle in an external homogeneous magnetic field. (orig.)

  13. Continuum of active nuclei of galaxies

    International Nuclear Information System (INIS)

    Boisson, C.; Durret, F.

    1987-01-01

    Most of the luminosity of active galactic nuclei (NAG) is radiated in the form of a continuum extending from radio to X-ray energies. It is important to understand the origin of this continuum in order to explain the relative importance of thermal and non-thermal processes in the different classes of NAG. We present here the observational aspect. A detailed study of the mechanisms will be presented by J.L. Masnou [fr

  14. THE IMPORTANCE OF NEBULAR CONTINUUM AND LINE EMISSION IN OBSERVATIONS OF YOUNG MASSIVE STAR CLUSTERS

    International Nuclear Information System (INIS)

    Reines, Amy E.; Nidever, David L.; Whelan, David G.; Johnson, Kelsey E.

    2010-01-01

    In this spectroscopic study of infant massive star clusters, we find that continuum emission from ionized gas rivals the stellar luminosity at optical wavelengths. In addition, we find that nebular line emission is significant in many commonly used broadband Hubble Space Telescope (HST) filters including the F814W I-band, the F555W V-band, and the F435W B-band. Two young massive clusters (YMCs) in the nearby starburst galaxy NGC 4449 were targeted for follow-up spectroscopic observations after Reines et al. discovered an F814W I-band excess in their photometric study of radio-detected clusters in the galaxy. The spectra were obtained with the Dual Imaging Spectrograph (DIS) on the 3.5 m Apache Point Observatory (APO) telescope and have a spectral range of ∼3800-9800 A. We supplement these data with HST and Sloan Digital Sky Survey photometry of the clusters. By comparing our data to the Starburst99 and GALEV evolutionary synthesis models, we find that nebular continuum emission competes with the stellar light in our observations and that the relative contribution from the nebular continuum is largest in the U- and I-bands, where the Balmer (3646 A) and Paschen jumps (8207 A) are located. The spectra also exhibit strong line emission including the [S III] λλ9069, 9532 lines in the HST F814W I-band. We find that the combination of nebular continuum and line emission can account for the F814W I-band excess previously found by Reines et al. In an effort to provide a benchmark for estimating the impact of ionized gas emission on photometric observations of young massive stellar populations, we compute the relative contributions of the stellar continuum, nebular continuum, and emission lines to the total observed flux of a 3 Myr old cluster through various HST filter/instrument combinations, including filters in the Wide Field Camera 3. We urge caution when comparing observations of YMCs to evolutionary synthesis models since nebular continuum and line emission can

  15. Buckling analysis of orthotropic protein microtubules under axial and radial compression based on couple stress theory.

    Science.gov (United States)

    Beni, Yaghoub Tadi; Zeverdejani, M Karimi; Mehralian, Fahimeh

    2017-10-01

    Protein microtubules (MTs) are one of the important intercellular components and have a vital role in the stability and strength of the cells. Due to applied external loads, protein microtubules may be involved buckling phenomenon. Due to impact of protein microtubules in cell reactions, it is important to determine their critical buckling load. Considering nature of protein microtubules, various parameters are effective on microtubules buckling. The small size of microtubules and also lack of uniformity of MTs properties in different directions caused the necessity of accuracy in the analysis of these bio-structure. In fact, microtubules must be considered as a size dependent cylinder, which behave as an orthotropic material. Hence, in the present work using first-order shear deformation model (FSDT), the buckling equations of anisotropic MTs are derived based on new modified couple stress theory (NMCST). After solving the stability equations, the influences of various parameters are measured on the MTs critical buckling load. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model

    Science.gov (United States)

    Goldberg, Robert; Carney, Kelly; DuBois, Paul; Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam; Blankenhorn, Gunther

    2014-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LSDYNA (Livermore Software Technology Corporation), there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic yield function with a nonassociative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule, are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.

  17. Bacterial Biogeography across the Amazon River-Ocean Continuum

    Directory of Open Access Journals (Sweden)

    Mary Doherty

    2017-05-01

    Full Text Available Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2–2.0 μm and >2.0 μm. River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May and low (December discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in

  18. Continuum simulations of water flow past fullerene molecules

    DEFF Research Database (Denmark)

    Popadic, A.; Praprotnik, M.; Koumoutsakos, P.

    2015-01-01

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...... as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow...

  19. Continuum mechanics for engineers

    CERN Document Server

    Mase, G Thomas; Mase, George E

    2009-01-01

    Continuum TheoryContinuum MechanicsStarting OverNotationEssential MathematicsScalars, Vectors and Cartesian TensorsTensor Algebra in Symbolic Notation - Summation ConventionIndicial NotationMatrices and DeterminantsTransformations of Cartesian TensorsPrincipal Values and Principal DirectionsTensor Fields, Tensor CalculusIntegral Theorems of Gauss and StokesStress PrinciplesBody and Surface Forces, Mass DensityCauchy Stress PrincipleThe Stress TensorForce and Moment Equilibrium; Stress Tensor SymmetryStress Transformation LawsPrincipal Stresses; Principal Stress DirectionsMaximum and Minimum Stress ValuesMohr's Circles For Stress Plane StressDeviator and Spherical Stress StatesOctahedral Shear StressKinematics of Deformation and MotionParticles, Configurations, Deformations and MotionMaterial and Spatial CoordinatesLangrangian and Eulerian DescriptionsThe Displacement FieldThe Material DerivativeDeformation Gradients, Finite Strain TensorsInfinitesimal Deformation TheoryCompatibility EquationsStretch RatiosRot...

  20. Map of fluid flow in fractal porous medium into fractal continuum flow.

    Science.gov (United States)

    Balankin, Alexander S; Elizarraraz, Benjamin Espinoza

    2012-05-01

    This paper is devoted to fractal continuum hydrodynamics and its application to model fluid flows in fractally permeable reservoirs. Hydrodynamics of fractal continuum flow is developed on the basis of a self-consistent model of fractal continuum employing vector local fractional differential operators allied with the Hausdorff derivative. The generalized forms of Green-Gauss and Kelvin-Stokes theorems for fractional calculus are proved. The Hausdorff material derivative is defined and the form of Reynolds transport theorem for fractal continuum flow is obtained. The fundamental conservation laws for a fractal continuum flow are established. The Stokes law and the analog of Darcy's law for fractal continuum flow are suggested. The pressure-transient equation accounting the fractal metric of fractal continuum flow is derived. The generalization of the pressure-transient equation accounting the fractal topology of fractal continuum flow is proposed. The mapping of fluid flow in a fractally permeable medium into a fractal continuum flow is discussed. It is stated that the spectral dimension of the fractal continuum flow d(s) is equal to its mass fractal dimension D, even when the spectral dimension of the fractally porous or fissured medium is less than D. A comparison of the fractal continuum flow approach with other models of fluid flow in fractally permeable media and the experimental field data for reservoir tests are provided.

  1. Defining and testing a granular continuum element

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris H.; Kamrin, Ken; Bazant, Martin Z.

    2007-12-03

    Continuum mechanics relies on the fundamental notion of amesoscopic volume "element" in which properties averaged over discreteparticles obey deterministic relationships. Recent work on granularmaterials suggests a continuum law may be inapplicable, revealinginhomogeneities at the particle level, such as force chains and slow cagebreaking. Here, we analyze large-scale Discrete-Element Method (DEM)simulations of different granular flows and show that a "granularelement" can indeed be defined at the scale of dynamical correlations,roughly three to five particle diameters. Its rheology is rather subtle,combining liquid-like dependence on deformation rate and solid-likedependence on strain. Our results confirm some aspects of classicalplasticity theory (e.g., coaxiality of stress and deformation rate),while contradicting others (i.e., incipient yield), and can guide thedevelopment of more realistic continuum models.

  2. Hyperbolic conservation laws in continuum physics

    CERN Document Server

    Dafermos, Constantine M

    2016-01-01

    This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of (a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics; (b) specialists in continuum mechanics who may need analytical tools; (c) experts in numerical analysis who wish to learn the underlying mathematical theory; and (d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conser...

  3. SEACAS Theory Manuals: Part II. Nonlinear Continuum Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.

    1998-09-01

    This report summarizes the key continuum mechanics concepts required for the systematic prescription and numerical solution of finite deformation solid mechanics problems. Topics surveyed include measures of deformation appropriate for media undergoing large deformations, stress measures appropriate for such problems, balance laws and their role in nonlinear continuum mechanics, the role of frame indifference in description of large deformation response, and the extension of these theories to encompass two dimensional idealizations, structural idealizations, and rigid body behavior. There are three companion reports that describe the problem formulation, constitutive modeling, and finite element technology for nonlinear continuum mechanics systems.

  4. Influence of gyroradius and dissipation on the Alfven-wave continuum

    International Nuclear Information System (INIS)

    Connor, J.W.; Tang, W.M.; Taylor, J.B.

    1982-01-01

    It is well known that in ideal magnetohydrodynamics there is a continuous spectrum of real frequencies associated with a singularity of the shear Alfven waves on the surface k/sub parallel to/v/sub A/ = omega. It is also known that the introduction of first-order gyroradius effects eliminates the continuum. In the present work we examine the influence of the full gyroradius response and of dissipation on the continuum. In the absence of dissipation we first confirm that if only first-order gyroradius effects are incorporated, the continuum disappears. However, when the full gyroradius response is included, this discrete spectrum vanishes, and a new continuum (associated with singularities at k/sub parallel to/v/sub A/ = 0) appears. The introduction of collisional dissipation removes the original MHD continuum leaving discrete modes whose frequency tends to zero with the collision rate as ν/sup 1/3/. collisions also remove the new continuum of the full gyroradius model leaving discrete modes whose frequency tends to zero as (log ν) -1 . Collisionless Landau damping has a similar effect

  5. A Behavioral Continuum: A Look at Personality Disorders.

    Science.gov (United States)

    Harris, George; Kirk, Nancy A.

    1985-01-01

    Suggests that narcissistic, borderline, and antisocial personality disorders are not discrete diagnostic categories, but that they lie along a continuum and have in common the dimensions of degree of self-centeredness and degree of differentiation. Presents evidence supporting existence of continuum of behavior rather than discrete diagnostic…

  6. Multiphoton above threshold effects in strong-field fragmentation

    DEFF Research Database (Denmark)

    B Madsen, C; Anis, F; B Madsen, L

    2012-01-01

    We present a study of multiphoton dissociative ionization from molecules. By solving the time-dependent Schrödinger equation for H2+ and projecting the solution onto double continuum scattering states, we observe the correlated electron-nuclear ionization dynamics in detail. We show—for the first...... time—how multiphoton structure prevails as long as one accounts for the energies of all the fragments. Our current work provides a new avenue to analyze strong-field fragmentation that leads to a deeper understanding of the correlated molecular dynamics....

  7. Teaching Continuum Mechanics in a Mechanical Engineering Program

    Science.gov (United States)

    Liu, Yucheng

    2011-01-01

    This paper introduces a graduate course, continuum mechanics, which is designed for and taught to graduate students in a Mechanical Engineering (ME) program. The significance of continuum mechanics in engineering education is demonstrated and the course structure is described. Methods used in teaching this course such as topics, class…

  8. Continuum Reverberation Mapping of AGN Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Fausnaugh, Michael M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA (United States); Peterson, Bradley M. [Department of Astronomy, Ohio State University, Columbus, OH (United States); Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH (United States); Space Telescope Science Institute, Baltimore, MD (United States); Starkey, David A. [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Horne, Keith, E-mail: faus@mit.edu [SUPA Physics and Astronomy, University of St. Andrews, Scotland (United Kingdom); Collaboration: the AGN STORM Collaboration

    2017-12-05

    We show recent detections of inter-band continuum lags in three AGN (NGC 5548, NGC 2617, and MCG+08-11-011), which provide new constraints on the temperature profiles and absolute sizes of the accretion disks. We find lags larger than would be predicted for standard geometrically thin, optically thick accretion disks by factors of 2.3–3.3. For NGC 5548, the data span UV through optical/near-IR wavelengths, and we are able to discern a steeper temperature profile than the T ~ R{sup −3/4} expected for a standard thin disk. Using a physical model, we are also able to estimate the inclinations of the disks for two objects. These results are similar to those found from gravitational microlensing of strongly lensed quasars, and provide a complementary approach for investigating the accretion disk structure in local, low luminosity AGN.

  9. Lower thermospheric nitric oxide concentrations derived from WINDII observations of the green nightglow continuum at 553.1 nm

    Directory of Open Access Journals (Sweden)

    C. H. A. von Savigny

    1999-11-01

    Full Text Available Vertical profiles of nitric oxide in the altitude range 90 to 105 km are derived from 553 nm nightglow continuum measurements made with the Wind Imaging Interferometer (WINDII on the Upper Atmosphere Research Satellite (UARS. The profiles are derived under the assumption that the continuum emission is due entirely to the NO+O air afterglow reaction. Vertical profiles of the atomic oxygen density, which are required to determine the nitric oxide concentrations, are derived from coordinated WINDII measurements of the atomic oxygen OI 557.7 nm nightglow emission. Data coverage for local solar times ranging from 20 h to 04 h, and latitudes ranging from 42°S to 42°N, is achieved by zonally averaging and binning data obtained on 18 nights during a two-month period extending from mid-November 1992 until mid-January 1993. The derived nitric oxide concentrations are significantly smaller than those obtained from rocket measurements of the airglow continuum but they do compare well with model expectations and nitric oxide densities measured using the resonance fluorescence technique on the Solar Mesosphere Explorer satellite. The near-global coverage of the WINDII observations and the similarities to the nitric oxide global morphology established from other satellite measurements strongly suggests that the NO+O reaction is the major source of the continuum near 553 nm and that there is no compelling reason to invoke additional sources of continuum emission in this immediate spectral region.Key words. Atmospheric composition and structure (airglow and aurora; thermosphere – composition and chemistry; instruments and techniques

  10. The Co-creation Continuum

    DEFF Research Database (Denmark)

    Ind, Nicholas; Iglesias, Oriol; Markovic, Stefan

    2017-01-01

    -creation - from tactical market research tool to strategic collaborative innovation method, and shows that brands can be positioned along a continuum between these two polarities. This article also presents the implications for those that want to seize the potential of co-creation....

  11. Effects of continuum breakdown on hypersonic aerothermodynamics for reacting flow

    Science.gov (United States)

    Holman, Timothy D.; Boyd, Iain D.

    2011-02-01

    This study investigates the effects of continuum breakdown on the surface aerothermodynamic properties (pressure, stress, and heat transfer rate) of a sphere in a Mach 25 flow of reacting air in regimes varying from continuum to a rarefied gas. Results are generated using both continuum [computational fluid dynamics (CFD)] and particle [direct simulation Monte Carlo (DSMC)] approaches. The DSMC method utilizes a chemistry model that calculates the backward rates from an equilibrium constant. A preferential dissociation model is modified in the CFD method to better compare with the vibrationally favored dissociation model that is utilized in the DSMC method. Tests of these models are performed to confirm their validity and to compare the chemistry models in both numerical methods. This study examines the effect of reacting air flow on continuum breakdown and the surface properties of the sphere. As the global Knudsen number increases, the amount of continuum breakdown in the flow and on the surface increases. This increase in continuum breakdown significantly affects the surface properties, causing an increase in the differences between CFD and DSMC. Explanations are provided for the trends observed.

  12. Bursts and shocks in a continuum shell model

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Bohr, Tomas; Jensen, M.H.

    1998-01-01

    We study a burst event, i.e., the evolution of an initial condition having support only in a finite interval of k-space, in the continuum shell model due to Parisi. We show that the continuum equation without forcing or dissipation can be explicitly written in characteristic form and that the right...

  13. Lyman continuum observations of solar flares

    Science.gov (United States)

    Machado, M. E.; Noyes, R. W.

    1978-01-01

    A study is made of Lyman continuum observations of solar flares, using data obtained by the EUV spectroheliometer on the Apollo Telescope Mount. It is found that there are two main types of flare regions: an overall 'mean' flare coincident with the H-alpha flare region, and transient Lyman continuum kernels which can be identified with the H-alpha and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density .000005 g/sq cm in the quiet sun to .0003 g/sq cm in the mean flare, and to .001 g/sq cm in kernels. From these results the amount of chromospheric material 'evaporated' into the high temperature region is derived, which is found to be approximately 10 to the 15th g, in agreement with observations of X-ray emission measures.

  14. A Coupling Tool for Parallel Molecular Dynamics-Continuum Simulations

    KAUST Repository

    Neumann, Philipp; Tchipev, Nikola

    2012-01-01

    We present a tool for coupling Molecular Dynamics and continuum solvers. It is written in C++ and is meant to support the developers of hybrid molecular - continuum simulations in terms of both realisation of the respective coupling algorithm

  15. Geometric continuum regularization of quantum field theory

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1989-01-01

    An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs

  16. Virioplankton Assemblage Structure in the Lower River and Ocean Continuum of the Amazon

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Bruno S. de O.; Coutinho, Felipe H.; Gregoracci, Gustavo B.; Leomil, Luciana; de Oliveira, Louisi S.; Fróes, Adriana; Tschoeke, Diogo; Soares, Ana Carolina; Cabral, Anderson S.; Ward, Nicholas D.; Richey, Jeffrey E.; Krusche, Alex V.; Yager, Patricia L.; de Rezende, Carlos Eduardo; Thompson, Cristiane C.; Thompson, Fabiano L.; Imperiale, Michael J.

    2017-10-04

    Atlantic Ocean that can extend for more than 1,000 km. Microbial communities promote a globally relevant carbon sink system in the plume. Despite the importance of viruses for the global carbon cycle, the diversity and the possible roles of viruses in the Amazon are poorly understood. The present work assesses, for the first time, the abundance and diversity of viruses simultaneously in the river and ocean in order to elucidate their possible roles. DNA sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes from the 12 river and ocean locations. Viral diversity was clearly distinguished by river and ocean. Bacteriophages were the most abundant and occurred throughout the continuum. Viruses that infect eukaryotes were more abundant in the river, whereas phages appeared to have strong control over the host prokaryotic populations in the plume.

  17. ALMA BAND 8 CONTINUUM EMISSION FROM ORION SOURCE I

    Energy Technology Data Exchange (ETDEWEB)

    Hirota, Tomoya; Matsumoto, Naoko [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka-shi, Tokyo 181-8588 (Japan); Machida, Masahiro N.; Matsushita, Yuko [Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395 (Japan); Motogi, Kazuhito; Honma, Mareki [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Hoshigaoka2-12, Mizusawa-ku, Oshu-shi, Iwate 023-0861 (Japan); Kim, Mi Kyoung [Korea Astronomy and Space Science Institute, Hwaam-dong 61-1, Yuseong-gu, Daejeon, 305-348 (Korea, Republic of); Burns, Ross A., E-mail: tomoya.hirota@nao.ac.jp [Joint Institute for VLBI in Europe, Postbus 2, 7990 AA, Dwingeloo (Netherlands)

    2016-12-20

    We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.″1. The continuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest–southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au × 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelengths. The flux density can be well fitted to the optically thick blackbody spectral energy distribution, and the brightness temperature is evaluated to be 700–800 K. It is much lower than that in the case of proton–electron or H{sup −} free–free radiations. Our data are consistent with the latest ALMA results by Plambeck and Wright, in which the continuum emission was proposed to arise from the edge-on circumstellar disk via thermal dust emission, unless the continuum source consists of an unresolved structure with a smaller beam filling factor.

  18. Assessing continuum postulates in simulations of granular flow

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris; Kamrin, Ken; Bazant, Martin

    2008-08-26

    Continuum mechanics relies on the fundamental notion of a mesoscopic volume"element" in which properties averaged over discrete particles obey deterministic relationships. Recent work on granular materials suggests a continuum law may be inapplicable, revealing inhomogeneities at the particle level, such as force chains and slow cage breaking. Here, we analyze large-scale three-dimensional Discrete-Element Method (DEM) simulations of different granular flows and show that an approximate"granular element" defined at the scale of observed dynamical correlations (roughly three to five particle diameters) has a reasonable continuum interpretation. By viewing all the simulations as an ensemble of granular elements which deform and move with the flow, we can track material evolution at a local level. Our results confirm some of the hypotheses of classical plasticity theory while contradicting others and suggest a subtle physical picture of granular failure, combining liquid-like dependence on deformation rate and solid-like dependence on strain. Our computational methods and results can be used to guide the development of more realistic continuum models, based on observed local relationships betweenaverage variables.

  19. One millimeter continuum observations of high redshift quasars

    International Nuclear Information System (INIS)

    Ennis, D.J.; Soifer, B.T.

    1981-01-01

    Upper limits to the one-millimeter continuum flux densities of the high redshift quasars B2 1225 + 31, Ton 490, and PHL 957 are presented. The upper limit to the power observed from these quasars at 1 mm is, on the average, one half of the observed power in the continuum at L-alpha. These observations are used to constrain the temperature of a hypothetical dust shell which reddens the quasar line and continuum emission by an extinction optical depth sufficient to account for the anomalously low L-alpha/H-alpha emission line ratio observed in each of these quasars. For the quasars studied, dust shell temperatures between 25 K and 50 to 95 K are prohibited by the present data. A dust shell at a temperature within this span reradiating all the power absorbed from the quasar ultraviolet continuum would produce a one-millimeter flux density greater than the measured upper limit. The average radius of the model dust shell cannot be between 70 kpc and 1 Mpc

  20. Quasar Accretion Disk Sizes With Continuum Reverberation Mapping From the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Mudd, D.; et al.

    2017-11-30

    We present accretion disk size measurements for 15 luminous quasars at $0.7 \\leq z \\leq 1.9$ derived from $griz$ light curves from the Dark Energy Survey. We measure the disk sizes with continuum reverberation mapping using two methods, both of which are derived from the expectation that accretion disks have a radial temperature gradient and the continuum emission at a given radius is well-described by a single blackbody. In the first method we measure the relative lags between the multiband light curves, which provides the relative time lag between shorter and longer wavelength variations. The second method fits the model parameters for the canonical Shakura-Sunyaev thin disk directly rather than solving for the individual time lags between the light curves. Our measurements demonstrate good agreement with the sizes predicted by this model for accretion rates between 0.3-1 times the Eddington rate. These results are also in reasonable agreement with disk size measurements from gravitational microlensing studies of strongly lensed quasars, as well as other photometric reverberation mapping results.

  1. Orthotropic creep in polyethylene glycol impregnated archaeological oak from the Vasa ship - Results of creep experiments in a museum-like climate

    Science.gov (United States)

    Vorobyev, Alexey; van Dijk, Nico P.; Kristofer Gamstedt, E.

    2018-02-01

    Creep in archaeological oak samples and planks from the Vasa ship impregnated with polyethylene glycol (PEG) has been studied in museum-like climate. Creep studies of duration up to three years have been performed in nearly constant relative humidity and temperature of the controlled museum climate. Cubic samples were subjected to compressive creep tests in all orthotropic directions. Additionally, the creep behaviour of planks with and without PEG and of recent oak was tested in four-point bending. The experimental results have been summarised and also compared with reference results from recent oak wood. The effect of variable ambient conditions on creep and mass changes is discussed. The experimental results of creep in the longitudinal direction showed deformations even for the low stresses. There is relatively much more scatter in creep behaviour, and not all samples showed linear viscoelastic response. The creep in radial and tangential directions of the cubes and the plank samples showed a strong dependency on the ambient conditions. Some samples showed expansion for decreasing moisture content, possibly caused by the thermal expansion of the PEG component. For the planks, increasing creep deformation was observed induced by changing ambient conditions. Such behaviour may be related to e.g. oscillations in ambient conditions and presence of PEG in the wood cell wall and cell lumen. The behaviour of PEG archaeological wood depends on the level of deterioration that occurred over centuries. However, although the findings presented here apply to this specific case, they provide a unique view on such wood.

  2. Prediction of material damage in orthotropic metals for virtual structural testing

    OpenAIRE

    Ravindran, S.

    2010-01-01

    Models based on the Continuum Damage Mechanics principle are increasingly used for predicting the initiation and growth of damage in materials. The growing reliance on 3-D finite element (FE) virtual structural testing demands implementation and validation of robust material models that can predict the material behaviour accurately. The use of these models within numerical analyses requires suitable material data. EU aerospace companies along with Cranfield University and other similar resear...

  3. 3D-Printing of Meso-structurally Ordered Carbon Fiber/Polymer Composites with Unprecedented Orthotropic Physical Properties

    Science.gov (United States)

    Lewicki, James P.; Rodriguez, Jennifer N.; Zhu, Cheng; Worsley, Marcus A.; Wu, Amanda S.; Kanarska, Yuliya; Horn, John D.; Duoss, Eric B.; Ortega, Jason M.; Elmer, William; Hensleigh, Ryan; Fellini, Ryan A.; King, Michael J.

    2017-03-01

    Here we report the first example of a class of additively manufactured carbon fiber reinforced composite (AMCFRC) materials which have been achieved through the use of a latent thermal cured aromatic thermoset resin system, through an adaptation of direct ink writing (DIW) 3D-printing technology. We have developed a means of printing high performance thermoset carbon fiber composites, which allow the fiber component of a resin and carbon fiber fluid to be aligned in three dimensions via controlled micro-extrusion and subsequently cured into complex geometries. Characterization of our composite systems clearly show that we achieved a high order of fiber alignment within the composite microstructure, which in turn allows these materials to outperform equivalently filled randomly oriented carbon fiber and polymer composites. Furthermore, our AM carbon fiber composite systems exhibit highly orthotropic mechanical and electrical responses as a direct result of the alignment of carbon fiber bundles in the microscale which we predict will ultimately lead to the design of truly tailorable carbon fiber/polymer hybrid materials having locally programmable complex electrical, thermal and mechanical response.

  4. An asymptotic homogenization model for smart 3D grid-reinforced composite structures with generally orthotropic constituents

    International Nuclear Information System (INIS)

    Hassan, E M; Kalamkarov, A L; Georgiades, A V; Challagulla, K S

    2009-01-01

    A comprehensive micromechanical model for smart 3D composite structures reinforced with a periodic grid of generally orthotropic cylindrical reinforcements that also exhibit piezoelectric behavior is developed. The original boundary value problem characterizing the piezothermoelastic behavior of these structures is decoupled into a set of three simpler unit cell problems dealing, separately, with the elastic, piezoelectric and thermal expansion characteristics of the smart composite. The technique used is that of asymptotic homogenization and the solution of the unit cell problems permits determination of the effective elastic, piezoelectric and thermal expansion coefficients. The general orthotropy of the constituent materials is very important from the practical viewpoint and makes the analysis much more complicated. Several examples of practical interest are used to illustrate the work including smart 3D composites with cubic and conical embedded grids as well as diagonally reinforced smart structures. It is also shown in this work that in the limiting particular case of 2D grid-reinforced structures with isotropic reinforcements our results converge to earlier published results

  5. Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity

    International Nuclear Information System (INIS)

    Nozieres, P.; Schmitt-Rink, S.

    1985-01-01

    We consider a gas of fermions interacting via an attractive potential. We study the ground state of that system and calculate the critical temperature for the onset of superconductivity as a function of the coupling strength. We compare the behavior of continuum and lattice models and show that the evolution from weak to strong coupling superconductivity is smooth

  6. On deformation of complex continuum immersed in a plane space

    Science.gov (United States)

    Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.

    2018-05-01

    The present paper is devoted to mathematical modelling of complex continua deformations considered as immersed in an external plane space. The complex continuum is defined as a differential manifold supplied with metrics induced by the external space. A systematic derivation of strain tensors by notion of isometric immersion of the complex continuum into a plane space of a higher dimension is proposed. Problem of establishing complete systems of irreducible objective strain and extrastrain tensors for complex continuum immersed in an external plane space is resolved. The solution to the problem is obtained by methods of the field theory and the theory of rational algebraic invariants. Strain tensors of the complex continuum are derived as irreducible algebraic invariants of contravariant vectors of the external space emerging as functional arguments in the complex continuum action density. Present analysis is restricted to rational algebraic invariants. Completeness of the considered systems of rational algebraic invariants is established for micropolar elastic continua. Rational syzygies for non-quadratic invariants are discussed. Objective strain tensors (indifferent to frame rotations in the external plane space) for micropolar continuum are alternatively obtained by properly combining multipliers of polar decompositions of deformation and extra-deformation gradients. The latter is realized only for continua immersed in a plane space of the equal mathematical dimension.

  7. Continuum gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1981-06-01

    When angular momentum is added to a nucleus, it is, of course, carried by the individual nucleons, but two limiting types of behavior may be distinguished: (1) a small number of high-j particles align with the rotation axis and (2) the nucleus is deformed and rotates as a whole. At high spin all nuclei seem to show a compromise utilizing both motions. The excited nuclei left as products of (HI,xn) reactions have so many pathways down that none of the γ-ray transitions have enough intensity to be seen individually until the population gathers near the yrast line. This occurs usually between spin 20 to 40 h-bar. All our information on the higher states comes from their continuum spectra. With the new techniques that are developing, including the use of multiplicity filters, total-energy spectrometers, energy correlation studies, crystal balls, and observation of giant dipole resonances in the continuum spectra, there is hope to learn much about the nature of the high-spin states

  8. Nonlocal continuum field theories

    CERN Document Server

    2002-01-01

    Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...

  9. STATCONT: A statistical continuum level determination method for line-rich sources

    Science.gov (United States)

    Sánchez-Monge, Á.; Schilke, P.; Ginsburg, A.; Cesaroni, R.; Schmiedeke, A.

    2018-01-01

    STATCONT is a python-based tool designed to determine the continuum emission level in spectral data, in particular for sources with a line-rich spectrum. The tool inspects the intensity distribution of a given spectrum and automatically determines the continuum level by using different statistical approaches. The different methods included in STATCONT are tested against synthetic data. We conclude that the sigma-clipping algorithm provides the most accurate continuum level determination, together with information on the uncertainty in its determination. This uncertainty can be used to correct the final continuum emission level, resulting in the here called `corrected sigma-clipping method' or c-SCM. The c-SCM has been tested against more than 750 different synthetic spectra reproducing typical conditions found towards astronomical sources. The continuum level is determined with a discrepancy of less than 1% in 50% of the cases, and less than 5% in 90% of the cases, provided at least 10% of the channels are line free. The main products of STATCONT are the continuum emission level, together with a conservative value of its uncertainty, and datacubes containing only spectral line emission, i.e., continuum-subtracted datacubes. STATCONT also includes the option to estimate the spectral index, when different files covering different frequency ranges are provided.

  10. The HIV Care Continuum among Female Sex Workers: A Key Population in Lilongwe, Malawi.

    Directory of Open Access Journals (Sweden)

    Kathryn Elizabeth Lancaster

    Full Text Available The HIV care continuum among female sex workers (FSW, a key population, has not been well characterized, especially within the generalized epidemics of sub-Saharan Africa. This was the first study to characterize the HIV care continuum among FSW in Lilongwe, Malawi.From July through September 2014, we used venue-based sampling to enroll 200 adult FSW in Lilongwe, Malawi into a cross-sectional evaluation assessing HIV care continuum outcomes. Seropositive FSW, identified using HIV rapid testing, received rapid CD4 counts in addition to viral loads using dried blood spots. We calculated proportions of HIV-infected FSW who had history of care, were on ART, and had suppressed viral load and we used Poisson regression to estimate the associations of demographic characteristics and transmission risk behaviors with each outcome.HIV seroprevalence was 69% (n = 138. Among all FSW the median age was 24 years (IQR: 22-28. Among the 20% who were newly diagnosed and reported previously testing negative, the median time since last HIV test was 11 months (interquartile range: 3-17. The majority (69% of HIV-infected FSW had a history of HIV care, 52% reported current ART use, and 45% were virally suppressed. Of the FSW who reported current ART use, 86% were virally suppressed. Transmission risk behaviors were not associated with continuum outcomes.FSW in Lilongwe were predominately young and have a high HIV prevalence. Only half of HIV-infected FSW reported current ART use, but the majority of those on ART were virally suppressed. To reduce ongoing transmission and improve health outcomes, increased HIV testing, care engagement, and ART coverage is urgently needed among FSW. Universal testing and treatment strategies for all FSW in Malawi must be strongly considered.

  11. Continuum regularized Yang-Mills theory

    International Nuclear Information System (INIS)

    Sadun, L.A.

    1987-01-01

    Using the machinery of stochastic quantization, Z. Bern, M. B. Halpern, C. Taubes and I recently proposed a continuum regularization technique for quantum field theory. This regularization may be implemented by applying a regulator to either the (d + 1)-dimensional Parisi-Wu Langevin equation or, equivalently, to the d-dimensional second order Schwinger-Dyson (SD) equations. This technique is non-perturbative, respects all gauge and Lorentz symmetries, and is consistent with a ghost-free gauge fixing (Zwanziger's). This thesis is a detailed study of this regulator, and of regularized Yang-Mills theory, using both perturbative and non-perturbative techniques. The perturbative analysis comes first. The mechanism of stochastic quantization is reviewed, and a perturbative expansion based on second-order SD equations is developed. A diagrammatic method (SD diagrams) for evaluating terms of this expansion is developed. We apply the continuum regulator to a scalar field theory. Using SD diagrams, we show that all Green functions can be rendered finite to all orders in perturbation theory. Even non-renormalizable theories can be regularized. The continuum regulator is then applied to Yang-Mills theory, in conjunction with Zwanziger's gauge fixing. A perturbative expansion of the regulator is incorporated into the diagrammatic method. It is hoped that the techniques discussed in this thesis will contribute to the construction of a renormalized Yang-Mills theory is 3 and 4 dimensions

  12. Continuum of Care (COC) Areas

    Data.gov (United States)

    Department of Housing and Urban Development — The purpose of the Continuum of Care (CoC) Homeless Assistance Programs is to reduce the incidence of homelessness in CoC communities by assisting homeless...

  13. Continuum methods of physical modeling continuum mechanics, dimensional analysis, turbulence

    CERN Document Server

    Hutter, Kolumban

    2004-01-01

    The book unifies classical continuum mechanics and turbulence modeling, i.e. the same fundamental concepts are used to derive model equations for material behaviour and turbulence closure and complements these with methods of dimensional analysis. The intention is to equip the reader with the ability to understand the complex nonlinear modeling in material behaviour and turbulence closure as well as to derive or invent his own models. Examples are mostly taken from environmental physics and geophysics.

  14. Continuum Thinking and the Contexts of Personal Information Management

    Science.gov (United States)

    Huvila, Isto; Eriksen, Jon; Häusner, Eva-Maria; Jansson, Ina-Maria

    2014-01-01

    Introduction: Recent personal information management literature has underlined the significance of the contextuality of personal information and its use. The present article discusses the applicability of the records continuum model and its generalisation, continuum thinking, as a theoretical framework for explicating the overlap and evolution of…

  15. Uncertainties Concerning the Free Vibration of Inhomogeneous Orthotropic Reinforced Concrete Plates

    Science.gov (United States)

    Shahsavar, Vahid Lal; Tofighi, Samira

    2014-09-01

    Analyzing nearly collapsed and broken structures gives good insights into possible architectural and engineering design mistakes and faults in the detailing and mismanagement of a construction by building contractors. Harmful vibration effects of construction operations occur frequently. The background reviews have demonstrated that the problem of the vibration serviceability of long-span concrete floors in buildings is complex and interdisciplinary in nature. In public buildings, floor vibration control is required in order to meet Serviceability Limit States that ensure the comfort of the users of a building. In industrial buildings, machines are often placed on floors. Machines generate vibrations of various frequencies, which are transferred to supporting constructions. Precision machines require a stable floor with defined and known dynamic characteristics. In recent years there has been increasing interest in the motion of elastic bodies whose material properties (density, elastic moduli, etc.) are not constant, but vary with their position, perhaps in a random manner. Concrete is a non-homogeneous and anisotropic material. Modeling the mechanical behavior of reinforced concrete (RC) is still one of the most difficult challenges in the field of structural engineering. One of several methods for determining the dynamic modulus of the elasticity of engineering materials is the vibration frequency procedure. In this method, the required variables except for the modulus of elasticity are accurately and certainly determined. In this research, the uncertainly analysis of the free vibration of inhomogeneous orthotropic reinforced concrete plates has been investigated. Due to the numerous outputs obtained, the software package has been written in Matlab, and an analysis of the data and drawing related charts has been done.

  16. Lattice Boltzmann method for multi-component, non-continuum mass diffusion

    International Nuclear Information System (INIS)

    Joshi, Abhijit S; Peracchio, Aldo A; Grew, Kyle N; Chiu, Wilson K S

    2007-01-01

    Recently, there has been a great deal of interest in extending the lattice Boltzmann method (LBM) to model transport phenomena in the non-continuum regime. Most of these studies have focused on single-component flows through simple geometries. This work examines an ad hoc extension of a recently developed LBM model for multi-component mass diffusion (Joshi et al 2007 J. Phys. D: Appl. Phys. 40 2961) to model mass diffusion in the non-continuum regime. In order to validate the method, LBM results for ternary diffusion in a two-dimensional channel are compared with predictions of the dusty gas model (DGM) over a range of Knudsen numbers. A calibration factor based on the DGM is used in the LBM to correlate Knudsen diffusivity to pore size. Results indicate that the LBM can be a useful tool for predicting non-continuum mass diffusion (Kn > 0.001), but additional research is needed to extend the range of applicability of the algorithm for a larger parameter space. Guidelines are given on using the methodology described in this work to model non-continuum mass transport in more complex geometries where the DGM is not easily applicable. In addition, the non-continuum LBM methodology can be extended to three-dimensions. An envisioned application of this technique is to model non-continuum mass transport in porous solid oxide fuel cell electrodes

  17. A nonlocal strain gradient model for dynamic deformation of orthotropic viscoelastic graphene sheets under time harmonic thermal load

    Science.gov (United States)

    Radwan, Ahmed F.; Sobhy, Mohammed

    2018-06-01

    This work presents a nonlocal strain gradient theory for the dynamic deformation response of a single-layered graphene sheet (SLGS) on a viscoelastic foundation and subjected to a time harmonic thermal load for various boundary conditions. Material of graphene sheets is presumed to be orthotropic and viscoelastic. The viscoelastic foundation is modeled as Kelvin-Voigt's pattern. Based on the two-unknown plate theory, the motion equations are obtained from the dynamic version of the virtual work principle. The nonlocal strain gradient theory is established from Eringen nonlocal and strain gradient theories, therefore, it contains two material scale parameters, which are nonlocal parameter and gradient coefficient. These scale parameters have two different effects on the graphene sheets. The obtained deflection is compared with that predicted in the literature. Additional numerical examples are introduced to illustrate the influences of the two length scale coefficients and other parameters on the dynamic deformation of the viscoelastic graphene sheets.

  18. Continuum mechanics using Mathematica fundamentals, methods, and applications

    CERN Document Server

    Romano, Antonio

    2014-01-01

    This textbook's methodological approach familiarizes readers with the mathematical tools required to correctly define and solve problems in continuum mechanics. Covering essential principles and fundamental applications, this second edition of Continuum Mechanics using Mathematica® provides a solid basis for a deeper study of more challenging and specialized problems related to nonlinear elasticity, polar continua, mixtures, piezoelectricity, ferroelectricity, magneto-fluid mechanics, and state changes (see A. Romano, A. Marasco, Continuum Mechanics: Advanced Topics and Research Trends, Springer (Birkhäuser), 2010, ISBN 978-0-8176-4869-5). Key topics and features: * Concise presentation strikes a balance between fundamentals and applications * Requisite mathematical background carefully collected in two introductory chapters and one appendix * Recent developments highlighted through coverage of more significant applications to areas such as wave propagation, fluid mechanics, porous media, linear elasticity....

  19. ICMS Workshop on Differential Geometry and Continuum Mechanics

    CERN Document Server

    Grinfeld, Michael; Knops, R

    2015-01-01

    This book examines the exciting interface between differential geometry and continuum mechanics, now recognised as being of increasing technological significance. Topics discussed include isometric embeddings in differential geometry and the relation with microstructure in nonlinear elasticity, the use of manifolds in the description of microstructure in continuum mechanics, experimental measurement of microstructure, defects, dislocations, surface energies, and nematic liquid crystals. Compensated compactness in partial differential equations is also treated. The volume is intended for specialists and non-specialists in pure and applied geometry, continuum mechanics, theoretical physics, materials and engineering sciences, and partial differential equations. It will also be of interest to postdoctoral scientists and advanced postgraduate research students. These proceedings include revised written versions of the majority of papers presented by leading experts at the ICMS Edinburgh Workshop on Differential G...

  20. A very small and super strong zebra pattern burst at the beginning of a solar flare

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Baolin; Tan, Chengming; Zhang, Yin; Huang, Jing; Yan, Yihua [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China); Mészárosová, Hana; Karlický, Marian, E-mail: bltan@nao.cas.cn [Astronomical Institute of the Academy of Sciences of the Czech Republic, Ondřejov 15165 (Czech Republic)

    2014-08-01

    Microwave emission with spectral zebra pattern structures (ZPs) is frequently observed in solar flares and the Crab pulsar. The previous observations show that ZP is a structure only overlapped on the underlying broadband continuum with slight increments and decrements. This work reports an unusually strong ZP burst occurring at the beginning of a solar flare observed simultaneously by two radio telescopes located in China and the Czech Republic and by the EUV telescope on board NASA's satellite Solar Dynamics Observatory on 2013 April 11. It is a very short and super strong explosion whose intensity exceeds several times that of the underlying flaring broadband continuum emission, lasting for just 18 s. EUV images show that the flare starts from several small flare bursting points (FBPs). There is a sudden EUV flash with extra enhancement in one of these FBPs during the ZP burst. Analysis indicates that the ZP burst accompanying an EUV flash is an unusual explosion revealing a strong coherent process with rapid particle acceleration, violent energy release, and fast plasma heating simultaneously in a small region with a short duration just at the beginning of the flare.

  1. Extrapolation of lattice gauge theories to the continuum limit

    International Nuclear Information System (INIS)

    Duncan, A.; Vaidya, H.

    1978-01-01

    The problem of extrapolating lattice gauge theories from the strong-coupling phase to the continuum critical point is studied for the Abelian (U(1)) and non-Abelian (SU(2)) theories in three (space--time) dimensions. A method is described for obtaining the asymptotic behavior, for large β, of such thermodynamic quantities and correlation functions as the free energy and Wilson loop function. Certain general analyticity and positivity properties (in the complex β-plane) are shown to lead, after appropriate analytic remappings, to a Stieltjes property of these functions. Rigorous theorems then guarantee uniform and monotone convergence of the Pade approximants, with exact pointwise upper and lower bounds. The first three Pade's are computed for both the free energy and the Wilson function. For the free energy, satisfactory agreement is with the asymptotic behavior computed by an explicit lattice calculation. The strong-coupling series for the Wilson function is found to be considerably more unstable in the lower order terms - correspondingly, convergence of the Pade's is found to be slower than in the free-energy case. It is suggested that higher-order calculations may allow a reasonably accurate determination of the string constant for the SU(2) theory. 14 references

  2. Flare continuum

    International Nuclear Information System (INIS)

    Robinson, R.D.

    1985-01-01

    This paper reviews the metre-wave continuum radiation which is related to similar solar emissions observed in the decimetre and centimetre spectral regions. This type of emission, known as Flare Contiuum, is related to the radio bursts of types II and IV. After summarising the history of the phenomenon and reviewing the observational work, the author discusses the various possible radiation mechanisms and their relation to the solar corona, the interplanetary medium and related regions. The theoretical topics covered include the role of high-energy particles, the trapping of such particles, gyro-synchrotron radiation, polarization and plasma interactions. (U.K.)

  3. Dynamic Modelling for Planar Extensible Continuum Robot Manipulators

    Science.gov (United States)

    2006-01-01

    to the OCTARM continuum ma- nipulator. The OCTARM manipulator is a biologically inspired soft robot manipulator resembling an elephant trunk or an... octopus arm [18]. The OCTARM, shown in Figure 1, is a three-section robot with nine degrees of freedom. Aside from two axis bending with constant...increasing interest in designing �biologically inspired � continuum robots . Some of these designs are mimicking trunks [8], [25], tentacles [17], [21], [24

  4. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    Science.gov (United States)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning

  5. Bound states in strongly correlated magnetic and electronic systems

    International Nuclear Information System (INIS)

    Trebst, S.

    2002-02-01

    A novel strong coupling expansion method to calculate two-particle spectra of quantum lattice models is developed. The technique can be used to study bosonic and fermionic models and in principle it can be applied to systems in any dimension. A number of strongly correlated magnetic and electronic systems are examined including the two-leg spin-half Heisenberg ladder, the dimerized Heisenberg chain with a frustrating next-nearest neighbor interaction, coupled Heisenberg ladders, and the one-dimensional Kondo lattice model. In the various models distinct bound states are found below the two-particle continuum. Quantitative calculations of the dispersion, coherence length and binding energy of these bound states are used to describe spectroscopic experiments on (Ca,La) 14 Cu 24 O 41 and NaV 2 O 5 . (orig.)

  6. Generalized Continuum: from Voigt to the Modeling of Quasi-Brittle Materials

    Directory of Open Access Journals (Sweden)

    Jamile Salim Fuina

    2010-12-01

    Full Text Available This article discusses the use of the generalized continuum theories to incorporate the effects of the microstructure in the nonlinear finite element analysis of quasi-brittle materials and, thus, to solve mesh dependency problems. A description of the problem called numerically induced strain localization, often found in Finite Element Method material non-linear analysis, is presented. A brief historic about the Generalized Continuum Mechanics based models is presented, since the initial work of Voigt (1887 until the more recent studies. By analyzing these models, it is observed that the Cosserat and microstretch approaches are particular cases of a general formulation that describes the micromorphic continuum. After reporting attempts to incorporate the material microstructure in Classical Continuum Mechanics based models, the article shows the recent tendency of doing it according to assumptions of the Generalized Continuum Mechanics. Finally, it presents numerical results which enable to characterize this tendency as a promising way to solve the problem.

  7. Nuclear structure investigations with inclusion of continuum states

    International Nuclear Information System (INIS)

    Rotter, I.

    1983-09-01

    The influence of the continuum on the properties of discrete nuclear states is reviewed. It is described on the basis of a continuum shell model. The coupling of the discrete states to the continuum results in an additional term to the Hamiltonian, commonly used in the study of nuclear structure, and an additional term to the wavefunction of the discrete state. These additional terms characterise finite nuclei in contrast to nuclear matter. They result in some symmetry violation of the residual nuclear interaction such as charge symmetry violation, and describe the nuclear surface, respectively. The energies and widths of resonance states result from the complex eigenvalues of the Hamiltonian. The partial widths are shown to be factorisable into a spectroscopic factor and into a penetration factor if the spectroscopic factor is large. An expression for the S-matrix is derived in which instead of the so-called resonance parameters, functions appear which are calculated in the framework of the model. The line shape of resonances is also influenced by these functions. As an extreme case, a resonance may have the appearance of a cusp. The conclusions drawn are supported by the results of numerical calculations performed in the continuum shell model for light nuclei with realistic shell model wavefunctions. (author)

  8. Continuum of Counseling Goals: A Framework for Differentiating Counseling Strategies.

    Science.gov (United States)

    Bruce, Paul

    1984-01-01

    Presents counseling goals in a developmental continuum similar in concept to Maslow's hierarchy of needs. Discusses ego development goals, socialization goals, developmental goals, self-esteem goals, and self-realization goals and describes characteristics and implications of the continuum. (JAC)

  9. The geometry of continuum regularization

    International Nuclear Information System (INIS)

    Halpern, M.B.

    1987-03-01

    This lecture is primarily an introduction to coordinate-invariant regularization, a recent advance in the continuum regularization program. In this context, the program is seen as fundamentally geometric, with all regularization contained in regularized DeWitt superstructures on field deformations

  10. HIV continuum of care in Europe and Central Asia.

    Science.gov (United States)

    Drew, R S; Rice, B; Rüütel, K; Delpech, V; Attawell, K A; Hales, D K; Velasco, C; Amato-Gauci, A J; Pharris, A; Tavoschi, L; Noori, T

    2017-08-01

    The European Centre for Disease Prevention and Control (ECDC) supports countries to monitor progress in their response to the HIV epidemic. In line with these monitoring responsibilities, we assess how, and to what extent, the continuum of care is being measured across countries. The ECDC sent out questionnaires to 55 countries in Europe and Central Asia in 2014. Nominated country representatives were questioned on how they defined and measured six elements of the continuum. We present our results using three previously described frameworks [breakpoints; Joint United Nations Programme on HIV/AIDS (UNAIDS) 90-90-90 targets; diagnosis and treatment quadrant]. Forty countries provided data for at least one element of the continuum. Countries reported most frequently on the number of people diagnosed with HIV infection (37; 93%), and on the number in receipt of antiretroviral therapy (ART) (35; 88%). There was little consensus across countries in their approach to defining linkage to, and retention in, care. The most common breakpoint (>19% reduction between two adjacent elements) related to the estimated number of people living with HIV who were diagnosed (18 of 23; 78%). We present continuum data from multiple countries that provide both a snapshot of care provision and a baseline against which changes over time in care provision across Europe and Central Asia may be measured. To better inform HIV testing and treatment programmes, standard data collection approaches and definitions across the HIV continuum of care are needed. If countries wish to ensure an unbroken HIV continuum of care, people living with HIV need to be diagnosed promptly, and ART needs to be offered to all those diagnosed. © 2017 The Authors. HIV Medicine published by John Wiley & Sons Ltd on behalf of British HIV Association.

  11. Continuum Damage Mechanics A Continuum Mechanics Approach to the Analysis of Damage and Fracture

    CERN Document Server

    Murakami, Sumio

    2012-01-01

    Recent developments in engineering and technology have brought about serious and enlarged demands for reliability, safety and economy in wide range of fields such as aeronautics, nuclear engineering, civil and structural engineering, automotive and production industry.  This, in turn, has caused more interest in continuum damage mechanics and its engineering applications.   This book aims to give a concise overview of the current state of damage mechanics, and then to show the fascinating possibility of this promising branch of mechanics, and to provide researchers, engineers and graduate students with an intelligible and self-contained textbook.   The book consists of two parts and an appendix.  Part I  is concerned with the foundation of continuum damage mechanics.  Basic concepts of material damage and the mechanical representation of damage state of various kinds are described in Chapters 1 and 2.  In Chapters 3-5, irreversible thermodynamics, thermodynamic constitutive theory and its application ...

  12. Coupled thermal stress analysis of a hollow circular cylinder with transversely isotropic properties

    International Nuclear Information System (INIS)

    Tanigawa, Y.; Ootao, Y.

    1987-01-01

    If we shall analyze the thermal stress problems exactly in a transient state in continuum media, discussed with both the coupling and inertia effect, it has be shown that the thermomechanical coupling term shows a significant role than the inertia term for the common commercial alloys. In the present paper, we have considered the continuum medium with transversely isotropic material property, which has an isotropic property in r-θ plane, and analyzed the transient thermal stress problem of an infinitely long hollow circular cylinder due to an axisymmetrical partial heating. In order to get the thermal and thermoelastic fundamental differential equations separated in each field, we have introduced a perturbation technique. And then, we have carried out numerical calculations for several values of thermal and thermoelastic orthotropical parameters. (orig./GL)

  13. Discrimination between discrete and continuum scattering from the sub-seafloor.

    Science.gov (United States)

    Holland, Charles W; Steininger, Gavin; Dosso, Stan E

    2015-08-01

    There is growing evidence that seabed scattering is often dominated by heterogeneities within the sediment volume as opposed to seafloor roughness. From a theoretical viewpoint, sediment volume heterogeneities can be described either by a fluctuation continuum or by discrete particles. In at-sea experiments, heterogeneity characteristics generally are not known a priori. Thus, an uninformed model selection is generally made, i.e., the researcher must arbitrarily select either a discrete or continuum model. It is shown here that it is possible to (acoustically) discriminate between continuum and discrete heterogeneities in some instances. For example, when the spectral exponent γ3>4, the volume scattering cannot be described by discrete particles. Conversely, when γ3≤2, the heterogeneities likely arise from discrete particles. Furthermore, in the range 2discrete vs continuum heterogeneities via acoustic remote sensing may lead to improved observations and concomitant increased understanding of the marine benthic environment.

  14. Continuum gauge fields from lattice gauge fields

    International Nuclear Information System (INIS)

    Goeckeler, M.; Kronfeld, A.S.; Schierholz, G.; Wiese, U.J.

    1993-01-01

    On the lattice some of the salient features of pure gauge theories and of gauge theories with fermions in complex representations of the gauge group seem to be lost. These features can be recovered by considering part of the theory in the continuum. The prerequisite for that is the construction of continuum gauge fields from lattice gauge fields. Such a construction, which is gauge covariant and complies with geometrical constructions of the topological charge on the lattice, is given in this paper. The procedure is explicitly carried out in the U(1) theory in two dimensions, where it leads to simple results. (orig.)

  15. Schematic large-dimension coupled-channel study of strong inelastic excitations to high-lying states in colliding nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kamimura, M. [Rijksuniversiteit Groningen (Netherlands). Kernfysisch Versneller Inst.; Nakano, M.; Yahiro, M.; Ikegami, H.; Muraoka, M. [eds.

    1980-01-01

    A mechanism of the strong inelastic excitation of colliding nuclei (e.g. deep inelastic heavy-ion collision) was studied in a schematic way based on a coupled channel (CC) framework. The purpose of this work is to see the gross behavior of the inelastic excitation strength versus epsilon (i.e. energy spectrum) for the assumed specific types of CC potentials between a large number of inelastic channels. Schematic large dimension CC calculation was considered rather than small-dimension CC calculation. The coupled N + 1 equations can be reduced to uncoupled N + 1 equations through the wellknown unitary transformation. An interesting case is that there exists strong channel independent coupling between any pair of the channels, all of which are almost degenerate in internal energy as compared with incoming c.m. energy. It was found that inelastic scattering hardly occurred while the collision was almost confined to the elastic component. The numerical calculation of S-matrix was carried out. Other cases, such as zero CC potential, the coupling between inelastic channel and entrance channel, and the case that the thickness of the coupling was changed, were investigated. As the results of the present study, it can be said that this CC coupling model may be useful for discussing continuum-continuum interactions in a breakup reaction by simulating the continuum states with many channels made discrete.

  16. Expansion of continuum functions on resonance wave functions and amplitudes

    International Nuclear Information System (INIS)

    Bang, J.; Gareev, F.A.; Gizzatkulov, M.H.; Goncharov, S.A.

    1978-01-01

    To overcome difficulties encountered with wave functions of continuum spectrum (for example, in a shell model with continuum) the pole expansion (by the Mittag-Leffler theorem) of wave functions, scattering amplitudes and the Green functions with positive energies are considered. It is shown that resonance functions (the Gamov functions) form a complete set over which the continuum functions could be expanded. The general view of these expansions for final potentials and for the Coulomb repulsion potential are obtained and discussed. It is shown that the application of the method to nuclear structure calculations leads to simple algebraic equations

  17. Non-classical solutions of a continuum model for rock descriptions

    Directory of Open Access Journals (Sweden)

    Mikhail A. Guzev

    2014-06-01

    Full Text Available The strain-gradient and non-Euclidean continuum theories are employed for construction of non-classical solutions of continuum models. The linear approximation of both models' results in identical structures in terms of their kinematic and stress characteristics. The solutions obtained in this study exhibit a critical behaviour with respect to the external loading parameter. The conclusions are obtained based on an investigation of the solution for the scalar curvature in the non-Euclidean continuum theory. The proposed analysis enables us to use different theoretical approaches for description of rock critical behaviour under different loading conditions.

  18. Reducing Actuator Requirements in Continuum Robots Through Optimized Cable Routing.

    Science.gov (United States)

    Case, Jennifer C; White, Edward L; SunSpiral, Vytas; Kramer-Bottiglio, Rebecca

    2018-02-01

    Continuum manipulators offer many advantages compared to their rigid-linked counterparts, such as increased degrees of freedom and workspace volume. Inspired by biological systems, such as elephant trunks and octopus tentacles, many continuum manipulators are made of multiple segments that allow large-scale deformations to be distributed throughout the body. Most continuum manipulators currently control each segment individually. For example, a planar cable-driven system is typically controlled by a pair of cables for each segment, which implies two actuators per segment. In this article, we demonstrate how highly coupled crossing cable configurations can reduce both actuator count and actuator torque requirements in a planar continuum manipulator, while maintaining workspace reachability and manipulability. We achieve highly coupled actuation by allowing cables to cross through the manipulator to create new cable configurations. We further derive an analytical model to predict the underactuated manipulator workspace and experimentally verify the model accuracy with a physical system. We use this model to compare crossing cable configurations to the traditional cable configuration using workspace performance metrics. Our work here focuses on a simplified planar robot, both in simulation and in hardware, with the goal of extending this to spiraling-cable configurations on full 3D continuum robots in future work.

  19. Computational Method for Atomistic-Continuum Homogenization

    National Research Council Canada - National Science Library

    Chung, Peter

    2002-01-01

    The homogenization method is used as a framework for developing a multiscale system of equations involving atoms at zero temperature at the small scale and continuum mechanics at the very large scale...

  20. Lyman-continuum leakage as dominant source of diffuse ionized gas in the Antennae galaxy

    Science.gov (United States)

    Weilbacher, Peter M.; Monreal-Ibero, Ana; Verhamme, Anne; Sandin, Christer; Steinmetz, Matthias; Kollatschny, Wolfram; Krajnović, Davor; Kamann, Sebastian; Roth, Martin M.; Erroz-Ferrer, Santiago; Marino, Raffaella Anna; Maseda, Michael V.; Wendt, Martin; Bacon, Roland; Dreizler, Stefan; Richard, Johan; Wisotzki, Lutz

    2018-04-01

    The Antennae galaxy (NGC 4038/39) is the closest major interacting galaxy system and is therefore often studied as a merger prototype. We present the first comprehensive integral field spectroscopic dataset of this system, observed with the MUSE instrument at the ESO VLT. We cover the two regions in this system which exhibit recent star formation: the central galaxy interaction and a region near the tip of the southern tidal tail. In these fields, we detect HII regions and diffuse ionized gas to unprecedented depth. About 15% of the ionized gas was undetected by previous observing campaigns. This newly detected faint ionized gas is visible everywhere around the central merger, and shows filamentary structure. We estimate diffuse gas fractions of about 60% in the central field and 10% in the southern region. We are able to show that the southern region contains a significantly different population of HII regions, showing fainter luminosities. By comparing HII region luminosities with the HST catalog of young star clusters in the central field, we estimate that there is enough Lyman-continuum leakage in the merger to explain the amount of diffuse ionized gas that we detect. We compare the Lyman-continuum escape fraction of each HII region against emission line ratios that are sensitive to the ionization parameter. While we find no systematic trend between these properties, the most extreme line ratios seem to be strong indicators of density bounded ionization. Extrapolating the Lyman-continuum escape fractions to the southern region, we conclude that simply from the comparison of the young stellar populations to the ionized gas there is no need to invoke other ionization mechanisms than Lyman-continuum leaking HII regions for the diffuse ionized gas in the Antennae. FITS images and Table of HII regions are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A95 and at http://muse-vlt.eu/science/antennae/

  1. Surface green function matching for a three-dimensional non-local continuum

    International Nuclear Information System (INIS)

    Idiodi, J.O.A.

    1985-07-01

    With a view toward helping to bridge the gap, from the continuum side, between discrete and continuum models of crystalline, elastic solids, explicit results are presented for non-local stress tensors that describe exactly some lattice dynamical models that have been widely used in the literature for cubic lattices. The Surface Green Function Matching (SGFM) method, which has been used successfully for a variety of surface problems, is then extended, within a continuum approach, to a non-local continuum that models a three-dimensional discrete lattice. The practical use of the method is demonstrated by performing a fairly complete analytical study of the vibrational surface modes of the SCC semi-infinite medium. Some results are presented for the [100] direction of the (001) surface of the SCC lattice. (author)

  2. From Kondo model and strong coupling lattice QCD to the Isgur-Wise function

    International Nuclear Information System (INIS)

    Patel, Apoorva

    1995-01-01

    Isgur-Wise functions parametrise the leading behaviour of weak decay form factors of mesons and baryons containing a single heavy quark. The form factors for the quark mass operator are calculated in strong coupling lattice QCD, and Isgur-Wise functions extracted from them. Based on renormalisation group invariance of the operators involved, it is argued that the Isgur-Wise functions would be the same in the weak coupling continuum theory. (author)

  3. Treatment of continuum in weakly bound systems in structure and reactions

    Energy Technology Data Exchange (ETDEWEB)

    Vitturi, Andrea [Dipartimento di Fisica and INFN, Padova (Italy); Perez-Bernal, Francisco [Facultad de Ciencias Experimentales, Departamento de Fisica Aplicada, Universidad de Huelva, Huelva (Spain)

    2010-03-01

    We investigate different treatments of continuum states in a simple structure case: two particles moving in a one-dimensional mean field and interacting via a density-dependent short range residual interaction. We find that in procedures that involve continuum discretization a rather large basis has to be used in order to get convergence to the exact results, in particular for the radial dependence of the two-particle wave function. This may lead to unpracticable situations in the case of many interacting particles in the continuum.

  4. Elementary Continuum Mechanics for Everyone

    DEFF Research Database (Denmark)

    Byskov, Esben

    numerical method, the finite element method, including means of mending inherent problems •An informal, yet precise exposition that emphasizes not just how a topic is treated, but discusses why a particular choice is made The book opens with a derivation of kinematically nonlinear 3-D continuum mechanics...

  5. Continuum analogues of contragredient Lie algebras

    International Nuclear Information System (INIS)

    Saveliev, M.V.; Vershik, A.M.

    1989-03-01

    We present an axiomatic formulation of a new class of infinite-dimensional Lie algebras - the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras ''continuum Lie algebras''. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential Cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered. (author). 9 refs

  6. Solar radio continuum storms and a breathing magnetic field model. Final report

    International Nuclear Information System (INIS)

    1975-01-01

    Radio noise continuum emissions observed in metric and decametric wave frequencies are, in general, associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. These continuum emission sources, often called type I storm sources, are often associated with type III burst storm activity from metric to hectometric wave frequencies. This storm activity is, therefore, closely connected with the development of these continuum emission sources. It is shown that the S-component emission in microwave frequencies generally precedes, by several days, the emission of these noise continuum storms of lower frequencies. In order for these storms to develop, the growth of sunspot groups into complex types is very important in addition to the increase of the average magnetic field intensity and area of these groups. After giving a review on the theory of these noise continuum storm emissions, a model is briefly considered to explain the relation of the emissions to the storms

  7. Optimal kernel shape and bandwidth for atomistic support of continuum stress

    International Nuclear Information System (INIS)

    Ulz, Manfred H; Moran, Sean J

    2013-01-01

    The treatment of atomistic scale interactions via molecular dynamics simulations has recently found favour for multiscale modelling within engineering. The estimation of stress at a continuum point on the atomistic scale requires a pre-defined kernel function. This kernel function derives the stress at a continuum point by averaging the contribution from atoms within a region surrounding the continuum point. This averaging volume, and therefore the associated stress at a continuum point, is highly dependent on the bandwidth and shape of the kernel. In this paper we propose an effective and entirely data-driven strategy for simultaneously computing the optimal shape and bandwidth for the kernel. We thoroughly evaluate our proposed approach on copper using three classical elasticity problems. Our evaluation yields three key findings: firstly, our technique can provide a physically meaningful estimation of kernel bandwidth; secondly, we show that a uniform kernel is preferred, thereby justifying the default selection of this kernel shape in future work; and thirdly, we can reliably estimate both of these attributes in a data-driven manner, obtaining values that lead to an accurate estimation of the stress at a continuum point. (paper)

  8. BCS equations in the continuum

    International Nuclear Information System (INIS)

    Sandulescu, N.; Liotta, R. J.; Wyss, R.

    1998-01-01

    The properties of nuclei close to the drip line are significantly influenced by the continuum part of the single-particle spectrum. The main role is played by the resonant states which are largely confined in the region of nuclear potential and therefore stronger coupled with the bound states in an excitation process. Resonant states are also important in the nuclei beyond the drip line. In this case the decay properties of the nucleus can be directly related to the widths of the narrow resonances occupied by the unbound nucleons. The aim of this work is to propose an alternative for evaluating the effect of the resonant part of single-particle spectrum on the pairing correlations calculated within the BCS approximation. We estimated the role of resonances in the case of the isotope 170 Sn. The Resonant-BCS (RBCS) equations are solved for the case of a seniority force. The BCS approximation based on a seniority force cannot be applied in the case of a nucleus immersed in a box if all discrete states simulating the continuum are considered. In such a case the pairing correlations will increase with the number of states in the box. In our case one can still apply a seniority force with RBCS because the effect of the continuum appears here through a finite number of physical resonances, well defined by the given mean field. Because these resonances have a spatial distribution concentrated within the region of the nuclear potential, one expects that the localization probability of nucleons, far out from the nuclear surface, to be small. The gap obtained taking correctly the contribution of resonances, according to RBCS equations, is about 1.3 MeV, while pairing gap calculated only with the bound single-particle spectrum has the value Δ = 1.10 MeV. If we introduce also the resonant states, neglecting completely their widths, the gap will increase to the value Δ = 1.880 MeV. Therefore, one cannot estimate properly the pairing correlations by supplementing the spectrum

  9. Relativistic continuum random phase approximation in spherical nuclei

    International Nuclear Information System (INIS)

    Daoutidis, Ioannis

    2009-01-01

    Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)

  10. Modeling of Continuum Manipulators Using Pythagorean Hodograph Curves.

    Science.gov (United States)

    Singh, Inderjeet; Amara, Yacine; Melingui, Achille; Mani Pathak, Pushparaj; Merzouki, Rochdi

    2018-05-10

    Research on continuum manipulators is increasingly developing in the context of bionic robotics because of their many advantages over conventional rigid manipulators. Due to their soft structure, they have inherent flexibility, which makes it a huge challenge to control them with high performances. Before elaborating a control strategy of such robots, it is essential to reconstruct first the behavior of the robot through development of an approximate behavioral model. This can be kinematic or dynamic depending on the conditions of operation of the robot itself. Kinematically, two types of modeling methods exist to describe the robot behavior; quantitative methods describe a model-based method, and qualitative methods describe a learning-based method. In kinematic modeling of continuum manipulator, the assumption of constant curvature is often considered to simplify the model formulation. In this work, a quantitative modeling method is proposed, based on the Pythagorean hodograph (PH) curves. The aim is to obtain a three-dimensional reconstruction of the shape of the continuum manipulator with variable curvature, allowing the calculation of its inverse kinematic model (IKM). It is noticed that the performances of the PH-based kinematic modeling of continuum manipulators are considerable regarding position accuracy, shape reconstruction, and time/cost of the model calculation, than other kinematic modeling methods, for two cases: free load manipulation and variable load manipulation. This modeling method is applied to the compact bionic handling assistant (CBHA) manipulator for validation. The results are compared with other IKMs developed in case of CBHA manipulator.

  11. Relativistic continuum random phase approximation in spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Daoutidis, Ioannis

    2009-10-01

    Covariant density functional theory is used to analyze the nuclear response in the external multipole fields. The investigations are based on modern functionals with zero range and density dependent coupling constants. After a self-consistent solution of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole giant resonances are studied within the Relativistic Random Phase Approximation (RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the continuum is treated precisely by calculating the single particle Greens-function of the corresponding Dirac equation. In conventional methods based on a discretization of the continuum this was not possible. The residual interaction is derived from the same RMF Lagrangian. This guarantees current conservation and a precise decoupling of the Goldstone modes. For nuclei with open shells pairing correlations are taken into account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum RPA (CRPA) presents a robust method connected with an astonishing reduction of the numerical effort as compared to conventional methods. Modes of various multipolarities and isospin are investigated, in particular also the newly discovered Pygmy modes in the vicinity of the neutron evaporation threshold. The results are compared with conventional discrete RPA calculations as well as with experimental data. We find that the full treatment of the continuum is essential for light nuclei and the study of resonances in the neighborhood of the threshold. (orig.)

  12. Evidence against the continuum structure underlying motivation measures derived from self-determination theory.

    Science.gov (United States)

    Chemolli, Emanuela; Gagné, Marylène

    2014-06-01

    Self-determination theory (SDT) proposes a multidimensional conceptualization of motivation in which the different regulations are said to fall along a continuum of self-determination. The continuum has been used as a basis for using a relative autonomy index as a means to create motivational scores. Rasch analysis was used to verify the continuum structure of the Multidimensional Work Motivation Scale and of the Academic Motivation Scale. We discuss the concept of continuum against SDT's conceptualization of motivation and argue against the use of the relative autonomy index on the grounds that evidence for a continuum structure underlying the regulations is weak and because the index is statistically problematic. We suggest exploiting the full richness of SDT's multidimensional conceptualization of motivation through the use of alternative scoring methods when investigating motivational dynamics across life domains.

  13. HIV care continuum in Rwanda: a cross-sectional analysis of the national programme.

    Science.gov (United States)

    Nsanzimana, Sabin; Kanters, Steve; Remera, Eric; Forrest, Jamie I; Binagwaho, Agnes; Condo, Jeanine; Mills, Edward J

    2015-05-01

    Rwanda has made remarkable progress towards HIV care programme with strong national monitoring and surveillance. Knowledge about the HIV care continuum model can help to improve outcomes in patients. We aimed to quantify engagement, mortality, and loss to follow-up of patients along the HIV care continuum in Rwanda in 2013. We collated data for individuals with HIV who participated in the national HIV care programme in Rwanda and calculated the numbers of individuals or proportions of the population at each stage and the transition probabilities between stages of the continuum. We calculated factors associated with mortality and loss to follow-up by fitting Cox proportional hazards regression models, one for the stage of care before antiretroviral therapy (ART) initiation and another for stage of care during ART. An estimated 204,899 individuals were HIV-positive in Rwanda in 2013. Among these individuals, 176,174 (86%) were in pre-ART or in ART stages and 129,405 (63%) had initiated ART by the end of 2013. 82·1% (95% CI 80·7-83·4) of patients with viral load measurements (n=3066) were virally suppressed (translating to 106,371 individuals or 52% of HIV-positive individuals). Mortality was 0·6% (304 patients) in the pre-ART stage and 1·0% (1255 patients) in the ART stage; 2247 (3·9%) patients were lost to follow-up in pre-ART stage and 2847 (2·2%) lost in ART stage. Risk factors for mortality among patients in both pre-ART and ART stages included older age, CD4 cell count at initiation, and male sex. Risk factors for loss to follow-up among patients at both pre-ART and ART stages included younger age (age 10-29 year) and male sex. The HIV care continuum is a multitrajectory pathway in which patients have many opportunities to leave and re-engage in care. Knowledge about the points at which individuals are most likely to leave care could improve large-scale delivery of HIV programmes. The Bill & Melinda Gates Foundation. Copyright © 2015 Elsevier Ltd. All

  14. Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces

    KAUST Repository

    Khan, Naeemullah

    2017-11-09

    We formulate an energy for segmentation that is designed to have preference for segmenting the coarse over fine structure of the image, without smoothing across boundaries of regions. The energy is formulated by integrating a continuum of scales from a scale space computed from the heat equation within regions. We show that the energy can be optimized without computing a continuum of scales, but instead from a single scale. This makes the method computationally efficient in comparison to energies using a discrete set of scales. We apply our method to texture and motion segmentation. Experiments on benchmark datasets show that a continuum of scales leads to better segmentation accuracy over discrete scales and other competing methods.

  15. Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces

    KAUST Repository

    Khan, Naeemullah; Hong, Byung-Woo; Yezzi, Anthony; Sundaramoorthi, Ganesh

    2017-01-01

    We formulate an energy for segmentation that is designed to have preference for segmenting the coarse over fine structure of the image, without smoothing across boundaries of regions. The energy is formulated by integrating a continuum of scales from a scale space computed from the heat equation within regions. We show that the energy can be optimized without computing a continuum of scales, but instead from a single scale. This makes the method computationally efficient in comparison to energies using a discrete set of scales. We apply our method to texture and motion segmentation. Experiments on benchmark datasets show that a continuum of scales leads to better segmentation accuracy over discrete scales and other competing methods.

  16. Modeling of strongly heat-driven flow in partially saturated fractured porous media

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1985-01-01

    The authors have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for their flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. They model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, they develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account the fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables

  17. Modeling of strongly heat-driven flow in partially saturated fractured porous media

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.W.; Wang, J.S.Y.

    1984-10-01

    We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated fractured porous media, with particular emphasis on strongly heat-driven flow. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects which are important in multi-phase fluid and heat flow. It has provisions to handle the extreme non-linearities which arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. From an analysis of the results obtained with explicit fractures, we develop equivalent continuum models which can reproduce the temperature, saturation, and pressure variation, and gas and liquid flow rates of the discrete fracture-porous matrix calculations. The equivalent continuum approach makes use of a generalized relative permeability concept to take into account for fracture effects. This results in a substantial simplification of the flow problem which makes larger scale modeling of complicated unsaturated fractured porous systems feasible. Potential applications for regional scale simulations and limitations of the continuum approach are discussed. 27 references, 13 figures, 2 tables

  18. Integral equation hierarchy for continuum percolation

    International Nuclear Information System (INIS)

    Given, J.A.

    1988-01-01

    In this thesis a projection operator technique is presented that yields hierarchies of integral equations satisfied exactly by the n-point connectedness functions in a continuum version of the site-bond percolation problem. The n-point connectedness functions carry the same structural information for a percolation problem as then-point correlation functions do for a thermal problem. This method extends the Potts model mapping of Fortuin and Kastelyn to the continuum by exploiting an s-state generalization of the Widom-Rowlinson model, a continuum model for phase separation. The projection operator technique is used to produce an integral equation hierarchy for percolation similar to the Born-Green heirarchy. The Kirkwood superposition approximation (SA) is extended to percolation in order to close this hierarchy and yield a nonlinear integral equation for the two-point connectedness function. The fact that this function, in the SA, is the analytic continuation to negative density of the two-point correlation function in a corresponding thermal problem is discussed. The BGY equation for percolation is solved numerically, both by an expansion in powers of the density, and by an iterative technique due to Kirkwood. It is argued both analytically and numerically, that the BYG equation for percolation, unlike its thermal counterpart, shows non-classical critical behavior, with η = 1 and γ = 0.05 ± .1. Finally a sequence of refinements to the superposition approximations based in the theory of fluids by Rice and Lekner is discussed

  19. Preconditioners based on the Alternating-Direction-Implicit algorithm for the 2D steady-state diffusion equation with orthotropic heterogeneous coefficients

    KAUST Repository

    Gao, Longfei; Calo, Victor M.

    2015-01-01

    In this paper, we combine the Alternating Direction Implicit (ADI) algorithm with the concept of preconditioning and apply it to linear systems discretized from the 2D steady-state diffusion equations with orthotropic heterogeneous coefficients by the finite element method assuming tensor product basis functions. Specifically, we adopt the compound iteration idea and use ADI iterations as the preconditioner for the outside Krylov subspace method that is used to solve the preconditioned linear system. An efficient algorithm to perform each ADI iteration is crucial to the efficiency of the overall iterative scheme. We exploit the Kronecker product structure in the matrices, inherited from the tensor product basis functions, to achieve high efficiency in each ADI iteration. Meanwhile, in order to reduce the number of Krylov subspace iterations, we incorporate partially the coefficient information into the preconditioner by exploiting the local support property of the finite element basis functions. Numerical results demonstrated the efficiency and quality of the proposed preconditioner. © 2014 Elsevier B.V. All rights reserved.

  20. Stonefly (Plecoptera) Feeding Modes: Variation Along a California River Continuum

    Science.gov (United States)

    Richard L. Bottorff; Allen W. Knight

    1989-01-01

    The distribution of Plecoptera along a California river was used to test several predictions of the River Continuum Concept about how functional feeding groups should change along a stream's length. Stoneflies were collected from stream orders 1-6 (123 km) of the Cosumnes River continuum in the central Sierra Nevada. The 69 stonefly species collected were...

  1. Asymmetric Vibration of Polar Orthotropic Annular Circular Plates of Quadratically Varying Thickness with Same Boundary Conditions

    Directory of Open Access Journals (Sweden)

    N. Bhardwaj

    2008-01-01

    Full Text Available In the present paper, asymmetric vibration of polar orthotropic annular circular plates of quadratically varying thickness resting on Winkler elastic foundation is studied by using boundary characteristic orthonormal polynomials in Rayleigh-Ritz method. Convergence of the results is tested and comparison is made with results already available in the existing literature. Numerical results for the first ten frequencies for various values of parameters describing width of annular plate, thickness profile, material orthotropy and foundation constant for all three possible combinations of clamped, simply supported and free edge conditions are shown and discussed. It is found that (a higher elastic property in circumferential direction leads to higher stiffness against lateral vibration; (b Lateral vibration characteristics of F-Fplates is more sensitive towards parametric changes in material orthotropy and foundation stiffness than C-C and S-Splates; (c Effect of quadratical thickness variation on fundamental frequency is more significant in cases of C-C and S-S plates than that of F-Fplates. Thickness profile which is convex relative to plate center-line tends to result in higher stiffness of annular plates against lateral vibration than the one which is concave and (d Fundamental mode of vibration of C-C and S-Splates is axisymmetrical while that of F-Fplates is asymmetrical.

  2. Field Measurements of Water Continuum and Water Dimer Absorption by Active Long Path Differential Optical Absorption Spectroscopy (DOAS)

    OpenAIRE

    Lotter, Andreas

    2006-01-01

    Water vapor plays an important role in Earth's radiative budget since water molecules strongly absorb the incoming solar shortwave and the outgoing thermal infrared radiation. Superimposed on the water monomer absorption, a water continuum absorption has long been recognized, but its true nature still remains controversial. On the one hand, this absorption is explained by a deformation of the line shape of the water monomer absorption lines as a consequence of a molecular collision. One the o...

  3. Commitment to Quality throughout the Continuum.

    Science.gov (United States)

    Gillet, Pamela

    1995-01-01

    This editorial by the president of the Council for Exceptional Children indicates the organization's support of a continuum of special education placements for students with special needs and calls for improving transition of students from one placement to another. (JDD)

  4. Reverberation Mapping of the Continuum Source in Active Galactic Nuclei

    Science.gov (United States)

    Fausnaugh, Michael Martin

    I present results from a monitoring campaign of 11 active galactic nuclei (AGN) conducted in Spring of 2014. I use the reverberation mapping method to probe the interior structures of the AGN, specifically the broad line regions (BLRs) and accretion disks. One of these AGN, NGC 5548, was also subject to multi-wavelength (X-ray, UV, optical, and near-IR) monitoring using 25 ground-based telescopes and four space-based facilities. For NGC 5548, I detect lags between the continuum emission at different wavelengths that follow a trend consistent with the prediction for continuum reprocessing by an accretion disk with temperature profile T ∝ R -3/4. However, the lags imply a disk radius that is 3 times larger than the prediction from standard thin-disk models. The lags at wavelengths longer than the Vband are also equal to or greater than the lags of high-ionization-state emission lines (such as HeII lambda1640 and lambda4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region. Using optical spectra from the Large Binocular Telescope, I estimate the bias of the interband continuum lags due to BLR emission observed in the filters, and I find that the bias for filters with high levels of BLR contamination (˜20%) can be important for the shortest continuum lags. This likely has a significant impact on the u and U bands owing to Balmer continuum emission. I then develop a new procedure for the internal (night-to-night) calibration of time series spectra that can reach precisions of ˜1 millimagnitude and improves traditional techniques by up to a factor of 5. At this level, other systematic issues (e.g., the nightly sensitivity functions and Fe II contamination) limit the final precision of the observed light curves. Using the new calibration method, I next present the data and first results from the optical spectroscopic monitoring component of the reverberation mapping campaign. Five AGN were sufficiently

  5. Lattice fluid dynamics from perfect discretizations of continuum flows

    International Nuclear Information System (INIS)

    Katz, E.; Wiese, U.

    1998-01-01

    We use renormalization group methods to derive equations of motion for large scale variables in fluid dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes and naturally exist on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum physics, i.e., grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with a square cross section the equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation and is shown to represent the continuum flow exactly. For nonsquare cross sections one can use a numerical iterative procedure to derive flow equations that are approximately perfect. copyright 1998 The American Physical Society

  6. Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices.

    Science.gov (United States)

    Español, Malena I; Golovaty, Dmitry; Wilber, J Patrick

    2018-01-01

    In this paper, we derive a continuum variational model for a two-dimensional deformable lattice of atoms interacting with a two-dimensional rigid lattice. The starting point is a discrete atomistic model for the two lattices which are assumed to have slightly different lattice parameters and, possibly, a small relative rotation. This is a prototypical example of a three-dimensional system consisting of a graphene sheet suspended over a substrate. We use a discrete-to-continuum procedure to obtain the continuum model which recovers both qualitatively and quantitatively the behaviour observed in the corresponding discrete model. The continuum model predicts that the deformable lattice develops a network of domain walls characterized by large shearing, stretching and bending deformation that accommodates the misalignment and/or mismatch between the deformable and rigid lattices. Two integer-valued parameters, which can be identified with the components of a Burgers vector, describe the mismatch between the lattices and determine the geometry and the details of the deformation associated with the domain walls.

  7. A continuum model for pressure-flow relationship in human pulmonary circulation.

    Science.gov (United States)

    Huang, Wei; Zhou, Qinlian; Gao, Jian; Yen, R T

    2011-06-01

    A continuum model was introduced to analyze the pressure-flow relationship for steady flow in human pulmonary circulation. The continuum approach was based on the principles of continuum mechanics in conjunction with detailed measurement of vascular geometry, vascular elasticity and blood rheology. The pulmonary arteries and veins were considered as elastic tubes and the "fifth-power law" was used to describe the pressure-flow relationship. For pulmonary capillaries, the "sheet-flow" theory was employed and the pressure-flow relationship was represented by the "fourth-power law". In this paper, the pressure-flow relationship for the whole pulmonary circulation and the longitudinal pressure distribution along the streamlines were studied. Our computed data showed general agreement with the experimental data for the normal subjects and the patients with mitral stenosis and chronic bronchitis in the literature. In conclusion, our continuum model can be used to predict the changes of steady flow in human pulmonary circulation.

  8. Shape Modeling of a Concentric-tube Continuum Robot

    DEFF Research Database (Denmark)

    Bai, Shaoping; Xing, Charles Chuhao

    2012-01-01

    Concentric-tube continuum robots feature with simple and compact structures and have a great potential in medical applications. The paper is concerned with the shape modeling of a type of concentric-tube continuum robot built with a collection of super-elastic NiTiNol tubes. The mechanics...... is modeled on the basis of energy approach for both the in-plane and out-plane cases. The torsional influences on the shape of the concentric-tube robots are considered. An experimental device was build for the model validation. The results of simulation and experiments are included and analyzed....

  9. Fractional Quantum Field Theory: From Lattice to Continuum

    Directory of Open Access Journals (Sweden)

    Vasily E. Tarasov

    2014-01-01

    Full Text Available An approach to formulate fractional field theories on unbounded lattice space-time is suggested. A fractional-order analog of the lattice quantum field theories is considered. Lattice analogs of the fractional-order 4-dimensional differential operators are proposed. We prove that continuum limit of the suggested lattice field theory gives a fractional field theory for the continuum 4-dimensional space-time. The fractional field equations, which are derived from equations for lattice space-time with long-range properties of power-law type, contain the Riesz type derivatives on noninteger orders with respect to space-time coordinates.

  10. Towards an improved continuum theory for phase transformations

    International Nuclear Information System (INIS)

    Tijssens, M.G.A.; James, R.D.

    2003-01-01

    We develop a continuum theory for martensitic phase transformations in which explicit use is made of atomistic calculations based on density functional theory. Following the work of Rabe and coworkers, branches of the phonon-dispersion relation with imaginary frequencies are selected to construct a localized basis tailored to the symmetry of the crystal lattice. This so-called Wannier basis helps to construct an effective Hamiltonian of a particularly simple form. We extend the methodology by incorporating finite deformations and passing the effective Hamiltonian fully to continuum level. The developments so far are implemented on the shape memory material NiTi

  11. IUTAM-Symposium on The Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications

    CERN Document Server

    1968-01-01

    5 The symposium was held in Freudenstadt from 28\\h to 31 \\ ofAugust st nd 1967 and in Stuttgart from 1 to 2 of September 1967. The proposal to hold this symposium originated with the German Society of Applied Mathematics and Mechanics (GAMM) late in 1964 and was examined by a committee of IUTAM especially appointed for this purpose. The basis of this examination was a report in which the present situation in the field and the possible aims of the symposium were surveyed. Briefly, the aims of the symposium were stated to be 1. the unification of the various approaches developed in recent years with the aim of penetrating into the microscopic world of matter by means of continuum theories; 2. the bridging of the gap between microscopic (or atomic) research on mechanics on one hand, and the phenomenological (or continuum mechanical) approach on the other hand; 3. the physical interpretation and the relation to actual material behaviour of the quantities and laws introduced into the new theories, together with ap...

  12. Development of probabilistic fatigue curve for asphalt concrete based on viscoelastic continuum damage mechanics

    Directory of Open Access Journals (Sweden)

    Himanshu Sharma

    2016-07-01

    Full Text Available Due to its roots in fundamental thermodynamic framework, continuum damage approach is popular for modeling asphalt concrete behavior. Currently used continuum damage models use mixture averaged values for model parameters and assume deterministic damage process. On the other hand, significant scatter is found in fatigue data generated even under extremely controlled laboratory testing conditions. Thus, currently used continuum damage models fail to account the scatter observed in fatigue data. This paper illustrates a novel approach for probabilistic fatigue life prediction based on viscoelastic continuum damage approach. Several specimens were tested for their viscoelastic properties and damage properties under uniaxial mode of loading. The data thus generated were analyzed using viscoelastic continuum damage mechanics principles to predict fatigue life. Weibull (2 parameter, 3 parameter and lognormal distributions were fit to fatigue life predicted using viscoelastic continuum damage approach. It was observed that fatigue damage could be best-described using Weibull distribution when compared to lognormal distribution. Due to its flexibility, 3-parameter Weibull distribution was found to fit better than 2-parameter Weibull distribution. Further, significant differences were found between probabilistic fatigue curves developed in this research and traditional deterministic fatigue curve. The proposed methodology combines advantages of continuum damage mechanics as well as probabilistic approaches. These probabilistic fatigue curves can be conveniently used for reliability based pavement design. Keywords: Probabilistic fatigue curve, Continuum damage mechanics, Weibull distribution, Lognormal distribution

  13. Continuum-mediated dark matter–baryon scattering

    CERN Document Server

    Katz, Andrey; Sajjad, Aqil

    2016-01-01

    Many models of dark matter scattering with baryons may be treated either as a simple contact interaction or as the exchange of a light mediator particle. We study an alternative, in which a continuum of light mediator states may be exchanged. This could arise, for instance, from coupling to a sector which is approximately conformal at the relevant momentum transfer scale. In the non-relativistic effective theory of dark matter-baryon scattering, which is useful for parametrizing direct detection signals, the effect of such continuum mediators is to multiply the amplitude by a function of the momentum transfer q, which in the simplest case is just a power law. We develop the basic framework and study two examples: the case where the mediator is a scalar operator coupling to the Higgs portal (which turns out to be highly constrained) and the case of an antisymmetric tensor operator ${\\cal O}_{\\mu \

  14. Vibration and buckling of orthotropic functionally graded micro-plates on the basis of a re-modified couple stress theory

    Directory of Open Access Journals (Sweden)

    Zihao Yang

    Full Text Available A microstructure-dependent model for the free vibration and buckling analysis of an orthotropic functionally graded micro-plate was proposed on the basis of a re-modified couple stress theory. The macro- and microscopic anisotropy were simultaneously taken into account by introducing two material length scale parameters. The material attributes were assumed to vary continuously through the thickness direction by a power law. The governing equations and corresponding boundary conditions were derived through Hamilton’s principle. The Navier method was used to calculate the natural frequencies and buckling loads of a simply supported micro-plate. The numerical results indicated that the present model predicts higher natural frequencies and critical buckling loads than the classical model, particular when the geometric size of the micro-plates is comparable to the material length scale parameters, i.e., the scale effect is well represented. The scale effect becomes more noticeable as the material length scale parameters increase, the anisotropy weaken or the power law index increases, and vice versa. Keywords: Free vibration, Buckling, Functionally graded materials, Modified couple stress theory, Scale effect

  15. A Long-Term Space Astrophysics Research Program. The Evolution of the Quasar Continuum

    Science.gov (United States)

    Elvis, M.

    1998-01-01

    The grant "The Evolution of the Quasar Continuum" resulted in over 53 published referred papers and conference proceedings. The more significant of these papers are listed below, and abstracts are attached. The papers address a wide range of issues involving the evolution of quasars, their electromagnetic emissions, and their environment, from nearby low luminosity Seyfert galaxies to quasars at the highest redshifts. Primarily observational in content the work nonetheless included theoretical studies of quasar accretion disks that attempt to explain the observed time variability of quasars, and the overall 'demographics' of the quasar population. The work carried out under this grant has laid a strong foundation for ongoing and future research with AXAF, HST and other new facilities.

  16. Comet Halley: An optical continuum study

    International Nuclear Information System (INIS)

    Hoban, S.M.

    1989-01-01

    From an analysis of narrowband CCD images of Comet Halley from 1986 January, March, and April, certain dust structures which are redder than the remainder of the dust coma have become apparent. Mie calculations suggest that this reddening is due to an enhancement of particles with sizes comparable to the observing wavelengths. Although the mass range derived from the calculations presented here is somewhat uncertain as a result of the limitations of Mie theory, these values are in the expected range derived from the calculations presented here is somewhat uncertain as a result of particle sizes which would be both sensitive to radiation pressure and significantly reddened with respect to the solar spectrum at the observing wavelengths. Thus, the red envelopes are plausibly the result of size sorting by solar radiation pressure. The red jets observed on 1986 January 10, March 1 and March 9 can then be explained by the enhanced dust flux at the jet sources, and the subsequent trapping of a relative excess of intermediate mass (i.e. red) particles into the jets which are visible in the continuum images. Analysis of narrowband photometry of the optical continuum of Comet Halley reveals no correlation between the color of the dust and heliocentric distance, phase angle, strength of the continuum or gas-to-dust ratio. The photometric data are thus consistent with a post-ejection sorting mechanism. Chemical inhomogeneities of the nucleus are therefore not necessary to explain the observed structure in the color of the dust in Comet Halley

  17. Spatial stochasticity and non-continuum effects in gas flows

    Energy Technology Data Exchange (ETDEWEB)

    Dadzie, S. Kokou, E-mail: k.dadzie@glyndwr.ac.uk [Mechanical and Aeronautical Engineering, Glyndwr University, Mold Road, Wrexham LL11 2AW (United Kingdom); Reese, Jason M., E-mail: jason.reese@strath.ac.uk [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom)

    2012-02-06

    We investigate the relationship between spatial stochasticity and non-continuum effects in gas flows. A kinetic model for a dilute gas is developed using strictly a stochastic molecular model reasoning, without primarily referring to either the Liouville or the Boltzmann equations for dilute gases. The kinetic equation, a stochastic version of the well-known deterministic Boltzmann equation for dilute gas, is then associated with a set of macroscopic equations for the case of a monatomic gas. Tests based on a heat conduction configuration and sound wave dispersion show that spatial stochasticity can explain some non-continuum effects seen in gases. -- Highlights: ► We investigate effects of molecular spatial stochasticity in non-continuum regime. ► Present a simplify spatial stochastic kinetic equation. ► Present a spatial stochastic macroscopic flow equations. ► Show effects of the new model on sound wave dispersion prediction. ► Show effects of the new approach in density profiles in a heat conduction.

  18. Amplification of non-Markovian decay due to bound state absorption into continuum

    International Nuclear Information System (INIS)

    Garmon, S.; Simine, L.; Segal, D.; Petrosky, T.

    2013-01-01

    It is known that quantum systems yield non-exponential (power law) decay on long time scales, associated with continuum threshold effects contributing to the survival probability for a prepared initial state. For an open quantum system consisting of a discrete state coupled to continuum, we study the case in which a discrete bound state of the full Hamiltonian approaches the energy continuum as the system parameters are varied. We find in this case that at least two regions exist yielding qualitatively different power law decay behaviors; we term these the long time 'near zone' and long time 'far zone'. In the near zone the survival probability falls off according to a t -1 power law, and in the far zone i t falls off as t -3 . We show that the timescale T Q separating these two regions is inversely related to the gap between the discrete bound state energy and the continuum threshold. In the case that the bound state is absorbed into the continuum and vanishes, then the time scale T Q diverges and the survival probability follows the t -1 power law even on asymptotic scales. Conversely, one could study the case of an anti-bound state approaching the threshold before being ejected from the continuum to form a bound state. Again the t -1 power law dominates precisely at the point of ejection. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX

    Science.gov (United States)

    Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kibaek

    2017-01-01

    We describe the ignition of an explosive crystal of gamma-phase RDX due to a thermal hot spot with reactive molecular dynamics (RMD), with first-principles trained, reactive force field based molecular potentials that represents an extremely complex reaction network. The RMD simulation is analyzed by sorting molecular product fragments into high and low molecular weight groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation has a single temperature and stress state for the mixture. The continuum simulation that mirrors the atomistic simulation allows us to study the atomistic simulation in the familiar physical chemistry framework and provides an essential, continuum/atomistic link.

  20. Moving contact lines: linking molecular dynamics and continuum-scale modelling.

    Science.gov (United States)

    Smith, Edward R; Theodorakis, Panagiotis E; Craster, Richard V; Matar, Omar K

    2018-05-04

    Despite decades of research, the modelling of moving contact lines has remained a formidable challenge in fluid dynamics whose resolution will impact numerous industrial, biological, and daily-life applications. On the one hand, molecular dynamics (MD) simulation has the ability to provide unique insight into the microscopic details that determine the dynamic behavior of the contact line, which is not possible with either continuum-scale simulations or experiments. On the other hand, continuum-based models provide the link to the macroscopic description of the system. In this Feature Article, we explore the complex range of physical factors, including the presence of surfactants, which govern the contact line motion through MD simulations. We also discuss links between continuum- and molecular-scale modelling, and highlight the opportunities for future developments in this area.

  1. An advanced kinetic theory for morphing continuum with inner structures

    Science.gov (United States)

    Chen, James

    2017-12-01

    Advanced kinetic theory with the Boltzmann-Curtiss equation provides a promising tool for polyatomic gas flows, especially for fluid flows containing inner structures, such as turbulence, polyatomic gas flows and others. Although a Hamiltonian-based distribution function was proposed for diatomic gas flow, a general distribution function for the generalized Boltzmann-Curtiss equations and polyatomic gas flow is still out of reach. With assistance from Boltzmann's entropy principle, a generalized Boltzmann-Curtiss distribution for polyatomic gas flow is introduced. The corresponding governing equations at equilibrium state are derived and compared with Eringen's morphing (micropolar) continuum theory derived under the framework of rational continuum thermomechanics. Although rational continuum thermomechanics has the advantages of mathematical rigor and simplicity, the presented statistical kinetic theory approach provides a clear physical picture for what the governing equations represent.

  2. Use of a finite range nucleon-nucleon interaction in the continuum shell model

    International Nuclear Information System (INIS)

    Faes, Jean-Baptiste

    2007-01-01

    The unification of nuclear structure and nuclear reactions was always a great challenge of nuclear physics. The extreme complexity of finite quantum systems lead in the past to a separate development of the nuclear structure and the nuclear reactions. A unified description of structure and reactions is possible within the continuum shell model. All previous applications of this model used the zero-range residual interaction and the finite depth local potential to generate the single-particle basis. In the thesis, we have presented an extension of the continuum shell model for finite-range nucleon-nucleon interaction and an arbitrary number of nucleons in the scattering continuum. The great advantage of the present formulation is the same two-body interaction used both to generate the single-particle basis and to describe couplings to the continuum states. This formulation opens a possibility for an ab initio continuum shell model studies with the same nucleon-nucleon interaction generating the nuclear mean field, the configuration mixing and the coupling to the scattering continuum. First realistic applications of the above model has been shown for spectra of "1"7F and "1"7O, and elastic phase-shifts in the reaction "1"6O(p, p)"1"6O. (author)

  3. Hybrid continuum-coarse-grained modeling of erythrocytes

    Science.gov (United States)

    Lyu, Jinming; Chen, Paul G.; Boedec, Gwenn; Leonetti, Marc; Jaeger, Marc

    2018-06-01

    The red blood cell (RBC) membrane is a composite structure, consisting of a phospholipid bilayer and an underlying membrane-associated cytoskeleton. Both continuum and particle-based coarse-grained RBC models make use of a set of vertices connected by edges to represent the RBC membrane, which can be seen as a triangular surface mesh for the former and a spring network for the latter. Here, we present a modeling approach combining an existing continuum vesicle model with a coarse-grained model for the cytoskeleton. Compared to other two-component approaches, our method relies on only one mesh, representing the cytoskeleton, whose velocity in the tangential direction of the membrane may be different from that of the lipid bilayer. The finitely extensible nonlinear elastic (FENE) spring force law in combination with a repulsive force defined as a power function (POW), called FENE-POW, is used to describe the elastic properties of the RBC membrane. The mechanical interaction between the lipid bilayer and the cytoskeleton is explicitly computed and incorporated into the vesicle model. Our model includes the fundamental mechanical properties of the RBC membrane, namely fluidity and bending rigidity of the lipid bilayer, and shear elasticity of the cytoskeleton while maintaining surface-area and volume conservation constraint. We present three simulation examples to demonstrate the effectiveness of this hybrid continuum-coarse-grained model for the study of RBCs in fluid flows.

  4. Variational principles of continuum mechanics. Vol. 1. Fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Berdichevsky, Victor L. [Wayne State Univ., Detroit, MI (United States). Dept. of Mechanical Engineering

    2009-07-01

    The book reviews the two features of the variational approach: its use as a universal tool to describe physical phenomena and as a source for qualitative and quantitative methods of studying particular problems. Berdichevsky's work differs from other books on the subject in focusing mostly on the physical origin of variational principles as well as establishing their interrelations. For example, the Gibbs principles appear as a consequence of the Einstein formula for thermodynamic fluctuations rather than as the first principles of the theory of thermodynamic equilibrium. Mathematical issues are considered as long as they shed light on the physical outcomes and/or provide a useful technique for the direct study of variational problems. In addition, a thorough account of variational principles discovered in various branches of continuum mechanics is given. In this book, the first volume, the author covers the variational principles for systems with a finite number of degrees of freedom; the variational principles of thermodynamics; the basics of continuum mechanics; the variational principles for classical models of continuum mechanics, such as elastic and plastic bodies, and ideal and viscous fluids; and direct methods of calculus of variations. (orig.)

  5. Additive manufacturing of patient-specific tubular continuum manipulators

    Science.gov (United States)

    Amanov, Ernar; Nguyen, Thien-Dang; Burgner-Kahrs, Jessica

    2015-03-01

    Tubular continuum robots, which are composed of multiple concentric, precurved, elastic tubes, provide more dexterity than traditional surgical instruments at the same diameter. The tubes can be precurved such that the resulting manipulator fulfills surgical task requirements. Up to now the only material used for the component tubes of those manipulators is NiTi, a super-elastic shape-memory alloy of nickel and titan. NiTi is a cost-intensive material and fabrication processes are complex, requiring (proprietary) technology, e.g. for shape setting. In this paper, we evaluate component tubes made of 3 different thermoplastic materials (PLA, PCL and nylon) using fused filament fabrication technology (3D printing). This enables quick and cost-effective production of custom, patient-specific continuum manipulators, produced on site on demand. Stress-strain and deformation characteristics are evaluated experimentally for 16 fabricated tubes of each thermoplastic with diameters and shapes equivalent to those of NiTi tubes. Tubes made of PCL and nylon exhibit properties comparable to those made of NiTi. We further demonstrate a tubular continuum manipulator composed of 3 nylon tubes in a transnasal, transsphenoidal skull base surgery scenario in vitro.

  6. YM2: Continuum expectations, lattice convergence, and lassos

    International Nuclear Information System (INIS)

    Driver, B.K.

    1989-01-01

    The two dimensional Yang-Mills theory (YM 2 ) is analyzed in both the continuum and the lattice. In the complete axial gauge the continuum theory may be defined in terms of a Lie algebra valued white noise, and parallel translation may be defined by stochastic differential equations. This machinery is used to compute the expectations of gauge invariant functions of the parallel translation operators along a collection of curves C. The expectation values are expressed as finite dimensional integrals with densities that are products of the heat kernel on the structure group. The time parameters of the heat kernels are determined by the areas enclosed by the collection C, and the arguments are determined by the crossing topologies of the curves in C. The expectations for the Wilson lattice models have a similar structure, and from this it follows that in the limit of small lattice spacing the lattice expectations converge to the continuum expectations. It is also shown that the lasso variables advocated by L. Gross exist and are sufficient to generate all the measurable functions on the YM 2 -measure space. (orig.)

  7. Discrete expansions of continuum wave functions

    International Nuclear Information System (INIS)

    Bang, J.; Ershov, S.N.; Gareev, F.A.; Kazacha, G.S.

    1980-01-01

    Different methods of expanding continuum wave functions in terms of discrete basis sets are discussed. The convergence properties of these expansions are investigated, both from a mathematical and a numerical point of view, for the case of potentials of Woods-Saxon and square well type. (orig.)

  8. Mesoscopic and continuum modelling of angiogenesis

    KAUST Repository

    Spill, F.; Guerrero, P.; Alarcon, T.; Maini, P. K.; Byrne, H. M.

    2014-01-01

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.

  9. Mesoscopic and continuum modelling of angiogenesis

    KAUST Repository

    Spill, F.

    2014-03-11

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.

  10. Continuum deformation of multi-agent systems

    CERN Document Server

    Rastgoftar, Hossein

    2016-01-01

    This monograph presents new algorithms for formation control of multi-agent systems (MAS) based on principles of continuum mechanics. Beginning with an overview of traditional methods, the author then introduces an innovative new approach whereby agents of an MAS are considered as particles in a continuum evolving in ℝn whose desired configuration is required to satisfy an admissible deformation function. The necessary theory and its validation on a mobile-agent-based swarm test bed are considered for two primary tasks: homogeneous transformation of the MAS and deployment of a random distribution of agents on a desired configuration. The framework for this model is based on homogeneous transformations for the evolution of an MAS under no inter-agent communication, local inter-agent communication, and intelligent perception by agents. Different communication protocols for MAS evolution, the robustness of tracking of a desired motion by an MAS evolving in ℝn, and the effect of communication delays in an MAS...

  11. Continuum multiple-scattering approach to electron-molecule scattering and molecular photoionization

    International Nuclear Information System (INIS)

    Dehmer, J.L.; Dill, D.

    1979-01-01

    The multiple-scattering approach to the electronic continuum of molecules is described. The continuum multiple-scattering model (CMSM) was developed as a survey tool and, as such was required to satisfy two requirements. First, it had to have a very broad scope, which means (i) molecules of arbitrary geometry and complexity containing any atom in the periodic system, (ii) continuum electron energies from 0-1000 eV, and (iii) capability to treat a large range of processes involving both photoionization and electron scattering. Second, the structure of the theory was required to lend itself to transparent, physical interpretation of major spectral features such as shape resonances. A comprehensive theoretical framework for the continuum multiple scattering method is presented, as well as its applications to electron-molecule scattering and molecular photoionization. Highlights of recent applications in these two areas are reviewed. The major impact of the resulting studies over the last few years has been to establish the importance of shape resonances in electron collisions and photoionization of practically all (non-hydride) molecules

  12. Molecular-state close-coupling theory including continuum states. I. Derivation of close-coupled equations

    International Nuclear Information System (INIS)

    Thorson, W.R.; Bandarage, G.

    1988-01-01

    We formulate a close-coupling theory of slow ion-atom collisions based on molecular (adiabatic) electronic states, and including the electronic continuum. The continuum is represented by packet states spanning it locally and constructed explicitly from exact continuum states. Particular attention is given to two fundamental questions: (1) Unbound electrons can escape from the local region spanned by the packet states. We derive close-coupled integral equations correctly including the escape effects; the ''propagator'' generated by these integral equations does not conserve probability within the close-coupled basis. Previous molecular-state formulations including the continuum give no account of escape effects. (2) Nonadiabatic couplings of adiabatic continuum states with the same energy are singular, reflecting the fact that an adiabatic description of continuum behavior is not valid outside a local region. We treat these singularities explicitly and show that an accurate representation of nonadiabatic couplings within the local region spanned by a set of packet states is well behaved. Hence an adiabatic basis-set description can be used to describe close coupling to the continuum in a local ''interaction region,'' provided the effects of escape are included. In principle, the formulation developed here can be extended to a large class of model problems involving many-electron systems and including models for Penning ionization and collisional detachment processes

  13. Realistic Gamow shell model for resonance and continuum in atomic nuclei

    Science.gov (United States)

    Xu, F. R.; Sun, Z. H.; Wu, Q.; Hu, B. S.; Dai, S. J.

    2018-02-01

    The Gamow shell model can describe resonance and continuum for atomic nuclei. The model is established in the complex-moment (complex-k) plane of the Berggren coordinates in which bound, resonant and continuum states are treated on equal footing self-consistently. In the present work, the realistic nuclear force, CD Bonn, has been used. We have developed the full \\hat{Q}-box folded-diagram method to derive the realistic effective interaction in the model space which is nondegenerate and contains resonance and continuum channels. The CD-Bonn potential is renormalized using the V low-k method. With choosing 16O as the inert core, we have applied the Gamow shell model to oxygen isotopes.

  14. Accidental bound states in the continuum in an open Sinai billiard

    Energy Technology Data Exchange (ETDEWEB)

    Pilipchuk, A.S. [Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk (Russian Federation); Siberian Federal University, 660080 Krasnoyarsk (Russian Federation); Sadreev, A.F., E-mail: almas@tnp.krasn.ru [Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk (Russian Federation)

    2017-02-19

    The fundamental mechanism of the bound states in the continuum is the full destructive interference of two resonances when two eigenlevels of the closed system are crossing. There is, however, a wide class of quantum chaotic systems which display only avoided crossings of eigenlevels. As an example of such a system we consider the Sinai billiard coupled with two semi-infinite waveguides. We show that notwithstanding the absence of degeneracy bound states in the continuum occur due to accidental decoupling of the eigenstates of the billiard from the waveguides. - Highlights: • Bound states in the continuum in open chaotic billiards occur to accidental vanishing of coupling of eigenstate of billiard with waveguides.

  15. Photofragmentation of water and hydrogen sulphide in the first continuum: A critical survey

    International Nuclear Information System (INIS)

    Mohamed, K.A.

    1987-06-01

    Photofragmentation of H 2 O and H 2 S in the first absorption continuum has been investigated experimentally and theoretically by several authors. The fragmentation dynamics of both molecules are reviewed in this article. While the excited 1 B 1 state in H 2 O is responsible for the first continuum, ambiguity exists in the true nature of the upper state of the first continuum in H 2 S. From the evidence available so far, it is proposed that both in water and hydrogen sulphide, a single state of B 1 symmetry, which is of Rydberg type for short internuclear distances and of valence type for large internuclear distances, is the possible upper state which dissociates to produce the absorption continuum. (author). Refs

  16. Visible continuum pulses based on enhanced dispersive wave generation for endogenous fluorescence imaging.

    Science.gov (United States)

    Cui, Quan; Chen, Zhongyun; Liu, Qian; Zhang, Zhihong; Luo, Qingming; Fu, Ling

    2017-09-01

    In this study, we demonstrate endogenous fluorescence imaging using visible continuum pulses based on 100-fs Ti:sapphire oscillator and a nonlinear photonic crystal fiber. Broadband (500-700 nm) and high-power (150 mW) continuum pulses are generated through enhanced dispersive wave generation by pumping femtosecond pulses at the anomalous dispersion region near zero-dispersion wavelength of high-nonlinear photonic crystal fibers. We also minimize the continuum pulse width by determining the proper fiber length. The visible-wavelength two-photon microscopy produces NADH and tryptophan images of mice tissues simultaneously. Our 500-700 nm continuum pulses support extending nonlinear microscopy to visible wavelength range that is inaccessible to 100-fs Ti:sapphire oscillators and other applications requiring visible laser pulses.

  17. Fundamentals of continuum mechanics – classical approaches and new trends

    Science.gov (United States)

    Altenbach, H.

    2018-04-01

    Continuum mechanics is a branch of mechanics that deals with the analysis of the mechanical behavior of materials modeled as a continuous manifold. Continuum mechanics models begin mostly by introducing of three-dimensional Euclidean space. The points within this region are defined as material points with prescribed properties. Each material point is characterized by a position vector which is continuous in time. Thus, the body changes in a way which is realistic, globally invertible at all times and orientation-preserving, so that the body cannot intersect itself and as transformations which produce mirror reflections are not possible in nature. For the mathematical formulation of the model it is also assumed to be twice continuously differentiable, so that differential equations describing the motion may be formulated. Finally, the kinematical relations, the balance equations, the constitutive and evolution equations and the boundary and/or initial conditions should be defined. If the physical fields are non-smooth jump conditions must be taken into account. The basic equations of continuum mechanics are presented following a short introduction. Additionally, some examples of solid deformable continua will be discussed within the presentation. Finally, advanced models of continuum mechanics will be introduced. The paper is dedicated to Alexander Manzhirov’s 60th birthday.

  18. An improved particle population balance equation in the continuum-slip regime

    Directory of Open Access Journals (Sweden)

    Xie Mingliang

    2016-01-01

    Full Text Available An improved moment model is proposed to solve the population balance equation for Brownian coagulation in the continuum-slip regime, and it reduces to a known one in open literature when the non-linear terms in the slip correction factor are ignored. The present model shows same asymptotic behavior as that in the continuum regime.

  19. 77 FR 45421 - Homeless Emergency Assistance and Rapid Transition to Housing: Continuum of Care Program

    Science.gov (United States)

    2012-07-31

    ... which service providers are familiar. The following highlights key definitions used in the Continuum of... Continuum of Care in 1995. Local grantees and stakeholders are familiar with the Continuum of Care as the... violence, dating violence, sexual assault, and stalking. In developing the baseline requirements for a...

  20. Pairing in the BCS and LN approximations using continuum single particle level density

    International Nuclear Information System (INIS)

    Id Betan, R.M.; Repetto, C.E.

    2017-01-01

    Understanding the properties of drip line nuclei requires to take into account the correlations with the continuum spectrum of energy of the system. This paper has the purpose to show that the continuum single particle level density is a convenient way to consider the pairing correlation in the continuum. Isospin mean-field and isospin pairing strength are used to find the Bardeen–Cooper–Schrieffer (BCS) and Lipkin–Nogami (LN) approximate solutions of the pairing Hamiltonian. Several physical properties of the whole chain of the Tin isotope, as gap parameter, Fermi level, binding energy, and one- and two-neutron separation energies, were calculated and compared with other methods and with experimental data when they exist. It is shown that the use of the continuum single particle level density is an economical way to include explicitly the correlations with the continuum spectrum of energy in large scale mass calculation. It is also shown that the computed properties are in good agreement with experimental data and with more sophisticated treatment of the pairing interaction.

  1. There is a continuum ambiguity for elastic πN amplitudes

    International Nuclear Information System (INIS)

    Atkinson, D.; Roo, M. de; Polman, T.J.T.M.

    1984-01-01

    The implicit-function method of constructing phase-factor continuum ambiguities in phase-shift analysis is briefly reviewed, and new numerical examples are given of ambiguities in πN phase shifts at 1997 MeV. Since the ambiguous amplitudes differ by more than 5%, while the corresponding cross sections and polarizations are equal, to better than a computational accuracy of 0.007%, numerical credence is given to the theoretical claim that the continuum ambiguity exists. (orig.)

  2. QCD chiral Lagrangian on the lattice, strong coupling expansion, and Ward identities with Wilson fermions

    International Nuclear Information System (INIS)

    Levi, A.R.; Lubicz, V.; Rebbi, C.

    1997-01-01

    We discuss a general strategy to compute the coefficients of the QCD chiral Lagrangian using lattice QCD with Wilson fermions. This procedure requires the introduction of a lattice chiral Lagrangian as an intermediate step in the calculation. The QCD chiral Lagrangian is then obtained by expanding the lattice effective theory in increasing powers of the lattice spacing and the external momenta. In order to investigate the general structure of the lattice effective Lagrangian, we perform an analytical calculation at the leading order of the strong-coupling and large-N expansion. We find that the explicit chiral symmetry breaking, introduced on the lattice by the Wilson term, is reproduced in the effective theory by a set of additional terms, which do not have direct correspondence in the continuum chiral Lagrangian. We argue that these terms can be conveniently reabsorbed by a suitable renormalization procedure. This is shown explicitly at the leading order of the strong-coupling and large-N expansion. In fact, we find that at this order, as is known to be the case in the opposite weak-coupling limit, the vector and axial Ward identities of the continuum theory are reproduced on the lattice provided that the bare quark mass and the lattice operators are properly renormalized. copyright 1997 The American Physical Society

  3. On the Nature of Off-limb Flare Continuum Sources Detected by SDO /HMI

    Energy Technology Data Exchange (ETDEWEB)

    Heinzel, P.; Kašparová, J. [Astronomical Institute, Czech Academy of Sciences, 25165 Ondřejov (Czech Republic); Kleint, L.; Krucker, S., E-mail: pheinzel@asu.cas.cz [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland)

    2017-09-20

    The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory has provided unique observations of off-limb flare emission. White-light continuum enhancements were detected in the “continuum” channel of the Fe 6173 Å line during the impulsive phase of the observed flares. In this paper we aim to determine which radiation mechanism is responsible for such enhancement being seen above the limb, at chromospheric heights around or below 1000 km. Using a simple analytical approach, we compare two candidate mechanisms, the hydrogen recombination continuum (Paschen) and the Thomson continuum due to scattering of disk radiation on flare electrons. Both mechanisms depend on the electron density, which is typically enhanced during the impulsive phase of a flare as the result of collisional ionization (both thermal and also non-thermal due to electron beams). We conclude that for electron densities higher than 10{sup 12} cm{sup −3}, the Paschen recombination continuum significantly dominates the Thomson scattering continuum and there is some contribution from the hydrogen free–free emission. This is further supported by detailed radiation-hydrodynamical (RHD) simulations of the flare chromosphere heated by the electron beams. We use the RHD code FLARIX to compute the temporal evolution of the flare-heating in a semi-circular loop. The synthesized continuum structure above the limb resembles the off-limb flare structures detected by HMI, namely their height above the limb, as well as the radiation intensity. These results are consistent with recent findings related to hydrogen Balmer continuum enhancements, which were clearly detected in disk flares by the IRIS near-ultraviolet spectrometer.

  4. Introduction to continuum mechanics

    CERN Document Server

    Rubin, David; Lai, W Michael

    1994-01-01

    Continuum mechanics studies the response of materials to different loading conditions. The concept of tensors is introduced through the idea of linear transformation in a self-contained chapter, and the interrelation of direct notation, indicial notation and matrix operations is clearly presented. A wide range of idealized materials are considered through simple static and dynamic problems, and the book contains an abundance of illustrative examples and problems, many with solutions. Through the addition of more advanced material (solution of classical elasticity problems, constitutive e

  5. Thermodynamics of strongly interacting system from reparametrized Polyakov-Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Bhattacharyya, Abhijit; Ghosh, Sanjay K.; Maity, Soumitra; Raha, Sibaji; Ray, Rajarshi; Saha, Kinkar; Upadhaya, Sudipa

    2017-01-01

    The Polyakov-Nambu-Jona-Lasinio model has been quite successful in describing various qualitative features of observables for strongly interacting matter, that are measurable in heavy-ion collision experiments. The question still remains on the quantitative uncertainties in the model results. Such an estimation is possible only by contrasting these results with those obtained from rst principles using the lattice QCD framework. Recently a variety of lattice QCD data were reported in the realistic continuum limit. Here we make a first attempt at reparametrizing the model so as to reproduce these lattice data

  6. Atom-to-continuum methods for gaining a fundamental understanding of fracture.

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, David Lynn (Georgia Institute of Technology, Atlanta, GA); Reedy, Earl David, Jr.; Templeton, Jeremy Alan; Jones, Reese E.; Moody, Neville Reid; Zimmerman, Jonathan A.; Belytschko, Ted. (Northwestern University, Evanston, IL); Zhou, Xiao Wang; Lloyd, Jeffrey T. (Georgia Institute of Technology, Atlanta, GA); Oswald, Jay (Northwestern University, Evanston, IL); Delph, Terry J. (Lehigh University, Bethlehem, PA); Kimmer, Christopher J. (Indiana University Southeast, New Albany, IN)

    2011-08-01

    This report describes an Engineering Sciences Research Foundation (ESRF) project to characterize and understand fracture processes via molecular dynamics modeling and atom-to-continuum methods. Under this aegis we developed new theory and a number of novel techniques to describe the fracture process at the atomic scale. These developments ranged from a material-frame connection between molecular dynamics and continuum mechanics to an atomic level J integral. Each of the developments build upon each other and culminated in a cohesive zone model derived from atomic information and verified at the continuum scale. This report describes an Engineering Sciences Research Foundation (ESRF) project to characterize and understand fracture processes via molecular dynamics modeling and atom-to-continuum methods. The effort is predicated on the idea that processes and information at the atomic level are missing in engineering scale simulations of fracture, and, moreover, are necessary for these simulations to be predictive. In this project we developed considerable new theory and a number of novel techniques in order to describe the fracture process at the atomic scale. Chapter 2 gives a detailed account of the material-frame connection between molecular dynamics and continuum mechanics we constructed in order to best use atomic information from solid systems. With this framework, in Chapter 3, we were able to make a direct and elegant extension of the classical J down to simulations on the scale of nanometers with a discrete atomic lattice. The technique was applied to cracks and dislocations with equal success and displayed high fidelity with expectations from continuum theory. Then, as a prelude to extension of the atomic J to finite temperatures, we explored the quasi-harmonic models as efficient and accurate surrogates of atomic lattices undergoing thermo-elastic processes (Chapter 4). With this in hand, in Chapter 5 we provide evidence that, by using the appropriate

  7. Towards a dynamical solution of the strong CP problem

    International Nuclear Information System (INIS)

    Schierholz, G.

    1994-01-01

    One may argue that QCD solves the strong CP problem by itself. To test this idea, a lattice simulation suggests itself. In view of the difficulty of such a calculation we have, as a first step, investigated the problem in the CP 3 model. The CP 3 model is in many respects similar to QCD. In this talk I present some first results of our calculation. Among other things it is shown that the model has a first order deconfining phase transition in θ and that the critical value of θ decreases towards zero as β is taken to infinity. This suggests that θ is tuned to zero in the continuum limit. ((orig.))

  8. Strong-coupling expansion for the ground-state energy in the Vertical BarxVertical Bar/sup α/ potential

    International Nuclear Information System (INIS)

    Bender, C.M.; Mead, L.R.; Simmons, L.M. Jr.

    1981-01-01

    Using lattice techniques we examine the strong-coupling expansion for the ground-state energy of a gVertical BarxVertical Bar/sup α/ (α>0) potential in quantum mechanics. We are particularly interested in studying the effectiveness of various Pade-type methods for extrapolating the lattice series back to the continuum. We have computed the lattice series out to 12th order for all α and we identify three regions. When α or =2 the lattice series has a finite radius of convergence; here, completely-off-diagonal Pade extrapolants work best. As α increases beyond 2 it becomes more difficult to obtain good continuum results, apparently because the sign pattern of the lattice series seems to fluctuate randomly. The onset of randomness occurs earlier in the lattice series as α→infinity

  9. Equations of motion for anisotropic nonlinear elastic continuum in gravitational field

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1994-01-01

    Equations of motion for anisotropic nonlinear elastic continuum in the gravitational field are written in the form convenient for numerical calculations. The energy-stress tensor is expressed through scalar and tensor products of three vectors frozen in the continuum. Examples of expansion of the energy-stress tensor into scalar and tensor invariants corresponding to some crystal classes are given. 47 refs

  10. Continuum effects in the scattering of exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Druet, T. [Universite Libre de Bruxelles (ULB), Physique Quantique, C.P. 165/82, Brussels (Belgium); Universite Libre de Bruxelles (ULB), Physique Nucleaire Theorique et Physique Mathematique, Brussels (Belgium); Descouvemont, P. [Universite Libre de Bruxelles (ULB), Physique Nucleaire Theorique et Physique Mathematique, Brussels (Belgium)

    2012-10-15

    We discuss continuum effects in the scattering of exotic nuclei, and more specifically on the {sup 11}Be + {sup 64}Zn scattering. {sup 11}Be is a typical example of an exotic nucleus, with a low binding energy. Elastic, inelastic and breakup cross-sections of the {sup 11}Be + {sup 64}Zn system are computed in the Continuum Discretized Coupled Channel formalism, at energies near the Coulomb barrier. We show that converged cross-sections need high angular momenta as well as as large excitation energies in the wave functions of the projectile. Extensions to other systems are simulated by different collision energies, and by varying the binding energy of {sup 11}Be. (orig.)

  11. Identifying health disparities across the tobacco continuum.

    Science.gov (United States)

    Fagan, Pebbles; Moolchan, Eric T; Lawrence, Deirdre; Fernander, Anita; Ponder, Paris K

    2007-10-01

    Few frameworks have addressed work-force diversity, inequities and inequalities as part of a comprehensive approach to eliminating tobacco-related health disparities. This paper summarizes the literature and describes the known disparities that exist along the tobacco disease continuum for minority racial and ethnic groups, those living in poverty, those with low education and blue-collar and service workers. The paper also discusses how work-force diversity, inequities in research practice and knowledge allocation and inequalities in access to and quality of health care are fundamental to addressing disparities in health. We examined the available scientific literature and existing public health reports to identify disparities across the tobacco disease continuum by minority racial/ethnic group, poverty status, education level and occupation. Results indicate that differences in risk indicators along the tobacco disease continuum do not explain fully tobacco-related cancer consequences among some minority racial/ethnic groups, particularly among the aggregate groups, blacks/African Americans and American Indians/Alaska Natives. The lack of within-race/ethnic group data and its interactions with socio-economic factors across the life-span contribute to the inconsistency we observe in the disease causal paradigm. More comprehensive models are needed to understand the relationships among disparities, social context, diversity, inequalities and inequities. A systematic approach will also help researchers, practitioners, advocates and policy makers determine critical points for interventions, the types of studies and programs needed and integrative approaches needed to eliminate tobacco-related disparities.

  12. Multiscale volatility duration characteristics on financial multi-continuum percolation dynamics

    Science.gov (United States)

    Wang, Min; Wang, Jun

    A random stock price model based on the multi-continuum percolation system is developed to investigate the nonlinear dynamics of stock price volatility duration, in an attempt to explain various statistical facts found in financial data, and have a deeper understanding of mechanisms in the financial market. The continuum percolation system is usually referred to be a random coverage process or a Boolean model, it is a member of a class of statistical physics systems. In this paper, the multi-continuum percolation (with different values of radius) is employed to model and reproduce the dispersal of information among the investors. To testify the rationality of the proposed model, the nonlinear analyses of return volatility duration series are preformed by multifractal detrending moving average analysis and Zipf analysis. The comparison empirical results indicate the similar nonlinear behaviors for the proposed model and the actual Chinese stock market.

  13. Nonlinear continuum mechanics and large inelastic deformations

    CERN Document Server

    Dimitrienko, Yuriy I

    2010-01-01

    This book provides a rigorous axiomatic approach to continuum mechanics under large deformation. In addition to the classical nonlinear continuum mechanics - kinematics, fundamental laws, the theory of functions having jump discontinuities across singular surfaces, etc. - the book presents the theory of co-rotational derivatives, dynamic deformation compatibility equations, and the principles of material indifference and symmetry, all in systematized form. The focus of the book is a new approach to the formulation of the constitutive equations for elastic and inelastic continua under large deformation. This new approach is based on using energetic and quasi-energetic couples of stress and deformation tensors. This approach leads to a unified treatment of large, anisotropic elastic, viscoelastic, and plastic deformations. The author analyses classical problems, including some involving nonlinear wave propagation, using different models for continua under large deformation, and shows how different models lead t...

  14. A continuum model for flow induced by metachronal coordination between beating cilia

    NARCIS (Netherlands)

    Hussong, J.; Breugem, W.P.; Westerweel, J.

    2011-01-01

    In this numerical study we investigate the flow induced by metachronal coordination between beating cilia arranged in a densely packed layer by means of a continuum model. The continuum approach allows us to treat the problem as two-dimensional as well as stationary, in a reference frame moving with

  15. Continuum emission of excited sodium dimer

    International Nuclear Information System (INIS)

    Pardo, A.; Poyato, J.M.L.; Alonso, J.I.; Rico, F.R.

    1980-01-01

    A study has been made of the behaviour of excited molecular sodium using high-power Ar + laser radiation. A continuum emission was observed in the red wavelength region. This emission was thought to be caused by the formation of excited triatomic molecules. Energy transfer was observed from excited molecules to atoms. (orig.)

  16. Reproducing the nonlinear dynamic behavior of a structured beam with a generalized continuum model

    Science.gov (United States)

    Vila, J.; Fernández-Sáez, J.; Zaera, R.

    2018-04-01

    In this paper we study the coupled axial-transverse nonlinear vibrations of a kind of one dimensional structured solids by application of the so called Inertia Gradient Nonlinear continuum model. To show the accuracy of this axiomatic model, previously proposed by the authors, its predictions are compared with numeric results from a previously defined finite discrete chain of lumped masses and springs, for several number of particles. A continualization of the discrete model equations based on Taylor series allowed us to set equivalent values of the mechanical properties in both discrete and axiomatic continuum models. Contrary to the classical continuum model, the inertia gradient nonlinear continuum model used herein is able to capture scale effects, which arise for modes in which the wavelength is comparable to the characteristic distance of the structured solid. The main conclusion of the work is that the proposed generalized continuum model captures the scale effects in both linear and nonlinear regimes, reproducing the behavior of the 1D nonlinear discrete model adequately.

  17. Continuum-regularized quantum gravity

    International Nuclear Information System (INIS)

    Chan Huesum; Halpern, M.B.

    1987-01-01

    The recent continuum regularization of d-dimensional Euclidean gravity is generalized to arbitrary power-law measure and studied in some detail as a representative example of coordinate-invariant regularization. The weak-coupling expansion of the theory illustrates a generic geometrization of regularized Schwinger-Dyson rules, generalizing previous rules in flat space and flat superspace. The rules are applied in a non-trivial explicit check of Einstein invariance at one loop: the cosmological counterterm is computed and its contribution is included in a verification that the graviton mass is zero. (orig.)

  18. Consequences of inelastic discrete-level neutron-collision mechanics for inelastic continuum scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E. (Technische Hogeschool Delft (Netherlands))

    1983-01-01

    From the collision mechanics of inelastic discrete-level scattering several properties are derived for the secondary-neutron energy distribution (SNED) for inelastic continuum scattering, when conceived as scattering with continuously-distributed inelastic levels. Using assumptions about the level density and neutron cross section the SNED can be calculated and some examples are shown. A formula is derived to calculate from a given inelastic continuum SNED a function, which is proportional to the level density and the neutron cross section. From this relation further conditions follow for the SNED. Representations for the inelastic continuum SNED currently in use do not, in general, satisfy most of the derived conditions.

  19. Consequences of inelastic discrete-level neutron-collision mechanics for inelastic continuum scattering

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1983-01-01

    From the collision mechanics of inelastic discrete-level scattering several properties are derived for the secondary-neutron energy distribution (SNED) for inelastic continuum scattering, when conceived as scattering with continuously-distributed inelastic levels. Using assumptions about the level density and neutron cross section the SNED can be calculated and some examples are shown. A formula is derived to calculate from a given inelastic continuum SNED a function, which is proportional to the level density and the neutron cross section. From this relation further conditions follow for the SNED. Representations for the inelastic continuum SNED currently in use do not, in general, satisfy most of the derived conditions. (author)

  20. A Coupling Tool for Parallel Molecular Dynamics-Continuum Simulations

    KAUST Repository

    Neumann, Philipp

    2012-06-01

    We present a tool for coupling Molecular Dynamics and continuum solvers. It is written in C++ and is meant to support the developers of hybrid molecular - continuum simulations in terms of both realisation of the respective coupling algorithm as well as parallel execution of the hybrid simulation. We describe the implementational concept of the tool and its parallel extensions. We particularly focus on the parallel execution of particle insertions into dense molecular systems and propose a respective parallel algorithm. Our implementations are validated for serial and parallel setups in two and three dimensions. © 2012 IEEE.

  1. Continuum gauge theories

    International Nuclear Information System (INIS)

    Stora, R.

    1976-09-01

    The mathematics of gauge fields and some related concepts are discussed: some corrections on the principal fiber bundles emphasize the idea that the present formulation of continuum theories is incomplete. The main ingredients used through the construction of the renormalized perturbation series are then described: the Faddeev Popov argument, and the Faddeev Popov Lagrangian; the Slavnov symmetry and the nature of the Faddeev Popov ghost fields; the Slavnov identity, with an obstruction: the Adler Bardeen anomaly, and its generalization to the local cohomology of the gauge Lie algebra. Some smooth classical configurations of gauge fields which ought to play a prominent role in the evaluation of the functional integral describing the theory are also reviewed

  2. A Cyclical Approach to Continuum Modeling: A Conceptual Model of Diabetic Foot Care

    Directory of Open Access Journals (Sweden)

    Martha L. Carvour

    2017-12-01

    Full Text Available “Cascade” or “continuum” models have been developed for a number of diseases and conditions. These models define the desired, successive steps in care for that disease or condition and depict the proportion of the population that has completed each step. These models may be used to compare care across subgroups or populations and to identify and evaluate interventions intended to improve outcomes on the population level. Previous cascade or continuum models have been limited by several factors. These models are best suited to processes with stepwise outcomes—such as screening, diagnosis, and treatment—with a single defined outcome (e.g., treatment or cure for each member of the population. However, continuum modeling is not well developed for complex processes with non-sequential or recurring steps or those without singular outcomes. As shown here using the example of diabetic foot care, the concept of continuum modeling may be re-envisioned with a cyclical approach. Cyclical continuum modeling may permit incorporation of non-sequential and recurring steps into a single continuum, while recognizing the presence of multiple desirable outcomes within the population. Cyclical models may simultaneously represent the distribution of clinical severity and clinical resource use across a population, thereby extending the benefits of traditional continuum models to complex processes for which population-based monitoring is desired. The models may also support communication with other stakeholders in the process of care, including health care providers and patients.

  3. Continuum absorption in the vicinity of the toroidicity-induced Alfvén gap

    International Nuclear Information System (INIS)

    Li, M.; Breizman, B. N.; Zheng, L. J.; Chen, Eugene Y.

    2015-01-01

    Excitation of Alfvén modes is commonly viewed as a concern for energetic particle confinement in burning plasmas. The 3.5 MeV alpha particles produced by fusion may be affected as well as other fast ions in both present and future devices. Continuum damping of such modes is one of the key factors that determine their excitation thresholds and saturation levels. This work examines the resonant dissipative response of the Alfvén continuum to an oscillating driving current when the driving frequency is slightly outside the edges of the toroidicity-induced spectral gap. The problem is largely motivated by the need to describe the continuum absorption in the frequency sweeping events. Akey element of this problem is the negative interference of the two closely spaced continuum crossing points.Weexplain why the lower and upper edges of the gap can have very different continuum absorption features. Lastly, the difference is associated with an eigenmode whose frequency can be arbitrarily close to the upper edge of the gap whereas the lower edge of the gap is always a finite distance away from the closest eigenmode

  4. Assessment of the excitelet algorithm for in-situ mechanical characterization of orthotropic structures

    Science.gov (United States)

    Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Masson, Patrice

    2012-04-01

    Damage detection and localization on composites can be impaired by inaccurate knowledge of the mechanical properties of the structure. This paper demonstrates the feasibility of using a chirplet-based correlation technique, called Excitelet, to evaluate the mechanical properties of orthotropic carbon fibre-based composite laminates. The method relies on the identification of an optimal correlation coefficient between measured and simulated dispersed signals measured on a structure using piezoceramic (PZT) transducers. Finite Element Model (FEM) is first conducted to demonstrate the capability of the approach to evaluate the mechanical properties of a composite structure. Experimental validation is then conducted on a unidirectionnal 2.30 mm thick laminate composed of unidirectional plies and a 2.35 mm thick laminate composed of unidirectional plies oriented at [0, 90]4s. Surface bonded PZT transducers were used both for actuation and sensing of guided waves bursts measured at 0° and 90° with respect to upper ply fibre orientation. The characterization is performed at various frequencies below 100 kHz using A0 or S0 modes and comparison with the material properties measured following ASTM standard testing is presented. The results indicate that large correlation coefficients are obtained between the measurements and simulated signals for both A0 and S0 modes when accurate properties are used as inputs for the model. Strategies based on multiple modes correlation are also assessed in order to improve the accuracy of the characterization approach. The results obtained using the proposed approach for the unidirectional plate and most of the results obtained using the proposed approach for the [0, 90]4s laminate are in agreement with the uncertainty associated with ASTM tests results while the proposed method is non destructive and can be performed prior to each imaging processing.

  5. Identification of a transcriptional signature for the wound healing continuum

    OpenAIRE

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Mi...

  6. Continuum Physics

    CERN Document Server

    Hertel, Peter

    2012-01-01

    This small book on the properties of continuously distributed matter covers a huge field. It sets out the governing principles of continuum physics and illustrates them by carefully chosen examples. These examples comprise structural mechanics and elasticity, fluid media, electricity and optics, thermoelectricity, fluctuation phenomena and more, from Archimedes' principle via Brownian motion to white dwarfs. Metamaterials, pattern formation by reaction-diffusion and surface plasmon polaritons are dealt with as well as classical topics such as Stokes' formula, beam bending and buckling, crystal optics and electro- and magnetooptic effects, dielectric waveguides, Ohm's law, surface acoustic waves, to mention just some.   The set of balance equations for content, flow and production of particles, mass, charge, momentum, energy and entropy is augmented by material, or constitutive equations. They describe entire classes of materials, such as viscid fluids and gases, elastic media, dielectrics or electrical con...

  7. Sexual Orientation: Categories or Continuum? Commentary on Bailey et al. (2016).

    Science.gov (United States)

    Savin-Williams, Ritch C

    2016-09-01

    Bailey et al. (2016) have provided an excellent, state-of-the-art overview that is a major contribution to our understanding of sexual orientation. However, whereas Bailey and his coauthors have examined the physiological, behavioral, and self-report data of sexual orientation and see categories, I see a sexual and romantic continuum. After noting several objections concerning the limitations of the review and methodological shortcomings characteristic of sexual-orientation research in general, I present evidence from research investigating in-between sexualities to support an alternative, continuum-based perspective regarding the nature of sexual orientation for both women and men. A continuum conceptualization has potential implications for investigating the prevalence of nonheterosexuals, sexual-orientation differences in gender nonconformity, causes of sexual orientation, and political issues. © The Author(s) 2016.

  8. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Directory of Open Access Journals (Sweden)

    Marte Gutierrez

    2015-12-01

    Full Text Available Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS, and suitable probability density functions (PDFs were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distributions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  9. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Milton, Flora Aparecida [Faculdade de Ciências da Saúde, Laboratório de Farmacologia Molecular, Universidade de Brasília (Brazil); Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States); Cvoro, Aleksandra [Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States); Amato, Angelica A. [Faculdade de Ciências da Saúde, Laboratório de Farmacologia Molecular, Universidade de Brasília (Brazil); Sieglaff, Douglas H.; Filgueira, Carly S.; Arumanayagam, Anithachristy Sigamani [Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States); Caro Alves de Lima, Maria do; Rocha Pitta, Ivan [Laboratório de Planejamento e Síntese de Fármacos – LPSF, Universidade Federal de Pernambuco (Brazil); Assis Rocha Neves, Francisco de [Faculdade de Ciências da Saúde, Laboratório de Farmacologia Molecular, Universidade de Brasília (Brazil); Webb, Paul, E-mail: pwebb@HoustonMethodist.org [Genomic Medicine, Houston Methodist Research Institute, Houston, TX (United States)

    2015-08-28

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1 adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation.

  10. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Milton, Flora Aparecida; Cvoro, Aleksandra; Amato, Angelica A.; Sieglaff, Douglas H.; Filgueira, Carly S.; Arumanayagam, Anithachristy Sigamani; Caro Alves de Lima, Maria do; Rocha Pitta, Ivan; Assis Rocha Neves, Francisco de; Webb, Paul

    2015-01-01

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists that improve insulin resistance but trigger side effects such as weight gain, edema, congestive heart failure and bone loss. GQ-16 is a PPARγ partial agonist that improves glucose tolerance and insulin sensitivity in mouse models of obesity and diabetes without inducing weight gain or edema. It is not clear whether GQ-16 acts as a partial agonist at all PPARγ target genes, or whether it displays gene-selective actions. To determine how GQ-16 influences PPARγ activity on a gene by gene basis, we compared effects of rosiglitazone (Rosi) and GQ-16 in mature 3T3-L1 adipocytes using microarray and qRT-PCR. Rosi changed expression of 1156 genes in 3T3-L1, but GQ-16 only changed 89 genes. GQ-16 generally showed weak effects upon Rosi induced genes, consistent with partial agonist actions, but a subset of modestly Rosi induced and strongly repressed genes displayed disproportionately strong GQ-16 responses. PPARγ partial agonists MLR24 and SR1664 also exhibit disproportionately strong effects on transcriptional repression. We conclude that GQ-16 displays a continuum of weak partial agonist effects but efficiently represses some negatively regulated PPARγ responsive genes. Strong repressive effects could contribute to physiologic actions of GQ-16. - Highlights: • GQ-16 is an insulin sensitizing PPARγ ligand with reduced harmful side effects. • GQ-16 displays a continuum of weak partial agonist activities at PPARγ-induced genes. • GQ-16 exerts strong repressive effects at a subset of genes. • These inhibitor actions should be evaluated in models of adipose tissue inflammation

  11. Continuum description for jointed media

    International Nuclear Information System (INIS)

    Thomas, R.K.

    1982-04-01

    A general three-dimensional continuum description is presented for a material containing regularly spaced and approximately parallel jointing planes within a representative elementary volume. Constitutive relationships are introduced for linear behavior of the base material and nonlinear normal and shear behavior across jointing planes. Furthermore, a fracture permeability tensor is calculated so that deformation induced alterations to the in-situ values can be measured. Examples for several strain-controlled loading paths are presented

  12. Adaptive spacetime method using Riemann jump conditions for coupled atomistic-continuum dynamics

    International Nuclear Information System (INIS)

    Kraczek, B.; Miller, S.T.; Haber, R.B.; Johnson, D.D.

    2010-01-01

    We combine the Spacetime Discontinuous Galerkin (SDG) method for elastodynamics with the mathematically consistent Atomistic Discontinuous Galerkin (ADG) method in a new scheme that concurrently couples continuum and atomistic models of dynamic response in solids. The formulation couples non-overlapping continuum and atomistic models across sharp interfaces by weakly enforcing jump conditions, for both momentum balance and kinematic compatibility, using Riemann values to preserve the characteristic structure of the underlying hyperbolic system. Momentum balances to within machine-precision accuracy over every element, on each atom, and over the coupled system, with small, controllable energy dissipation in the continuum region that ensures numerical stability. When implemented on suitable unstructured spacetime grids, the continuum SDG model offers linear computational complexity in the number of elements and powerful adaptive analysis capabilities that readily bridge between atomic and continuum scales in both space and time. A special trace operator for the atomic velocities and an associated atomistic traction field enter the jump conditions at the coupling interface. The trace operator depends on parameters that specify, at the scale of the atomic spacing, the position of the coupling interface relative to the atoms. In a key finding, we demonstrate that optimizing these parameters suppresses spurious reflections at the coupling interface without the use of non-physical damping or special boundary conditions. We formulate the implicit SDG-ADG coupling scheme in up to three spatial dimensions, and describe an efficient iterative solution scheme that outperforms common explicit schemes, such as the Velocity Verlet integrator. Numerical examples, in 1dxtime and employing both linear and nonlinear potentials, demonstrate the performance of the SDG-ADG method and show how adaptive spacetime meshing reconciles disparate time steps and resolves atomic-scale signals in

  13. On the continuum limit of curvature squared actions in the Regge calculus

    International Nuclear Information System (INIS)

    Eliezer, D.

    1989-01-01

    We evaluate the continuum limit of a family of curvature squared actions for the Regge calculus proposed by Hamber and Williams. The answers depend on how the continuum limit is defined. When the link lengths are defined as the distance in an embedding space between the endpoints of the link, we find that no member of this family approaches the continuum limit correctly. Defining the link lengths as the length of a geodesic between the endpoints of the link, we find that a unique member is selected, and we prove for the general two dimensional compact manifold that this Regge calculus action converges to ∫R 2 √d d 2 x. (orig.)

  14. THE SPATIAL EXTENT OF (U)LIRGs IN THE MID-INFRARED. I. THE CONTINUUM EMISSION

    International Nuclear Information System (INIS)

    DIaz-Santos, T.; Charmandaris, V.; Armus, L.; Petric, A. O.; Howell, J. H.; Murphy, E. J.; Inami, H.; Haan, S.; Marshall, J. A.; Stierwalt, S.; Surace, J. A.; Mazzarella, J. M.; Veilleux, S.; Bothun, G.; Appleton, P. N.; Evans, A. S.; Sanders, D. B.

    2010-01-01

    We present an analysis of the extended mid-infrared (MIR) emission of the Great Observatories All-Sky LIRG Survey sample based on 5-15 μm low-resolution spectra obtained with the Infrared Spectrograph on Spitzer. We calculate the fraction of extended emission (FEE) as a function of wavelength for the galaxies in the sample, FEE λ , defined as the fraction of the emission which originates outside of the unresolved component of a source at a given distance. We find that the FEE λ varies from one galaxy to another, but we can identify three general types of FEE λ : one where FEE λ is constant, one where features due to emission lines and polycyclic aromatic hydrocarbons appear more extended than the continuum, and a third which is characteristic of sources with deep silicate absorption at 9.7 μm. More than 30% of the galaxies have a median FEE λ larger than 0.5, implying that at least half of their MIR emission is extended. Luminous Infrared Galaxies (LIRGs) display a wide range of FEE in their warm dust continuum (0 ∼ 13.2 μ m ∼ 13.2 μ m that we find in many LIRGs suggest that the extended component of their MIR continuum emission originates in scales up to 10 kpc and may contribute as much as the nuclear region to their total MIR luminosity. The mean size of the LIRG cores at 13.2 μm is 2.6 kpc. However, once the IR luminosity of the systems reaches the threshold of L IR ∼ 10 11.8 L sun , slightly below the regime of Ultra-luminous Infrared Galaxies (ULIRGs), all sources become clearly more compact, with FEE 13.2 μ m ∼ IR ∼> 10 11.25 L sun strongly increases in those classified as mergers in their final stage of interaction. The FEE 13.2 μ m is also related to the contribution of an active galactic nucleus (AGN) to the MIR emission. Galaxies which are more AGN dominated are less extended, independently of their L IR . We finally find that the extent of the MIR continuum emission is correlated with the far-IR IRAS log(f 60 μ m /f 100 μ m

  15. Continuum approximation of the Fermi-Pasta-Ulam lattice

    International Nuclear Information System (INIS)

    Martina, L.

    1979-01-01

    A continuum approximation method is applied in order to discuss the connection between some properties of the infinite Fermi-Pasta-Ulam lattice and the ones displayed by the Korteweg-de Vries equation

  16. Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots

    Science.gov (United States)

    Hannan, Michael W.; Walker, Ian D.

    2003-01-01

    Traditionally, robot manipulators have been a simple arrangement of a small number of serially connected links and actuated joints. Though these manipulators prove to be very effective for many tasks, they are not without their limitations, due mainly to their lack of maneuverability or total degrees of freedom. Continuum style (i.e., continuous "back-bone") robots, on the other hand, exhibit a wide range of maneuverability, and can have a large number of degrees of freedom. The motion of continuum style robots is generated through the bending of the robot over a given section; unlike traditional robots where the motion occurs in discrete locations, i.e., joints. The motion of continuum manipulators is often compared to that of biological manipulators such as trunks and tentacles. These continuum style robots can achieve motions that could only be obtainable by a conventionally designed robot with many more degrees of freedom. In this paper we present a detailed formulation and explanation of a novel kinematic model for continuum style robots. The design, construction, and implementation of our continuum style robot called the elephant trunk manipulator is presented. Experimental results are then provided to verify the legitimacy of our model when applied to our physical manipulator. We also provide a set of obstacle avoidance experiments that help to exhibit the practical implementation of both our manipulator and our kinematic model. c2003 Wiley Periodicals, Inc.

  17. An optimized absorbing potential for ultrafast, strong-field problems

    Science.gov (United States)

    Yu, Youliang; Esry, B. D.

    2018-05-01

    Theoretical treatments of strong-field physics have long relied on the numerical solution of the time-dependent Schrödinger equation. The most effective such treatments utilize a discrete spatial representation—a grid. Since most strong-field observables relate to the continuum portion of the wave function, the boundaries of the grid—which act as hard walls and thus cause reflection—can substantially impact the observables. Special care thus needs to be taken. While there exist a number of attempts to solve this problem—e.g., complex absorbing potentials and masking functions, exterior complex scaling, and coordinate scaling—none of them are completely satisfactory. The first of these is arguably the most popular, but it consumes a substantial fraction of the computing resources in any given calculation. Worse, this fraction grows with the dimensionality of the problem. In addition, no systematic way to design such a potential has been used in the strong-field community. In this work, we address these issues and find a much better solution. By comparing with previous widely used absorbing potentials, we find a factor of 3–4 reduction in the absorption range, given the same level of absorption over a specified energy interval.

  18. Manipulation of resonant Auger processes with strong optical fields

    Science.gov (United States)

    Picón, Antonio; Buth, Christian; Doumy, Gilles; Krässig, Bertold; Young, Linda; Southworth, Stephen

    2013-05-01

    We recently reported on the optical control of core-excited states of a resonant Auger process in neon. We have focused on the resonant excitation 1 s --> 1s-1 3 p , while a strong optical field may resonantly couple two core-excited states (1s-1 3 p and 1s-1 3 s) in the Rydberg manifold as well as dressing the continuum. There is a clear signature in the Auger electron spectrum of the inner-shell dynamics induced by the strong optical field: i) the Auger electron spectrum is modified by the rapid optical-induced population transfer from the 1s-1 3 p state to the 1s-1 3 s state during their decay. ii) The angular anisotropy parameter, defining the angular distribution of the Auger electron, is manifested in the envelope of the (angle-integrated) sidebands. This work is funded by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.

  19. Coupling Strategies Investigation of Hybrid Atomistic-Continuum Method Based on State Variable Coupling

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2017-01-01

    Full Text Available Different configurations of coupling strategies influence greatly the accuracy and convergence of the simulation results in the hybrid atomistic-continuum method. This study aims to quantitatively investigate this effect and offer the guidance on how to choose the proper configuration of coupling strategies in the hybrid atomistic-continuum method. We first propose a hybrid molecular dynamics- (MD- continuum solver in LAMMPS and OpenFOAM that exchanges state variables between the atomistic region and the continuum region and evaluate different configurations of coupling strategies using the sudden start Couette flow, aiming to find the preferable configuration that delivers better accuracy and efficiency. The major findings are as follows: (1 the C→A region plays the most important role in the overlap region and the “4-layer-1” combination achieves the best precision with a fixed width of the overlap region; (2 the data exchanging operation only needs a few sampling points closer to the occasions of interactions and decreasing the coupling exchange operations can reduce the computational load with acceptable errors; (3 the nonperiodic boundary force model with a smoothing parameter of 0.1 and a finer parameter of 20 can not only achieve the minimum disturbance near the MD-continuum interface but also keep the simulation precision.

  20. Continuum Navier-Stokes modelling of water ow past fullerene molecules

    DEFF Research Database (Denmark)

    Walther, J. H.; Popadic, A.; Koumoutsakos, P.

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...... as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the computational cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently...

  1. Continuum Navier-Stokes modelling of water flow past fullerene molecules

    DEFF Research Database (Denmark)

    Walther, J. H.; Popadic, A.; Koumoutsakos, P.

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...... as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the computational cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently...

  2. The continuum of spreading depolarizations in acute cortical lesion development

    DEFF Research Database (Denmark)

    Hartings, Jed A; Shuttleworth, C William; Kirov, Sergei A

    2017-01-01

    A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum....... The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion...

  3. HERSCHEL/PACS SURVEY OF PROTOPLANETARY DISKS IN TAURUS/AURIGA—OBSERVATIONS OF [O I] AND [C II], AND FAR-INFRARED CONTINUUM

    International Nuclear Information System (INIS)

    Howard, Christian D.; Sandell, Göran; Vacca, William D.; Duchêne, Gaspard; Mathews, Geoffrey; Augereau, Jean-Charles; Ménard, Francois; Pinte, Christophe; Podio, Linda; Thi, Wing-Fai; Barrado, David; Riviere-Marichalar, Pablo; Dent, William R. F.; Eiroa, Carlos; Meeus, Gwendolyn; Grady, Carol; Roberge, Aki; Kamp, Inga; Vicente, Silvia; Williams, Jonathan P.

    2013-01-01

    The Herschel Space Observatory was used to observe ∼120 pre-main-sequence stars in Taurus as part of the GASPS Open Time Key project. Photodetector Array Camera and Spectrometer was used to measure the continuum as well as several gas tracers such as [O I] 63 μm, [O I] 145 μm, [C II] 158 μm, OH, H 2 O, and CO. The strongest line seen is [O I] at 63 μm. We find a clear correlation between the strength of the [O I] 63 μm line and the 63 μm continuum for disk sources. In outflow sources, the line emission can be up to 20 times stronger than in disk sources, suggesting that the line emission is dominated by the outflow. The tight correlation seen for disk sources suggests that the emission arises from the inner disk (<50 AU) and lower surface layers of the disk where the gas and dust are coupled. The [O I] 63 μm is fainter in transitional stars than in normal Class II disks. Simple spectral energy distribution models indicate that the dust responsible for the continuum emission is colder in these disks, leading to weaker line emission. [C II] 158 μm emission is only detected in strong outflow sources. The observed line ratios of [O I] 63 μm to [O I] 145 μm are in the regime where we are insensitive to the gas-to-dust ratio, neither can we discriminate between shock or photodissociation region emission. We detect no Class III object in [O I] 63 μm and only three in continuum, at least one of which is a candidate debris disk

  4. Double-continuum wave functions and double-photoionization cross sections of two-electron systems

    International Nuclear Information System (INIS)

    Tiwary, S.N.

    1996-09-01

    The present review briefly presents the growing experimental as well as theoretical interests in recent years in the double-continuum wave functions and double-photoionization cross sections of two-electron systems. The validity of existing double-continuum wave functions is analyzed and the importance of electronic correlations in both the initial as well as final states wave functions involved in the transition amplitude for double-photoionization process is demonstrated. At present, we do not have comprehensive and practical double-continuum wave functions which account the full correlation of two-electron in the continuum. Basic difficulties in making accurate theoretical calculations of double ionization by a single high energy photon especially in the vicinity of the threshold, where the correlation plays an important role, are discussed. Illuminating, illustrative and representative examples are presented in order to show the present status and the progress in this field. Future challenges and directions, in high-precision double-photoionization cross sections calculations, have been discussed and suggested. (author). 133 refs, 9 figs

  5. Three-body continuum states on a Lagrange mesh

    International Nuclear Information System (INIS)

    Descouvemont, P.; Tursunov, E.; Baye, D.

    2006-01-01

    Three-body continuum states are investigated with the hyperspherical method on a Lagrange mesh. The R-matrix theory is used to treat the asymptotic behaviour of scattering wave functions. The formalism is developed for neutral as well as for charged systems. We point out some specificities of continuum states in the hyperspherical method. The collision matrix can be determined with a good accuracy by using propagation techniques. The method is applied to the 6 He (=α+n+n) and 6 Be (=α+p+p) systems, as well as to 14 Be (=Be12+n+n). For 6 He, we essentially recover results of the literature. Application to 14 Be suggests the existence of an excited 2 + state below threshold. The calculated B(E2) value should make this state observable with Coulomb excitation experiments

  6. PCE: web tools to compute protein continuum electrostatics

    Science.gov (United States)

    Miteva, Maria A.; Tufféry, Pierre; Villoutreix, Bruno O.

    2005-01-01

    PCE (protein continuum electrostatics) is an online service for protein electrostatic computations presently based on the MEAD (macroscopic electrostatics with atomic detail) package initially developed by D. Bashford [(2004) Front Biosci., 9, 1082–1099]. This computer method uses a macroscopic electrostatic model for the calculation of protein electrostatic properties, such as pKa values of titratable groups and electrostatic potentials. The MEAD package generates electrostatic energies via finite difference solution to the Poisson–Boltzmann equation. Users submit a PDB file and PCE returns potentials and pKa values as well as color (static or animated) figures displaying electrostatic potentials mapped on the molecular surface. This service is intended to facilitate electrostatics analyses of proteins and thereby broaden the accessibility to continuum electrostatics to the biological community. PCE can be accessed at . PMID:15980492

  7. Impact of line parameter database and continuum absorption on GOSAT TIR methane retrieval

    Science.gov (United States)

    Yamada, A.; Saitoh, N.; Nonogaki, R.; Imasu, R.; Shiomi, K.; Kuze, A.

    2017-12-01

    The current methane retrieval algorithm (V1) at wavenumber range from 1210 cm-1 to 1360 cm-1 including CH4 ν 4 band from the thermal infrared (TIR) band of Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) onboard Greenhouse Gases Observing Satellite (GOSAT) uses LBLRTM V12.1 with AER V3.1 line database and MT CKD 2.5.2 continuum absorption model to calculate optical depth. Since line parameter databases have been updated and the continuum absorption may have large uncertainty, the purpose of this study is to assess the impact on {CH}4 retrieval from the choice of line parameter databases and the uncertainty of continuum absorption. We retrieved {CH}4 profiles with replacement of line parameter database from AER V3.1 to AER v1.0, HITRAN 2004, HITRAN 2008, AER V3.2, or HITRAN 2012 (Rothman et al. 2005, 2009, and 2013. Clough et al., 2005), we assumed 10% larger continuum absorption coefficients and 50% larger temperature dependent coefficient of continuum absorption based on the report by Paynter and Ramaswamy (2014). We compared the retrieved CH4 with the HIPPO CH4 observation (Wofsy et al., 2012). The difference from HIPPO observation of AER V3.2 was the smallest and 24.1 ± 45.9 ppbv. The differences of AER V1.0, HITRAN 2004, HITRAN 2008, and HITRAN 2012 were 35.6 ± 46.5 ppbv, 37.6 ± 46.3 ppbv, 32.1 ± 46.1 ppbv, and 35.2 ± 46.0 ppbv, respectively. Maximum {CH}4 retrieval differences were -0.4 ppbv at the layer of 314 hPa when we used 10% larger absorption coefficients of {H}2O foreign continuum. Comparing AER V3.2 case to HITRAN 2008 case, the line coupling effect reduced difference by 8.0 ppbv. Line coupling effects were important for GOSAT TIR {CH}4 retrieval. Effects from the uncertainty of continuum absorption were negligible small for GOSAT TIR CH4 retrieval.

  8. Quasi continuum vibrational of molecules and isotopic selectivity properties induced by collisions

    International Nuclear Information System (INIS)

    Angelie, Christian

    1990-01-01

    This research thesis proposes an overview of knowledge on vibrationally highly excited states of molecules. The author shows that the statistic quasi-continuum formed by these states is preceded by a quasi continuum of weak transitions with a lower energy, and that these transitions remain structured and very narrow up to the dissociation energy and beyond. Collisions between molecules excited in their quasi continuum are then studied. The author particularly analyses a new phenomenon of isotopic selectivity which is important for the dissociation of a molecule colliding another molecule. It appears that this selectivity regarding selectivity is due to a selectivity of transferred energy which paradoxically increases with the molecule vibrational content because of a resonance phenomenon of energies transferred by dipole-dipole interaction [fr

  9. Continuum radiation of argon plasma

    International Nuclear Information System (INIS)

    D'Yachkov, L.G.

    1995-01-01

    A simple completely analytical method of the calculation of radiative continuum of plasmas is derived and an analysis of experimental data on continuum radiation of argon plasma is made. The method is based on the semiclassical quantum defect theory. To calculate radial matrix elements of dipole transitions the asymptotic expansion in powers of E c /ω 2/3 , with an accuracy to the linear term, where E, is the arithmetic mean of the initial and final energies of the transition, is used. This expansion has the same form for free-free, free-bound and bound-bound transitions. If the quantum defects are also approximated by a linear function of energy, the integration over the electron energy (the Maxwell-Boltzmann distribution is assumed) can be performed in analytical form. For Rydberg states the sum of photoionization continua can be replaced by an integral. We have calculated the absorption coefficient pf argon plasma. The photoionization cross section is calculated for all the states of 4s, 5s, 6s, 4p, 5p, 3d, 4d, 4s', 5s', 6s', 4p', 5p', 3d' and 4d' configurations taking into account P-coupling and multiplet splitting (56 states). Other excited states are allowed for by the integral formula together with free-free transitions

  10. Asymmetric continuum extreme processes in solids and fluids

    CERN Document Server

    Teisseyre, Roman

    2014-01-01

    This book deals with a class of basic deformations in asymmetric continuum theory. It describes molecular deformations and transport velocities in fluids, strain deformations in solids as well as the molecular transport, important in fracture processes.

  11. Monitoring the HIV continuum of care in key populations across Europe and Central Asia.

    Science.gov (United States)

    Brown, A E; Attawell, K; Hales, D; Rice, B D; Pharris, A; Supervie, V; Van Beckhoven, D; Delpech, V C; An der Heiden, M; Marcus, U; Maly, M; Noori, T

    2018-05-08

    The aim of the study was to measure and compare national continuum of HIV care estimates in Europe and Central Asia in three key subpopulations: men who have sex with men (MSM), people who inject drugs (PWID) and migrants. Responses to a 2016 European Centre for Disease Prevention and Control (ECDC) survey of 55 European and Central Asian countries were used to describe continuums of HIV care for the subpopulations. Data were analysed using three frameworks: Joint United Nations Programme on HIV/AIDS (UNAIDS) 90-90-90 targets; breakpoint analysis identifying reductions between adjacent continuum stages; quadrant analysis categorizing countries using 90% cut-offs for continuum stages. Overall, 29 of 48 countries reported national data for all HIV continuum stages (numbers living with HIV, diagnosed, receiving treatment and virally suppressed). Six countries reported all stages for MSM, seven for PWID and two for migrants. Thirty-one countries did not report data for MSM (34 for PWID and 41 for migrants). In countries that provided key-population data, overall, 63%, 40% and 41% of MSM, PWID and migrants living with HIV were virally suppressed, respectively (compared with 68%, 65% and 68% nationally, for countries reporting key-population data). Variation was observed between countries, with higher outcomes in subpopulations in Western Europe compared with Eastern Europe and Central Asia. Few reporting countries can produce the continuum of HIV care for the three key populations. Where data are available, differences exist in outcomes between the general and key populations. While MSM broadly mirror national outcomes (in the West), PWID and migrants experience poorer treatment and viral suppression. Countries must develop continuum measures for key populations to identify and address inequalities. © 2018 British HIV Association.

  12. Continuum limit of gl(M vertical stroke N) spin chains

    International Nuclear Information System (INIS)

    Candu, Constantin

    2011-03-01

    We study the spectrum of an integrable antiferromagnetic Hamiltonian of the gl(M vertical stroke N) spin chain of alternating fundamental and dual representations. After extensive numerical analysis, we identify the vacuum and low lying excitations and with this knowledge perform the continuum limit, while keeping a finite gap. All antiferromagnetic gl(n+N vertical stroke N) spin chains with n>0 and N≠0 are shown to possess in the continuum limit 2n-2 multiplets of massive particles which scatter with gl(n) Gross-Neveu like S-matrices, namely their eigenvalues do not depend on N. We argue that the continuum theory is the gl(M vertical stroke N) Gross-Neveu model, that is the massive deformation of the gl(M vertical stroke N) 1 Wess-Zumino-Witten model. As we can see ion the example of gl(2m vertical stroke 1) spin chains, the full particle spectrum is much richer. Our analysis suggests that for a complete characterization of the latter it is not enough to restrict to large volume calculations, as we do in this work. (orig.)

  13. Accommodating state shifts within the conceptual framework of the wetland continuum

    Science.gov (United States)

    Mushet, David M.; McKenna, Owen; LaBaugh, James W.; Euliss, Ned H.; Rosenberry, Donald O.

    2018-01-01

    The Wetland Continuum is a conceptual framework that facilitates the interpretation of biological studies of wetland ecosystems. Recently summarized evidence documenting how a multi-decadal wet period has influenced aspects of wetland, lake and stream systems in the southern prairie-pothole region of North America has revealed the potential for wetlands to shift among alternate states. We propose that incorporation of state shifts into the Wetland Continuum, as originally proposed or as modified by Hayashi et al., is a relatively simple matter if one allows for shifts of wetlands along the horizontal, groundwater axis of the framework under conditions of extreme and sustained wet or dry conditions. We suggest that the ease by which state shifts can be accommodated within both the original and modified frameworks of the Wetland Continuum is a testament to the robustness of the concept when it is related to the alternative-stable-state concept.

  14. The effect of interface state continuum on the impedance spectroscopy of semiconductor heterojunctions

    International Nuclear Information System (INIS)

    Brus, V V

    2013-01-01

    A quantitative analysis of the impedance spectroscopy of semiconductor heterojunctions was carried out in the presence of interface state continuum at the heterojunction interface. A comparison of the impedance spectroscopy of semiconductor heterojunctions simulated in the context of the interface state continuum model with that simulated in the scope of the single-level state model was carried and possible misinterpretations were considered. The previously proposed approaches for the determination of the interface-state-related parameters and for the calculation of the actual barrier capacitance (the single-level state model) were modified in order to take into account the effect of interface state continuum. (paper)

  15. A comparison of synthetic and measured solar continuum intensities and limb darkening coefficients

    International Nuclear Information System (INIS)

    Ayres, T.R.

    1978-01-01

    Absolute continuum intensities and wavelength-dependent low-order polynomial fits to optical and infrared continuum limb darkening provide useful discriminants among single-component models of the solar photosphere. The thermal structure in best quantitative agreement with the recent center-limb measurements by Pierce and Slaughter (1977) and by Pierce et.al. (1977) is the semi-empirical model by Vernazza, Avrett and Loeser (VAL). However, the VAL model M temperatures must be scaled upward by a factor of 1.015+-0.005 to be consistent with the Labs and Neckel absolute calibration of continuum high points in the optical region 0.40-0.65 μm. (Auth.)

  16. Continuum contributions to dipole oscillator-strength sum rules for hydrogen in finite basis sets

    DEFF Research Database (Denmark)

    Oddershede, Jens; Ogilvie, John F.; Sauer, Stephan P. A.

    2017-01-01

    Calculations of the continuum contributions to dipole oscillator sum rules for hydrogen are performed using both exact and basis-set representations of the stick spectra of the continuum wave function. We show that the same results are obtained for the sum rules in both cases, but that the conver......Calculations of the continuum contributions to dipole oscillator sum rules for hydrogen are performed using both exact and basis-set representations of the stick spectra of the continuum wave function. We show that the same results are obtained for the sum rules in both cases......, but that the convergence towards the final results with increasing excitation energies included in the sum over states is slower in the basis-set cases when we use the best basis. We argue also that this conclusion most likely holds also for larger atoms or molecules....

  17. Continuum mechanics of electromagnetic solids

    CERN Document Server

    Maugin, GA

    1988-01-01

    This volume is a rigorous cross-disciplinary theoretical treatment of electromechanical and magnetomechanical interactions in elastic solids. Using the modern style of continuum thermomechanics (but without excessive formalism) it starts from basic principles of mechanics and electromagnetism, and goes on to unify these two fields in a common framework. It treats linear and nonlinear static and dynamic problems in a variety of elastic solids such as piezoelectrics, electricity conductors, ferromagnets, ferroelectrics, ionic crystals and ceramics. Chapters 1-3 are introductory, describing the e

  18. Infrared exponents and the strong-coupling limit in lattice Landau gauge

    International Nuclear Information System (INIS)

    Sternbeck, Andre; Smekal, Lorenz von

    2010-01-01

    We study the gluon and ghost propagators of lattice Landau gauge in the strong-coupling limit β=0 in pure SU(2) lattice gauge theory to find evidence of the conformal infrared behavior of these propagators as predicted by a variety of functional continuum methods for asymptotically small momenta q 2 QCD 2 . In the strong-coupling limit, this same behavior is obtained for the larger values of a 2 q 2 (in units of the lattice spacing a), where it is otherwise swamped by the gauge-field dynamics. Deviations for a 2 q 2 <1 are well parameterized by a transverse gluon mass ∝1/a. Perhaps unexpectedly, these deviations are thus no finite-volume effect but persist in the infinite-volume limit. They furthermore depend on the definition of gauge fields on the lattice, while the asymptotic conformal behavior does not. We also comment on a misinterpretation of our results by Cucchieri and Mendes (Phys. Rev. D 81:016005, 2010). (orig.)

  19. A Geometry Deformation Model for Braided Continuum Manipulators

    Directory of Open Access Journals (Sweden)

    S. M. Hadi Sadati

    2017-06-01

    Full Text Available Continuum manipulators have gained significant attention in the robotic community due to their high dexterity, deformability, and reachability. Modeling of such manipulators has been shown to be very complex and challenging. Despite many research attempts, a general and comprehensive modeling method is yet to be established. In this paper, for the first time, we introduce the bending effect in the model of a braided extensile pneumatic actuator with both stiff and bendable threads. Then, the effect of the manipulator cross-section deformation on the constant curvature and variable curvature models is investigated using simple analytical results from a novel geometry deformation method and is compared to experimental results. We achieve 38% mean reference error simulation accuracy using our constant curvature model for a braided continuum manipulator in presence of body load and 10% using our variable curvature model in presence of extensive external loads. With proper model assumptions and taking to account the cross-section deformation, a 7–13% increase in the simulation mean error accuracy is achieved compared to a fixed cross-section model. The presented models can be used for the exact modeling and design optimization of compound continuum manipulators by providing an analytical tool for the sensitivity analysis of the manipulator performance. Our main aim is the application in minimal invasive manipulation with limited workspaces and manipulators with regional tunable stiffness in their cross section.

  20. An online intervention using information on the mental health-mental illness continuum to reduce stigma.

    Science.gov (United States)

    Schomerus, G; Angermeyer, M C; Baumeister, S E; Stolzenburg, S; Link, B G; Phelan, J C

    2016-02-01

    A core component of stigma is being set apart as a distinct, dichotomously different kind of person. We examine whether information on a continuum from mental health to mental illness reduces stigma. Online survey experiment in a quota sample matching the German population for age, gender and region (n=1679). Participants randomly received information on either (1) a continuum, (2) a strict dichotomy of mental health and mental illness, or (3) no information. We elicited continuity beliefs and stigma toward a person with schizophrenia or depression. The continuum intervention decreased perceived difference by 0.19 standard deviations (SD, Pmental illness can be improved by providing information on a mental health-mental illness continuum. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Continuum damage mechanics method for fatigue growth of surface cracks

    International Nuclear Information System (INIS)

    Feng Xiqiao; He Shuyan

    1997-01-01

    With the background of leak-before-break (LBB) analysis of pressurized vessels and pipes in nuclear plants, the fatigue growth problem of either circumferential or longitudinal semi-elliptical surface cracks subjected to cyclic loading is studied by using a continuum damage mechanics method. The fatigue damage is described by a scalar damage variable. From the damage evolution equation at the crack tip, a crack growth equation similar to famous Paris' formula is derived, which shows the physical meaning of Paris' formula. Thereby, a continuum damage mechanics approach is developed to analyze the configuration evolution of surface cracks during fatigue growth

  2. Relativistic continuum physics for the description of heavy ion collisions

    International Nuclear Information System (INIS)

    Lukacs, Bela

    1986-01-01

    The application of relativistic continuum physics to the description of the nuclear fireball evolution from the start of expansion to the breaking is discussed. The basic formalism and basic assumptions of relativistic hydrodynamics and thermodynamics are analyzed in detail. The four basic assumptions are not valid in the case of nuclear fireball produced in heavy ion collisions, but thermodynamics can be extended in different ways to incorporate anisotropy, fluctuations, gradients and the lack of the local equilibrium. The extended continuum formalism is applicable to the description of the nuclear fireball dynamics, including the nuclear - quark matter phase transition. (D.Gy.)

  3. Bound states in continuum: Quantum dots in a quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Prodanović, Nikola, E-mail: elnpr@leeds.ac.uk [Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Milanović, Vitomir [School of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade (Serbia); Ikonić, Zoran; Indjin, Dragan; Harrison, Paul [Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom)

    2013-11-01

    We report on the existence of a bound state in the continuum (BIC) of quantum rods (QR). QRs are novel elongated InGaAs quantum dot nanostructures embedded in the shallower InGaAs quantum well. BIC appears as an excited confined dot state and energetically above the bottom of a well subband continuum. We prove that high height-to-diameter QR aspect ratio and the presence of a quantum well are indispensable conditions for accommodating the BIC. QRs are unique semiconductor nanostructures, exhibiting this mathematical curiosity predicted 83 years ago by Wigner and von Neumann.

  4. Static third-harmonic lines in widely variable fiber continuum generation

    Science.gov (United States)

    Tu, Haohua; Zhao, Youbo; Liu, Yuan; Boppart, Stephen A.

    2014-01-01

    An intriguing phenomenon of third-harmonic generation under fiber continuum generation is the emission of an anharmonic signal. One popular interpretation of this effect has developed into a general theory of fiber third-harmonic generation. Here we produce "static" third-harmonic lines dictated fully by fiber properties independent of pump parameters, in contrast to the signals of all known phase-matched nonlinear optical processes that vary dynamically with these parameters. We argue that the anharmonic signal is an illusion of the continuum generation, that it is in fact harmonic, and that this theory should be reevaluated.

  5. Solar flux variability in the Schumann-Runge continuum as a function of solar cycle 21

    International Nuclear Information System (INIS)

    Torr, M.R.; Torr, D.G.; Hinteregger, H.E.

    1980-01-01

    Measurements of the solar flux in the Schumann-Runge continuum (1350-1750 A) by the Atmosphere Explorer satellites reveal a strong dependence on solar activity. Solar intensities over the rising phase of cycle 21, increase by more than a factor of two at the shorter wavelengths (1350 A), with a smaller change (approx.10%) at 1750 A. A significant 27 day variability is found to exist superimposed on the solar cycle variation. Because radiation in this portion of the spectum is important to the lower thermosphere in the photodissociation of 0 2 and the production of 0( 1 D), we use the unattenuated Schumann-Runge continuum dissociation frequency as a parameter to illustrate the magnitude and temporal characteristics of this variation. The values of this parameter, J/sub infinity/(0 2 )/sub SR/, range from 1.5 x 10 -6 s -1 for April 23, 1974, to 2.8 x 10 -6 s -1 for February 19, 1979. In studies of oxygen in the lower thermosphere, it is therefore necessary to use solar spectral intensities representative of the actual conditions for which the calculations are made. Both the J/sub infinity/(0 2 )/sub SR/ parameter and the solar flux at various wavelengths over the 1350 to 1750 A range can be expressed in terms of the F10.7 index to a reasonable approximation

  6. Influence of Orthotropy on Biomechanics of Peri-Implant Bone in Complete Mandible Model with Full Dentition

    Directory of Open Access Journals (Sweden)

    Xi Ding

    2014-01-01

    Full Text Available Objective. The study was to investigate the impact of orthotropic material on the biomechanics of dental implant, based on a detailed mandible with high geometric and mechanical similarity. Materials and Methods. Multiple data sources were used to elaborate detailed biological structures and implant CAD models. In addition, an extended orthotropic material assignment methodology based on harmonic fields was used to handle the alveolar ridge region to generate compatible orthotropic fields. The influence of orthotropic material was compared with the commonly used isotropic model and simplified orthotropic model. Results. The simulation results showed that the values of stress and strain on the implant-bone interface almost increased in the orthotropic model compared to the isotropic case, especially for the cancellous bone. However, the local stress concentration was more obvious in the isotropic case compared to that in orthotropic case. The simple orthotropic model revealed irregular stress and strain distribution, compared to the isotropic model and the real orthotropic model. The influence of orthotropy was little on the implant, periodontal ligament, tooth enamel, and dentin. Conclusion. The orthotropic material has significant effect on stress and strain of implant-bone interface in the mandible, compared with the isotropic simulation. Real orthotropic mechanical properties of mandible should be emphasized in biomechanical studies of dental implants.

  7. Three-dimensional photodissociation in strong laser fields: Memory-kernel effective-mode expansion

    International Nuclear Information System (INIS)

    Li Xuan; Thanopulos, Ioannis; Shapiro, Moshe

    2011-01-01

    We introduce a method for the efficient computation of non-Markovian quantum dynamics for strong (and time-dependent) system-bath interactions. The past history of the system dynamics is incorporated by expanding the memory kernel in exponential functions thereby transforming in an exact fashion the non-Markovian integrodifferential equations into a (larger) set of ''effective modes'' differential equations (EMDE). We have devised a method which easily diagonalizes the EMDE, thereby allowing for the efficient construction of an adiabatic basis and the fast propagation of the EMDE in time. We have applied this method to three-dimensional photodissociation of the H 2 + molecule by strong laser fields. Our calculations properly include resonance-Raman scattering via the continuum, resulting in extensive rotational and vibrational excitations. The calculated final kinetic and angular distribution of the photofragments are in overall excellent agreement with experiments, both when transform-limited pulses and when chirped pulses are used.

  8. Heavy quark masses in the continuum limit of quenched Lattice QCD

    International Nuclear Information System (INIS)

    De Divitiis, G.M.; Guagnelli, M.; Palombi, F.; Petronzio, R.; Tantalo, N.

    2003-01-01

    We compute charm and bottom quark masses in the quenched approximation and in the continuum limit of lattice QCD. We make use of a step scaling method, previously introduced to deal with two scale problems, that allows to take the continuum limit of the lattice data. We determine the RGI quark masses and make the connection to the MS-bar scheme. The continuum extrapolation gives us a value m b RGI =6.73(16) GeV for the b-quark and m c RGI =1.681(36) GeV for the c-quark, corresponding, respectively, to m b MS-bar (m b MS-bar =4.33(10) GeV and m c MS-bar (m c MS-bar =1.319(28) GeV. The latter result, in agreement with current estimates, is for us a check of the method. Using our results on the heavy quark masses we compute the mass of the B c meson, M B c =6.46(15) GeV

  9. Landau-Zener transitions and Dykhne formula in a simple continuum model

    Science.gov (United States)

    Dunham, Yujin; Garmon, Savannah

    The Landau-Zener model describing the interaction between two linearly driven discrete levels is useful in describing many simple dynamical systems; however, no system is completely isolated from the surrounding environment. Here we examine a generalizations of the original Landau-Zener model to study simple environmental influences. We consider a model in which one of the discrete levels is replaced with a energy continuum, in which we find that the survival probability for the initially occupied diabatic level is unaffected by the presence of the continuum. This result can be predicted by assuming that each step in the evolution for the diabatic state evolves independently according to the Landau-Zener formula, even in the continuum limit. We also show that, at least for the simplest model, this result can also be predicted with the natural generalization of the Dykhne formula for open systems. We also observe dissipation as the non-escape probability from the discrete levels is no longer equal to one.

  10. Series Pneumatic Artificial Muscles (sPAMs) and Application to a Soft Continuum Robot.

    Science.gov (United States)

    Greer, Joseph D; Morimoto, Tania K; Okamura, Allison M; Hawkes, Elliot W

    2017-01-01

    We describe a new series pneumatic artificial muscle (sPAM) and its application as an actuator for a soft continuum robot. The robot consists of three sPAMs arranged radially round a tubular pneumatic backbone. Analogous to tendons, the sPAMs exert a tension force on the robot's pneumatic backbone, causing bending that is approximately constant curvature. Unlike a traditional tendon driven continuum robot, the robot is entirely soft and contains no hard components, making it safer for human interaction. Models of both the sPAM and soft continuum robot kinematics are presented and experimentally verified. We found a mean position accuracy of 5.5 cm for predicting the end-effector position of a 42 cm long robot with the kinematic model. Finally, closed-loop control is demonstrated using an eye-in-hand visual servo control law which provides a simple interface for operation by a human. The soft continuum robot with closed-loop control was found to have a step-response rise time and settling time of less than two seconds.

  11. Continuum photon spectrum from Z1Z1 annihilations in universal extra dimensions

    International Nuclear Information System (INIS)

    Melbéus, Henrik; Merle, Alexander; Ohlsson, Tommy

    2012-01-01

    We calculate the continuum photon spectrum from the pair annihilation of a Z 1 LKP in non-minimal universal extra dimensions. We find that, due to the preferred annihilation into W + W - pairs, the continuum flux of collinear photons is relatively small compared to the standard case of the B 1 as the LKP. This conclusion applies in particular to the spectral endpoint, where also the additional fermionic contributions are not large enough to increase the flux significantly. When searching for the line signal originating from Z 1 Z 1 annihilations, this is actually a perfect situation, since the continuum signal can be regarded as background to the smoking gun signature of a peak in the photon flux at an energy that is nearly equal to the mass of the dark matter particle. This signal, in combination with (probably) a non-observation of the continuum signal at lower photon energies, constitutes a perfect handle to probe the hypothesis of the Z 1 LKP being the dominant component of the dark matter observed in the Universe.

  12. Long-wave model for strongly anisotropic growth of a crystal step.

    Science.gov (United States)

    Khenner, Mikhail

    2013-08-01

    A continuum model for the dynamics of a single step with the strongly anisotropic line energy is formulated and analyzed. The step grows by attachment of adatoms from the lower terrace, onto which atoms adsorb from a vapor phase or from a molecular beam, and the desorption is nonnegligible (the "one-sided" model). Via a multiscale expansion, we derived a long-wave, strongly nonlinear, and strongly anisotropic evolution PDE for the step profile. Written in terms of the step slope, the PDE can be represented in a form similar to a convective Cahn-Hilliard equation. We performed the linear stability analysis and computed the nonlinear dynamics. Linear stability depends on whether the stiffness is minimum or maximum in the direction of the step growth. It also depends nontrivially on the combination of the anisotropy strength parameter and the atomic flux from the terrace to the step. Computations show formation and coarsening of a hill-and-valley structure superimposed onto a long-wavelength profile, which independently coarsens. Coarsening laws for the hill-and-valley structure are computed for two principal orientations of a maximum step stiffness, the increasing anisotropy strength, and the varying atomic flux.

  13. Strong chromatic microlensing in HE0047–1756 and SDSS1155+6346

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, K.; Motta, V. [Instituto de Física y Astronomía, Universidad de Valparaíso, Avda. Gran Bretaña 1111, Playa Ancha, Valparaíso 2360102 (Chile); Mediavilla, E. [Instituto de Astrofísica de Canarias, Avda. Vía Lactea s/n, La Laguna, E-38200 Tenerife (Spain); Falco, E. [Whipple Observatory, Smithsonian Institution, 670 Mt. Hopkins Road, PO Box 6369, Amado, AZ 85645 (United States); Jiménez-Vicente, J. [Departamento de Física Teórica y del Cosmos, Universidad de Granada, Campus de Fuentenueva, E-18071 Granada (Spain); Muñoz, J. A., E-mail: karina.rojas@uv.cl, E-mail: veronica.motta@uv.cl, E-mail: emg@iac.es, E-mail: falco@cfa.harvard.edu, E-mail: jjimenez@ugr.es, E-mail: jmunoz@uv.es [Departamento de Astronomía y Astrofísica, Universidad de Valencia, Burjassot, E-46100 Valencia (Spain)

    2014-12-10

    We use spectra of the double-lensed quasars HE0047–1756 and SDSS1155+6346 to study their unresolved structure through the impact of microlensing. There is no significant evidence of microlensing in the emission line profiles except for the Lyα line of SDSS1155+6346, which shows strong differences in the shapes for images A and B. However, the continuum of the B image spectrum in SDSS1155+6346 is strongly contaminated by the lens galaxy, and these differences should be considered with caution. Using the flux ratios of the emission lines for image pairs as a baseline to remove macro-magnification and extinction, we have detected strong chromatic microlensing in the continuum measured by CASTLES (www.cfa.harvard.edu/castles/) in both lens systems, with amplitudes 0.09(λ16000) ≲ |Δm| ≲ 0.8(λ5439) for HE0047–1756, and 0.2(λ16000) ≲ |Δm| ≲ 0.8(λ5439) for SDSS1155+6346. Using magnification maps to simulate microlensing and modeling the accretion disk as a Gaussian source (I ∝ exp(–R {sup 2}/2r {sub s}{sup 2})) of size r {sub s} ∝ λ {sup p}, we find r {sub s} = 2.5{sub −1.4}{sup +3.0} √(M/0.3M{sub ⊙}) lt-day and p = 2.3 ± 0.8 at the rest frame for λ = 2045 for HE0047–1756 (log prior) and r {sub s} = 5.5{sub −3.3}{sup +8.2} √(M/0.3M{sub ⊙}) lt-day and p = 1.5 ± 0.6 at the rest frame of λ = 1398 for SDSS1155+6346 (log prior). Contrary to other studied lens systems, the chromaticity detected in HE0047–1756 and SDSS1155+6346 is large enough to fulfill the thin disk prediction. The inferred sizes, however, are very large compared to the predictions of this model, especially in the case of SDSS1155+6346.

  14. The periodic sℓ(2|1) alternating spin chain and its continuum limit as a bulk logarithmic conformal field theory at c=0

    International Nuclear Information System (INIS)

    Gainutdinov, A.M.; Read, N.; Saleur, H.; Vasseur, R.

    2015-01-01

    The periodic sℓ(2|1) alternating spin chain encodes (some of) the properties of hulls of percolation clusters, and is described in the continuum limit by a logarithmic conformal field theory (LCFT) at central charge c=0. This theory corresponds to the strong coupling regime of a sigma model on the complex projective superspace CP 1|1 =U(2|1)/(U(1)×U(1|1)), and the spectrum of critical exponents can be obtained exactly. In this paper we push the analysis further, and determine the main representation theoretic (logarithmic) features of this continuum limit by extending to the periodic case the approach of http://dx.doi.org/10.1016/j.nuclphysb.2007.03.033 [N. Read and H. Saleur, Nucl. Phys. B 777 (2007) 316]. We first focus on determining the representation theory of the finite size spin chain with respect to the algebra of local energy densities provided by a representation of the affine Temperley-Lieb algebra at fugacity one. We then analyze how these algebraic properties carry over to the continuum limit to deduce the structure of the space of states as a representation over the product of left and right Virasoro algebras. Our main result is the full structure of the vacuum module of the theory, which exhibits Jordan cells of arbitrary rank for the Hamiltonian.

  15. Double photoionization of helium: A new correlated double continuum wave function

    Energy Technology Data Exchange (ETDEWEB)

    Macri, P.A.; Kornberg, M.A.; Miraglia, J.E. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina). Inst. de Astron. y Fisica del Espacio; Garibotti, C.R.; Gasaneo, G.; Colavecchia, F.D. [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, 8400 S.C. de Bariloche, Rio Negro (Argentina)

    1997-10-01

    In this work we discuss the failures and goodness of using the product of two and three Coulomb waves to represent the double-continuum wave function of two electrons in the field of an ion. Furthermore, we present a new wave function for the double continuum, which takes into account the non-diagonal part of the kinetic energy. It satisfies the correct boundary conditions for large particle separations, and treats the electronic interaction in a more realistic way than the previously enunciated models. (orig.). 14 refs.

  16. Topology and layout optimization of discrete and continuum structures

    Science.gov (United States)

    Bendsoe, Martin P.; Kikuchi, Noboru

    1993-01-01

    The basic features of the ground structure method for truss structure an continuum problems are described. Problems with a large number of potential structural elements are considered using the compliance of the structure as the objective function. The design problem is the minimization of compliance for a given structural weight, and the design variables for truss problems are the cross-sectional areas of the individual truss members, while for continuum problems they are the variable densities of material in each of the elements of the FEM discretization. It is shown how homogenization theory can be applied to provide a relation between material density and the effective material properties of a periodic medium with a known microstructure of material and voids.

  17. Antieigenvalue analysis for continuum mechanics, economics, and number theory

    Directory of Open Access Journals (Sweden)

    Gustafson Karl

    2016-01-01

    Full Text Available My recent book Antieigenvalue Analysis, World-Scientific, 2012, presented the theory of antieigenvalues from its inception in 1966 up to 2010, and its applications within those forty-five years to Numerical Analysis, Wavelets, Statistics, Quantum Mechanics, Finance, and Optimization. Here I am able to offer three further areas of application: Continuum Mechanics, Economics, and Number Theory. In particular, the critical angle of repose in a continuum model of granular materials is shown to be exactly my matrix maximum turning angle of the stress tensor of the material. The important Sharpe ratio of the Capital Asset Pricing Model is now seen in terms of my antieigenvalue theory. Euclid’s Formula for Pythagorean triples becomes a special case of my operator trigonometry.

  18. Singular-perturbation--strong-coupling field theory and the moments problem

    International Nuclear Information System (INIS)

    Handy, C.R.

    1981-01-01

    Motivated by recent work of Bender, Cooper, Guralnik, Mjolsness, Rose, and Sharp, a new technique is presented for solving field equations in terms of singular-perturbation--strong-coupling expansions. Two traditional mathematical tools are combined into one effective procedure. Firstly, high-temperature lattice expansions are obtained for the corresponding power moments of the field solution. The approximate continuum-limit power moments are subsequently obtained through the application of Pade techniques. Secondly, in order to reconstruct the corresponding approximate global field solution, one must use function-moments reconstruction techniques. The latter involves reconsidering the traditional ''moments problem'' of interest to pure and applied mathematicians. The above marriage between lattice methods and moments reconstruction procedures for functions yields good results for the phi 4 field-theory kink, and the sine-Gordon kink solutions. It is argued that the power moments are the most efficient dynamical variables for the generation of strong-coupling expansions. Indeed, a momentum-space formulation is being advocated in which the long-range behavior of the space-dependent fields are determined by the small-momentum, infrared, domain

  19. Multiple Temperature Model for Near Continuum Flows

    International Nuclear Information System (INIS)

    XU, Kun; Liu, Hongwei; Jiang, Jianzheng

    2007-01-01

    In the near continuum flow regime, the flow may have different translational temperatures in different directions. It is well known that for increasingly rarefied flow fields, the predictions from continuum formulation, such as the Navier-Stokes equations, lose accuracy. These inaccuracies may be partially due to the single temperature assumption in the Navier-Stokes equations. Here, based on the gas-kinetic Bhatnagar-Gross-Krook (BGK) equation, a multitranslational temperature model is proposed and used in the flow calculations. In order to fix all three translational temperatures, two constraints are additionally proposed to model the energy exchange in different directions. Based on the multiple temperature assumption, the Navier-Stokes relation between the stress and strain is replaced by the temperature relaxation term, and the Navier-Stokes assumption is recovered only in the limiting case when the flow is close to the equilibrium with the same temperature in different directions. In order to validate the current model, both the Couette and Poiseuille flows are studied in the transition flow regime

  20. Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory

    KAUST Repository

    Ball, John M.

    2010-07-20

    We define a continuum energy functional that effectively interpolates between the mean-field Maier-Saupe energy and the continuum Landau-de Gennes energy functional and can describe both spatially homogeneous and inhomogeneous systems. In the mean-field approach the main macroscopic variable, the Q-tensor order parameter, is defined in terms of the second moment of a probability distribution function. This definition imposes certain constraints on the eigenvalues of the Q-tensor order parameter, which may be interpreted as physical constraints. We define a thermotropic bulk potential which blows up whenever the eigenvalues of the Q-tensor order parameter approach physically unrealistic values. As a consequence, the minimizers of this continuum energy functional have physically realistic order parameters in all temperature regimes. We study the asymptotics of this bulk potential and show that this model also predicts a first-order nematic-isotropic phase transition, whilst respecting the physical constraints. In contrast, in the Landau-de Gennes framework the Q-tensor order parameter is often defined independently of the probability distribution function, and the theory makes physically unrealistic predictions about the equilibrium order parameters in the low-temperature regime. Copyright © Taylor & Francis Group, LLC.

  1. Continuum limit of gl(M vertical stroke N) spin chains

    Energy Technology Data Exchange (ETDEWEB)

    Candu, Constantin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie

    2011-03-15

    We study the spectrum of an integrable antiferromagnetic Hamiltonian of the gl(M vertical stroke N) spin chain of alternating fundamental and dual representations. After extensive numerical analysis, we identify the vacuum and low lying excitations and with this knowledge perform the continuum limit, while keeping a finite gap. All antiferromagnetic gl(n+N vertical stroke N) spin chains with n>0 and N{ne}0 are shown to possess in the continuum limit 2n-2 multiplets of massive particles which scatter with gl(n) Gross-Neveu like S-matrices, namely their eigenvalues do not depend on N. We argue that the continuum theory is the gl(M vertical stroke N) Gross-Neveu model, that is the massive deformation of the gl(M vertical stroke N){sub 1} Wess-Zumino-Witten model. As we can see ion the example of gl(2m vertical stroke 1) spin chains, the full particle spectrum is much richer. Our analysis suggests that for a complete characterization of the latter it is not enough to restrict to large volume calculations, as we do in this work. (orig.)

  2. Continuum modelling for carbon and boron nitride nanostructures

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M

    2007-01-01

    Continuum based models are presented here for certain boron nitride and carbon nanostructures. In particular, certain fullerene interactions, C 60 -C 60 , B 36 N 36 -B 36 N 36 and C 60 -B 36 N 36 , and fullerene-nanotube oscillator interactions, C 60 -boron nitride nanotube, C 60 -carbon nanotube, B 36 N 36 -boron nitride nanotube and B 36 N 36 -carbon nanotube, are studied using the Lennard-Jones potential and the continuum approach, which assumes a uniform distribution of atoms on the surface of each molecule. Issues regarding the encapsulation of a fullerene into a nanotube are also addressed, including acceptance and suction energies of the fullerenes, preferred position of the fullerenes inside the nanotube and the gigahertz frequency oscillation of the inner molecule inside the outer nanotube. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures

  3. Continuum mechanical and computational aspects of material behavior

    Energy Technology Data Exchange (ETDEWEB)

    Fried, Eliot; Gurtin, Morton E.

    2000-02-10

    The focus of the work is the application of continuum mechanics to materials science, specifically to the macroscopic characterization of material behavior at small length scales. The long-term goals are a continuum-mechanical framework for the study of materials that provides a basis for general theories and leads to boundary-value problems of physical relevance, and computational methods appropriate to these problems supplemented by physically meaningful regularizations to aid in their solution. Specific studies include the following: the development of a theory of polycrystalline plasticity that incorporates free energy associated with lattice mismatch between grains; the development of a theory of geometrically necessary dislocations within the context of finite-strain plasticity; the development of a gradient theory for single-crystal plasticity with geometrically necessary dislocations; simulations of dynamical fracture using a theory that allows for the kinking and branching of cracks; computation of segregation and compaction in flowing granular materials.

  4. Strong evidence for spontaneous chiral symmetry breaking in (quenched) QCD

    International Nuclear Information System (INIS)

    Barbour, I.M.; Gibbs, P.; Schierholz, G.; Teper, M.; Gilchrist, J.P.; Schneider, H.

    1983-09-01

    We calculate the chiral condensate for all quark masses using Kogut-Susskind fermions in lattice-regularized quenched QCD. The large volume behaviour of at small quark masses demonstrates that the explicit U(1) chiral symmetry is spontaneously broken. We perform the calculation for β = 5.1 to 5.9 and find very good continuum renormalization group behaviour. We infer that the spontaneous breaking we observe belongs to continuum QCD. This constitutes the first unambiguous demonstration of spontaneous chiral symmetry breaking in continuum quenched QCD. (orig.)

  5. Nano-Continuum Modeling of a Nuclear Glass Specimen Altered for 25 Years

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl

    2014-01-06

    The purpose of this contribution is to report on preliminary nano-continuum scale modeling of nuclear waste glass corrosion. The focus of the modeling is an experiment involving a French glass SON68 specimen leached for 25 years in a granitic environment. In this report, we focus on capturing the nano-scale concentration profiles. We use a high resolution continuum model with a constant grid spacing of 1 nanometer to investigate the glass corrosion mechanisms.

  6. Systematic classical continuum limits of integrable spin chains and emerging novel dualities

    International Nuclear Information System (INIS)

    Avan, Jean; Doikou, Anastasia; Sfetsos, Konstadinos

    2010-01-01

    We examine certain classical continuum long wave-length limits of prototype integrable quantum spin chains. We define the corresponding construction of classical continuum Lax operators. Our discussion starts with the XXX chain, the anisotropic Heisenberg model and their generalizations and extends to the generic isotropic and anisotropic gl n magnets. Certain classical and quantum integrable models emerging from special 'dualities' of quantum spin chains, parametrized by c-number matrices, are also presented.

  7. Continuum theory for nanotube piezoelectricity.

    Science.gov (United States)

    Michalski, P J; Sai, Na; Mele, E J

    2005-09-09

    We develop and solve a continuum theory for the piezoelectric response of one-dimensional nanotubes and nanowires, and apply the theory to study electromechanical effects in boron-nitride nanotubes. We find that the polarization of a nanotube depends on its aspect ratio, and a dimensionless constant specifying the ratio of the strengths of the elastic and electrostatic interactions. The solutions of the model as these two parameters are varied are discussed. The theory is applied to estimate the electric potential induced along the length of a boron-nitride nanotube in response to a uniaxial stress.

  8. TSAAS: finite-element thermal and stress analysis of plane and axisymmetric solids with orthotropic temperature-dependent material properties

    Energy Technology Data Exchange (ETDEWEB)

    Browning, R.V.; Anderson, C.A.

    1982-02-01

    The finite element method is used to determine the temperatures, displacements, stresses, and strains in axisymmetric solids with orthotropic, temperature-dependent material properties under axisymmetric thermal and mechanical loads. The mechanical loads can be surface pressures, surface shears, and nodal point forces as well as an axial or centripetal acceleration. The continuous solid is replaced by a system of ring elements with triangular or quadrilateral cross sections. Accordingly, the method is valid for solids that are composed of many different materials and that have complex geometry. Nonlinear mechanical behavior as typified by plastic, locking, or creeping materials can be approximated. Two dimensional mesh generation, plotting, and editing features allow the computer program to be readily used. In addition to a stress analysis program that is based on a modified version of the SAAS code, TSAAS can carry out a transient thermal analysis with the finite element mesh used in stress analysis. An implicit time differencing scheme allows the use of arbitrary time steps with consequent fast running times. At specified times, the program will return to SAAS for thermal stress analysis. Nonlinear thermal properties and Arrhenius reaction kinetics are also incorporated into TSAAS. Several versions of TSAAS are in use at Los Alamos, running on CDC-7600, CRAY-1 and VAX 11/780 computers. This report describes the nominal TSAAS; other versions may have some unique features.

  9. Modelos contínuos do solvente: fundamentos Continuum solvation models: fundamentals

    Directory of Open Access Journals (Sweden)

    Josefredo R. Pliego Jr

    2006-06-01

    Full Text Available Continuum solvation models are nowadays widely used in the modeling of solvent effects and the range of applications goes from the calculation of partition coefficients to chemical reactions in solution. The present work presents a detailed explanation of the physical foundations of continuum models. We discuss the polarization of a dielectric and its representation through the volume and surface polarization charges. The Poisson equation for a dielectric was obtained and we have also derived and discuss the apparent surface charge method and its application for free energy of solvation calculations.

  10. [From Aliya to immigration, or the reading of a migratory continuum].

    Science.gov (United States)

    Berthomiere, W

    1996-01-01

    The author aims "to redraw the migratory trajectories which followed one another from the birth of the State [of Israel] until now....[He reads] these mobilities with the idea of [investigating] the migratory continuum in which the dialectic ¿centre-periphery' has with time become more complicated and more diversified. [The] reading presents the main periods of this continuum through a description of the Jewish mobilities and their impacts on the edification of the Israeli national ethos....[The author analyzes] the transformation in the ¿Israel-Diaspora' relations and [identifies] post-Zionist Jewish territoriality." (EXCERPT)

  11. Control of density fluctuations in atomistic-continuum simulations of dense liquids

    DEFF Research Database (Denmark)

    Kotsalis, E.M.; Walther, Jens Honore; Koumoutsakos, P.

    2007-01-01

    with a continuum solver for the simulation of the Navier-Stokes equations. The lack of periodic boundary conditions in the molecular dynamics simulations hinders the proper accounting for the virial pressure leading to spurious density fluctuations at the continuum-atomistic interface. An ad hoc boundary force...... is usually employed to remedy this situation.We propose the calculation of this boundary force using a control algorithm that explicitly cancels the density fluctuations. The results demonstrate that the present approach outperforms state-of-the-art algorithms. The conceptual and algorithmic simplicity...

  12. Continuum-Kinetic Models and Numerical Methods for Multiphase Applications

    Science.gov (United States)

    Nault, Isaac Michael

    This thesis presents a continuum-kinetic approach for modeling general problems in multiphase solid mechanics. In this context, a continuum model refers to any model, typically on the macro-scale, in which continuous state variables are used to capture the most important physics: conservation of mass, momentum, and energy. A kinetic model refers to any model, typically on the meso-scale, which captures the statistical motion and evolution of microscopic entitites. Multiphase phenomena usually involve non-negligible micro or meso-scopic effects at the interfaces between phases. The approach developed in the thesis attempts to combine the computational performance benefits of a continuum model with the physical accuracy of a kinetic model when applied to a multiphase problem. The approach is applied to modeling a single particle impact in Cold Spray, an engineering process that intimately involves the interaction of crystal grains with high-magnitude elastic waves. Such a situation could be classified a multiphase application due to the discrete nature of grains on the spatial scale of the problem. For this application, a hyper elasto-plastic model is solved by a finite volume method with approximate Riemann solver. The results of this model are compared for two types of plastic closure: a phenomenological macro-scale constitutive law, and a physics-based meso-scale Crystal Plasticity model.

  13. An Image-based Micro-continuum Pore-scale Model for Gas Transport in Organic-rich Shale

    Science.gov (United States)

    Guo, B.; Tchelepi, H.

    2017-12-01

    Gas production from unconventional source rocks, such as ultra-tight shales, has increased significantly over the past decade. However, due to the extremely small pores ( 1-100 nm) and the strong material heterogeneity, gas flow in shale is still not well understood and poses challenges for predictive field-scale simulations. In recent years, digital rock analysis has been applied to understand shale gas transport at the pore-scale. An issue with rock images (e.g. FIB-SEM, nano-/micro-CT images) is the so-called "cutoff length", i.e., pores and heterogeneities below the resolution cannot be resolved, which leads to two length scales (resolved features and unresolved sub-resolution features) that are challenging for flow simulations. Here we develop a micro-continuum model, modified from the classic Darcy-Brinkman-Stokes framework, that can naturally couple the resolved pores and the unresolved nano-porous regions. In the resolved pores, gas flow is modeled with Stokes equation. In the unresolved regions where the pore sizes are below the image resolution, we develop an apparent permeability model considering non-Darcy flow at the nanoscale including slip flow, Knudsen diffusion, adsorption/desorption, surface diffusion, and real gas effect. The end result is a micro-continuum pore-scale model that can simulate gas transport in 3D reconstructed shale images. The model has been implemented in the open-source simulation platform OpenFOAM. In this paper, we present case studies to demonstrate the applicability of the model, where we use 3D segmented FIB-SEM and nano-CT shale images that include four material constituents: organic matter, clay, granular mineral, and pore. In addition to the pore structure and the distribution of the material constituents, we populate the model with experimental measurements (e.g. size distribution of the sub-resolution pores from nitrogen adsorption) and parameters from the literature and identify the relative importance of different

  14. How do we model continuum QCD

    International Nuclear Information System (INIS)

    Cornwall, J.M.

    1986-01-01

    The nonperturbative aspects of continuum QCD are so complex that one can only hope to approach them through well-motivated models. The author reviews the general properties that any such model must have, based on the understanding of the gluon condensate in the QCD vacuum. A specific, practical model is proposed motivated by a picture of the condensate as made of thick vortex sheets self-consistently constructed from dynamically massive gluons. (author)

  15. Routes to formation of highly excited neutral atoms in the break-up of strongly driven hydrogen molecule

    Science.gov (United States)

    Emmanouilidou, Agapi

    2012-06-01

    We present a theoretical quasiclassical treatment of the formation, during Coulomb explosion, of highly excited neutral H atoms for strongly-driven hydrogen molecule. This process, where after the laser field is turned off, one electron escapes to the continuum while the other occupies a Rydberg state, was recently reported in an experimental study in Phys. Rev. Lett 102, 113002 (2009). We find that two-electron effects are important in order to correctly account for all pathways leading to highly excited neutral hydrogen formation [1]. We identify two pathways where the electron that escapes to the continuum does so either very quickly or after remaining bound for a few periods of the laser field. These two pathways of highly excited neutral H formation have distinct traces in the probability distribution of the escaping electron momentum components. [4pt] [1] A. Emmanouilidou, C. Lazarou, A. Staudte and U. Eichmann, Phys. Rev. A (Rapid) 85 011402 (2012).

  16. Strong Helioseismic Constraints on Weakly-Coupled Plasmas

    Science.gov (United States)

    Nayfonov, Alan

    The extraordinary accuracy of helioseismic data allows detailed theoretical studies of solar plasmas. The necessity to produce solar models matching the experimental results in accuracy imposes strong constrains on the equations of state of solar plasmas. Several discrepancies between the experimental data and models have been successfully identified as the signatures of various non-ideal phenomena. Of a particular interest are questions of the position of the energy levels and the continuum edge and of the effect of the excited states in the solar plasma. Calculations of energy level and continuum shifts, based on the Green function formalism, appeared recently in the literature. These results have been used to examine effects of the shifts on the thermodynamic quantities. A comparison with helioseismic data has shown that the calculations based on lower-level approximations, such as the static screening in the effective two-particle wave equation, agree very well with the experimental data. However, the case of full dynamic screening produces thermodynamic quantities inconsistent with observations. The study of the effect of different internal partition functions on a complete set of thermodynamic quantities has revealed the signature of the excited states in the MHD (Mihalas, Hummer, Dappen) equation of state. The presence of exited states causes a characteristic 'wiggle' in the thermodynamic quantities due to the density-dependent occupation probabilities. This effect is absent if the ACTEX (ACTivity EXpansion) equation of state is used. The wiggle has been found to be most prominent in the quantities sensitive to density. The size of this excited states effect is well within the observational power of helioseismology, and very recent inversion analyses of helioseismic data seem to indicate the presence of the wiggle in the sun. This has a potential importance for the helioseismic determination of the helium abundance of the sun.

  17. HYBRID CONTINUUM-DISCONTINUUM MODELLING OF ROCK FRACUTRE PROCESS IN BRAZILIAN TENSILE STRENGTH TEST

    Directory of Open Access Journals (Sweden)

    Huaming An

    2017-10-01

    Full Text Available A hybrid continuum-discontinuum method is introduced to model the rock failure process in Brazilian tensile strength (BTS test. The key component of the hybrid continuum-discontinuum method, i.e. transition from continuum to discontinuum through fracture and fragmentation, is introduced in detail. A laboratory test is conducted first to capture the rock fracture pattern in the BTS test while the tensile strength is calculated according to the peak value of the loading forces. Then the proposed method is used to model the rock behaviour during BTS test. The stress propagation is modelled and compared with those modelled by finite element method in literatures. In addition, the crack initiation and propagation are captured and compared with the facture patter in laboratory test. Moreover, the force-loading displacement curve is obtained which represents a typical brittle material failure process. Furthermore, the stress distributions along the vertical direction are compared with the theoretical solution. It is concluded that the hybrid continuum-discontinuum method can model the stress propagation process and the entire rock failure process in BTS test. The proposed method is a valuable numerical tool for studying the rock behaviour involving the fracture and fragmentation processes.

  18. Hybrid molecular–continuum methods: From prototypes to coupling software

    KAUST Repository

    Neumann, Philipp; Eckhardt, Wolfgang; Bungartz, Hans-Joachim

    2014-01-01

    In this contribution, we review software requirements in hybrid molecular-continuum simulations. For this purpose, we analyze a prototype implementation which combines two frameworks-the Molecular Dynamics framework MarDyn and the framework Peano

  19. The continuum of monocyte phenotypes: Experimental evidence and prognostic utility in assessing cardiovascular risk.

    Science.gov (United States)

    Cignarella, Andrea; Tedesco, Serena; Cappellari, Roberta; Fadini, Gian Paolo

    2018-03-30

    The monocyte-macrophage cell lineage represents a major player in innate immunity, and is involved in many physiologic and pathologic conditions. Particularly, monocyte-macrophages play a very important role in atherosclerosis and cardiovascular disease. Monocyte heterogeneity is well recognized but the biologic and clinical meaning of the various monocyte subtypes is not entirely understood. Traditionally, monocytes can be divided in classical, intermediate, and nonclassical based on expression of the surface antigens CD14 and CD16. While macrophage diversity is now well recognized to organize as a continuum, monocyte subsets have long been considered as separated entities. However, mounting evidence obtained by tracking the ontology of human monocytes help clarifying that monocytes mature from classical to nonclassical ones, through an intermediate phenotype. This concept is therefore best depicted as a continuum, whereas the subdivision into discrete CD14/CD16 subsets appears an oversimplification. In this review, we discuss the evidence supporting the existence of a monocyte continuum along with the technical challenges of monocyte characterization. In particular, we describe the advantage of considering monocytes along a continuous distribution for the evaluation of cardiovascular risk. We make the point that small transition along the monocyte continuum better reflects cardiovascular risk than a simplified analysis of discrete monocyte subsets. Recognizing the monocyte continuum can be helpful to model other pathophysiologic conditions where these cells are involved. ©2018 Society for Leukocyte Biology.

  20. Ultraviolet continuum variability and visual flickering in the peculiar object MWC 560

    Science.gov (United States)

    Michalitsianos, A. G.; Perez, M.; Shore, S. N.; Maran, S. P.; Karovska, M.; Sonneborn, G.; Webb, J. R.; Barnes, Thomas G., III; Frueh, Marian L.; Oliversen, R. J.

    1993-01-01

    High-speed U-band photometry of the peculiar emission object MWC 560 obtained with the ground-based instrumentation, and V-band photometry obtained with the International Ultraviolet Explorer-Fine Error Sensor indicates irregular brightness variations are quasi-periodic. Multiple peaks of relative brightness power indicate statistically significant quasi periods existing in a range of 3-35 minutes, that are superposed on slower hourly varying components. We present a preliminary model that explains the minute and hourly time-scale variations in MWC 560 in terms of a velocity-shear instability that arises because a white dwarf magnetosphere impinges on an accretion disk. We also find evidence for Fe II multiplet pseudocontinuum absorption opacity in far-UV spectra of CH Cygni which is also present in MWC 560. Both CH Cyg and MWC 560 may be in an evolutionary stage that is characterized by strong UV continuum opacity which changes significantly during outburst, occurring before they permanently enter the symbiotic nebular emission phase.

  1. Continuum de Auto-Determinação: validade para a sua aplicação no contexto desportivo Self-Determination Continuum: validity for its application in the sport's context

    Directory of Open Access Journals (Sweden)

    Helder Miguel Fernandes

    2005-12-01

    Full Text Available A motivação intrínseca e os seus benefícios têm sido uma das principais áreas de investigação da Psicologia do Desporto. Contudo, o mesmo não se verifica quanto ao conhecimento do modo como os comportamentos são regulados e internalizados intrinsecamente pelos indivíduos. O propósito do presente estudo foi definir a validade de aplicação do continuum de auto-determinação (Deci & Ryan, 1985 no contexto da Educação Física. Uma amostra de 1099 alunos (544 moças e 555 rapazes com uma média de 14,66±0,75 anos de idade, respondeu a uma adaptação e tradução do questionário de Goudas, Biddle e Fox (1994 que visa medir as formas motivacionais definidas no continuum. Os procedimentos de modelação por equações estruturais evidenciaram suporte empírico para a utilização do continuum de auto-determinação na compreensão do modo como os alunos regulam intrinsecamente o seu comportamento neste contexto. São sugeridas algumas linhas de intervenção considerando os resultados obtidos.Intrinsic motivation and associated benefits has been one of the main investigation areas in Sport Psychology. However, the same is not denoted for the knowledge as behaviors are intrinsically regulated and internalized by individuals. The purpose of the present study is to define the validity of the self-determination's continuum application (Deci & Ryan, 1985 in the Physical Education context. A sample of 1099 students (544 girls and 555 boys with an average age of 14.66±0.75 years old answered an adaptation and translation of the Goudas, Biddle and Fox (1994 questionnaire that measures the motivational types delimited in the continuum. Structural equation modeling procedures evidenced empiric support for the self-determination's continuum use in the understanding of the way students intrinsically regulate their behavior in this context. Some lines of intervention are suggested considering the obtained results.

  2. Testing a continuum structure of self-determined motivation: A meta-analysis.

    Science.gov (United States)

    Howard, Joshua L; Gagné, Marylène; Bureau, Julien S

    2017-12-01

    Self-determination theory proposes a multidimensional representation of motivation comprised of several factors said to fall along a continuum of relative autonomy. The current meta-analysis examined the relationships between these motivation factors in order to demonstrate how reliably they conformed to a predictable continuum-like pattern. Based on data from 486 samples representing over 205,000 participants who completed 1 of 13 validated motivation scales, the results largely supported a continuum-like structure of motivation and indicate that self-determination is central in explaining human motivation. Further examination of heterogeneity indicated that while regulations were predictably ordered across domains and scales, the exact distance between subscales varied across samples in a way that was not explainable by a set of moderators. Results did not support the inclusion of integrated regulation or the 3 subscales of intrinsic motivation (i.e., intrinsic motivation to know, to experience stimulation, and to achieve) due to excessively high interfactor correlations and overlapping confidence intervals. Recommendations for scale refinements and the scoring of motivation are provided. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. From discrete particles to continuum fields in mixtures

    NARCIS (Netherlands)

    Weinhart, Thomas; Thornton, Anthony Richard; Yu, A; Dong, K; Yang, R; Luding, S; Luding, Stefan

    2013-01-01

    We present a novel way to extract continuum fields from discrete particle systems that is applicable to flowing mixtures as well as boundaries and interfaces. The mass and momentum balance equations for mixed flows are expressed in terms of the partial densities, velocities, stresses and interaction

  4. Reciprocal-Space Engineering of Quasi-Bound States in the Continuum in Photonic Crystal Slabs for High-Q Microcavities

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Taghizadeh, Alireza

    2017-01-01

    The bound states in the continuum (BICs) in photonic crystal (PhC) slabs presume infinite periodicity in the inplane direction. Thus, a large number of unit cells are typically required to implement the BICs with a high quality (Q) factor. Here, we report on a method to engineer the reciprocal......-space properties of BICs, which enables to keep the effect of the BIC phenomenon strong even for a microcavity of a few unit cells. For example, based on this method, a 3D microcavity of 4 unit cells can attain a Q factor of 18k. This allows for various BIC studies in a very compact platform, as well as novel...

  5. Dissipation consistent fabric tensor definition from DEM to continuum for granular media

    Science.gov (United States)

    Li, X. S.; Dafalias, Y. F.

    2015-05-01

    In elastoplastic soil models aimed at capturing the impact of fabric anisotropy, a necessary ingredient is a measure of anisotropic fabric in the form of an evolving tensor. While it is possible to formulate such a fabric tensor based on indirect phenomenological observations at the continuum level, it is more effective and insightful to have the tensor defined first based on direct particle level microstructural observations and subsequently deduce a corresponding continuum definition. A practical means able to provide such observations, at least in the context of fabric evolution mechanisms, is the discrete element method (DEM). Some DEM defined fabric tensors such as the one based on the statistics of interparticle contact normals have already gained widespread acceptance as a quantitative measure of fabric anisotropy among researchers of granular material behavior. On the other hand, a fabric tensor in continuum elastoplastic modeling has been treated as a tensor-valued internal variable whose evolution must be properly linked to physical dissipation. Accordingly, the adaptation of a DEM fabric tensor definition to a continuum constitutive modeling theory must be thermodynamically consistent in regards to dissipation mechanisms. The present paper addresses this issue in detail, brings up possible pitfalls if such consistency is violated and proposes remedies and guidelines for such adaptation within a recently developed Anisotropic Critical State Theory (ACST) for granular materials.

  6. New examples of continuum graded Lie algebras

    International Nuclear Information System (INIS)

    Savel'ev, M.V.

    1989-01-01

    Several new examples of continuum graded Lie algebras which provide an additional elucidation of these algebras are given. Here, in particular, the Kac-Moody algebras, the algebra S 0 Diff T 2 of infinitesimal area-preserving diffeomorphisms of the torus T 2 , the Fairlie, Fletcher and Zachos sine-algebras, etc., are described as special cases of the cross product Lie algebras. 8 refs

  7. Radio continuum emission from young stellar objects in L1641

    International Nuclear Information System (INIS)

    Morgan, J.A.; Snell, R.L.; Strom, K.M.

    1990-01-01

    The results of a 6 and 20 cm radio continuum survey of young stellar objects in the L1641 region located south of the Orion Nebula are presented. Four are identified as low-luminosity young stellar objects in L1641 and three more as Herbig-Haro or Herbig-Haro-like objects. These objects have bolometric luminosities between 80 and 300 solar, and their 6-20 cm spectral index suggests optically thick, free-free emission. They are characterized by a rising spectrum between 2.2 and 25 microns, have no optical counterparts, and are associated with stellar wind activity. Thus, detectable radio continuum emission may be produced only by the youngest and most luminous objects in L1641. 34 refs

  8. MaMiCo: Software design for parallel molecular-continuum flow simulations

    KAUST Repository

    Neumann, Philipp

    2015-11-19

    The macro-micro-coupling tool (MaMiCo) was developed to ease the development of and modularize molecular-continuum simulations, retaining sequential and parallel performance. We demonstrate the functionality and performance of MaMiCo by coupling the spatially adaptive Lattice Boltzmann framework waLBerla with four molecular dynamics (MD) codes: the light-weight Lennard-Jones-based implementation SimpleMD, the node-level optimized software ls1 mardyn, and the community codes ESPResSo and LAMMPS. We detail interface implementations to connect each solver with MaMiCo. The coupling for each waLBerla-MD setup is validated in three-dimensional channel flow simulations which are solved by means of a state-based coupling method. We provide sequential and strong scaling measurements for the four molecular-continuum simulations. The overhead of MaMiCo is found to come at 10%-20% of the total (MD) runtime. The measurements further show that scalability of the hybrid simulations is reached on up to 500 Intel SandyBridge, and more than 1000 AMD Bulldozer compute cores. Program summary: Program title: MaMiCo. Catalogue identifier: AEYW_v1_0. Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEYW_v1_0.html Program obtainable from: CPC Program Library, Queen\\'s University, Belfast, N. Ireland. Licensing provisions: BSD License. No. of lines in distributed program, including test data, etc.: 67905. No. of bytes in distributed program, including test data, etc.: 1757334. Distribution format: tar.gz. Programming language: C, C++II. Computer: Standard PCs, compute clusters. Operating system: Unix/Linux. RAM: Test cases consume ca. 30-50 MB. Classification: 7.7. External routines: Scons (http:www.scons.org), ESPResSo, LAMMPS, ls1 mardyn, waLBerla. Nature of problem: Coupled molecular-continuum simulation for multi-resolution fluid dynamics: parts of the domain are resolved by molecular dynamics whereas large parts are covered by a CFD solver, e.g. a lattice Boltzmann automaton

  9. Bound-state β decay of a neutron in a strong magnetic field

    International Nuclear Information System (INIS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2005-01-01

    The β decay of a neutron into a bound (pe - ) state and an antineutrino in the presence of a strong uniform magnetic field (B > or approx. 10 13 G) is considered. The β decay process is treated within the framework of the standard model of weak interactions. A Bethe-Salpeter formalism is employed for description of the bound (pe - ) system in a strong magnetic field. For the field strengths 10 13 18 G the estimate for the ratio of the bound-state decay rate w b and the usual (continuum-state) decay rate w c is derived. It is found that in such strong magnetic fields w b /w c ∼0.1-0.4. This is in contrast to the field-free case, where w b /w c ≅4.2x10 -6 [J. N. Bahcall, Phys. Rev. 124, 495 (1961); L. L. Nemenov, Sov. J. Nucl. Phys. 15, 582 (1972); X. Song, J. Phys. G: Nucl. Phys. 13, 1023 (1987)]. The dependence of the ratio w b /w c on the magnetic field strength B exhibits a logarithmiclike behavior. The obtained results can be important for applications in astrophysics and cosmology

  10. CISM-IUTAM International Summer School on Continuum Mechanics in Environmental Sciences and Geophysics

    CERN Document Server

    1993-01-01

    Modern continuum mechanics is the topic of this book. After its introduction it will be applied to a few typical systems arising in the environmental sciences and in geophysics. In large lake/ocean dynamics peculiar effects of the rotation of the Earth will be analyzed in linear/nonlinear processes of a homogenous and inhomogenous water body. Strong thermomechanical coupling paired with nonlinear rheology affects the flow of large ice sheets (such as Antarctica and Greenland) and ice shelves. Its response to the climatic forcing in an environmental of greenhouse warming may significantly affect the life of future generations. The mechanical behavior of granular materials under quasistatic loadings requires non-classical mixture concepts and encounters generally complicated elastic-plastic-type constitutive behavior. Creeping flow of soils, consolidation processes and ground water flow are described by such theories. Rapid shearing flow of granular materials lead to constitutive relations for the stresses whic...

  11. The Eating Disorders Continuum, Self-Esteem, and Perfectionism

    Science.gov (United States)

    Peck, Lisa D.; Lightsey, Owen Richard

    2008-01-01

    Among 261 undergraduate women, increased severity of eating disorders along a continuum was associated with decreased self-esteem, increased perfectionism, and increased scores on 7 subscales of the Eating Disorders Inventory-2. Women with eating disorders differed from both symptomatic women and asymptomatic women on all variables, whereas…

  12. The Asymptotic Expansion of Lattice Loop Integrals Around the Continuum Limit

    International Nuclear Information System (INIS)

    Becher, Thomas G

    2002-01-01

    We present a method of computing any one-loop integral in lattice perturbation theory by systematically expanding around its continuum limit. At any order in the expansion in the lattice spacing, the result can be written as a sum of continuum loop integrals in analytic regularization and a few genuine lattice integrals (''master integrals''). These lattice master integrals are independent of external momenta and masses and can be computed numerically. At the one-loop level, there are four master integrals in a theory with only bosonic fields, seven in HQET and sixteen in QED or QCD with Wilson fermions

  13. Identification of a transcriptional signature for the wound healing continuum

    Science.gov (United States)

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds. PMID:24844339

  14. Schizophrenia and the neurodevelopmental continuum:evidence from genomics.

    Science.gov (United States)

    Owen, Michael J; O'Donovan, Michael C

    2017-10-01

    The idea that disturbances occurring early in brain development contribute to the pathogenesis of schizophrenia, often referred to as the neurodevelopmental hypothesis, has become widely accepted. Despite this, the disorder is viewed as being distinct nosologically, and by implication pathophysiologically and clinically, from syndromes such as autism spectrum disorders, attention-deficit/hyperactivity disorder (ADHD) and intellectual disability, which typically present in childhood and are grouped together as "neurodevelopmental disorders". An alternative view is that neurodevelopmental disorders, including schizophrenia, rather than being etiologically discrete entities, are better conceptualized as lying on an etiological and neurodevelopmental continuum, with the major clinical syndromes reflecting the severity, timing and predominant pattern of abnormal brain development and resulting functional abnormalities. It has also been suggested that, within the neurodevelopmental continuum, severe mental illnesses occupy a gradient of decreasing neurodevelopmental impairment as follows: intellectual disability, autism spectrum disorders, ADHD, schizophrenia and bipolar disorder. Recent genomic studies have identified large numbers of specific risk DNA changes and offer a direct and robust test of the predictions of the neurodevelopmental continuum model and gradient hypothesis. These findings are reviewed in detail. They not only support the view that schizophrenia is a disorder whose origins lie in disturbances of brain development, but also that it shares genetic risk and pathogenic mechanisms with the early onset neurodevelopmental disorders (intellectual disability, autism spectrum disorders and ADHD). They also support the idea that these disorders lie on a gradient of severity, implying that they differ to some extent quantitatively as well as qualitatively. These findings have important implications for nosology, clinical practice and research. © 2017 World

  15. Quasi-bound states in continuum

    International Nuclear Information System (INIS)

    Nakamura, Hiroaki; Hatano, Naomichi; Garmon, Sterling; Petrosky, Tomio

    2007-08-01

    We report the prediction of quasi-bound states (resonant states with very long lifetimes) that occur in the eigenvalue continuum of propagating states for a wide region of parameter space. These quasi-bound states are generated in a quantum wire with two channels and an adatom, when the energy bands of the two channels overlap. A would-be bound state that lays just below the upper energy band is slightly destabilized by the lower energy band and thereby becomes a resonant state with a very long lifetime (a second QBIC lays above the lower energy band). (author)

  16. 1300 micron continuum observations of the Sagittarius B2 molecular cloud core

    International Nuclear Information System (INIS)

    Goldsmith, P.F.; Snell, R.L.; Lis, D.C.

    1987-01-01

    Observations with 23-arcsec angular resolution are obtained of the continuum emission at 1300 microns wavelength from the central region of the Sgr B2 molecular cloud, which contains the north and middle high-mass star-forming regions and associated radio continuum and maser sources. The spatial resolution of the present data shows that the 1300-micron continuum emission peak is located at Sgr B2(N), in contrast to the midinfrared emission, which is centered on Sgr B2(M). Comparison with 53 micron data having comparable angular resolution suggests that there is optically thick foreground dust which prevents detection of Sgr B2(N) at wavelengths not greater than 100 microns. Within the about 1.5 x 3.5 pc region mapped, the total mass is 500,000 solar masses and the mean H2 density is 300,000/cu cm, somewhat larger than found in previous investigations. 27 references

  17. Analytical solution for static and dynamic analysis of magnetically affected viscoelastic orthotropic double-layered graphene sheets resting on viscoelastic foundation

    Science.gov (United States)

    Jalaei, M. H.; Arani, A. Ghorbanpour

    2018-02-01

    By considering the small scale effect based on the nonlocal Eringen's theory, the static and dynamic analysis of viscoelastic orthotropic double-layered graphene sheets subjected to longitudinal magnetic field and mechanical load is investigated analytically. For this objective, first order shear deformation theory (FSDT) is proposed. The surrounding medium is simulated by visco-Pasternak foundation model in which damping, normal and transverse shear loads are taken into account. The governing equations of motion are obtained via energy method and Hamilton's principle which are then solved analytically by means of Navier's approach and Laplace inversion technique in the space and time domains, respectively. Through various parametric studies, the influences of the nonlocal parameter, structural damping, van der Waals (vdW) interaction, stiffness and damping coefficient of the foundation, magnetic parameter, aspect ratio and length to thickness ratio on the static and dynamic response of the nanoplates are examined. The results depict that when the vdW interaction is considered to be zero, the upper layer deflection reaches a maximum point whereas the lower layer deflection becomes zero. In addition, it is observed that with growing the vdW interaction, the effect of magnetic field on the deflection of the lower layer increases while this effect reduces for the upper layer deflection.

  18. X-ray spectra of PG quasars. I. The continuum from X-rays to infrared

    International Nuclear Information System (INIS)

    Elvis, M.; Green, R.F.; Bechtold, J.; Schmidt, M.; Neugebauer, G.; Kitt Peak National Observatory, Tucson, AZ; Steward Observatory, Tucson, AZ; Palomar Observatory, Pasadena, CA)

    1986-01-01

    Einstein IPC X-ray spectra for a sample of eight optically selected quasars from the Palomar Bright Quasar survey are presented. The quasars have a mean power law energy slope which in five individual cases is inconsistent with the value found in hard X-ray selection criterion rather than luminosity, redshift, or U-B color. New IUE and optical continuum spectra and infrared photometry are presented for these quasars. The data are combined into log vf(v) and log v distributions which support the decomposition of the overall quasar spectrum into a power law plus a superposed optical-UV big bump which may be due to an accretion disk. At least six of the quasars have vf(v)s which are roughly constant between their infrared and X-ray power laws, suggesting a strong link between the two regions. 104 references

  19. Vibrational quasi-continuum in unimolecular multiphoton dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Fernandez, P.; Gonzalez-Diaz, P.F.

    1987-04-01

    The vibrational quasi-continuum of the boron trifluoride molecule has been qualitatively studied and the formalism extended to treat N-normal-mode molecules. The anharmonic potential curves for the BF/sub 3/ normal modes have been calculated, and the computed anharmonicity constants have been tested against the fundamental frequencies. The potential curve of the wagging mode has been simulated by an internal rotation of one of the fluoride atoms. The vibrational-energy levels and wave functions have been calculated applying second-order perturbation theory. The quasi-continuum energy levels of BF/sub 3/ have been obtained by means of a method based in forming adequate linear combinations of wave functions belonging to the N-1 modes resulting from removing the i.r.-active mode;the associated energies have been minimized using a constrained minimization procedure. It has been found that the energy pattern of the N-1 vibrational modes possesses an energy density high enough for constituting a vibrational heat bath and, finally, it has been verified that the ''fictitious'' pattern of the active mode is included in the pattern of the N-1 modes.

  20. Cellular Automata in Topology Optimization of Continuum Structures ...

    African Journals Online (AJOL)

    In this paper, an optimization algorithm based on cellular automata (CA) is developed for topology optimization of continuum structures with shear and flexural behavior. The design domain is divided into small triangle elements and each cell is considered as a finite element. The stress analysis is performed by the Constant ...

  1. Micropropagation of Araucaria excelsa R. Br. var. glauca Carrière from orthotropic stem explants.

    Science.gov (United States)

    Sarmast, Mostafa Khoshhal; Salehi, Hassan; Khosh-Khui, Morteza

    2012-07-01

    The objectives of the present work were in vitro propagation of Araucaria excelsa R. Br. var. glauca Carrière (Norfolk Island pine) with focus on the evaluation of the mean number of shoots per explant (MNS/E) and mean length of shoots per explants (MLS/E) produced by different parts of the orthotropic stem of A. excelsa R. Br. var. glauca in response to plant growth regulators. Norfolk Island pine axillary meristems responded very well to the 2-iso-pentenyl adenine (2iP) and thidiazuron (TDZ) levels. Explants taken from stem upper segments in the media containing 2iP had a higher MNS/E (3.47) and MLS/E (6.27 mm) in comparison to those taken from stem lower segments, which were 0.71 and 0.51 mm, respectively. Using 0.045 μM TDZ in the MS medium not only resulted in 4.60 MNS/E with 7.08 mm MLS/E but proliferated shoots showed a good performance as well. Investigating the best position of stem explant on mother plant as well as the best concentrations of growth regulators were performed which were useful for efficient micropropagation of this plant. Thirty three percent of explants were rooted in the MS medium containing 3 % sucrose, supplemented with 7.5 μM of both NAA and IBA for 2 weeks before transferring to a half strength MS medium without any growth regulator. Plantlets obtained were acclimatized and transferred to the greenhouse with less than 20 % mortality. This procedure considered the first successful report for regeneration and acclimatization of A. excelsa R. Br. var. glauca plantlet through main stem explants.

  2. Evaluation the Effectiveness of the US Navy Leadership Continuum Curricula

    National Research Council Canada - National Science Library

    Duncan-White, Delores

    1997-01-01

    .... A Leadership Continuum Survey Questionnaire was developed to identified and analyze the student's attitudes concerning the effectiveness of the knowledge and skills taught in the course and how these...

  3. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Zhi Yan

    2017-01-01

    Full Text Available Piezoelectric nanomaterials (PNs are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.

  4. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review.

    Science.gov (United States)

    Yan, Zhi; Jiang, Liying

    2017-01-26

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.

  5. Multi-year X-Ray Variations of Iron-K and Continuum Emissions in the Young Supernova Remnant Cassiopeia A

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toshiki; Masai, Kuniaki [Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Maeda, Yoshitomo; Ishida, Manabu [Department of High Energy Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Sagamihara, 229-8510 (Japan); Bamba, Aya [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Katsuda, Satoru [Department of Physics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551 (Japan); Ohira, Yutaka; Yamazaki, Ryo; Sawada, Makoto [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258 (Japan); Matsumoto, Hironori [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Terada, Yukikatsu [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Ohkubo, Sakura, Saitama 338-8570 (Japan); Hughes, John P., E-mail: toshiki@astro.isas.jaxa.jp [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States)

    2017-02-20

    We found a simultaneous decrease of the Fe–K line and 4.2–6 keV continuum of Cassiopeia A with the monitoring data taken by the Chandra X-ray Observatory in 2000–2013. The flux change rates in the whole remnant are −0.65 ± 0.02% yr{sup −1} in the 4.2–6.0 keV continuum and −0.6 ± 0.1% yr{sup −1} in the Fe–K line. In the eastern region where the thermal emission is considered to dominate, the variations show the largest values: −1.03 ± 0.05% yr{sup −1} (4.2–6 keV band) and −0.6 ± 0.1% yr{sup −1} (Fe–K line). In this region, the time evolution of the emission measure and the temperature have a decreasing trend. This could be interpreted as adiabatic cooling with the expansion of m = 0.66. On the other hand, in the non-thermal emission dominated regions, variations of the 4.2–6 keV continuum show smaller rates: −0.60 ± 0.04% yr{sup −1} in the southwestern region, −0.46 ± 0.05% yr{sup −1} in the inner region, and +0.00 ± 0.07% yr{sup −1} in the forward shock region. In particular, flux does not show significant change in the forward shock region. These results imply that strong braking in shock velocity has not been occurring in Cassiopeia A (<5 km s{sup −1} yr{sup −1}). All of our results support the idea that X-ray flux decay in the remnant is mainly caused by thermal components.

  6. Missing links in the root-soil organic matter continuum

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Sarah L. [Argonne National Laboratory (ANL); Iversen, Colleen M [ORNL

    2009-01-01

    The soil environment remains one of the most complex and poorly understood research frontiers in ecology. Soil organic matter (SOM), which spans a continuum from fresh detritus to highly processed, mineral-associated organic matter, is the foundation of sustainable terrestrial ecosystems. Heterogeneous SOM pools are fueled by inputs from living and dead plants, driven by the activity of micro- and mesofauna, and are shaped by a multitude of abiotic factors. The specialization required to measure unseen processes that occur on a wide range of spatial and temporal scales has led to the partitioning of soil ecology research across several disciplines. In the organized oral session 'Missing links in the root-soil organic matter continuum' at the annual Ecological Society of America meeting in Albuquerque, NM, USA, we joined the call for greater communication and collaboration among ecologists who work at the root-soil interface (e.g. Coleman, 2008). Our goal was to bridge the gap between scientific disciplines and to synthesize disconnected pieces of knowledge from root-centric and soil-centric studies into an integrated understanding of belowground ecosystem processes. We focused this report around three compelling themes that arose from the session: (1) the influence of the rhizosphere on SOM cycling, (2) the role of soil heterotrophs in driving the transformation of root detritus to SOM, and (3) the controlling influence of the soil environment on SOM dynamics. We conclude with a discussion of new approaches for gathering data to bridge gaps in the root-SOM continuum and to inform the next generation of ecosystem models. Although leaf litter has often been considered to be the main source of organic inputs to soil, Ann Russell synthesized a convincing body of work demonstrating that roots, rather than surface residues, control the accumulation of SOM in a variety of ecosystems. Living roots, which are chemically diverse and highly dynamic, also influence a

  7. Numerical Study on Couette Flow in Nanostructured Channel using Molecular-continuum Hybrid Method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngjin; Jeong, Myunggeun; Ha, Man Yeong [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-06-15

    A molecular-continuum hybrid method was developed to simulate microscale and nanoscale fluids where continuum fluidic cannot be used to predict Couette flow. Molecular dynamics simulation is used near the solid surface where the flow cannot be predicted by continuum fluidic, and Navier-Stokes equations are used in the other regions. Numerical simulation of Couette flow was performed using the hybrid method to investigate the effect of solid-liquid interaction and surface roughness in a nanochannel. It was found that the solid-liquid interaction and surface roughness influence the boundary condition. When the surface energy is low, slippage occurs near the solid surface, and the magnitude of slippage decreases with increase in surface energy. When the surface energy is high, a locking boundary condition is formed. The roughness disturbs slippage near the solid surface and promotes the locking boundary condition.

  8. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum?

    Directory of Open Access Journals (Sweden)

    Aastha Chawla

    2016-01-01

    Full Text Available Diabetes and related complications are associated with long-term damage and failure of various organ systems. The line of demarcation between the pathogenic mechanisms of microvascular and macrovascular complications of diabetes and differing responses to therapeutic interventions is blurred. Diabetes induces changes in the microvasculature, causing extracellular matrix protein synthesis, and capillary basement membrane thickening which are the pathognomic features of diabetic microangiopathy. These changes in conjunction with advanced glycation end products, oxidative stress, low grade inflammation, and neovascularization of vasa vasorum can lead to macrovascular complications. Hyperglycemia is the principal cause of microvasculopathy but also appears to play an important role in causation of macrovasculopathy. There is thought to be an intersection between micro and macro vascular complications, but the two disorders seem to be strongly interconnected, with micro vascular diseases promoting atherosclerosis through processes such as hypoxia and changes in vasa vasorum. It is thus imperative to understand whether microvascular complications distinctly precede macrovascular complications or do both of them progress simultaneously as a continuum. This will allow re-focusing on the clinical issues with a unifying perspective which can improve type 2 diabetes mellitus outcomes.

  9. SUB-KILOPARSEC IMAGING OF COOL MOLECULAR GAS IN TWO STRONGLY LENSED DUSTY, STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Spilker, J. S.; Marrone, D. P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Aravena, M. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Béthermin, M.; Breuck, C. de [European Southern Observatory, Karl Schwarzschild Straße 2, D-85748 Garching (Germany); Bothwell, M. S. [Cavendish Laboratory, University of Cambridge, JJ Thompson Ave, Cambridge CB3 0HA (United Kingdom); Carlstrom, J. E. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Chapman, S. C.; Rotermund, K. M. [Dalhousie University, Halifax, Nova Scotia (Canada); Collier, J. D.; Galvin, T.; Grieve, K.; O’Brien, A. [University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751 (Australia); Fassnacht, C. D. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, A. H.; Ma, J. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); González-López, J. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago (Chile); Hezaveh, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Malkan, M., E-mail: jspilker@as.arizona.edu [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); and others

    2015-10-01

    We present spatially resolved imaging obtained with the Australia Telescope Compact Array (ATCA) of three CO lines in two high-redshift gravitationally lensed dusty star-forming galaxies, discovered by the South Pole Telescope. Strong lensing allows us to probe the structure and dynamics of the molecular gas in these two objects, at z = 2.78 and z = 5.66, with effective source-plane resolution of less than 1 kpc. We model the lensed emission from multiple CO transitions and the dust continuum in a consistent manner, finding that the cold molecular gas as traced by low-J CO always has a larger half-light radius than the 870 μm dust continuum emission. This size difference leads to up to 50% differences in the magnification factor for the cold gas compared to dust. In the z = 2.78 galaxy, these CO observations confirm that the background source is undergoing a major merger, while the velocity field of the other source is more complex. We use the ATCA CO observations and comparable resolution Atacama Large Millimeter/submillimeter Array dust continuum imaging of the same objects to constrain the CO–H{sub 2} conversion factor with three different procedures, finding good agreement between the methods and values consistent with those found for rapidly star-forming systems. We discuss these galaxies in the context of the star formation—gas mass surface density relation, noting that the change in emitting area with observed CO transition must be accounted for when comparing high-redshift galaxies to their lower redshift counterparts.

  10. Photon pairs: Quantum chromodynamics continuum and the Higgs ...

    Indian Academy of Sciences (India)

    Resummation is needed to obtain reliable predictions in the range of transverse momentum where the cross-section is the largest. Results are compared with data from the Fermilab Tevatron and predictions are made for the large hadron collider. The QCD continuum is shown to have a softer spectrum than the Higgs boson ...

  11. The water vapour continuum in near-infrared windows - Current understanding and prospects for its inclusion in spectroscopic databases

    Science.gov (United States)

    Shine, Keith P.; Campargue, Alain; Mondelain, Didier; McPheat, Robert A.; Ptashnik, Igor V.; Weidmann, Damien

    2016-09-01

    Spectroscopic catalogues, such as GEISA and HITRAN, do not yet include information on the water vapour continuum that pervades visible, infrared and microwave spectral regions. This is partly because, in some spectral regions, there are rather few laboratory measurements in conditions close to those in the Earth's atmosphere; hence understanding of the characteristics of the continuum absorption is still emerging. This is particularly so in the near-infrared and visible, where there has been renewed interest and activity in recent years. In this paper we present a critical review focusing on recent laboratory measurements in two near-infrared window regions (centred on 4700 and 6300 cm-1) and include reference to the window centred on 2600 cm-1 where more measurements have been reported. The rather few available measurements, have used Fourier transform spectroscopy (FTS), cavity ring down spectroscopy, optical-feedback - cavity enhanced laser spectroscopy and, in very narrow regions, calorimetric interferometry. These systems have different advantages and disadvantages. Fourier Transform Spectroscopy can measure the continuum across both these and neighbouring windows; by contrast, the cavity laser techniques are limited to fewer wavenumbers, but have a much higher inherent sensitivity. The available results present a diverse view of the characteristics of continuum absorption, with differences in continuum strength exceeding a factor of 10 in the cores of these windows. In individual windows, the temperature dependence of the water vapour self-continuum differs significantly in the few sets of measurements that allow an analysis. The available data also indicate that the temperature dependence differs significantly between different near-infrared windows. These pioneering measurements provide an impetus for further measurements. Improvements and/or extensions in existing techniques would aid progress to a full characterisation of the continuum - as an example, we

  12. Continuum model for water movement in an unsaturated fractured rock mass

    International Nuclear Information System (INIS)

    Peters, R.R.; Klavetter, E.A.

    1988-01-01

    The movement of fluids in a fractured, porous medium has been the subject of considerable study. This paper presents a continuum model that may be used to evaluate the isothermal movement of water in an unsaturated, fractured, porous medium under slowly changing conditions. This continuum model was developed for use in evaluating the unsaturated zone at the Yucca Mountain site as a potential repository for high-level nuclear waste. Thus its development has been influenced by the conditions thought to be present at Yucca Mountain. A macroscopic approach and a microscopic approach are used to develop a continuum model to evaluate water movement in a fractured rock mass. Both approaches assume that the pressure head in the fractures and the matrix are identical in a plane perpendicular to flow. Both approaches lead to a single-flow equation for a fractured rock mass. The two approaches are used to calculate unsaturated hydrologic properties, i.e., relative permeability and saturation as a function of pressure head, for several types of tuff underlying Yucca Mountain, using the best available hydrologic data for the matrix and the fractures. Rock mass properties calculated by both approaches are similar

  13. Argon plasma jet continuum emission investigation by using different spectroscopic methods

    International Nuclear Information System (INIS)

    Dgheim, J

    2007-01-01

    Radiation and temperature fields of the continuum field are determined by using different spectroscopic methods based on the spectral emission of an argon plasma jet. An interferential filter of bandwidth 2.714 nm centred at a wavelength of 633 nm is used to observe only the continuum emission and to eliminate the self-absorption phenomenon. An optical multichannel analyser (OMA) of an MOS detector is used to measure argon plasma jet volumetric emissivity under atmospheric pressure and high temperatures. An emission spectroscopic method is used to measure the Stark broadening of the hydrogen line H β and to determine the electron density. The local thermodynamic equilibrium is established and its limit is stated. The local electron temperature is determined by two methods (the continuum emission relation and the LTE relations), and the total Biberman factor is measured. The results given by the OMA are compared with those given by the imagery method. At a given wavelength, the Biberman factor, which depends on the electron temperature and the electron density, may serve as an indicator to show where the LTE prevails along the argon plasma jet core length

  14. On the physical origin for the geometric theory of continuum mechanics

    International Nuclear Information System (INIS)

    Guenther, H.

    1984-01-01

    It is explained, that the basic notion for a geometric picture of the continuum mechanics is a four dimensional material manifold. The four dimensional mechanical affinity is then the unified field for any defect distribution in the general time dependent case. The minimal number of geometric relations being valid for any continuum is formulated as a set of pure affine relations. The state variables of the theory are additional tensor fields as e.g. deformation defining a metric. A material with a well defined deformation has a Newton-Cartan structure. Only if defects are included into the dynamical determination by additional equilibrium conditions, the theory has a pseudo relativistic structure. (author)

  15. Tests of the discretized-continuum method in three-body dipole strengths

    Energy Technology Data Exchange (ETDEWEB)

    Pinilla, E.C., E-mail: epinilla@ulb.ac.be [Physique Nucleaire Theorique et Physique Mathematique, C.P. 229, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Baye, D., E-mail: dbaye@ulb.ac.be [Physique Quantique, C.P. 165/82, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Physique Nucleaire Theorique et Physique Mathematique, C.P. 229, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Descouvemont, P., E-mail: pdesc@ulb.ac.be [Physique Nucleaire Theorique et Physique Mathematique, C.P. 229, Universite Libre de Bruxelles (ULB), B 1050 Brussels (Belgium); Horiuchi, W., E-mail: whoriuchi@riken.jp [RIKEN Nishina Center, Wako 351-0918 (Japan); Suzuki, Y., E-mail: suzuki@nt.sc.niigata-u.ac.jp [Department of Physics, Niigata University, Niigata 950-2181 (Japan); RIKEN Nishina Center, Wako 351-0918 (Japan)

    2011-08-15

    We investigate the {sup 6}He dipole distribution in a three-body {alpha}+n+n model. Two approaches are used to describe the three-body 1{sup -} continuum: the discretized-continuum method, where the scattering wave functions are approximated by square-integrable functions, and the R-matrix formalism, where their asymptotic behaviour is taken into account. We show that some ambiguity exists in the pseudostate method, owing to the smoothing technique, necessary to derive continuous distributions. We show evidence for the important role of the halo structure in the E1 dipole strength. We also address the treatment of Pauli forbidden states in the three-body wave functions.

  16. Two Kinds of Scaffolding: The Dialectical Process within the Authenticity-Generalizibility (A-G Continuum

    Directory of Open Access Journals (Sweden)

    Hung W. L. David

    2002-10-01

    Full Text Available Recent developments of situated cognition seem to be incompatible with traditional views of school based-learning where abstract or generalized knowledge is emphasized. In this paper, we are advocating that authenticity (as emphasized by situated cognitivists and generalizibility (as advocated by cognitivists are compatible. From an instructional perspective, it should not be for one or the other, but rather the scaffolding of the dialecticism between authenticity and generalizibility. In this paper, we first discuss the problems relating to the radical view of situated cognition and cognitivist approaches to learning and instruction. We then contend that authenticity and generalizibility are compatible and introduce the notion of the Authenticity-Generalizibility (A-G continuum, where from an instructional perspective, the emphasis should be scaffolding within such a continuum. We hypothesize that learners would have richer and deeper understandings of a subject or domain when they have opportunities to experience the full range of learning activities within the A-G continuum. Finally, we proposed two kinds of IT scaffolds, one to assist student moving towards the authenticity end of the continuum and the other vice versa.

  17. Development of Advanced Continuum Models that Incorporate Nanomechanical Deformation into Engineering Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Jonathan A.; Jones, Reese E.; Templeton, Jeremy Alan; McDowell, David L.; Mayeur, Jason R.; Tucker, Garritt J.; Bammann, Douglas J.; Gao, Huajian

    2008-09-01

    Materials with characteristic structures at nanoscale sizes exhibit significantly different mechani-cal responses from those predicted by conventional, macroscopic continuum theory. For example,nanocrystalline metals display an inverse Hall-Petch effect whereby the strength of the materialdecreases with decreasing grain size. The origin of this effect is believed to be a change in defor-mation mechanisms from dislocation motion across grains and pileup at grain boundaries at mi-croscopic grain sizes to rotation of grains and deformation within grain boundary interface regionsfor nanostructured materials. These rotational defects are represented by the mathematical conceptof disclinations. The ability to capture these effects within continuum theory, thereby connectingnanoscale materials phenomena and macroscale behavior, has eluded the research community.The goal of our project was to develop a consistent theory to model both the evolution ofdisclinations and their kinetics. Additionally, we sought to develop approaches to extract contin-uum mechanical information from nanoscale structure to verify any developed continuum theorythat includes dislocation and disclination behavior. These approaches yield engineering-scale ex-pressions to quantify elastic and inelastic deformation in all varieties of materials, even those thatpossess highly directional bonding within their molecular structures such as liquid crystals, cova-lent ceramics, polymers and biological materials. This level of accuracy is critical for engineeringdesign and thermo-mechanical analysis is performed in micro- and nanosystems. The researchproposed here innovates on how these nanoscale deformation mechanisms should be incorporatedinto a continuum mechanical formulation, and provides the foundation upon which to develop ameans for predicting the performance of advanced engineering materials.4 AcknowledgmentThe authors acknowledge helpful discussions with Farid F. Abraham, Youping Chen, Terry J

  18. Photon pairs: Quantum chromodynamics continuum and the Higgs ...

    Indian Academy of Sciences (India)

    is the largest. Results are compared with data from the Fermilab Tevatron and predictions are made for the large hadron collider. The QCD continuum is shown to have a softer spectrum than the Higgs boson signal at the LHC. Keywords. Higgs; photon pairs; quantum chromodynamics. PACS Nos 12.15.Ji; 12.38.Cy; 13.85.

  19. Sensitivity filtering from a continuum mechanics perspective

    DEFF Research Database (Denmark)

    Sigmund, Ole; Maute, Kurt

    2012-01-01

    In topology optimization filtering is a popular approach for preventing numerical instabilities. This short note shows that the well-known sensitivity filtering technique, that prevents checkerboards and ensures mesh-independent designs in density-based topology optimization, is equivalent to min...... to minimizing compliance for nonlocal elasticity problems known from continuum mechanics. Hence, the note resolves the long-standing quest for finding an explanation and physical motivation for the sensitivity filter....

  20. The doubt-certainty continuum in psychopathology, lay thinking, and science.

    Science.gov (United States)

    Ron, Omri; Oren, Ela; Dar, Reuven

    2016-12-01

    This paper presents a theoretical model suggesting that doubt and certainty are two extremes of a continuum. Different people can be located in different locations on this continuum, according to how much they tend to seek refutation vs. confirmation. In both ends of the continuum lay mental disorders, which can be seen as extreme deviations from the usual relatively stable equilibrium between the two thinking processes. One end is defined by excessive skepticism and manifested as obsessive compulsive disorder (OCD), a disorder characterized by incessant doubt. The other end is defined by excessive certainty and lack of doubt, manifested as delusional disorders. Throughout this article, we demonstrate that the differences between normative thoughts and delusional thoughts are relatively vague, and that in general, the human default tendency is to prefer certainty over doubt. This preference is reflected in the confirmation bias as well as in other cognitive constructs such as overconfidence and stereotypes. Recent perspectives on these biases suggest that the human preference for confirmation can be explained in evolutionary terms as adaptive and rational. A parallel view of the scientific enterprise suggests that it also requires a certain equilibrium between skepticism and confirmation. We conclude by discussing the importance of the dialectic relationship between confirmation and refutation in both lay thinking and scientific thought. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Universal scaling of permeability through the granular-to-continuum transition

    Science.gov (United States)

    Wadsworth, F. B.; Scheu, B.; Heap, M. J.; Kendrick, J. E.; Vasseur, J.; Lavallée, Y.; Dingwell, D. B.

    2015-12-01

    Magmas fragment forming a transiently granular material, which can weld back to a fluid-continuum. This process results in dramatic changes in the gas-volume fraction of the material, which impacts the gas permeability. We collate published data for the gas-volume fraction and permeability of volcanic and synthetic materials which have undergone this process to different amounts and note that in all cases there exists a discontinuity in the relationship between these two properties. By discriminating data for which good microstructural information are provided, we use simple scaling arguments to collapse the data in both the still-granular, high gas-volume fraction regime and the fluid-continuum low gas-volume fraction regime such that a universal description can be achieved. We use this to argue for the microstructural meaning of the well-described discontinuity between gas-permeability and gas-volume fraction and to infer the controls on the position of this transition between dominantly granular and dominantly fluid-continuum material descriptions. As a specific application, we consider the transiently granular magma transported through and deposited in fractures in more-coherent magmas, thought to be a primary degassing pathway in high viscosity systems. We propose that our scaling coupled with constitutive laws for densification can provide insights into the longevity of such degassing channels, informing sub-surface pressure modelling at such volcanoes.

  2. Criminal justice continuum for opioid users at risk of overdose.

    Science.gov (United States)

    Brinkley-Rubinstein, Lauren; Zaller, Nickolas; Martino, Sarah; Cloud, David H; McCauley, Erin; Heise, Andrew; Seal, David

    2018-02-24

    The United States (US) is in the midst of an epidemic of opioid use; however, overdose mortality disproportionately affects certain subgroups. For example, more than half of state prisoners and approximately two-thirds of county jail detainees report issues with substance use. Overdose is one of the leading causes of mortality among individuals released from correctional settings. Even though the criminal justice (CJ) system interacts with a disproportionately high number of individuals at risk of opioid use and overdose, few CJ agencies screen for opioid use disorder (OUD). Even less provide access to medication assisted treatment (e.g. methadone, buprenorphine, and depot naltrexone), which is one of the most effective tools to combat addiction and lower overdose risk. However, there is an opportunity to implement programs across the CJ continuum in collaboration with law enforcement, courts, correctional facilities, community service providers, and probation and parole. In the current paper, we introduce the concept of a "CJ Continuum of Care for Opioid Users at Risk of Overdose", grounded by the Sequential Intercept Model. We present each step on the CJ Continuum and include a general overview and highlight opportunities for: 1) screening for OUD and overdose risk, 2) treatment and/or diversion, and 3) overdose prevention and naloxone provision. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Identification of a transcriptional signature for the wound healing continuum.

    Science.gov (United States)

    Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil

    2014-01-01

    There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds. © 2014 The Authors. Wound Repair and Regeneration published by Wiley Periodicals, Inc. on behalf of Wound Healing Society.

  4. Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum.

    Directory of Open Access Journals (Sweden)

    Patricia Lillo

    Full Text Available There is increasing evidence that amyotrophic lateral sclerosis (ALS and frontotemporal dementia (FTD lie on a clinical, pathological and genetic continuum with patients of one disease exhibiting features of the other. Nevertheless, to date, the underlying grey matter and white matter changes across the ALS-FTD disease continuum have not been explored. In this study fifty-three participants with ALS (n = 10, ALS-FTD (n = 10 and behavioural variant FTD (bvFTD; n = 15 as well as controls (n = 18, underwent detailed clinical assessment plus structural imaging using voxel-based morphometry (VBM and diffusion tensor imaging (DTI analysis of magnetic resonance brain imaging to examine grey and white matter differences and commonalities across the continuum. Importantly, patient groups were matched for age, education, gender and disease duration. VBM and DTI results showed that changes in the ALS group were confined mainly to the motor cortex and anterior cingulate as well as their underlying white matter tracts. ALS-FTD and bvFTD showed widespread grey matter and white matter changes involving frontal and temporal lobes. Extensive prefrontal cortex changes emerged as a marker for bvFTD compared to other subtypes, while ALS-FTD could be distinguished from ALS by additional temporal lobe grey and white matter changes. Finally, ALS could be mainly distinguished from the other two groups by corticospinal tract degeneration. The present study shows for the first time that FTD and ALS overlap in anterior cingulate, motor cortex and related white matter tract changes across the whole continuum. Nevertheless, frontal and temporal atrophy as well as corticospinal tract degeneration emerged as marker for subtype classification, which will inform future diagnosis and target disease management across the continuum.

  5. Radio continuum interferometry of dark clouds: A search for newly formed HII regions

    International Nuclear Information System (INIS)

    Gilmore, W.S.

    1978-01-01

    A search for compact HII regions embedded in dark clouds has been carried out in an effort to study local massive star formation. Approximately 20% of the total area of opaque dark cloud material in the sky with Av greater than or equal to 6 mag was surveyed with the NRAO three-element interferometer at 2695 MHz, and at least 5% more was surveyed with the NRAO 300-foot telescope at 4750 MHz. The regions surveyed include the dark cloud complexes in Perseus, Taurus, Orion, and Ophiuchus, as well as several smaller cloud complexes and individual clouds. No hidden compact HII regions embedded inside dark clouds were detected with certainty in the radio continuum. However, eleven HII regions with associated visible emission and eighteen other possible HII regions were detected. Five infrared sources thought to have the luminosities of early B stars were not detected in the radio continuum. These five sources showed high correlation with the presence of CO self-absorption, CO emission over a wide range of velocities, and type I OH masers, but an absence of coincident visible nebulosity and detectable radio continuum emission. Therefore, it is suggested that they represent an earlier evolutionary stage than those HII region detected in the radio continuum. This first evolutionary state marks the presence of ''pre-emergent'' (with respect to the molecular cloud) cocoon stars. HII regions in the second evolutionary state are marked by the presence of detectable radio continuum emission, i.e., they are stronger than 10 mJy at 2695 MHz. They have associated visible nebulosity, are relatively large, and appear to be located at the edges of molecular clouds. These are designated as ''emergent edge'' HII regions. The fact that many young HII regions are edge HII regions implies that massive stars are born near the edges of clouds, a phenomenon previously suggested by several other investigators

  6. Static and dynamic continuum theory liquid crystals a mathematical introduction

    CERN Document Server

    Stewart, Iain W

    2004-01-01

    Providing a rigorous, clear and accessible text for graduate students regardless of scientific background, this text introduces the basic continuum theory for nematic liquid crystals in equilibria, and details its various simple applications.

  7. Shouldering the blame for impingement: the rotator cuff continuum ...

    African Journals Online (AJOL)

    The aim of this article was to summarise recent research on shoulder impingement and rotator cuff pathology. A continuum model of rotator cuff pathology is described, and the challenges of accurate clinical diagnosis, imaging and best management discussed. Keywords: shoulder impingement syndrome, subacromial ...

  8. Topology Optimization of Continuum Structures with Local Stress Constraints

    DEFF Research Database (Denmark)

    Duysinx, Pierre; Bendsøe, Martin P

    1998-01-01

    We introduce an extension of current technologies for topology optimization of continuum structures which allows for treating local stress criteria. We first consider relevant stress criteria for porous composite materials, initially by studying the stress states of the so-called rank 2 layered m...

  9. The Continuum of Literacy in American Indian Communities.

    Science.gov (United States)

    Zepeda, Ofelia

    1995-01-01

    Describes the O'odham language and oral tradition of the Tohono O'odham Indians of southern Arizona, relating it to the development of O'odham children's English literacy. Oral tradition and school literacy constitute opposite ends of a literacy continuum, in which English literacy is often isolated from and in conflict with O'odham literacy. (10…

  10. Large Enhancement in High-Energy Photoionization of Fe XVII and Missing Continuum Plasma Opacity

    Science.gov (United States)

    Nahar, Sultana N.; Pradhan, Anil K.

    2016-06-01

    Aimed at solving the outstanding problem of solar opacity, and radiation transport plasma models in general, we report substantial photoabsorption in the high-energy regime due to atomic core photoexcitations not heretofore considered. In extensive R -matrix calculations of unprecedented complexity for an important iron ion Fe xvii (Fe16 + ), with a wave function expansion of 99 Fe xviii (Fe17 + ) LS core states from n ≤4 complexes (equivalent to 218 fine structure levels), we find (i) up to orders of magnitude enhancement in background photoionization cross sections, in addition to strongly peaked photo-excitation-of-core resonances not considered in current opacity models, and ii) demonstrate convergence with respect to successive core excitations. The resulting increase in the monochromatic continuum, and 35% in the Rosseland mean opacity, are compared with the "higher-than-predicted" iron opacity measured at the Sandia Z -pinch fusion device at solar interior conditions.

  11. Optical stealth transmission based on super-continuum generation in highly nonlinear fiber over WDM network.

    Science.gov (United States)

    Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei

    2015-06-01

    In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness.

  12. Continuum Mechanics using Mathematica® Fundamentals, Applications and Scientific Computing

    CERN Document Server

    Romano, Antonio; Marasco, Addolorata

    2006-01-01

    This book's methodological approach familiarizes readers with the mathematical tools required to correctly define and solve problems in continuum mechanics. The book covers essential principles and fundamental applications, and provides a solid basis for a deeper study of more challenging and specialized problems related to elasticity, fluid mechanics, plasticity, materials with memory, piezoelectricity, ferroelectricity, magneto-fluid mechanics, and state changes. Key topics and features: * Concise presentation strikes a balance between fundamentals and applications * Requisite mathematical background carefully collected in two introductory chapters and two appendices * Recent developments highlighted through coverage of more significant applications to areas such as porous media, electromagnetic fields, and phase transitions Continuum Mechanics using Mathematica® is aimed at advanced undergraduates, graduate students, and researchers in applied mathematics, mathematical physics, and engineering. It may ser...

  13. Non-classical continuum mechanics a dictionary

    CERN Document Server

    Maugin, Gérard A

    2017-01-01

    This dictionary offers clear and reliable explanations of over 100 keywords covering the entire field of non-classical continuum mechanics and generalized mechanics, including the theory of elasticity, heat conduction, thermodynamic and electromagnetic continua, as well as applied mathematics. Every entry includes the historical background and the underlying theory, basic equations and typical applications. The reference list for each entry provides a link to the original articles and the most important in-depth theoretical works. Last but not least, every entry is followed by a cross-reference to other related subject entries in the dictionary.

  14. A Concentric Tube Continuum Robot with Piezoelectric Actuation for MRI-Guided Closed-Loop Targeting

    OpenAIRE

    Su, Hao; Li, Gang; Rucker, D. Caleb; Webster, Robert J.; Fischer, Gregory S.

    2016-01-01

    This paper presents the design, modeling and experimental evaluation of a magnetic resonance imaging (MRI)-compatible concentric tube continuum robotic system. This system enables MRI-guided deployment of a precurved and steerable concentric tube continuum mechanism, and is suitable for clinical applications where a curved trajectory is needed. This compact 6 degree-of-freedom (DOF) robotic system is piezoelectrically-actuated, and allows simultaneous robot motion and imaging with no visually...

  15. Continuum limit of overlap valence quarks on a twisted mass sea

    International Nuclear Information System (INIS)

    Cichy, Krzysztof; Herdoiza, Gregorio; Univ. Autonoma de Madrid; Jansen, Karl

    2010-12-01

    We study a lattice QCD mixed action with overlap valence quarks on two flavours of Wilson maximally twisted mass sea quarks. Employing three different matching conditions to relate both actions to each other, we investigate the continuum limit by using three values of the lattice spacing ranging from a∼0.05 fm to 0.08 fm. A particular emphasis is put on the effect on physical observables of the topological zero modes appearing in the valence overlap operator. We estimate the region of parameter space where the contribution from these zero modes is sufficiently small such that their effects can be safely controlled and a restoration of unitarity of the mixed action in the continuum limit is reached. (orig.)

  16. Thermal quasiparticle correlations and continuum coupling in nuclei far from stability

    International Nuclear Information System (INIS)

    Dang, Nguyen Dinh; Arima, Akito

    2003-01-01

    The contributions of quasiparticle correlations and continuum coupling upon the superfluid properties of neutron-rich Ni isotopes are studied within the modified BCS approximation at finite temperature. The effect of quasiparticle correlations is included using a secondary Bogoliubov transformation explicitly involving the quasiparticle occupation numbers at temperature T. The effect of continuum coupling is taken in to account via the finite widths of the single-particle resonant states. It is shown that the combination of these effects washes out the sharp superfluid-normal phase transition given by the standard finite-temperature BCS calculations. It is also found that the two-neutron separation energy for 84 Ni drops to zero at T congruent with 0.8 MeV

  17. Analytic perturbation theory for screened Coulomb potential: full continuum wave function

    International Nuclear Information System (INIS)

    Bechler, A.; Ennan, Mc J.; Pratt, R.H.

    1979-01-01

    An analytic perturbation theory developed previously is used to find a continuum screened-Coulomb wave function characterized by definite asymptotic momentum. This wave function satisfies an inhomogeneous partial differential equation which is solved in parabolic coordinates; the solution depends on both parabolic variables. We calculate partial wave projections of this solution and show that we can choose to add a solution of the homogeneous equation such that the partial wave projections become equal to the normalized continuum radial function found previously. However, finding the unique solution with given asymptotic linear momentum will require either using boundary conditions to determine the unique needed solution of the homogeneous equation or equivalently specifying the screened-Coulomb phase-shifts. (author)

  18. Line and continuum spectroscopy as diagnostic tools for gamma ray bursts

    International Nuclear Information System (INIS)

    Liang, E.P.

    1990-12-01

    We review the theoretical framework of both line and continuum spectra formation in gamma ray bursts. These include the cyclotron features at 10's of keV, redshifted annihilation features at ∼400 keV, as well as other potentially detectable nuclear transition lines, atomic x-ray lines, proton cyclotron lines and plasma oscillation lines. By combining the parameters derived from line and continuum modeling we can try to reconstruct the location, geometry and physical conditions of the burst emission region, thereby constraining and discriminating the astrophysical models. Hence spectroscopy with current and future generations of detectors should provide powerful diagnostic tools for gamma ray bursters. 48 refs., 10 figs., 4 tabs

  19. Numerical Modelling and Damage Assessment of Rotary Wing Aircraft Cabin Door Using Continuum Damage Mechanics Model

    Science.gov (United States)

    Boyina, Gangadhara Rao T.; Rayavarapu, Vijaya Kumar; V. V., Subba Rao

    2017-02-01

    The prediction of ultimate strength remains the main challenge in the simulation of the mechanical response of composite structures. This paper examines continuum damage model to predict the strength and size effects for deformation and failure response of polymer composite laminates when subjected to complex state of stress. The paper also considers how the overall results of the exercise can be applied in design applications. The continuum damage model is described and the resulting prediction of size effects are compared against the standard benchmark solutions. The stress analysis for strength prediction of rotary wing aircraft cabin door is carried out. The goal of this study is to extend the proposed continuum damage model such that it can be accurately predict the failure around stress concentration regions. The finite element-based continuum damage mechanics model can be applied to the structures and components of arbitrary configurations where analytical solutions could not be developed.

  20. Universality and the approach to the continuum limit in lattice gauge theory

    CERN Document Server

    De Divitiis, G M; Guagnelli, M; Lüscher, Martin; Petronzio, Roberto; Sommer, Rainer; Weisz, P; Wolff, U; de Divitiis, G; Frezzotti, R; Guagnelli, M; Luescher, M; Petronzio, R; Sommer, R; Weisz, P; Wolff, U

    1995-01-01

    The universality of the continuum limit and the applicability of renormalized perturbation theory are tested in the SU(2) lattice gauge theory by computing two different non-perturbatively defined running couplings over a large range of energies. The lattice data (which were generated on the powerful APE computers at Rome II and DESY) are extrapolated to the continuum limit by simulating sequences of lattices with decreasing spacings. Our results confirm the expected universality at all energies to a precision of a few percent. We find, however, that perturbation theory must be used with care when matching different renormalized couplings at high energies.

  1. Continuum radiation emitted from transition metals under ion bombardment

    International Nuclear Information System (INIS)

    El Boujlaidi, A.; Kaddouri, A.; Ait El Fqih, M.; Hammoum, K.; Aouchiche, H.

    2012-01-01

    Optical emission of transition metals has been studied during 5 keV Kr + ions bombardment within and without oxygen atmosphere in the colliding chamber. The observed spectra consist of a series of discrete lines superimposed on a broad continuum. Generally, the emission intensity was influenced by the presence of oxygen giving rise to transient effects as well as to an increase in the line intensity. The behaviours of spectral lines were successfully explained in term of electron-transfer process between the excited sputtered atom and the solid surface. In this work, we have focused our study on the continuous radiation emitted during ion bombardment. The experimental results suggest that the continuum emission depends on the nature of metal and very probably related to its electronic structure. The collective deactivation of 3d-shell electrons appears to play a role in the emission of this radiation. The observed enhancement in the presence of oxygen is probably due to a significant contribution of the oxide molecules. (authors)

  2. Global spiral structure of M81 - radio continuum maps

    International Nuclear Information System (INIS)

    Bash, F.N.; Kaufman, M.; Ohio State Univ., Columbus)

    1986-01-01

    VLA observations of the radio continuum emission from M81 at 6 and 20 cm are presented and used to check the predictions of density-wave theories. Both thermal and nonthermal radiation from the spiral arms are detected. Most of the bright knots along the radio arms are giant radio H II regions. The nonthermal emission defines spiral arms that are patchy and well-resolved, with a width of 1-2 kpc. The observed nonthermal arms are too broad to agree with the continuum gasdynamical calculations of Roberts (1969), Shu et al. (1972), and Visser (1978, 1980) for a classical density wave model. The observed arm widths appear consistent with the predictions of density-wave models that emphasize the clumpy nature of the ISM. The 20 cm arms appear to spiral outward from a faint inner H I ring, suggesting that the ring is produced by the inner Lindblad resonance. 36 references

  3. Elucidating a Goal-Setting Continuum in Brain Injury Rehabilitation.

    Science.gov (United States)

    Hunt, Anne W; Le Dorze, Guylaine; Trentham, Barry; Polatajko, Helene J; Dawson, Deirdre R

    2015-08-01

    For individuals with brain injury, active participation in goal setting is associated with better rehabilitation outcomes. However, clinicians report difficulty engaging these clients in goal setting due to perceived or real deficits (e.g., lack of awareness). We conducted a study using grounded theory methods to understand how clinicians from occupational therapy facilitate client engagement and manage challenges inherent in goal setting with this population. Through constant comparative analysis, a goal-setting continuum emerged. At one end of the continuum, therapists embrace client-determined goals and enable clients to decide their own goals. At the other, therapists accept preset organization-determined goals (e.g., "the goal is discharge") and pay little attention to client input. Although all participants aspired to embrace client-determined goal setting, most felt powerless to do so within perceived organizational constraints. Views of advocacy and empowerment help to explain our findings and inform more inclusive practice. © The Author(s) 2015.

  4. The Glymphatic-Lymphatic Continuum: Opportunities for Osteopathic Manipulative Medicine.

    Science.gov (United States)

    Hitscherich, Kyle; Smith, Kyle; Cuoco, Joshua A; Ruvolo, Kathryn E; Mancini, Jayme D; Leheste, Joerg R; Torres, German

    2016-03-01

    The brain has long been thought to lack a lymphatic drainage system. Recent studies, however, show the presence of a brain-wide paravascular system appropriately named the glymphatic system based on its similarity to the lymphatic system in function and its dependence on astroglial water flux. Besides the clearance of cerebrospinal fluid and interstitial fluid, the glymphatic system also facilitates the clearance of interstitial solutes such as amyloid-β and tau from the brain. As cerebrospinal fluid and interstitial fluid are cleared through the glymphatic system, eventually draining into the lymphatic vessels of the neck, this continuous fluid circuit offers a paradigm shift in osteopathic manipulative medicine. For instance, manipulation of the glymphatic-lymphatic continuum could be used to promote experimental initiatives for nonpharmacologic, noninvasive management of neurologic disorders. In the present review, the authors describe what is known about the glymphatic system and identify several osteopathic experimental strategies rooted in a mechanistic understanding of the glymphatic-lymphatic continuum.

  5. Scaling laws, renormalization group flow and the continuum limit in non-compact lattice QED

    International Nuclear Information System (INIS)

    Goeckeler, M.; Horsley, R.; Rakow, P.; Schierholz, G.; Sommer, R.

    1992-01-01

    We investigate the ultra-violet behavior of non-compact lattice QED with light staggered fermions. The main question is whether QED is a non-trivial theory in the continuum limit, and if not, what is its range of validity as a low-energy theory. Perhaps the limited range of validity could offer an explanation of why the fine-structure constant is so small. Non-compact QED undergoes a second-order chiral phase transition at strong coupling, at which the continuum limit can be taken. We examine the phase diagram and the critical behavior of the theory in detail. Moreover, we address the question as to whether QED confines in the chirally broken phase. This is done by investigating the potential between static external charges. We then compute the renormalized charge and derive the Callan-Symanzik β-function in the critical region. No ultra-violet stable zero is found. Instead, we find that the evolution of charge is well described by renormalized perturbation theory, and that the renormalized charge vanishes at the critical point. The consequence is that QED can only be regarded as a cut-off theory. We evaluate the maximum value of the cut-off as a function of the renormalized charge. Next, we compute the masses of fermion-antifermion composite states. The scaling behavior of these masses is well described by an effective action with mean-field critical exponents plus logarithmic corrections. This indicates that also the matter sector of the theory is non-interacting. Finally, we investigate and compare the renormalization group flow of different quantities. Altogether, we find that QED is a valid theory only for samll renormalized charges. (orig.)

  6. Understanding Nutrient Processing Under Similar Hydrologic Conditions Along a River Continuum

    Science.gov (United States)

    Garayburu-Caruso, V. A.; Mortensen, J.; Van Horn, D. J.; Gonzalez-Pinzon, R.

    2015-12-01

    Eutrophication is one of the main causes of water impairment across the US. The fate of nutrients in streams is typically described by the dynamic coupling of physical processes and biochemical processes. However, isolating each of these processes and determining its contribution to the whole system is challenging due to the complexity of the physical, chemical and biological domains. We conducted column experiments seeking to understand nutrient processing in shallow sediment-water interactions along representative sites of the Jemez River-Rio Grande continuum (eight stream orders), in New Mexico (USA). For each stream order, we used a set of 6 columns packed with 3 different sediments, i.e., Silica Cone Density Sand ASTM D 1556 (0.075-2.00 mm), gravel (> 2mm) and native sediments from each site. We incubated the sediments for three months and performed tracer experiments in the laboratory under identical flow conditions, seeking to normalize the physical processes along the river continuum. We added a short-term pulse injection of NO3, resazurin and NaCl to each column and determined metabolism and NO3 processing using the Tracer Additions for Spiraling Curve Characterization method (TASCC). Our methods allowed us to study how changes in bacterial communities and sediment composition along the river continuum define nutrient processing.

  7. The information needs of adult cancer survivors across the cancer continuum: A scoping review.

    Science.gov (United States)

    Fletcher, Chloe; Flight, Ingrid; Chapman, Janine; Fennell, Kate; Wilson, Carlene

    2017-03-01

    To provide an updated synthesis of the literature that investigates the self-reported information needs of people diagnosed with cancer across the cancer continuum. We conducted a scoping review of the literature published from August 2003 to June 2015 and expanded an existing typology summarizing the information needs of people diagnosed with cancer. The majority of the included studies (n=104) focused on questions relevant to the diagnosis/active treatment phase of the cancer continuum (52.9%) and thus the most frequently identified information needs related to this phase (33.4%). Information needs varied across the continuum and the results highlight the importance of recognising this fact. People diagnosed with cancer experience discrete information needs at different points from diagnosis to survival. Much of the research conducted in this area has focused on their information needs during the diagnosis and treatment of cancer, and literature relating to information needs following completion of treatment is sparse. Further research is needed to discern the specific nature of the treatment concerns and identify the information needs that survivors experience during recurrence of cancer, metastasis or changes in diagnosis, and the end of life phase of the cancer continuum. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Coupling of nonlocal and local continuum models by the Arlequinapproach

    KAUST Repository

    Han, Fei; Lubineau, Gilles

    2011-01-01

    for the 'fine scale' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can

  9. Absorption cross section measurements of oxygen in the wavelength region 195-241 nm of the Herzberg continuum

    International Nuclear Information System (INIS)

    Cheung, A.S.C.; Yoshino, K.; Parkinson, W.H.; Freeman, D.E.

    1985-01-01

    The continuum cross section of oxygen at 296-300 K has been measured with a resolution of 0.13 nm throughout the wavelength region 205-241 nm with oxygen pressures from 5 to 760 torr and optical lengths from 13.3 to 133 m. The three processes contributing to the observed cross section are absorption into two continua, viz., the Herzberg continuum of O 2 and a pressure-dependent continuum involving two molecules of O 2 , and Rayleigh scattering. Comparison between different laboratory measurements and in situ stratospheric studies will also be presented. 1 reference

  10. Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution.

    Energy Technology Data Exchange (ETDEWEB)

    Zapol, Peter (Argonne National Laboratory, Argonne, IL); Bourg, Ian (Lawrence Berkeley National Laboratories, Berkeley, CA); Criscenti, Louise Jacqueline; Steefel, Carl I. (Lawrence Berkeley National Laboratories, Berkeley, CA); Schultz, Peter Andrew

    2011-10-01

    This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers, classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.

  11. Design, modeling and control of a pneumatically actuated manipulator inspired by biological continuum structures

    International Nuclear Information System (INIS)

    Kang, Rongjie; Zheng Tianjiang; Guglielmino, Emanuele; Caldwell, Darwin G; Branson, David T

    2013-01-01

    Biological tentacles, such as octopus arms, have entirely flexible structures and virtually infinite degrees of freedom (DOF) that allow for elongation, shortening and bending at any point along the arm length. The amazing dexterity of biological tentacles has driven the growing implementation of continuum manipulators in robotic systems. This paper presents a pneumatic manipulator inspired by biological continuum structures in some of their key features and functions, such as continuum morphology, intrinsic compliance and stereotyped motions with hyper redundant DOF. The kinematics and dynamics of the manipulator are formulated and identified, and a hierarchical controller taking inspiration from the structure of an octopus nervous system is used to relate desired stereotyped motions to individual actuator inputs. Simulations and experiments are carried out to validate the model and prototype where good agreement was found between the two. (paper)

  12. A bimodal temom model for particle Brownian coagulation in the continuum-slip regime

    Directory of Open Access Journals (Sweden)

    He Qing

    2016-01-01

    Full Text Available In this paper, a bimodal Taylor-series expansion moment of method is proposed to deal with Brownian coagulation in the continuum-slip regime, where the non-linear terms in the Cunningham correction factor is approximated by Taylor-series expansion technology. The results show that both the number concentration and volume fraction decrease with time in the smaller mode due to the intra and inter coagulation, and the asymptotic behavior of the larger mode is as same as that in the continuum regime.

  13. Stress, deformation, conservation, and rheology: a survey of key concepts in continuum mechanics

    Science.gov (United States)

    Major, J.J.

    2013-01-01

    This chapter provides a brief survey of key concepts in continuum mechanics. It focuses on the fundamental physical concepts that underlie derivations of the mathematical formulations of stress, strain, hydraulic head, pore-fluid pressure, and conservation equations. It then shows how stresses are linked to strain and rates of distortion through some special cases of idealized material behaviors. The goal is to equip the reader with a physical understanding of key mathematical formulations that anchor continuum mechanics in order to better understand theoretical studies published in geomorphology.

  14. Continuum limit of discrete Sommerfeld problems on square lattice

    Indian Academy of Sciences (India)

    BASANT LAL SHARMA

    Sommerfeld half-plane; crack; rigid ribbon; continuum limit; Wiener–Hopf; Toeplitz ... case of which, when it approaches zero, is called 'contin- .... etc, denote constants in expressions, inequalities, etc. The ..... The latter holds on a possibly weighted space, depending ..... where jj ء jj refers to the corresponding operator norm.

  15. Effect of γ-softness on continuum gamma-ray spectra

    International Nuclear Information System (INIS)

    Hamamoto, I.; Onishi, N.

    1985-01-01

    In the case that a nuclear system has a large fluctuation in the direction of triaxiality, we examine the possible feature expected to appear in the continuum gamma-ray spectra, especially a possibility of the filling in the central valley of the two-dimensional gamma-energy coincidence spectra. (orig.)

  16. Broadening of white-light continuum by filamentation in BK7 glass at its zero-dispersion point

    International Nuclear Information System (INIS)

    Jiang, Jiaming; Zhong, Yue; Zheng, Yinghui; Zeng, Zhinan; Ge, Xiaochun; Li, Ruxin

    2015-01-01

    Broadening of white-light continuum is observed by filamentation of near-infrared femtosecond laser pulses with peak power exceeding the megawatt level in BK7 glass with the presence of the zero-dispersion point. The simulated results show that, due to the low dispersion at the zero-dispersion point, the broadening of white-light continuum can be wider and the filament can persist in propagating stably longer distance. - Highlights: • We observed the white-light continuum by filamentation at the zero-dispersion point. • Peak power significantly exceeding the critical value of self-focusing was used. • Wider spectral broadening was obtained around the zero-dispersion point

  17. On the Origin of the Flare Emission in IRIS ’ SJI 2832 Filter:Balmer Continuum or Spectral Lines?

    Energy Technology Data Exchange (ETDEWEB)

    Kleint, Lucia; Krucker, Säm [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland); Heinzel, Petr [Astronomical Institute, The Czech Academy of Sciences, Fričova 298, 25165 Ondřejov (Czech Republic)

    2017-03-10

    Continuum (“white-light,” WL) emission dominates the energetics of flares. Filter-based observations, such as the IRIS SJI 2832 filter, show WL-like brightenings during flares, but it is unclear whether the emission arises from real continuum emission or enhanced spectral lines, possibly turning into emission. The difficulty in filter-based observations, contrary to spectral observations, is to determine which processes contribute to the observed brightening during flares. Here we determine the contribution of the Balmer continuum and the spectral line emission to IRIS ’ SJI 2832 emission by analyzing the appropriate passband in simultaneous IRIS NUV spectra. We find that spectral line emission can contribute up to 100% to the observed slitjaw images (SJI) emission, that the relative contributions usually temporally vary, and that the highest SJI enhancements that are observed are most likely because of the Balmer continuum. We conclude that care should be taken when calling SJI 2832 a continuum filter during flares, because the influence of the lines on the emission can be significant.

  18. On the Origin of the Flare Emission in IRIS ’ SJI 2832 Filter:Balmer Continuum or Spectral Lines?

    International Nuclear Information System (INIS)

    Kleint, Lucia; Krucker, Säm; Heinzel, Petr

    2017-01-01

    Continuum (“white-light,” WL) emission dominates the energetics of flares. Filter-based observations, such as the IRIS SJI 2832 filter, show WL-like brightenings during flares, but it is unclear whether the emission arises from real continuum emission or enhanced spectral lines, possibly turning into emission. The difficulty in filter-based observations, contrary to spectral observations, is to determine which processes contribute to the observed brightening during flares. Here we determine the contribution of the Balmer continuum and the spectral line emission to IRIS ’ SJI 2832 emission by analyzing the appropriate passband in simultaneous IRIS NUV spectra. We find that spectral line emission can contribute up to 100% to the observed slitjaw images (SJI) emission, that the relative contributions usually temporally vary, and that the highest SJI enhancements that are observed are most likely because of the Balmer continuum. We conclude that care should be taken when calling SJI 2832 a continuum filter during flares, because the influence of the lines on the emission can be significant.

  19. Derivation of Electromagnetism from the Elastodynamics of the Spacetime Continuum

    Directory of Open Access Journals (Sweden)

    Millette P. A.

    2013-04-01

    Full Text Available We derive Electromagnetism from the Elastodynamics of the Spacetime Continuum based on the identification of the theory’s antisymmetric rotation tensor with the elec- tromagnetic field-strength tensor. The theory provides a physical explanation of the electromagnetic potential, which arises from transverse ( shearing displacements of the spacetime continuum, in contrast to mass which arises from longitudinal (dilatational displacements. In addition, the theory provides a physical explanation of the current density four-vector, as the 4-gradient of the volume dilatation of the spacetime con- tinuum. The Lorentz condition is obtained directly from the theory. In addition, we obtain a generalization of Electromagnetism for the situation where a volume force is present, in the general non-macroscopic case. Maxwell’s equations are found to remain unchanged, but the current density has an additional term proportional to the volume force.

  20. Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure

    Science.gov (United States)

    Scott, Riccardo; Heckmann, Jan; Prudnikau, Anatol V.; Antanovich, Artsiom; Mikhailov, Aleksandr; Owschimikow, Nina; Artemyev, Mikhail; Climente, Juan I.; Woggon, Ulrike; Grosse, Nicolai B.; Achtstein, Alexander W.

    2017-12-01

    Intrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters.

  1. Proposed higher order continuum-based models for an elastic ...

    African Journals Online (AJOL)

    Three new variants of continuum-based models for an elastic subgrade are proposed. The subgrade is idealized as a homogenous, isotropic elastic layer of thickness H overlying a firm stratum. All components of the stress tensor in the subgrade are taken into account. Reasonable assumptions are made regarding the ...

  2. Asteroid-comet continuum objects in the solar system.

    Science.gov (United States)

    Hsieh, Henry H

    2017-07-13

    In this review presented at the Royal Society meeting, 'Cometary science after Rosetta', I present an overview of studies of small solar system objects that exhibit properties of both asteroids and comets (with a focus on so-called active asteroids). Sometimes referred to as 'transition objects', these bodies are perhaps more appropriately described as 'continuum objects', to reflect the notion that rather than necessarily representing actual transitional evolutionary states between asteroids and comets, they simply belong to the general population of small solar system bodies that happen to exhibit a continuous range of observational, physical and dynamical properties. Continuum objects are intriguing because they possess many of the properties that make classical comets interesting to study (e.g. relatively primitive compositions, ejection of surface and subsurface material into space where it can be more easily studied, and orbital properties that allow us to sample material from distant parts of the solar system that would otherwise be inaccessible), while allowing us to study regions of the solar system that are not sampled by classical comets.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  3. A Long-Term Space Astrophysics Research Program: The Evolution of the Quasar Continuum

    Science.gov (United States)

    Elvis, M.; Oliversen, Ronald K. (Technical Monitor)

    2002-01-01

    Four papers have been written. One reports on the major study funded by this grant: a pan-chromatic study of the quasar continuum at redshift 3. Two others make use of the quasar continuum shapes to find the minimum total accretion luminosity of the Universe, and hence the efficiency and spin of supermassive black holes; the second shows that the reemission of absorbed quasar radiation alleviates a major problem with galaxy formation and the FIR background. The last paper recognizes the role quasars may play in the initial formation of dust in the early Universe.

  4. Continuum shell-model with complicated configurations

    International Nuclear Information System (INIS)

    Barz, H.W.; Hoehn, J.

    1977-05-01

    The traditional shell model has been combined with the coupled channels method in order to describe resonance reactions. For that purpose the configuration space is divided into two subspaces (Feshbach projection method). Complicated shell-model configurations can be included into the subspace of discrete states which contains the single particle resonance states too. In the subspace of scattering states the equation of motion is solved by using the coupled channels method. Thereby the orthogonality between scattering states and discrete states is ensured. Resonance states are defined with outgoing waves in all channels. By means of simple model calculations the special role of the continuum is investigated. In this connection the energy dependence of the resonance parameters, the isospin mixture via the continuum, threshold effect, as well as the influence of the number of channels taken into account on the widths, positions and dipole strengths of the resonance are discussed. The model is mainly applied to the description of giant resonances excited by the scattering of nucleons and photo-nucleus processes (source term method) found in reactions on light nuclei. The giant resonance observed in the 15 N(p,n) reaction is explained by the inclusion of 2p-2h states. The same is true for the giant resonance in 13 C(J = 1/2, 3/2) as well as for the giant resonance built on the first 3 - state in 16 O. By means of a correlation analysis for the reduced widths amplitudes an access to the doorway conception is found. (author)

  5. A morphing approach to couple state-based peridynamics with classical continuum mechanics

    KAUST Repository

    Han, Fei

    2016-01-04

    A local/nonlocal coupling technique called the morphing method is developed to couple classical continuum mechanics with state-based peridynamics. State-based peridynamics, which enables the description of cracks that appear and propagate spontaneously, is applied to the key domain of a structure, where damage and fracture are considered to have non-negligible effects. In the rest of the structure, classical continuum mechanics is used to reduce computational costs and to simultaneously satisfy solution accuracy and boundary conditions. Both models are glued by the proposed morphing method in the transition region. The morphing method creates a balance between the stiffness tensors of classical continuum mechanics and the weighted coefficients of state-based peridynamics through the equivalent energy density of both models. Linearization of state-based peridynamics is derived by Taylor approximations based on vector operations. The discrete formulation of coupled models is also described. Two-dimensional numerical examples illustrate the validity and accuracy of the proposed technique. It is shown that the morphing method, originally developed for bond-based peridynamics, can be successfully extended to state-based peridynamics through the original developments presented here.

  6. AN APPARENT REDSHIFT DEPENDENCE OF QUASAR CONTINUUM: IMPLICATION FOR COSMIC DUST EXTINCTION?

    International Nuclear Information System (INIS)

    Xie, Xiaoyi; Shen, Shiyin; Shao, Zhengyi; Yin, Jun

    2015-01-01

    We investigate the luminosity and redshift dependence of the quasar continuum by means of the composite spectrum using a large non-BAL radio-quiet quasar sample drawn from the Sloan Digital Sky Survey. Quasar continuum slopes in the UV-Opt band are measured at two different wavelength ranges, i.e., α ν12 (1000 ∼ 2000 Å) and α ν24 (2000 ∼ 4000 Å) derived from a power-law fitting. Generally, the UV spectra slope becomes harder (higher α ν ) toward higher bolometric luminosity. On the other hand, when quasars are further grouped into luminosity bins, we find that both α ν12 and α ν24 show significant anti-correlations with redshift (i.e., the quasar continuum becomes redder toward higher redshift). We suggest that the cosmic dust extinction is very likely the cause of this observed α ν − z relation. We build a simple cosmic dust extinction model to quantify the observed reddening tendency and find an effective dust density nσ v ∼ 10 −5 h Mpc −1 at z < 1.5. The other possibilities that could produce such a reddening effect have also been discussed

  7. A morphing approach to couple state-based peridynamics with classical continuum mechanics

    KAUST Repository

    Han, Fei; Lubineau, Gilles; Azdoud, Yan; Askari, Abe

    2016-01-01

    A local/nonlocal coupling technique called the morphing method is developed to couple classical continuum mechanics with state-based peridynamics. State-based peridynamics, which enables the description of cracks that appear and propagate spontaneously, is applied to the key domain of a structure, where damage and fracture are considered to have non-negligible effects. In the rest of the structure, classical continuum mechanics is used to reduce computational costs and to simultaneously satisfy solution accuracy and boundary conditions. Both models are glued by the proposed morphing method in the transition region. The morphing method creates a balance between the stiffness tensors of classical continuum mechanics and the weighted coefficients of state-based peridynamics through the equivalent energy density of both models. Linearization of state-based peridynamics is derived by Taylor approximations based on vector operations. The discrete formulation of coupled models is also described. Two-dimensional numerical examples illustrate the validity and accuracy of the proposed technique. It is shown that the morphing method, originally developed for bond-based peridynamics, can be successfully extended to state-based peridynamics through the original developments presented here.

  8. Continuum limit of overlap valence quarks on a twisted mass sea

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Herdoiza, Gregorio [DESY, Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica; Jansen, Karl [DESY, Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC

    2010-12-15

    We study a lattice QCD mixed action with overlap valence quarks on two flavours of Wilson maximally twisted mass sea quarks. Employing three different matching conditions to relate both actions to each other, we investigate the continuum limit by using three values of the lattice spacing ranging from a{approx}0.05 fm to 0.08 fm. A particular emphasis is put on the effect on physical observables of the topological zero modes appearing in the valence overlap operator. We estimate the region of parameter space where the contribution from these zero modes is sufficiently small such that their effects can be safely controlled and a restoration of unitarity of the mixed action in the continuum limit is reached. (orig.)

  9. The optical and near-infrared continuum polarization of five magnetic white dwarf stars - new observations and considerations regarding its origin

    Energy Technology Data Exchange (ETDEWEB)

    West, S.C. (Carnegie Institution of Washington, Observatories, Pasadena, CA (USA) Steward Observatory, Tucson, AZ (USA))

    1989-10-01

    Linear and circular broadband continuum polarization measurements throughout the 0.35-1.65-micron spectral region were obtained for GrW +70 deg 8247, GD 229, G240-72, G227-35, and LP 790-29. The continuum is found to be characterized by significant Coulomb modification of the Landau-type autoionization thresholds. The spectral characteristics of continuum polarization originating from a centered dipole field distribution are predicted. The magnetobremsstrahlung model can describe several characteristics of the polarization of Grw + 70 deg 8247, suggesting that plasma eigenmodes draw the resultant continuum polarization away from a photoionization edge. 86 refs.

  10. The EU Security Continuum: the interaction between internal and external spheres in

    Directory of Open Access Journals (Sweden)

    Ana Postolache

    2012-08-01

    Full Text Available Exceeding the traditional dividing line between internal and external security, the article aims to analyze the coordination link between EU internal and external spheres in combating the "new security threats" and in achieving its security goals. First, I will analyze the rapprochement steps towards the EU security continuum, the instruments and the logic behind the process. Second, I will step beyond the discursive claims and I will analyze the EU operational aspects directed under this umbrella, with a particular focus on organised crime. Last but not least, I will discuss the reflection of EU security continuum on the wider global security arena.

  11. A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm

    International Nuclear Information System (INIS)

    Renda, F; Cianchetti, M; Giorelli, M; Arienti, A; Laschi, C

    2012-01-01

    Control and modelling of continuum robots are challenging tasks for robotic researchers. Most works on modelling are limited to piecewise constant curvature. In many cases they neglect to model the actuators or avoid a continuum approach. In particular, in the latter case this leads to a complex model hardly implemented. In this work, a geometrically exact steady-state model of a tendon-driven manipulator inspired by the octopus arm is presented. It takes a continuum approach, fast enough to be implemented in the control law, and includes a model of the actuation system. The model was experimentally validated and the results are reported. In conclusion, the model presented can be used as a tool for mechanical design of continuum tendon-driven manipulators, for planning control strategies or as internal model in an embedded system. (paper)

  12. Measurements of the low-energy gamma-ray continuum emission from the Galactic Center direction

    International Nuclear Information System (INIS)

    Jardim, M.V.A.; Martin, I.M.; Jardim, J.O.D.

    1982-07-01

    The measurement of the gamma-ray continuum emission from the Galactic Center (GC) can provide us information about the physical processes taking place there at the site of emission. Using the data obtained with a balloon-borne gamma-ray telescope to measure gamma-rays in the energy interval between 0,3 and 3 MeV, which was launched on March 28, 1980 from Cachoeira Paulista (SP), we calculeted two points for the continuum spectrum in the range between 0,34 and 0,67 MeV. The points are related to the GC emission radiated in the longitude interval - 31 0 0 . The measurements are compatible with the observations in 1969 and 1972 by Haymes et alii and Johnson, respectively. The power law spectrum suggests that the main component for the gamma-ray continuum emission below 10 MeV is dominated by the bremsstrahlung due to relativistic electrons. (Author) [pt

  13. Perturbative matching of continuum and lattice quasi-distributions

    Directory of Open Access Journals (Sweden)

    Ishikawa Tomomi

    2018-01-01

    Full Text Available Matching of the quasi parton distribution functions between continuum and lattice is addressed using lattice perturbation theory specifically withWilson-type fermions. The matching is done for nonlocal quark bilinear operators with a straightWilson line in a spatial direction. We also investigate operator mixing in the renormalization and possible O(a operators for the nonlocal operators based on a symmetry argument on lattice.

  14. Un ejemplo de la progresión lectal en el continuum criollo: do en el criollo limonense

    OpenAIRE

    Herzfeld, Anita

    2013-01-01

    Muestra que la variación impulsada por un proceso de reestructuración continua del sistema original a lo largo del continuum criollo produce una serie de formas patentes que se diferencian gradualmente. El continuum criollo se divide en basilecto, mesolecto y acrolecto.

  15. Set theory and the continuum hypothesis

    CERN Document Server

    Cohen, Paul J

    2008-01-01

    This exploration of a notorious mathematical problem is the work of the man who discovered the solution. The independence of the continuum hypothesis is the focus of this study by Paul J. Cohen. It presents not only an accessible technical explanation of the author's landmark proof but also a fine introduction to mathematical logic. An emeritus professor of mathematics at Stanford University, Dr. Cohen won two of the most prestigious awards in mathematics: in 1964, he was awarded the American Mathematical Society's Bôcher Prize for analysis; and in 1966, he received the Fields Medal for Logic.

  16. On nonlocal modeling in continuum mechanics

    Directory of Open Access Journals (Sweden)

    Adam Martowicz

    2018-01-01

    Full Text Available The objective of the paper is to provide an overview of nonlocal formulations for models of elastic solids. The author presents the physical foundations for nonlocal theories of continuum mechanics, followed by various analytical and numerical techniques. The characteristics and range of practical applications for the presented approaches are discussed. The results of numerical simulations for the selected case studies are provided to demonstrate the properties of the described methods. The paper is illustrated with outcomes from peridynamic analyses. Fatigue and axial stretching were simulated to show the capabilities of the developed numerical tools.

  17. Strong Local-Nonlocal Coupling for Integrated Fracture Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silling, Stewart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seleson, Pablo D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gunzburger, Max [Florida State Univ., Tallahassee, FL (United States)

    2015-09-01

    Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for

  18. A continuum theory of edge dislocations

    Science.gov (United States)

    Berdichevsky, V. L.

    2017-09-01

    Continuum theory of dislocation aims to describe the behavior of large ensembles of dislocations. This task is far from completion, and, most likely, does not have a "universal solution", which is applicable to any dislocation ensemble. In this regards it is important to have guiding lines set by benchmark cases, where the transition from a discrete set of dislocations to a continuum description is made rigorously. Two such cases have been considered recently: equilibrium of dislocation walls and screw dislocations in beams. In this paper one more case is studied, equilibrium of a large set of 2D edge dislocations placed randomly in a 2D bounded region. The major characteristic of interest is energy of dislocation ensemble, because it determines the structure of continuum equations. The homogenized energy functional is obtained for the periodic dislocation ensembles with a random contents of the periodic cell. Parameters of the periodic structure can change slowly on distances of order of the size of periodic cells. The energy functional is obtained by the variational-asymptotic method. Equilibrium positions are local minima of energy. It is confirmed the earlier assertion that energy density of the system is the sum of elastic energy of averaged elastic strains and microstructure energy, which is elastic energy of the neutralized dislocation system, i.e. the dislocation system placed in a constant dislocation density field making the averaged dislocation density zero. The computation of energy is reduced to solution of a variational cell problem. This problem is solved analytically. The solution is used to investigate stability of simple dislocation arrays, i.e. arrays with one dislocation in the periodic cell. The relations obtained yield two outcomes: First, there is a state parameter of the system, dislocation polarization; averaged stresses affect only dislocation polarization and cannot change other characteristics of the system. Second, the structure of

  19. Continuum mechanics the birthplace of mathematical models

    CERN Document Server

    Allen, Myron B

    2015-01-01

    Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer.  This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe

  20. Continuum limit and improved action in lattice theories. Pt. 1

    International Nuclear Information System (INIS)

    Symanzik, K.

    1983-03-01

    Corrections to continuum theory results stemming from finite lattice-spacing can be diminished systematically by use of lattice actions that include also suitable irrelevant terms. We describe in detail the principles of such constructions at the example of PHI 4 theory. (orig.)