Strongly coupled band in 140Gd
International Nuclear Information System (INIS)
Falla-Sotelo, F.; Oliveira, J.R.B.; Rao, M.N.
2005-01-01
Several high-K states are known to exist in the mass 130-140 region. For the N=74 even-even isotopes, Kπ = 8 - isomers, with lifetimes ranging from ns to ms, are known in 128 Xe, 130 Ba, 132 Ce, 134 Nd, 136 Sm, and 138 Gd[. In 140 Gd, we have observed for the first time a band also based on an Iπ = 8 - state. This could be the first case of a Kπ = 8 - state observed in an N=76 even-even isotope. The systematics of the Kπ = 8 - isomeric states in N=74 isotopes has been studied by A.M. Bruce et al. These states decay towards the K = 0 ground state band, and the transitions are K-forbidden. The 140 Gd case presents strong similarities but also some significant differences with relation to the N=74 isotopes. We propose the same configuration but with larger deformation in 140 Gd
Strongly coupled band in {sup 140}Gd
Energy Technology Data Exchange (ETDEWEB)
Falla-Sotelo, F.; Oliveira, J.R.B.; Rao, M.N. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil)] (and others)
2005-07-01
Several high-K states are known to exist in the mass 130-140 region. For the N=74 even-even isotopes, K{pi} = 8{sup -} isomers, with lifetimes ranging from ns to ms, are known in {sup 128}Xe, {sup 130}Ba, {sup 132}Ce, {sup 134}Nd, {sup 136}Sm, and {sup 138}Gd[. In {sup 140}Gd, we have observed for the first time a band also based on an I{pi} = 8{sup -} state. This could be the first case of a K{pi} = 8{sup -} state observed in an N=76 even-even isotope. The systematics of the K{pi} = 8{sup -} isomeric states in N=74 isotopes has been studied by A.M. Bruce et al. These states decay towards the K = 0 ground state band, and the transitions are K-forbidden. The {sup 140}Gd case presents strong similarities but also some significant differences with relation to the N=74 isotopes. We propose the same configuration but with larger deformation in {sup 140}Gd.
Strongly coupled rotational band in ${}^{33}\mathrm{Mg}$
Energy Technology Data Exchange (ETDEWEB)
Richard, A. L.; Crawford, H. L.; Fallon, P.; Macchiavelli, A. O.; Bader, V. M.; Bazin, D.; Bowry, M.; Campbell, C. M.; Carpenter, M. P.; Clark, R. M.; Cromaz, M.; Gade, A.; Ideguchi, E.; Iwasaki, H.; Jones, M. D.; Langer, C.; Lee, I. Y.; Loelius, C.; Lunderberg, E.; Morse, C.; Rissanen, J.; Salathe, M.; Smalley, D.; Stroberg, S. R.; Weisshaar, D.; Whitmore, K.; Wiens, A.; Williams, S. J.; Wimmer, K.; Yamamato, T.
2017-07-01
The “Island of Inversion” at N~20 for the neon, sodium, and magnesium isotopes has long been an area of interest both experimentally and theoretically due to the subtle competition between 0p-0h and np-nh configurations leading to deformed shapes. However, the presence of rotational band structures, which are fingerprints of deformed shapes, have only recently been observed in this region. In this work, we report on a measurement of the low-lying level structure of 33Mg populated by a two-stage projectile fragmentation reaction and studied with GRETINA. The experimental level energies, ground state magnetic moment, intrinsic quadrupole moment, and γ-ray intensities show good agreement with the strong-coupling limit of a rotational model.
Strongly coupled rotational band in ${}^{33}\mathrm{Mg}$
Energy Technology Data Exchange (ETDEWEB)
Richard, A. L. [Ohio Univ., Athens, OH (United States). Inst. for Nuclear and Particle Physics; Crawford, H. L. [Ohio Univ., Athens, OH (United States). Inst. for Nuclear and Particle Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Fallon, P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Macchiavelli, A. O. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Bader, V. M. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Bazin, D. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab.; Bowry, M. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Campbell, C. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Carpenter, M. P. [Argonne National Lab. (ANL), Argonne, IL (United States). Physics Div.; Clark, R. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Cromaz, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Gade, A. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Ideguchi, E. [Osaka Univ. (Japan). RCNP; Iwasaki, H. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Jones, M. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Langer, C. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Lee, I. Y. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Loelius, C. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Lunderberg, E. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Morse, C. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Rissanen, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Salathe, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Smalley, D. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Stroberg, S. R. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Weisshaar, D. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Whitmore, K. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Wiens, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Nuclear Science Div.; Williams, S. J. [Michigan State Univ., East Lansing, MI (United States). National Superconducting Cyclotron Lab; Wimmer, K. [Univ. of Tokyo (Japan). Dept. of Physics; Yamamato, T. [Osaka Univ. (Japan). RCNP
2017-07-01
The “island of inversion” at N≈20 for the neon, sodium, and magnesium isotopes has long been an area of interest both experimentally and theoretically due to the subtle competition between 0p-0h and np-nh configurations leading to deformed shapes. However, the presence of rotational band structures, which are fingerprints of deformed shapes, have only recently been observed in this region. In this work, we report on a measurement of the low-lying level structure of Mg33 populated by a two-stage projectile fragmentation reaction and studied with the Gamma Ray Energy Tracking In-Beam Nuclear Array (GRETINA). The experimental level energies, ground-state magnetic moment, intrinsic quadrupole moment, and γ-ray intensities show good agreement with the strong-coupling limit of a rotational model.
Strong-coupling approximations
International Nuclear Information System (INIS)
Abbott, R.B.
1984-03-01
Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures
International Nuclear Information System (INIS)
Vretenar, D.; Paar, V.; Bonsignori, G.; Savoia, M.
1990-01-01
An extension of the interacting boson approximation model is proposed by allowing for two- and four-quasiparticle excitations out of the boson space. The formation of band patterns based on two- and four-quasiparticle states is investigated in the SU(3) limit of the model. For hole-type (particle-type) fermions coupled to the SU(3) prolate (oblate) core, it is shown that the algebraic K-representation basis, which is the analog of the strong-coupling basis of the geometrical model, provides an appropriate description of the low-lying two-quasiparticle bands. In the case of particle-type (hole-type) fermions coupled to the SU(3) prolate (oblate) core, a new algebraic decoupling basis is derived that is equivalent in the geometrical limit to Stephens' rotation-aligned basis. Comparing the wave functions that are obtained by diagonalization of the model Hamiltonian to the decoupling basis, several low-lying two-quasiparticle bands are identified. The effects of an interaction that conserves only the total nucleon number, mixing states with different number of fermions, are investigated in both the strong-coupling and decoupling limits. All calculations are performed for an SU(3) boson core and the h11/2 fermion orbital
Dvali, Gia
2009-01-01
We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...
Stirring Strongly Coupled Plasma
Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim
2009-01-01
We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...
Instabilities in strongly coupled plasmas
Kalman, G J
2003-01-01
The conventional Vlasov treatment of beam-plasma instabilities is inappropriate when the plasma is strongly coupled. In the strongly coupled liquid state, the strong correlations between the dust grains fundamentally affect the conditions for instability. In the crystalline state, the inherent anisotropy couples the longitudinal and transverse polarizations, and results in unstable excitations in both polarizations. We summarize analyses of resonant and non-resonant, as well as resistive instabilities. We consider both ion-dust streaming and dust beam-plasma instabilities. Strong coupling, in general, leads to an enhancement of the growth rates. In the crystalline phase, a resonant transverse instability can be excited.
International Nuclear Information System (INIS)
Aoki, Ken-ichi
1988-01-01
Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)
String dynamics at strong coupling
International Nuclear Information System (INIS)
Hull, C.M.
1996-01-01
The dynamics of superstring, supergravity and M-theories and their compactifications are probed by studying the various perturbation theories that emerge in the strong and weak-coupling limits for various directions in coupling constant space. The results support the picture of an underlying non-perturbative theory that, when expanded perturbatively in different coupling constants, gives different perturbation theories, which can be perturbative superstring theories or superparticle theories. The p-brane spectrum is considered in detail and a criterion found to establish which p-branes govern the strong-coupling dynamics. In many cases there are competing conjectures in the literature, and this analysis decides between them. In other cases, new results are found. The chiral 6-dimensional theory resulting from compactifying the type IIB string on K 3 is studied in detail and it is found that certain strong-coupling limits appear to give new theories, some of which hint at the possibility of a 12-dimensional origin. (orig.)
Strong coupling electroweak symmetry breaking
International Nuclear Information System (INIS)
Barklow, T.L.; Burdman, G.; Chivukula, R.S.
1997-04-01
The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models
Strong coupling electroweak symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics
1997-04-01
The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.
Large N baryons, strong coupling theory, quarks
International Nuclear Information System (INIS)
Sakita, B.
1984-01-01
It is shown that in QCD the large N limit is the same as the static strong coupling limit. By using the static strong coupling techniques some of the results of large N baryons are derived. The results are consistent with the large N SU(6) static quark model. (author)
Strong Coupling Corrections in Quantum Thermodynamics
Perarnau-Llobet, M.; Wilming, H.; Riera, A.; Gallego, R.; Eisert, J.
2018-03-01
Quantum systems strongly coupled to many-body systems equilibrate to the reduced state of a global thermal state, deviating from the local thermal state of the system as it occurs in the weak-coupling limit. Taking this insight as a starting point, we study the thermodynamics of systems strongly coupled to thermal baths. First, we provide strong-coupling corrections to the second law applicable to general systems in three of its different readings: As a statement of maximal extractable work, on heat dissipation, and bound to the Carnot efficiency. These corrections become relevant for small quantum systems and vanish in first order in the interaction strength. We then move to the question of power of heat engines, obtaining a bound on the power enhancement due to strong coupling. Our results are exemplified on the paradigmatic non-Markovian quantum Brownian motion.
Strong Coupling between Plasmons and Organic Semiconductors
Directory of Open Access Journals (Sweden)
Joel Bellessa
2014-05-01
Full Text Available In this paper we describe the properties of organic material in strong coupling with plasmon, mainly based on our work in this field of research. The strong coupling modifies the optical transitions of the structure, and occurs when the interaction between molecules and plasmon prevails on the damping of the system. We describe the dispersion relation of different plasmonic systems, delocalized and localized plasmon, coupled to aggregated dyes and the typical properties of these systems in strong coupling. The modification of the dye emission is also studied. In the second part, the effect of the microscopic structure of the organics, which can be seen as a disordered film, is described. As the different molecules couple to the same plasmon mode, an extended coherent state on several microns is observed.
Near-field strong coupling of single quantum dots.
Groß, Heiko; Hamm, Joachim M; Tufarelli, Tommaso; Hess, Ortwin; Hecht, Bert
2018-03-01
Strong coupling and the resultant mixing of light and matter states is an important asset for future quantum technologies. We demonstrate deterministic room temperature strong coupling of a mesoscopic colloidal quantum dot to a plasmonic nanoresonator at the apex of a scanning probe. Enormous Rabi splittings of up to 110 meV are accomplished by nanometer-precise positioning of the quantum dot with respect to the nanoresonator probe. We find that, in addition to a small mode volume of the nanoresonator, collective coherent coupling of quantum dot band-edge states and near-field proximity interaction are vital ingredients for the realization of near-field strong coupling of mesoscopic quantum dots. The broadband nature of the interaction paves the road toward ultrafast coherent manipulation of the coupled quantum dot-plasmon system under ambient conditions.
Strong-coupling theory of superconductivity
International Nuclear Information System (INIS)
Rainer, D.; Sauls, J.A.
1995-01-01
The electronic properties of correlated metals with a strong electron-phonon coupling may be understood in terms of a combination of Landau''s Fermi liquid theory and the strong-coupling theory of Migdal and Eliashberg. In these lecture notes we discuss the microscopic foundations of this phenomenological Fermi-liquid model of correlated, strong-coupling metals. We formulate the basic equations of the model, which are quasiclassical transport equations that describe both equilibrium and non-equilibrium phenomena for the normal and superconducting states of a metal. Our emphasis is on superconductors close to equilibrium, for which we derive the general linear response theory. As an application we calculate the dynamical conductivity of strong-coupling superconductors. (author)
Nuclear physics from strong coupling QCD
Fromm, Michael
2009-01-01
The strong coupling limit (beta_gauge = 0) of QCD offers a number of remarkable research possibilities, of course at the price of large lattice artifacts. Here, we determine the complete phase diagram as a function of temperature T and baryon chemical potential mu_B, for one flavor of staggered fermions in the chiral limit, with emphasis on the determination of a tricritical point and on the T ~ 0 transition to nuclear matter. The latter is known to happen for mu_B substantially below the baryon mass, indicating strong nuclear interactions in QCD at infinite gauge coupling. This leads us to studying the properties of nuclear matter from first principles. We determine the nucleon-nucleon potential in the strong coupling limit, as well as masses m_A of nuclei as a function of their atomic number A. Finally, we clarify the origin of nuclear interactions at strong coupling, which turns out to be a steric effect.
Circuit electromechanics with single photon strong coupling
Energy Technology Data Exchange (ETDEWEB)
Xue, Zheng-Yuan, E-mail: zyxue@scnu.edu.cn; Yang, Li-Na [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Zhou, Jian, E-mail: jianzhou8627@163.com [Department of Electronic Communication Engineering, Anhui Xinhua University, Hefei 230088 (China); Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)
2015-07-13
In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.
Coherent Vortices in Strongly Coupled Liquids
International Nuclear Information System (INIS)
Ashwin, J.; Ganesh, R.
2011-01-01
Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using ''first principles'' molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.
Coherent Vortices in Strongly Coupled Liquids
Ashwin, J.; Ganesh, R.
2011-04-01
Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using “first principles” molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.
Phase transition from strong-coupling expansion
International Nuclear Information System (INIS)
Polonyi, J.; Szlachanyi, K.
1982-01-01
Starting with quarkless SU(2) lattice gauge theory and using the strong-coupling expansion we calculate the action of the effective field theory which corresponds to the thermal Wilson loop. This effective action makes evident that the quark liberating phase transition traces back to the spontaneous breaking of a global Z(2) symmetry group. It furthermore describes both phases qualitatively. (orig.)
Chaos desynchronization in strongly coupled systems
International Nuclear Information System (INIS)
Wu Ye; Liu Weiqing; Xiao, Jinghua; Zhan Meng
2007-01-01
The dynamics of chaos desynchronization in strongly coupled oscillator systems is studied. We find a new bifurcation from synchronous chaotic state, chaotic short wave bifurcation, i.e. a chaotic desynchronization attractor is new born in the systems due to chaos desynchronization. In comparison with the usual periodic short wave bifurcation, very rich but distinct phenomena are observed
Strong-coupling diffusion in relativistic systems
Indian Academy of Sciences (India)
hanced values needed to interpret the data at higher energies point towards the importance of strong-coupling effects. ... when all secondary particles have been created. For short times in the initial phase ... It is decisive for a proper representation of the available data for relativistic heavy-ion collisions at and beyond SPS.
Strongly coupled semidirect mediation of supersymmetry breaking
International Nuclear Information System (INIS)
Ibe, M.; Izawa, K.-I.; Nakai, Y.
2009-01-01
Strongly coupled semidirect gauge mediation models of supersymmetry breaking through massive mediators with standard-model charges are investigated by means of composite degrees of freedom. Sizable mediation is realized to generate the standard-model gaugino masses for a small mediator mass without breaking the standard-model symmetries.
Patterns of strong coupling for LHC searches
Energy Technology Data Exchange (ETDEWEB)
Liu, Da [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing, People’s Republic of (China); Theoretical Particle Physics Laboratory, Institute of Physics,EPFL, CH-1015 Lausanne (Switzerland); Pomarol, Alex [CERN, Theoretical Physics Department,1211 Geneva 23 (Switzerland); Dept. de Física and IFAE-BIST,Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Rattazzi, Riccardo [Theoretical Particle Physics Laboratory, Institute of Physics,EPFL, CH-1015 Lausanne (Switzerland); Riva, Francesco [CERN, Theoretical Physics Department,1211 Geneva 23 (Switzerland)
2016-11-23
Even though the Standard Model (SM) is weakly coupled at the Fermi scale, a new strong dynamics involving its degrees of freedom may conceivably lurk at slightly higher energies, in the multi TeV range. Approximate symmetries provide a structurally robust context where, within the low energy description, the dimensionless SM couplings are weak, while the new strong dynamics manifests itself exclusively through higher-derivative interactions. We present an exhaustive classification of such scenarios in the form of effective field theories, paying special attention to new classes of models where the strong dynamics involves, along with the Higgs boson, the SM gauge bosons and/or the fermions. The IR softness of the new dynamics suppresses its effects at LEP energies, but deviations are in principle detectable at the LHC, even at energies below the threshold for production of new states. We believe our construction provides the so far unique structurally robust context where to motivate several LHC searches in Higgs physics, diboson production, or WW scattering. Perhaps surprisingly, the interplay between weak coupling, strong coupling and derivatives, which is controlled by symmetries, can override the naive expansion in operator dimension, providing instances where dimension-8 dominates dimension-6, well within the domain of validity of the low energy effective theory. This result reveals the limitations of an analysis that is both ambitiously general and restricted to dimension-6 operators.
Qubit absorption refrigerator at strong coupling
Mu, Anqi; Agarwalla, Bijay Kumar; Schaller, Gernot; Segal, Dvira
2017-12-01
We demonstrate that a quantum absorption refrigerator (QAR) can be realized from the smallest quantum system, a qubit, by coupling it in a non-additive (strong) manner to three heat baths. This function is un-attainable for the qubit model under the weak system-bath coupling limit, when the dissipation is additive. In an optimal design, the reservoirs are engineered and characterized by a single frequency component. We then obtain closed expressions for the cooling window and refrigeration efficiency, as well as bounds for the maximal cooling efficiency and the efficiency at maximal power. Our results agree with macroscopic designs and with three-level models for QARs, which are based on the weak system-bath coupling assumption. Beyond the optimal limit, we show with analytical calculations and numerical simulations that the cooling efficiency varies in a non-universal manner with model parameters. Our work demonstrates that strongly-coupled quantum machines can exhibit function that is un-attainable under the weak system-bath coupling assumption.
Bright branes for strongly coupled plasmas
International Nuclear Information System (INIS)
Mateos, David; Patino, Leonardo
2007-01-01
We use holographic techniques to study photon production in a class of finite temperature, strongly coupled, large-N c SU(N c ) quark-gluon plasmas with N f c quark flavours. Our results are valid to leading order in the electromagnetic coupling constant but non-perturbatively in the SU(N c ) interactions. The spectral function of electromagnetic currents and other related observables exhibit an interesting structure as a function of the photon frequency and the quark mass. We discuss possible implications for heavy ion collision experiments
Strong spin-photon coupling in silicon
Samkharadze, N.; Zheng, G.; Kalhor, N.; Brousse, D.; Sammak, A.; Mendes, U. C.; Blais, A.; Scappucci, G.; Vandersypen, L. M. K.
2018-03-01
Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.
Center vortices at strong couplings and all couplings
International Nuclear Information System (INIS)
Greensite, J.
2001-01-01
Motivations for the center vortex theory of confinement are discussed. In particular, it is noted that the abelian dual Meissner effect, which is the signature of dual superconductivity, cannot adequately describe the confining force at large distance scales. A long-range effective action is derived from strong-coupling lattice gauge theory in D=3 dimensions, and it is shown that center vortices emerge as the stable saddlepoints of this action. Thus, in the case of strong couplings, the vortex picture is arrived at analytically. I also respond briefly to a recent criticism regarding maximal center gauge. (author)
Strong coupling analogue of the Born series
International Nuclear Information System (INIS)
Dolinszky, T.
1989-10-01
In a given partial wave, the strength of the centrifugal term to be incorporated into the WKBA solutions in different spatial regions can be adjusted so as to make the first order wave functions everywhere smooth and, in strong coupling, exactly reproduce Quantum Mechanics throughout the space. The relevant higher order approximations supply an absolute convergent series expansion of the exact scattering state. (author) 4 refs.; 2 figs.; 2 tabs
Holographic gauge mediation via strongly coupled messengers
International Nuclear Information System (INIS)
McGuirk, Paul; Shiu, Gary; Sumitomo, Yoske
2010-01-01
We consider a relative of semidirect gauge mediation where the hidden sector exists at large 't Hooft coupling. Such scenarios can be difficult to describe using perturbative field theory methods but may fall into the class of holographic gauge mediation scenarios, meaning that they are amenable to the techniques of gauge/gravity duality. We use a recently found gravity solution to examine one such case, where the hidden sector is a cascading gauge theory resulting in a confinement scale not much smaller than the messenger mass. In the original construction of holographic gauge mediation, as in other examples of semidirect gauge mediation at strong coupling, the primary contributions to visible sector soft terms come from weakly coupled messenger mesons. In contrast to these examples, we describe the dual of a gauge theory where there are significant contributions from scales in which the strongly coupled messenger quarks are the effective degrees of freedom. In this regime, the visible sector gaugino mass can be calculated entirely from holography.
Surface correlation effects in two-band strongly correlated slabs.
Esfahani, D Nasr; Covaci, L; Peeters, F M
2014-02-19
Using an extension of the Gutzwiller approximation for an inhomogeneous system, we study the two-band Hubbard model with unequal band widths for a slab geometry. The aim is to investigate the mutual effect of individual bands on the spatial distribution of quasi-particle weight and charge density, especially near the surface of the slab. The main effect of the difference in band width is the presence of two different length scales corresponding to the quasi-particle profile of each band. This is enhanced in the vicinity of the critical interaction of the narrow band where an orbitally selective Mott transition occurs and a surface dead layer forms for the narrow band. For the doped case, two different regimes of charge transfer between the surface and the bulk of the slab are revealed. The charge transfer from surface/center to center/surface depends on both the doping level and the average relative charge accumulated in each band. Such effects could also be of importance when describing the accumulation of charges at the interface between structures made of multi-band strongly correlated materials.
Strongly coupled models at the LHC
International Nuclear Information System (INIS)
Vries, Maikel de
2014-10-01
In this thesis strongly coupled models where the Higgs boson is composite are discussed. These models provide an explanation for the origin of electroweak symmetry breaking including a solution for the hierarchy problem. Strongly coupled models provide an alternative to the weakly coupled supersymmetric extensions of the Standard Model and lead to different and interesting phenomenology at the Large Hadron Collider (LHC). This thesis discusses two particular strongly coupled models, a composite Higgs model with partial compositeness and the Littlest Higgs model with T-parity - a composite model with collective symmetry breaking. The phenomenology relevant for the LHC is covered and the applicability of effective operators for these types of strongly coupled models is explored. First, a composite Higgs model with partial compositeness is discussed. In this model right-handed light quarks could be significantly composite, yet compatible with experimental searches at the LHC and precision tests on Standard Model couplings. In these scenarios, which are motivated by flavour physics, large cross sections for the production of new resonances coupling to light quarks are expected. Experimental signatures of right-handed compositeness at the LHC are studied, and constraints on the parameter space of these models are derived using recent results by ATLAS and CMS. Furthermore, dedicated searches for multi-jet signals at the LHC are proposed which could significantly improve the sensitivity to signatures of right-handed compositeness. The Littlest Higgs model with T-parity, providing an attractive solution to the fine-tuning problem, is discussed next. This solution is only natural if its intrinsic symmetry breaking scale f is relatively close to the electroweak scale. The constraints from the latest results of the 8 TeV run at the LHC are examined. The model's parameter space is being excluded based on a combination of electroweak precision observables, Higgs precision
The Dark Side of Strongly Coupled Theories
DEFF Research Database (Denmark)
Kouvaris, Christoforos
2008-01-01
We investigate the constraints of dark matter search experiments on the different candidates emerging from the minimal quasi-conformal strong coupling theory with fermions in the adjoint representation. For one candidate, the current limits of CDMS exclude a tiny window of masses around 120 GeV. We...... also investigate under what circumstances the newly proposed candidate composed of a -2 negatively charged particle and a $^4He^{+2}$ can explain the discrepancy between the results of the CDMS and DAMA experiments. We found that this type of dark matter should give negative results in CDMS, while...
Strong coupling transmutation of Yukawa theory
International Nuclear Information System (INIS)
Chiang, C.C.; Chiu, C.B.; Sudarshan, E.C.G.
1981-01-01
In the strong coupling limit, it is shown that the Yukawa-type theory can be made to undergo a transmutation into an attractive separable potential theory, provided a single state is removed from the spectrum in the lowest nontrivial sector and the states at infinity which include a continuum in the next sector. If these states are not removed, the two theories are distinct. It is suggested that the full equivalence and the renormalization of four-fermion theories need further examination. (orig.)
Baryon bags in strong coupling QCD
Gattringer, Christof
2018-04-01
We discuss lattice QCD with one flavor of staggered fermions and show that in the path integral the baryon contributions can be fully separated from quark and diquark contributions. The baryonic degrees of freedom (d.o.f.) are independent of the gauge field, and the corresponding free fermion action describes the baryons through the joint propagation of three quarks. The nonbaryonic dynamics is described by quark and diquark terms that couple to the gauge field. When evaluating the quark and diquark contributions in the strong coupling limit, the partition function completely factorizes into baryon bags and a complementary domain. Baryon bags are regions in space-time where the dynamics is described by a single free fermion made out of three quarks propagating coherently as a baryon. Outside the baryon bags, the relevant d.o.f. are monomers and dimers for quarks and diquarks. The partition sum is a sum over all baryon bag configurations, and for each bag, a free fermion determinant appears as a weight factor.
Jets in a strongly coupled anisotropic plasma
Energy Technology Data Exchange (ETDEWEB)
Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Faculty of Physics, Shahrood (Iran, Islamic Republic of); University of Southampton, STAG Research Centre Physics and Astronomy, Southampton (United Kingdom); Morad, Razieh [University of Cape Town, Department of Physics, Rondebosch (South Africa)
2018-01-15
In this paper, we study the dynamics of the light quark jet moving through the static, strongly coupled N = 4, anisotropic plasma with and without charge. The light quark is presented by a 2-parameters point-like initial condition falling string in the context of the AdS/CFT. We calculate the stopping distance of the light quark in the anisotropic medium and compare it with its isotropic value. We study the dependency of the stopping distance to the both string initial conditions and background parameters such as anisotropy parameter or chemical potential. Although the typical behavior of the string in the anisotropic medium is similar to the one in the isotropic AdS-Sch background, the string falls faster to the horizon depending on the direction of moving. Particularly, the enhancement of quenching is larger in the beam direction. We find that the suppression of stopping distance is more prominent when the anisotropic plasma have the same temperature as the isotropic plasma. (orig.)
Kinetic theory for strongly coupled Coulomb systems
Dufty, James; Wrighton, Jeffrey
2018-01-01
The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.
Conflicting Coupling of Unpaired Nucleons and the Structure of Collective Bands in Odd-Odd Nuclei
International Nuclear Information System (INIS)
Levon, A.I.; Pasternak, A.A.
2011-01-01
The conflicting coupling of unpaired nucleons in odd-odd nuclei is discussed. A very simple explanation is suggested for the damping of the energy spacing of the lowest levels in the rotational bands in odd-odd nuclei with the 'conflicting' coupling of an odd proton and an odd neutron comparative to those of the bands based on the state of a strongly coupled particle in the neighboring odd nucleus entering the 'conflicting' configuration.
Optimal and Miniaturized Strongly Coupled Magnetic Resonant Systems
Hu, Hao
Wireless power transfer (WPT) technologies for communication and recharging devices have recently attracted significant research attention. Conventional WPT systems based either on far-field or near-field coupling cannot provide simultaneously high efficiency and long transfer range. The Strongly Coupled Magnetic Resonance (SCMR) method was introduced recently, and it offers the possibility of transferring power with high efficiency over longer distances. Previous SCMR research has only focused on how to improve its efficiency and range through different methods. However, the study of optimal and miniaturized designs has been limited. In addition, no multiband and broadband SCMR WPT systems have been developed and traditional SCMR systems exhibit narrowband efficiency thereby imposing strict limitations on simultaneous wireless transmission of information and power, which is important for battery-less sensors. Therefore, new SCMR systems that are optimally designed and miniaturized in size will significantly enhance various technologies in many applications. The optimal and miniaturized SCMR systems are studied here. First, analytical models of the Conformal SCMR (CSCMR) system and thorough analysis and design methodology have been presented. This analysis specifically leads to the identification of the optimal design parameters, and predicts the performance of the designed CSCMR system. Second, optimal multiband and broadband CSCMR systems are designed. Two-band, three-band, and four-band CSCMR systems are designed and validated using simulations and measurements. Novel broadband CSCMR systems are also analyzed, designed, simulated and measured. The proposed broadband CSCMR system achieved more than 7 times larger bandwidth compared to the traditional SCMR system at the same frequency. Miniaturization methods of SCMR systems are also explored. Specifically, methods that use printable CSCMR with large capacitors, novel topologies including meandered, SRRs, and
Compensating strong coupling with large charge
Energy Technology Data Exchange (ETDEWEB)
Alvarez-Gaume, Luis [Theory Department - CERN,CH-1211 Geneva 23 (Switzerland); Simons Center for Geometry and Physics, State University of New York,Stony Brook, NY-11794-3636 (United States); Loukas, Orestis; Orlando, Domenico; Reffert, Susanne [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, University of Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland)
2017-04-11
We study some (conformal) field theories with global symmetries in the sector where the value of the global charge Q is large. We find (as expected) that the low energy excitations of this sector are described by the general form of Goldstone’s theorem in the non-relativistic regime. We also derive the unexpected result, first presented in https://www.doi.org/10.1007/JHEP12(2015)071, that the effective field theory describing such sector of fixed Q contains effective couplings λ{sub eff}∼λ{sup b}/Q{sup a}, where λ is the original coupling. Hence, large charge leads to weak coupling. In the last section of the paper we present an outline of how to compute anomalous dimensions of the O(n) model in this limit.
Compensating strong coupling with large charge
Alvarez-Gaume, Luis; Orlando, Domenico; Reffert, Susanne
2017-04-11
We study (conformal) field theories with global symmetries in the sector where the value of the global charge $Q$ is large. We find (as expected) that the low energy excitations of this sector are described by the general form of Goldstone's theorem in the non-relativistic regime. We also derive the unexpected result, first presented in [Hellerman:2015], that the effective field theory describing such sector of fixed $Q$ contains effective couplings $\\lambda_{\\text{eff}}\\sim \\lambda^b /Q^{a}$, where $\\lambda$ is the original coupling. Hence, large charge leads to weak coupling. In the last section of the paper we present an outline of how to compute anomalous dimensions in this limit.
Double perovskites with strong spin-orbit coupling
Cook, Ashley M.
We first present theoretical analysis of powder inelastic neutron scattering experiments in Ba2FeReO6 performed by our experimental collaborators. Ba2FeReO6, a member of the double perovskite family of materials, exhibits half-metallic behavior and high Curie temperatures Tc, making it of interest for spintronics applications. To interpret the experimental data, we develop a local moment model, which incorporates the interaction of Fe spins with spin-orbital locked magnetic moments on Re, and show that it captures the experimental observations. We then develop a tight-binding model of the double perovskite Ba 2FeReO6, a room temperature ferrimagnet with correlated and spin-orbit coupled Re t2g electrons moving in the background of Fe moments stabilized by Hund's coupling. We show that for such 3d/5d double perovskites, strong correlations on the 5d-element (Re) are essential in driving a half-metallic ground state. Incorporating both strong spin-orbit coupling and the Hubbard repulsion on Re leads to a band structure consistent with ab initio calculations. The uncovered interplay of strong correlations and spin-orbit coupling lends partial support to our previous work, which used a local moment description to capture the spin wave dispersion found in neutron scattering measurements. We then adapt this tight-binding model to study {111}-grown bilayers of half-metallic double perovskites such as Sr2FeMoO6. The combination of spin-orbit coupling, inter-orbital hybridization and symmetry-allowed trigonal distortion leads to a rich phase diagram with tunable ferromagnetic order, topological C= +/-1, +/-2 Chern bands, and a C = +/-2 quantum anomalous Hall insulator regime. We have also performed theoretical analysis of inelastic neutron scattering (INS) experiments to investigate the magnetic excitations in the weakly distorted face-centered-cubic (fcc) iridate double perovskites La2ZnIrO 6 and La2MgIrO6. Models with dominant Kitaev exchange seem to most naturally
Process-independent strong running coupling
International Nuclear Information System (INIS)
Binosi, Daniele; Mezrag, Cedric; Papavassiliou, Joannis; Roberts, Craig D.; Rodriguez-Quintero, Jose
2017-01-01
Here, we unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. As a result, this reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann–Low effective charge.
Electromagnetic modes in cold magnetized strongly coupled plasmas
Tkachenko, I. M.; Ortner, J.; Rylyuk, V. M.
1999-01-01
The spectrum of electromagnetic waves propagating in a strongly coupled magnetized fully ionized hydrogen plasma is found. The ion motion and damping being neglected, the influence of the Coulomb coupling on the electromagnetic spectrum is analyzed.
Transfer coefficients in ultracold strongly coupled plasma
Bobrov, A. A.; Vorob'ev, V. S.; Zelener, B. V.
2018-03-01
We use both analytical and molecular dynamic methods for electron transfer coefficients in an ultracold plasma when its temperature is small and the coupling parameter characterizing the interaction of electrons and ions exceeds unity. For these conditions, we use the approach of nearest neighbor to determine the average electron (ion) diffusion coefficient and to calculate other electron transfer coefficients (viscosity and electrical and thermal conductivities). Molecular dynamics simulations produce electronic and ionic diffusion coefficients, confirming the reliability of these results. The results compare favorably with experimental and numerical data from earlier studies.
Strong coupling and quasispinor representations of the SU(3) rotor model
International Nuclear Information System (INIS)
Rowe, D.J.; De Guise, H.
1992-01-01
We define a coupling scheme, in close parallel to the coupling scheme of Elliott and Wilsdon, in which nucleonic intrinsic spins are strongly coupled to SU(3) spatial wave functions. The scheme is proposed for shell-model calculations in strongly deformed nuclei and for semimicroscopic analyses of rotations in odd-mass nuclei and other nuclei for which the spin-orbit interaction is believed to play an important role. The coupling scheme extends the domain of utility of the SU(3) model, and the symplectic model, to heavy nuclei and odd-mass nuclei. It is based on the observation that the low angular-momentum states of an SU(3) irrep have properties that mimic those of a corresponding irrep of the rotor algebra. Thus, we show that strongly coupled spin-SU(3) bands behave like strongly coupled rotor bands with properties that approach those of irreducible representations of the rigid-rotor algebra in the limit of large SU(3) quantum numbers. Moreover, we determine that the low angular-momentum states of a strongly coupled band of states of half-odd integer angular momentum behave to a high degree of accuracy as if they belonged to an SU(3) irrep. These are the quasispinor SU(3) irreps referred to in the title. (orig.)
Designing asymmetric multiferroics with strong magnetoelectric coupling
Lu, Xuezeng; Xiang, Hongjun; Rondinelli, James; Materials Theory; Design Group Team
2015-03-01
Multiferroics offer exciting opportunities for electric-field control of magnetism. Single-phase multiferroics suitable for such applications at room temperature need much more study. Here, we propose the concept of an alternative type of multiferroics, namely, the ``asymmetric multiferroic.'' In asymmetric multiferroics, two locally stable ferroelectric states are not symmetrically equivalent, leading to different magnetic properties between these two states. Furthermore, we predict from first principles that a Fe-Cr-Mo superlattice with the LiNbO3-type structure is such an asymmetric multiferroic. The strong ferrimagnetism, high ferroelectric polarization, and significant dependence of the magnetic transition temperature on polarization make this asymmetric multiferroic an ideal candidate for realizing electric-field control of magnetism at room temperature. Our study suggests that the asymmetric multiferroic may provide an alternative playground for voltage control of magnetism and find its applications in spintronics and quantum computing.
Optical model with multiple band couplings using soft rotator structure
Martyanov, Dmitry; Soukhovitskii, Efrem; Capote, Roberto; Quesada, Jose Manuel; Chiba, Satoshi
2017-09-01
A new dispersive coupled-channel optical model (DCCOM) is derived that describes nucleon scattering on 238U and 232Th targets using a soft-rotator-model (SRM) description of the collective levels of the target nucleus. SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate coupling matrix elements of the generalized optical model. Five rotational bands are coupled: the ground-state band, β-, γ-, non-axial- bands, and a negative parity band. Such coupling scheme includes almost all levels below 1.2 MeV of excitation energy of targets. The "effective" deformations that define inter-band couplings are derived from SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a monopolar deformed potential leading to additional couplings between rotational bands. The present DCCOM describes the total cross section differences between 238U and 232Th targets within experimental uncertainty from 50 keV up to 200 MeV of neutron incident energy. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus (CN) formation cross sections, which is significantly different from the one calculated with rigid-rotor potentials with any number of coupled levels.
Phenomenology of strongly coupled chiral gauge theories
International Nuclear Information System (INIS)
Bai, Yang; Berger, Joshua; Osborne, James; Stefanek, Ben A.
2016-01-01
A sector with QCD-like strong dynamics is common in models of non-standard physics. Such a model could be accessible in LHC searches if both confinement and big-quarks charged under the confining group are at the TeV scale. Big-quark masses at this scale can be explained if the new fermions are chiral under a new U(1) ′ gauge symmetry such that their bare masses are related to the U(1) ′ -breaking and new confinement scales. Here we present a study of a minimal GUT-motivated and gauge anomaly-free model with implications for the LHC Run 2 searches. We find that the first signatures of such models could appear as two gauge boson resonances. The chiral nature of the model could be confirmed by observation of a Z ′ γ resonance, where the Z ′ naturally has a large leptonic branching ratio because of its kinetic mixing with the hypercharge gauge boson.
Strongly correlated electrons on two coupled chains
International Nuclear Information System (INIS)
Weihong, Z.; Oitmaa, J.; Hamer, C.J.
2000-01-01
Full text: The discovery of materials containing S = 1/2 ions which form a 2-leg ladder structure has led to much current research on ladder systems. Pure spin ladders show an unexpected difference between odd-legged ladders (including the single chain) which are gapless with long-range correlations and even-legged ladders which have a spin gap and short range correlations. Even more interesting behaviour occurs when these systems are doped, creating a system of strongly correlated mobile holes, as in the cuprate superconductors. The simplest models in this context are the Hubbard model and the t-J model. Considerable work has been reported on both of these models, using both numerical calculations and approximate analytic theories. We have used series expansion methods to study both of these systems. Our results, in some cases, confirm those of other approaches. In other cases we are able to probe regions of the phase diagram inaccessible to other methods, or to obtain results of increased precision. In this paper we focus on:- 1. The energy and dispersion relation of 1-hole states. 2.The existence of a 2-hole bound state and its energy and dispersion. 3. Spin and charge gaps and the question of phase separation
Dynamics of symmetry breaking in strongly coupled QED
International Nuclear Information System (INIS)
Bardeen, W.A.
1988-10-01
I review the dynamical structure of strong coupled QED in the quenched planar limit. The symmetry structure of this theory is examined with reference to the nature of both chiral and scale symmetry breaking. The renormalization structure of the strong coupled phase is analysed. The compatibility of spontaneous scale and chiral symmetry breaking is studied using effective lagrangian methods. 14 refs., 3 figs
Excited hexagon Wilson loops for strongly coupled N=4 SYM
Energy Technology Data Exchange (ETDEWEB)
Bartels, J.; Kotanski, J. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Schomerus, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); British Columbia Univ., Vancouver, BC (Canada). Dept. of Physics and Astronomy
2010-10-15
This work is devoted to the six-gluon scattering amplitude in strongly coupled N=4 supersymmetric Yang-Mills theory. At weak coupling, an appropriate high energy limit of the so-called remainder function, i.e. of the deviation from the BDS formula, may be understood in terms of the lowest eigenvalue of the BFKL hamiltonian. According to Alday et al., amplitudes in the strongly coupled theory can be constructed through an auxiliary 1-dimensional quantum system. We argue that certain excitations of this quantum system determine the Regge limit of the remainder function at strong coupling and we compute its precise value. (orig.)
Shear viscosities of photons in strongly coupled plasmas
Directory of Open Access Journals (Sweden)
Di-Lun Yang
2016-09-01
Full Text Available We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP at weak coupling and N=4 super Yang–Mills plasma (SYMP at both strong and weak couplings. We find that the shear viscosity due to the photon–parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.
Nonlinear charge reduction effect in strongly coupled plasmas
International Nuclear Information System (INIS)
Sarmah, D; Tessarotto, M; Salimullah, M
2006-01-01
The charge reduction effect, produced by the nonlinear Debye screening of high-Z charges occurring in strongly coupled plasmas, is investigated. An analytic asymptotic expression is obtained for the charge reduction factor (f c ) which determines the Debye-Hueckel potential generated by a charged test particle. Its relevant parametric dependencies are analysed and shown to predict a strong charge reduction effect in strongly coupled plasmas
The Mott transition in the strong coupling perturbation theory
International Nuclear Information System (INIS)
Sherman, A.
2015-01-01
Using the strong coupling diagram technique a self-consistent equation for the electron Green's function is derived for the repulsive Hubbard model. Terms of two lowest orders of the ratio of the bandwidth Δ to the Hubbard repulsion U are taken into account in the irreducible part of the Larkin equation. The obtained equation is shown to retain causality and reduces to Green's function of uncorrelated electrons in the limit U→0. Calculations were performed for the semi-elliptical initial band. It is shown that the approximation describes the Mott transition, which occurs at U c =√(3)Δ/2. This value coincides with that obtained in the Hubbard-III approximation. At half-filling, for 0U c the Mott gap disappears
The Mott transition in the strong coupling perturbation theory
Sherman, A.
2015-01-01
Using the strong coupling diagram technique a self-consistent equation for the electron Green's function is derived for the repulsive Hubbard model. Terms of two lowest orders of the ratio of the bandwidth Δ to the Hubbard repulsion U are taken into account in the irreducible part of the Larkin equation. The obtained equation is shown to retain causality and reduces to Green's function of uncorrelated electrons in the limit U → 0. Calculations were performed for the semi-elliptical initial band. It is shown that the approximation describes the Mott transition, which occurs at Uc =√{ 3 } Δ / 2. This value coincides with that obtained in the Hubbard-III approximation. At half-filling, for 0 self-energy is nonzero at the Fermi level, which indicates that the obtained solution is not a Fermi liquid. At small deviations from half-filling the density of states shifts along the frequency axis without perceptible changes in its shape. For larger deviations the density of states is modified: it is redistributed in favor of the subband, in which the Fermi level is located, and for U >Uc the Mott gap disappears.
Mixed fermion-photon condensate in strongly coupled quantum electrodynamics
International Nuclear Information System (INIS)
Gusynin, V.P.; Kushnir, V.A.
1989-01-01
The existence of a new mixed fermion-photon condensate breaking chiral symmetry in strongly coupled phase of quantum electrodynamics is shown. An analytical expression for the renormalized condensate is obtained. 20 refs.; 2 figs
The Cornwall-Norton model in the strong coupling regime
International Nuclear Information System (INIS)
Natale, A.A.
1991-01-01
The Cornwall-Norton model is studied in the strong coupling regime. It is shown that the fermionic self-energy at large momenta behaves as Σ(p) ∼ (m 2 /p) ln (p/m). We verify that in the strong coupling phase the dynamically generated masses of gauge and scalar bosons are of the same order, and the essential features of the model remain intact. (author)
The strong coupling from tau decays without prejudice
International Nuclear Information System (INIS)
Boito, Diogo; Golterman, Maarten; Jamin, Matthias; Mahdavi, Andisheh; Maltman, Kim; Osborne, James; Peris, Santiago
2014-01-01
We review our recent determination of the strong coupling α s from the OPAL data for non-strange hadronic tau decays. We find that α s (m τ 2 )=0.325±0.018 using fixed-order perturbation theory, and α s (m τ 2 )=0.347±0.025 using contour-improved perturbation theory. At present, these values supersede any earlier determinations of the strong coupling from hadronic tau decays, including those from ALEPH data
Collisional Thermalization in Strongly Coupled Ultracold Neutral Plasmas
2017-01-25
calculated collisions rates in a strongly coupled plasma. From Bannasch et al., PRL 109, 185008 (2012). DISTRIBUTION A: Distribution approved for public...applicability to other plasmas.) We use a Green- Kubo relation to extract the diffusion constant from our measurements of the relaxation towards...strongly coupled systems. Our measurements (data symbols) agree with numerical calculations (solid lines) from J. Daligault, PRL 108, 225004 (2012
Equilibration and hydrodynamics at strong and weak coupling
Schee, Wilke van der
2017-01-01
We give an updated overview of both weak and strong coupling methods to describe the approach to a plasma described by viscous hydrodynamics, a process now called hydrodynamisation. At weak coupling the very first moments after a heavy ion collision is described by the colour-glass condensate
Strong overtones and combination bands in ultraviolet resonance Raman spectroscopy
Efremov, E.V.; Ariese, F.; Mank, A.J.G.; Gooijer, C.
2006-01-01
Ultraviolet resonance Raman spectroscopy is carried out using a continuous wave frequency-doubled argon ion laser operated at 229, 244, and 257 nm in order to characterize the overtones and combination bands for several classes of organic compounds in liquid solutions. Contrary to what is generally
Hu, Xue-Rong; Zheng, Ji-Ming; Ren, Zhao-Yu
2018-04-01
Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.
QCD and strongly coupled gauge theories: challenges and perspectives
Brambilla, N.; Eidelman, S.; Foka, P.; Gardner, S.; Kronfeld, A. S.; Alford, M. G.; Alkofer, R.; Butenschoen, M.; Cohen, T. D.; Erdmenger, J.; Fabbietti, L.; Faber, M.; Goity, J. L.; Ketzer, B.; Lin, H. W.; Llanes-Estrada, F. J.; Meyer, H.; Pakhlov, P.; Pallante, E.; Polikarpov, M. I.; Sazdjian, H.; Schmitt, A.; Snow, W. M.; Vairo, A.; Vogt, R.; Vuorinen, A.; Wittig, H.; Arnold, P.; Christakoglou, P.; Nezza, P. Di; Fodor, Z.; Tormo, X. Garcia i; Höllwieser, R.; Kalwait, A.; Keane, D.; Kiritsis, E.; Mischke, A.; Mizuk, R.; Odyniec, G.; Papadodimas, K.; Pich, A.; Pittau, R.; Qiu, Jian-Wei; Ricciardi, G.; Salgado, C. A.; Schwenzer, K.; Stefanis, N. G.; Hippel, G. M. von; Zakharov, V. I .
2014-01-01
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly-coupled, complex
Strong Carrier–Phonon Coupling in Lead Halide Perovskite Nanocrystals
2017-01-01
We highlight the importance of carrier–phonon coupling in inorganic lead halide perovskite nanocrystals. The low-temperature photoluminescence (PL) spectrum of CsPbBr3 has been investigated under a nonresonant and a nonstandard, quasi-resonant excitation scheme, and phonon replicas of the main PL band have been identified as due to the Fröhlich interaction. The energy of longitudinal optical (LO) phonons has been determined from the separation of the zero phonon band and phonon replicas. We reason that the observed LO phonon coupling can only be related to an orthorhombically distorted crystal structure of the perovskite nanocrystals. Additionally, the strength of carrier–phonon coupling has been characterized using the ratio between the intensities of the first phonon replica and the zero-phonon band. PL emission from localized versus delocalized carriers has been identified as the source of the observed discrepancies between the LO phonon energy and phonon coupling strength under quasi-resonant and nonresonant excitation conditions, respectively. PMID:29019652
Effect of strong coupling on interfacial electron transfer dynamics in ...
Indian Academy of Sciences (India)
Unknown
regarded as the best sensitizing dyes for solar energy conversion for their strong visible absorption bands, long-lived ... solar cells based on dye-sensitized nanocrystalline. TiO2. High affinity for the TiO2 surface, which is ... pump pulses at 400 nm, one part of 800 nm with. 200 µJ/pulse, is frequency doubled in BBO crystals.
International Nuclear Information System (INIS)
Radtke, R.J.; Norman, M.R.
1994-01-01
Recent angle-resolved photoemission (ARPES) experiments have indicated that the electronic dispersion in some of the cuprates possesses an extended saddle point near the Fermi level which gives rise to a density of states that diverges like a power law instead of the weaker logarithmic divergence usually considered. We investigate whether this strong singularity can give rise to high transition temperatures by computing the critical temperature T c and isotope effect coefficient α within a strong-coupling Eliashberg theory which accounts for the full energy variation of the density of states. Using band structures extracted from ARPES measurements, we demonstrate that, while the weak-coupling solutions suggest a strong influence of the strength of the Van Hove singularity on T c and α, strong-coupling solutions show less sensitivity to the singularity strength and do not support the hypothesis that band-structure effects alone can account for either the large T c 's or the different T c 's within the copper oxide family. This conclusion is supported when our results are plotted as a function of the physically relevant self-consistent coupling constant, which shows universal behavior at very strong coupling
Integrating out resonances in strongly-coupled electroweak scenarios
Directory of Open Access Journals (Sweden)
Rosell Ignasi
2017-01-01
Full Text Available Accepting that there is a mass gap above the electroweak scale, the Electroweak Effective Theory (EWET is an appropriate tool to describe this situation. Since the EWET couplings contain information on the unknown high-energy dynamics, we consider a generic strongly-coupled scenario of electroweak symmetry breaking, where the known particle fields are coupled to heavier states. Then, and by integrating out these heavy fields, we study the tracks of the lightest resonances into the couplings. The determination of the low-energy couplings (LECs in terms of resonance parameters can be made more precise by considering a proper short-distance behaviour on the Lagrangian with heavy states, since the number of resonance couplings is then reduced. Notice that we adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs.
Strong coupling in a gauge invariant field theory
Energy Technology Data Exchange (ETDEWEB)
Johnson, K. [Physics Department, Massachusetts Institute of Technology, Cambridge, MA (United States)
1963-01-15
I would like to discuss some approximations which may be significant in the domain of strong coupling in a field system analogous to quantum electrodynamics. The motivation of this work is the idea that the strong couplings and elementary particle spectrum may be the consequence of the dynamics of a system whose underlying description is in terms of a set of Fermi fields gauge invariantly coupled to a single (''bare'') massless neutral vector field. The basis of this gauge invariance would of course be the exact conservation law of baryons or ''nucleonic charge''. It seems to me that a coupling scheme based on an invariance principle is most attractive if that invariance is an exact one. It would then be nice to try to account for the approximate invariance principles in the same way one would describe ''accidental degeneracies'' in any quantum system.
Jeans instability of self-gravitating magnetized strongly coupled plasma
International Nuclear Information System (INIS)
Prajapati, R P; Sharma, P K; Sanghvi, R K; Chhajlani, R K
2012-01-01
We investigate the Jeans instability of self-gravitating magnetized strongly coupled plasma. The equations of the problem are formulated using the generalized hydrodynamic model and a general dispersion relation is obtained using the normal mode analysis. This dispersion relation is discussed for transverse and longitudinal mode of propagations. The modified condition of Jeans instability is obtained for magnetized strongly coupled plasma. We find that strong coupling of plasma particles modify the fundamental criterion of Jeans gravitational instability. In transverse mode it is found that Jeans instability criterion gets modified due to the presence of magnetic field, shear viscosity and fluid viscosity but in longitudinal mode it is unaffected due to the presence of magnetic field. From the curves we found that all these parameters have stabilizing influence on the growth rate of Jeans instability.
Ideal gas behavior of a strongly coupled complex (dusty) plasma.
Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry
2013-07-05
In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.
Design of Dual-Band Two-Branch-Line Couplers with Arbitrary Coupling Coefficients in Bands
Directory of Open Access Journals (Sweden)
I. Prudyus
2014-12-01
Full Text Available A new approach to design dual-band two-branch couplers with arbitrary coupling coefficients at two operating frequency bands is proposed in this article. The method is based on the usage of equivalent subcircuits input reactances of the even-mode and odd-mode excitations. The exact design formulas for three options of the dual-band coupler with different location and number of stubs are received. These formulas permit to obtain the different variants for each structure in order to select the physically realizable solution and can be used in broad range of frequency ratio and power division ratio. For verification, three different dual-band couplers, which are operating at 2.4/3.9 GHz with different coupling coefficients (one with 3/6 dB, and 10/3 dB two others are designed, simulated, fabricated and tested. The measured results are in good agreement with the simulated ones.
The strong coupling from tau decays without prejudice
Boito, Diogo; Golterman, Maarten; Jamin, Matthias; Mahdavi, Andisheh; Maltman, Kim; Osborne, James; Peris, Santiago
2014-08-01
We review our recent determination of the strong coupling αs from the OPAL data for non-strange hadronic tau decays. We find that αs (mτ2)= 0.325 ± 0.018 using fixed-order perturbation theory, and αs (mτ2)= 0.347 ± 0.025 using contour-improved perturbation theory. At present, these values supersede any earlier determinations of the strong coupling from hadronic tau decays, including those from ALEPH data.
The strong coupling from tau decays without prejudice
Energy Technology Data Exchange (ETDEWEB)
Boito, Diogo [Physik Department T31, Technische Universität München, James-Franck-Straße 1, D-85748 Garching (Germany); Golterman, Maarten [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 (United States); Jamin, Matthias [Institució Catalana de Recerca i Estudis Avançats (ICREA), IFAE, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain); Mahdavi, Andisheh [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 (United States); Maltman, Kim [Department of Mathematics and Statistics, York University, Toronto, ON Canada M3J 1P3 (Canada); CSSM, University of Adelaide, Adelaide, SA 5005 Australia (Australia); Osborne, James [Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 (United States); Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Peris, Santiago [Department of Physics, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain)
2014-08-15
We review our recent determination of the strong coupling α{sub s} from the OPAL data for non-strange hadronic tau decays. We find that α{sub s}(m{sub τ}{sup 2})=0.325±0.018 using fixed-order perturbation theory, and α{sub s}(m{sub τ}{sup 2})=0.347±0.025 using contour-improved perturbation theory. At present, these values supersede any earlier determinations of the strong coupling from hadronic tau decays, including those from ALEPH data.
Strong environmental coupling in a Josephson parametric amplifier
International Nuclear Information System (INIS)
Mutus, J. Y.; White, T. C.; Barends, R.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Jeffrey, E.; Kelly, J.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; Cleland, A. N.; Martinis, John M.; Megrant, A.; Sundqvist, K. M.
2014-01-01
We present a lumped-element Josephson parametric amplifier designed to operate with strong coupling to the environment. In this regime, we observe broadband frequency dependent amplification with multi-peaked gain profiles. We account for this behavior using the “pumpistor” model which allows for frequency dependent variation of the external impedance. Using this understanding, we demonstrate control over the complexity of gain profiles through added variation in the environment impedance at a given frequency. With strong coupling to a suitable external impedance, we observe a significant increase in dynamic range, and large amplification bandwidth up to 700 MHz giving near quantum-limited performance.
From strong to ultrastrong coupling in circuit QED architectures
International Nuclear Information System (INIS)
Niemczyk, Thomas
2011-01-01
The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)
A scenario for inflationary magnetogenesis without strong coupling problem
Energy Technology Data Exchange (ETDEWEB)
Tasinato, Gianmassimo [Department of Physics, Swansea University,Swansea, SA2 8PP (United Kingdom); Institute of Cosmology and Gravitation, University of Portsmouth,Portsmouth, PO1 3FX (United Kingdom)
2015-03-23
Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesis potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.
A scenario for inflationary magnetogenesis without strong coupling problem
Energy Technology Data Exchange (ETDEWEB)
Tasinato, Gianmassimo, E-mail: gianmassimo.tasinato@port.ac.uk [Department of Physics, Swansea University, Swansea, SA2 8PP U.K. (United Kingdom)
2015-03-01
Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesis potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.
From strong to weak coupling in holographic models of thermalization
Energy Technology Data Exchange (ETDEWEB)
Grozdanov, Sašo; Kaplis, Nikolaos [Instituut-Lorentz for Theoretical Physics, Leiden University,Niels Bohrweg 2, Leiden 2333 CA (Netherlands); Starinets, Andrei O. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom)
2016-07-29
We investigate the analytic structure of thermal energy-momentum tensor correlators at large but finite coupling in quantum field theories with gravity duals. We compute corrections to the quasinormal spectra of black branes due to the presence of higher derivative R{sup 2} and R{sup 4} terms in the action, focusing on the dual to N=4 SYM theory and Gauss-Bonnet gravity. We observe the appearance of new poles in the complex frequency plane at finite coupling. The new poles interfere with hydrodynamic poles of the correlators leading to the breakdown of hydrodynamic description at a coupling-dependent critical value of the wave-vector. The dependence of the critical wave vector on the coupling implies that the range of validity of the hydrodynamic description increases monotonically with the coupling. The behavior of the quasinormal spectrum at large but finite coupling may be contrasted with the known properties of the hierarchy of relaxation times determined by the spectrum of a linearized kinetic operator at weak coupling. We find that the ratio of a transport coefficient such as viscosity to the relaxation time determined by the fundamental non-hydrodynamic quasinormal frequency changes rapidly in the vicinity of infinite coupling but flattens out for weaker coupling, suggesting an extrapolation from strong coupling to the kinetic theory result. We note that the behavior of the quasinormal spectrum is qualitatively different depending on whether the ratio of shear viscosity to entropy density is greater or less than the universal, infinite coupling value of ℏ/4πk{sub B}. In the former case, the density of poles increases, indicating a formation of branch cuts in the weak coupling limit, and the spectral function shows the appearance of narrow peaks. We also discuss the relation of the viscosity-entropy ratio to conjectured bounds on relaxation time in quantum systems.
Development of strongly coupled FSI technology involving thin walled structures
CSIR Research Space (South Africa)
Suliman, Ridhwaan
2011-01-01
Full Text Available A strongly coupled finite volume-finite element fluid-structure interaction (FSI) scheme is developed. Both an edge-based finite volume and Galerkin finite element scheme are implemented and evaluated for modelling the mechanics of solids...
Strong coupling QCD and the (π+,π-) reaction
International Nuclear Information System (INIS)
Miller, G.A.; Washington Univ., Seattle, WA
1989-01-01
Previous six-quark bag model calculations are in disagreement with new (π + , π - ) data, but conventional nucleonic calculations are generally successful. Six-quark bag models are related to perturbative QCD. I argue that the strong coupling limit of QCD (SCQCD) is a more appropriate starting point for nuclear physics. 15 refs., 3 figs
Radial Distribution Functions of Strongly Coupled Two-Temperature Plasmas
Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.
2017-10-01
We present tests of three theoretical models for the radial distribution functions (RDFs) in two-temperature strongly coupled plasmas. RDFs are useful in extending plasma thermodynamics and kinetic theory to strong coupling, but they are usually known only for thermal equilibrium or for approximate one-component model plasmas. Accurate two-component modeling is necessary to understand the impact of strong coupling on inter-species transport, e.g., ambipolar diffusion and electron-ion temperature relaxation. We demonstrate that the Seuferling-Vogel-Toeppfer (SVT) extension of the hypernetted chain equations not only gives accurate RDFs (as compared with classical molecular dynamics simulations), but also has a simple connection with the Yukawa OCP model. This connection gives a practical means to recover the structure of the electron background from knowledge of the ion-ion RDF alone. Using the model RDFs in Effective Potential Theory, we report the first predictions of inter-species transport coefficients of strongly coupled plasmas far from equilibrium. This work is supported by NSF Grant No. PHY-1453736, AFSOR Award No. FA9550-16-1-0221, and used XSEDE computational resources.
Numerical experiments on 2D strongly coupled complex plasmas
International Nuclear Information System (INIS)
Hou Lujing; Ivlev, A V; Thomas, H M; Morfill, G E
2010-01-01
The Brownian Dynamics simulation method is briefly reviewed at first and then applied to study some non-equilibrium phenomena in strongly coupled complex plasmas, such as heat transfer processes, shock wave excitation/propagation and particle trapping, by directly mimicking the real experiments.
Quantum field model of strong-coupling binucleon
International Nuclear Information System (INIS)
Amirkhanov, I.V.; Puzynin, I.V.; Puzynina, T.P.; Strizh, T.A.; Zemlyanaya, E.V.; Lakhno, V.D.
1996-01-01
The quantum field binucleon model for the case of the nucleon spot interaction with the scalar and pseudoscalar meson fields is considered. It is shown that the nonrelativistic problem of the two nucleon interaction reduces to the one-particle problem. For the strong coupling limit the nonlinear equations describing two nucleons in the meson field are developed [ru
Kinks in the σ band of graphene induced by electron-phonon coupling.
Mazzola, Federico; Wells, Justin W; Yakimova, Rositza; Ulstrup, Søren; Miwa, Jill A; Balog, Richard; Bianchi, Marco; Leandersson, Mats; Adell, Johan; Hofmann, Philip; Balasubramanian, T
2013-11-22
Angle-resolved photoemission spectroscopy reveals pronounced kinks in the dispersion of the σ band of graphene. Such kinks are usually caused by the combination of a strong electron-boson interaction and the cutoff in the Fermi-Dirac distribution. They are therefore not expected for the σ band of graphene that has a binding energy of more than ≈3.5 eV. We argue that the observed kinks are indeed caused by the electron-phonon interaction, but the role of the Fermi-Dirac distribution cutoff is assumed by a cutoff in the density of σ states. The existence of the effect suggests a very weak coupling of holes in the σ band not only to the π electrons of graphene but also to the substrate electronic states. This is confirmed by the presence of such kinks for graphene on several different substrates that all show a strong coupling constant of λ≈1.
Electronic Maxwell demon in the coherent strong-coupling regime
Schaller, Gernot; Cerrillo, Javier; Engelhardt, Georg; Strasberg, Philipp
2018-05-01
We consider an external feedback control loop implementing the action of a Maxwell demon. Applying control actions that are conditioned on measurement outcomes, the demon may transport electrons against a bias voltage and thereby effectively converts information into electric power. While the underlying model—a feedback-controlled quantum dot that is coupled to two electronic leads—is well explored in the limit of small tunnel couplings, we can address the strong-coupling regime with a fermionic reaction-coordinate mapping. This exact mapping transforms the setup into a serial triple quantum dot coupled to two leads. We find that a continuous projective measurement of the central dot occupation would lead to a complete suppression of electronic transport due to the quantum Zeno effect. In contrast, by using a microscopic detector model we can implement a weak measurement, which allows for closure of the control loop without transport blockade. Then, in the weak-coupling regime, the energy flows associated with the feedback loop are negligible, and dominantly the information gained in the measurement induces a bound for the generated electric power. In the strong coupling limit, the protocol may require more energy for operating the control loop than electric power produced, such that the whole device is no longer information dominated and can thus not be interpreted as a Maxwell demon.
Weak and strong coupling equilibration in nonabelian gauge theories
International Nuclear Information System (INIS)
Keegan, Liam; Kurkela, Aleksi; Romatschke, Paul; Schee, Wilke van der; Zhu, Yan
2016-01-01
We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of the system.
Weak and strong coupling equilibration in nonabelian gauge theories
Energy Technology Data Exchange (ETDEWEB)
Keegan, Liam [Physics Department, Theory Unit, CERN,CH-1211 Genève 23 (Switzerland); Kurkela, Aleksi [Physics Department, Theory Unit, CERN,CH-1211 Genève 23 (Switzerland); Faculty of Science and Technology, University of Stavanger,4036 Stavanger (Norway); Romatschke, Paul [Department of Physics, 390 UCB, University of Colorado at Boulder,Boulder, CO (United States); Center for Theory of Quantum Matter, University of Colorado,Boulder, Colorado 80309 (United States); Schee, Wilke van der [Center for Theoretical Physics, MIT,Cambridge, MA 02139 (United States); Zhu, Yan [Department of Physics, University of Jyväskyla, P.O. Box 35, FI-40014 University of Jyväskylä (Finland); Helsinki Institute of Physics,P.O. Box 64, 00014 University of Helsinki (Finland)
2016-04-06
We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of the system.
Equilibration and hydrodynamics at strong and weak coupling
van der Schee, Wilke
2017-11-01
We give an updated overview of both weak and strong coupling methods to describe the approach to a plasma described by viscous hydrodynamics, a process now called hydrodynamisation. At weak coupling the very first moments after a heavy ion collision is described by the colour-glass condensate framework, but quickly thereafter the mean free path is long enough for kinetic theory to become applicable. Recent simulations indicate thermalization in a time t ∼ 40(η / s) 4 / 3 / T [L. Keegan, A. Kurkela, P. Romatschke, W. van der Schee, Y. Zhu, Weak and strong coupling equilibration in nonabelian gauge theories, JHEP 04 (2016) 031. arxiv:arXiv:1512.05347, doi:10.1007/JHEP04(2016)031], with T the temperature at that time and η / s the shear viscosity divided by the entropy density. At (infinitely) strong coupling it is possible to mimic heavy ion collisions by using holography, which leads to a dual description of colliding gravitational shock waves. The plasma formed hydrodynamises within a time of 0.41/T recent extension found corrections to this result for finite values of the coupling, when η / s is bigger than the canonical value of 1/4π, which leads to t ∼ (0.41 + 1.6 (η / s - 1 / 4 π)) / T [S. Grozdanov, W. van der Schee, Coupling constant corrections in holographic heavy ion collisions, arxiv:arXiv:1610.08976]. Future improvements include the inclusion of the effects of the running coupling constant in QCD.
The strongly coupled quark-gluon plasma created at RHIC
Heinz, Ulrich W
2009-01-01
The Relativistic Heavy Ion Collider (RHIC) was built to re-create and study in the laboratory the extremely hot and dense matter that filled our entire universe during its first few microseconds. Its operation since June 2000 has been extremely successful, and the four large RHIC experiments have produced an impressive body of data which indeed provide compelling evidence for the formation of thermally equilibrated matter at unprecedented temperatures and energy densities -- a "quark-gluon plasma (QGP)". A surprise has been the discovery that this plasma behaves like an almost perfect fluid, with extremely low viscosity. Theorists had expected a weakly interacting gas of quarks and gluons, but instead we seem to have created a strongly coupled plasma liquid. The experimental evidence strongly relies on a feature called "elliptic flow" in off-central collisions, with additional support from other observations. This article explains how we probe the strongly coupled QGP, describes the ideas and measurements whi...
The strongly coupled quark-gluon plasma created at RHIC
International Nuclear Information System (INIS)
Heinz, Ulrich
2009-01-01
The relativistic heavy-ion collider (RHIC) was built to re-create and study in the laboratory the extremely hot and dense matter that filled our entire universe during its first few microseconds. Its operation since June 2000 has been extremely successful, and the four large RHIC experiments have produced an impressive body of data which indeed provide compelling evidence for the formation of thermally equilibrated matter at unprecedented temperatures and energy densities-a 'quark-gluon plasma (QGP)'. A surprise has been the discovery that this plasma behaves like an almost perfect fluid, with extremely low viscosity. Theorists had expected a weakly interacting gas of quarks and gluons, but instead we seem to have created a strongly coupled plasma liquid. The experimental evidence strongly relies on a feature called 'elliptic flow' in off-central collisions, with additional support from other observations. This paper explains how we probe the strongly coupled QGP, describes the ideas and measurements which led to the conclusion that the QGP is an almost perfect liquid, and shows how they tie relativistic heavy-ion physics into other burgeoning fields of modern physics, such as strongly coupled Coulomb plasmas, ultracold systems of trapped atoms and superstring theory
Strongly correlated impurity band superconductivity in diamond: X-ray spectroscopic evidence
Directory of Open Access Journals (Sweden)
G. Baskaran
2006-01-01
Full Text Available In a recent X-ray absorption study in boron doped diamond, Nakamura et al. have seen a well isolated narrow boron impurity band in non-superconducting samples and an additional narrow band at the chemical potential in a superconducting sample. We interpret the beautiful spectra as evidence for upper Hubbard band of a Mott insulating impurity band and an additional metallic 'mid-gap band' of a conducting 'self-doped' Mott insulator. This supports the basic framework of a recent theory of the present author of strongly correlated impurity band superconductivity (impurity band resonating valence bond, IBRVB theory in a template of a wide-gap insulator, with no direct involvement of valence band states.
From strong to ultrastrong coupling in circuit QED architectures
Energy Technology Data Exchange (ETDEWEB)
Niemczyk, Thomas
2011-08-10
The field of cavity quantum electrodynamics (cavity QED) studies the interaction between light and matter on a fundamental level: a single atom interacts with a single photon. If the atom-photon coupling is larger than any dissipative effects, the system enters the strong-coupling limit. A peculiarity of this regime is the possibility to form coherent superpositions of light and matter excitations - a kind of 'molecule' consisting of an atomic and a photonic contribution. The novel research field of circuit QED extends cavity QED concepts to solid-state based system. Here, a superconducting quantum bit is coupled to an on-chip superconducting one-dimensional waveguide resonator. Owing to the small mode-volume of the resonant cavity, the large dipole moment of the 'artificial atom' and the enormous engineering potential inherent to superconducting quantum circuits, remarkable atom-photon coupling strengths can be realized. This thesis describes the theoretical framework, the development of fabrication techniques and the implementation of experimental characterization techniques for superconducting quantum circuits for circuit QED applications. In particular, we study the interaction between superconducting flux quantum bits and high-quality coplanar waveguide resonators in the strong-coupling limit. Furthermore, we report on the first experimental realization of a circuit QED system operating in the ultrastrong-coupling regime, where the atom-photon coupling rate reaches a considerable fraction of the relevant system frequencies. In these experiments we could observe phenomena that can not be explained within the renowned Jaynes-Cummings model. (orig.)
Strong-coupling interaction in high-Tc superconductors
International Nuclear Information System (INIS)
Ray, D.K.
1991-01-01
Extensive experimental and theoretical work have been done to understand the mechanisms of superconductivity. Until 1986 when Bednorz and Muller discovered superconductivity in the copper oxide perovskite, the principal mechanism was found to be electron-phonon interaction and the characteristics of superconductivity vary depending on the strength of the electron-phonon interaction and the electronic structure. The essential characteristic of these conventional superconductors could be divided into two groups: wide band metals with low density of states N(E F ) at the Fermi energy E F and a rather weak electron-phonon coupling V obeying the universal characteristics of the BCS theory and narrow d band metals, compounds, and alloys with high values of N(E F ), electron-phonon coupling V and non negligible Coulomb interaction between the electrons. In this paper a short summary and the important results of these theories are discussed. The inherent limitations of these theories based on electron-phonon interaction will be discussed. The authors indicate the major characteristics of the new superconductors. These characteristics are difficult to explain on the basis of either the conventional electron-phonon theory or theories based on magnetic interactions alone
Weakly and strongly coupled Belousov-Zhabotinsky patterns
Weiss, Stephan; Deegan, Robert D.
2017-02-01
We investigate experimentally and numerically the synchronization of two-dimensional spiral wave patterns in the Belousov-Zhabotinsky reaction due to point-to-point coupling of two separate domains. Different synchronization modalities appear depending on the coupling strength and the initial patterns in each domain. The behavior as a function of the coupling strength falls into two qualitatively different regimes. The weakly coupled regime is characterized by inter-domain interactions that distorted but do not break wave fronts. Under weak coupling, spiral cores are pushed around by wave fronts in the other domain, resulting in an effective interaction between cores in opposite domains. In the case where each domain initially contains a single spiral, the cores form a bound pair and orbit each other at quantized distances. When the starting patterns consist of multiple randomly positioned spiral cores, the number of cores decreases with time until all that remains are a few cores that are synchronized with a partner in the other domain. The strongly coupled regime is characterized by interdomain interactions that break wave fronts. As a result, the wave patterns in both domains become identical.
QCD and strongly coupled gauge theories: challenges and perspectives
Brambilla, N.; Foka, P.; Gardner, S.; Kronfeld, A.S.; Alford, M.G.; Alkofer, R.; Butenschoen, M.; Cohen, T.D.; Erdmenger, J.; Fabbietti, L.; Faber, M.; Goity, J.L.; Ketzer, B.; Lin, H.W.; Llanes-Estrada, F.J.; Meyer, H.B.; Pakhlov, P.; Pallante, E.; Polikarpov, M.I.; Sazdjian, H.; Schmitt, A.; Snow, W.M.; Vairo, A.; Vogt, R.; Vuorinen, A.; Wittig, H.; Arnold, P.; Christakoglou, P.; Di Nezza, P.; Fodor, Z.; Garcia i Tormo, X.; Hollwieser, R.; Janik, M.A.; Kalweit, A.; Keane, D.; Kiritsis, E.; Mischke, A.; Mizuk, R.; Odyniec, G.; Papadodimas, K.; Pich, A.; Pittau, R.; Qiu, J.W.; Ricciardi, G.; Salgado, C.A.; Schwenzer, K.; Stefanis, N.G.; von Hippel, G.M.; Zakharov, V.I.
2014-10-21
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly-coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.
Coupled polaritonic band gaps in the anisotropic piezoelectric superlattices
Tang, Zheng-Hua; Jiang, Zheng-Sheng; Chen, Tao; Jiang, Chun-Zhi; Lei, Da-Jun; Huang, Jian-Quan; Qiu, Feng; Yao, Min; Huang, Xiao-Yi
2018-01-01
Anisotropic piezoelectric superlattices (APSs) with the periodic arrangement of polarized anisotropic piezoelectric domains in a certain direction are presented, in which the coupled polaritonic band gaps (CPBGs) can be obtained in the whole Brillouin Zone and the maximum relative bandwidth (band-gap sizes divided by their midgap frequencies) of 5.1% can be achieved. The general characteristics of the APSs are similar to those of the phononic crystals composed of two types of materials, with the main difference being the formation mechanism of the CPBGs, which originate from the couplings between lattice vibrations along two different directions and electromagnetic waves rather than from the periodical modulation of density and elastic constants. In addition, there are no lattice mismatches because the APSs are made of the same material. Thus, the APSs can also be extended to the construction of novel acousto-optic devices.
Strongly coupled gauge theories: What can lattice calculations teach us?
CERN. Geneva
2015-01-01
Electroweak symmetry breaking and the dynamical origin of the Higgs boson are central questions today. Strongly coupled systems predicting the Higgs boson as a bound state of a new gauge-fermion interaction are candidates to describe beyond Standard Model physics. The phenomenologically viable models are strongly coupled, near the conformal boundary, requiring non-perturbative studies to reveal their properties. Lattice studies show that many of the beyond-Standard Model candidates have a relatively light isosinglet scalar state that is well separated from the rest of the spectrum. When the scale is set via the vev of electroweak symmetry breaking, a 2 TeV vector resonance appears to be a general feature of many of these models with several other resonances that are not much heavier.
A new class of strongly coupled plasmas inspired by sonoluminescence
Bataller, Alexander; Plateau, Guillaume; Kappus, Brian; Putterman, Seth
2014-10-01
Sonoluminescence originates in a strongly coupled plasma with a near liquid density and a temperature of ~10,000 K. This plasma is in LTE and therefore, it should be a general thermodynamic state. To test the universality of sonoluminescence, similar plasma conditions were generated using femtosecond laser breakdown in high pressure gases. Calibrated streak spectroscopy reveals both transport and thermodynamic properties of a strongly coupled plasma. A blackbody spectrum, which persists long after the exciting laser has turned off, indicates the presence of a highly ionized LTE microplasma. In parallel with sonoluminescence, this thermodynamic state is achieved via a considerable reduction in the ionization potential. We gratefully acknowledge support from DARPA MTO for research on microplasmas. We thank Brian Naranjo, Keith Weninger, Carlos Camara, Gary Williams, and John Koulakis for valuable discussions.
Measurement of the strong coupling constant using τ decays
Buskulic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Aubert, J.-J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Denis, R. St.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Lan Wu, Sau; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration
1993-06-01
The strong coupling constant is determined from the leptonic branching ratios, the lifetime, and the invariant mass distribution of the hadronic final state of the τ lepton, using data accumulated at LEP with the ALEPH detector. The strong coupling constant measurement, αs( mτ2) = 0.330±0.046, evolved to the Z mass yields αs( MZ2) = 0.188±0.005. The error includes experimental and theoretical uncertainties, the latter evaluated in the framework of the Shifman, Vainshtein and Zakharov (SVZ) approach. The method allows the non-perturbative contribution to the hadronic decay rate to be determined to be 0.3±0.5%.
Jet quenching parameters in strongly coupled nonconformal gauge theories
International Nuclear Information System (INIS)
Buchel, Alex
2006-01-01
Recently Liu, Rajagopal, and Wiedemann (LRW) [H. Liu, K. Rajagopal, and U. A. Wiedemann, hep-ph/0605178.] proposed a first principle, nonperturbative quantum field theoretic definition of 'jet quenching parameter' q-circumflex used in models of medium-induced radiative parton energy loss in nucleus-nucleus collisions at RHIC. Relating q-circumflex to a short-distance behavior of a certain lightlike Wilson loop, they used gauge theory-string theory correspondence to evaluate q-circumflex for the strongly coupled N=4 SU(N c ) gauge theory plasma. We generalize analysis of LRW to strongly coupled nonconformal gauge theory plasma. We find that a jet quenching parameter is gauge theory specific (not universal). Furthermore, it appears its value increases as the number of effective adjoint degrees of freedom of a gauge theory plasma increases
Evidence for trapping and collectivization of resonances at strong coupling
International Nuclear Information System (INIS)
Herzberg, R.D.; Brentano, P. von; Rotter, I.
1993-01-01
The behavior of 22 neutron resonances in 53 Cr is investigated as a function of the coupling-strength parameter μ and of the degree of overlapping. Starting from a doorway picture at small μ, the widths of 21 resonances increase with increasing μ at the cost of the width of the original 'single-particle doorway resonance'. At μ≅1, the widths of most states decrease again. At μ→10 the widths of these 'trapped' states vanish while 'collective' states are formed which gather the widths. Thus we again observe a doorway picture at strong coupling. At μ=1, the energies and widths of the resonances are fitted to the experimental data. At this coupling strength, most resonances investigated resemble trapped modes. (orig.)
Equation of state of strongly coupled plasma mixtures
International Nuclear Information System (INIS)
DeWitt, H.E.
1984-01-01
Thermodynamic properties of strongly coupled (high density) plasmas of mixtures of light elements have been obtained by Monte Carlo simulations. For an assumed uniform charge background the equation of state of ionic mixtures is a simple extension of the one-component plasma EOS. More realistic electron screening effects are treated in linear response theory and with an appropriate electron dielectric function. Results have been obtained for the ionic pair distribution functions, and for the electric microfield distribution
Statics and thermodynamics of strongly coupled multicomponent plasmas
International Nuclear Information System (INIS)
Rosenfeld, Y.
1980-01-01
A description of strongly coupled plasmas, in which the direct correlation functions, c/sub i/j(r), are obtained by simple scaling from a universal function, is derived and found to be in full agreement with available computer simulation data, which it thus extends for arbitrary mixtures. It is thermodynamically consistent with the ''ion-sphere'' charge-averaging prediction for the enhancement factors for nuclear reaction rates, the results for which confirm the universality of the bridge functions for mixtures
Strong temperature effect on the sizes of the Cooper pairs in a two-band superconductor
Örd, Teet; Rägo, Küllike; Vargunin, Artjom; Litak, Grzegorz
2018-01-01
We study the temperature dependencies of the mean sizes of the Cooper pairs in a two-band BCS-type s-wave superconductivity model with coupling cut-off in the momentum space. It is found that, in contrast to single-band systems, the size of Cooper pairs in the weaker superconductivity band can significantly decrease with a temperature increase due to an interband proximity effect. The relevant spatial behaviour of the wave functions of the Cooper pairs is analyzed. The results also indicate a possibility that the size of Cooper pairs in two-band systems may increase with an increase in temperature.
Density matrix of strongly coupled quantum dot - microcavity system
International Nuclear Information System (INIS)
Nguyen Van Hop
2009-01-01
Any two-level quantum system can be used as a quantum bit (qubit) - the basic element of all devices and systems for quantum information and quantum computation. Recently it was proposed to study the strongly coupled system consisting of a two-level quantum dot and a monoenergetic photon gas in a microcavity-the strongly coupled quantum dot-microcavity (QD-MC) system for short, with the Jaynes-Cumming total Hamiltonian, for the application in the quantum information processing. Different approximations were applied in the theoretical study of this system. In this work, on the basis of the exact solution of the Schrodinger equation for this system without dissipation we derive the exact formulae for its density matrix. The realization of a qubit in this system is discussed. The solution of the system of rate equation for the strongly coupled QD-MC system in the presence of the interaction with the environment was also established in the first order approximation with respect to this interaction.
Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan
2015-01-01
The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO2), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO2 has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.
Energy Technology Data Exchange (ETDEWEB)
Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan, E-mail: alan.doolittle@ece.gatech.edu [Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)
2015-01-21
The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO{sub 2}), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO{sub 2} has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.
International Nuclear Information System (INIS)
Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan
2015-01-01
The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO 2 ), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO 2 has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance
Strongly coupled models with a Higgs-like boson
International Nuclear Information System (INIS)
Pich, A.; Rosell, I.; Sanz-Cillero, J. J.
2013-01-01
Considering the one-loop calculation of the oblique S and T parameters, we have presented a study of the viability of strongly-coupled scenarios of electroweak symmetry breaking with a light Higgs-like boson. The calculation has been done by using an effective Lagrangian, being short-distance constraints and dispersive relations the main ingredients of the estimation. Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models with massive resonances are not in conflict with experimental constraints on these parameters and the recently observed Higgs-like resonance. So there is room for these models, but they are stringently constrained. The vector and axial-vector states should be heavy enough (with masses above the TeV scale), the mass splitting between them is highly preferred to be small and the Higgs-like scalar should have a WW coupling close to the Standard Model one. It is important to stress that these conclusions do not depend critically on the inclusion of the second Weinberg sum rule. (authors)
Strongly Coupled Models with a Higgs-like Boson
Pich, Antonio; Rosell, Ignasi; José Sanz-Cillero, Juan
2013-11-01
Considering the one-loop calculation of the oblique S and T parameters, we have presented a study of the viability of strongly-coupled scenarios of electroweak symmetry breaking with a light Higgs-like boson. The calculation has been done by using an effective Lagrangian, being short-distance constraints and dispersive relations the main ingredients of the estimation. Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models with massive resonances are not in conflict with experimentalconstraints on these parameters and the recently observed Higgs-like resonance. So there is room for these models, but they are stringently constrained. The vector and axial-vector states should be heavy enough (with masses above the TeV scale), the mass splitting between them is highly preferred to be small and the Higgs-like scalar should have a WW coupling close to the Standard Model one. It is important to stress that these conclusions do not depend critically on the inclusion of the second Weinberg sum rule. We wish to thank the organizers of LHCP 2013 for the pleasant conference. This work has been supported in part by the Spanish Government and the European Commission [FPA2010-17747, FPA2011- 23778, AIC-D-2011-0818, SEV-2012-0249 (Severo Ochoa Program), CSD2007-00042 (Consolider Project CPAN)], the Generalitat Valenciana [PrometeoII/2013/007] and the Comunidad de Madrid [HEPHACOS S2009/ESP-1473].
Strong Local-Nonlocal Coupling for Integrated Fracture Modeling
Energy Technology Data Exchange (ETDEWEB)
Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silling, Stewart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seleson, Pablo D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gunzburger, Max [Florida State Univ., Tallahassee, FL (United States)
2015-09-01
Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for
Approximation scheme for strongly coupled plasmas: Dynamical theory
International Nuclear Information System (INIS)
Golden, K.I.; Kalman, G.
1979-01-01
The authors present a self-consistent approximation scheme for the calculation of the dynamical polarizability α (k, ω) at long wavelengths in strongly coupled one-component plasmas. Development of the scheme is carried out in two stages. The first stage follows the earlier Golden-Kalman-Silevitch (GKS) velocity-average approximation approach, but goes much further in its application of the nonlinear fluctuation-dissipation theorem to dynamical calculations. The result is the simple expression for α (k, ω), αatsub GKSat(k, ω) 4 moment sum rule. In the second stage, the above dynamical expression is made self-consistent at long wavelengths by postulating that a decomposition of the quadratic polarizabilities in terms of linear ones, which prevails in the k → 0 limit for weak coupling, can be relied upon as a paradigm for arbitrary coupling. The result is a relatively simple quadratic integral equation for α. Its evaluation in the weak-coupling limit and its comparison with known exact results in that limit reveal that almost all important correlational and long-time effects are reproduced by our theory with very good numerical accuracy over the entire frequency range; the only significant defect of the approximation seems to be the absence of the ''dominant'' γ ln γ -1 (γ is the plasma parameter) contribution to Im α
Kinks in the σ Band of Graphene Induced by Electron-Phonon Coupling
DEFF Research Database (Denmark)
Mazzola, Federico; Wells, Justin; Yakimova, Rosita
2013-01-01
Angle-resolved photoemission spectroscopy reveals pronounced kinks in the dispersion of the band of graphene. Such kinks are usually caused by the combination of a strong electron-boson interaction and the cutoff in the Fermi-Dirac distribution. They are therefore not expected for the band...... of graphene that has a binding energy of more than 3:5 eV. We argue that the observed kinks are indeed caused by the electron-phonon interaction, but the role of the Fermi-Dirac distribution cutoff is assumed by a cutoff in the density of states. The existence of the effect suggests a very weak coupling...
Strongly Coupled Chameleons and the Neutronic Quantum Bouncer
International Nuclear Information System (INIS)
Brax, Philippe; Pignol, Guillaume
2011-01-01
We consider the potential detection of chameleons using bouncing ultracold neutrons. We show that the presence of a chameleon field over a planar plate would alter the energy levels of ultracold neutrons in the terrestrial gravitational field. When chameleons are strongly coupled to nuclear matter, β > or approx. 10 8 , we find that the shift in energy levels would be detectable with the forthcoming GRANIT experiment, where a sensitivity of the order of 1% of a peV is expected. We also find that an extremely large coupling β > or approx. 10 11 would lead to new bound states at a distance of order 2 μm, which is already ruled out by previous Grenoble experiments. The resulting bound, β 11 , is already 3 orders of magnitude better than the upper bound, β 14 , from precision tests of atomic spectra.
New algorithms and new results for strong coupling LQCD
Unger, Wolfgang
2012-01-01
We present and compare new types of algorithms for lattice QCD with staggered fermions in the limit of infinite gauge coupling. These algorithms are formulated on a discrete spatial lattice but with continuous Euclidean time. They make use of the exact Hamiltonian, with the inverse temperature beta as the only input parameter. This formulation turns out to be analogous to that of a quantum spin system. The sign problem is completely absent, at zero and non-zero baryon density. We compare the performance of a continuous-time worm algorithm and of a Stochastic Series Expansion algorithm (SSE), which operates on equivalence classes of time-ordered interactions. Finally, we apply the SSE algorithm to a first exploratory study of two-flavor strong coupling lattice QCD, which is manageable in the Hamiltonian formulation because the sign problem can be controlled.
Experiment on dust acoustic solitons in strongly coupled dusty plasma
International Nuclear Information System (INIS)
Boruah, Abhijit; Sharma, Sumita Kumari; Bailung, Heremba
2015-01-01
Dusty plasma, which contains nanometer to micrometer sized dust particles along with electrons and ions, supports a low frequency wave called Dust Acoustic wave, analogous to ion acoustic wave in normal plasma. Due to high charge and low temperature of the dust particles, dusty plasma can easily transform into a strongly coupled state when the Coulomb interaction potential energy exceeds the dust kinetic energy. Dust acoustic perturbations are excited in such strongly coupled dusty plasma by applying a short negative pulse (100 ms) of amplitude 5 - 20 V to an exciter. The perturbation steepens due to nonlinear effect and forms a solitary structure by balancing dispersion present in the medium. For specific discharge conditions, excitation amplitude above a critical value, the perturbation is found to evolve into a number of solitons. The experimental results on the excitation of multiple dust acoustic solitons in the strongly coupled regime are presented in this work. The experiment is carried out in radio frequency discharged plasma produced in a glass chamber at a pressure 0.01 - 0.1 mbar. Few layers of dust particles (∼ 5 μm in diameter) are levitated above a grounded electrode inside the chamber. Wave evolution is observed with the help of green laser sheet and recorded in a high resolution camera at high frame rate. The high amplitude soliton propagates ahead followed by smaller amplitude solitons with lower velocity. The separation between the solitons increases as time passes by. The characteristics of the observed dust acoustic solitons such as amplitude-velocity and amplitude- Mach number relationship are compared with the solutions of Korteweg-de Vries (KdV) equation. (author)
Strong-coupling polaron effect in quantum dots
International Nuclear Information System (INIS)
Zhu Kadi; Gu Shiwei
1993-11-01
Strong-coupling polaron in a parabolic quantum dot is investigated by the Landau-Pekar variational treatment. The polaron binding energy and the average number of virtual phonons around the electron as a function of the effective confinement length of the quantum dot are obtained in Gaussian function approximation. It is shown that both the polaron binding energy and the average number of virtual phonons around the electron decrease by increasing the effective confinement length. The results indicate that the polaronic effects are more pronounced in quantum dots than those in two-dimensional and three-dimensional cases. (author). 15 refs, 4 figs
Strong coupling QCD at finite baryon-number density
International Nuclear Information System (INIS)
Karsch, F.; Muetter, K.H.
1989-01-01
We present a new representation of the partition function for strong-coupling QCD which is suitable also for finite baryon-number-density simulations. This enables us to study the phase structure in the canonical formulation (with fixed baryon number B) as well as the grand canonical one (with fixed chemical potential μ). We find a clear signal for a first-order chiral phase transition at μ c a=0.63. The critical baryon-number density n c a 3 =0.045 is only slightly higher than the density of nuclear matter. (orig.)
Transverse transport in coupled strongly correlated electronic chains
International Nuclear Information System (INIS)
Capponi, S.; Poilblanc, D.
1997-01-01
One-particle interchain hopping in a system of coupled Luttinger liquids is investigated by use of exact diagonalizations techniques. We give numerical evidence that inter-chain coherent hopping (defined by a non-vanishing splitting) can be totally suppressed for the Luttinger liquid exponent α ∝ 0.4 or even smaller α values. The transverse conductivity is shown to exhibit a strong incoherent part even when coherent inter-chain hopping is believed to occur. Implications for the optical experiments in quasi-1D organic or high-T c superconductors is outlined. (orig.)
Drag force in a strongly coupled anisotropic plasma
Chernicoff, Mariano; Fernández, Daniel; Mateos, David; Trancanelli, Diego
2012-08-01
We calculate the drag force experienced by an infinitely massive quark propagating at constant velocity through an anisotropic, strongly coupled {N} = 4 plasma by means of its gravity dual. We find that the gluon cloud trailing behind the quark is generally misaligned with the quark velocity, and that the latter is also misaligned with the force. The drag coefficient μ can be larger or smaller than the corresponding isotropic value depending on the velocity and the direction of motion. In the ultra-relativistic limit we find that generically μ ∝ p. We discuss the conditions under which this behaviour may extend to more general situations.
A strong coupling simulation of Euclidean quantum gravity
International Nuclear Information System (INIS)
Berg, B.; Hamburg Univ.
1984-12-01
Relying on Regge calculus a systematic numerical investigation of models of 4d Euclidean gravity is proposed. The scale a = 1 0 is set by fixing the expectation value of a length. Possible universality of such models is discussed. The strong coupling limit is defined by taking Planck mass msub(p) -> 0 (in units of 1 0 -1 ). The zero order approximation msub(p) = 0 is called 'fluctuating space' and investigated numerically in two 4d models. Canonical dimensions are realized and both models give a negative expectation value for the scalar curvature density. (orig.)
Strong-coupling approach to nematicity in the cuprates
Orth, Peter Philipp; Jeevanesan, Bhilahari; Schmalian, Joerg; Fernandes, Rafael
The underdoped cuprate superconductor YBa2Cu3O7-δ is known to exhibit an electronic nematic phase in proximity to antiferromagnetism. While nematicity sets in at large temperatures of T ~ 150 K, static spin density wave order only emerges at much lower temperatures. The magnetic response shows a strong in-plane anisotropy, displaying incommensurate Bragg peaks along one of the crystalline directions and a commensurate peak along the other one. Such an anisotropy persists even in the absence of long-range magnetic order at higher temperatures, marking the onset of nematic order. Here we theoretically investigate this situation using a strong-coupling method that takes into account both the localized Cu spins and the holes doped into the oxygen orbitals. We derive an effective spin Hamiltonian and show that charge fluctuations promote an enhancement of the nematic susceptibility near the antiferromagnetic transition temperature.
Equilibrium statistical mechanics of strongly coupled plasmas by numerical simulation
International Nuclear Information System (INIS)
DeWitt, H.E.
1977-01-01
Numerical experiments using the Monte Carlo method have led to systematic and accurate results for the thermodynamic properties of strongly coupled one-component plasmas and mixtures of two nuclear components. These talks are intended to summarize the results of Monte Carlo simulations from Paris and from Livermore. Simple analytic expressions for the equation of state and other thermodynamic functions have been obtained in which there is a clear distinction between a lattice-like static portion and a thermal portion. The thermal energy for the one-component plasma has a simple power dependence on temperature, (kT)/sup 3 / 4 /, that is identical to Monte Carlo results obtained for strongly coupled fluids governed by repulsive l/r/sup n/ potentials. For two-component plasmas the ion-sphere model is shown to accurately represent the static portion of the energy. Electron screening is included in the Monte Carlo simulations using linear response theory and the Lindhard dielectric function. Free energy expressions have been constructed for one and two component plasmas that allow easy computation of all thermodynamic functions
Strongly Coupled Magnetic and Electronic Transitions in Multivalent Strontium Cobaltites.
Lee, J H; Choi, Woo Seok; Jeen, H; Lee, H-J; Seo, J H; Nam, J; Yeom, M S; Lee, H N
2017-11-22
The topotactic phase transition in SrCoO x (x = 2.5-3.0) makes it possible to reversibly transit between the two distinct phases, i.e. the brownmillerite SrCoO 2.5 that is a room-temperature antiferromagnetic insulator (AFM-I) and the perovskite SrCoO 3 that is a ferromagnetic metal (FM-M), owing to their multiple valence states. For the intermediate x values, the two distinct phases are expected to strongly compete with each other. With oxidation of SrCoO 2.5 , however, it has been conjectured that the magnetic transition is decoupled to the electronic phase transition, i.e., the AFM-to-FM transition occurs before the insulator-to-metal transition (IMT), which is still controversial. Here, we bridge the gap between the two-phase transitions by density-functional theory calculations combined with optical spectroscopy. We confirm that the IMT actually occurs concomitantly with the FM transition near the oxygen content x = 2.75. Strong charge-spin coupling drives the concurrent IMT and AFM-to-FM transition, which fosters the near room-T magnetic transition characteristic. Ultimately, our study demonstrates that SrCoO x is an intriguingly rare candidate for inducing coupled magnetic and electronic transition via fast and reversible redox reactions.
Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations
Directory of Open Access Journals (Sweden)
Jen-Tsung Hsiang
2018-05-01
Full Text Available Identifying or constructing a fine-grained microscopic theory that will emerge under specific conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics is perhaps one of the most powerful theories and best understood examples of emergence in physical sciences, which can be used for understanding the characteristics and mechanisms of emergent processes, both in terms of emergent structures and the emergent laws governing the effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics. We will show why even with this minimal demand, there are many new issues which need be addressed and new rules formulated. The thermodynamics of small quantum many-body systems strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements, such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical reservoir. For quantum thermodynamics at strong coupling, one needs to reexamine the meaning of the thermodynamic functions, the viability of the thermodynamic relations and the validity of the thermodynamic laws anew. After a brief motivation, this paper starts with a short overview of the quantum formulation based on Gelin & Thoss and Seifert. We then provide a quantum formulation of Jarzynski’s two representations. We show how to construct the operator thermodynamic potentials, the expectation values of which provide the familiar thermodynamic variables. Constructing the operator thermodynamic functions and verifying or modifying their relations is a necessary first step in the establishment of a viable thermodynamics theory for
Model of coupled bands in even-even nuclei
Energy Technology Data Exchange (ETDEWEB)
Nadzhakov, E G; Nozharov, R M; Myankova, G Z; Antonova, V A [Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika
1979-01-01
The model is derived in a natural way from the theory of coupled modes. It is based on an expansion of the Hamiltonian in terms of elementary transition operators, including direct rotation-vibration coupling with phonons. The treatment is limited to three types of phonons: ( I = K = 0), S (I = K = 1) and (I = K = 2). The basis of the operators, acting on the ground state is truncated by an inclusion of a reasonable number of phonon states. In the framework of this approximation one may evaluate the matrix elements of the model Hamiltonian and diagonalize it by standard numerical methods to fit the experimental spectrum. The well known picture of band hybridization is obtained as a special case of the model under consideration.
Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis.
Liang, Yongye; Li, Yanguang; Wang, Hailiang; Dai, Hongjie
2013-02-13
Electrochemical systems, such as fuel cell and water splitting devices, represent some of the most efficient and environmentally friendly technologies for energy conversion and storage. Electrocatalysts play key roles in the chemical processes but often limit the performance of the entire systems due to insufficient activity, lifetime, or high cost. It has been a long-standing challenge to develop efficient and durable electrocatalysts at low cost. In this Perspective, we present our recent efforts in developing strongly coupled inorganic/nanocarbon hybrid materials to improve the electrocatalytic activities and stability of inorganic metal oxides, hydroxides, sulfides, and metal-nitrogen complexes. The hybrid materials are synthesized by direct nucleation, growth, and anchoring of inorganic nanomaterials on the functional groups of oxidized nanocarbon substrates including graphene and carbon nanotubes. This approach affords strong chemical attachment and electrical coupling between the electrocatalytic nanoparticles and nanocarbon, leading to nonprecious metal-based electrocatalysts with improved activity and durability for the oxygen reduction reaction for fuel cells and chlor-alkali catalysis, oxygen evolution reaction, and hydrogen evolution reaction. X-ray absorption near-edge structure and scanning transmission electron microscopy are employed to characterize the hybrids materials and reveal the coupling effects between inorganic nanomaterials and nanocarbon substrates. Z-contrast imaging and electron energy loss spectroscopy at single atom level are performed to investigate the nature of catalytic sites on ultrathin graphene sheets. Nanocarbon-based hybrid materials may present new opportunities for the development of electrocatalysts meeting the requirements of activity, durability, and cost for large-scale electrochemical applications.
The strong coupling constant of QCD with four flavors
International Nuclear Information System (INIS)
Tekin, Fatih
2010-01-01
In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c sw with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the Λ parameter is determined in units of a technical scale L max which is an unambiguously defined length in the hadronic regime. The coupling α SF of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)
The strong coupling constant of QCD with four flavors
Energy Technology Data Exchange (ETDEWEB)
Tekin, Fatih
2010-11-01
In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c{sub sw} with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the {lambda} parameter is determined in units of a technical scale L{sub max} which is an unambiguously defined length in the hadronic regime. The coupling {alpha}{sub SF} of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)
Inflationary magneto-(non)genesis, increasing kinetic couplings, and the strong coupling problem
Bazrafshan Moghaddam, Hossein; McDonough, Evan; Namba, Ryo; Brandenberger, Robert H.
2018-05-01
We study the generation of magnetic fields during inflation making use of a coupling of the inflaton and moduli fields to electromagnetism via the photon kinetic term, and assuming that the coupling is an increasing function of time. We demonstrate that the strong coupling problem of inflationary magnetogenesis can be avoided by incorporating the destabilization of moduli fields after inflation. The magnetic field always dominates over the electric one, and thus the severe constraints on the latter from backreaction, which are the demanding obstacles in the case of a decreasing coupling function, do not apply to the current scenario. However, we show that this loophole to the strong coupling problem comes at a price: the normalization of the amplitude of magnetic fields is determined by this coupling term and is therefore suppressed by a large factor after the moduli destabilization completes. From this we conclude that there is no self-consistent and generic realization of primordial magnetogenesis producing scale-invariant fields in the case of an increasing kinetic coupling.
On the flavor problem in strongly coupled theories
Energy Technology Data Exchange (ETDEWEB)
Bauer, Martin
2012-11-28
This thesis is on the flavor problem of Randall Sundrum models and their strongly coupled dual theories. These models are particularly well motivated extensions of the Standard Model, because they simultaneously address the gauge hierarchy problem and the hierarchies in the quark masses and mixings. In order to put this into context, special attention is given to concepts underlying the theories which can explain the hierarchy problem and the flavor structure of the Standard Model (SM). The AdS/CFT duality is introduced and its implications for the Randall Sundrum model with fermions in the bulk and general bulk gauge groups is investigated. It is shown that the different terms in the general 5D propagator of a bulk gauge field can be related to the corresponding diagrams of the strongly coupled dual, which allows for a deeper understanding of the origin of flavor changing neutral currents generated by the exchange of the Kaluza Klein excitations of these bulk fields. In the numerical analysis, different observables which are sensitive to corrections from the tree-level exchange of these resonances will be presented on the basis of updated experimental data from the Tevatron and LHC experiments. This includes electroweak precision observables, namely corrections to the S and T parameters followed by corrections to the Zb anti b vertex, flavor changing observables with flavor changes at one vertex, viz. B(B{sub d}{yields}{mu}{sup +}{mu}{sup -}) and B(B{sub s}{yields}{mu}{sup +}{mu}{sup -}), and two vertices, viz. S{sub {psi}{phi}} and vertical stroke {epsilon}{sub K} vertical stroke, as well as bounds from direct detection experiments. The analysis will show that all of these bounds can be brought in agreement with a new physics scale {Lambda}{sub NP} in the TeV range, except for the CP violating quantity vertical stroke {epsilon}{sub K} vertical stroke, which requires {Lambda}{sub NP}=O(10) TeV in the absence of fine-tuning. The numerous modifications of the
Mathematical structure of Rabi oscillations in the strong coupling regime
International Nuclear Information System (INIS)
Fujii, Kazuyuki
2003-01-01
In this paper, we generalize the Jaynes-Cummings Hamiltonian by making use of some operators based on Lie algebras su(1, 1) and su(2), and study a mathematical structure of Rabi floppings of these models in the strong coupling regime. We show that Rabi frequencies are given by matrix elements of generalized coherent operators (Fujii K 2002 Preprint quant-ph/0202081) under the rotating-wave approximation. In the first half, we make a general review of coherent operators and generalized coherent ones based on Lie algebras su(1, 1) and su(2). In the latter half, we carry out a detailed examination of Frasca (Frasca M 2001 Preprint quant-ph/0111134) and generalize his method, and moreover present some related problems. We also apply our results to the construction of controlled unitary gates in quantum computation. Lastly, we make a brief comment on application to holonomic quantum computation
Orbifolds and Exact Solutions of Strongly-Coupled Matrix Models
Córdova, Clay; Heidenreich, Ben; Popolitov, Alexandr; Shakirov, Shamil
2018-02-01
We find an exact solution to strongly-coupled matrix models with a single-trace monomial potential. Our solution yields closed form expressions for the partition function as well as averages of Schur functions. The results are fully factorized into a product of terms linear in the rank of the matrix and the parameters of the model. We extend our formulas to include both logarithmic and finite-difference deformations, thereby generalizing the celebrated Selberg and Kadell integrals. We conjecture a formula for correlators of two Schur functions in these models, and explain how our results follow from a general orbifold-like procedure that can be applied to any one-matrix model with a single-trace potential.
Novel Ion Trap Design for Strong Ion-Cavity Coupling
Directory of Open Access Journals (Sweden)
Alejandro Márquez Seco
2016-04-01
Full Text Available We present a novel ion trap design which facilitates the integration of an optical fiber cavity into the trap structure. The optical fibers are confined inside hollow electrodes in such a way that tight shielding and free movement of the fibers are simultaneously achievable. The latter enables in situ optimization of the overlap between the trapped ions and the cavity field. Through numerical simulations, we systematically analyze the effects of the electrode geometry on the trapping characteristics such as trap depths, secular frequencies and the optical access angle. Additionally, we simulate the effects of the presence of the fibers and confirm the robustness of the trapping potential. Based on these simulations and other technical considerations, we devise a practical trap configuration that isviable to achieve strong coupling of a single ion.
Strong-coupling effects in superfluid 3He in aerogel
International Nuclear Information System (INIS)
Aoyama, Kazushi; Ikeda, Ryusuke
2007-01-01
Effects of impurity scatterings on the strong-coupling (SC) contribution, stabilizing the ABM (axial) pairing state, to the quartic term of the Ginzburg-Landau free energy of superfluid 3 He are theoretically studied to examine recent observations suggestive of an anomalously small SC effect in superfluid 3 He in aerogels. To study the SC corrections, two approaches are used. One is based on a perturbation in the short-range repulsive interaction, and the other is a phenomenological approach used previously for the bulk liquid by Sauls and Serene [Phys. Rev. B 24, 183 (1981)]. It is found that the impurity scattering favors the BW pairing state and shrinks the region of the ABM pairing state in the T-P phase diagram. In the phenomenological approach, the resulting shrinkage of the ABM region is especially substantial and, if assuming an anisotropy over a large scale in aerogel, leads to justifying the phase diagrams determined experimentally
Jet quenching in a strongly coupled anisotropic plasma
Chernicoff, Mariano; Fernández, Daniel; Mateos, David; Trancanelli, Diego
2012-08-01
The jet quenching parameter of an anisotropic plasma depends on the relative orientation between the anisotropic direction, the direction of motion of the parton, and the direction along which the momentum broadening is measured. We calculate the jet quenching parameter of an anisotropic, strongly coupled {N} = 4 plasma by means of its gravity dual. We present the results for arbitrary orientations and arbitrary values of the anisotropy. The anisotropic value can be larger or smaller than the isotropic one, and this depends on whether the comparison is made at equal temperatures or at equal entropy densities. We compare our results to analogous calculations for the real-world quark-gluon plasma and find agreement in some cases and disagreement in others.
On the flavor problem in strongly coupled theories
International Nuclear Information System (INIS)
Bauer, Martin
2012-01-01
This thesis is on the flavor problem of Randall Sundrum models and their strongly coupled dual theories. These models are particularly well motivated extensions of the Standard Model, because they simultaneously address the gauge hierarchy problem and the hierarchies in the quark masses and mixings. In order to put this into context, special attention is given to concepts underlying the theories which can explain the hierarchy problem and the flavor structure of the Standard Model (SM). The AdS/CFT duality is introduced and its implications for the Randall Sundrum model with fermions in the bulk and general bulk gauge groups is investigated. It is shown that the different terms in the general 5D propagator of a bulk gauge field can be related to the corresponding diagrams of the strongly coupled dual, which allows for a deeper understanding of the origin of flavor changing neutral currents generated by the exchange of the Kaluza Klein excitations of these bulk fields. In the numerical analysis, different observables which are sensitive to corrections from the tree-level exchange of these resonances will be presented on the basis of updated experimental data from the Tevatron and LHC experiments. This includes electroweak precision observables, namely corrections to the S and T parameters followed by corrections to the Zb anti b vertex, flavor changing observables with flavor changes at one vertex, viz. B(B d →μ + μ - ) and B(B s →μ + μ - ), and two vertices, viz. S ψφ and vertical stroke ε K vertical stroke, as well as bounds from direct detection experiments. The analysis will show that all of these bounds can be brought in agreement with a new physics scale Λ NP in the TeV range, except for the CP violating quantity vertical stroke ε K vertical stroke, which requires Λ NP =O(10) TeV in the absence of fine-tuning. The numerous modifications of the Randall Sundrum model in the literature, which try to attenuate this bound are reviewed and categorized
Effective potential kinetic theory for strongly coupled plasmas
Baalrud, Scott D.; Daligault, Jérôme
2016-11-01
The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.
Dynamics of levitated nanospheres: towards the strong coupling regime
International Nuclear Information System (INIS)
Monteiro, T S; Millen, J; Pender, G A T; Barker, P F; Marquardt, Florian; Chang, D
2013-01-01
The use of levitated nanospheres represents a new paradigm for the optomechanical cooling of a small mechanical oscillator, with the prospect of realizing quantum oscillators with unprecedentedly high quality factors. We investigate the dynamics of this system, especially in the so-called self-trapping regime, where one or more optical fields simultaneously trap and cool the mechanical oscillator. The determining characteristic of this regime is that both the mechanical frequency ω M and single-photon optomechanical coupling strength parameters g are a function of the optical field intensities, in contrast to usual set-ups where ω M and g are constant for the given system. We also measure the characteristic transverse and axial trapping frequencies of different sized silica nanospheres in a simple optical standing wave potential, for spheres of radii r = 20–500 nm, illustrating a protocol for loading single nanospheres into a standing wave optical trap that would be formed by an optical cavity. We use these data to confirm the dependence of the effective optomechanical coupling strength on sphere radius for levitated nanospheres in an optical cavity and discuss the prospects for reaching regimes of strong light–matter coupling. Theoretical semiclassical and quantum displacement noise spectra show that for larger nanospheres with r ∼> 100 nm a range of interesting and novel dynamical regimes can be accessed. These include simultaneous hybridization of the two optical modes with the mechanical modes and parameter regimes where the system is bistable. We show that here, in contrast to typical single-optical mode optomechanical systems, bistabilities are independent of intracavity intensity and can occur for very weak laser driving amplitudes. (paper)
Strongly coupled semiclassical plasma: interaction model and some properties
International Nuclear Information System (INIS)
Baimbetov, N.F.; Bekenov, N.A.
1999-01-01
In the report a fully ionized strongly coupled hydrogen plasma is considered. The density number is considered within range n=n e =n i ≅(10 21 -2·10 25 )sm -3 , and the temperature domian is T≅(5·10 4 -10 6 ) K. The coupling parameter Γ is defined by Γ=e 2 /αk B T, where k B is the Boltzmann constant and e is electrical charge, α=(3/4πn) 1/3 is the average distance between the particles (Wigner-Seitz radius). The dimensionless density parameter r s =α/α B is given in terms of the Bohr radius α B =ℎ 2 /me 2 ∼0.529·10 - 8 sm. The degeneracy parameter for the electron was defined by the ratio between the thermal energy k B T and the Fermi energy E F :Θ=k B T/E F ∼0.54·r s /Γ. The intermediate temperature-density region, where Γ≥1; Θ≅1; T>13.6 eV is examined. A semiclassical effective potential which account for the short-range, quantum diffraction and symmetry effects of charge carriers screening
Thermalization and confinement in strongly coupled gauge theories
Directory of Open Access Journals (Sweden)
Ishii Takaaki
2016-01-01
Full Text Available Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which “real world” theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory’s confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the “abrupt quench” limit.
Energy exchange in strongly coupled plasmas with electron drift
International Nuclear Information System (INIS)
Akbari-Moghanjoughi, M.; Ghorbanalilu, M.
2015-01-01
In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam
Effective interactions in strongly-coupled quantum systems
International Nuclear Information System (INIS)
Chen, J.M.C.
1986-01-01
In this thesis, they study the role of effective interactions in strongly-coupled Fermi systems where the short-range correlations introduce difficulties requiring special treatment. The correlated basis function method provides the means to incorporate the short-range correlations and generate the matrix elements of the Hamiltonian and identity operators in a nonorthogonal basis of states which are so important to their studies. In the first half of the thesis, the particle-hole channel is examined to elucidate the effects of collective excitations. Proceeding from a least-action principle, a generalization of the random-phase approximation is developed capable of describing such strongly-interacting Fermi systems as nuclei, nuclear matter, neutron-star matter, and liquid 3 He. A linear response of dynamically correlated system to a weak external perturbation is also derived based on the same framework. In the second half of the thesis, the particle-particle channel is examined to elucidate the effects of pairing in nuclear and neutron-star matter
Kolmogorov flow in two dimensional strongly coupled dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Gupta, Akanksha; Ganesh, R., E-mail: ganesh@ipr.res.in; Joy, Ashwin [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 382 428 (India)
2014-07-15
Undriven, incompressible Kolmogorov flow in two dimensional doubly periodic strongly coupled dusty plasma is modelled using generalised hydrodynamics, both in linear and nonlinear regime. A complete stability diagram is obtained for low Reynolds numbers R and for a range of viscoelastic relaxation time τ{sub m} [0 < τ{sub m} < 10]. For the system size considered, using a linear stability analysis, similar to Navier Stokes fluid (τ{sub m} = 0), it is found that for Reynolds number beyond a critical R, say R{sub c}, the Kolmogorov flow becomes unstable. Importantly, it is found that R{sub c} is strongly reduced for increasing values of τ{sub m}. A critical τ{sub m}{sup c} is found above which Kolmogorov flow is unconditionally unstable and becomes independent of Reynolds number. For R < R{sub c}, the neutral stability regime found in Navier Stokes fluid (τ{sub m} = 0) is now found to be a damped regime in viscoelastic fluids, thus changing the fundamental nature of transition of Kolmogorov flow as function of Reynolds number R. A new parallelized nonlinear pseudo spectral code has been developed and is benchmarked against eigen values for Kolmogorov flow obtained from linear analysis. Nonlinear states obtained from the pseudo spectral code exhibit cyclicity and pattern formation in vorticity and viscoelastic oscillations in energy.
Xiao, Cong; Li, Dingping
2016-06-01
Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin-orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e. While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems.
International Nuclear Information System (INIS)
Xiao, Cong; Li, Dingping
2016-01-01
Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin–orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e . While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems. (paper)
Holographic Floquet states I: a strongly coupled Weyl semimetal
International Nuclear Information System (INIS)
Hashimoto, Koji; Kinoshita, Shunichiro; Murata, Keiju; Oka, Takashi
2017-01-01
Floquet states can be realized in quantum systems driven by continuous time-periodic perturbations. It is known that a state known as the Floquet Weyl semimetal can be realized when free Dirac fermions are placed in a rotating electric field. What will happen if strong interaction is introduced to this system? Will the interaction wash out the characteristic features of Weyl semimetals such as the Hall response? Is there a steady state and what is its thermodynamic behavior? We answer these questions using AdS/CFT correspondence in the N=2 supersymmetric massless QCD in a rotating electric field in the large N c limit realizing the first example of a “holographic Floquet state”. In this limit, gluons not only mediate interaction, but also act as an energy reservoir and stabilize the nonequilibrium steady state (NESS). We obtain the electric current induced by a rotating electric field: in the high frequency region, the Ohm’s law is satisfied, while we recover the DC nonlinear conductivity at low frequency, which was obtained holographically in a previous work. The thermodynamic properties of the NESS, e.g., fluctuation-dissipation relation, is characterized by the effective Hawking temperature that is defined from the effective horizon giving a holographic meaning to the “periodic thermodynamic” concept. In addition to the strong (pump) rotating electric field, we apply an additional weak (probe) electric field in the spirit of the pump-probe experiments done in condensed matter experiments. Weak DC and AC probe analysis in the background rotating electric field shows Hall currents as a linear response, therefore the Hall response of Floquet Weyl semimetals survives at the strong coupling limit. We also find frequency mixed response currents, i.e., a heterodyning effect, characteristic to periodically driven Floquet systems.
Holographic Floquet states I: a strongly coupled Weyl semimetal
Energy Technology Data Exchange (ETDEWEB)
Hashimoto, Koji [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Kinoshita, Shunichiro [Department of Physics, Chuo University, Tokyo 112-8551 (Japan); Murata, Keiju [Keio University, 4-1-1 Hiyoshi, Yokohama 223-8521 (Japan); Oka, Takashi [Max-Planck-Institut für Physik komplexer Systeme (MPI-PKS), Nöthnitzer Straße 38, Dresden 01187 (Germany); Max-Planck-Institut für Chemische Physik fester Stoffe (MPI-CPfS),Nöthnitzer Straße 40, Dresden 01187 (Germany)
2017-05-23
Floquet states can be realized in quantum systems driven by continuous time-periodic perturbations. It is known that a state known as the Floquet Weyl semimetal can be realized when free Dirac fermions are placed in a rotating electric field. What will happen if strong interaction is introduced to this system? Will the interaction wash out the characteristic features of Weyl semimetals such as the Hall response? Is there a steady state and what is its thermodynamic behavior? We answer these questions using AdS/CFT correspondence in the N=2 supersymmetric massless QCD in a rotating electric field in the large N{sub c} limit realizing the first example of a “holographic Floquet state”. In this limit, gluons not only mediate interaction, but also act as an energy reservoir and stabilize the nonequilibrium steady state (NESS). We obtain the electric current induced by a rotating electric field: in the high frequency region, the Ohm’s law is satisfied, while we recover the DC nonlinear conductivity at low frequency, which was obtained holographically in a previous work. The thermodynamic properties of the NESS, e.g., fluctuation-dissipation relation, is characterized by the effective Hawking temperature that is defined from the effective horizon giving a holographic meaning to the “periodic thermodynamic” concept. In addition to the strong (pump) rotating electric field, we apply an additional weak (probe) electric field in the spirit of the pump-probe experiments done in condensed matter experiments. Weak DC and AC probe analysis in the background rotating electric field shows Hall currents as a linear response, therefore the Hall response of Floquet Weyl semimetals survives at the strong coupling limit. We also find frequency mixed response currents, i.e., a heterodyning effect, characteristic to periodically driven Floquet systems.
Holographic Floquet states I: a strongly coupled Weyl semimetal
Hashimoto, Koji; Kinoshita, Shunichiro; Murata, Keiju; Oka, Takashi
2017-05-01
Floquet states can be realized in quantum systems driven by continuous time-periodic perturbations. It is known that a state known as the Floquet Weyl semimetal can be realized when free Dirac fermions are placed in a rotating electric field. What will happen if strong interaction is introduced to this system? Will the interaction wash out the characteristic features of Weyl semimetals such as the Hall response? Is there a steady state and what is its thermodynamic behavior? We answer these questions using AdS/CFT correspondence in the N = 2 supersymmetric massless QCD in a rotating electric field in the large N c limit realizing the first example of a "holographic Floquet state". In this limit, gluons not only mediate interaction, but also act as an energy reservoir and stabilize the nonequilibrium steady state (NESS). We obtain the electric current induced by a rotating electric field: in the high frequency region, the Ohm's law is satisfied, while we recover the DC nonlinear conductivity at low frequency, which was obtained holographically in a previous work. The thermodynamic properties of the NESS, e.g., fluctuation-dissipation relation, is characterized by the effective Hawking temperature that is defined from the effective horizon giving a holographic meaning to the "periodic thermodynamic" concept. In addition to the strong (pump) rotating electric field, we apply an additional weak (probe) electric field in the spirit of the pump-probe experiments done in condensed matter experiments. Weak DC and AC probe analysis in the background rotating electric field shows Hall currents as a linear response, therefore the Hall response of Floquet Weyl semimetals survives at the strong coupling limit. We also find frequency mixed response currents, i.e., a heterodyning effect, characteristic to periodically driven Floquet systems.
Asymmetric Landau bands due to spin–orbit coupling
International Nuclear Information System (INIS)
Erlingsson, Sigurdur I; Manolescu, Andrei; Marinescu, D C
2015-01-01
We show that the Landau bands obtained in a two-dimensional lateral semiconductor superlattice with spin–orbit coupling (SOC) of the Rashba/Dresselhaus type, linear in the electron momentum, placed in a tilted magnetic field, do not follow the symmetry of the spatial modulation. Moreover, this phenomenology is found to depend on the relative tilt of magnetic field and on the SOC type: (a) when only Rashba SOC exists and the magnetic field is tilted in the direction of the superlattice (b) Dresselhaus SOC exists and the magnetic field is tilted in the direction perpendicular to the superlattice. Consequently, measurable properties of the modulated system become anisotropic in a tilted magnetic field when the field is conically rotated around the z axis, at a fixed polar angle, as we demonstrate by calculating the resistivity and the magnetization. (paper)
Strongly reduced band gap in a correlated insulator in close proximity to a metal
Hesper, R.; Tjeng, L.H; Sawatzky, G.A
1997-01-01
Using a combination of photoelectron and inverse photoelectron spectroscopy, we show that the band gap in a monolayer of C-60 on a Ag surface is strongly reduced from the solid C-60 surface value. We argue that this is a result of the reduction of the on-site molecular Coulomb interaction due to the
Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities
Graf, Arko; Tropf, Laura; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C.
2016-10-01
Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths. Here, we demonstrate strong light-matter coupling in the near infrared using single-walled carbon nanotubes (SWCNTs) in a polymer matrix and a planar metal-clad cavity. By exploiting the exceptional oscillator strength and sharp excitonic transition of (6,5) SWCNTs, we achieve large Rabi splitting (>110 meV), efficient polariton relaxation and narrow band emission (<15 meV). Given their high charge carrier mobility and excellent photostability, SWCNTs represent a promising new avenue towards practical exciton-polariton devices operating at telecommunication wavelengths.
Energy Technology Data Exchange (ETDEWEB)
Kononov, A.; Egorov, S. V. [Russian Academy Sciences, Institute of Solid State Physics (Russian Federation); Kvon, Z. D.; Mikhailov, N. N.; Dvoretsky, S. A. [Institute of Semiconductor Physics (Russian Federation); Deviatov, E. V., E-mail: dev@issp.ac.ru [Russian Academy Sciences, Institute of Solid State Physics (Russian Federation)
2016-11-15
We experimentally investigate spin-polarized electron transport between a permalloy ferromagnet and the edge of a two-dimensional electron system with band inversion, realized in a narrow, 8 nm wide, HgTe quantum well. In zero magnetic field, we observe strong asymmetry of the edge potential distribution with respect to the ferromagnetic ground lead. This result indicates that the helical edge channel, specific for the structures with band inversion even at the conductive bulk, is strongly coupled to the ferromagnetic side contact, possibly due to the effects of proximity magnetization. This allows selective and spin-sensitive contacting of helical edge states.
Evidence for strong electron-lattice coupling in La2-xSrxNiO4
International Nuclear Information System (INIS)
McQueeney, R.J.; Sarrao, J.L.
1999-01-01
The inelastic neutron scattering spectra were measured for several Sr concentrations of polycrystalline La 2-x Sr x NiO 4 . The authors find that the generalized phonon density-of-states is identical for x = 0 and x = 1/8. For x = 1/3 and x = 1/2, the band of phonons corresponding to the in-plane oxygen vibrations (> 65 meV) splits into two subbands centered at 75 meV and 85 meV. The lower frequency band increases in amplitude for the x = 1/2 sample, indicating that it is directly related to the hole concentration. These changes are associated with the coupling of oxygen vibrations to doped holes which reside in the NiO 2 planes and are a signature of strong electron-lattice coupling. Comparison of La 1.9 Sr 0.1 CuO 4 and La 1.875 Sr 0.125 NiO 4 demonstrates that much stronger electron-lattice coupling occurs for particular modes in the cuprate for modest doping and is likely related to the metallic nature of the cuprate
A wideband superconducting filter at Ku-band based on interdigital coupling
Jiang, Ying; Wei, Bin; Cao, Bisong; Li, Qirong; Guo, Xubo; Jiang, Linan; Song, Xiaoke; Wang, Xiang
2018-04-01
In this paper, an interdigital-type resonator with strong electric coupling is proposed for the wideband high-frequency (>10 GHz) filter design. The proposed microstrip resonator consists of an H-shaped main line part with its both ends installed with interdigital finger parts. Strong electric coupling is achieved between adjacent resonators. A six-pole high-temperature superconducting filter at Ku-band using this resonator is designed and fabricated. The filter has a center frequency of 15.11 GHz with a fractional bandwidth of 30%. The insertion loss of the passband is less than 0.3 dB, and the return loss is greater than 14 dB without any tuning.
Large mass hierarchies from strongly-coupled dynamics
Energy Technology Data Exchange (ETDEWEB)
Athenodorou, Andreas [Department of Physics, University of Cyprus,B.O. Box 20537, 1678 Nicosia (Cyprus); Bennett, Ed [Department of Physics, College of Science, Swansea University,Singleton Park, Swansea SA2 8PP (United Kingdom); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI),Nagoya University,Furo, Chikusa, Nagoya 464-8602 (Japan); Bergner, Georg [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,University of Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland); Elander, Daniel [National Institute for Theoretical Physics, School of Physics andMandelstam Institute for Theoretical Physics, University of the Witwatersrand,1 Jan Smuts Avenue, Johannesburg, Wits 2050 (South Africa); Lin, C.-J. David [Institute of Physics, National Chiao-Tung University,1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan (China); CNRS, Aix Marseille Université, Université de Toulon, Centre de Physique Théorique,UMR 7332, F-13288 Marseille (France); Lucini, Biagio; Piai, Maurizio [Department of Physics, College of Science, Swansea University,Singleton Park, Swansea SA2 8PP (United Kingdom)
2016-06-20
Besides the Higgs particle discovered in 2012, with mass 125 GeV, recent LHC data show tentative signals for new resonances in diboson as well as diphoton searches at high center-of-mass energies (2 TeV and 750 GeV, respectively). If these signals are confirmed (or other new resonances are discovered at the TeV scale), the large hierarchies between masses of new bosons require a dynamical explanation. Motivated by these tentative signals of new physics, we investigate the theoretical possibility that large hierarchies in the masses of glueballs could arise dynamically in new strongly-coupled gauge theories extending the standard model of particle physics. We study lattice data on non-Abelian gauge theories in the (near-)conformal regime as well as a simple toy model in the context of gauge/gravity dualities. We focus our attention on the ratio R between the mass of the lightest spin-2 and spin-0 resonances, that for technical reasons is a particularly convenient and clean observable to study. For models in which (non-perturbative) large anomalous dimensions arise dynamically, we show indications that this mass ratio can be large, with R>5. Moreover, our results suggest that R might be related to universal properties of the IR fixed point. Our findings provide an interesting step towards understanding large mass ratios in the non-perturbative regime of quantum field theories with (near) IR conformal behaviour.
Study of Strongly Coupled Systems via Probe Brane Constructions
Chang, Han-Chih
In this thesis, we present our study towards better understanding of the strongly coupled systems with extra matter content in the fundamental representation of some prescribed global symmetry group in the quenched approximation, with the toolkit of holography via a probe brane construction. Specically, for the defect conformal systems, we unearth and quantify the phase trasition diagram, and novel supersymmetric vacua in the top-down model of the D3/D5 probe brane system. For further quantify various non-Fermi quantum liquid phases realized through the holographical probe brane construction, we then propose and verify the method to include the backreaction of entanglement entropy due to the probe branes at the leading order, which can potentially be used to detect topological phase transitions. We will recapitulate the main results of our works, in collaboration with Prof. Andreas Karch, published in the following journals: "Minimal Submanifolds asymptotic to AdS4 xS2 in AdS5xS5', JHEP, vol.1404, p.037, 2014; "The Novel Solutions of Finite-Density D3/D5 Probe Brane System and Their Implications for Stability'', JHEP, vol.1210, p.060, 2014; "Entanglement Entropy for Probe Branes'', JHEP, vol.1401, p.180, 2014.
Strongly coupled dark energy with warm dark matter vs. LCDM
Energy Technology Data Exchange (ETDEWEB)
Bonometto, S.A.; Mezzetti, M. [INAF, Osservatorio di Trieste and Trieste University, Physics Department, Astronomy Unit, Via Tiepolo 11, 34143 Trieste (Italy); Mainini, R., E-mail: bonometto@oats.inaf.it, E-mail: mezzetti@oats.inaf.it, E-mail: roberto.mainini@mib.infn.it [Physics Department G. Occhialini, Milano-Bicocca University, Piazza della Scienza 3, 20126 Milano (Italy)
2017-10-01
Cosmologies including strongly Coupled (SC) Dark Energy (DE) and Warm dark matter (SCDEW) are based on a conformally invariant (CI) attractor solution modifying the early radiative expansion. Then, aside of radiation, a kinetic field Φ and a DM component account for a stationary fraction, ∼ 1 %, of the total energy. Most SCDEW predictions are hardly distinguishable from LCDM, while SCDEW alleviates quite a few LCDM conceptual problems, as well as its difficulties to meet data below the average galaxy scale. The CI expansion begins at the end of inflation, when Φ (future DE) possibly plays a role in reheating, and ends at the Higgs scale. Afterwards, a number of viable options is open, allowing for the transition from the CI expansion to the present Universe. In this paper: (i) We show how the attractor is recovered when the spin degrees of freedom decreases. (ii) We perform a detailed comparison of CMB anisotropy and polarization spectra for SCDEW and LCDM, including tensor components, finding negligible discrepancies. (iii) Linear spectra exhibit a greater parameter dependence at large k 's, but are still consistent with data for suitable parameter choices. (iv) We also compare previous simulation results with fresh data on galaxy concentration. Finally, (v) we outline numerical difficulties at high k . This motivates a second related paper [1], where such problems are treated in a quantitative way.
Possible heavy solitons in the strongly coupled Higgs sector
International Nuclear Information System (INIS)
Gipson, J.M.; Tze, H.C.
1981-01-01
In a presumed dynamically broken, minimally coupled SU(2) model, a natural Higgs mass of order 1 TeV marks the onset of a strongly interacting Higgs sector probably rich in resonance structure and inaccessible to perturbation theory. In the spirit of the chiral dynamics approach to low-energy hadron physics, the heave Higgs sector is here assumed to be well described up to one-loop effects by an SO(4) non-linear sigma-model of the Skyrme type. Taken as an effective zeroth-order lagrangian, the latter is shown to admit two varieties of finite-energy, three-dimensional localized solitons which may exist in nature. They are given by the S 3 → S 3 Chern-Pontryagin maps and the S 3 → S 2 twisted toroid Hopf maps, respectively. Upper and lower bounds on the masses of the hedgehog and twisted ring with kik-number one are found to lie in the few TeV range. By a topological theorem of Finkelstein et al., both types of solitons provide classical analogues of superheavy fermion states. The connection between these solitons with other extended objects predicted by Nambu and Huang, and their possible experimental signatures are sketched. Finally, the extension of our results to the more realistic SU(2) x U(1) Weinberg-Salam model is discussed. (orig.)
Stochastic and Macroscopic Thermodynamics of Strongly Coupled Systems
Directory of Open Access Journals (Sweden)
Christopher Jarzynski
2017-01-01
Full Text Available We develop a thermodynamic framework that describes a classical system of interest S that is strongly coupled to its thermal environment E. Within this framework, seven key thermodynamic quantities—internal energy, entropy, volume, enthalpy, Gibbs free energy, heat, and work—are defined microscopically. These quantities obey thermodynamic relations including both the first and second law, and they satisfy nonequilibrium fluctuation theorems. We additionally impose a macroscopic consistency condition: When S is large, the quantities defined within our framework scale up to their macroscopic counterparts. By satisfying this condition, we demonstrate that a unifying framework can be developed, which encompasses both stochastic thermodynamics at one end, and macroscopic thermodynamics at the other. A central element in our approach is a thermodynamic definition of the volume of the system of interest, which converges to the usual geometric definition when S is large. We also sketch an alternative framework that satisfies the same consistency conditions. The dynamics of the system and environment are modeled using Hamilton’s equations in the full phase space.
Quantum Simulations of Strongly Coupled Quark-Gluon Plasma
International Nuclear Information System (INIS)
Filinov, V.S.; Bonitz, M.; Ivanov, Yu.B.
2013-01-01
particles. This method has been successfully applied to strongly coupled electrodynamic plasmas (EMP). A strongly correlated behavior of the QGP is expected to show up in long-ranged spatial correlations of quarks and gluons which, in fact, may give rise to liquid-like and, possibly, solid-like structures. This expectation is based on a very similar behavior observed in electrodynamic plasmas. We have done already the first calculation of the QGP equation of state, spatial and color pair distribution functions, diffusion coefficients and shear viscosity. The preliminary results has already been reported and discussed at the international conferences and meetings and are accepted for publications. (author)
International Nuclear Information System (INIS)
Meevasana, Warawat
2010-01-01
Much progress has been made recently in the study of the effects of electron-phonon (el-ph) coupling in doped insulators using angle resolved photoemission (ARPES), yielding evidence for the dominant role of el-ph interactions in underdoped cuprates. As these studies have been limited to doped Mott insulators, the important question arises how this compares with doped band insulators where similar el-ph couplings should be at work. The archetypical case is the perovskite SrTiO 3 (STO), well known for its giant dielectric constant of 10000 at low temperature, exceeding that of La 2 CuO 4 by a factor of 500. Based on this fact, it has been suggested that doped STO should be the archetypical bipolaron superconductor. Here we report an ARPES study from high-quality surfaces of lightly doped SrTiO 3 . Comparing to lightly doped Mott insulators, we find the signatures of only moderate electron-phonon coupling: a dispersion anomaly associated with the low frequency optical phonon with a λ(prime) ∼ 0.3 and an overall bandwidth renormalization suggesting an overall λ(prime) ∼ 0.7 coming from the higher frequency phonons. Further, we find no clear signatures of the large pseudogap or small polaron phenomena. These findings demonstrate that a large dielectric constant itself is not a good indicator of el-ph coupling and highlight the unusually strong effects of the el-ph coupling in doped Mott insulators.
D-brane physics. From weak to strong coupling
Energy Technology Data Exchange (ETDEWEB)
Vieira Lopes, Daniel Ordine
2013-01-10
In this thesis we discuss two aspects of branes relevant to high-energy phenomenology. First, we consider a single D6-brane wrapping a special Lagrangian cycle and the background space compactified in a Calabi-Yau orientifold the conditions needed to obtain a four-dimensional N=1 supersymmetric theory. We calculate the bosonic part of the effective action by performing a Kaluza-Klein reduction of the brane seven-dimensional action, and obtain the N=1 characteristic data. To discuss the moduli, we first fix the moduli from deformations of the background Calabi-Yau and study the D-brane deformation moduli space. We next allow for Calabi-Yau deformations, and show that the moduli space for complex structure deformations is corrected by the fields living on the D6-brane. We also calculate the scalar potential from D- and F-terms generated from brane and background configurations that would break the supersymmetry condition. We then, via Mirror Symmetry, relate the spectrum obtained in our work to the spectrum in Type IIB effective theory with D3- D5- and D7-branes, and we propose a Kaehler potential for the moduli space of brane deformations in Type IIB theories. In the second part of the thesis we discuss effects of brane intersections when the string coupling can become strong, and we work in the framework of F-theory. After reviewing the basics of F-theory constructions and a particular SU(5) model already discussed in the literature, we construct a model which contains a point of E{sub 8} singularity, and curves of E{sub 6} singularity. By explicitly resolving the space, we show that the resolution requires the introduction of higher dimensional fibers, and argue how we can circumvent this problem for the E{sub 6} curve, leading to the expected resolution that generate an E{sub 6} group, while at the E{sub 8} point we cannot make the resolution lead to an expected E{sub 8} structure.
Spin-dependent electron-phonon coupling in the valence band of single-layer WS_{2}
DEFF Research Database (Denmark)
Hinsche, Nicki Frank; Ngankeu, Arlette S.; Guilloy, Kevin
2017-01-01
The absence of inversion symmetry leads to a strong spin-orbit splitting of the upper valence band of semiconducting single-layer transition-metal dichalchogenides such as MoS2 or WS2. This permits a direct comparison of the electron-phonon coupling strength in states that only differ by their spin....... Here, the electron-phonon coupling in the valence band maximum of single-layer WS2 is studied by first-principles calculations and angle-resolved photoemission. The coupling strength is found to be drastically different for the two spin-split branches, with calculated values of λK=0.0021 and 0.......40 for the upper and lower spin-split valence band of the freestanding layer, respectively. This difference is somewhat reduced when including scattering processes involving the Au(111) substrate present in the experiment but it remains significant, in good agreement with the experimental results....
Strong coupling of collection of emitters on hyperbolic meta-material
Biehs, Svend-Age; Xu, Chenran; Agarwal, Girish S.
2018-04-01
Recently, considerable effort has been devoted to the realization of a strong coupling regime of the radiation matter interaction in the context of an emitter at a meta surface. The strong interaction is well realized in cavity quantum electrodynamics, which also show that strong coupling is much easier to realize using a collection of emitters. Keeping this in mind, we study if emitters on a hyperbolic meta materials can yield a strong coupling regime. We show that strong coupling can be realized for densities of emitters exceeding a critical value. A way to detect strong coupling between emitters and hyperbolic metamaterials is to use the Kretschman-Raether configuration. The strong coupling appears as the splitting of the reflectivity dip. In the weak coupling regime, the dip position shifts. The shift and splitting can be used to sense active molecules at surfaces.
Optical investigation of the strong spin-orbit-coupled magnetic semimetal YbMnBi2
Chaudhuri, Dipanjan; Cheng, Bing; Yaresko, Alexander; Gibson, Quinn D.; Cava, R. J.; Armitage, N. P.
2017-08-01
Strong spin-orbit coupling (SOC) can result in ground states with nontrivial topological properties. The situation is even richer in magnetic systems where the magnetic ordering can potentially have strong influence over the electronic band structure. The class of A MnBi2 (A = Sr, Ca) compounds are important in this context as they are known to host massive Dirac fermions with strongly anisotropic dispersion, which is believed to be due to the interplay between strong SOC and magnetic degrees of freedom. We report the optical conductivity of YbMnBi2, a newly discovered member of this family and a proposed Weyl semimetal (WSM) candidate with broken time reversal symmetry. Together with density functional theory (DFT) band-structure calculations, we show that the complex conductivity can be interpreted as the sum of an intraband Drude response and interband transitions. We argue that the canting of the magnetic moments that has been proposed to be essential for the realization of the WSM in an otherwise antiferromagnetically ordered system is not necessary to explain the optical conductivity. We believe our data is explained qualitatively by the uncanted magnetic structure with a small offset of the chemical potential from strict stochiometry. We find no definitive evidence of a bulk Weyl nodes. Instead, we see signatures of a gapped Dirac dispersion, common in other members of A MnBi2 family or compounds with similar 2D network of Bi atoms. We speculate that the evidence for a WSM seen in ARPES arises through a surface magnetic phase. Such an assumption reconciles all known experimental data.
Energy Technology Data Exchange (ETDEWEB)
Satoh, K; Koizumi, D; Narahashi, S [Research Laboratories, NTT DoCoMo, Inc., 3-5 Hikari-no-oka, Yokosuka, Kanagwa, 239-8536 (Japan)], E-mail: satokei@nttdocomo.co.jp
2008-02-01
This paper presents a novel compact high temperature superconducting (HTS) bandpass filter (BPF) that employs a newly developed miniaturized coplanar-waveguide (CPW) quarter-wavelength resonators with strongly-coupled open stubs. The proposed resonator has a structure in which the open stubs are aligned close to the center conductor of the resonator. This is because strongly-coupled resonators have widely-split resonant frequencies, and the lowest resonant frequency is employed as the fundamental resonant frequency of the resonator in order to achieve miniaturization. The proposed resonator is 1.7 mm or less in length for use in the 5-GHz band, whereas the conventional straight resonator is approximately 6.4 mm long. A four-pole Chebyshev HTS BPF is designed and fabricated using the proposed CPW resonators. The entire length of the proposed four-pole filter is 15 mm. The frequency response of the fabricated filter agrees well with the electromagnetic simulation results. The proposed filter achieves a size reduction of at least 50% compared to previously reported filters without any degradation in the frequency characteristics.
Zhang, Wen; Liu, Yi; Wang, Xiaoying; Zhang, Yun; Xie, Donghua
2018-03-01
The heavy fermion physics arises from the complex interplay of nearly localized 4f/5f electrons and itinerant band-like ones, yielding heavy quasiparticles with an effective mass about 100 times (or more) of the bare electrons. Recently, experimental and theoretical investigations point out a localized and delocalized dual nature in actinide compounds, where itinerant quasiparticles account for the unconventional superconductivity in the vicinity of a magnetic instability. Here we report the strong coupling between localized 5f moments and itinerant quasiparticles in the ferromagnetic superconductor UGe2. The coupling is nearly antiferromagnetic. As embedded in the ferromagnetic matrix of localized 5f moments below {T}{{C}}≈ 52 {{K}}, this coupling leads to short-range dynamic correlations of heavy quasiparticles, characterized by fluctuations of magnetic clusters. Those cluster-like spins of itinerant quasiparticles show a broad hump of magnetization at {T}X≈ 28 {{K}}, which is typical for the spin-glass freezing. Thus, our results present the direct observation of itinerant quasiparticles coexisting with localized 5f moments by conventional magnetic measurements, providing a new route into the coexistence between ferromagnetism and superconductivity in heavy fermion systems. Project supported by the National Natural Science Foundation of China (Grant No. 11404297), the Science Challenge Project (Grant No. TZ2016004), and the Science and Technology Foundation of China Academy of Engineering Physics (Grant Nos. 2013B0301050 and 2014A0301013).
Connection between strong and weak coupling in the mean spherical model in 1 + 1 dimensions
International Nuclear Information System (INIS)
Banks, J.L.
1980-01-01
I extend the strong-coupling expansion obtained by Srednicki, for the β-function of the mean spherical model in 1 + 1 dimensions, in the hamiltonian formulation. I use ordinary and two-point Pade approximants to extrapolate this result to weak coupling. I find a reasonably smooth connection between strong and weak coupling, and good numerical agreement with the exact solution. (orig.)
Strong Carrier-Phonon Coupling in Lead Halide Perovskite Nanocrystals
Iaru, Claudiu M; Geuchies, Jaco J|info:eu-repo/dai/nl/370526090; Koenraad, Paul M; Vanmaekelbergh, Daniël|info:eu-repo/dai/nl/304829137; Silov, Andrei Yu
2017-01-01
We highlight the importance of carrier-phonon coupling in inorganic lead halide perovskite nanocrystals. The low-temperature photoluminescence (PL) spectrum of CsPbBr3 has been investigated under a nonresonant and a nonstandard, quasi-resonant excitation scheme, and phonon replicas of the main PL
Infrared equivalence of strongly and weakly coupled gauge theories
International Nuclear Information System (INIS)
Olesen, P.
1975-10-01
Using the decoupling theorem of Apelquist and Carazzone, it is shown that in terms of Feynman diagrams the pure Yang-Mills theory is equivalent in the infrared limit to a theory (zero-mass renormalized), where the vector mesons are coupled fo fermions, and where the fermions do not decouple. By taking enough fermions it is then shown that even though the pure Yang-Mills theory is characterized by the lack of applicability of perturbation theory, nevertheless the effective coupling in the equivalent fermion description is very weak. The effective mass in the zero-mass renormalization blows up. In the fermion description, diagrams involving only vector mesons are suppressed relative to diagrams containing at least one fermion loop. (Auth.)
MRI surface-coil pair with strong inductive coupling.
Mett, Richard R; Sidabras, Jason W; Hyde, James S
2016-12-01
A novel inductively coupled coil pair was used to obtain magnetic resonance phantom images. Rationale for using such a structure is described in R. R. Mett et al. [Rev. Sci. Instrum. 87, 084703 (2016)]. The original rationale was to increase the Q-value of a small diameter surface coil in order to achieve dominant loading by the sample. A significant improvement in the vector reception field (VRF) is also seen. The coil assembly consists of a 3-turn 10 mm tall meta-metallic self-resonant spiral (SRS) of inner diameter 10.4 mm and outer diameter 15.1 mm and a single-loop equalization coil of 25 mm diameter and 2 mm tall. The low-frequency parallel mode was used in which the rf currents on each coil produce magnetic fields that add constructively. The SRS coil assembly was fabricated and data were collected using a tissue-equivalent 30% polyacrylamide phantom. The large inductive coupling of the coils produces phase-coherency of the rf currents and magnetic fields. Finite-element simulations indicate that the VRF of the coil pair is about 4.4 times larger than for a single-loop coil of 15 mm diameter. The mutual coupling between coils influences the current ratio between the coils, which in turn influences the VRF and the signal-to-noise ratio (SNR). Data on a tissue-equivalent phantom at 9.4 T show a total SNR increase of 8.8 over the 15 mm loop averaged over a 25 mm depth and diameter. The experimental results are shown to be consistent with the magnetic resonance theory of the emf induced by spins in a coil, the theory of inductively coupled resonant circuits, and the superposition principle. The methods are general for magnetic resonance and other types of signal detection and can be used over a wide range of operating frequencies.
International Nuclear Information System (INIS)
Senf, Fabian; Altrock, Philipp M; Behn, Ulrich
2009-01-01
A finite array of N globally coupled Stratonovich models exhibits a continuous nonequilibrium phase transition. In the limit of strong coupling, there is a clear separation of timescales of centre of mass and relative coordinates. The latter relax very fast to zero and the array behaves as a single entity described by the centre of mass coordinate. We compute analytically the stationary probability distribution and the moments of the centre of mass coordinate. The scaling behaviour of the moments near the critical value of the control parameter a c (N) is determined. We identify a crossover from linear to square root scaling with increasing distance from a c . The crossover point approaches a c in the limit N→∞ which reproduces previous results for infinite arrays. Our results are obtained in both the Fokker-Planck and the Langevin approach and are corroborated by numerical simulations. For a general class of models we show that the transition manifold in the parameter space depends on N and is determined by the scaling behaviour near a fixed point of the stochastic flow.
Energy Technology Data Exchange (ETDEWEB)
Abuki, Hiroaki; Hatsuda, Tetsuo [Tokyo Univ., Dept. of Physics, Tokyo (Japan); Itakura, Kazunori [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States)
2002-09-01
The two-flavor color superconductivity is studied over a wide range of baryon density with a single model. We pay a special attention to the spatial-momentum dependence of the gap and to the spatial-structure of Cooper pairs. At extremely high baryon density ({approx}O(10{sup 10} {rho}{sub 0}) with {rho}{sub 0} being the normal nuclear matter density), our model becomes equivalent to the usual perturbative QCD treatment and the gap is shown to have a sharp peak near the Fermi surface due to the weak-coupling nature of QCD. On the other hand, the gap is a smooth function of the momentum at lower densities ({approx}O(10{sup 10} {rho}{sub 0})) due to strong color magnetic and electric interactions. To study the structural change of Cooper pairs from high density to lower density, quark correlation in the color superconductor is studied both in the momentum space and in the coordinate space. The size of the Cooper pair is shown to become comparable to the averaged inter-quark distance at low densities. Also, effects of the momentum-dependent running coupling and the antiquark pairing, which are both small at high density, are shown to be non-negligible at low densities. These features are highly contrasted to the standard BCS superconductivity in metals. (author)
Coupled-cluster treatment of molecular strong-field ionization
Jagau, Thomas-C.
2018-05-01
Ionization rates and Stark shifts of H2, CO, O2, H2O, and CH4 in static electric fields have been computed with coupled-cluster methods in a basis set of atom-centered Gaussian functions with a complex-scaled exponent. Consideration of electron correlation is found to be of great importance even for a qualitatively correct description of the dependence of ionization rates and Stark shifts on the strength and orientation of the external field. The analysis of the second moments of the molecular charge distribution suggests a simple criterion for distinguishing tunnel and barrier suppression ionization in polyatomic molecules.
Cranking model interpretation of weakly coupled bands in Hg isotopes
International Nuclear Information System (INIS)
Guttormsen, M.; Huebel, H.
1982-01-01
The positive-parity yrast states of the transitional sup(189-198)Hg isotopes are interpreted within the Bengtsson and Frauendorf version of the cranking model. The very sharp backbendings can be explained by small interaction matrix elements between the ground and s-bands. The experimentally observed large aligned angular momenta and the low band-crossing frequencies are well reproduced in the calculations. (orig.)
Modelling of strongly coupled particle growth and aggregation
International Nuclear Information System (INIS)
Gruy, F; Touboul, E
2013-01-01
The mathematical modelling of the dynamics of particle suspension is based on the population balance equation (PBE). PBE is an integro-differential equation for the population density that is a function of time t, space coordinates and internal parameters. Usually, the particle is characterized by a unique parameter, e.g. the matter volume v. PBE consists of several terms: for instance, the growth rate and the aggregation rate. So, the growth rate is a function of v and t. In classical modelling, the growth and the aggregation are independently considered, i.e. they are not coupled. However, current applications occur where the growth and the aggregation are coupled, i.e. the change of the particle volume with time is depending on its initial value v 0 , that in turn is related to an aggregation event. As a consequence, the dynamics of the suspension does not obey the classical Von Smoluchowski equation. This paper revisits this problem by proposing a new modelling by using a bivariate PBE (with two internal variables: v and v 0 ) and by solving the PBE by means of a numerical method and Monte Carlo simulations. This is applied to a physicochemical system with a simple growth law and a constant aggregation kernel.
Static and Dynamic Amplification Using Strong Mechanical Coupling
Ilyas, Saad
2016-07-28
Amplifying the signal-to-noise ratio of resonant sensors is vital toward the effort to miniaturize devices into the sub-micro and nano regimes. In this paper, we demonstrate theoretically and experimentally, amplification through mechanically coupled microbeams. The device is composed of two identical clamped-clamped beams, made of polyimide, connected at their middle through a third beam, which acts as a mechanical coupler. Each of the clamped-clamped microbeams and the coupler are designed to be actuated separately, hence providing various possibilities of actuation and sensing. The coupled resonator is driven into resonance near its first resonance mode and its dynamic behavior is explored via frequency sweeps. The results show significant amplification in the resonator amplitude when the signal is measured at the midpoint of the coupler compared with the response of the individual uncoupled beams. The static pull-in characteristics of the resonator are also studied. It is shown that the compliant mechanical coupler can serve as a low-power radio frequency switch actuated at low voltage loads. [2016-0100
Strong coupling constant from Adler function in lattice QCD
Hudspith, Renwick J.; Lewis, Randy; Maltman, Kim; Shintani, Eigo
2016-09-01
We compute the QCD coupling constant, αs, from the Adler function with vector hadronic vacuum polarization (HVP) function. On the lattice, Adler function can be measured by the differential of HVP at two different momentum scales. HVP is measured from the conserved-local vector current correlator using nf = 2 + 1 flavor Domain Wall lattice data with three different lattice cutoffs, up to a-1 ≈ 3.14 GeV. To avoid the lattice artifact due to O(4) symmetry breaking, we set the cylinder cut on the lattice momentum with reflection projection onto vector current correlator, and it then provides smooth function of momentum scale for extracted HVP. We present a global fit of the lattice data at a justified momentum scale with three lattice cutoffs using continuum perturbation theory at 𝒪(αs4) to obtain the coupling in the continuum limit at arbitrary scale. We take the running to Z boson mass through the appropriate thresholds, and obtain αs(5)(MZ) = 0.1191(24)(37) where the first is statistical error and the second is systematic one.
Nonlinear Excitations in Strongly-Coupled Fermi-Dirac Plasmas
Akbari-Moghanjoughi, M.
2012-01-01
In this paper we use the conventional quantum hydrodynamics (QHD) model in combination with the Sagdeev pseudopotential method to explore the effects of Thomas-Fermi nonuniform electron distribution, Coulomb interactions, electron exchange and ion correlation on the large-amplitude nonlinear soliton dynamics in Fermi-Dirac plasmas. It is found that in the presence of strong interactions significant differences in nonlinear wave dynamics of Fermi-Dirac plasmas in the two distinct regimes of no...
Strongly Coupled Magnetic and Electronic Transitions in Multivalent Strontium Cobaltites
Lee, J. H.; Choi, Woo Seok; Jeen, H.; Lee, H.-J.; Seo, J. H.; Nam, J.; Yeom, M. S.; Lee, H. N.
2017-01-01
The topotactic phase transition in SrCoO x (x = 2.5–3.0) makes it possible to reversibly transit between the two distinct phases, i.e. the brownmillerite SrCoO2.5 that is a room-temperature antiferromagnetic insulator (AFM-I) and the perovskite SrCoO3 that is a ferromagnetic metal (FM-M), owing to their multiple valence states. For the intermediate x values, the two distinct phases are expected to strongly compete with each other. With oxidation of SrCoO2.5, however, it has been conjectured t...
Inelastic electron scattering influence on the strong coupling oxide superconductors
International Nuclear Information System (INIS)
Gabovich, A.M.; Voitenko, A.I.
1995-01-01
The superconducting order parameters Δ and energy gap Δ g are calculated taking into account the pair-breaking inelastic quasiparticle scattering by thermal Bose-excitations, e.g., phonons. The treatment is self-consistent because the scattering amplitude depends on Δ. The superconducting transition for any strength of the inelastic scattering is the phase transition of the first kind and the dependences Δ (T) and Δ g (T) tend to rectangular curve that agrees well with the experiment for high-Tc oxides. On the basis of the developed theory the nuclear spin-lattice relaxation rate R s in the superconducting state is calculated. The Hebel-Slichter peak in R s (T) is shown to disappear for strong enough inelastic scattering
Strongly coupled modes of M and H for perpendicular resonance
Sun, Chen; Saslow, Wayne M.
2018-05-01
We apply the equations for the magnetization M ⃗ and field H ⃗ to study their coupled modes for a semi-infinite ferromagnet, conductor, or insulator with magnetization M0 and field H0 normal to the plane (perpendicular resonance) and wave vector normal to the plane, which makes the modes doubly degenerate. With dimensionless damping constant α and dimensionless transverse susceptibility χ⊥=M0/He(He≡H0-M0) , we derive an analytic expression for the wave vector squared, showing that M ⃗ and H ⃗ are nearly decoupled only if α ≫χ⊥ . This is violated in the ferromagnetic regime, although a first correction is found to give good agreement away from resonance. Emphasizing the conductor permalloy as a function of H0 we study the eigenvalues and eigenmodes and the dissipation rate due to absorption both from the total effective field and from the Joule heating. (We include the contribution of the nonuniform exchange energy term, needed for energy conservation.) Using these modes we then apply, for a semi-infinite ferromagnet, a range of boundary conditions (i.e., surface anisotropies) on M⊥ to find the reflection coefficient R and the reflectivity |R| 2. As a function of H0, absorption is dominated by the the skin depth mode (primarily H ⃗) except near the resonance and at a higher-field Hd associated with a dip in the reflectivity, whose position above the main resonance varies quadratically with the surface anisotropy Ks. The dip is driven by the boundary condition on M ⃗; the coefficient of the (primarily) M ⃗ mode becomes very small at the dip, being compensated by an increase in the amplitude of the M ⃗ mode, which has a Lorentzian line shape of height ˜α-1 and width ˜α .
Thermal DBI action for the D3-brane at weak and strong coupling
DEFF Research Database (Denmark)
Grignani, Gianluca; Harmark, Troels; Marini, Andrea
2014-01-01
We study the effective action for finite-temperature D3-branes with an electromagnetic field at weak and strong coupling. We call this action the thermal DBI action. Comparing at low temperature the leading T4 correction for the thermal DBI action at weak and strong coupling we find that the 3/4 ...
Strong coupling constant extraction from high-multiplicity Z +jets observables
Johnson, Mark; Maître, Daniel
2018-03-01
We present a strong coupling constant extraction at next-to-leading order QCD accuracy using ATLAS Z +2 ,3,4 jets data. This is the first extraction using processes with a dependency on high powers of the coupling constant. We obtain values of the strong coupling constant at the Z mass compatible with the world average and with uncertainties commensurate with other next-to-leading order extractions at hadron colliders. Our most conservative result for the strong coupling constant is αS(MZ)=0.117 8-0.0043+0.0051 .
Strong RFI observed in protected 21 cm band at Zurich observatory, Switzerland
Monstein, C.
2014-03-01
While testing a new antenna control software tool, the telescope was moved to the most western azimuth position pointing to our own building. While de-accelerating the telescope, the spectrometer showed strong broadband radio frequency interference (RFI) and two single-frequency carriers around 1412 and 1425 MHz, both of which are in the internationally protected band. After lengthy analysis it was found out, that the Webcam AXIS2000 was the source for both the broadband and single-frequency interference. Switching off the Webcam solved the problem immediately. So, for future observations of 21 cm radiation, all nearby electronics has to be switched off. Not only the Webcam but also all unused PCs, printers, networks, monitors etc.
Strongly coupled dispersed two-phase flows; Ecoulements diphasiques disperses fortement couples
Energy Technology Data Exchange (ETDEWEB)
Zun, I.; Lance, M.; Ekiel-Jezewska, M.L.; Petrosyan, A.; Lecoq, N.; Anthore, R.; Bostel, F.; Feuillebois, F.; Nott, P.; Zenit, R.; Hunt, M.L.; Brennen, C.E.; Campbell, C.S.; Tong, P.; Lei, X.; Ackerson, B.J.; Asmolov, E.S.; Abade, G.; da Cunha, F.R.; Lhuillier, D.; Cartellier, A.; Ruzicka, M.C.; Drahos, J.; Thomas, N.H.; Talini, L.; Leblond, J.; Leshansky, A.M.; Lavrenteva, O.M.; Nir, A.; Teshukov, V.; Risso, F.; Ellinsen, K.; Crispel, S.; Dahlkild, A.; Vynnycky, M.; Davila, J.; Matas, J.P.; Guazelli, L.; Morris, J.; Ooms, G.; Poelma, C.; van Wijngaarden, L.; de Vries, A.; Elghobashi, S.; Huilier, D.; Peirano, E.; Minier, J.P.; Gavrilyuk, S.; Saurel, R.; Kashinsky, O.; Randin, V.; Colin, C.; Larue de Tournemine, A.; Roig, V.; Suzanne, C.; Bounhoure, C.; Brunet, Y.; Tanaka, A.T.; Noma, K.; Tsuji, Y.; Pascal-Ribot, S.; Le Gall, F.; Aliseda, A.; Hainaux, F.; Lasheras, J.; Didwania, A.; Costa, A.; Vallerin, W.; Mudde, R.F.; Van Den Akker, H.E.A.; Jaumouillie, P.; Larrarte, F.; Burgisser, A.; Bergantz, G.; Necker, F.; Hartel, C.; Kleiser, L.; Meiburg, E.; Michallet, H.; Mory, M.; Hutter, M.; Markov, A.A.; Dumoulin, F.X.; Suard, S.; Borghi, R.; Hong, M.; Hopfinger, E.; Laforgia, A.; Lawrence, C.J.; Hewitt, G.F.; Osiptsov, A.N.; Tsirkunov, Yu. M.; Volkov, A.N.
2003-07-01
This document gathers the abstracts of the Euromech 421 colloquium about strongly coupled dispersed two-phase flows. Behaviors specifically due to the two-phase character of the flow have been categorized as: suspensions, particle-induced agitation, microstructure and screening mechanisms; hydrodynamic interactions, dispersion and phase distribution; turbulence modulation by particles, droplets or bubbles in dense systems; collective effects in dispersed two-phase flows, clustering and phase distribution; large-scale instabilities and gravity driven dispersed flows; strongly coupled two-phase flows involving reacting flows or phase change. Topic l: suspensions particle-induced agitation microstructure and screening mechanisms hydrodynamic interactions between two very close spheres; normal stresses in sheared suspensions; a critical look at the rheological experiments of R.A. Bagnold; non-equilibrium particle configuration in sedimentation; unsteady screening of the long-range hydrodynamic interactions of settling particles; computer simulations of hydrodynamic interactions among a large collection of sedimenting poly-disperse particles; velocity fluctuations in a dilute suspension of rigid spheres sedimenting between vertical plates: the role of boundaries; screening and induced-agitation in dilute uniform bubbly flows at small and moderate particle Reynolds numbers: some experimental results. Topic 2: hydrodynamic interactions, dispersion and phase distribution: hydrodynamic interactions in a bubble array; A 'NMR scattering technique' for the determination of the structure in a dispersion of non-brownian settling particles; segregation and clustering during thermo-capillary migration of bubbles; kinetic modelling of bubbly flows; velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles; an attempt to simulate screening effects at moderate particle Reynolds numbers using an hybrid formulation; modelling the two
Strong Helioseismic Constraints on Weakly-Coupled Plasmas
Nayfonov, Alan
The extraordinary accuracy of helioseismic data allows detailed theoretical studies of solar plasmas. The necessity to produce solar models matching the experimental results in accuracy imposes strong constrains on the equations of state of solar plasmas. Several discrepancies between the experimental data and models have been successfully identified as the signatures of various non-ideal phenomena. Of a particular interest are questions of the position of the energy levels and the continuum edge and of the effect of the excited states in the solar plasma. Calculations of energy level and continuum shifts, based on the Green function formalism, appeared recently in the literature. These results have been used to examine effects of the shifts on the thermodynamic quantities. A comparison with helioseismic data has shown that the calculations based on lower-level approximations, such as the static screening in the effective two-particle wave equation, agree very well with the experimental data. However, the case of full dynamic screening produces thermodynamic quantities inconsistent with observations. The study of the effect of different internal partition functions on a complete set of thermodynamic quantities has revealed the signature of the excited states in the MHD (Mihalas, Hummer, Dappen) equation of state. The presence of exited states causes a characteristic 'wiggle' in the thermodynamic quantities due to the density-dependent occupation probabilities. This effect is absent if the ACTEX (ACTivity EXpansion) equation of state is used. The wiggle has been found to be most prominent in the quantities sensitive to density. The size of this excited states effect is well within the observational power of helioseismology, and very recent inversion analyses of helioseismic data seem to indicate the presence of the wiggle in the sun. This has a potential importance for the helioseismic determination of the helium abundance of the sun.
Coulomb Impurity Problem of Graphene in Strong Coupling Regime in Magnetic Fields.
Kim, S C; Yang, S-R Eric
2015-10-01
We investigate the Coulomb impurity problem of graphene in strong coupling limit in the presence of magnetic fields. When the strength of the Coulomb potential is sufficiently strong the electron of the lowest energy boundstate of the n = 0 Landau level may fall to the center of the potential. To prevent this spurious effect the Coulomb potential must be regularized. The scaling function for the inverse probability density of this state at the center of the impurity potential is computed in the strong coupling regime. The dependence of the computed scaling function on the regularization parameter changes significantly as the strong coupling regime is approached.
Gamma spectroscopical studies of strongly deformed rotational bands in 73Br and 79Sr
International Nuclear Information System (INIS)
Heese, J.
1989-01-01
In the framework of this thesis the excitation structures of the nuclei 73 Br and 79 Sr were studied. For the population of high-spin states the reactions 40 Ca( 36 Ar,3p) 73 Br, -58 Ni( 24 Mg,2αp) 73 Br and 58 Ni( 24 Mg,2pn) 79 Sr were used. The level scheme of 73 Br could be extended by γγ coincidence measurements by 18 new states up to the spins 45/2 + respectively 45/2 - . DSA lifetime measurements yielded information about the deformations of the observed rotational bands. The conversion coefficients of the low-energetic transitions in the range of the excitation spectrum below 500 keV were determined and allowed the assignments of spins and parities. Furthermore the converted decay of the 27-keV state was observed for the first time, from the measured intensities of the electron line the lifetime of this state was estimated to 1.1 ≤ τ ≤ 9.1 μs. The measurement of the lifetime and the g factor of the isomeric 240-keV state confirmed the already known spin values and allowed statements on the particle structure. Lifetime measurements in 79 Sr were performed up to the states 21/2 + and 17/2 - . They yielded informations on E2 and M1 transition strengthened in the rotational bands. The transition strengths calculated from the lifetimes show that both nuclei are strongly prolate deformed. The sign of the deformation could be concluded in the case of 73 Br from the observed band structure, in 79 Sr it was calculated from E2/M1 mixing ratios. The E2-transition strengths show a reduction in both nuclei in the region of the g 9/2 proton alignment. Alignment effects in the rotational bands were discussed in the framework of the cranked shell model. Microscopical calculations in the Hartree-Fock-Bogolyubov cranking model with a deformed Woods-Saxon potential were performed. (orig./HSI) [de
Optical Control of Mechanical Mode-Coupling within a MoS2 Resonator in the Strong-Coupling Regime.
Liu, Chang-Hua; Kim, In Soo; Lauhon, Lincoln J
2015-10-14
Two-dimensional (2-D) materials including graphene and transition metal dichalcogenides (TMDs) are an exciting platform for ultrasensitive force and displacement detection in which the strong light-matter coupling is exploited in the optical control of nanomechanical motion. Here we report the optical excitation and displacement detection of a ∼ 3 nm thick MoS2 resonator in the strong-coupling regime, which has not previously been achieved in 2-D materials. Mechanical mode frequencies can be tuned by more than 12% by optical heating, and they exhibit avoided crossings indicative of strong intermode coupling. When the membrane is optically excited at the frequency difference between vibrational modes, normal mode splitting is observed, and the intermode energy exchange rate exceeds the mode decay rate by a factor of 15. Finite element and analytical modeling quantifies the extent of mode softening necessary to control intermode energy exchange in the strong coupling regime.
International Nuclear Information System (INIS)
Bouis, F.
1999-01-01
Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)
The quantum Zeno and anti-Zeno effects with strong system-environment coupling.
Chaudhry, Adam Zaman
2017-05-11
To date, studies of the quantum Zeno and anti-Zeno effects focus on quantum systems that are weakly interacting with their environment. In this paper, we investigate what happens to a quantum system under the action of repeated measurements if the quantum system is strongly interacting with its environment. We consider as the quantum system a single two-level system coupled strongly to a collection of harmonic oscillators. A so-called polaron transformation is then used to make the problem in the strong system-environment coupling regime tractable. We find that the strong coupling case exhibits quantitative and qualitative differences as compared with the weak coupling case. In particular, the effective decay rate does not depend linearly on the spectral density of the environment. This then means that, in the strong coupling regime that we investigate, increasing the system-environment coupling strength can actually decrease the effective decay rate. We also consider a collection of two-level atoms coupled strongly with a common environment. In this case, we find that there are further differences between the weak and strong coupling cases since the two-level atoms can now indirectly interact with one another due to the common environment.
Large photonic band gaps and strong attenuations of two-segment-connected Peano derivative networks
International Nuclear Information System (INIS)
Lu, Jian; Yang, Xiangbo; Zhang, Guogang; Cai, Lianzhang
2011-01-01
In this Letter, based on ancient Peano curves we construct four kinds of interesting Peano derivative networks composed of one-dimensional (1D) waveguides and investigate the optical transmission spectra and photonic attenuation behavior of electromagnetic (EM) waves in one- and two-segment-connected networks. It is found that for some two-segment-connected networks large photonic band gaps (PBGs) can be created and the widths of large PBGs can be controlled by adjusting the matching ratio of waveguide length and are insensitive to generation number. Diamond- and hexagon-Peano networks are good selectable structures for the designing of optical devices with large PBG(s) and strong attenuation(s). -- Highlights: → Peano and Peano derivative networks composed of 1D waveguides are designed. → Large PBGs with strong attenuations have been created by these fractal networks. → New approach for designing optical devices with large PBGs is proposed. → Diamond- and hexagon-Peano networks with d2:d1=2:1 are good selectable structures.
Assessing the importance of frustration in a narrow-band strongly correlated electronic chain
International Nuclear Information System (INIS)
Lal, Siddhartha; Laad, Mukul S.
2007-08-01
We study a one-dimensional extended Hubbard model with longer-range Coulomb interactions at quarter-filling in the strong coupling limit. In this limit, we find the one dimensional transverse field Ising model (TFIM) to be the effective Hamiltonian governing the dynamics of the charge degrees of freedom. We find two different charge-ordered (CO) ground states as the strength of the longer range interactions is varied. At lower energies, these CO states drive two different spin-ordered ground states. A variety of response functions computed here bear a remarkable resemblance to recent experimental observations for organic TMTSF systems, and so we propose that these systems are proximate to a QCP associated with T = 0 charge order. (author)
Band Gap Distortion in Semiconductors Strongly Driven by Intense Mid-Infrared Laser Fields
Kono, J.; Chin, A. H.
2000-03-01
Crystalline solids non-resonantly driven by intense time-periodic electric fields are predicted to exhibit unusual band-gap distortion.(e.g., Y. Yacoby, Phys. Rev. 169, 610 (1968); L.C.M. Miranda, Solid State Commun. 45, 783 (1983); J.Z. Kaminski, Acta Physica Polonica A 83, 495(1993).) Such non-perturbative effects have not been observed to date because of the unavoidable sample damage due to the very high intensity required using conventional lasers ( 1 eV photon energy). Here, we report the first clear evidence of laser-induced bandgap shrinkage in semiconductors under intense mid-infrared (MIR) laser fields. The use of long-wavelength light reduces the required intensity and prohibits strong interband absorption, thereby avoiding the damage problem. The significant sub-bandgap absorption persists only during the existence of the MIR laser pulse, indicating the virtual nature of the effect. We show that this particular example of non-perturbative behavior, known as the dynamical Franz-Keldysh effect, occurs when the effective ponderomotive potential energy is comparable to the photon energy of the applied field. This work was supported by ONR, NSF, JST and NEDO.
Ratio of bulk to shear viscosity in a quasigluon plasma: from weak to strong coupling
Bluhm, M; Redlich, K
2012-01-01
The ratio of bulk to shear viscosity is expected to exhibit a different behaviour in weakly and in strongly coupled systems. This can be expressed by the dependence of the ratio on the squared sound velocity. In the high temperature QCD plasma at small running coupling, the viscosity ratio is uniquely determined by a quadratic dependence on the conformality measure, whereas in certain strongly coupled and nearly conformal theories this dependence is linear. Employing an effective kinetic theory of quasiparticle excitations with medium-modified dispersion relation, we analyze the ratio of bulk to shear viscosity of the gluon plasma. We show that in this approach the viscosity ratio comprises both dependencies found by means of weak coupling perturbative and strong coupling holographic techniques.
Electrically tunable single-dot nanocavities in the weak and strong coupling regimes
DEFF Research Database (Denmark)
Laucht, Arne; Hofbauer, Felix; Angele, Jacob
2008-01-01
We report the design, fabrication and optical investigation of electrically tunable single quantum dot - photonic crystal defect nanocavities [1] operating in both the weak and strong coupling regimes of the light matter interaction. Unlike previous studies, where the dot-cavity spectral detuning...... of the emitted photons from a single-dot nanocavity in the weak and strong coupling regimes. New information is obtained on the nature of the dot-cavity coupling in the weak coupling regime and electrical control of zero dimensional polaritons is demonstrated for the first time. Vacuum Rabi splittings up to 2g...... electrical readout of the strongly coupled dot-cavity system using photocurrent methods will be discussed. This work is financially supported by the DFG via SFB 631 and by the German Excellence Initiative via the “Nanosystems Initiative Munich (NIM)”....
Dovzhenko, D S; Ryabchuk, S V; Rakovich, Yu P; Nabiev, I R
2018-02-22
Resonance interaction between a molecular transition and a confined electromagnetic field can reach the coupling regime where coherent exchange of energy between light and matter becomes reversible. In this case, two new hybrid states separated in energy are formed instead of independent eigenstates, which is known as Rabi splitting. This modification of the energy spectra of the system offers new possibilities for controlled impact on various fundamental properties of coupled matter (such as the rate of chemical reactions and the conductivity of organic semiconductors). To date, the strong coupling regime has been demonstrated in many configurations under different ambient conditions. However, there is still no comprehensive approach to determining parameters for achieving the strong coupling regime for a wide range of practical applications. In this review, a detailed analysis of various systems and corresponding conditions for reaching strong coupling is carried out and their advantages and disadvantages, as well as the prospects for application, are considered. The review also summarizes recent experiments in which the strong coupling regime has led to new interesting results, such as the possibility of collective strong coupling between X-rays and matter excitation in a periodic array of Fe isotopes, which extends the applications of quantum optics; a strong amplification of the Raman scattering signal from a coupled system, which can be used in surface-enhanced and tip-enhanced Raman spectroscopy; and more efficient second-harmonic generation from the low polaritonic state, which is promising for nonlinear optics. The results reviewed demonstrate great potential for further practical applications of strong coupling in the fields of photonics (low-threshold lasers), quantum communications (switches), and biophysics (molecular fingerprinting).
Strasberg, Philipp; Schaller, Gernot; Schmidt, Thomas L.; Esposito, Massimiliano
2018-05-01
We establish a theoretical method which goes beyond the weak-coupling and Markovian approximations while remaining intuitive, using a quantum master equation in a larger Hilbert space. The method is applicable to all impurity Hamiltonians tunnel coupled to one (or multiple) baths of free fermions. The accuracy of the method is in principle not limited by the system-bath coupling strength, but rather by the shape of the spectral density and it is especially suited to study situations far away from the wide-band limit. In analogy to the bosonic case, we call it the fermionic reaction coordinate mapping. As an application, we consider a thermoelectric device made of two Coulomb-coupled quantum dots. We pay particular attention to the regime where this device operates as an autonomous Maxwell demon shoveling electrons against the voltage bias thanks to information. Contrary to previous studies, we do not rely on a Markovian weak-coupling description. Our numerical findings reveal that in the regime of strong coupling and non-Markovianity, the Maxwell demon is often doomed to disappear except in a narrow parameter regime of small power output.
Second order approximation for optical polaron in the strong coupling case
International Nuclear Information System (INIS)
Bogolubov, N.N. Jr.
1993-11-01
Here we propose a method of construction second order approximation for ground state energy for class of model Hamiltonian with linear type interaction on Bose operators in strong coupling case. For the application of the above method we have considered polaron model and propose construction set of nonlinear differential equations for definition ground state energy in strong coupling case. We have considered also radial symmetry case. (author). 10 refs
Electron screening and kinetic-energy oscillations in a strongly coupled plasma
International Nuclear Information System (INIS)
Chen, Y.C.; Simien, C.E.; Laha, S.; Gupta, P.; Martinez, Y.N.; Mickelson, P.G.; Nagel, S.B.; Killian, T.C.
2004-01-01
We study equilibration of strongly coupled ions in an ultracold neutral plasma produced by photoionizing laser-cooled and trapped atoms. By varying the electron temperature, we show that electron screening modifies the equilibrium ion temperature. Even with few electrons in a Debye sphere, the screening is well described by a model using a Yukawa ion-ion potential. We also observe damped oscillations of the ion kinetic energy that are a unique feature of equilibration of a strongly coupled plasma
Storti, Mario A.; Nigro, Norberto M.; Paz, Rodrigo R.; Dalcín, Lisandro D.
2009-03-01
In this paper some results on the convergence of the Gauss-Seidel iteration when solving fluid/structure interaction problems with strong coupling via fixed point iteration are presented. The flow-induced vibration of a flat plate aligned with the flow direction at supersonic Mach number is studied. The precision of different predictor schemes and the influence of the partitioned strong coupling on stability is discussed.
Towards a hybrid strong/weak coupling approach to jet quenching
Casalderrey-Solana, Jorge; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2014-01-01
We explore a novel hybrid model containing both strong and weak coupling physics for high energy jets traversing a deconfined medium. This model is based on supplementing a perturbative DGLAP shower with strongly coupled energy loss rate. We embed this system into a realistic hydrodynamic evolution of hot QCD plasma. We confront our results with LHC data, obtaining good agreement for jet RAARAA, dijet imbalance AJAJ and fragmentation functions.
Extending the reach of strong-coupling: an iterative technique for Hamiltonian lattice models
International Nuclear Information System (INIS)
Alberty, J.; Greensite, J.; Patkos, A.
1983-12-01
The authors propose an iterative method for doing lattice strong-coupling-like calculations in a range of medium to weak couplings. The method is a modified Lanczos scheme, with greatly improved convergence properties. The technique is tested on the Mathieu equation and on a Hamiltonian finite-chain XY model, with excellent results. (Auth.)
Photon and spin dependence of the resonance line shape in the strong coupling regime
Miyashita, Seiji; Shirai, Tatsuhiko; Mori, Takashi; De Raedt, Hans; Bertaina, Sylvain; Chiorescu, Irinel
2012-01-01
We study the quantum dynamics of a spin ensemble coupled to cavity photons. Recently, related experimental results have been reported, showing the existence of the strong coupling regime in such systems. We study the eigenenergy distribution of the multi-spin system (following the Tavis-Cummings
Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity
International Nuclear Information System (INIS)
Nozieres, P.; Schmitt-Rink, S.
1985-01-01
We consider a gas of fermions interacting via an attractive potential. We study the ground state of that system and calculate the critical temperature for the onset of superconductivity as a function of the coupling strength. We compare the behavior of continuum and lattice models and show that the evolution from weak to strong coupling superconductivity is smooth
Bagci, Fulya; Akaoglu, Baris
2017-08-01
We present a metamaterial configuration exhibiting single and multi-band electromagnetic induced transparency (EIT)-like properties. The unit cell of the single band EIT-like metamaterial consists of a multi-split ring resonator surrounded by a split ring resonator. The multi-split ring resonator acts as a quasi-dark or dark resonator, depending on the polarization of the incident wave, and the split ring resonator serves as the bright resonator. Combination of these two resonators results in a single band EIT-like transmission inside the stop band. EIT-like transmission phenomenon is also clearly observed in the measured transmission spectrum at almost the same frequencies for vertical and horizontal polarized waves, and the numerical results are verified for normal incidence. Moreover, multi-band transmission windows are created within a wide band by combining the two slightly different single band EIT-like metamaterial unit cells that exhibit two different coupling strengths inside a supercell configuration. Group indices as high as 123 for single band and 488 for tri-band transmission, accompanying with high transmission rates (over 80%), are achieved, rendering the metamaterial very suitable for multi-band slow light applications. It is shown that the group delay of the propagating wave can be increased and dynamically controlled by changing the polarization angle. Multi-band EIT-like transmission is also verified experimentally, and a good agreement with simulations is obtained. The proposed novel methodology for obtaining multi-band EIT, which takes advantage of a supercell configuration by hosting slightly different configured unit cells, can be utilized for easily formation and manipulation of multi-band transmission windows inside a stop band.
Zhou, Ning; Yuan, Meng; Gao, Yuhan; Li, Dongsheng; Yang, Deren
2016-04-26
Strong coupling between semiconductor excitons and localized surface plasmons (LSPs) giving rise to hybridized plexciton states in which energy is coherently and reversibly exchanged between the components is vital, especially in the area of quantum information processing from fundamental and practical points of view. Here, in photoluminescence spectra, rather than from common extinction or reflection measurements, we report on the direct observation of Rabi splitting of approximately 160 meV as an indication of strong coupling between excited states of CdSe/ZnS quantum dots (QDs) and LSP modes of silver nanoshells under nonresonant nanosecond pulsed laser excitation at room temperature. The strong coupling manifests itself as an anticrossing-like behavior of the two newly formed polaritons when tuning the silver nanoshell plasmon energies across the exciton line of the QDs. Further analysis substantiates the essentiality of high pump energy and collective strong coupling of many QDs with the radiative dipole mode of the metallic nanoparticles for the realization of strong coupling. Our finding opens up interesting directions for the investigation of strong coupling between LSPs and excitons from the perspective of radiative recombination under easily accessible experimental conditions.
Strong coupling of a single electron in silicon to a microwave photon
Mi, X.; Cady, J. V.; Zajac, D. M.; Deelman, P. W.; Petta, J. R.
2017-01-01
Silicon is vital to the computing industry because of the high quality of its native oxide and well-established doping technologies. Isotopic purification has enabled quantum coherence times on the order of seconds, thereby placing silicon at the forefront of efforts to create a solid-state quantum processor. We demonstrate strong coupling of a single electron in a silicon double quantum dot to the photonic field of a microwave cavity, as shown by the observation of vacuum Rabi splitting. Strong coupling of a quantum dot electron to a cavity photon would allow for long-range qubit coupling and the long-range entanglement of electrons in semiconductor quantum dots.
Strong coupling and polariton lasing in Te based microcavities embedding (Cd,Zn)Te quantum wells
Energy Technology Data Exchange (ETDEWEB)
Rousset, J.-G., E-mail: j-g.rousset@fuw.edu.pl; Piętka, B.; Król, M.; Mirek, R.; Lekenta, K.; Szczytko, J.; Borysiuk, J.; Suffczyński, J.; Kazimierczuk, T.; Goryca, M.; Smoleński, T.; Kossacki, P.; Nawrocki, M.; Pacuski, W. [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warszawa (Poland)
2015-11-16
We report on properties of an optical microcavity based on (Cd,Zn,Mg)Te layers and embedding (Cd,Zn)Te quantum wells. The key point of the structure design is the lattice matching of the whole structure to MgTe, which eliminates the internal strain and allows one to embed an arbitrary number of unstrained quantum wells in the microcavity. We evidence the strong light-matter coupling regime already for the structure containing a single quantum well. Embedding four unstrained quantum wells results in further enhancement of the exciton-photon coupling and the polariton lasing in the strong coupling regime.
Liu, Yizhou; Cohen, Ryan D.; Martin, Gary E.; Williamson, R. Thomas
2018-06-01
Accurate measurement of residual dipolar couplings (RDCs) requires an appropriate degree of alignment in order to optimize data quality. An overly weak alignment yields very small anisotropic data that are susceptible to measurement errors, whereas an overly strong alignment introduces extensive anisotropic effects that severely degrade spectral quality. The ideal alignment amplitude also depends on the specific pulse sequence used for the coupling measurement. In this work, we introduce a practical strategy for the accurate measurement of one-bond 13C-1H RDCs up to a range of ca. -300 to +300 Hz, corresponding to an alignment that is an order of magnitude stronger than typically employed for small molecule structural elucidation. This strong alignment was generated in the mesophase of the commercially available poly-γ-(benzyl-L-glutamate) polymer. The total coupling was measured by the simple and well-studied heteronuclear two-dimensional J-resolved experiment, which performs well in the presence of strong anisotropic effects. In order to unequivocally determine the sign of the total coupling and resolve ambiguities in assigning total couplings in the CH2 group, coupling measurements were conducted at an isotropic condition plus two anisotropic conditions of different alignment amplitudes. Most RDCs could be readily extracted from these measurements whereas more complicated spectral effects resulting from strong homonuclear coupling could be interpreted either theoretically or by simulation. Importantly, measurement of these very large RDCs actually offers significantly improved data quality and utility for the structure determination of small organic molecules.
Strong coupling of two interacting excitons confined in a nanocavity-quantum dot system
International Nuclear Information System (INIS)
Cardenas, Paulo C; RodrIguez, Boris A; Quesada, Nicolas; Vinck-Posada, Herbert
2011-01-01
We present a study of the strong coupling between radiation and matter, considering a system of two quantum dots, which are in mutual interaction and interact with a single mode of light confined in a semiconductor nanocavity. We take into account dissipative mechanisms such as the escape of the cavity photons, decay of the quantum dot excitons by spontaneous emission, and independent exciton pumping. It is shown that the mutual interaction between the dots can be measured off-resonance only if the strong coupling condition is reached. Using the quantum regression theorem, a reasonable definition of the dynamical coupling regimes is introduced in terms of the complex Rabi frequency. Finally, the emission spectrum for relevant conditions is presented and compared with the above definition, demonstrating that the interaction between the excitons does not affect the strong coupling.
Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature.
Kleemann, Marie-Elena; Chikkaraddy, Rohit; Alexeev, Evgeny M; Kos, Dean; Carnegie, Cloudy; Deacon, Will; de Pury, Alex Casalis; Große, Christoph; de Nijs, Bart; Mertens, Jan; Tartakovskii, Alexander I; Baumberg, Jeremy J
2017-11-03
Strong coupling of monolayer metal dichalcogenide semiconductors with light offers encouraging prospects for realistic exciton devices at room temperature. However, the nature of this coupling depends extremely sensitively on the optical confinement and the orientation of electronic dipoles and fields. Here, we show how plasmon strong coupling can be achieved in compact, robust, and easily assembled gold nano-gap resonators at room temperature. We prove that strong-coupling is impossible with monolayers due to the large exciton coherence size, but resolve clear anti-crossings for greater than 7 layer devices with Rabi splittings exceeding 135 meV. We show that such structures improve on prospects for nonlinear exciton functionalities by at least 10 4 , while retaining quantum efficiencies above 50%, and demonstrate evidence for superlinear light emission.
Energy Technology Data Exchange (ETDEWEB)
Hensen, Matthias [Institut; Heilpern, Tal [Center; Gray, Stephen K. [Center; Pfeiffer, Walter [Fakultät
2017-10-12
Establishing strong coupling between spatially separated and thus selectively addressable quantum emitters is a key ingredient to complex quantum optical schemes in future technologies. Insofar as many plasmonic nanostructures are concerned, however, the energy transfer and mutual interaction strength between distant quantum emitters can fail to provide strong coupling. Here, based on mode hybridization, the longevity and waveguide character of an elliptical plasmon cavity are combined with intense and highly localized field modes of suitably designed nanoantennas. Based on FDTD simulations a quantum emitter-plasmon coupling strength hg = 16.7 meV is reached while simultaneously keeping a small plasmon resonance line width h gamma(s) = 33 meV. This facilitates strong coupling, and quantum dynamical simulations reveal an oscillatory exchange of excited state population arid a notable degree of entanglement between the quantum emitters spatially separated by 1.8 mu m, i.e., about twice the operating wavelength.
Regge meets collinear in strongly-coupled N=4 super Yang-Mills
Energy Technology Data Exchange (ETDEWEB)
Sprenger, Martin [Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)
2017-01-10
We revisit the calculation of the six-gluon remainder function in planar N=4 super Yang-Mills theory from the strong coupling TBA in the multi-Regge limit and identify an infinite set of kinematically subleading terms. These new terms can be compared to the strong coupling limit of the finite-coupling expressions for the impact factor and the BFKL eigenvalue proposed by Basso et al. in https://www.doi.org/10.1007/JHEP01(2015)027, which were obtained from an analytic continuation of the Wilson loop OPE. After comparing the results order by order in those subleading terms, we show that it is possible to precisely map both formalisms onto each other. A similar calculation can be carried out for the seven-gluon amplitude, the result of which shows that the central emission vertex does not become trivial at strong coupling.
Strong self-coupling expansion in the lattice-regularized standard SU(2) Higgs model
International Nuclear Information System (INIS)
Decker, K.; Weisz, P.; Montvay, I.
1985-11-01
Expectation values at an arbitrary point of the 3-dimensional coupling parameter space in the lattice-regularized SU(2) Higgs-model with a doublet scalar field are expressed by a series of expectation values at infinite self-coupling (lambda=infinite). Questions of convergence of this 'strong self-coupling expansion' (SSCE) are investigated. The SSCE is a potentially useful tool for the study of the lambda-dependence at any value (zero or non-zero) of the bare gauge coupling. (orig.)
Strong Interlayer Magnon-Magnon Coupling in Magnetic Metal-Insulator Hybrid Nanostructures
Chen, Jilei; Liu, Chuanpu; Liu, Tao; Xiao, Yang; Xia, Ke; Bauer, Gerrit E. W.; Wu, Mingzhong; Yu, Haiming
2018-05-01
We observe strong interlayer magnon-magnon coupling in an on-chip nanomagnonic device at room temperature. Ferromagnetic nanowire arrays are integrated on a 20-nm-thick yttrium iron garnet (YIG) thin film strip. Large anticrossing gaps up to 1.58 GHz are observed between the ferromagnetic resonance of the nanowires and the in-plane standing spin waves of the YIG film. Control experiments and simulations reveal that both the interlayer exchange coupling and the dynamical dipolar coupling contribute to the observed anticrossings. The coupling strength is tunable by the magnetic configuration, allowing the coherent control of magnonic devices.
Strong self-coupling expansion in the lattice-regularized standard SU(2) Higgs model
International Nuclear Information System (INIS)
Decker, K.; Weisz, P.
1986-01-01
Expectation values at an arbitrary point of the 3-dimensional coupling parameter space in the lattice-regularized SU(2) Higgs model with a doublet scalar field are expressed by a series of expectation values at infinite self-coupling (lambda=infinite). Questions of convergence of this ''strong self-coupling expansion'' (SSCE) are investigated. The SSCE is a potentially useful tool for the study of the lambda-dependence at any value (zero or non-zero) of the bare gauge coupling. (orig.)
Strongly coupled SU(2v boson and LEP1 versus LEP2
Directory of Open Access Journals (Sweden)
M. Bilenky
1993-10-01
Full Text Available If new strong interactions exist in the electroweak bosonic sector (e.g., strong Higgs sector, dynamical electroweak breaking, etc., it is natural to expect new resonances, with potentially strong couplings. We consider an additional vector-boson triplet, V+-, V0, associated with an SU(2v local symmetry under the specific (but rather natural assumption that ordinary fermions are SU(2v singlets. Mixing of the V triplet with the W+-, Z0 bosons effectively leads to an SU(2L×U(1Y violating vector-boson-fermion interaction which is strongly bounded by LEP1 data. In contrast, the potentially large deviation of the Z0W+W- coupling from its SU(2L×U(1Y value is hardly constrained by LEP1 data. Results from experiments with direct access to the trilinear Z0W+W− coupling (LEP200, NLC are urgently needed.
Analog quantum simulation of the Rabi model in the ultra-strong coupling regime.
Braumüller, Jochen; Marthaler, Michael; Schneider, Andre; Stehli, Alexander; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V
2017-10-03
The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal interaction. In the weak coupling regime, it reduces to the well-known Jaynes-Cummings model by applying a rotating wave approximation. The rotating wave approximation breaks down in the ultra-strong coupling regime, where the effective coupling strength g is comparable to the energy ω of the bosonic mode, and remarkable features in the system dynamics are revealed. Here we demonstrate an analog quantum simulation of an effective quantum Rabi model in the ultra-strong coupling regime, achieving a relative coupling ratio of g/ω ~ 0.6. The quantum hardware of the simulator is a superconducting circuit embedded in a cQED setup. We observe fast and periodic quantum state collapses and revivals of the initial qubit state, being the most distinct signature of the synthesized model.An analog quantum simulation scheme has been explored with a quantum hardware based on a superconducting circuit. Here the authors investigate the time evolution of the quantum Rabi model at ultra-strong coupling conditions, which is synthesized by slowing down the system dynamics in an effective frame.
Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials
International Nuclear Information System (INIS)
Roy Chowdhury, Dibakar; Xu, Ningning; Zhang, Weili; Singh, Ranjan
2015-01-01
Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials
Solving the strongly coupled 2D gravity III. String suspectibility and topological N-point functions
International Nuclear Information System (INIS)
Gervais, J.-L.; Roussel, J.-F.
1996-01-01
For pt.II see ibid., vol 426, p.140-86, 1994. We spell out the derivation of novel features, put forward earlier in a letter, of two-dimensional gravity in the strong coupling regime, at C L =7, 13, 19. Within the operator approach previously developed, they neatly follow from the appearance of a new cosmological term/marginal operator, different from the standard weak-coupling one, that determines the world-sheet interaction. The corresponding string susceptibility is obtained and found real contrary to the continuation of the KPZ formula. Strongly coupled (topological like) models - only involving zero-mode degrees of freedom - are solved up to sixth order, using the Ward identities which follow from the dependence upon the new cosmological constant. They are technically similar to the weakly coupled ones, which reproduce the matrix model results, but gravity and matter quantum numbers are entangled differently. (orig.)
Hyperpolarizabilities of one and two electron ions under strongly coupled plasma
International Nuclear Information System (INIS)
Sen, Subhrangsu; Mandal, Puspajit; Kumar Mukherjee, Prasanta; Fricke, Burkhard
2013-01-01
Systematic investigations on the hyperpolarizabilities of hydrogen and helium like ions up to nuclear charge Z = 7 under strongly coupled plasma environment have been performed. Variation perturbation theory has been adopted to evaluate such properties for the one and two electron systems. For the two electron systems coupled Hartree-Fock theory, which takes care of partial electron correlation effects, has been utilised. Ion sphere model of the strongly coupled plasma, valid for ionic systems only, has been adopted for estimating the effect of plasma environment on the hyperpolarizability. The calculated free ion hyperpolarizability for all the systems is in good agreement with the existing data. Under confinement hyperpolarizabilities of one and two electron ions show interesting trend with respect to plasma coupling strength.
International Nuclear Information System (INIS)
Piil, Rune; Moelmer, Klaus
2007-01-01
By adjusting the tunneling couplings over longer than nearest-neighbor distances, it is possible in discrete lattice models to reproduce the properties of the lowest energy band of a real, continuous periodic potential. We propose to include such terms in problems with interacting particles, and we show that they have significant consequences for scattering and bound states of atom pairs in periodic potentials
The strong-weak coupling symmetry in 2D Φ4 field models
Directory of Open Access Journals (Sweden)
B.N.Shalaev
2005-01-01
Full Text Available It is found that the exact beta-function β(g of the continuous 2D gΦ4 model possesses two types of dual symmetries, these being the Kramers-Wannier (KW duality symmetry and the strong-weak (SW coupling symmetry f(g, or S-duality. All these transformations are explicitly constructed. The S-duality transformation f(g is shown to connect domains of weak and strong couplings, i.e. above and below g*. Basically it means that there is a tempting possibility to compute multiloop Feynman diagrams for the β-function using high-temperature lattice expansions. The regular scheme developed is found to be strongly unstable. Approximate values of the renormalized coupling constant g* found from duality symmetry equations are in an agreement with available numerical results.
The status of the strong coupling from tau decays in 2016
Boito, Diogo; Golterman, Maarten; Maltman, Kim; Peris, Santiago
2017-06-01
While the idea of using the operator product expansion (OPE) to extract the strong coupling from hadronic τ decay data is not new, there is an ongoing controversy over how to include quark-hadron ;duality violations; (i.e., resonance effects) which are not described by the OPE. One approach attempts to suppress duality violations enough that they might become negligible, but pays the price of an uncontrolled OPE truncation. We critically examine a recent analysis using this approach and show that it fails to properly account for non-perturbative effects, making the resulting determination of the strong coupling unreliable. In a different approach duality violations are taken into account with a model, avoiding the OPE truncation. This second approach provides a self-consistent determination of the strong coupling from τ decays.
The Bekenstein bound in strongly coupled O(N) scalar field theory
International Nuclear Information System (INIS)
Magalhaes, T. Santos; Svaiter, N.F.; Menezes, G.
2009-09-01
We discuss the O(N) self-interacting scalar field theory, in the strong-coupling regime and also in the limit of large N. Considering that the system is in thermal equilibrium with a reservoir at temperature β -1 , we assume the presence of macroscopic boundaries conning the field in a hypercube of side L. Using the strong-coupling perturbative expansion, we generalize previous results, i.e., we obtain the renormalized mean energy E and entropy S for the system in rst order of the strong-coupling perturbative expansion, presenting an analytical proof that the specific entropy also satisfies in some situations a quantum bound. When considering the low temperature behavior of the specific entropy, the sign of the renormalized zero-point energy can invalidate this quantum bound. If the renormalized zero point-energy is a positive quantity, at intermediate temperatures and in the low temperature limit, there is a quantum bound. (author)
Communication: A Jastrow factor coupled cluster theory for weak and strong electron correlation
International Nuclear Information System (INIS)
Neuscamman, Eric
2013-01-01
We present a Jastrow-factor-inspired variant of coupled cluster theory that accurately describes both weak and strong electron correlation. Compatibility with quantum Monte Carlo allows for variational energy evaluations and an antisymmetric geminal power reference, two features not present in traditional coupled cluster that facilitate a nearly exact description of the strong electron correlations in minimal-basis N 2 bond breaking. In double-ζ treatments of the HF and H 2 O bond dissociations, where both weak and strong correlations are important, this polynomial cost method proves more accurate than either traditional coupled cluster or complete active space perturbation theory. These preliminary successes suggest a deep connection between the ways in which cluster operators and Jastrow factors encode correlation
From Kondo model and strong coupling lattice QCD to the Isgur-Wise function
International Nuclear Information System (INIS)
Patel, Apoorva
1995-01-01
Isgur-Wise functions parametrise the leading behaviour of weak decay form factors of mesons and baryons containing a single heavy quark. The form factors for the quark mass operator are calculated in strong coupling lattice QCD, and Isgur-Wise functions extracted from them. Based on renormalisation group invariance of the operators involved, it is argued that the Isgur-Wise functions would be the same in the weak coupling continuum theory. (author)
Ideal gas behavior of a strongly-coupled complex (dusty) plasma
Oxtoby, Neil P.; Griffith, Elias J.; Durniak, Céline; Ralph, Jason F.; Samsonov, Dmitry
2012-01-01
In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly-coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.
Plexcitons: The Role of Oscillator Strengths and Spectral Widths in Determining Strong Coupling
Energy Technology Data Exchange (ETDEWEB)
Thomas, Reshmi [School; Thomas, Anoop [School; Pullanchery, Saranya [School; Joseph, Linta [School; Somasundaran, Sanoop Mambully [School; Swathi, Rotti Srinivasamurthy [School; Gray, Stephen K. [Center; Thomas, K. George [School
2018-01-05
Strong coupling interactions between plasmon and exciton-based excitations have been proposed to be useful in the design of optoelectronic systems. However, the role of various optical parameters dictating the plasmon-exciton (plexciton) interactions is less understood. Herein, we propose an inequality for achieving strong coupling between plasmons and excitons through appropriate variation of their oscillator strengths and spectral widths. These aspects are found to be consistent with experiments on two sets of free-standing plexcitonic systems obtained by (i) linking fluorescein isothiocyanate on Ag nanoparticles of varying sizes through silane coupling and (ii) electrostatic binding of cyanine dyes on polystyrenesulfonate-coated Au nanorods of varying aspect ratios. Being covalently linked on Ag nanoparticles, fluorescein isothiocyanate remains in monomeric state, and its high oscillator strength and narrow spectral width enable us to approach the strong coupling limit. In contrast, in the presence of polystyrenesulfonate, monomeric forms of cyanine dyes exist in equilibrium with their aggregates: Coupling is not observed for monomers and H-aggregates whose optical parameters are unfavorable. The large aggregation number, narrow spectral width, and extremely high oscillator strength of J-aggregates of cyanines permit effective delocalization of excitons along the linear assembly of chromophores, which in turn leads to efficient coupling with the plasmons. Further, the results obtained from experiments and theoretical models are jointly employed to describe the plexcitonic states, estimate the coupling strengths, and rationalize the dispersion curves. The experimental results and the theoretical analysis presented here portray a way forward to the rational design of plexcitonic systems attaining the strong coupling limits.
High-energy scattering in strongly coupled N=4 super Yang-Mills theory
International Nuclear Information System (INIS)
Sprenger, Martin
2014-11-01
This thesis concerns itself with the analytic structure of scattering amplitudes in strongly coupled N=4 super Yang-Mills theory (abbreviated N = 4 SYM) in the multi-Regge limit. Through the AdS/CFT-correspondence observables in strongly coupled N = 4 SYM are accessible via dual calculations in a weakly coupled string theory on an AdS 5 x S 5 -geometry, in which observables can be calculated using standard perturbation theory. In particular, the calculation of the leading order of the n-gluon amplitude in N = 4 SYM at strong coupling corresponds to the calculation of a minimal surface embedded into AdS 5 . This surface ends on the concatenation of the gluon momenta, which is a light-like curve. The calculation of the minimal surface area can be reduced to finding the solution of a set of non-linear, coupled integral equations, which have no analytic solution in arbitrary kinematics. In this thesis, we therefore specialise to the multi-Regge limit, the n-particle generalisation of the Regge limit. This limit is especially interesting as even in the description of scattering amplitudes in weakly coupled N = 4 SYM in this limit a certain set of Feynman diagrams has to be resummed. This description organises itself into orders of logarithms of the energy involved in the scattering process. In this expansion each order in logarithms includes terms from every order in the coupling constant and therefore contains information about the strong coupling sector of the theory, albeit in a very specific way. This raises the central question of this thesis, which is how much of the analytic structure of the scattering amplitudes in the multi-Regge limit is preserved as we go to the strong coupling regime. We show that the equations governing the area of the minimal surface simplify drastically in the multi-Regge limit, which allows us to obtain analytic results for the scattering amplitudes. We develop an algorithm for the calculation of scattering amplitudes in the multi
Strong/weak coupling duality relations for non-supersymmetric string theories
International Nuclear Information System (INIS)
Blum, J.D.; Dienes, K.R.
1998-01-01
Both the supersymmetric SO(32) and E 8 x E 8 heterotic strings in ten dimensions have known strong-coupling duals. However, it has not been known whether there also exist strong-coupling duals for the non-supersymmetric heterotic strings in ten dimensions. In this paper, we construct explicit open-string duals for the circle compactifications of several of these non-supersymmetric theories, among them the tachyon-free SO(16) x SO(16) string. Our method involves the construction of heterotic and open-string interpolating models that continuously connect non-supersymmetric strings to supersymmetric strings. We find that our non-supersymmetric dual theories have exactly the same massless spectra as their heterotic counterparts within a certain range of our interpolations. We also develop a novel method for analyzing the solitons of non-supersymmetric open-string theories, and find that the solitons of our dual theories also agree with their heterotic counterparts. These are therefore the first known examples of strong/weak coupling duality relations between non-supersymmetric, tachyon-free string theories. Finally, the existence of these strong-coupling duals allows us to examine the non-perturbative stability of these strings, and we propose a phase diagram for the behavior of these strings as a function of coupling and radius. (orig.)
Classical integrability for three-point functions: cognate structure at weak and strong couplings
Energy Technology Data Exchange (ETDEWEB)
Kazama, Yoichi [Research Center for Mathematical Physics, Rikkyo University,Toshima-ku, Tokyo 171-8501 (Japan); Quantum Hadron Physics Laboratory, RIKEN Nishina Center, Wako 351-0198 (Japan); Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario, N2L 2Y5 (Canada); Nishimura, Takuya [Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)
2016-10-10
In this paper, we develop a new method of computing three-point functions in the SU(2) sector of the N=4 super Yang-Mills theory in the semi-classical regime at weak coupling, which closely parallels the strong coupling analysis. The structure threading two disparate regimes is the so-called monodromy relation, an identity connecting the three-point functions with and without the insertion of the monodromy matrix. We shall show that this relation can be put to use directly for the semi-classical regime, where the dynamics is governed by the classical Landau-Lifshitz sigma model. Specifically, it reduces the problem to a set of functional equations, which can be solved once the analyticity in the spectral parameter space is specified. To determine the analyticity, we develop a new universal logic applicable at both weak and strong couplings. As a result, compact semi-classical formulas are obtained for a general class of three-point functions at weak coupling including the ones whose semi-classical behaviors were not known before. In addition, the new analyticity argument applied to the strong coupling analysis leads to a modification of the integration contour, producing the results consistent with the recent hexagon bootstrap approach. This modification also makes the Frolov-Tseytlin limit perfectly agree with the weak coupling form.
Energy Technology Data Exchange (ETDEWEB)
Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)], E-mail: pintu@ipr.res.in; Prasad, G.; Sen, A.; Kaw, P.K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2007-09-03
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO{sub 2} dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of {partial_derivative}{omega}/{partial_derivative}k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.
International Nuclear Information System (INIS)
Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P.K.
2007-01-01
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO 2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects
Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.
2007-09-01
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.
Three-loop Standard Model effective potential at leading order in strong and top Yukawa couplings
Energy Technology Data Exchange (ETDEWEB)
Martin, Stephen P. [Santa Barbara, KITP
2014-01-08
I find the three-loop contribution to the effective potential for the Standard Model Higgs field, in the approximation that the strong and top Yukawa couplings are large compared to all other couplings, using dimensional regularization with modified minimal subtraction. Checks follow from gauge invariance and renormalization group invariance. I also briefly comment on the special problems posed by Goldstone boson contributions to the effective potential, and on the numerical impact of the result on the relations between the Higgs vacuum expectation value, mass, and self-interaction coupling.
Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator
DEFF Research Database (Denmark)
Pályi, András; Struck, P R; Rudner, Mark
2012-01-01
as a realization of the Jaynes-Cummings model of quantum electrodynamics in the strong-coupling regime. A quantized flexural mode of the suspended tube plays the role of the optical mode and we identify two distinct two-level subspaces, at small and large magnetic field, which can be used as qubits in this setup......We theoretically investigate the deflection-induced coupling of an electron spin to vibrational motion due to spin-orbit coupling in suspended carbon nanotube quantum dots. Our estimates indicate that, with current capabilities, a quantum dot with an odd number of electrons can serve...
Self-induced steps in a small Josephson junction strongly coupled to a multimode resonator
DEFF Research Database (Denmark)
Larsen, A.; Jensen, H. Dalsgaard; Mygind, Jesper
1991-01-01
An equally spaced series of very large and nearly constant-voltage self-induced singularities has been observed in the dc I-V characteristics of a small Josephson tunnel junction strongly coupled to a resonant section of a superconducting transmission line. The system allows extremely high values...... of the coupling parameter. The current steps are due to subharmonic parametric excitation of the fundamental mode of the resonator loaded by the junction admittance. Using an applied magnetic field to vary the coupling parameter, we traced out half-integer steps as well as the mode steps known from more weakly...
Thermal conductivity of magnetic insulators with strong spin-orbit coupling
Stamokostas, Georgios; Lapas, Panteleimon; Fiete, Gregory A.
We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.
Strong generalized synchronization with a particular relationship R between the coupled systems
Grácio, Clara; Fernandes, Sara; Mário Lopes, Luís
2018-03-01
The question of the chaotic synchronization of two coupled dynamical systems is an issue that interests researchers in many fields, from biology to psychology, through economics, chemistry, physics, and many others. The different forms of couplings and the different types of synchronization, give rise to many problems, most of them little studied. In this paper we deal with general couplings of two dynamical systems and we study strong generalized synchronization with a particular relationship R between them. Our results include the definition of a window in the domain of the coupling strength, where there is an exponentially stable solution, and the explicit determination of this window. In the case of unidirectional or symmetric couplings, this window is presented in terms of the maximum Lyapunov exponent of the systems. Examples of applications to chaotic systems of dimension one and two are presented.
Chen, Mo; Liu, Chao; Xian, Hao
2015-10-10
High-speed free-space optical communication systems using fiber-optic components can greatly improve the stability of the system and simplify the structure. However, propagation through atmospheric turbulence degrades the spatial coherence of the signal beam and limits the single-mode fiber (SMF) coupling efficiency. In this paper, we analyze the influence of the atmospheric turbulence on the SMF coupling efficiency over various turbulences. The results show that the SMF coupling efficiency drops from 81% without phase distortion to 10% when phase root mean square value equals 0.3λ. The simulations of SMF coupling with adaptive optics (AO) indicate that it is inevitable to compensate the high-order aberrations for SMF coupling over relatively strong turbulence. The SMF coupling efficiency experiments, using an AO system with a 137-element deformable mirror and a Hartmann-Shack wavefront sensor, obtain average coupling efficiency increasing from 1.3% in open loop to 46.1% in closed loop under a relatively strong turbulence, D/r0=15.1.
Directory of Open Access Journals (Sweden)
Yoichiro Kusakari
Full Text Available Interstitial myocardial fibrosis is one of the factors responsible for dysfunction of the heart. However, how interstitial fibrosis affects cardiac function and excitation-contraction coupling (E-C coupling has not yet been clarified. We developed an animal model of right ventricular (RV hypertrophy with fibrosis by pulmonary artery (PA banding in rats. Two, four, and six weeks after the PA-banding operation, the tension and intracellular Ca2+ concentration of RV papillary muscles were simultaneously measured (n = 33. The PA-banding rats were clearly divided into two groups by the presence or absence of apparent interstitial fibrosis in the papillary muscles: F+ or F- group, respectively. The papillary muscle diameter and size of myocytes were almost identical between F+ and F-, although the RV free wall weight was heavier in F+ than in F-. F+ papillary muscles exhibited higher stiffness, lower active tension, and lower Ca2+ responsiveness compared with Sham and F- papillary muscles. In addition, we found that the time to peak Ca2+ had the highest correlation coefficient to percent of fibrosis among other parameters, such as RV weight and active tension of papillary muscles. The phosphorylation level of troponin I in F+ was significantly higher than that in Sham and F-, which supports the idea of lower Ca2+ responsiveness in F+. We also found that connexin 43 in F+ was sparse and disorganized in the intercalated disk area where interstitial fibrosis strongly developed. In the present study, the RV papillary muscles obtained from the PA-banding rats enabled us to directly investigate the relationship between fibrosis and cardiac dysfunction, the impairment of E-C coupling in particular. Our results suggest that interstitial fibrosis worsens cardiac function due to 1 the decrease in Ca2+ responsiveness and 2 the asynchronous activation of each cardiac myocyte in the fibrotic preparation due to sparse cell-to-cell communication.
Strongly reduced band gap in NiMn2O4 due to cation exchange
International Nuclear Information System (INIS)
Huang, Jhih-Rong; Hsu, Han; Cheng, Ching
2014-01-01
NiMn 2 O 4 is extensively used as a basis material for temperature sensors due to its negative temperature coefficient of resistance (NTCR), which is commonly attributed to the hopping mechanism involving coexisting octahedral-site Mn 4+ and Mn 3+ . Using density-functional theory + Hubbard U calculations, we identify a ferrimagnetic inverse spinel phase as the collinear ground state of NiMn 2 O 4 . By a 12.5% cation exchange, a mixed phase with slightly higher energy can be constructed, accompanied by the formation of an impurity-like band in the original 1 eV band gap. This impurity-like band reduces the gap to 0.35 eV, suggesting a possible source of NTCR. - Highlights: • Density functional based calculations were used to study collinear phase of NiMn 2 O 4 . • The ground-state structure is a ferrimagnetic inverse spinel phase. • The tetrahedral and octahedral Mn cations have ferromagnetic interactions. • A 12.5% cation exchange introduces an impurity-like band in the original 1 eV gap. • The 0.35 eV gap suggests a source of negative temperature coefficient of resistance
Asymptotic dependence of Gross–Tulub polaron ground-state energy in the strong coupling region
Directory of Open Access Journals (Sweden)
N.I. Kashirina
2017-12-01
Full Text Available The properties of translationally invariant polaron functional have been investigated in the region of strong and extremely strong coupling. It has been shown that the Gross–Tulub polaron functional obtained earlier using the methods of field theory was derived only for the region , where is the Fröhlich constant of the electron-phonon coupling. Various representations of exact and approximate polaron functionals have been considered. Asymptotic dependences of the polaron energy have been obtained using a functional extending the Gross–Tulub functional to the region of extremely strong coupling. The asymptotic dependence of polaron energies for an extremely strong coupling are (for the one-parameter variational function fk, and (for a two-parameter function . It has been shown that the virial theorem 1:3:4 holds for the two-parameter function . Minimization of the approximate functional obtained by expanding the exact Gross–Tulub functional in a series on leads to a quadratic dependence of the polaron energy. This approximation is justified for . For a two-parameter function , the corresponding dependence has the form . However, the use of approximate functionals, in contrast to the strict variational procedure, when the exact polaron functional varies, does not guarantee obtaining the upper limit for the polaron energy.
DEFF Research Database (Denmark)
Kuznetsov, A.M.; Ulstrup, Jens
2002-01-01
We present a new view and an analytical formalism of electron flow through a donor-acceptor molecule inserted between a pair of metal electrodes. The donor and acceptor levels are strongly coupled to an environmental nuclear continuum. The formalism applies to molecular donor-acceptor systems bot...
The one loop calculation of the strong coupling β function in the Toy Model
International Nuclear Information System (INIS)
Bai Zhiming; Jiang Yuanfang
1991-01-01
The background field quantization is used to calculate the one-loop β function in the Toy Model which has the strong coupling and the SU(3) symmetry. The function obtained is consistent with the Appalquist-Carrazone theorem in the low energy condition
Analyzing quantum jumps of one and two atoms strongly coupled to an optical cavity
DEFF Research Database (Denmark)
Reick, Sebastian; Mølmer, Klaus; Alt, Wolfgang
2010-01-01
We induce quantum jumps between the hyperfine ground states of one and two cesium atoms, strongly coupled to the mode of a high-finesse optical resonator, and analyze the resulting random telegraph signals. We identify experimental parameters to deduce the atomic spin state nondestructively from ...
Room temperature strong coupling effects from single ZnO nanowire microcavity
Das, Ayan; Heo, Junseok; Bayraktaroglu, Adrian; Guo, Wei; Ng, Tien Khee; Phillips, Jamie; Ooi, Boon S.; Bhattacharya, Pallab
2012-01-01
Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non
Next-to-next-to-leading order calculation of the strong coupling ...
Indian Academy of Sciences (India)
It is observed that the NNLO correction gives a better agreement between the theory and the experimental data. Also, by using the above observables, the strong coupling constant () is determined and how much its value is affected by the NNLO correction is demonstrated. By combining the results for all variables at ...
van Weerdenburg, J.J.A.; Antonio-Lopez, J.E.; Alvarado-Zacarias, J.; Molin, D.; Bigot-Astruc, M.; van Uden, R.; de Waardt, H.; Koonen, A.M.J.; Amezcua-Correa, R.; Sillard, P.; Okonkwo, C.M.
2016-01-01
By exploiting strong coupling in higher-order modes, we experimentally demonstrate reduced differential mode group delay by a factor of 3. Comparing LP02+LP21 with respect to LP01+LP11 3-mode transmission, a 27% reduction in equalizer length is shown after 53.4km MMF transmission.
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Pankrashkin, K.
2014-01-01
Roč. 39, č. 2 (2014), s. 193-212 ISSN 0360-5302 R&D Projects: GA ČR GAP203/11/0701 Institutional support: RVO:61389005 Keywords : Eigenvalue * Schrödinger operator * singular interaction * strong coupling * 35Q40 * 35P15 * 35J10 Subject RIV: BE - Theoretical Physics Impact factor: 1.013, year: 2014
Precision determination of the strong coupling constant within a global PDF analysis
Ball, Richard D.; Carrazza, Stefano; Debbio, Luigi Del; Forte, Stefano; Kassabov, Zahari; Rojo, Juan; Slade, Emma; Ubiali, Maria
2018-01-01
We present a determination of the strong coupling constant $\\alpha_s(m_Z)$ based on the NNPDF3.1 determination of parton distributions, which for the first time includes constraints from jet production, top-quark pair differential distributions, and the $Z$ $p_T$ distributions using exact NNLO
Departures from predicted type II behavior in dirty strong-coupling superconductors
International Nuclear Information System (INIS)
Park, J.C.; Neighbor, J.E.; Shiffman, C.A.
1976-01-01
Calorimetric measurements of the Ginsburg-Landau parameters for Pb-Sn and Pb-Bi alloys show good agreement with the calculations of Rainer and Bergmann for kappa 1 (t)/kappa 1 (1). However, the calculations of Rainer and Usadel for kappa 2 (t)/kappa 2 (1) substantially underestimate the enhancements due to strong-coupling. (Auth.)
Reducing mechanical cross-coupling in phased array transducers using stop band material as backing
Henneberg, J.; Gerlach, A.; Storck, H.; Cebulla, H.; Marburg, S.
2018-06-01
Phased array transducers are widely used for acoustic imaging and surround sensing applications. A major design challenge is the achievement of low mechanical cross-coupling between the single transducer elements. Cross-coupling induces a loss of imaging resolution. In this work, the mechanical cross-coupling between acoustic transducers is investigated for a generic model. The model contains a common backing with two bending elements bonded on top. The dimensions of the backing are small; thus, wave reflections on the backing edges have to be considered. This is different to other researches. The operating frequency in the generic model is set to a low kHz range. Low operating frequencies are typical for surround sensing applications. The influence of the backing on cross-coupling is investigated numerically. In order to reduce mechanical cross-coupling a stop band material is designed. It is shown numerically that a reduction in mechanical cross-coupling can be achieved by using stop band material as backing. The effect is validated with experimental testing.
Linked cluster expansion in the SU(2) lattice Higgs model at strong gauge coupling
International Nuclear Information System (INIS)
Wagner, C.E.M.
1989-01-01
A linked cluster expansion is developed for the β=0 limit of the SU(2) Higgs model. This method, when combined with strong gauge coupling expansions, is used to obtain the phase transition surface and the behaviour of scalar and vector masses in the lattice regularized theory. The method, in spite of the low order of truncation of the series applied, gives a reasonable agreement with Monte Carlo data for the phase transition surface and a qualitatively good picture of the behaviour of Higgs, glueball and gauge vector boson masses, in the strong coupling limit. Some limitations of the method are discussed, and an intuitive picture of the different behaviour for small and large bare self-coupling λ is given. (orig.)
Strong asymmetry for surface modes in nonlinear lattices with long-range coupling
International Nuclear Information System (INIS)
Martinez, Alejandro J.; Vicencio, Rodrigo A.; Molina, Mario I.
2010-01-01
We analyze the formation of localized surface modes on a nonlinear cubic waveguide array in the presence of exponentially decreasing long-range interactions. We find that the long-range coupling induces a strong asymmetry between the focusing and defocusing cases for the topology of the surface modes and also for the minimum power needed to generate them. In particular, for the defocusing case, there is an upper power threshold for exciting staggered modes, which depends strongly on the long-range coupling strength. The power threshold for dynamical excitation of surface modes increases (decreases) with the strength of long-range coupling for the focusing (defocusing) cases. These effects seem to be generic for discrete lattices with long-range interactions.
Strong light-matter coupling from atoms to solid-state systems
2014-01-01
The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes. This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptu...
Direct Observation of Strong Ion Coupling in Laser-Driven Shock-Compressed Targets
International Nuclear Information System (INIS)
Ravasio, A.; Benuzzi-Mounaix, A.; Loupias, B.; Ozaki, N.; Rabec le Gloahec, M.; Koenig, M.; Gregori, G.; Daligault, J.; Delserieys, A.; Riley, D.; Faenov, A. Ya.; Pikuz, T. A.
2007-01-01
In this Letter we report on a near collective x-ray scattering experiment on shock-compressed targets. A highly coupled Al plasma was generated and probed by spectrally resolving an x-ray source forward scattered by the sample. A significant reduction in the intensity of the elastic scatter was observed, which we attribute to the formation of an incipient long-range order. This speculation is confirmed by x-ray scattering calculations accounting for both electron degeneracy and strong coupling effects. Measurements from rear side visible diagnostics are consistent with the plasma parameters inferred from x-ray scattering data. These results give the experimental evidence of the strongly coupled ionic dynamics in dense plasmas
Topological phases in superconductor-noncollinear magnet interfaces with strong spin-orbit coupling
Energy Technology Data Exchange (ETDEWEB)
Menke, H.; Schnyder, A.P. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Toews, A. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Quantum Matter Institute, University of British Columbia, Vancouver, BC (Canada)
2016-07-01
Majorana fermions are predicted to emerge at interfaces between conventional s-wave superconductors and non-collinear magnets. In these heterostructures, the spin moments of the non-collinear magnet induce a low-energy band of Shiba bound states in the superconductor. Depending on the type of order of the magnet, the band structure of these bound states can be topologically nontrivial. Thus far, research has focused on systems where the influence of spin-orbit coupling can be neglected. Here, we explore the interplay between non-collinear (or non-coplanar) spin textures and Rashba-type spin-orbit interaction. This situation is realized, for example, in heterostructures between helical magnets and heavy elemental superconductors, such as Pb. Using a unitary transformation in spin space, we show that the effects of Rashba-type spin-orbit coupling are equivalent to the effects of the non-collinear spin texture of the helical magnet. We explore the topological phase diagram as a function of spin-orbit coupling, spin texture, and chemical potential, and find many interesting topological phases, such as p{sub x}-, (p{sub x} + p{sub y})-, and (p{sub x} + i p{sub y})-wave states. Conditions for the formation and the nature of Majorana edge channels are examined. Furthermore, we study the topological edge currents of these phases.
Strongly coupled radiation from moving mirrors and holography in the Karch-Randall model
International Nuclear Information System (INIS)
Pujolas, Oriol
2008-01-01
Motivated by the puzzles in understanding how Black Holes evaporate into a strongly coupled Conformal Field Theory, we study particle creation by an accelerating mirror. We model the mirror as a gravitating Domain Wall and consider a CFT coupled to it through gravity, in asymptotically Anti de Sitter space. This problem (backreaction included) can be solved exactly at one loop. At strong coupling, this is dual to a Domain Wall localized on the brane in the Karch-Randall model, which can be fully solved as well. Hence, in this case one can see how the particle production is affected by A) strong coupling and B) its own backreaction. We find that A) the amount of CFT radiation at strong coupling is not suppressed relative to the weak coupling result; and B) once the boundary conditions in the AdS 5 bulk are appropriately mapped to the conditions for the CFT on the boundary of AdS 4 , the Karch-Randall model and the CFT side agree to leading order in the backreaction. This agreement holds even for a new class of self-consistent solutions (the 'Bootstrap' Domain Wall spacetimes) that have no classical limit. This provides a quite precise check of the holographic interpretation of the Karch-Randall model. We also comment on the massive gravity interpretation. As a byproduct, we show that relativistic Cosmic Strings (pure tension codimension 2 branes) in Anti de Sitter are repulsive and generate long-range tidal forces even at classical level. This is the phenomenon dual to particle production by Domain Walls.
International Nuclear Information System (INIS)
Angerer, Andreas; Astner, Thomas; Wirtitsch, Daniel; Majer, Johannes; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Putz, Stefan
2016-01-01
We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 10"1"7 nitrogen vacancy electron spins, we achieve a collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.
Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation
Energy Technology Data Exchange (ETDEWEB)
Goto, Kaname [Department of Electronics, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yamashita, Kenichi, E-mail: yamasita@kit.ac.jp [Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yanagi, Hisao [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Yamao, Takeshi; Hotta, Shu [Faculty of Materials Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)
2016-08-08
Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.
Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation
Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu
2016-08-01
Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ˜100 meV even in the "half-vertical cavity surface emitting lasing" microcavity structure.
Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation
International Nuclear Information System (INIS)
Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu
2016-01-01
Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.
Correlations between Strong Range Spread-F and GPS L-Band Scintillations Observed in Hainan in 2004
International Nuclear Information System (INIS)
Guo-Jun, Wang; Jian-Kui, Shi; She-Ping, Shang; Xiao, Wang
2009-01-01
Data from the DPS-4 digisonde and the GPS L-band ionospheric scintillation monitor are employed to study the correlations between strong range spread-F (SSF) and GPS L-band scintillations observed in the ionosphere over Hainan Island, China (19.5°N, 109.1°E geogr., dip lat. 9°N) in 2004. The SSF in the ionogram is different from the general range spread-F because it extends in frequency well beyond FoF2 and makes FoF2 difficult to be determined. The observations show that the SSF phenomenon is frequently accompanied by the occurrence of GPS L-band scintillations. The SSF and GPS L-band scintillations occur frequently in the equinoctial months (March, April, September, and October), but rarely in the winter (January, February, November, and December) and summer (May–August); especially, occurrence variations of the SSF and GPS L-band scintillations nearly have a same trend. The SSF and scintillations may be associated with the occurrence of topside plasma bubbles and could be explained by the generalized Rayleigh–Taylor instability
Beyond band termination in 157Er and the search for wobbling excitations in strongly deformed 174Hf
International Nuclear Information System (INIS)
Riley, M A; Djongolov, M K; Evans, A O
2005-01-01
High-spin terminating bands in heavy nuclei were first identified in nuclei around 158 Er 90 . While examples of special terminating states have been identified in a number of erbium isotopes, almost nothing is known about the states lying beyond band termination. In the present work the high-spin structure of 157 Er has been studied using the Gammasphere spectrometer. The subject of triaxial superdeformation and 'wobbling' modes in Lu nuclei has rightly attracted a great deal of attention. Very recently, four strongly or superdeformed (SD) sequences have been observed in 174 Hf and ultimate cranker calculations predict such structures may have significant triaxial deformation. We have performed two experiments in an attempt to verify the possible triaxial nature of these bands. A lifetime measurement was performed to confirm the large (and similar) deformation of the bands. In addition, a high-statistics, thin-target experiment was run to search for linking transitions between the SD bands and possible wobbling modes
International Nuclear Information System (INIS)
Lin, L.; Sperber, D.
1976-01-01
In two recent papers the instability of the quasi-particle vacuum was related to the high-spin anomaly in rotational nuclear states. The direct consequence of this fact is that the system will make a ''phase transition'' under that situation. Studying the induced rotational asymmetry effect, in the present paper another theoretical fact is discussed, which support this ''phase transition''. Furthermore, it is shown that when this ''phase transition'' occurs, in order to have a proper description of the system, a modification of the physical ground state is necessary which suggests a microscopic theory of band mixing for high spin anomaly in rotational nuclear states
Scaling properties of the pairing problem in the strong coupling limit
International Nuclear Information System (INIS)
Barbaro, M.B.; Cenni, R.; Molinari, A.; Quaglia, M.R.
2013-01-01
We study the excited states of the pairing Hamiltonian providing an expansion for their energy in the strong coupling limit. To assess the role of the pairing interaction we apply the formalism to the case of a heavy atomic nucleus. We show that only a few statistical moments of the level distribution are sufficient to yield an accurate estimate of the energy for not too small values of the coupling G and we give the analytic expressions of the first four terms of the series. Further, we discuss the convergence radius G sing of the expansion showing that it strongly depends upon the details of the level distribution. Furthermore G sing is not related to the critical values of the coupling G crit , which characterize the physics of the pairing Hamiltonian, since it can exist even in the absence of these critical points. -- Highlights: •We study the excitation spectrum of the pairing Hamiltonian. •We provide an analytic expansion around the strong coupling limit. •We discuss the convergence radius of the expansion. •We connect the radius with the critical points of H
Structure of large spin expansion of anomalous dimensions at strong coupling
Energy Technology Data Exchange (ETDEWEB)
Beccaria, M. [Physics Department, Salento University and INFN, 73100 Lecce (Italy)], E-mail: matteo.beccaria@le.infn.it; Forini, V. [Humboldt-Universitaet zu Berlin, Institut fuer Physik, D-12489 Berlin (Germany)], E-mail: forini@aei.mpg.de; Tirziu, A. [Department of Physics, Purdue University, W. Lafayette, IN 47907-2036 (United States)], E-mail: atirziu@purdue.edu; Tseytlin, A.A. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)], E-mail: tseytlin@imperial.ac.uk
2009-05-01
The anomalous dimensions of planar N=4 SYM theory operators like tr({phi}D{sub +}{sup S}{phi}) expanded in large spin S have the asymptotics {gamma}=flnS+f{sub c}+1/S (f{sub 11}lnS+f{sub 10})+..., where f (the universal scaling function or cusp anomaly), f{sub c} and f{sub mn} are given by power series in the 't Hooft coupling {lambda}. The subleading coefficients appear to be related by the so-called functional relation and parity (reciprocity) property of the function expressing {gamma} in terms of the conformal spin of the collinear group. Here we study the structure of such large spin expansion at strong coupling via AdS/CFT, i.e. by using the dual description in terms of folded spinning string in AdS{sub 5}. The large spin expansion of the classical string energy happens to have exactly the same structure as that of {gamma} in the perturbative gauge theory. Moreover, the functional relation and the reciprocity constraints on the coefficients are also satisfied. We compute the leading string 1-loop corrections to the coefficients f{sub c}, f{sub 11}, f{sub 10} and verify the functional/reciprocity relations at subleading 1/({radical}({lambda})) order. This provides a strong indication that these relations hold not only in weak coupling (gauge-theory) but also in strong coupling (string-theory) perturbative expansions.
Structure of large spin expansion of anomalous dimensions at strong coupling
International Nuclear Information System (INIS)
Beccaria, M.; Forini, V.; Tirziu, A.; Tseytlin, A.A.
2009-01-01
The anomalous dimensions of planar N=4 SYM theory operators like tr(ΦD + S Φ) expanded in large spin S have the asymptotics γ=flnS+f c +1/S (f 11 lnS+f 10 )+..., where f (the universal scaling function or cusp anomaly), f c and f mn are given by power series in the 't Hooft coupling λ. The subleading coefficients appear to be related by the so-called functional relation and parity (reciprocity) property of the function expressing γ in terms of the conformal spin of the collinear group. Here we study the structure of such large spin expansion at strong coupling via AdS/CFT, i.e. by using the dual description in terms of folded spinning string in AdS 5 . The large spin expansion of the classical string energy happens to have exactly the same structure as that of γ in the perturbative gauge theory. Moreover, the functional relation and the reciprocity constraints on the coefficients are also satisfied. We compute the leading string 1-loop corrections to the coefficients f c , f 11 , f 10 and verify the functional/reciprocity relations at subleading 1/(√(λ)) order. This provides a strong indication that these relations hold not only in weak coupling (gauge-theory) but also in strong coupling (string-theory) perturbative expansions
Study of the Higgs-Yukawa theory in the strong-Yukawa coupling regime
International Nuclear Information System (INIS)
Bulava, John; Gerhold, Philipp; Nagy, Attila; Deutsches Elektronen-Synchrotron; Hou, George W.S.; Smigielski, Brian; Jansen, Karl; Knippschild, Bastian; Univ. of Mainz; Lin, David C.J.; National Centre of Theoretical Sciences, Hsinchu; Nagai, Kei-Ichi; Ogawa, Kenji
2011-12-01
In this article, we present an ongoing lattice study of the Higgs-Yukawa model, in the regime of strong-Yukawa coupling, using overlap fermions. We investigated the phase structure in this regime by computing the Higgs vacuum expectation value, and by exploring the finite-size scaling behaviour of the susceptibility corresponding to the magnetisation. Our preliminary results indicate the existence of a second-order phase transition when the Yukawa coupling becomes large enough, at which the Higgs vacuum expectation value vanishes and the susceptibility diverges. (orig.)
International Nuclear Information System (INIS)
Nagano, Seido; Ichimaru, Setsuo
1980-01-01
The memory function for the velocity autocorrelation function in a strongly coupled, one-component plasma is analyzed in the short time and long time domains, respectively, with the aid of the frequency-moment sum rules and the hydrodynamic consideration evoking the idea of the generalized Stokes friction. A series of interpolation schemes with successively improved accuracies are then introduced. Numerical investigations of those interpolation schemes clarify the physical origin of the three different types of the velocity autocorrelation function observed in the molecular dynamics simulation at different regimes of the coupling constant. (author)
International Nuclear Information System (INIS)
Chaturvedi, D.K.; Senatore, G.; Tosi, M.P.
1980-10-01
An analytic theory is presented for the static structure factor of the one-component classical plasma at strong couplings. The theory combines the hard-core model of Gillan for short-range correlations in the Coulomb fluid with a semiempirical representation of intermediate-range correlations, through which the requirement of thermodynamic consistency on the ''compressibility'' and the known equation of state of the system are satisfied. Excellent agreement is found with the available computer simulation data on the structure of the fluid. The approach becomes inapplicable at intermediate and weak couplings where effects of penetration in the Coulomb hole of each particle become important. (author)
Hybrid plasmonic systems: from optical transparencies to strong coupling and entanglement
Gray, Stephen K.
2018-02-01
Classical electrodynamics and quantum mechanical models of quantum dots and molecules interacting with plasmonic systems are discussed. Calculations show that just one quantum dot interacting with a plasmonic system can lead to interesting optical effects, including optical transparencies and more general Fano resonance features that can be tailored with ultrafast laser pulses. Such effects can occur in the limit of moderate coupling between quantum dot and plasmonic system. The approach to the strong coupling regime is also discussed. In cases with two or more quantum dots within a plasmonic system, the possibility of quantum entanglement mediated through the dissipative plasmonic structure arises.
Strong Coupling of Microwave Photons to Antiferromagnetic Fluctuations in an Organic Magnet
Mergenthaler, Matthias; Liu, Junjie; Le Roy, Jennifer J.; Ares, Natalia; Thompson, Amber L.; Bogani, Lapo; Luis, Fernando; Blundell, Stephen J.; Lancaster, Tom; Ardavan, Arzhang; Briggs, G. Andrew D.; Leek, Peter J.; Laird, Edward A.
2017-10-01
Coupling between a crystal of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radicals and a superconducting microwave resonator is investigated in a circuit quantum electrodynamics (circuit QED) architecture. The crystal exhibits paramagnetic behavior above 4 K, with antiferromagnetic correlations appearing below this temperature, and we demonstrate strong coupling at base temperature. The magnetic resonance acquires a field angle dependence as the crystal is cooled down, indicating anisotropy of the exchange interactions. These results show that multispin modes in organic crystals are suitable for circuit QED, offering a platform for their coherent manipulation. They also utilize the circuit QED architecture as a way to probe spin correlations at low temperature.
Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine
Xu, Y. Y.; Chen, B.; Liu, J.
2018-02-01
Generally, the efficiency of a heat engine strongly coupled with a heat bath is less than the classical Carnot efficiency. Through a model-independent method, we show that the classical Carnot efficiency is achieved in a strongly coupled quantum heat engine. First, we present the first law of quantum thermodynamics in strong coupling. Then, we show how to achieve the Carnot cycle and the classical Carnot efficiency at strong coupling. We find that this classical Carnot efficiency stems from the fact that the heat released in a nonequilibrium process is balanced by the absorbed heat. We also analyze the restrictions in the achievement of the Carnot cycle. The first restriction is that there must be two corresponding intervals of the controllable parameter in which the corresponding entropies of the work substance at the hot and cold temperatures are equal, and the second is that the entropy of the initial and final states in a nonequilibrium process must be equal. Through these restrictions, we obtain the positive work conditions, including the usual one in which the hot temperature should be higher than the cold, and a new one in which there must be an entropy interval at the hot temperature overlapping that at the cold. We demonstrate our result through a paradigmatic model—a two-level system in which a work substance strongly interacts with a heat bath. In this model, we find that the efficiency may abruptly decrease to zero due to the first restriction, and that the second restriction results in the control scheme becoming complex.
Microscopic theory of photon-correlation spectroscopy in strong-coupling semiconductors
Energy Technology Data Exchange (ETDEWEB)
Schneebeli, Lukas
2009-11-27
While many quantum-optical phenomena are already well established in the atomic systems, like the photon antibunching, squeezing, Bose-Einstein condensation, teleportation, the quantum-optical investigations in semiconductors are still at their beginning. The fascinating results observed in the atomic systems inspire physicists to demonstrate similar quantum-optical effects also in the semiconductor systems. In contrast to quantum optics with dilute atomic gases, the semiconductors exhibit a complicated many-body problem which is dominated by the Coulomb interaction between the electrons and holes and by coupling with the semiconductor environment. This makes the experimental observation of similar quantum-optical effects in semiconductors demanding. However, there are already experiments which have verified nonclassical effects in semiconductors. In particular, experiments have demonstrated that semiconductor quantum dots (QDs) can exhibit the single-photon emission and generation of polarization-entangled photon pairs. In fact, both atom and QD systems, embedded within a microcavity, have become versatile platforms where one can perform systematic quantum-optics investigations as well as development work toward quantum-information applications. Another interesting field is the strong-coupling regime in which the light-matter coupling exceeds both the decoherence rate of the atom or QD and the cavity resulting in a reversible dynamics between light and matter excitations. In the strong-coupling regime, the Jaynes-Cummings ladder is predicted and shows a photon-number dependent splitting of the new dressed strong-coupling states which are the polariton states of the coupled light-matter system. Although the semiclassical effect of the vacuum Rabi splitting has already been observed in QDs, the verification of the quantum-mechanical Jaynes-Cummings splitting is still missing mainly due to the dephasing. Clearly, the observation of the Jaynes-Cummings ladder in QDs
Light exiting from real photonic band gap crystals is diffuse and strongly directional
Koenderink, A.F.; Vos, Willem L.
2003-01-01
Any photonic crystal is in practice periodic with some inevitable fabricational imperfections. We have measured angle-resolved transmission of photons that are multiply scattered by this disorder in strongly photonic crystals. Peculiar non-Lambertian distributions occur as a function of frequency:
Generic strong coupling behavior of Cooper pairs in the surface of superfluid nuclei
Energy Technology Data Exchange (ETDEWEB)
Pillet, N. [DPTA/Service de Physique nucleaire, CEA/DAM Ile de France, BP12, F-91680 Bruyeres-le-Chatel (France); Sandulescu, N. [DPTA/Service de Physique nucleaire, CEA/DAM Ile de France, BP12, F-91680 Bruyeres-le-Chatel (France)]|[Institute of Physics and Nuclear Engineering, 76900 Bucharest (Romania)]|[Institut de Physique Nucleaire, CNRS, UMR 8608, Orsay, F-91406 (France); Schuck, P. [Institut de Physique Nucleaire, CNRS, UMR 8608, Orsay, F-91406 (France)]|[Universite Paris-Sud, Orsay, F-91505 (France)
2007-01-15
With realistic HFB calculations, using the D1S Gogny force, we reveal a generic behavior of concentration of small sized Cooper pairs (2-3 fm) in the surface of superfluid nuclei. This study confirms and extends previous results given in the literature that use more schematic approaches. It is shown that the strong concentration of pair probability of small Cooper pairs in the nuclear surface is a quite general and generic feature and that nuclear pairing is much closer to the strong coupling regime than previously assumed.
The effect of dust charge inhomogeneity on low-frequency modes in a strongly coupled plasma
International Nuclear Information System (INIS)
Farid, T.; Mamun, A.A.; Shukla, P.K.
2000-01-01
An analysis of low-frequency modes accounting for dust grain charge fluctuation and equilibrium grain charge inhomogeneity in a strongly coupled dusty plasma is presented. The existence of an extremely low frequency mode, which is due to the inhomogeneity in the equilibrium dust grain charge, is reported. Besides, the equilibrium dust grain charge inhomogeneity makes the dust-acoustic mode unstable. The strong correlations in the dust fluid significantly drive a new mode as well as the existing dust-acoustic mode. The applications of these results to recent experimental and to some space and astrophysical situations are discussed
Generic strong coupling behavior of Cooper pairs in the surface of superfluid nuclei
International Nuclear Information System (INIS)
Pillet, N.; Sandulescu, N.; Schuck, P.
2007-01-01
With realistic HFB calculations, using the D1S Gogny force, we reveal a generic behavior of concentration of small sized Cooper pairs (2-3 fm) in the surface of superfluid nuclei. This study confirms and extends previous results given in the literature that use more schematic approaches. It is shown that the strong concentration of pair probability of small Cooper pairs in the nuclear surface is a quite general and generic feature and that nuclear pairing is much closer to the strong coupling regime than previously assumed
Self-organization observed in either fusion or strongly coupled plasmas
International Nuclear Information System (INIS)
Himura, Haruhiko; Sanpei, Akio
2011-01-01
If self-organization happens in the fusion plasma, the plasma alters its shape by weakening the confining magnetic field. The self-organized plasma is stable and robust, so its configuration is conserved even during transport in asymmetric magnetic fields. The self-organization of the plasma is driven by an electrostatic potential. Examples of the plasma that has such strong potential are non-neutral plasmas of pure ions or electrons and dusty plasmas. In the present paper, characteristic phenomena of strongly coupled plasmas such as particle aggregation and formation of the ordered structure are discussed. (T.I.)
Strong coupling effects between a meta-atom and MIM nanocavity
Directory of Open Access Journals (Sweden)
San Chen
2012-09-01
Full Text Available In this paper, we investigate the strong coupling effects between a meta-atom and a metal-insulator-metal (MIM nanocavity. By changing the meta-atom sizes, we achieve the meta-atomic electric dipole, quadrupole or multipole interaction with the plasmonic nanocavity, in which characteristic anticrossing behaviors demonstrate the occurrence of the strong coupling. The various interactions present obviously different splitting values and behaviors of dependence on the meta-atomic position. The largest Rabi-type splittings, about 360.0 meV and 306.1 meV, have been obtained for electric dipole and quadrupole interaction, respectively. We attribute the large splitting to the highly-confined cavity mode and the large transition dipole of the meta-atom. Also the Rabi-type oscillation in time domain is given.
Sensitive detection of individual neutral atoms in a strong coupling cavity QED system
International Nuclear Information System (INIS)
Zhang Pengfei; Zhang Yuchi; Li Gang; Du Jinjin; Zhang Yanfeng; Guo Yanqiang; Wang Junmin; Zhang Tiancai; Li Weidong
2011-01-01
We experimentally demonstrate real-time detection of individual cesium atoms by using a high-finesse optical micro-cavity in a strong coupling regime. A cloud of cesium atoms is trapped in a magneto-optical trap positioned at 5 mm above the micro-cavity center. The atoms fall down freely in gravitation after shutting off the magneto-optical trap and pass through the cavity. The cavity transmission is strongly affected by the atoms in the cavity, which enables the micro-cavity to sense the atoms individually. We detect the single atom transits either in the resonance or various detunings. The single atom vacuum-Rabi splitting is directly measured to be Ω = 2π × 23.9 MHz. The average duration of atom-cavity coupling of about 110 μs is obtained according to the probability distribution of the atom transits. (authors)
Sakata Memorial KMI Workshop on Origin of Mass and Strong Coupling Gauge Theories
Maskawa, Toshihide; Nojiri, Shin'ichi; Tanabashi, Masaharu; Yamawaki, Koichi
2018-01-01
This volume contains contributions to the workshop, which was largely focused on the strong coupling gauge theories in search for theories beyond the standard model, particularly, the LHC experiments and lattice studies of conformal fixed point. The main topics include walking technicolor and the role of conformality in view of the 125 GeV Higgs as a light composite Higgs (technidilaton, and other composite Higgs, etc.). Nonperturbative studies like lattice simulations and stringy/holographic approaches are extensively discussed in close relation to the phenomenological studies. After the discovery of 125 GeV Higgs at LHC, the central issue of particle physics is now to reveal the dynamical origin of the Higgs itself. One of the possibilities would be the composite Higgs based on the strong coupling gauge theory in the TeV region, such as the technidilaton predicted in walking technicolor with infrared conformality. The volume contains, among others, many of the latest important reports on walking technicolo...
Particularities of surface plasmon-exciton strong coupling with large Rabi splitting
International Nuclear Information System (INIS)
Symonds, C; Bonnand, C; Plenet, J C; Brehier, A; Parashkov, R; Lauret, J S; Deleporte, E; Bellessa, J
2008-01-01
This paper presents some of the particularities of the strong coupling regime occurring between surface plasmon (SP) modes and excitons. Two different active materials were deposited on a silver film: a cyanine dye J-aggregate, and a two-dimensional layered perovskite-type semiconductor. The dispersion relations, which are deduced from angular resolved reflectometry spectra, present an anticrossing characteristic of the strong coupling regime. The wavevector is a good parameter to determine the Rabi splitting. Due to the large interaction energies (several hundreds of milli-electron-volts), the calculations at constant angle can induce an overestimation of the Rabi splitting of more than a factor of two. Another property of polaritons based on SP is their nonradiative character. In order to observe the polaritonic emission, it is thus necessary to use particular extraction setups, such as gratings or prisms. Otherwise only the incoherent emission can be detected, very similar to the bare exciton emission
Equivalence of meson scattering amplitudes in strong coupling lattice and flat space string theory
Directory of Open Access Journals (Sweden)
Adi Armoni
2018-03-01
Full Text Available We consider meson scattering in the framework of the lattice strong coupling expansion. In particular we derive an expression for the 4-point function of meson operators in the planar limit of scalar Chromodynamics. Interestingly, in the naive continuum limit the expression coincides with an independently known result, that of the worldline formalism. Moreover, it was argued by Makeenko and Olesen that (assuming confinement the resulting scattering amplitude in momentum space is the celebrated expression proposed by Veneziano several decades ago. This motivates us to also use holography in order to argue that the continuum expression for the scattering amplitude is related to the result obtained from flat space string theory. Our results hint that at strong coupling and large-Nc the naive continuum limit of the lattice formalism can be related to a flat space string theory.
Field-theoretic methods in strongly-coupled models of general gauge mediation
International Nuclear Information System (INIS)
Fortin, Jean-François; Stergiou, Andreas
2013-01-01
An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current–current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry breaking arises both from a hidden sector and dynamically. Our results suggest that strongly-coupled models of supersymmetry breaking are naturally split
Equivalence of meson scattering amplitudes in strong coupling lattice and flat space string theory
Armoni, Adi; Ireson, Edwin; Vadacchino, Davide
2018-03-01
We consider meson scattering in the framework of the lattice strong coupling expansion. In particular we derive an expression for the 4-point function of meson operators in the planar limit of scalar Chromodynamics. Interestingly, in the naive continuum limit the expression coincides with an independently known result, that of the worldline formalism. Moreover, it was argued by Makeenko and Olesen that (assuming confinement) the resulting scattering amplitude in momentum space is the celebrated expression proposed by Veneziano several decades ago. This motivates us to also use holography in order to argue that the continuum expression for the scattering amplitude is related to the result obtained from flat space string theory. Our results hint that at strong coupling and large-Nc the naive continuum limit of the lattice formalism can be related to a flat space string theory.
Towards a non-perturbative study of the strongly coupled standard model
International Nuclear Information System (INIS)
Dagotto, E.; Kogut, J.
1988-01-01
The strongly coupled standard model of Abbott and Farhi can be a good alternative to the standard model if it has a phase where chiral symmetry is not broken, the SU(2) sector confines and the scalar field is in the symmetric regime. To look for such a phase we did a numerical analysis in the context of lattice gauge theory. To simplify the model we studied a U(1) gauge theory with Higgs fields and four species of dynamical fermions. In this toy model we did not find a phase with the correct properties required by the strongly coupled standard model. We also speculate about a possible solution to this problem using a new phase of the SU(2) gauge theory with a large number of flavors. (orig.)
Strong-coupling behaviour of two t - J chains with interchain single-electron hopping
International Nuclear Information System (INIS)
Zhang Guangming; Feng Shiping; Yu Lu.
1994-01-01
Using the fermion-spin transformation to implement spin-charge separation of constrained electrons, a model of two t - J chains with interchain single-electron hopping is studied by abelian bosonization. After spin-charge decoupling the charge dynamics can be trivially solved, while the spin dynamics is determined by a strong-coupling fixed point where the correlation functions can be calculated explicitly. This is a generalization of the Luther-Emery line for two-coupled t - J chains. The interchain single-electron hopping changes the asymptotic behaviour of the interchain spin-spin correlation functions and the electron Green function, but their exponents are independent of the coupling strength. (author). 25 refs
Strongly coupled chameleon fields: Possible test with a neutron Lloyd's mirror interferometer
International Nuclear Information System (INIS)
Pokotilovski, Yu.N.
2013-01-01
The consideration of possible neutron Lloyd's mirror interferometer experiment to search for strongly coupled chameleon fields is presented. The chameleon scalar fields were proposed to explain the acceleration of expansion of the Universe. The presence of a chameleon field results in a change of a particle's potential energy in vicinity of a massive body. This interaction causes a phase shift of neutron waves in the interferometer. The sensitivity of the method is estimated
Strongly coupled chameleon fields: Possible test with a neutron Lloyd's mirror interferometer
Energy Technology Data Exchange (ETDEWEB)
Pokotilovski, Yu.N., E-mail: pokot@nf.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region (Russian Federation)
2013-02-26
The consideration of possible neutron Lloyd's mirror interferometer experiment to search for strongly coupled chameleon fields is presented. The chameleon scalar fields were proposed to explain the acceleration of expansion of the Universe. The presence of a chameleon field results in a change of a particle's potential energy in vicinity of a massive body. This interaction causes a phase shift of neutron waves in the interferometer. The sensitivity of the method is estimated.
Breakdown of the 1/N expansion in the continuum limit of strong coupling lattice QCD
International Nuclear Information System (INIS)
Bralic, N.; Pontificia Universidade Catolica de Chile, Santiago. Facultad de Fisica); Loewe, M.
1983-08-01
The restoration of lorentz covariance in the continuum limit of strong coupling lattice QCD is shown to require the breakdown of the 1/N expansion. With the leading 1/N appoximation becoming irrelevant in that limit. To leading order in 1/N lorentz convariance can be restored only as an approximate long distance symmetry a non conventional continuum limit with a non hermitian hamiltonian. (Author) [pt
International Nuclear Information System (INIS)
Harada, Masayasu; Kikukawa, Yoshio; Yamawaki, Koichi
2003-01-01
This issue presents the important recent progress in both theoretical and phenomenological issues of strong coupling gauge theories, with/without supersymmetry and extra dimensions, etc. Emphasis in a placed on dynamical symmetry breaking with large anomalous dimensions governed by the dynamics near the nontrivial fixed point. Also presented are recent developments of the corresponding effective field theories. The 43 of the presented papers are indexed individually. (J.P.N)
Electrical control of spontaneous emission and strong coupling for a single quantum dot
DEFF Research Database (Denmark)
Laucht, A.; Hofbauer, F.; Hauke, N.
2009-01-01
We report the design, fabrication and optical investigation of electrically tunable single quantum dots—photonic crystal defect nanocavities operating in both the weak and strong coupling regimes of the light–matter interaction. Unlike previous studies where the dot–cavity spectral detuning...... switchable optical nonlinearity at the single photon level, paving the way towards on-chip dot-based nano-photonic devices that can be integrated with passive optical components....
Can Lorentz-breaking fermionic condensates form in large N strongly-coupled Lattice Gauge Theories?
Tomboulis, E. T.
2010-01-01
The possibility of Lorentz symmetry breaking (LSB) has attracted considerable attention in recent years for a variety of reasons, including the attractive prospect of the graviton as a Goldstone boson. Though a number of effective field theory analyses of such phenomena have recently been given it remains an open question whether they can take place in an underlying UV complete theory. Here we consider the question of LSB in large N lattice gauge theories in the strong coupling limit. We appl...
Fermion bag approach to the sign problem in strongly coupled lattice QED with Wilson fermions
Chandrasekharan, Shailesh; Li, Anyi
2010-01-01
We explore the sign problem in strongly coupled lattice QED with one flavor of Wilson fermions in four dimensions using the fermion bag formulation. We construct rules to compute the weight of a fermion bag and show that even though the fermions are confined into bosons, fermion bags with negative weights do exist. By classifying fermion bags as either simple or complex, we find numerical evidence that complex bags with positive and negative weights come with almost equal probabilities and th...
Comments on gluon 6-point scattering amplitudes in N = 4 SYM at strong coupling
International Nuclear Information System (INIS)
Astefanesei, Dumitru; Dobashi, Suguru; Ito, Katsushi; Nastase, Horatiu
2007-01-01
We use the AdS-CFT prescription of Alday and Maldacena [1] to analyze gluon 6-point scattering amplitudes at strong coupling in N = 4 SYM. By cutting and gluing we obtain AdS 6-point amplitudes that contain extra boundary conditions and come close to matching the field theory results. We interpret them as parts of the field theory amplitudes, containing only certain diagrams. We also analyze the collinear limits of 6- and 5-point amplitudes and discuss the results
Strongly driven electron spins using a Ku band stripline electron paramagnetic resonance resonator
Yap, Yung Szen; Yamamoto, Hiroshi; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro
2013-07-01
This article details our work to obtain strong excitation for electron paramagnetic resonance (EPR) experiments by improving the resonator's efficiency. The advantages and application of strong excitation are discussed. Two 17 GHz transmission-type, stripline resonators were designed, simulated and fabricated. Scattering parameter measurements were carried out and quality factor were measured to be around 160 and 85. Simulation results of the microwave's magnetic field distribution are also presented. To determine the excitation field at the sample, nutation experiments were carried out and power dependence were measured using two organic samples at room temperature. The highest recorded Rabi frequency was rated at 210 MHz with an input power of about 1 W, which corresponds to a π/2 pulse of about 1.2 ns.
Combined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer
Directory of Open Access Journals (Sweden)
Matjaz Rozman
2017-04-01
Full Text Available This paper proposes a hybrid circuit between a conformal strongly-coupled magnetic resonance (CSCMR and a strongly-coupled magnetic resonance (SCMR, for better wireless power transmission (WPT. This combination promises to enhance the flexibility of the proposed four-loop WPT system. The maximum efficiency at various distances is achieved by combining coupling-matching between the source and transmitting coils along with the coupling factor between the transmitting and receiving coils. Furthermore, the distance between transmitting and receiving coils is investigated along with the distance relationship between the source loop and transmission coil, in order to achieve the maximum efficiency of the proposed hybrid WPT system. The results indicate that the proposed approach can be effectively employed at distances comparatively smaller than the maximum distance without frequency matching. The achievable efficiency can be as high as 84% for the whole working range of the transmitter. In addition, the proposed hybrid system allows more spatial freedom compared to existing chargers.
Effect of parameter mismatch on the dynamics of strongly coupled self sustained oscillators.
Chakrabarty, Nilaj; Jain, Aditya; Lal, Nijil; Das Gupta, Kantimay; Parmananda, Punit
2017-01-01
In this paper, we present an experimental setup and an associated mathematical model to study the synchronization of two self-sustained, strongly coupled, mechanical oscillators (metronomes). The effects of a small detuning in the internal parameters, namely, damping and frequency, have been studied. Our experimental system is a pair of spring wound mechanical metronomes; coupled by placing them on a common base, free to move along a horizontal direction. We designed a photodiode array based non-contact, non-magnetic position detection system driven by a microcontroller to record the instantaneous angular displacement of each oscillator and the small linear displacement of the base, coupling the two. In our system, the mass of the oscillating pendula forms a significant fraction of the total mass of the system, leading to strong coupling of the oscillators. We modified the internal mechanism of the spring-wound "clockwork" slightly, such that the natural frequency and the internal damping could be independently tuned. Stable synchronized and anti-synchronized states were observed as the difference in the parameters was varied in the experiments. The simulation results showed a rapid increase in the phase difference between the two oscillators beyond a certain threshold of parameter mismatch. Our simple model of the escapement mechanism did not reproduce a complete 180° out of phase state. However, the numerical simulations show that increased mismatch in parameters leads to a synchronized state with a large phase difference.
International Nuclear Information System (INIS)
Prajapati, R. P.; Bhakta, S.; Chhajlani, R. K.
2016-01-01
The influence of dust-neutral collisions, polarization force, and electron radiative condensation is analysed on the Jeans (gravitational) instability of partially ionized strongly coupled dusty plasma (SCDP) using linear perturbation (normal mode) analysis. The Boltzmann distributed ions, dynamics of inertialess electrons, charged dust and neutral particles are considered. Using the plane wave solutions, a general dispersion relation is derived which is modified due to the presence of dust-neutral collisions, strong coupling effect, polarization force, electron radiative condensation, and Jeans dust/neutral frequencies. In the long wavelength perturbations, the Jeans instability criterion depends upon strong coupling effect, polarization interaction parameter, and thermal loss, but it is independent of dust-neutral collision frequency. The stability of the considered configuration is analysed using the Routh–Hurwitz criterion. The growth rates of Jeans instability are illustrated, and stabilizing influence of viscoelasticity and dust-neutral collision frequency while destabilizing effect of electron radiative condensation, polarization force, and Jeans dust-neutral frequency ratio is observed. This work is applied to understand the gravitational collapse of SCDP with dust-neutral collisions.
A wide band slot-coupled beam sensing electrode for the advanced light source
International Nuclear Information System (INIS)
Hinkson, J.; Rex, K.
1991-05-01
Stripline electrodes (traveling wave electrodes, directional couplers) are commonly used in particle accelerators as beam pickups and kickers. The longitudinally symmetric stripline has a constant beam coupling impedance as a function of length and has a characteristic magnitude sin(x) amplitude response in the frequency domain. An experimentally tapered stripline provides nearly constant coupling impedance vs. frequency and yields superior frequency-domain performance. In practice it is difficult to construct either of these devices for broad-band performance because of the transition from coaxial to stripline geometry. We report on the construction of an exponentially-tapered, slot-coupled ''stripline'' which was relatively easy to construct and has the desired frequency response. 2 refs., 6 figs
Strongly correlated quasi-one-dimensional bands: Ground states, optical absorption, and phonons
International Nuclear Information System (INIS)
Campbell, D.K.; Gammel, J.T.; Loh, E.Y. Jr.
1989-01-01
Using the Lanczos method for exact diagonalization on systems up to 14 sites, combined with a novel ''phase randomization'' technique for extracting more information from these small systems, we investigate several aspects of the one-dimensional Peierls-Hubbard Hamiltonian, in the context of trans-polyacetylene: the dependence of the ground state dimerization on the strength of the electron-electron interactions, including the effects of ''off-diagonal'' Coulomb terms generally ignored in the Hubbard model; the phonon vibrational frequencies and dispersion relations, and the optical absorption properties, including the spectrum of absorptions as a function of photon energy. These three different observables provide considerable insight into the effects of electron-electron interactions on the properties of real materials and thus into the nature of strongly correlated electron systems. 29 refs., 11 figs
International Nuclear Information System (INIS)
Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd
2016-01-01
Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2 , where M = Mo, W; X = S, Se, Te) while including spin–orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed. (paper)
Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd
2016-09-01
Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M = Mo, W; X = S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.
High-flux cold rubidium atomic beam for strongly-coupled cavity QED
Energy Technology Data Exchange (ETDEWEB)
Roy, Basudev [Indian Institute of Science Education and Research, Kolkata (India); University of Maryland, MD (United States); Scholten, Michael [University of Maryland, MD (United States)
2012-08-15
This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D{sup +} magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 10{sup 10} atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.
Gross–Tulub polaron functional in the region of intermediate and strong coupling
Directory of Open Access Journals (Sweden)
N.I. Kashirina
2017-10-01
Full Text Available Properties of the polaron functional obtained as a result of averaging the Fröhlich Hamiltonian on the translation-invariant function have been investigated. The polaron functional can be represented in two different forms. It has been shown that the functional of translationally invariant Gross–Tulub polaron cannot be applied in the strong coupling region, where the real part of the complex quantity takes negative values. The function coincides in its structure with the dynamic susceptibility of degenerate electron gas. The necessary condition for obtaining correct results is investigation of the region of admissible values of the Gross–Tulub functional depending on properties of the function , variational parameters, and the electron-phonon interaction parameter α (Fröhlich coupling constant. A simple and exact formula for the recoil energy of the translationally invariant polaron has been derived, which makes it possible to extend the range of admissible values of the parameters of the electron-phonon interaction to the region of extremely strong coupling (α > 10, where . Numerical investigation of different forms of polaron functionals obtained using the field theory methods has been carried out.
Strong-coupling analysis of large bipolarons in two and three dimensions
International Nuclear Information System (INIS)
Verbist, G.; Smondyrev, M.A.; Peeters, F.M.; Devreese, J.T.
1992-01-01
In the limit of strong electron-phonon coupling, we use either a Pekar-type or an oscillator wave function for the center-of-mass coordinate and either a Coulomb or an oscillator wave function for the relative coordinate, and are able to reproduce all the results from the literature for the large-bipolaron binding energy. Lower bounds are constructed for the critical ratio η c of dielectric constants below which bipolarons can exist. It is found that, in the strong-coupling limit, the stability region for bipolaron formation is much larger in two dimensions (2D) than in 3D. We introduce a model that combines the averaging of the relative coordinate over the asymptotically best wave function with a path-integral treatment of the center-of-mass motion. The stability region for bipolaron formation is increased compared with the full path-integral treatment at large values of the coupling constant α. The critical values are α c ∼9.3 in 3D and α c ∼4.5 in 2D. Phase diagrams for the presented models are also obtained in both 2D and 3D
Oblique S and T constraints on electroweak strongly-coupled models with a light Higgs
Energy Technology Data Exchange (ETDEWEB)
Pich, A. [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Rosell, I. [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Departamento de Ciencias Físicas, Matemáticas y de la Computación,Universidad CEU Cardenal Herrera,c/ Sant Bartomeu 55, E-46115 Alfara del Patriarca, València (Spain); Sanz-Ciller, J.J. [Departamento de Física Teórica, Instituto de Física Teórica,Universidad Autónoma de Madrid - CSIC,c/ Nicolás Cabrera 13-15, E-28049 Cantoblanco, Madrid (Spain)
2014-01-28
Using a general effective Lagrangian implementing the chiral symmetry breaking SU(2){sub L}⊗SU(2){sub R}→SU(2){sub L+R}, we present a one-loop calculation of the oblique S and T parameters within electroweak strongly-coupled models with a light scalar. Imposing a proper ultraviolet behaviour, we determine S and T at next-to-leading order in terms of a few resonance parameters. The constraints from the global fit to electroweak precision data force the massive vector and axial-vector states to be heavy, with masses above the TeV scale, and suggest that the W{sup +}W{sup −} and ZZ couplings of the Higgs-like scalar should be close to the Standard Model value. Our findings are generic, since they only rely on soft requirements on the short-distance properties of the underlying strongly-coupled theory, which are widely satisfied in more specific scenarios.
International Nuclear Information System (INIS)
Levi, A.R.; Lubicz, V.; Rebbi, C.
1997-01-01
We discuss a general strategy to compute the coefficients of the QCD chiral Lagrangian using lattice QCD with Wilson fermions. This procedure requires the introduction of a lattice chiral Lagrangian as an intermediate step in the calculation. The QCD chiral Lagrangian is then obtained by expanding the lattice effective theory in increasing powers of the lattice spacing and the external momenta. In order to investigate the general structure of the lattice effective Lagrangian, we perform an analytical calculation at the leading order of the strong-coupling and large-N expansion. We find that the explicit chiral symmetry breaking, introduced on the lattice by the Wilson term, is reproduced in the effective theory by a set of additional terms, which do not have direct correspondence in the continuum chiral Lagrangian. We argue that these terms can be conveniently reabsorbed by a suitable renormalization procedure. This is shown explicitly at the leading order of the strong-coupling and large-N expansion. In fact, we find that at this order, as is known to be the case in the opposite weak-coupling limit, the vector and axial Ward identities of the continuum theory are reproduced on the lattice provided that the bare quark mass and the lattice operators are properly renormalized. copyright 1997 The American Physical Society
The effect of spin-orbit coupling in band structure of few-layer graphene
Energy Technology Data Exchange (ETDEWEB)
Sahdan, Muhammad Fauzi, E-mail: sahdan89@yahoo.co.id; Darma, Yudi, E-mail: sahdan89@yahoo.co.id [Department of Physics, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132 (Indonesia)
2014-03-24
Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. This can be happened due to spin-orbit coupling and time-reversal symmetry. Moreover, the edge current flows through their edge or surface depends on its spin orientation and also it is robust against non-magnetic impurities. Therefore, topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of few-layer graphene by using this model with analytical approach. The results of our calculations show that the gap opening occurs at K and K’ point, not only in single layer, but also in bilayer and trilayer graphene.
Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf
2015-05-07
We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to
Anisotropy and multi-band effects in weak-coupling superconductors
International Nuclear Information System (INIS)
Berger, T.L.
1977-01-01
The techniques of second quantization and thermodynamic Green functions are used to investigate energy gap anisotropy and multi-band effects in pure, single-crystal, weak-coupling superconductors. A generalized version of the standard Gorkov factorization is used to linearize the Green functions equations of motion. The effects of lattice periodicity and band structure are taken into account by means of Bloch wave expansions and Bloch transforms. A pairing selection rule is derived which indicates the possibility of pairing between single particle states belonging to different bands, as well as the usual Cooper pairing. It is shown that the interband gap parameter, which is coupled to the usual gap parameter by the Green functions equations of motion, can only contribute indirectly to the tunneling electric current and the thermodynamic potential. In the absence of interband pairing, the equations of motion lead to the usual BCS gap equation. Also, in the absence of interband pairing, the gap parameter is found to be equal to the diagonal matrix element of the superconductor pair potential between electronic Bloch states. An essentially temperature independent anisotropy function which contains all angular dependence of the gap is shown to evolve naturally from this formalism. The overall temperature dependence of the gap is investigated and it is found that with a change of temperature, the magnitude of the gap in different directions changes in the same ration. The ordinary Markowitz-Kadanoff model is shown to be inappropriate for the case of a multi-band superconductor and a generalized version of this model is introduced and discussed. A special case of this model is considered which leads to gap discontinuities at Brillouin zone boundaries
Strong coupling in F-theory and geometrically non-Higgsable seven-branes
Directory of Open Access Journals (Sweden)
James Halverson
2017-06-01
Full Text Available Geometrically non-Higgsable seven-branes carry gauge sectors that cannot be broken by complex structure deformation, and there is growing evidence that such configurations are typical in F-theory. We study strongly coupled physics associated with these branes. Axiodilaton profiles are computed using Ramanujan's theories of elliptic functions to alternative bases, showing explicitly that the string coupling is O(1 in the vicinity of the brane; that it sources nilpotent SL(2,Z monodromy and therefore the associated brane charges are modular; and that essentially all F-theory compactifications have regions with order one string coupling. It is shown that non-perturbative SU(3 and SU(2 seven-branes are related to weakly coupled counterparts with D7-branes via deformation-induced Hanany–Witten moves on (p,q string junctions that turn them into fundamental open strings; only the former may exist for generic complex structure. D3-brane near these and the Kodaira type II seven-branes probe Argyres–Douglas theories. The BPS states of slightly deformed theories are shown to be dyonic string junctions.
Charging-delay effect on longitudinal dust acoustic shock wave in strongly coupled dusty plasma
International Nuclear Information System (INIS)
Ghosh, Samiran; Gupta, M.R.
2005-01-01
Taking into account the charging-delay effect, the nonlinear propagation characteristics of longitudinal dust acoustic wave in strongly coupled collisional dusty plasma described by generalized hydrodynamic model have been investigated. In the 'hydrodynamic limit', a Korteweg-de Vries Burger (KdVB) equation with a damping term arising due to dust-neutral collision is derived in which the Burger term is proportional to the dissipation due to dust viscosity through dust-dust correlation and charging-delay-induced anomalous dissipation. On the other hand, in the 'kinetic limit', a KdVB equation with a damping term and a nonlocal nonlinear forcing term arising due to memory-dependent strong correlation effect of dust fluid is derived in which the Burger term depends only on the charging-delay-induced dissipation. Numerical solution of integrodifferential equations reveals that (i) dissipation due to dust viscosity and principally due to charging delay causes excitation of the longitudinal dust acoustic shock wave in strongly coupled dusty plasma and (ii) dust-neutral collision does not appear to play any direct role in shock formation. The condition for the generation of shock is also discussed briefly
The strong coupling from a nonperturbative determination of the Λ parameter in three-flavor QCD
Energy Technology Data Exchange (ETDEWEB)
Bruno, Mattia [Brookhaven National Laboratory, Upton, NY (United States). Physics Dept.; Dalla Brida, Mattia [Univ. di Milano-Bicocca (Italy). Dipt. di Fisica; INFN, Sezione di Milano-Bicocca (Italy); Fritzsch, Patrick; Ramos, Alberto [CERN, Geneva (Switzerland). Theoretical Physics Dept.; Korzec, Tomasz [Wuppertal Univ. (Germany). Dept. of Physics; Schaefer, Stefan; Simma, Hubert [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics and Hamilton Mathematics Inst.; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Collaboration: ALPHA Collaboration
2017-07-15
We present a lattice determination of the Λ parameter in three-flavor QCD and the strong coupling at the Z pole mass. Computing the nonperturbative running of the coupling in the range from 0.2 GeV to 70 GeV, and using experimental input values for the masses and decay constants of the pion and the kaon, we obtain Λ{sup (3)}{sub MS}=341(12) MeV. The nonperturbative running up to very high energies guarantees that systematic effects associated with perturbation theory are well under control. Using the four-loop prediction for Λ{sup (5)}{sub MS}/Λ{sup (3)}{sub MS} yields α{sup (5)}{sub MS}(m{sub Z})=0.11852(84).
Realization of collective strong coupling with ion Coulomb crystals in an optical cavity
DEFF Research Database (Denmark)
Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan
2009-01-01
Cavity quantum electrodynamics (CQED) focuses on understanding the interactions between matter and the electromagnetic field in cavities at the quantum level 1, 2 . In the past years, CQED has attracted attention 3, 4, 5, 6, 7, 8, 9 especially owing to its importance for the field of quantum...... information 10 . At present, photons are the best carriers of quantum information between physically separated sites 11, 12 and quantum-information processing using stationary qubits 10 is most promising, with the furthest advances having been made with trapped ions 13, 14, 15 . The implementation of complex...... quantum-information-processing networks 11, 12 hence requires devices to efficiently couple photons and stationary qubits. Here, we present the first CQED experiments demonstrating that the collective strong-coupling regime 2 can be reached in the interaction between a solid in the form of an ion Coulomb...
Periodic Forcing of a 555-IC Based Electronic Oscillator in the Strong Coupling Limit
Santillán, Moisés
We designed and developed a master-slave electronic oscillatory system (based on the 555-timer IC working in the astable mode), and investigated its dynamic behavior regarding synchronization. For that purpose, we measured the rotation numbers corresponding to the phase-locking rhythms achieved in a large set of values of the normalized forcing frequency (NFF) and of the coupling strength between the master and the slave oscillators. In particular, we were interested in the system behavior in the strong-coupling limit, because such problem has not been extensively studied from an experimental perspective. Our results indicate that, in such a limit, a degenerate codimension-2 bifurcation point at NFF = 2 exists, in which all the phase-locking regions converge. These findings were corroborated by means of a mathematical model developed to that end, as well as by ad hoc further experiments.
Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2
Qiao, Xiao-Fen; Wu, Jiang-Bin; Zhou, Linwei; Qiao, Jingsi; Shi, Wei; Chen, Tao; Zhang, Xin; Zhang, Jun; Ji, Wei; Tan, Ping-Heng
2016-04-01
Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and anisotropic-like (AI) N layer (NL, N > 1) ReS2 are revealed by ultralow- and high-frequency Raman spectroscopy, photoluminescence and first-principles density functional theory calculation. Two interlayer shear modes are observed in AI-NL-ReS2 while only one shear mode appears in IS-NL-ReS2, suggesting anisotropic- and isotropic-like stacking orders in IS- and AI-NL-ReS2, respectively. This explicit difference in the observed frequencies identifies an unexpected strong interlayer coupling in IS- and AI-NL-ReS2. Quantitatively, the force constants of them are found to be around 55-90% of those of multilayer MoS2. The revealed strong interlayer coupling and polytypism in multi-layer ReS2 may stimulate future studies on engineering physical properties of other anisotropic 2D materials by stacking orders.Anisotropic two-dimensional (2D) van der Waals (vdW) layered materials, with both scientific interest and application potential, offer one more dimension than isotropic 2D materials to tune their physical properties. Various physical properties of 2D multi-layer materials are modulated by varying their stacking orders owing to significant interlayer vdW coupling. Multilayer rhenium disulfide (ReS2), a representative anisotropic 2D material, was expected to be randomly stacked and lack interlayer coupling. Here, we demonstrate two stable stacking orders, namely isotropic-like (IS) and
Strong-coupling constant at three loops in momentum subtraction scheme
International Nuclear Information System (INIS)
Chetyrkin, K.G.; Russian Academy of Sciences, Moscow; Kniehl, B.A.; Steinhauser, M.
2008-12-01
In this paper we compute the three-loop corrections to the β function in a momentum subtraction (MOM) scheme with a massive quark. The calculation is performed in the background field formalism applying asymptotic expansions for small and large momenta. Special emphasis is devoted to the relation between the coupling constant in the MOM and MS schemes as well as their ability to describe the phenomenon of decoupling. It is demonstrated by an explicit comparison that the MS scheme can be consistently used to relate the values of the MOM-scheme strong-coupling constant in the energy regions higher and lower than the massive-quark production threshold. This procedure obviates the necessity to know the full mass dependence of the MOM β function and clearly demonstrates the equivalence of both schemes for the description of physics outside the threshold region. (orig.)
Strong-coupling constant at three loops in momentum subtraction scheme
Energy Technology Data Exchange (ETDEWEB)
Chetyrkin, K.G. [Karlsruhe Univ. (T.H.), Karlsruhe Inst. of Technology (KIT) (Germany). Inst. fuer Theoretische Teilchenphysik]|[Russian Academy of Sciences, Moscow (Russian Federation). Inst. for Nuclear Research; Kniehl, B.A. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Steinhauser, M. [Karlsruhe Univ. (T.H.), Karlsruhe Inst. of Technology (KIT) (Germany). Inst. fuer Theoretische Teilchenphysik
2008-12-15
In this paper we compute the three-loop corrections to the {beta} function in a momentum subtraction (MOM) scheme with a massive quark. The calculation is performed in the background field formalism applying asymptotic expansions for small and large momenta. Special emphasis is devoted to the relation between the coupling constant in the MOM and MS schemes as well as their ability to describe the phenomenon of decoupling. It is demonstrated by an explicit comparison that the MS scheme can be consistently used to relate the values of the MOM-scheme strong-coupling constant in the energy regions higher and lower than the massive-quark production threshold. This procedure obviates the necessity to know the full mass dependence of the MOM {beta} function and clearly demonstrates the equivalence of both schemes for the description of physics outside the threshold region. (orig.)
Treating Sample Covariances for Use in Strongly Coupled Atmosphere-Ocean Data Assimilation
Smith, Polly J.; Lawless, Amos S.; Nichols, Nancy K.
2018-01-01
Strongly coupled data assimilation requires cross-domain forecast error covariances; information from ensembles can be used, but limited sampling means that ensemble derived error covariances are routinely rank deficient and/or ill-conditioned and marred by noise. Thus, they require modification before they can be incorporated into a standard assimilation framework. Here we compare methods for improving the rank and conditioning of multivariate sample error covariance matrices for coupled atmosphere-ocean data assimilation. The first method, reconditioning, alters the matrix eigenvalues directly; this preserves the correlation structures but does not remove sampling noise. We show that it is better to recondition the correlation matrix rather than the covariance matrix as this prevents small but dynamically important modes from being lost. The second method, model state-space localization via the Schur product, effectively removes sample noise but can dampen small cross-correlation signals. A combination that exploits the merits of each is found to offer an effective alternative.
Hanle Magnetoresistance in Thin Metal Films with Strong Spin-Orbit Coupling.
Vélez, Saül; Golovach, Vitaly N; Bedoya-Pinto, Amilcar; Isasa, Miren; Sagasta, Edurne; Abadia, Mikel; Rogero, Celia; Hueso, Luis E; Bergeret, F Sebastian; Casanova, Fèlix
2016-01-08
We report measurements of a new type of magnetoresistance in Pt and Ta thin films. The spin accumulation created at the surfaces of the film by the spin Hall effect decreases in a magnetic field because of the Hanle effect, resulting in an increase of the electrical resistance as predicted by Dyakonov [Phys. Rev. Lett. 99, 126601 (2007)]. The angular dependence of this magnetoresistance resembles the recently discovered spin Hall magnetoresistance in Pt/Y(3)Fe(5)O(12) bilayers, although the presence of a ferromagnetic insulator is not required. We show that this Hanle magnetoresistance is an alternative simple way to quantitatively study the coupling between charge and spin currents in metals with strong spin-orbit coupling.
International Nuclear Information System (INIS)
Munson, C.P.; Benage, J.F. Jr.; Taylor, A.J.; Trainor, R.J. Jr.; Wood, B.P.; Wysocki, F.J.
1999-01-01
Atlas is a high current (approximately 30 MA peak, with a current risetime approximately 4.5 microsec), high energy (E stored = 24 MJ, E load = 3--6 MJ), pulsed power facility which is being constructed at Los Alamos National Laboratory with a scheduled completion date in the year 2000. When operational, this facility will provide a platform for experiments in high pressure shocks (> 20 Mbar), adiabatic compression (ρ/ρ 0 > 5, P > 10 Mbar), high magnetic fields (approximately 2,000 T), high strain and strain rates (var e psilon > 200%, dvar e psilon/dt approximately 10 4 to 10 6 s -1 ), hydrodynamic instabilities of materials in turbulent regimes, magnetized target fusion, equation of state, and strongly coupled plasmas. For the strongly coupled plasma experiments, an auxiliary capacitor bank will be used to generate a moderate density (< 0.1 solid), relatively cold (approximately 1 eV) plasma by ohmic heating of a conducting material of interest such as titanium. This stargate plasma will be compressed against a central column containing diagnostic instrumentation by a cylindrical conducting liner that is driven radially inward by current from the main Atlas capacitor bank. The plasma is predicted to reach densities of approximately 1.1 times solid, achieve ion and electron temperatures of approximately 10 eV, and pressures of approximately 4--5 Mbar. This is a density/temperature regime which is expected to experience strong coupling, but only partial degeneracy. X-ray radiography is planned for measurements of the material density at discrete times during the experiments; diamond Raman measurements are anticipated for determination of the pressure. In addition, a neutron resonance spectroscopic technique is being evaluated for possible determination of the temperature (through low percentage doping of the titanium with a suitable resonant material). Initial target plasma formation experiments are being planned on an existing pulsed power facility at LANL and
Strong-coupling Bose polarons out of equilibrium: Dynamical renormalization-group approach
Grusdt, Fabian; Seetharam, Kushal; Shchadilova, Yulia; Demler, Eugene
2018-03-01
When a mobile impurity interacts with a surrounding bath of bosons, it forms a polaron. Numerous methods have been developed to calculate how the energy and the effective mass of the polaron are renormalized by the medium for equilibrium situations. Here, we address the much less studied nonequilibrium regime and investigate how polarons form dynamically in time. To this end, we develop a time-dependent renormalization-group approach which allows calculations of all dynamical properties of the system and takes into account the effects of quantum fluctuations in the polaron cloud. We apply this method to calculate trajectories of polarons following a sudden quench of the impurity-boson interaction strength, revealing how the polaronic cloud around the impurity forms in time. Such trajectories provide additional information about the polaron's properties which are challenging to extract directly from the spectral function measured experimentally using ultracold atoms. At strong couplings, our calculations predict the appearance of trajectories where the impurity wavers back at intermediate times as a result of quantum fluctuations. Our method is applicable to a broader class of nonequilibrium problems. As a check, we also apply it to calculate the spectral function and find good agreement with experimental results. At very strong couplings, we predict that quantum fluctuations lead to the appearance of a dark continuum with strongly suppressed spectral weight at low energies. While our calculations start from an effective Fröhlich Hamiltonian describing impurities in a three-dimensional Bose-Einstein condensate, we also calculate the effects of additional terms in the Hamiltonian beyond the Fröhlich paradigm. We demonstrate that the main effect of these additional terms on the attractive side of a Feshbach resonance is to renormalize the coupling strength of the effective Fröhlich model.
The Bethe roots of Regge cuts in strongly coupled N=4 SYM theory
International Nuclear Information System (INIS)
Bartels, J.; Schomerus, V.; Sprenger, M.
2015-01-01
We describe a general algorithm for the computation of the remainder function for n-gluon scattering in multi-Regge kinematics for strongly coupled planar N=4 super Yang-Mills theory. This regime is accessible through the infrared physics of an auxiliary quantum integrable system describing strings in AdS 5 ×S 5 . Explicit formulas are presented for n=6 and n=7 external gluons. Our results are consistent with expectations from perturbative gauge theory. This paper comprises the technical details for the results announced in http://dx.doi.org/10.1007/JHEP10(2014)067.
Characteristics of dust voids in a strongly coupled laboratory dusty plasma
Bailung, Yoshiko; Deka, T.; Boruah, A.; Sharma, S. K.; Pal, A. R.; Chutia, Joyanti; Bailung, H.
2018-05-01
A void is produced in a strongly coupled dusty plasma by inserting a cylindrical pin (˜0.1 mm diameter) into a radiofrequency discharge argon plasma. The pin is biased externally below the plasma potential to generate the dust void. The Debye sheath model is used to obtain the sheath potential profile and hence to estimate the electric field around the pin. The electric field force and the ion drag force on the dust particles are estimated and their balance accounts well for the maintenance of the size of the void. The effects of neutral density as well as dust density on the void size are studied.
Analytic properties of the OCP and ionic mixtures in the strongly coupled fluid state
International Nuclear Information System (INIS)
DeWitt, H.E.
1993-01-01
Exact results for the Madelung constants and first order anharmonic energies are given for the inverse power potentials with the Coulomb potential as the softest example. Similar exact results are obtained using the analysis of Rosenfeld on the Γ → ∞ limit for the OCP internal energy, direct correlation function, screening function, and bridge functions. Knowing these exact limits for the fluid phase of the OCP allows one to determine the nature of the thermal corrections to the strongly coupled results. Solutions of the HNC equation modified with the hard sphere bridge function give an example
Liu, Bin; Goree, J.
2014-06-01
The diffusion of projectiles drifting through a target of strongly coupled dusty plasma is investigated in a simulation. A projectile's drift is driven by a constant force F. We characterize the random walk of the projectiles in the direction perpendicular to their drift. The perpendicular diffusion coefficient Dp⊥ is obtained from the simulation data. The force dependence of Dp⊥ is found to be a power law in a high force regime, but a constant at low forces. A mean kinetic energy Wp for perpendicular motion is also obtained. The diffusion coefficient is found to increase with Wp with a linear trend at higher energies, but an exponential trend at lower energies.
Strong-coupling study of the Gribov ambiguity in lattice Landau gauge
International Nuclear Information System (INIS)
Maas, Axel; Pawlowski, Jan M.; Spielmann, Daniel; Sternbeck, Andre; Smekal, Lorenz von
2010-01-01
We study the strong-coupling limit β=0 of lattice SU(2) Landau gauge Yang-Mills theory. In this limit the lattice spacing is infinite, and thus all momenta in physical units are infinitesimally small. Hence, the infrared behavior can be assessed at sufficiently large lattice momenta. Our results show that at the lattice volumes used here, the Gribov ambiguity has an enormous effect on the ghost propagator in all dimensions. This underlines the severity of the Gribov problem and calls for refined studies also at finite β. In turn, the gluon propagator only mildly depends on the Gribov ambiguity. (orig.)
Viscosity calculated in simulations of strongly coupled dusty plasmas with gas friction
International Nuclear Information System (INIS)
Feng Yan; Goree, J.; Liu Bin
2011-01-01
A two-dimensional strongly coupled dusty plasma is modeled using Langevin and frictionless molecular dynamical simulations. The static viscosity η and the wave-number-dependent viscosity η(k) are calculated from the microscopic shear in the random motion of particles. A recently developed method of calculating the wave-number-dependent viscosity η(k) is validated by comparing the results of η(k) from the two simulations. It is also verified that the Green-Kubo relation can still yield an accurate measure of the static viscosity η in the presence of a modest level of friction as in dusty plasma experiments.
A Critical Review of Wireless Power Transfer via Strongly Coupled Magnetic Resonances
Directory of Open Access Journals (Sweden)
Xuezhe Wei
2014-07-01
Full Text Available Strongly coupled magnetic resonance (SCMR, proposed by researchers at MIT in 2007, attracted the world’s attention by virtue of its mid-range, non-radiative and high-efficiency power transfer. In this paper, current developments and research progress in the SCMR area are presented. Advantages of SCMR are analyzed by comparing it with the other wireless power transfer (WPT technologies, and different analytic principles of SCMR are elaborated in depth and further compared. The hot research spots, including system architectures, frequency splitting phenomena, impedance matching and optimization designs are classified and elaborated. Finally, current research directions and development trends of SCMR are discussed.
Energy Technology Data Exchange (ETDEWEB)
El-Labany, S. K., E-mail: skellabany@hotmail.com; Zedan, N. A., E-mail: nesreenplasma@yahoo.com [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 (Egypt); El-Taibany, W. F., E-mail: eltaibany@hotmail.com, E-mail: eltaibany@du.edu.eg [Department of Physics, Faculty of Science, Damietta University, New Damietta, P.O. 34517 (Egypt); Department of Physics, College of Science for Girls in Abha, King Khalid University, P.O. 960 Abha (Saudi Arabia)
2015-07-15
Cylindrical and spherical amplitude modulations of dust acoustic (DA) solitary wave envelopes in a strongly coupled dusty plasma containing nonthermal distributed ions are studied. Employing a reductive perturbation technique, a modified nonlinear Schrödinger equation including the geometrical effect is derived. The influences of nonthermal ions, polarization force, and the geometries on the modulational instability conditions are analyzed and the possible rogue wave structures are discussed in detail. It is found that the spherical DA waves are more structurally stable to perturbations than the cylindrical ones. Possible applications of these theoretical findings are briefly discussed.
Radiation Damping in a Non-Abelian Strongly-Coupled Gauge Theory
International Nuclear Information System (INIS)
Chernicoff, Mariano; Garcia, J. Antonio; Gueijosa, Alberto
2011-01-01
We study the dynamics of a 'composite' or 'dressed' quark in strongly-coupled large-N c N=4 super-Yang-Mills (SYM), making use of the AdS/CFT correspondence. We show that the standard string dynamics nicely captures the physics of the quark and its surrounding non-Abelian field configuration, making it possible to derive a relativistic equation of motion that incorporates the effects of radiation damping. From this equation one can deduce a non-standard dispersion relation for the composite quark, as well as a Lorentz covariant formula for its rate of radiation.
Acceleration, Energy Loss and Screening in Strongly-Coupled Gauge Theories
Chernicoff, Mariano; Guijosa, Alberto
2008-01-01
We explore various aspects of the motion of heavy quarks in strongly-coupled gauge theories, employing the AdS/CFT correspondence. Building on earlier work by Mikhailov, we study the dispersion relation and energy loss of an accelerating finite-mass quark in N=4 super-Yang-Mills, both in vacuum and in the presence of a thermal plasma. In the former case, we notice that the application of an external force modifies the dispersion relation. In the latter case, we find in particular that when a ...
Radiation Damping in a Non-Abelian Strongly-Coupled Gauge Theory
Chernicoff, Mariano; Garcia, J. Antonio; Guijosa, Alberto
2010-01-01
We study a `dressed' or `composite' quark in strongly-coupled N=4 super-Yang-Mills (SYM), making use of the AdS/CFT correspondence. We show that the standard string dynamics nicely captures the physics of the quark and its surrounding quantum non-Abelian field configuration, making it possible to derive a relativistic equation of motion that incorporates the effects of radiation damping. From this equation one can deduce a non-standard dispersion relation for the composite quark, as well as a...
Radiation Damping in a Non-Abelian Strongly-Coupled Gauge Theory
Chernicoff, Mariano; García, J. Antonio; Güijosa, Alberto
2011-09-01
We study the dynamics of a 'composite` or 'dressed` quark in strongly-coupled large-Nc N=4 super-Yang-Mills (SYM), making use of the AdS/CFT correspondence. We show that the standard string dynamics nicely captures the physics of the quark and its surrounding non-Abelian field configuration, making it possible to derive a relativistic equation of motion that incorporates the effects of radiation damping. From this equation one can deduce a non-standard dispersion relation for the composite quark, as well as a Lorentz covariant formula for its rate of radiation.
Generalized Lorentz-Dirac Equation for a Strongly Coupled Gauge Theory
Chernicoff, Mariano; García, J. Antonio; Güijosa, Alberto
2009-06-01
We derive a semiclassical equation of motion for a “composite” quark in strongly coupled large-Nc N=4 super Yang-Mills theory, making use of the anti-de Sitter space/conformal field theory correspondence. The resulting nonlinear equation incorporates radiation damping, and reduces to the standard Lorentz-Dirac equation for external forces that are small on the scale of the quark Compton wavelength, but has no self-accelerating or preaccelerating solutions. From this equation one can read off a nonstandard dispersion relation for the quark, as well as a Lorentz-covariant formula for its radiation rate.
Generalized Lorentz-Dirac Equation for a Strongly Coupled Gauge Theory
International Nuclear Information System (INIS)
Chernicoff, Mariano; Garcia, J. Antonio; Gueijosa, Alberto
2009-01-01
We derive a semiclassical equation of motion for a 'composite' quark in strongly coupled large-N c N=4 super Yang-Mills theory, making use of the anti-de Sitter space/conformal field theory correspondence. The resulting nonlinear equation incorporates radiation damping, and reduces to the standard Lorentz-Dirac equation for external forces that are small on the scale of the quark Compton wavelength, but has no self-accelerating or preaccelerating solutions. From this equation one can read off a nonstandard dispersion relation for the quark, as well as a Lorentz-covariant formula for its radiation rate.
A strongly conservative finite element method for the coupling of Stokes and Darcy flow
Kanschat, G.
2010-08-01
We consider a model of coupled free and porous media flow governed by Stokes and Darcy equations with the Beavers-Joseph-Saffman interface condition. This model is discretized using divergence-conforming finite elements for the velocities in the whole domain. Discontinuous Galerkin techniques and mixed methods are used in the Stokes and Darcy subdomains, respectively. This discretization is strongly conservative in Hdiv(Ω) and we show convergence. Numerical results validate our findings and indicate optimal convergence orders. © 2010 Elsevier Inc.
Drag force in strongly coupled, anisotropic plasma at finite chemical potential
Energy Technology Data Exchange (ETDEWEB)
Chakraborty, Somdeb; Haque, Najmul [Theory Division, Saha Institute of Nuclear Physics,1/AF Bidhannagar, Kolkata-700 064 (India)
2014-12-30
We employ methods of gauge/string duality to analyze the drag force on a heavy quark moving through a strongly coupled, anisotropic N=4,SU(N) super Yang-Mills plasma in the presence of a finite U(1) chemical potential. We present numerical results valid for any value of the anisotropy parameter and the U(1) charge density and arbitrary direction of the quark velocity with respect to the direction of anisotropy. In the small anisotropy limit we are also able to furnish analytical results.
International Nuclear Information System (INIS)
Szyniszewski, Marcin; Manchester Univ.; Cichy, Krzysztof; Poznan Univ.; Kujawa-Cichy, Agnieszka
2014-10-01
We employ exact diagonalization with strong coupling expansion to the massless and massive Schwinger model. New results are presented for the ground state energy and scalar mass gap in the massless model, which improve the precision to nearly 10 -9 %. We also investigate the chiral condensate and compare our calculations to previous results available in the literature. Oscillations of the chiral condensate which are present while increasing the expansion order are also studied and are shown to be directly linked to the presence of flux loops in the system.
Global Behavior for a Strongly Coupled Predator-Prey Model with One Resource and Two Consumers
Directory of Open Access Journals (Sweden)
Yujuan Jiao
2012-01-01
Full Text Available We consider a strongly coupled predator-prey model with one resource and two consumers, in which the first consumer species feeds on the resource according to the Holling II functional response, while the second consumer species feeds on the resource following the Beddington-DeAngelis functional response, and they compete for the common resource. Using the energy estimates and Gagliardo-Nirenberg-type inequalities, the existence and uniform boundedness of global solutions for the model are proved. Meanwhile, the sufficient conditions for global asymptotic stability of the positive equilibrium for this model are given by constructing a Lyapunov function.
Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.
2016-01-01
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and $MnO_2$ dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of $\\partial\\omega/\\partial k < 0$ are identified as signatures of du...
Strongly correlated photons generated by coupling a three- or four-level system to a waveguide
Zheng, Huaixiu; Gauthier, Daniel J.; Baranger, Harold U.
2012-04-01
We study the generation of strongly correlated photons by coupling an atom to photonic quantum fields in a one-dimensional waveguide. Specifically, we consider a three-level or four-level system for the atom. Photon-photon bound states emerge as a manifestation of the strong photon-photon correlation mediated by the atom. Effective repulsive or attractive interaction between photons can be produced, causing either suppressed multiphoton transmission (photon blockade) or enhanced multiphoton transmission (photon-induced tunneling). As a result, nonclassical light sources can be generated on demand by sending coherent states into the proposed system. We calculate the second-order correlation function of the transmitted field and observe bunching and antibunching caused by the bound states. Furthermore, we demonstrate that the proposed system can produce photon pairs with a high degree of spectral entanglement, which have a large capacity for carrying information and are important for large-alphabet quantum communication.
Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity
Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena
2016-04-01
Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.
Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity.
Dory, Constantin; Fischer, Kevin A; Müller, Kai; Lagoudakis, Konstantinos G; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L; Kelaita, Yousif; Vučković, Jelena
2016-04-26
Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.
Feng, Yan; Lin, Wei; Murillo, M. S.
2017-11-01
Transport properties of two-dimensional (2D) strongly coupled dusty plasmas have been investigated in detail, but never for viscosity with a strong perpendicular magnetic field; here, we examine this scenario using Langevin dynamics simulations of 2D liquids with a binary Yukawa interparticle interaction. The shear viscosity η of 2D liquid dusty plasma is estimated from the simulation data using the Green-Kubo relation, which is the integration of the shear stress autocorrelation function. It is found that, when a perpendicular magnetic field is applied, the shear viscosity of 2D liquid dusty plasma is modified substantially. When the magnetic field is increased, its viscosity increases at low temperatures, while at high temperatures its viscosity diminishes. It is determined that these different variational trends of η arise from the different behaviors of the kinetic and potential parts of the shear stress under external magnetic fields.
Enhanced magneto-plasmonic effect in Au/Co/Au multilayers caused by exciton–plasmon strong coupling
Energy Technology Data Exchange (ETDEWEB)
Hamidi, S.M., E-mail: m_hamidi@sbu.ac.ir; Ghaebi, O.
2016-09-15
In this paper, we have investigated magneto optical Kerr rotation using the strong coupling of exciton–plasmon. For this purpose, we have demonstrated strong coupling phenomenon using reflectometry measurements. These measurements revealed the formation of two split polaritonic extrema in reflectometry as a function of wavelength. Then we have shown exciton–plasmon coupling in dispersion diagram which presented an anti-crossing between the polaritonic branches. To assure the readers of strong coupling, we have shown an enhanced magneto-optical Kerr rotation by comparing the reflectometry results of strong coupling of surface Plasmon polariton of Au/Co/Au multilayer and R6G excitons with surface Plasmon polariton magneto-optical kerr effect experimental setup. - Highlights: • The magneto optical Kerr rotation has been investigated by using the strong coupling of exciton–plasmon. • We have shown exciton–plasmon coupling in dispersion diagram which presented an anti-crossing between the polaritonic branches. • Strong coupling of surface plasmon polariton and exciton have been yielded to the enhanced magneto-optical Kerr effect. • Plasmons in Au/Co/Au multilayer and exciton in R6G have been coupled to enhance magneto-optical activity.
Varma, Ruchi; Ghosh, Jayanta
2018-06-01
A new hybrid technique, which is a combination of neural network (NN) and support vector machine, is proposed for designing of different slotted dual band proximity coupled microstrip antennas. Slots on the patch are employed to produce the second resonance along with size reduction. The proposed hybrid model provides flexibility to design the dual band antennas in the frequency range from 1 to 6 GHz. This includes DCS (1.71-1.88 GHz), PCS (1.88-1.99 GHz), UMTS (1.92-2.17 GHz), LTE2300 (2.3-2.4 GHz), Bluetooth (2.4-2.485 GHz), WiMAX (3.3-3.7 GHz), and WLAN (5.15-5.35 GHz, 5.725-5.825 GHz) bands applications. Also, the comparative study of this proposed technique is done with the existing methods like knowledge based NN and support vector machine. The proposed method is found to be more accurate in terms of % error and root mean square % error and the results are in good accord with the measured values.
On Yang--Mills Theories with Chiral Matter at Strong Coupling
Energy Technology Data Exchange (ETDEWEB)
Shifman, M.; /Minnesota U., Theor. Phys. Inst. /Saclay, SPhT; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept.
2008-08-20
Strong coupling dynamics of Yang-Mills theories with chiral fermion content remained largely elusive despite much effort over the years. In this work, we propose a dynamical framework in which we can address non-perturbative properties of chiral, non-supersymmetric gauge theories, in particular, chiral quiver theories on S{sub 1} x R{sub 3}. Double-trace deformations are used to stabilize the center-symmetric vacuum. This allows one to smoothly connect smaller(S{sub 1}) to larger(S{sub 1}) physics (R{sub 4} is the limiting case) where the double-trace deformations are switched off. In particular, occurrence of the mass gap in the gauge sector and linear confinement due to bions are analytically demonstrated. We find the pattern of the chiral symmetry realization which depends on the structure of the ring operators, a novel class of topological excitations. The deformed chiral theory, unlike the undeformed one, satisfies volume independence down to arbitrarily small volumes (a working Eguchi-Kawai reduction) in the large N limit. This equivalence, may open new perspectives on strong coupling chiral gauge theories on R{sub 4}.
Quantum Wronskian approach to six-point gluon scattering amplitudes at strong coupling
International Nuclear Information System (INIS)
Hatsuda, Yasuyuki; Ito, Katsushi; Satoh, Yuji; Suzuki, Junji
2014-06-01
We study the six-point gluon scattering amplitudes in N=4 super Yang-Mills theory at strong coupling based on the twisted Z 4 -symmetric integrable model. The lattice regularization allows us to derive the associated thermodynamic Bethe ansatz (TBA) equations as well as the functional relations among the Q-/T-/Y-functions. The quantum Wronskian relation for the Q-/T-functions plays an important role in determining a series of the expansion coefficients of the T-/Y-functions around the UV limit, including the dependence on the twist parameter. Studying the CFT limit of the TBA equations, we derive the leading analytic expansion of the remainder function for the general kinematics around the limit where the dual Wilson loops become regular-polygonal. We also compare the rescaled remainder functions at strong coupling with those at two, three and four loops, and find that they are close to each other along the trajectories parameterized by the scale parameter of the integrable model.
Operator product expansion of the lowest weight CPOs in N=4 SYM4 at strong coupling
International Nuclear Information System (INIS)
Arutyunov, Gleb; Frolov, Sergey; Petkou, Anastasios C.
2000-01-01
We present a detailed analysis of the 4-point functions of the lowest weight chiral primary operators O I ∼tr(phi (i phi j) ) in N=4 SYM 4 at strong coupling and show that their structure is compatible with the predictions of AdS/CFT correspondence. In particular, all power-singular terms in the 4-point functions exactly coincide with the contributions coming from the conformal blocks of the CPOs, the R -symmetry current and the stress tensor. Operators dual to string modes decouple at strong coupling. We compute the anomalous dimensions and the leading 1/N 2 corrections to the normalization constants of the 2- and 3-point functions of scalar and vector double-trace operators with approximate dimensions 4 and 5, respectively. We also find that the conformal dimensions of certain towers of double-trace operators in the 105 , 84 and 175 irreps are non-renormalized. We show that, despite the absence of a non-renormalization theorem for the double-trace operator in the 20 irrep, its anomalous dimension vanishes. As by-products of our investigation, we derive explicit expressions for the conformal block of the stress tensor, and for the conformal partial wave amplitudes of a conserved current and of a stress tensor in d dimensions
Effective action for superfluid Fermi systems in the strong-coupling limit
International Nuclear Information System (INIS)
Dupuis, N.
2005-01-01
We derive the low-energy effective action for three-dimensional superfluid Fermi systems in the strong-coupling limit, where superfluidity originates from Bose-Einstein condensation of composite bosons. Taking into account density and pairing fluctuations on the same footing, we show that the effective action involves only the fermion density ρ r and its conjugate variable, the phase θ r of the pairing order parameter Δ r . We recover the standard action of a Bose superfluid of density ρ r /2, where the bosons have a mass m B =2m and interact via a repulsive contact potential with amplitude g B =4πa B /m B ,a B =2a (a the s-wave scattering length associated to the fermion-fermion interaction in vacuum). For lattice models, the derivation of the effective action is based on the mapping of the attractive Hubbard model onto the Heisenberg model in a uniform magnetic field, and a coherent state path integral representation of the partition function. The effective description of the Fermi superfluid in the strong-coupling limit is a Bose-Hubbard model with an intersite hopping amplitude t B =J/2 and an on-site repulsive interaction U B =2Jz, where J=4t 2 /U (t and -U are the intersite hopping amplitude and the on-site attraction in the (fermionic) Hubbard model, z the number of nearest-neighbor sites)
Effective action for superfluid Fermi systems in the strong-coupling limit
Dupuis, N.
2005-07-01
We derive the low-energy effective action for three-dimensional superfluid Fermi systems in the strong-coupling limit, where superfluidity originates from Bose-Einstein condensation of composite bosons. Taking into account density and pairing fluctuations on the same footing, we show that the effective action involves only the fermion density ρr and its conjugate variable, the phase θr of the pairing order parameter Δr . We recover the standard action of a Bose superfluid of density ρr/2 , where the bosons have a mass mB=2m and interact via a repulsive contact potential with amplitude gB=4πaB/mB,aB=2a ( a the s -wave scattering length associated to the fermion-fermion interaction in vacuum). For lattice models, the derivation of the effective action is based on the mapping of the attractive Hubbard model onto the Heisenberg model in a uniform magnetic field, and a coherent state path integral representation of the partition function. The effective description of the Fermi superfluid in the strong-coupling limit is a Bose-Hubbard model with an intersite hopping amplitude tB=J/2 and an on-site repulsive interaction UB=2Jz , where J=4t2/U ( t and -U are the intersite hopping amplitude and the on-site attraction in the (fermionic) Hubbard model, z the number of nearest-neighbor sites).
Measurement of the strong coupling constant αs with hadronic jets in deep inelastic scattering
International Nuclear Information System (INIS)
Gouzevitch, Maxime
2008-12-01
In this analysis we have used the production of hard jets in neutral-current DIS for the extraction of the strong coupling constant α s . The jets have been selected in the NC DIS events at large momentum transvers 150 2 2 within the limits of the detector acceptance -0.8 Lab T B >5. Three jet observables normalized to the total NC DIS cross section have been used: Inclusive jet multiplicity as well as the production rates of 2-jet and 3-jet events. The prediction of the renormalization-group equation for the evolution of the strong coupling constant has been successfully tested for two orders of magnitude between Q=2 QeV to Q=122 GeV. The better precision on α s (m Z ) has been obtained with the combination ob the three observables at Q 2 >150 GeV 2 : α s (m Z )=0.1180±0.0007(exp.) -0.0034 +0.0050 (th.)±0.0017 (pdf.).
Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons
El-Labany, S. K.; El-Taibany, W. F.; Atteya, A.
2018-02-01
The nonlinear ion acoustic wave propagation in a strongly coupled plasma composed of ions and trapped electrons has been investigated. The reductive perturbation method is employed to derive a modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation. To solve this equation in case of dissipative system, the tangent hyperbolic method is used, and a shock wave solution is obtained. Numerical investigations show that, the ion acoustic waves are significantly modified by the effect of polarization force, the trapped electrons and the viscosity coefficients. Applying the bifurcation theory to the dynamical system of the derived mKdV-Burgers equation, the phase portraits of the traveling wave solutions of both of dissipative and non-dissipative systems are analyzed. The present results could be helpful for a better understanding of the waves nonlinear propagation in a strongly coupled plasma, which can be produced by photoionizing laser-cooled and trapped electrons [1], and also in neutron stars or white dwarfs interior.
Munson, C P; Taylor, A J; Trainor, R J; Wood, B P; Wysocki, F J
1999-01-01
Summary form only given. Atlas is a high current (~30 MA peak, with a current risetime ~4.5 mu sec), high energy (E/sub stored/=24 MJ, E /sub load/=3-6 MJ), pulsed power facility which is being constructed at Los Alamos National Laboratory with a scheduled completion date in the year 2000. When operational, this facility will provide a platform for experiments in high pressure shocks (>20 Mbar), adiabatic compression ( rho / rho /sub 0/>5, P>10 Mbar), high magnetic fields (~2000 T), high strain and strain rates ( epsilon >200, d epsilon /dt~10/sup 4/ to 10/sup 6/ s/sup -1/), hydrodynamic instabilities of materials in turbulent regimes, magnetized target fusion, equation of state, and strongly coupled plasmas. For the strongly coupled plasma experiments, an auxiliary capacitor bank will be used to generate a moderate density (<0.1 solid), relatively cold (~1 eV) plasma by ohmic heating of a conducting material of interest such as titanium. This target plasma will be compressed against a central column conta...
Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas
International Nuclear Information System (INIS)
Hu, S. X.
2017-01-01
Here, continuum lowering is a well-known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal-/pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K-edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics (QMD) calculations based on the all-electron density-functional theory (DFT). The resulted K-edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of “single atom in box” (SAIB), developed in this work, accurately predicts K-edge locations as what ab-initio calculations provide.
Heavy quark energy loss far from equilibrium in a strongly coupled collision
Chesler, Paul M; Rajagopal, Krishna
2013-01-01
We compute and study the drag force acting on a heavy quark propagating through the matter produced in the collision of two sheets of energy in a strongly coupled gauge theory that can be analyzed holographically. Although this matter is initially far from equilibrium, we find that the equilibrium expression for heavy quark energy loss in a homogeneous strongly coupled plasma with the same instantaneous energy density or pressure as that at the location of the quark describes many qualitative features of our results. One interesting exception is that there is a time delay after the initial collision before the heavy quark energy loss becomes significant. At later times, once a liquid plasma described by viscous hydrodynamics has formed, expressions based upon assuming instantaneous homogeneity and equilibrium provide a semi-quantitative description of our results - as long as the rapidity of the heavy quark is not too large. For a heavy quark with large rapidity, the gradients in the velocity of the hydrodyna...
Infrared exponents and the strong-coupling limit in lattice Landau gauge
International Nuclear Information System (INIS)
Sternbeck, Andre; Smekal, Lorenz von
2010-01-01
We study the gluon and ghost propagators of lattice Landau gauge in the strong-coupling limit β=0 in pure SU(2) lattice gauge theory to find evidence of the conformal infrared behavior of these propagators as predicted by a variety of functional continuum methods for asymptotically small momenta q 2 QCD 2 . In the strong-coupling limit, this same behavior is obtained for the larger values of a 2 q 2 (in units of the lattice spacing a), where it is otherwise swamped by the gauge-field dynamics. Deviations for a 2 q 2 <1 are well parameterized by a transverse gluon mass ∝1/a. Perhaps unexpectedly, these deviations are thus no finite-volume effect but persist in the infinite-volume limit. They furthermore depend on the definition of gauge fields on the lattice, while the asymptotic conformal behavior does not. We also comment on a misinterpretation of our results by Cucchieri and Mendes (Phys. Rev. D 81:016005, 2010). (orig.)
Singular-perturbation--strong-coupling field theory and the moments problem
International Nuclear Information System (INIS)
Handy, C.R.
1981-01-01
Motivated by recent work of Bender, Cooper, Guralnik, Mjolsness, Rose, and Sharp, a new technique is presented for solving field equations in terms of singular-perturbation--strong-coupling expansions. Two traditional mathematical tools are combined into one effective procedure. Firstly, high-temperature lattice expansions are obtained for the corresponding power moments of the field solution. The approximate continuum-limit power moments are subsequently obtained through the application of Pade techniques. Secondly, in order to reconstruct the corresponding approximate global field solution, one must use function-moments reconstruction techniques. The latter involves reconsidering the traditional ''moments problem'' of interest to pure and applied mathematicians. The above marriage between lattice methods and moments reconstruction procedures for functions yields good results for the phi 4 field-theory kink, and the sine-Gordon kink solutions. It is argued that the power moments are the most efficient dynamical variables for the generation of strong-coupling expansions. Indeed, a momentum-space formulation is being advocated in which the long-range behavior of the space-dependent fields are determined by the small-momentum, infrared, domain
Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regime
International Nuclear Information System (INIS)
Lehmann, G.; Spatschek, K. H.
2013-01-01
Parametric plasma processes received renewed interest in the context of generating ultra-intense and ultra-short laser pulses up to the exawatt-zetawatt regime. Both Raman as well as Brillouin amplifications of seed pulses were proposed. Here, we investigate Brillouin processes in the one-dimensional (1D) backscattering geometry with the help of numerical simulations. For optimal seed amplification, Brillouin scattering is considered in the so called strong coupling (sc) regime. Special emphasis lies on the dependence of the amplification process on the finite duration of the initial seed pulses. First, the standard plane-wave instability predictions are generalized to pulse models, and the changes of initial seed pulse forms due to parametric instabilities are investigated. Three-wave-interaction results are compared to predictions by a new (kinetic) Vlasov code. The calculations are then extended to the nonlinear region with pump depletion. Generation of different seed layers is interpreted by self-similar solutions of the three-wave interaction model. Similar to Raman amplification, shadowing of the rear layers by the leading layers of the seed occurs. The shadowing is more pronounced for initially broad seed pulses. The effect is quantified for Brillouin amplification. Kinetic Vlasov simulations agree with the three-wave interaction predictions and thereby affirm the universal validity of self-similar layer formation during Brillouin seed amplification in the strong coupling regime
International Nuclear Information System (INIS)
Gelis, Francois; Venugopalan, Raju
2006-01-01
We develop a formalism for particle production in a field theory coupled to a strong time-dependent external source. An example of such a theory is the color glass condensate. We derive a formula, in terms of cut vacuum-vacuum Feynman graphs, for the probability of producing a given number of particles. This formula is valid to all orders in the coupling constant. The distribution of multiplicities is non-Poissonian, even in the classical approximation. We investigate an alternative method of calculating the mean multiplicity. At leading order, the average multiplicity can be expressed in terms of retarded solutions of classical equations of motion. We demonstrate that the average multiplicity at next-to-leading order can be formulated as an initial value problem by solving equations of motion for small fluctuation fields with retarded boundary conditions. The variance of the distribution can be calculated in a similar fashion. Our formalism therefore provides a framework to compute from first principles particle production in proton-nucleus and nucleus-nucleus collisions beyond leading order in the coupling constant and to all orders in the source density. We also provide a transparent interpretation (in conventional field theory language) of the well-known Abramovsky-Gribov-Kancheli (AGK) cancellations. Explicit connections are made between the framework for multi-particle production developed here and the framework of reggeon field theory
Suppressing turbulence of self-propelling rods by strongly coupled passive particles.
Su, Yen-Shuo; Wang, Hao-Chen; I, Lin
2015-03-01
The strong turbulence suppression, mainly for large-scale modes, of two-dimensional self-propelling rods, by increasing the long-range coupling strength Γ of low-concentration passive particles, is numerically demonstrated. It is found that large-scale collective rod motion in forms of swirls or jets is mainly contributed from well-aligned dense patches, which can push small poorly aligned rod patches and uncoupled passive particles. The more efficient momentum transfer and dissipation through increasing passive particle coupling leads to the formation of a more ordered and slowed down network of passive particles, which competes with coherent dense active rod clusters. The frustration of active rod alignment ordering and coherent motion by the passive particle network, which interrupt the inverse cascading of forming large-scale swirls, is the key for suppressing collective rod motion with scales beyond the interpassive distance, even in the liquid phase of passive particles. The loosely packed active rods are weakly affected by increasing passive particle coupling due to the weak rod-particle interaction. They mainly contribute to the small-scale modes and high-speed motion.
Energy Technology Data Exchange (ETDEWEB)
Maksymov, Ivan S., E-mail: ivan.maksymov@uwa.edu.au [School of Physics M013, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); ARC Centre of Excellence for Nanoscale BioPhotonics, School of Applied Sciences, RMIT University, Melbourne, VIC 3001 (Australia); Hutomo, Jessica; Nam, Donghee; Kostylev, Mikhail [School of Physics M013, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)
2015-05-21
We demonstrate theoretically a ∼350-fold local enhancement of the intensity of the in-plane microwave magnetic field in multilayered structures made from a magneto-insulating yttrium iron garnet (YIG) layer sandwiched between two non-magnetic layers with a high dielectric constant matching that of YIG. The enhancement is predicted for the excitation regime when the microwave magnetic field is induced inside the multilayer by the transducer of a stripline Broadband Ferromagnetic Resonance (BFMR) setup. By means of a rigorous numerical solution of the Landau-Lifshitz-Gilbert equation consistently with the Maxwell's equations, we investigate the magnetisation dynamics in the multilayer. We reveal a strong photon-magnon coupling, which manifests itself as anti-crossing of the ferromagnetic resonance magnon mode supported by the YIG layer and the electromagnetic resonance mode supported by the whole multilayered structure. The frequency of the magnon mode depends on the external static magnetic field, which in our case is applied tangentially to the multilayer in the direction perpendicular to the microwave magnetic field induced by the stripline of the BFMR setup. The frequency of the electromagnetic mode is independent of the static magnetic field. Consequently, the predicted photon-magnon coupling is sensitive to the applied magnetic field and thus can be used in magnetically tuneable metamaterials based on simultaneously negative permittivity and permeability achievable thanks to the YIG layer. We also suggest that the predicted photon-magnon coupling may find applications in microwave quantum information systems.
An effective strong-coupling theory of composite particles in UV-domain
Xue, She-Sheng
2017-05-01
We briefly review the effective field theory of massive composite particles, their gauge couplings and characteristic energy scale in the UV-domain of UV-stable fixed point of strong four-fermion coupling, then mainly focus the discussions on the decay channels of composite particles into the final states of the SM gauge bosons, leptons and quarks. We calculate the rates of composite bosons decaying into two gauge bosons γγ, γZ 0, W + W -, Z 0 Z 0 and give the ratios of decay rates of different channels depending on gauge couplings only. It is shown that a composite fermion decays into an elementary fermion and a composite boson, the latter being an intermediate state decays into two gauge bosons, leading to a peculiar kinematics of final states of a quark (or a lepton) and two gauge bosons. These provide experimental implications of such an effective theory of composite particles beyond the SM. We also present some speculative discussions on the channels of composite fermions decaying into W W , W Z and ZZ two boson-tagged jets with quark jets, or to four-quark jets. Moreover, at the same energy scale of composite particles produced in high-energy experiments, composite particles are also produced by high-energy sterile neutrino (dark matter) collisions, their decays lead to excesses of cosmic ray particles in space and signals of SM particles in underground laboratories.
An effective strong-coupling theory of composite particles in UV-domain
Energy Technology Data Exchange (ETDEWEB)
Xue, She-Sheng [ICRANet,Piazzale della Repubblica 10, 10-65122, Pescara (Italy); Physics Department, Sapienza University of Rome,Piazzale Aldo Moro 5, 00185 Roma (Italy)
2017-05-29
We briefly review the effective field theory of massive composite particles, their gauge couplings and characteristic energy scale in the UV-domain of UV-stable fixed point of strong four-fermion coupling, then mainly focus the discussions on the decay channels of composite particles into the final states of the SM gauge bosons, leptons and quarks. We calculate the rates of composite bosons decaying into two gauge bosons γγ, γZ{sup 0}, W{sup +}W{sup −}, Z{sup 0}Z{sup 0} and give the ratios of decay rates of different channels depending on gauge couplings only. It is shown that a composite fermion decays into an elementary fermion and a composite boson, the latter being an intermediate state decays into two gauge bosons, leading to a peculiar kinematics of final states of a quark (or a lepton) and two gauge bosons. These provide experimental implications of such an effective theory of composite particles beyond the SM. We also present some speculative discussions on the channels of composite fermions decaying into WW, WZ and ZZ two boson-tagged jets with quark jets, or to four-quark jets. Moreover, at the same energy scale of composite particles produced in high-energy experiments, composite particles are also produced by high-energy sterile neutrino (dark matter) collisions, their decays lead to excesses of cosmic ray particles in space and signals of SM particles in underground laboratories.
Zhou, Xue; Li, Mingzhu; Wang, Kang; Li, Huizeng; Li, Yanan; Li, Chang; Yan, Yongli; Zhao, Yongsheng; Song, Yanlin
2018-03-25
Stimulated emission in perovskite-embedded polymer opal structures is investigated. A polymer opal structure is filled with a perovskite, and perovskite photonic crystals are prepared. The spontaneous emission of the perovskite embedded in the polymer opal structures exhibits clear signatures of amplified spontaneous emission (ASE) via gain modulation. The difference in refractive-index contrast between the perovskite and the polymer opal is large enough for retaining photonic-crystals properties. The photonic band gap has a strong effect on the fluorescence emission intensity and lifetime. The stimulated emission spectrum exhibits a narrow ASE rather than a wide fluorescence peak in the thin film. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
van den Broek, Dirk-Jan; Klumperink, Eric A.M.; Nauta, Bram
2015-01-01
In-band full-duplex (FD) wireless communication, i.e. simultaneous transmission and reception at the same frequency, in the same channel, promises up to 2x spectral efficiency, along with advantages in higher network layers [1]. the main challenge is dealing with strong in-band leakage from the
International Nuclear Information System (INIS)
Recami, E.; Tonin-Zanchin, V.
1991-01-01
Since more than a decade, a bi-scale, unified approach to strong and gravitational interactions has been proposed, that uses the geometrical methods of general relativity, and yielded results similar to strong gravity theory's. We fix our attention, in this note, on hadron structure, and show that also the strong interaction strength α s, ordinarily called the (perturbative) coupling-constant square, can be evaluated within our theory, and found to decrease (increase) as the distance r decreases (increases). This yields both the confinement of the hadron constituents for large values of r, and their asymptotic freedom [for small values of r inside the hadron]: in qualitative agreement with the experimental evidence. In other words, our approach leads us, on a purely theoretical ground, to a dependence of α s on r which had been previously found only on phenomenological and heuristical grounds. We expect the above agreement to be also quantitative, on the basis of a few checks performed in this paper, and of further work of ours about calculating meson mass-spectra. (author)
Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide-Plasmon Polaritons.
Zeng, Peng; Cadusch, Jasper; Chakraborty, Debadi; Smith, Trevor A; Roberts, Ann; Sader, John E; Davis, Timothy J; Gómez, Daniel E
2016-04-13
Reversible exchange of photons between a material and an optical cavity can lead to the formation of hybrid light-matter states where material properties such as the work function [ Hutchison et al. Adv. Mater. 2013 , 25 , 2481 - 2485 ], chemical reactivity [ Hutchison et al. Angew. Chem., Int. Ed. 2012 , 51 , 1592 - 1596 ], ultrafast energy relaxation [ Salomon et al. Angew. Chem., Int. Ed. 2009 , 48 , 8748 - 8751 ; Gomez et al. J. Phys. Chem. B 2013 , 117 , 4340 - 4346 ], and electrical conductivity [ Orgiu et al. Nat. Mater. 2015 , 14 , 1123 - 1129 ] of matter differ significantly to those of the same material in the absence of strong interactions with the electromagnetic fields. Here we show that strong light-matter coupling between confined photons on a semiconductor waveguide and localized plasmon resonances on metal nanowires modifies the efficiency of the photoinduced charge-transfer rate of plasmonic derived (hot) electrons into accepting states in the semiconductor material. Ultrafast spectroscopy measurements reveal a strong correlation between the amplitude of the transient signals, attributed to electrons residing in the semiconductor and the hybridization of waveguide and plasmon excitations.
Energy Technology Data Exchange (ETDEWEB)
Munson, C.P.; Benage, J.F. Jr.; Taylor, A.J.; Trainor, R.J. Jr.; Wood, B.P.; Wysocki, F.J.
1999-07-01
Atlas is a high current ({approximately} 30 MA peak, with a current risetime {approximately} 4.5 {micro}sec), high energy (E{sub stored} = 24 MJ, E{sub load} = 3--6 MJ), pulsed power facility which is being constructed at Los Alamos National Laboratory with a scheduled completion date in the year 2000. When operational, this facility will provide a platform for experiments in high pressure shocks (> 20 Mbar), adiabatic compression ({rho}/{rho}{sub 0} > 5, P > 10 Mbar), high magnetic fields ({approximately} 2,000 T), high strain and strain rates ({var_epsilon} > 200%, d{var_epsilon}/dt {approximately} 10{sup 4} to 10{sup 6} s{sup {minus}1}), hydrodynamic instabilities of materials in turbulent regimes, magnetized target fusion, equation of state, and strongly coupled plasmas. For the strongly coupled plasma experiments, an auxiliary capacitor bank will be used to generate a moderate density (< 0.1 solid), relatively cold ({approximately} 1 eV) plasma by ohmic heating of a conducting material of interest such as titanium. This stargate plasma will be compressed against a central column containing diagnostic instrumentation by a cylindrical conducting liner that is driven radially inward by current from the main Atlas capacitor bank. The plasma is predicted to reach densities of {approximately} 1.1 times solid, achieve ion and electron temperatures of {approximately} 10 eV, and pressures of {approximately} 4--5 Mbar. This is a density/temperature regime which is expected to experience strong coupling, but only partial degeneracy. X-ray radiography is planned for measurements of the material density at discrete times during the experiments; diamond Raman measurements are anticipated for determination of the pressure. In addition, a neutron resonance spectroscopic technique is being evaluated for possible determination of the temperature (through low percentage doping of the titanium with a suitable resonant material). Initial target plasma formation experiments are
Anterior Thalamic High Frequency Band Activity Is Coupled with Theta Oscillations at Rest
Directory of Open Access Journals (Sweden)
Catherine M. Sweeney-Reed
2017-07-01
Full Text Available Cross-frequency coupling (CFC between slow and fast brain rhythms, in the form of phase–amplitude coupling (PAC, is proposed to enable the coordination of neural oscillatory activity required for cognitive processing. PAC has been identified in the neocortex and mesial temporal regions, varying according to the cognitive task being performed and also at rest. PAC has also been observed in the anterior thalamic nucleus (ATN during memory processing. The thalamus is active during the resting state and has been proposed to be involved in switching between task-free cognitive states such as rest, in which attention is internally-focused, and externally-focused cognitive states, in which an individual engages with environmental stimuli. It is unknown whether PAC is an ongoing phenomenon during the resting state in the ATN, which is modulated during different cognitive states, or whether it only arises during the performance of specific tasks. We analyzed electrophysiological recordings of ATN activity during rest from seven patients who received thalamic electrodes implanted for treatment of pharmacoresistant focal epilepsy. PAC was identified between theta (4–6 Hz phase and high frequency band (80–150 Hz amplitude during rest in all seven patients, which diminished during engagement in tasks involving an external focus of attention. The findings are consistent with the proposal that theta–gamma coupling in the ATN is an ongoing phenomenon, which is modulated by task performance.
Directory of Open Access Journals (Sweden)
Yucel Yildirim
2011-09-01
Full Text Available A generic theory of the quasiparticle superconducting gap in underdoped cuprates is derived in the strong-coupling limit, and found to describe the experimental “second gap” in absolute scale. In drastic contrast to the standard pairing gap associated with Bogoliubov quasiparticle excitations, the quasiparticle gap is shown to originate from anomalous kinetic (scattering processes, with a size unrelated to the pairing strength. Consequently, the k dependence of the gap deviates significantly from the pure d_{x^{2}-y^{2}} wave of the order parameter. Our study reveals a new paradigm for the nature of the superconducting gap, and is expected to reconcile numerous apparent contradictions among existing experiments and point toward a more coherent understanding of high-temperature superconductivity.
ΔI = 1/2 rule and the strong coupling expansion
International Nuclear Information System (INIS)
Angus, I.G.
1986-01-01
The authors attempted to understand the Delta I Equals One Half pattern of the nonleptonic weak decays of the Kaons. The calculation scheme employed is the Strong Coupling Expansion of lattice QCD. Kogut-Susskind fermions are used in the Hamiltonian formalism. The author will describe in detail the methods used to expedite this calculation, almost all of which was done by computer algebra. The final result is very encouraging. Even though an exact interpretation is clouded by the presence of irrelevant operators, a distinct signal of the Delta I Equals One Half Rule is observed. With an appropriate choice of the one free parameter, enhancements as great as those observed experimentally can be obtained along with a qualitative prediction for the relative magnitudes of the CP violating phases. The author also points out a number of surprising results which turn up in the course of the calculation. The computer methods employed are briefly described
Indications of a ΔI=1/2 rule in the strong coupling regime
International Nuclear Information System (INIS)
Angus, I.G.
1988-01-01
The authors attempt to understand the ΔI = 1/2 pattern of the nonleptonic weak decays of the kaons. The calculation scheme employed is the Strong Coupling Expansion of lattice QCD. Kogut-Susskind fermions are used in the Hamiltonian formalism. They describe in detail the methods used to expedite this calculation, all of which was done by computer algebra. The final result is very encouraging. Even though an exact interpretation is clouded by the presence of irrelevant operators, and questions of lattice artifacts, a signal of the /d//I = 1/2 rule appears to be observable. With an appropriate choice of the one free parameter, enhancements greater than those observed experimentally can be obtained. The authors point out a number of surprising results which turn up in the course of the calculation
Strong-coupling electron-phonon superconductivity in H{sub 3}S
Energy Technology Data Exchange (ETDEWEB)
Pickett, Warren E. [University of California, Davis, CA (United States); Quan, Yundi [Beijing Normal University, Beijing (China)
2016-07-01
The superconducting phase of hydrogen sulfide at T{sub c} = 200 K observed by Eremets' group at pressures around 200 GPa is simple bcc Im-3m H{sub 3}S. Remarkably, this record high temperature superconductor was predicted beforehand by Duan et al., so the theory would seem to be in place. Here we will discuss why this is not true. Several extremes are involved: extreme pressure, meaning reduction of volume;extremely high H phonon energy scale around 1400 K; unusually narrow peak in the density of states at the Fermi level; extremely high temperature for a superconductor. Analysis of the H3S electronic structure and two important van Hove singularities (vHs) reveal the effect of sulfur. The implications for the strong coupling Migdal-Eliashberg theory will be discussed. Followed by comments on ways of increasing T{sub c} in H{sub 3}S-like materials.
Room temperature strong coupling effects from single ZnO nanowire microcavity
Das, Ayan
2012-05-01
Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non-linearity in the polariton emission characteristics is observed at room temperature with a low threshold of 1.63 ?J/cm2, which corresponds to a polariton density an order of magnitude smaller than that for the Mott transition. The momentum distribution of the lower polaritons shows evidence of dynamic condensation and the absence of a relaxation bottleneck. The polariton relaxation dynamics were investigated by timeresolved measurements, which showed a progressive decrease in the polariton relaxation time with increase in polariton density. © 2012 Optical Society of America.
Quantum screening effects on the ion-ion collisions in strongly coupled semiclassical plasmas
International Nuclear Information System (INIS)
Ki, Dae-Han; Jung, Young-Dae
2010-01-01
The quantum screening effects on the ion-ion collisions are investigated in strongly coupled semiclassical hydrogen plasmas. The method of stationary phase and effective interaction potential containing the quantum mechanical effect are employed to obtain the scattering phase shift and scattering cross section as functions of the impact parameter, collision energy, de Broglie wavelength, and Debye length. The result shows that the scattering phase and cross section decrease with increasing de Broglie wavelength. It is also shown that the scattering cross section increases with an increase of the Debye length. Hence, it is found that the quantum effect suppresses the scattering cross section. In addition, the quantum effect on the scattering cross section is found to be more important in small Debye length domains.
Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling
Wang, Chen; Ren, Jie; Cao, Jianshu
2015-07-01
Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices.
Field-theoretic Methods in Strongly-Coupled Models of General Gauge Mediation
Fortin, Jean-Francois
2013-01-01
An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current-current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry-breaking arises both from a hidden sector and dynamically.
The angular structure of jet quenching within a hybrid strong/weak coupling model
Casalderrey-Solana, Jorge; Gulhan, Doga Can; Milhano, José Guilherme; Pablos, Daniel; Rajagopal, Krishna
2017-08-01
Building upon the hybrid strong/weak coupling model for jet quenching, we incorporate and study the effects of transverse momentum broadening and medium response of the plasma to jets on a variety of observables. For inclusive jet observables, we find little sensitivity to the strength of broadening. To constrain those dynamics, we propose new observables constructed from ratios of differential jet shapes, in which particles are binned in momentum, which are sensitive to the in-medium broadening parameter. We also investigate the effect of the back-reaction of the medium on the angular structure of jets as reconstructed with different cone radii R. Finally we provide results for the so called ;missing-pt;, finding a qualitative agreement between our model calculations and data in many respects, although a quantitative agreement is beyond our simplified treatment of the hadrons originating from the hydrodynamic wake.
Exact Solution of a Strongly Coupled Gauge Theory in 0 +1 Dimensions
Krishnan, Chethan; Kumar, K. V. Pavan
2018-05-01
Gauged tensor models are a class of strongly coupled quantum mechanical theories. We present the exact analytic solution of a specific example of such a theory: namely, the smallest colored tensor model due to Gurau and Witten that exhibits nonlinearities. We find explicit analytic expressions for the eigenvalues and eigenstates, and the former agree precisely with previous numerical results on (a subset of) eigenvalues of the ungauged theory. The physics of the spectrum, despite the smallness of N , exhibits rudimentary signatures of chaos. This Letter is a summary of our main results: the technical details will appear in companion paper [C. Krishnan and K. V. Pavan Kumar, Complete solution of a gauged tensor model, arXiv:1804.10103].
Boundary-layer theory, strong-coupling series, and large-order behavior
International Nuclear Information System (INIS)
Bender, Carl M.; Pelster, Axel; Weissbach, Florian
2002-01-01
The introduction of a lattice converts a singular boundary-layer problem in the continuum into a regular perturbation problem. However, the continuum limit of the discrete problem is extremely nontrivial and is not completely understood. This article examines two singular boundary-layer problems taken from mathematical physics, the instanton problem and the Blasius equation, and in each case examines two strategies, Pade resummation and variational perturbation theory, to recover the solution to the continuum problem from the solution to the associated discrete problem. Both resummation procedures produce good and interesting results for the two cases, but the results still deviate from the exact solutions. To understand the discrepancy a comprehensive large-order behavior analysis of the strong-coupling lattice expansions for each of the two problems is done
Strong Bulk-Edge Coupling in the Compressible Half-Filled Quantum Hall State
International Nuclear Information System (INIS)
Milovanovic, M.V.; Shimshoni, E.
1999-01-01
We studied analytically static correlators in the compressible half-filled quantum Hall state, which characterize the nature of charged excitations in the bulk and on the edge of the system. We employ a modified version of the plasma analogy - namely, a mapping to a classical two-dimensional system of interacting particles - similarly to what has been done in studies of the incompressible (Laughlin) states. However, the 'fake plasma' corresponding to the half-filled state is found to have anomalously weak screening properties. As a consequence, the correlations along the edge do not decay algebraically as in the incompressible case, thus indicating the breakdown of Wen's edge theory. On the other hand, the bulk correlator (which parallels the Girvin-MacDonald algebraic off-diagonal long range order) decays algebraically in a similar way as in the incompressible states, signifying the presence of some kind of bosonic order even in the compressible state. The above results suggest that due to the strong coupling between charged modes on the edge and the neutral Fermions (dipoles) in the bulk, the (attractive) correlation hole is not well defined on the edge. Hence, the system there can be modeled as a free Fermi gas of electrons (with an appropriate boundary condition). A possible experimental indication of a strong bulk-edge coupling at half-filling has been indeed observed in non-local resistance measurements [1]. We also suggest, that while our results contradict the validity of an effective one-dimensional description of the edge excitations on the static level, the dynamics may decouple the edge and bulk so as to recover the Laughlin-like behavior apparent in the experiment of Grayson et al
Energy loss, equilibration, and thermodynamics of a baryon rich strongly coupled quark-gluon plasma
Energy Technology Data Exchange (ETDEWEB)
Rougemont, Romulo [Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, Butantã, CEP 05508-090, São Paulo, SP (Brazil); Ficnar, Andrej [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Finazzo, Stefano I. [Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, Butantã, CEP 05508-090, São Paulo, SP (Brazil); Instituto de Física Teórica, Universidade do Estado de São Paulo, Rua Dr. Bento T. Ferraz, 271, CEP 01140-070, São Paulo, SP (Brazil); Noronha, Jorge [Instituto de Física, Universidade de São Paulo, Rua do Matão, 1371, Butantã, CEP 05508-090, São Paulo, SP (Brazil); Department of Physics, Columbia University, 538 West 120th Street, New York, NY 10027 (United States)
2016-04-15
Lattice data for the QCD equation of state and the baryon susceptibility near the crossover phase transition (at zero baryon density) are used to determine the input parameters of a 5-dimensional Einstein-Maxwell-Dilaton holographic model that provides a consistent holographic framework to study both equilibrium and out-of-equilibrium properties of a hot and baryon rich strongly coupled quark-gluon plasma (QGP). We compare our holographic equation of state computed at nonzero baryon chemical potential, μ{sub B}, with recent lattice calculations and find quantitative agreement for the pressure and the speed of sound for μ{sub B}≤400 MeV. This holographic model is used to obtain holographic predictions for the temperature and μ{sub B} dependence of the drag force and the Langevin diffusion coefficients associated with heavy quark jet propagation as well as the jet quenching parameter q̂ and the shooting string energy loss of light quarks in the baryon dense plasma. We find that the energy loss of heavy and light quarks generally displays a nontrivial, fast-varying behavior as a function of the temperature near the crossover. Moreover, energy loss is also found to generally increase due to nonzero baryon density effects even though this strongly coupled liquid cannot be described in terms of well defined quasiparticle excitations. Furthermore, to get a glimpse of how thermalization occurs in a hot and baryon dense QGP, we study how the lowest quasinormal mode of an external massless scalar disturbance in the bulk is affected by a nonzero baryon charge. We find that the equilibration time associated with the lowest quasinormal mode decreases in a dense medium.
Strongly Coupled Fluid-Body Dynamics in the Immersed Boundary Projection Method
Wang, Chengjie; Eldredge, Jeff D.
2014-11-01
A computational algorithm is developed to simulate dynamically coupled interaction between fluid and rigid bodies. The basic computational framework is built upon a multi-domain immersed boundary method library, whirl, developed in previous work. In this library, the Navier-Stokes equations for incompressible flow are solved on a uniform Cartesian grid by the vorticity-based immersed boundary projection method of Colonius and Taira. A solver for the dynamics of rigid-body systems is also included. The fluid and rigid-body solvers are strongly coupled with an iterative approach based on the block Gauss-Seidel method. Interfacial force, with its intimate connection with the Lagrange multipliers used in the fluid solver, is used as the primary iteration variable. Relaxation, developed from a stability analysis of the iterative scheme, is used to achieve convergence in only 2-4 iterations per time step. Several two- and three-dimensional numerical tests are conducted to validate and demonstrate the method, including flapping of flexible wings, self-excited oscillations of a system of linked plates and three-dimensional propulsion of flexible fluked tail. This work has been supported by AFOSR, under Award FA9550-11-1-0098.
Lasing by driven atoms-cavity system in collective strong coupling regime.
Sawant, Rahul; Rangwala, S A
2017-09-12
The interaction of laser cooled atoms with resonant light is determined by the natural linewidth of the excited state. An optical cavity is another optically resonant system where the loss from the cavity determines the resonant optical response of the system. The near resonant combination of an optical Fabry-Pérot cavity with laser cooled and trapped atoms couples two distinct optical resonators via light and has great potential for precision measurements and the creation of versatile quantum optics systems. Here we show how driven magneto-optically trapped atoms in collective strong coupling regime with the cavity leads to lasing at a frequency red detuned from the atomic transition. Lasing is demonstrated experimentally by the observation of a lasing threshold accompanied by polarization and spatial mode purity, and line-narrowing in the outcoupled light. Spontaneous emission into the cavity mode by the driven atoms stimulates lasing action, which is capable of operating as a continuous wave laser in steady state, without a seed laser. The system is modeled theoretically, and qualitative agreement with experimentally observed lasing is seen. Our result opens up a range of new measurement possibilities with this system.
Radiation by a heavy quark in N=4 SYM at strong coupling
Hatta, Y; Mueller, A H; Triantafyllopoulos, D N
2011-01-01
Using the AdS/CFT correspondence in the supergravity approximation, we compute the energy density radiated by a heavy quark undergoing some arbitrary motion in the vacuum of the strongly coupled N=4 supersymmetric Yang-Mills theory. We find that this energy is fully generated via backreaction from the near-boundary endpoint of the dual string attached to the heavy quark. Because of that, the energy distribution shows the same space-time localization as the classical radiation that would be produced by the heavy quark at weak coupling. We believe that this and some other unnatural features of our result (like its anisotropy and the presence of regions with negative energy density) are artifacts of the supergravity approximation, which will be corrected after including string fluctuations. For the case where the quark trajectory is bounded, we also compute the radiated power, by integrating the energy density over the surface of a sphere at infinity. For sufficiently large times, we find agreement with a previo...
Conjugation of fiber-coupled wide-band light sources and acousto-optical spectral elements
Machikhin, Alexander; Batshev, Vladislav; Polschikova, Olga; Khokhlov, Demid; Pozhar, Vitold; Gorevoy, Alexey
2017-12-01
Endoscopic instrumentation is widely used for diagnostics and surgery. The imaging systems, which provide the hyperspectral information of the tissues accessible by endoscopes, are particularly interesting and promising for in vivo photoluminescence diagnostics and therapy of tumour and inflammatory diseases. To add the spectral imaging feature to standard video endoscopes, we propose to implement acousto-optical (AO) filtration of wide-band illumination of incandescent-lamp-based light sources. To collect maximum light and direct it to the fiber-optic light guide inside the endoscopic probe, we have developed and tested the optical system for coupling the light source, the acousto-optical tunable filter (AOTF) and the light guide. The system is compact and compatible with the standard endoscopic components.
On the absence of pentaquark states from dynamics in strongly coupled lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Anjos, Petrus Henrique Ribeiro dos [Universidade Federal de Goias (UFG), Goiania, GO (Brazil); Veiga, Paulo Afonso Faria da; O' Carroll, Michael [Universidade de Sao Paulo (USP), SP (Brazil); Francisco Neto, Antonio [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)
2011-07-01
Full text: We consider an imaginary time functional integral formulation of a two-flavor, 3 + 1 lattice QCD model with Wilson's action and in the strong coupling regime (with a small hopping parameter, {kappa}0, and a much smaller plaquette coupling, {beta} = 1/g{sub 0}{sup 2}, so that the quarks and glueballs are heavy). The model has local SU(3){sub c} gauge and global SU(2){sub f} flavor symmetries, and incorporates the corresponding part of the eightfold way particles: baryons (mesons) of asymptotic mass -3ln{kappa}(-2 ln {kappa}). We search for pentaquark states as meson-baryon bound states in the energy-momentum spectrum of the model, using a lattice Bethe-Salpeter equation. This equation is solved within a ladder approximation, given by the lowest nonvanishing order in {kappa} and {beta} of the Bethe-Salpeter kernel. It includes order 2 contributions with a q-barq exchange potential together with a contribution that is a local-in-space, energy-dependent potential. The attractive or repulsive nature of the exchange interaction depends on the spin of the meson-baryon states. The Bethe-Salpeter equation presents integrable singularities, forcing the couplings to be above a threshold value for the meson and the baryon to bind in a pentaquark. We analyzed all the total isospin sectors, I = 1/2/3/2/ 5/2, for the system. For all I, the net attraction resulting from the two sources of interaction is not strong enough for the meson and the baryon to bind. Thus, within our approximation, these pentaquark states are not present up to near the free meson-baryon energy threshold of - 5 ln{kappa}. This result is to be contrasted with the spinless case for which our method detects meson-baryon bound states, as well as for Yukawa effective baryon and meson field models. A physical interpretation of our results emerges from an approximate correspondence between meson-baryon bound states and negative energy states of a one-particle lattice Schroedinger Hamiltonian
Revisiting the coupled-mass system and analogy with a simple band gap structure
International Nuclear Information System (INIS)
Levesque, L
2006-01-01
A great deal of insight can be gained from the analysis of coupled masses connected to springs in order to understand better the origin of band gaps in physical systems. The approach is based on the application of the superposition principle for finding the general solution in simple mechanical systems involving functions, which vary periodically with time. Graphs show that sums of periodic functions oscillating at different frequencies lead to an exchange of energy from one oscillator to another in a simple mechanical system of three objects connected by identical springs. A system of a large number of masses connected to springs having the same spring constant K is then considered and compared with a system in which the spring constants alternate from K to another value G when connecting one mass to another. Using the results found from the mechanical systems, an analogy of charge oscillations excited on both uniform and corrugated surfaces is presented. The results obtained attempt to expand understanding of the origin of the band gap occurring in some systems involving periodic motions
A Simultaneous Measurement of the QCD Colour Factors and the Strong Coupling
Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Ball, H.; Barberio, E.; Barlow, Roger J.; Batley, R.J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Cammin, J.; Capiluppi, P.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Couchman, J.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanti, M.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Glenzinski, D.; Goldberg, J.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jawahery, A.; Jeremie, H.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Komamiya, S.; Kowalewski, Robert V.; Kamer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lawson, I.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; Lillich, J.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Sproston, M.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Stumpf, L.; Surrow, B.; Talbot, S.D.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Toya, D.; Trefzger, T.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.
2001-01-01
Using data from e+e- annihilation into hadrons, taken with the OPAL detector at LEP at the Z pole between 1991 and 1995, we performed a simultaneous measurement of the colour factors of the underlying gauge group of the strong interaction, CF and CA, and the strong coupling, alpha(s). The measurement was carried out by fitting next-to-leading order perturbative predictions to measured angular correlations of 4-jet events together with multi-jet related variables. Our results, CA = 3.02 +/- 0.25 (stat.) +/- 0.49 (syst.) CF = 1.34 +/- 0.13 (stat.) +/- 0.22 (syst.), alpha(s)(M_Z) = 0.120 +/- 0.011 (stat.) +/- 0.020 (syst.), provide a test of perturbative QCD in which the only assumptions are non-abelian gauge symmetry and standard hadronization models. The measurements are in agreement with SU(3) expectations for CF and CA and the world average of alpha(s)(M_Z).
Directory of Open Access Journals (Sweden)
Kyoseung Keum
2018-01-01
Full Text Available In this paper, a planar printed hybrid short/open-ended slot antenna with capacitive coupling feed strips is proposed for hepta-band mobile applications. The proposed antenna is comprised of a slotted ground plane on the top plane and two capacitive coupling feed strips with a chip inductor on the bottom plane. At the low frequency band, the short-ended long slot fed by strip 1 generates its half-wavelength resonance mode, whereas the T-shaped open ended slot fed by strip 2 generates its quarter-wavelength resonance mode for the high frequency band. The antenna provides a wide bandwidth covering GSM850/GSM900/DCS/PCS/UMTS/LTE2300/LTE2500 operation bands. Moreover, the antenna occupies a small volume of 15 mm × 50 mm × 1 mm. The operating principle of the proposed antenna and the simulation/measurement results are presented and discussed.
Gauge-invariant master field in U(∞) LGT: A pathway from the strong to weak coupling phases
International Nuclear Information System (INIS)
Kazakov, V.A.; Migdal, A.A.
1987-01-01
We propose and test a new computational method for SU(∞) lattice gauge and spin theories. It is based on calculation of the effective action depending only on N (rather than N 2 ) gauge invariant degrees of freedom, by means of some modification of the strong coupling expansion. We show using the example of a one-plaquette model that the stationary point equation for this action describes the weak coupling phase as well as the strong coupling phase. It is argued that such an equation predicts a phase transition for D-dimensional gauge theory, in accordance with Monte Carlo data. (orig.)
International Nuclear Information System (INIS)
Faucher, V.
2014-01-01
This HDR is dedicated to the research in the framework of fast transient dynamics for industrial fluid-structure systems carried in the Laboratory of Dynamic Studies from CEA, implementing new numerical methods for the modelling of complex systems and the parallel solution of large coupled problems on supercomputers. One key issue for the proposed approaches is the limitation to its minimum of the number of non-physical parameters, to cope with constraints arising from the area of usage of the concepts: safety for both nuclear applications (CEA, EDF) and aeronautics (ONERA), protection of the citizen (EC/JRC) in particular. Kinematic constraints strongly coupling structures (namely through unilateral contact) or fluid and structures (with both conformant or non-conformant meshes depending on the geometrical situation) are handled through exact methods including Lagrange Multipliers, with consequences on the solution strategy to be dealt with. This latter aspect makes EPX, the simulation code where the methods are integrated, a singular tool in the community of fast transient dynamics software. The document mainly relies on a description of the modelling needs for industrial fast transient scenarios, for nuclear applications in particular, and the proposed solutions built in the framework of the collaboration between CEA, EDF (via the LaMSID laboratory) and the LaMCoS laboratory from INSA Lyon. The main considered examples are the tearing of the fluid-filled tank after impact, the Code Disruptive Accident for a Generation IV reactor or the ruin of reinforced concrete structures under impact. Innovative models and parallel algorithms are thus proposed, allowing to carry out with robustness and performance the corresponding simulations on supercomputers made of interconnected multi-core nodes, with a strict preservation of the quality of the physical solution. This was particularly the main point of the ANR RePDyn project (2010-2013), with CEA as the pilot. (author
Five easy pieces: The dynamics of quarks in strongly coupled plasmas
International Nuclear Information System (INIS)
Mia, Mohammed; Dasgupta, Keshav; Gale, Charles; Jeon, Sangyong
2010-01-01
We revisit the analysis of the drag a massive quark experiences and the wake it creates at a temperature T while moving through a plasma using a gravity dual that captures the renormalisation group runnings in the dual gauge theory. Our gravity dual has a black hole and seven branes embedded via Ouyang embedding, but the geometry is a deformation of the usual conifold metric. In particular the gravity dual has squashed two spheres, and a small resolution at the IR. Using this background we show that the drag of a massive quark receives corrections that are proportional to powers of logT when compared with the drag computed using AdS/QCD correspondence. The massive quarks map to fundamental strings in the dual gravity theory, and we use this to analyse their behavior at strong 't Hooft coupling. We also study the shear viscosity in the theory with running couplings, analyse the viscosity to entropy ratio and compare the result with the bound derived from AdS backgrounds. In the presence of higher order curvature square corrections from the back-reactions of the embedded D7 branes, we argue the possibility of the entropy to viscosity bound being violated. Finally, we show that our set-up could in-principle allow us to study a family of gauge theories at the boundary by cutting off the dual geometry respectively at various points in the radial direction. All these gauge theories can have well-defined UV completions, and more interestingly, we demonstrate that any thermodynamical quantities derived from these theories would be completely independent of the cut-off scale and only depend on the temperature at which we define these theories. Such a result would justify the holographic renormalisabilities of these theories which we, in turn, also demonstrate. We give physical interpretations of these results and compare them with more realistic scenarios.
Inert two-Higgs-doublet model strongly coupled to a non-Abelian vector resonance
Rojas-Abatte, Felipe; Mora, Maria Luisa; Urbina, Jose; Zerwekh, Alfonso R.
2017-11-01
We study the possibility of a dark matter candidate having its origin in an extended Higgs sector which, at least partially, is related to a new strongly interacting sector. More concretely, we consider an i2HDM (i.e., a Type-I two Higgs doublet model supplemented with a Z2 under which the nonstandard scalar doublet is odd) based on the gauge group S U (2 )1×S U (2 )2×U (1 )Y . We assume that one of the scalar doublets and the standard fermion transform nontrivially under S U (2 )1 while the second doublet transforms under S U (2 )2. Our main hypothesis is that standard sector is weakly coupled while the gauge interactions associated to the second group is characterized by a large coupling constant. We explore the consequences of this construction for the phenomenology of the dark matter candidate and we show that the presence of the new vector resonance reduces the relic density saturation region, compared to the usual i2DHM, in the high dark matter mass range. In the collider side, we argue that the mono-Z production is the channel which offers the best chances to manifest the presence of the new vector field. We study the departures from the usual i2HDM predictions and show that the discovery of the heavy vector at the LHC is challenging even in the mono-Z channel since the typical cross sections are of the order of 10-2 fb .
International Nuclear Information System (INIS)
Fang, Yun-tuan; Ni, Zhi-yao; Zhu, Na; Zhou, Jun
2016-01-01
We propose a new mechanism to achieve light localization and slow light. Through the study on the coupling of two magnetic surface modes, we find a special convex band that takes on a negative refraction effect. The negative refraction results in an energy flow concellation effect from two degenerated modes on the convex band. The energy flow concellation effect leads to forming of the self-trapped and slow light bands. In the self-trapped band light is localized around the source without reflection wall in the waveguide direction, whereas in the slow light band, light becomes the standing-waves and moving standing-waves at the center and the two sides of the waveguide, respectively. (paper)
International Nuclear Information System (INIS)
Oi, M.; Ansari, A.; Horibata, T.; Onishi, N.; Walker, P.M.
2001-01-01
We analyze a mechanism of coupling of high- and low-K bands in terms of a dynamical treatment for nuclear rotations, i. e., wobbling motion. The wobbling states are produced through the Generator Coordinate Method after Angular Momentum Projection (GCM-after-AMP), in which the intrinsic states are constructed through fully self consistent calculations by the 2d-cranked (or tilted-axis-cranked) HFB method. In particular, the phenomena of ''signature inversion'' and ''signature splitting'' in the t-band (tilted rotational band) are explained in terms of the wobbling model. Our calculations will be compared with new data for in-band E2 transition rates in 182 0s, which may shed light on the mechanism of the anomalous K = 25 isomer decay, directly to the yrast band. (author)
Fang, Yun-Tuan; Ni, Zhi-Yao; Zhu, Na; Zhou, Jun
2016-01-13
We propose a new mechanism to achieve light localization and slow light. Through the study on the coupling of two magnetic surface modes, we find a special convex band that takes on a negative refraction effect. The negative refraction results in an energy flow concellation effect from two degenerated modes on the convex band. The energy flow concellation effect leads to forming of the self-trapped and slow light bands. In the self-trapped band light is localized around the source without reflection wall in the waveguide direction, whereas in the slow light band, light becomes the standing-waves and moving standing-waves at the center and the two sides of the waveguide, respectively.
Angular structure of jet quenching within a hybrid strong/weak coupling model
Energy Technology Data Exchange (ETDEWEB)
Casalderrey-Solana, Jorge [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Gulhan, Doga Can [CERN, EP Department,CH-1211 Geneva 23 (Switzerland); Milhano, José Guilherme [CENTRA, Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Laboratório de Instrumentação e Física Experimental de Partículas (LIP),Av. Elias Garcia 14-1, P-1000-149 Lisboa (Portugal); Theoretical Physics Department, CERN,Geneva (Switzerland); Pablos, Daniel [Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC),Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rajagopal, Krishna [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)
2017-03-27
Within the context of a hybrid strong/weak coupling model of jet quenching, we study the modification of the angular distribution of the energy within jets in heavy ion collisions, as partons within jet showers lose energy and get kicked as they traverse the strongly coupled plasma produced in the collision. To describe the dynamics transverse to the jet axis, we add the effects of transverse momentum broadening into our hybrid construction, introducing a parameter K≡q̂/T{sup 3} that governs its magnitude. We show that, because of the quenching of the energy of partons within a jet, even when K≠0 the jets that survive with some specified energy in the final state are narrower than jets with that energy in proton-proton collisions. For this reason, many standard observables are rather insensitive to K. We propose a new differential jet shape ratio observable in which the effects of transverse momentum broadening are apparent. We also analyze the response of the medium to the passage of the jet through it, noting that the momentum lost by the jet appears as the momentum of a wake in the medium. After freezeout this wake becomes soft particles with a broad angular distribution but with net momentum in the jet direction, meaning that the wake contributes to what is reconstructed as a jet. This effect must therefore be included in any description of the angular structure of the soft component of a jet. We show that the particles coming from the response of the medium to the momentum and energy deposited in it leads to a correlation between the momentum of soft particles well separated from the jet in angle with the direction of the jet momentum, and find qualitative but not quantitative agreement with experimental data on observables designed to extract such a correlation. More generally, by confronting the results that we obtain upon introducing transverse momentum broadening and the response of the medium to the jet with available jet data, we highlight the
Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye A.; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong
2016-02-01
The quasiparticle band gap is one of the most important materials properties for photovoltaic applications. Often the band gap of a photovoltaic material is determined (and can be controlled) by various factors, complicating predictive materials optimization. An in-depth understanding of how these factors affect the size of the gap will provide valuable guidance for new materials discovery. Here we report a comprehensive investigation on the band gap formation mechanism in organic-inorganic hybrid perovskites by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Major factors, namely, quasiparticle self-energy, spin-orbit coupling, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organic-inorganic hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap by introducing structural distortions and controlling the overall lattice constants. The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies.
Strongly coupled interaction between a ridge of fluid and an inviscid airflow
Paterson, C.
2015-07-01
© 2015 AIP Publishing LLC. The behaviour of a steady thin sessile or pendent ridge of fluid on an inclined planar substrate which is strongly coupled to the external pressure gradient arising from an inviscid airflow parallel to the substrate far from the ridge is described. When the substrate is nearly horizontal, a very wide ridge can be supported against gravity by capillary and/or external pressure forces; otherwise, only a narrower (but still wide) ridge can be supported. Classical thin-aerofoil theory is adapted to obtain the governing singular integro-differential equation for the profile of the ridge in each case. Attention is focused mainly on the case of a very wide sessile ridge. The effect of strengthening the airflow is to push a pinned ridge down near to its edges and to pull it up near to its middle. At a critical airflow strength, the upslope contact angle reaches the receding contact angle at which the upslope contact line de-pins, and continuing to increase the airflow strength beyond this critical value results in the de-pinned ridge becoming narrower, thicker, and closer to being symmetric in the limit of a strong airflow. The effect of tilting the substrate is to skew a pinned ridge in the downslope direction. Depending on the values of the advancing and receding contact angles, the ridge may first de-pin at either the upslope or the downslope contact line but, in general, eventually both contact lines de-pin. The special cases in which only one of the contact lines de-pins are also considered. It is also shown that the behaviour of a very wide pendent ridge is qualitatively similar to that of a very wide sessile ridge, while the important qualitative difference between the behaviour of a very wide ridge and a narrower ridge is that, in general, for the latter one or both of the contact lines may never de-pin.
Delord, T.; Nicolas, L.; Chassagneux, Y.; Hétet, G.
2017-12-01
A scheme for strong coupling between a single atomic spin and the rotational mode of levitating nanoparticles is proposed. The idea is based on spin readout of nitrogen-vacancy centers embedded in aspherical nanodiamonds levitating in an ion trap. We show that the asymmetry of the diamond induces a rotational confinement in the ion trap. Using a weak homogeneous magnetic field and a strong microwave driving we then demonstrate that the spin of the nitrogen-vacancy center can be strongly coupled to the rotational mode of the diamond.
Strong-coupling jet energy loss from AdS/CFT
Morad, R.; Horowitz, W. A.
2014-11-01
We propose a novel definition of a holographic light hadron jet and consider the phenomenological consequences, including the very first fully self-consistent, completely strong-coupling calculation of the jet nuclear modification factor R AA, which we find compares surprisingly well with recent preliminary data from LHC. We show that the thermalization distance for light parton jets is an extremely sensitive function of the a priori unspecified string initial conditions and that worldsheets corresponding to non-asymptotic energy jets are not well approximated by a collection of null geodesics. Our new string jet prescription, which is defined by a separation of scales from plasma to jet, leads to the re-emergence of the late-time Bragg peak in the instantaneous jet energy loss rate; unlike heavy quarks, the energy loss rate is unusually sensitive to the very definition of the string theory object itself. A straightforward application of the new jet definition leads to significant jet quenching, even in the absence of plasma. By renormalizing the in-medium suppression by that in the vacuum we find qualitative agreement with preliminary CMS RAAjet >( p T) data in our simple plasma brick model. We close with comments on our results and an outlook on future work.
On strong-coupling correlation functions of circular Wilson loops and local operators
International Nuclear Information System (INIS)
Alday, Luis F; Tseytlin, Arkady A
2011-01-01
Motivated by the problem of understanding 3-point correlation functions of gauge-invariant operators in N=4 super Yang-Mills theory we consider correlators involving Wilson loops and a 'light' operator with fixed quantum numbers. At leading order in the strong-coupling expansion such correlators are given by the 'light' vertex operator evaluated on a semiclassical string world surface ending on the corresponding loops at the boundary of AdS 5 x S 5 . We study in detail the example of a correlator of two concentric circular Wilson loops and a dilaton vertex operator. The resulting expression is given by an integral of combinations of elliptic functions and can be computed analytically in some special limits. We also consider a generalization of the minimal surface ending on two circles to the case of non-zero angular momentum J in S 5 and discuss a special limit when one of the Wilson loops is effectively replaced by a 'heavy' operator with charge J. (paper)
Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes
Brotons-Gisbert, Mauro; Martínez-Pastor, Juan P.; Ballesteros, Guillem C.; Gerardot, Brian D.; Sánchez-Royo, Juan F.
2018-01-01
Two-dimensional (2D) materials have promising applications in optoelectronics, photonics, and quantum technologies. However, their intrinsically low light absorption limits their performance, and potential devices must be accurately engineered for optimal operation. Here, we apply a transfer matrix-based source-term method to optimize light absorption and emission in 2D materials and related devices in weak and strong coupling regimes. The implemented analytical model accurately accounts for experimental results reported for representative 2D materials such as graphene and MoS2. The model has been extended to propose structures to optimize light emission by exciton recombination in MoS2 single layers, light extraction from arbitrarily oriented dipole monolayers, and single-photon emission in 2D materials. Also, it has been successfully applied to retrieve exciton-cavity interaction parameters from MoS2 microcavity experiments. The present model appears as a powerful and versatile tool for the design of new optoelectronic devices based on 2D semiconductors such as quantum light sources and polariton lasers.
On the evolution of jet energy and opening angle in strongly coupled plasma
International Nuclear Information System (INIS)
Chesler, Paul M.; Rajagopal, Krishna
2016-01-01
We calculate how the energy and the opening angle of jets in N=4 SYM theory evolve as they propagate through the strongly coupled plasma of that theory. We define the rate of energy loss dE_j_e_t/dx and the jet opening angle in a straightforward fashion directly in the gauge theory before calculating both holographically, in the dual gravitational description. In this way, we rederive the previously known result for dE_j_e_t/dx without the need to introduce a finite slab of plasma. We obtain a striking relationship between the initial opening angle of the jet, which is to say the opening angle that it would have had if it had found itself in vacuum instead of in plasma, and the thermalization distance of the jet. Via this relationship, we show that N=4 SYM jets with any initial energy that have the same initial opening angle and the same trajectory through the plasma experience the same fractional energy loss. We also provide an expansion that describes how the opening angle of the N=4 SYM jets increases slowly as they lose energy, over the fraction of their lifetime when their fractional energy loss is not yet large. We close by looking ahead toward potential qualitative lessons from our results for QCD jets produced in heavy collisions and propagating through quark-gluon plasma.
Heavy flavor at the large hadron collider in a strong coupling approach
Energy Technology Data Exchange (ETDEWEB)
He, Min [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094 (China); Fries, Rainer J.; Rapp, Ralf [Cyclotron Institute and Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843-3366 (United States)
2014-07-30
Employing nonperturbative transport coefficients for heavy-flavor (HF) diffusion through quark–gluon plasma (QGP), hadronization and hadronic matter, we compute D- and B-meson observables in Pb+Pb (√(s)=2.76 TeV) collisions at the LHC. Elastic heavy-quark scattering in the QGP is evaluated within a thermodynamic T-matrix approach, generating resonances close to the critical temperature which are utilized for recombination into D and B mesons, followed by hadronic diffusion using effective hadronic scattering amplitudes. The transport coefficients are implemented via Fokker–Planck Langevin dynamics within hydrodynamic simulations of the bulk medium in nuclear collisions. The hydro expansion is quantitatively constrained by transverse-momentum spectra and elliptic flow of light hadrons. Our approach thus incorporates the paradigm of a strongly coupled medium in both bulk and HF dynamics throughout the thermal evolution of the system. At low and intermediate p{sub T}, HF observables at LHC are reasonably well accounted for, while discrepancies at high p{sub T} are indicative for radiative mechanisms not included in our approach.
Measurement of jet production with the ATLAS detector and extraction of the strong coupling constant
Sawyer, Lee; The ATLAS collaboration
2017-01-01
The production of jets at hadron colliders provides a stringent test of perturbative QCD at the highest energies. The process can also be used to probe the gluon density function of the proton. Specific topologies can be used to extract the strong coupling constant. The ATLAS collaboration has recently measured the inclusive jet production cross section in data collected at a center-of-mass energy of 8TeV and 13TeV. The measurements have been performed differentially in jet rapidity and transverse momentum. The collaboration also presents a first measurement of the di-jet cross section at a center-of-mass energy of 13TeV as a function of the di-jet mass and rapidity. The results have been compared with state-of-the-art theory predictions at NLO in pQCD, interfaced with different parton distribution functions and can be used to constrain the proton structure. We also present new measurements of transverse energy-energy correlations (TEEC) and their associated asymmetries (ATEEC) in multi-jet events at a center...
On the universal hydrodynamics of strongly coupled CFTs with gravity duals
International Nuclear Information System (INIS)
Gupta, Rajesh Kumar; Mukhopadhyay, Ayan
2009-01-01
It is known that the solutions of pure classical 5D gravity with AdS 5 asymptotics can describe strongly coupled large N dynamics in a universal sector of 4D conformal gauge theories. We show that when the boundary metric is flat we can uniquely specify the solution by the boundary stress tensor. We also show that in the Fefferman-Graham coordinates all these solutions have an integer Taylor series expansion in the radial coordinate (i.e. no log terms). Specifying an arbitrary stress tensor can lead to two types of pathologies, it can either destroy the asymptotic AdS boundary condition or it can produce naked singularities. We show that when solutions have no net angular momentum, all hydrodynamic stress tensors preserve the asymptotic AdS boundary condition, though they may produce naked singularities. We construct solutions corresponding to arbitrary hydrodynamic stress tensors in Fefferman-Graham coordinates using a derivative expansion. In contrast to Eddington-Finkelstein coordinates here the constraint equations simplify and at each order it is manifestly Lorentz covariant. The regularity analysis, becomes more elaborate, but we can show that there is a unique hydrodynamic stress tensor which gives us solutions free of naked singularities. In the process we write down explicit first order solutions in both Fefferman-Graham and Eddington-Finkelstein coordinates for hydrodynamic stress tensors with arbitrary η/s. Our solutions can describe arbitrary (slowly varying) velocity configurations. We point out some field-theoretic implications of our general results.
The ATLAS Measurements of Jet Production and the Strong Coupling Constant
Sawyer, Lee; The ATLAS collaboration
2017-01-01
The production of jets at hadron colliders provides a stringent test of perturbative QCD at the highest energies. The process can also be used to probe the gluon density in the parton distribution function of the proton. Specific topologies can be used to extract the strong coupling constant. The ATLAS collaboration has recently measured the inclusive jet production cross section in data collected at a center-of-mass energy of 8 TeV and 13 TeV. The measurements have been performed differentially in jet rapidity and transverse momentum. The collaboration also presents a first measurement of the dijet cross section at a center-of-mass energy of 13 TeV as a function of the dijet invariant mass and rapidity. The results have been compared with state-of-the-art theory predictions at NLO in pQCD, interfaced with different parton distribution functions and can be used to constrain the proton structure. We also present new measurements of transverse energy-energy correlations (TEEC) and their associated asymmetries (...
The gluonic field of a heavy quark in conformal field theories at strong coupling
Chernicoff, Mariano; Güijosa, Alberto; Pedraza, Juan F.
2011-10-01
We determine the gluonic field configuration sourced by a heavy quark undergoing arbitrary motion in mathcal{N} = 4 super-Yang-Mills at strong coupling and large number of colors. More specifically, we compute the expectation value of the operator Tr[ F 2 + …] in the presence of such a quark, by means of the AdS/CFT correspondence. Our results for this observable show that signals propagate without temporal broadening, just as was found for the expectation value of the energy density in recent work by Hatta et al. We attempt to shed some additional light on the origin of this feature, and propose a different interpretation for its physical significance. As an application of our general results, we examine (Tr[ F 2 + …])when the quark undergoes oscillatory motion, uniform circular motion, and uniform acceleration. Via the AdS/CFT correspondence, all of our results are pertinent to any conformal field theory in 3 + 1 dimensions with a dual gravity formulation.
Quantum Fluctuations and the Unruh effect in strongly-coupled conformal field theories
Cáceres, Elena; Chernicoff, Mariano; Güijosa, Alberto; Pedraza, Juan F.
2010-06-01
Through the AdS/CFT correspondence, we study a uniformly accelerated quark in the vacuum of strongly-coupled conformal field theories in various dimensions, and determine the resulting stochastic fluctuations of the quark trajectory. From the perspective of an inertial observer, these are quantum fluctuations induced by the gluonic radiation emitted by the accelerated quark. From the point of view of the quark itself, they originate from the thermal medium predicted by the Unruh effect. We scrutinize the relation between these two descriptions in the gravity side of the correspondence, and show in particular that upon transforming the conformal field theory from Rindler space to the open Einstein universe, the acceleration horizon disappears from the boundary theory but is preserved in the bulk. This transformation allows us to directly connect our calculation of radiation-induced fluctuations in vacuum with the analysis by de Boer et al. of the Brownian motion of a quark that is on average static within a thermal medium. Combining this same bulk transformation with previous results of Emparan, we are also able to compute the stress-energy tensor of the Unruh thermal medium.
Acceleration, energy loss and screening in strongly-coupled gauge theories
Chernicoff, Mariano; Güijosa, Alberto
2008-06-01
We explore various aspects of the motion of heavy quarks in strongly-coupled gauge theories, employing the AdS/CFT correspondence. Building on earlier work by Mikhailov, we study the dispersion relation and energy loss of an accelerating finite-mass quark in Script N = 4 super-Yang-Mills, both in vacuum and in the presence of a thermal plasma. In the former case, we notice that the application of an external force modifies the dispersion relation. In the latter case, we find in particular that when a static heavy quark is accelerated by an external force, its rate of energy loss is initially insensitive to the plasma, and there is a delay before this rate approaches the value derived previously from the analysis of stationary or late-time configurations. Following up on work by Herzog et al., we also consider the evolution of a quark and antiquark as they separate from one another after formation, learning how the AdS/CFT setup distinguishes between the singlet and adjoint configurations, and locating the transition to the stage where the deceleration of each particle is properly accounted for by a constant friction coefficient. Additionally, we examine the way in which the energy of a quark-antiquark pair moving jointly through the plasma scales with the quark mass. We find that the velocity-dependence of the screening length is drastically modified in the ultra-relativistic region, and is comparable with that of the transition distance mentioned above.
Acceleration, energy loss and screening in strongly-coupled gauge theories
International Nuclear Information System (INIS)
Chernicoff, Mariano; Gueijosa, Alberto
2008-01-01
We explore various aspects of the motion of heavy quarks in strongly-coupled gauge theories, employing the AdS/CFT correspondence. Building on earlier work by Mikhailov, we study the dispersion relation and energy loss of an accelerating finite-mass quark in N = 4 super-Yang-Mills, both in vacuum and in the presence of a thermal plasma. In the former case, we notice that the application of an external force modifies the dispersion relation. In the latter case, we find in particular that when a static heavy quark is accelerated by an external force, its rate of energy loss is initially insensitive to the plasma, and there is a delay before this rate approaches the value derived previously from the analysis of stationary or late-time configurations. Following up on work by Herzog et al., we also consider the evolution of a quark and antiquark as they separate from one another after formation, learning how the AdS/CFT setup distinguishes between the singlet and adjoint configurations, and locating the transition to the stage where the deceleration of each particle is properly accounted for by a constant friction coefficient. Additionally, we examine the way in which the energy of a quark-antiquark pair moving jointly through the plasma scales with the quark mass. We find that the velocity-dependence of the screening length is drastically modified in the ultra-relativistic region, and is comparable with that of the transition distance mentioned above.
Strong Coupling Dynamics of Four-Dimensional N=1 Gauge Theories from M Theory Fivebrane
International Nuclear Information System (INIS)
Hori, K.; Ooguri, H.; Oz, Y.
1997-01-01
It has been known that the fivebrane of type IIA theory can be used to give an exact low energy description of N=2 supersymmetric gauge theories in four dimensions. We follow the recent M theory description by Witten and show that it can be used to study theories with N=1 supersymmetry. The N=2 supersymmetry can be broken to N=1 by turning on a mass for the adjoint chiral superfield in the N=2 vector multiplet. We construct the configuration of the fivebrane for both finite and infinite values of the adjoint mass. The fivebrane describes strong coupling dynamics of N=1 theory with SU(N c ) gauge group and N f quarks. For N c > N f , we show how the brane configuration encodes the information of the Affleck-Dine-Seiberg superpotential. For N c and f , we study the deformation space of the brane configuration and compare it with the moduli space of the N=1 theory. We find agreement with field theory results, including the quantum deformation of the moduli space at N c = N f . We also prove the type II s-rule in M theory and find new non-renormalization theorems for N = 1 superpotentials
Spin-orbit coupling and transport in strongly correlated two-dimensional systems
Huang, Jian; Pfeiffer, L. N.; West, K. W.
2017-05-01
Measuring the magnetoresistance (MR) of ultraclean GaAs two-dimensional holes for a large rs range of 20-50, two striking behaviors in relation to the spin-orbit coupling (SOC) emerge in response to strong electron-electron interaction. First, in exact correspondence to the zero-field metal-to-insulator transition (MIT), the sign of the MR switches from being positive in the metallic regime to being negative in the insulating regime when the carrier density crosses the critical density pc of MIT (rs˜39 ). Second, as the SOC-driven correction Δ ρ to the MR decreases with reducing carrier density (or the in-plane wave vector), it exhibits an upturn in the close proximity just above pc where rs is beyond 30, indicating a substantially enhanced SOC effect. This peculiar behavior echoes with a trend of delocalization long suspected for the SOC-interaction interplay. Meanwhile, for p 40 , in contrast to the common belief that a magnet field enhances Wigner crystallization, the negative MR is likely linked to enhanced interaction.
Electrical switching of antiferromagnets via strongly spin-orbit coupled materials
Li, Xi-Lai; Duan, Xiaopeng; Semenov, Yuriy G.; Kim, Ki Wook
2017-01-01
Electrically controlled ultra-fast switching of an antiferromagnet (AFM) is shown to be realizable by interfacing it with a material of strong spin-orbit coupling. The proximity interaction between the sublattice magnetic moments of a layered AFM and the spin-polarized free electrons at the interface offers an efficient way to manipulate antiferromagnetic states. A quantitative analysis, using the combination with a topological insulator as an example, demonstrates highly reliable 90° and 180° rotations of AFM magnetic states under two different mechanisms of effective torque generation at the interface. The estimated switching speed and energy requirement are in the ps and aJ ranges, respectively, which are about two-three orders of magnitude better than the ferromagnetic counterparts. The observed differences in the magnetization dynamics may explain the disparate characteristic responses. Unlike the usual precessional/chiral motions in the ferromagnets, those of the AFMs can essentially be described as a damped oscillator with a more direct path. The impact of random thermal fluctuations is also examined.
Confined surface plasmon sensors based on strongly coupled disk-in-volcano arrays.
Ai, Bin; Wang, Limin; Möhwald, Helmuth; Yu, Ye; Zhang, Gang
2015-02-14
Disk-in-volcano arrays are reported to greatly enhance the sensing performance due to strong coupling in the nanogaps between the nanovolcanos and nanodisks. The designed structure, which is composed of a nanovolcano array film and a disk in each cavity, is fabricated by a simple and efficient colloidal lithography method. By tuning structural parameters, the disk-in-volcano arrays show greatly enhanced resonances in the nanogaps formed by the disks and the inner wall of the volcanos. Therefore they respond to the surrounding environment with a sensitivity as high as 977 nm per RIU and with excellent linear dependence on the refraction index. Moreover, through mastering the fabrication process, biological sensing can be easily confined to the cavities of the nanovolcanos. The local responsivity has the advantages of maximum surface plasmon energy density in the nanogaps, reducing the sensing background and saving expensive reagents. The disk-in-volcano arrays also possess great potential in applications of optical and electrical trapping and single-molecule analysis, because they enable establishment of electric fields across the gaps.
Pairing and superconductivity from weak to strong coupling in the attractive Hubbard model
International Nuclear Information System (INIS)
Toschi, A; Barone, P; Capone, M; Castellani, C
2005-01-01
The finite-temperature phase diagram of the attractive Hubbard model is studied by means of the dynamical mean-field theory. We first consider the normal phase of the model by explicitly frustrating the superconducting ordering. In this case, we obtain a first-order pairing transition between a metallic phase and a paired phase formed by strongly coupled incoherent pairs. The transition line ends in a finite temperature critical point, but a crossover between two qualitatively different solutions still occurs at higher temperature. Comparing the superconducting- and the normal-phase solutions, we find that the superconducting instability always occurs before the pairing transition in the normal phase, i.e. T c > T pairing . Nevertheless, the high-temperature phase diagram at T > T c is still characterized by a crossover from a metallic phase to a preformed pair phase. We characterize this crossover by computing different observables that can be used to identify the pseudogap region, like the spin susceptibility, the specific heat and the single-particle spectral function
Polygon construction to investigate melting in two-dimensional strongly coupled dusty plasma
International Nuclear Information System (INIS)
Ruhunusiri, W. D. Suranga; Goree, J.; Feng Yan; Liu Bin
2011-01-01
The polygon construction method of Glaser and Clark is used to characterize melting and crystallization in a two-dimensional (2D) strongly coupled dusty plasma. Using particle positions measured by video microscopy, bonds are identified by triangulation, and unusually long bonds are deleted. The resulting polygons have three or more sides. Geometrical defects, which are polygons with more than three sides, are found to proliferate during melting. Pentagons are found in liquids, where they tend to cluster with other pentagons. Quadrilaterals are a less severe defect, so that disorder can be characterized by the ratio of quadrilaterals to pentagons. This ratio is found to be less in a liquid than in a solid or a superheated solid. Another measure of disorder is the abundance of different kinds of vertices, according to the type of polygons that adjoin there. Unexpectedly, spikes are observed in the abundance of certain vertex types during rapid temperature changes. Hysteresis, revealed by a plot of a disorder parameter vs temperature, is examined to study sudden heating. The hysteresis diagram also reveals features suggesting a possibility of latent heat in the melting and rapid cooling processes.
International Nuclear Information System (INIS)
Wyss, R.; Johnson, A.; Royal Inst. of Tech., Stockholm
1990-01-01
The alignment of h 11/12 protons in νi 13/2 intruder bands in mass A = 130 region is investigated. The lack of a clear h 11/12 band crossing is compared with the alignment pattern of i 13/2 neutrons in πi 13/2 intruder bands in mass A = 180 region. The very smooth rise in angular momentum in the intruder bands is related to a possible neutron proton interaction between the single intruder orbital and the aligned two-quasiparticle configuration. 36 refs., 3 figs
Design of a high power cross field amplifier at X band with an internally coupled waveguide
International Nuclear Information System (INIS)
Eppley, K.; Ko, Kwok.
1991-01-01
Cross field amplifiers (CFA) have been used in many applications where high power, high frequency microwaves are needed. Although these tubes have been manufactured for decades, theoretical analysis of their properties is not as highly developed as for other microwave devices such as klystrons. We have developed a simulation model for CFAs using the PIC code CONDOR. Our simulations indicate that there are limits to the maximum RF field strength that a CEA can sustain. When the fields become too high, efficiency becomes very poor, and the currents drawn may become so large that secondary emission cannot be maintained. It is therefore desirable to reduce the circuit impedance of a very high power tube. One method for doing this, proposed by Feinstein, involves periodically coupling a standard CFA circuit to an internal waveguide. Most of the power flows in the waveguide, so the overall impedance is much reduced. By adjusting the guide dimensions one can vary the impedance. Thus one can retain high impedance at the low power end but low impedance at the high power end. In principle one can maintain constant RF voltage throughout the tube. CONDOR simulations have identified a good operating point at X band, with power generation of over 5 MW per cm and total efficiency of over 60 percent. ARGUS simulations have modelled the cold test properties of the coupled structure. The nominal design specifications are 300 MW output, 17 db gain, frequency 11.4 GHz, dc voltage 142 kV, magnetic field 5 kG, anode cathode gap 3.6 mm, total interaction length about 60 cm. We will discuss the results of code simulations and report on the status of the experimental effort
International Nuclear Information System (INIS)
Decker, K.; Hamburg Univ.
1985-12-01
An efficient description of all clusters contributing to the strong coupling expansion of the mass gap in three-dimensional pure Z 2 lattice gauge theory is presented. This description is correct to all orders in the strong coupling expansion and is chosen in such a way that it remains valid in four dimensions for gauge group Z 2 . Relying on this description an algorithm has been constructed which generates and processes all the contributing graphs to the exact strong coupling expansion of the mass gap in the three-dimensional model in a fully automatic fashion. A major component of this algorithm can also be used to generate exact strong coupling expansions for the free energy logZ. The algorithm is correct to any order; thus the order of these expansions is only limited by the available computing power. The presentation of the algorithm is such that it can serve as a guide-line for the construction of a generalized one which would also generate exact strong coupling expansions for the masses of low-lying excited states of four-dimensional pure Yang-Mills theories. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Zhao, Haihua [Idaho National Laboratory; Zhang, Hongbin [Idaho National Laboratory; Zou, Ling [Idaho National Laboratory; Martineau, Richard Charles [Idaho National Laboratory
2015-03-01
The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup cooling water to the reactor pressure vessel (RPV) when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. The RCIC system operates independently of AC power, service air, or external cooling water systems. The only required external energy source is from the battery to maintain the logic circuits to control the opening and/or closure of valves in the RCIC systems in order to control the RPV water level by shutting down the RCIC pump to avoid overfilling the RPV and flooding the steam line to the RCIC turbine. It is generally considered in almost all the existing station black-out accidents (SBO) analyses that loss of the DC power would result in overfilling the steam line and allowing liquid water to flow into the RCIC turbine, where it is assumed that the turbine would then be disabled. This behavior, however, was not observed in the Fukushima Daiichi accidents, where the Unit 2 RCIC functioned without DC power for nearly three days. Therefore, more detailed mechanistic models for RCIC system components are needed to understand the extended SBO for BWRs. As part of the effort to develop the next generation reactor system safety analysis code RELAP-7, we have developed a strongly coupled RCIC system model, which consists of a turbine model, a pump model, a check valve model, a wet well model, and their coupling models. Unlike the traditional SBO simulations where mass flow rates are typically given in the input file through time dependent functions, the real mass flow rates through the turbine and the pump loops in our model are dynamically calculated according to conservation laws and turbine/pump operation curves. A simplified SBO demonstration RELAP-7 model with this RCIC model has been successfully developed. The demonstration model includes the major components for the primary system of a BWR, as well as the safety
Sense of agency is related to gamma band coupling in an inferior parietal-preSMA circuitry
DEFF Research Database (Denmark)
Ritterband-Rosenbaum, Anina; Nielsen, Jens Bo; Christensen, Mark Schram
2014-01-01
with no SoA in the late task phase, but the test of the early task phase did not reveal any differences between presence and absence of SoA. We show that SoA is associated with a directionally specific between frequencies coupling from IPC to preSMA in the higher gamma (ɣ) band in the late task phase...
Directory of Open Access Journals (Sweden)
Duong Thanh Tu
2017-01-01
Full Text Available A dual-band Multiple Input Multiple Output (MIMO antenna system with enhanced isolation for LTE and WLAN applications is proposed. Using a double-rectangular Defected Ground Structure (DGS, the MIMO antenna gets two resonant frequencies of 2.6 GHz and 5.7 GHz with bandwidth of 5.7% and 4.3% respectively. To reduce much more mutual coupling between dual-band MIMO antenna ports, a novel double-side Electromagnetic Band Gap (EBG structure with equivalent circuit model is proposed. Size of t gain of the antenna is getting better, especially at the low band. he EBG unit cell is 8.6x8.6 mm2 that is built on FR4 substrate with height of 1.6 mm, so it is achieved more compact size than conventional EBG structures. With 1x7 EBG structures, the mutual coupling gets -40dB in the low frequency band and -30 dB in the high one with narrow distance of 0.11 from feeding point to feeding point. Furthermore, radiation efficiency as well as gain of the antenna is getting better, especially at the low band.
International Nuclear Information System (INIS)
Brut, F.
1982-01-01
The spectroscopy of odd-A nuclei, in the 1p and 2s-1d shells, is studied in the framework of the projected Hartree-Fock method and by the generator coordinate method. The nuclear effective interactions of Cohen and Kurath, on the one hand, and of Kuo or Preedom-Wildenthal, on the other hand, are used. The binding energies, the nuclear spectra, the static moments and the electromagnetic transitions obtained by these two approaches are compared to the same quantities given by a complete diagonalization in the shell model basis. This study of light nuclei gives some possibilities to put in order the energy levels by coupled rotational bands. In the microscopic approach, thus we find all the elements of the unified model of Bohr and Mottelson. To give evidence of such a relation, the functions of the angle β, in the integrals of the projection method of Peierls and Yoccoz, for a Slater determinant, are developed in the vicinity of the bounds β = O and β = π. The microscopic coefficients are evaluated in the Hartree-Fock approximation, using the particle-hole formalism. Calculations are made for 20 Ne and 21 Ne and the resulting microscopic coefficients are compared with the corresponding terms of the unified model of Bohr and Mottelson [fr
Strongly coupled Coulomb systems with positive dust grains: thermal and UV-induced plasmas
International Nuclear Information System (INIS)
Samarian, A.A.
2000-01-01
Full text: A plasma containing macroscopic dust particles or grains (often referred to as a dusty or colloidal or complex plasma) has the feature that grains may be charged by electron or ion flux or by photo- or thermoelectron emission. Electron emission from a grain surface produces a positive charge; capture of electrons produces the reverse effect making the dust grains negatively charged. Most dusty plasma research is concerned with the ordered dust structures (so-called 'plasma crystal') in glow discharges. The dust grains in these experiments were found to carry a negative charge due to the higher mobility of electrons as compared to ions in the discharge plasma. In recent years, in parallel with the study of the properties of plasma crystals under discharge conditions, attempts to obtain a structure from positively charged dust grains have been made, and structure formation processes for various charging mechanisms, particularly thermoelectron emission and photoemission, have been investigated. In this paper we review the essential features of strongly coupled plasmas with positive dust grains. An ordered structure of CeO 2 grains has been experimentally observed in a combustion products jet. The grains were charged positively and suspended in the plasma flow. Their charge is about 10 3 a and the calculated value of a Coulomb coupling parameter Γ is >10, corresponding to a plasma liquid. The ordered structures of Al 2 O 3 dust grains in propellant combustion products plasma have been observed for the first time. These structures were found in the sheath boundary of condensation region. The obtained data let us estimate the value of parameter Γ =3-40, corresponding to the plasma liquid state. The possibility is studied of the formation of ordered dust grain structures in thermal plasma. The range of the required values of the coupling parameter Γ is calculated using the results of diagnostic measurements carried out in thermal plasma with grains of
Strongly coupled inorganic-nano-carbon hybrid materials for energy storage.
Wang, Hailiang; Dai, Hongjie
2013-04-07
The global shift of energy production from fossil fuels to renewable energy sources requires more efficient and reliable electrochemical energy storage devices. In particular, the development of electric or hydrogen powered vehicles calls for much-higher-performance batteries, supercapacitors and fuel cells than are currently available. In this review, we present an approach to synthesize electrochemical energy storage materials to form strongly coupled hybrids (SC-hybrids) of inorganic nanomaterials and novel graphitic nano-carbon materials such as carbon nanotubes and graphene, through nucleation and growth of nanoparticles at the functional groups of oxidized graphitic nano-carbon. We show that the inorganic-nano-carbon hybrid materials represent a new approach to synthesize electrode materials with higher electrochemical performance than traditional counterparts made by simple physical mixtures of electrochemically active inorganic particles and conducting carbon materials. The inorganic-nano-carbon hybrid materials are novel due to possible chemical bonding between inorganic nanoparticles and oxidized carbon, affording enhanced charge transport and increased rate capability of electrochemical materials without sacrificing specific capacity. Nano-carbon with various degrees of oxidation provides a novel substrate for nanoparticle nucleation and growth. The interactions between inorganic precursors and oxidized-carbon substrates provide a degree of control over the morphology, size and structure of the resulting inorganic nanoparticles. This paper reviews the recent development of inorganic-nano-carbon hybrid materials for electrochemical energy storage and conversion, including the preparation and functionalization of graphene sheets and carbon nanotubes to impart oxygen containing groups and defects, and methods of synthesis of nanoparticles of various morphologies on oxidized graphene and carbon nanotubes. We then review the applications of the SC
Zhang, Yu-Yu; Chen, Xiang-You
2017-01-01
A novel, unexplored nonperturbative deep-strong coupling (npDSC) achieved in superconducting circuits has been studied in the anisotropic Rabi model by the generalized squeezing rotating-wave approximation (GSRWA). Energy levels are evaluated analytically from the reformulated Hamiltonian and agree well with numerical ones under a wide range of coupling strength. Such improvement ascribes to deformation effects in the displaced-squeezed state presented by the squeezed momentum variance, which...
Energy Technology Data Exchange (ETDEWEB)
Li, Yanfei [College of Power Engineering, Naval University of Engineering, Wuhan, 430033 (China); Shen, Huijie, E-mail: shj588@163.com [College of Power Engineering, Naval University of Engineering, Wuhan, 430033 (China); Zhang, Linke [School of Energy and Power Engineering, Wuhan University of Technology, Wuhan, 430063 (China); Su, Yongsheng, E-mail: suyongsheng1981@163.com [College of Power Engineering, Naval University of Engineering, Wuhan, 430033 (China); Yu, Dianlong [Key Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073 (China)
2016-07-01
Acoustic wave propagation and sound transmission in a metamaterial-based piping system with Helmholtz resonator (HR) attached periodically are studied. A transfer matrix method is developed to conduct the investigation. Calculational results show that the introduction of periodic HRs in the piping system could generate a band gap (BG) near the resonant frequency of the HR, such that the bandwidth and the attenuation effect of HR improved notably. Bragg type gaps are also exist in the system due to the systematic periodicity. By plotting the BG as functions of HR parameters, the effect of resonator parameters on the BG behavior, including bandwidth, location and attenuation performance, etc., is examined. It is found that Bragg-type gap would interplay with the resonant-type gap under some special situations, thereby giving rise to a super-wide coupled gap. Further, explicit formulation for BG exact coupling is extracted and some key parameters on modulating the width and the attenuation coefficient of coupled gaps are investigated. The coupled gap can be located to any frequency range as one concerned, thus rendering the low-frequency noise control feasible in a broad band range. - Highlights: • A metamaterial-type pipe system with Bragg and resonant acoustic gaps. • A low-frequency acoustic coupled gap. • Exact coupling condition for Bragg and resonant gaps. • Effects of resonant parameters on coupled gaps.
Evidence for a J/psi p anti-p Pauli Strong Coupling?
Energy Technology Data Exchange (ETDEWEB)
Ted Barnes; Winston Roberts
2008-03-01
The couplings of charmonia and charmonium hybrids (generically $\\Psi$) to $p\\bar p$ are of great interest in view of future plans to study these states using an antiproton storage ring at GSI. These low to moderate energy $\\Psi p\\bar p$ couplings are not well understood theoretically, and must currently be determined from experiment. In this letter we note that the two independent $p\\bar p$ couplings $\\gamma_{\\mu}$ and $\\sigma_{\\mu\
Yang, Yongqiang; Yin, Li-Chang; Gong, Yue; Niu, Ping; Wang, Jian-Qiang; Gu, Lin; Chen, Xingqiu; Liu, Gang; Wang, Lianzhou; Cheng, Hui-Ming
2018-02-01
Increasing visible light absorption of classic wide-bandgap photocatalysts like TiO 2 has long been pursued in order to promote solar energy conversion. Modulating the composition and/or stoichiometry of these photocatalysts is essential to narrow their bandgap for a strong visible-light absorption band. However, the bands obtained so far normally suffer from a low absorbance and/or narrow range. Herein, in contrast to the common tail-like absorption band in hydrogen-free oxygen-deficient TiO 2 , an unusual strong absorption band spanning the full spectrum of visible light is achieved in anatase TiO 2 by intentionally introducing atomic hydrogen-mediated oxygen vacancies. Combining experimental characterizations with theoretical calculations reveals the excitation of a new subvalence band associated with atomic hydrogen filled oxygen vacancies as the origin of such band, which subsequently leads to active photo-electrochemical water oxidation under visible light. These findings could provide a powerful way of tailoring wide-bandgap semiconductors to fully capture solar light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Usman, Muhammad
2015-10-21
Strongly-coupled quantum dot molecules (QDMs) are widely employed in the design of a variety of optoelectronic, photovoltaic, and quantum information devices. An efficient and optimized performance of these devices demands engineering of the electronic and optical properties of the underlying QDMs. The application of electric fields offers a way to realise such a control over the QDM characteristics for a desired device operation. We performed multi-million-atom atomistic tight-binding calculations to study the influence of electric fields on the electron and hole wave function confinements and symmetries, the ground-state transition energies, the band-gap wavelengths, and the optical transition modes. Electrical fields parallel (Ep) and anti-parallel (Ea) to the growth direction were investigated to provide a comprehensive guide for understanding the electric field effects. The strain-induced asymmetry of the hybridized electron states is found to be weak and can be balanced by applying a small Ea electric field, of the order of 1 kV cm(-1). The strong interdot couplings completely break down at large electric fields, leading to single QD states confined at the opposite edges of the QDM. This mimics a transformation from a type-I band structure to a type-II band structure for the QDMs, which is a critical requirement for the design of intermediate-band solar cells (IBSCs). The analysis of the field-dependent ground-state transition energies reveals that the QDM can be operated both as a high dipole moment device by applying large electric fields and as a high polarizability device under the application of small electric field magnitudes. The quantum confined Stark effect (QCSE) red shifts the band-gap wavelength to 1.3 μm at the 15 kV cm(-1) electric field; however the reduced electron-hole wave function overlaps lead to a decrease in the interband optical transition strengths by roughly three orders of magnitude. The study of the polarisation-resolved optical
Directory of Open Access Journals (Sweden)
James Avery Sauls
2015-06-01
Full Text Available Recent theories of Sr2RuO4 based on the interplay of strong interactions, spin-orbit coupling and multi-band anisotropy predict chiral or helical ground states with strong anisotropy of the pairing states, with deep minima in the excitation gap, as well as strong phase anisotropy for the chiral ground state. We develop time-dependent mean field theory to calculate the Bosonic spectrum for the class of 2D chiral superconductors spanning 3He-A to chiral superconductors with strong anisotropy. Chiral superconductors support a pair of massive Bosonic excitations of the time-reversed pairs labeled by their parity under charge conjugation. These modes are degenerate for 2D 3He-A. Crystal field anisotropy lifts the degeneracy. Strong anisotropy also leads to low-lying Fermions, and thus to channels for the decay of the Bosonic modes. Selection rules and phase space considerations lead to large asymmetries in the lifetimes and hybridization of the Bosonic modes with the continuum of un-bound Fermion pairs. We also highlight results for the excitation of the Bosonic modes by microwave radiation that provide clear signatures of the Bosonic modes of an anisotropic chiral ground state.
Hoi, Bui Dinh; Yarmohammadi, Mohsen; Kazzaz, Houshang Araghi
2017-10-01
We studied how the strain, induced exchange field and extrinsic Rashba spin-orbit coupling (RSOC) enhance the electronic band structure (EBS) and electronic heat capacity (EHC) of ferromagnetic silicene in presence of external electric field (EF) by using the Kane-Mele Hamiltonian, Dirac cone approximation and the Green's function approach. Particular attention is paid to investigate the EHC of spin-up and spin-down bands at Dirac K and K‧ points. We have varied the EF, strain, exchange field and RSOC to tune the energy of inter-band transitions and consequently EHC, leading to very promising features for future applications. Evaluation of EF exhibits three phases: Topological insulator (TI), valley-spin polarized metal (VSPM) and band insulator (BI) at given aforementioned parameters. As a new finding, we have found a quantum anomalous Hall phase in BI regime at strong RSOCs. Interestingly, the effective mass of carriers changes with strain, resulting in EHC behaviors. Here, exchange field has the same behavior with EF. Finally, we have confirmed the reported and expected symmetry results for both Dirac points and spins with the study of valley-dependent EHC.
International Nuclear Information System (INIS)
Xiao Yong; Mace, Brian R.; Wen Jihong; Wen Xisen
2011-01-01
A uniform string with periodically attached spring-mass resonators represents a simple locally resonant continuous elastic system whose band gap mechanisms are basic to more general and complicated problems. In this Letter, analytical models with explicit formulations are provided to understand the band gap mechanisms of such a system. Some interesting phenomena are demonstrated and discussed, such as asymmetric/symmetric attenuation behavior within a resonance gap, and the realization of a super-wide gap due to exact coupling between Bragg and resonance gaps. In addition, some approximate formulas for the evaluation of low frequency resonance gaps are derived using an approach different from existing investigations. - Research highlights: → We examine band gaps in a special one-dimensional locally resonant system. → Bragg and resonance gaps co-exist. → Explicit formulas for locating band edges are derived. → Exact physical models are used to clarify the band gap formation mechanisms. → Coupling between Bragg and resonance gaps leads to a super-wide gap.
Electronic transport through a quantum dot chain with strong dot-lead coupling
International Nuclear Information System (INIS)
Liu, Yu; Zheng, Yisong; Gong, Weijiang; Gao, Wenzhu; Lue, Tianquan
2007-01-01
By means of the non-equilibrium Green function technique, the electronic transport through an N-quantum-dot chain is theoretically studied. By calculating the linear conductance spectrum and the local density of states in quantum dots, we find the resonant peaks in the spectra coincides with the eigen-energies of the N-quantum-dot chain when the dot-lead coupling is relatively weak. With the increase of the dot-lead coupling, such a correspondence becomes inaccurate. When the dot-lead coupling exceeds twice the interdot coupling, such a mapping collapses completely. The linear conductance turn to reflect the eigen-energies of the (N-2)- or (N-1)-quantum dot chain instead. The two peripheral quantum dots do not manifest themselves in the linear conductance spectrum. More interestingly, with the further increase of the dot-lead coupling, the system behaves just like an (N-2)- or (N-1)-quantum dot chain in weak dot-lead coupling limit, since the resonant peaks becomes narrower with the increase of dot-lead coupling
Energy Technology Data Exchange (ETDEWEB)
Oldenburg, C.M.; Pruess, K. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)
1995-03-01
We have developed TOUGH2 modules for strongly coupled flow and transport that include full hydrodynamic dispersion. T2DM models tow-dimensional flow and transport in systems with variable salinity, while T32DMR includes radionuclide transport with first-order decay of a parent-daughter chain of radionuclide components in variable salinity systems. T2DM has been applied to a variety of coupled flow problems including the pure solutal convection problem of Elder and the mixed free and forced convection salt-dome flow problem. In the Elder and salt-dome flow problems, density changes of up to 20% caused by brine concentration variations lead to strong coupling between the velocity and brine concentration fields. T2DM efficiently calculates flow and transport for these problems. We have applied T2DMR to the dispersive transport and decay of radionuclide tracers in flow fields with permeability heterogeneities and recirculating flows. Coupling in these problems occurs by velocity-dependent hydrodynamic dispersion. Our results show that the maximum daughter species concentration may occur fully within a recirculating or low-velocity region. In all of the problems, we observe very efficient handling of the strongly coupled flow and transport processes.
A strongly conservative finite element method for the coupling of Stokes and Darcy flow
Kanschat, G.; Riviè re, B.
2010-01-01
We consider a model of coupled free and porous media flow governed by Stokes and Darcy equations with the Beavers-Joseph-Saffman interface condition. This model is discretized using divergence-conforming finite elements for the velocities
Energy Technology Data Exchange (ETDEWEB)
Casalderrey-Solana, Jorge [Departament d' Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Gulhan, Doga Can [Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Milhano, José Guilherme [CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Physics Department, Theory Unit, CERN, CH-1211 Genève 23 (Switzerland); Pablos, Daniel [Departament d' Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Rajagopal, Krishna [Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)
2016-12-15
Within a hybrid strong/weak coupling model for jets in strongly coupled plasma, we explore jet modifications in ultra-relativistic heavy ion collisions. Our approach merges the perturbative dynamics of hard jet evolution with the strongly coupled dynamics which dominates the soft exchanges between the fast partons in the jet shower and the strongly coupled plasma itself. We implement this approach in a Monte Carlo, which supplements the DGLAP shower with the energy loss dynamics as dictated by holographic computations, up to a single free parameter that we fit to data. We then augment the model by incorporating the transverse momentum picked up by each parton in the shower as it propagates through the medium, at the expense of adding a second free parameter. We use this model to discuss the influence of the transverse broadening of the partons in a jet on intra-jet observables. In addition, we explore the sensitivity of such observables to the back-reaction of the plasma to the passage of the jet.
Determinations of the QCD strong coupling αsub(s) and the scale Λsub(QCD)
International Nuclear Information System (INIS)
Duke, D.W.; Roberts, R.G.
1984-08-01
The authors review determinations, via experiment of the strong coupling of QCD, αsub(s). In almost every case, the results are used of perturbative QCD to make the necessary extraction from data. These include scaling violations of deep inelastic scattering, e + e - annihilation experiments (including quarkonium decays) and lepton pair production. Finally estimates for Λ from lattice calculations are listed. (author)
DEFF Research Database (Denmark)
Van Vlack, C.; Kristensen, Philip Trøst; Hughes, S.
2012-01-01
the dot to the detector, we demonstrate that the strong-coupling regime should be observable in the far-field spontaneous emission spectrum, even at room temperature. The vacuum-induced emission spectra show that the usual vacuum Rabi doublet becomes a rich spectral triplet or quartet with two of the four...
MORGENSTERN, [No Value; FRICK, M; VONDERLINDEN, W
We present quantum simulation studies for a system of strongly correlated fermions coupled to local anharmonic phonons. The Monte Carlo calculations are based on a generalized version of the Projector Quantum Monte Carlo Method allowing a simultaneous treatment of fermions and dynamical phonons. The
The Role of Strong Coupling in Z-Pinch-Driven Approaches to High Yield Inertial Confinement Fusion
International Nuclear Information System (INIS)
MEHLHORN, THOMAS A.; DESJARLAIS, MICHAEL P.; HAILL, THOMAS A.; LASH, JOEL S.; ROSENTHAL, STEPHEN E.; SLUTZ, STEPHEN A.; STOLTZ, PETER H.; VESEY, ROGER A.; OLIVER, B.
1999-01-01
Peak x-ray powers as high as 280 ± 40 TW have been generated from the implosion of tungsten wire arrays on the Z Accelerator at Sandia National Laboratories. The high x-ray powers radiated by these z-pinches provide an attractive new driver option for high yield inertial confinement fusion (ICF). The high x-ray powers appear to be a result of using a large number of wires in the array which decreases the perturbation seed to the magnetic Rayleigh-Taylor (MRT) instability and diminishes other 3-D effects. Simulations to confirm this hypothesis require a 3-D MHD code capability, and associated databases, to follow the evolution of the wires from cold solid through melt, vaporization, ionization, and finally to dense imploded plasma. Strong coupling plays a role in this process, the importance of which depends on the wire material and the current time history of the pulsed power driver. Strong coupling regimes are involved in the plasmas in the convolute and transmission line of the powerflow system. Strong coupling can also play a role in the physics of the z-pinch-driven high yield ICF target. Finally, strong coupling can occur in certain z-pinch-driven application experiments
Energy Technology Data Exchange (ETDEWEB)
Kamimura, M. [Rijksuniversiteit Groningen (Netherlands). Kernfysisch Versneller Inst.; Nakano, M.; Yahiro, M.; Ikegami, H.; Muraoka, M. [eds.
1980-01-01
A mechanism of the strong inelastic excitation of colliding nuclei (e.g. deep inelastic heavy-ion collision) was studied in a schematic way based on a coupled channel (CC) framework. The purpose of this work is to see the gross behavior of the inelastic excitation strength versus epsilon (i.e. energy spectrum) for the assumed specific types of CC potentials between a large number of inelastic channels. Schematic large dimension CC calculation was considered rather than small-dimension CC calculation. The coupled N + 1 equations can be reduced to uncoupled N + 1 equations through the wellknown unitary transformation. An interesting case is that there exists strong channel independent coupling between any pair of the channels, all of which are almost degenerate in internal energy as compared with incoming c.m. energy. It was found that inelastic scattering hardly occurred while the collision was almost confined to the elastic component. The numerical calculation of S-matrix was carried out. Other cases, such as zero CC potential, the coupling between inelastic channel and entrance channel, and the case that the thickness of the coupling was changed, were investigated. As the results of the present study, it can be said that this CC coupling model may be useful for discussing continuum-continuum interactions in a breakup reaction by simulating the continuum states with many channels made discrete.
International Nuclear Information System (INIS)
Golden, Kenneth I.
2002-01-01
The main research accomplishments/findings of the project were the following: (1) Publication of an in-depth review article in Physics of Plasmas on the quasilocalized charge approximation (QLCA) in strongly coupled plasma physics and its application to a variety of Coulomb systems: the model one-component plasma in three and two dimensions, binary ionic mixtures, charged particle bilayers, and laboratory dusty plasmas. (2) In the strongly coupled Coulomb liquid phase, the physical basis of the QLCA, namely, the caging of particles trapped in slowly fluctuating local potential minima, is supported by molecular dynamics simulation of the classical three-dimensional one-component plasma. (3) The QLCA theory, when applied to the analysis of the collective modes in strongly coupled charged particle bilayers, predicts the existence of a remarkable long-wavelength energy gap in the out-of-phase excitation spectrum. More recent theoretical calculations based on the three principal frequency-moment sum rules reveal that the gap persists for arbitrary coupling strengths and over the entire classical to quantum domain all the way down to zero temperature. The existence of the energy gap has now been confirmed in a molecular dynamics simulation of the charged particle bilayer. (4) New compressibility and third-frequency-moment sum rules for multilayer plasmas were formulated and applied to the analysis of the dynamical structure function of charged particle bilayers and superlattices. (5) An equivalent of the Debye-Huckel weak coupling equilibrium theory for classical charged particle bilayer and superlattice plasmas was formulated. (6) The quadratic fluctuation-dissipation theorem (QFDT) for layered classical plasmas was formulated. (7) The QFDT was applied to a powerful kinetic theory-based description of the density-density response function and long-wavelength plasma mode behavior in strongly coupled two-dimensional Coulomb fluids in the weakly degenerate quantum domain
Coupling of tt̄ and γγ with a strongly interacting Electroweak Symmetry Breaking Sector
Directory of Open Access Journals (Sweden)
Delgado Rafael L.
2017-01-01
Full Text Available We report the coupling of an external γγ or tt̄ state to a strongly interacting EWSBS satisfying unitarity. We exploit perturbation theory for those coupling of the external state, whereas the EWSBS is taken as strongly interacting. We use a modified version of the IAM unitarization procedure to model such a strongly interacting regime. The matrix elements VLVL → VLVL, VLVL ↔ hh, hh → hh, VLVL ↔ {γγ, tt̄}, hh ↔ {γγ, tt̄} are all computed to NLO in perturbation theory with the Nonlinear Effective Field Theory of the EWSBS, within the Equivalence Theorem. This allows us to describe resonances of the electroweak sector that may be found at the LHC and their effect on other channels such as γγ or tt̄ where they may be discovered.
International Nuclear Information System (INIS)
Weger, M.; Barbiellini, B.; Jarlborg, T.; Peter, M.; Santi, G.
1995-01-01
We solve the Eliashberg equations for the case of an explicit vector k dependence of the interactions, and of the resulting self-energies Σ 1 ( vector k,ω), Σ 2 ( vector k,ω). We consider a strong energy-dependence of the electron-electron scattering-rate τ ee -1 , which is associated with a strong energy-dependence of the electron-phonon matrix element g(k,k'). We characterize this energy-dependence by a cutoff ξ 1 , which is of the order of the phonon frequency ω ph . We find that we can account for a large number of unexpected features of the superconductivity of the cuprates by the BCS electron-phonon theory, if we consider very large values of the McMillan coupling constant λ ph , and small values of the cutoff ξ 1 . Specifically, the Coulomb interaction is found not to depress T c ; the isotope effect is strongly reduced when ξ 1 ph . We find solutions in which the gap function Δ( vector k,ω) has extended s-wave symmetry but is very anisotropic. We suggest that the underlying cause of the strong energy-dependence is a very small electronic screening parameter at the Fermi surface; the electron-phonon matrix element g is abnormally large, and this accounts for the high transition temperatures of the cuprates. An order of magnitude estimate suggests that the electron-phonon mechanism can account for transition temperatures up to about 200 K. We thus propose a very-strong-coupling theory, in which the renormalization functions, in particular the energy-renormalization X, depend very strongly on the superconducting gap Δ, and thus display a very strong temperature-dependence between T c and T=0. An experimental manifestation of the very strong coupling with a small cutoff is a zero bias anomaly sometimes observed in tunneling experiments. (orig.)
International Nuclear Information System (INIS)
Riley, M A; Djongolov, M K; Evans, A O
2006-01-01
High-spin terminating bands in heavy nuclei were first identified in nuclei around 158 Er 90 . While examples of terminating states have been identified in a number of erbium isotopes, almost nothing is known about the states lying beyond band termination. In the present work, the high-spin structure of 156,157,158 Er has been studied using the Gammasphere spectrometer. The subject of triaxial superdeformation and 'wobbling' modes in Lu nuclei has rightly attracted a great deal of attention. Very recently four strongly or superdeformed (SD) sequences have been observed in 174 Hf, and cranking calculations using the Ultimate Cranker code predict that such structures may have significant triaxial deformation. We have performed two experiments in an attempt to verify the possible triaxial nature of these bands. A lifetime measurement was performed to confirm the large (and similar) deformation of the bands. In addition, a high-statistics, thin-target experiment took place to search for linking transitions between the SD bands, possible wobbling modes, and new SD band structures
Goldie, D. J.; Glowacka, D. M.; Withington, S.; Chen, Jiajun; Ade, P. A. R.; Morozov, D.; Sudiwala, R.; Trappe, N. A.; Quaranta, O.
2016-07-01
We describe the geometry, architecture, dark- and optical performance of ultra-low-noise transition edge sensors as THz detectors for the SAFARI instrument. The TESs are fabricated from superconducting Mo/Au bilayers coupled to impedance-matched superconducting β-phase Ta thin-film absorbers. The detectors have phonon-limited dark noise equivalent powers of order 0.5 - 1.0 aW/ √ Hz and saturation powers of order 20 - 40 fW. The low temperature test configuration incorporating micro-machined backshorts is also described, and construction and typical performance characteristics for the optical load are shown. We report preliminary measurements of the optical performance of these TESs for two SAFARI bands; L-band at 110 - 210 μm and S-band 34 - 60 μm .
Optical properties of an atomic ensemble coupled to a band edge of a photonic crystal waveguide
Munro, Ewan; Kwek, Leong Chuan; Chang, Darrick E.
2017-08-01
We study the optical properties of an ensemble of two-level atoms coupled to a 1D photonic crystal waveguide (PCW), which mediates long-range coherent dipole-dipole interactions between the atoms. We show that the long-range interactions can dramatically alter the linear and nonlinear optical behavior, as compared to a typical atomic ensemble. In particular, in the linear regime, we find that the transmission spectrum contains multiple transmission dips, whose properties we characterize. Moreover, we show how the linear spectrum may be used to infer the number of atoms present in the system, constituting an important experimental tool in a regime where techniques for conventional ensembles break down. We also show that some of the transmission dips are associated with an effective ‘two-level’ resonance that forms due to the long-range interactions. In particular, under strong global driving and appropriate conditions, we find that the atomic ensemble is only capable of absorbing and emitting single collective excitations at a time. Our results are of direct relevance to atom-PCW experiments that should soon be realizable.
Strong diameter-dependence of nanowire emission coupled to waveguide modes
Energy Technology Data Exchange (ETDEWEB)
Dam, Dick van, E-mail: a.d.v.dam@tue.nl; Haverkort, Jos E. M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Abujetas, Diego R.; Sánchez-Gil, José A. [Instituto de Estructura de la Materia (IEM-CSIC), Consejo Superior de Investigaciones Científicas Serrano, 121, 28006 Madrid (Spain); Bakkers, Erik P. A. M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Gómez Rivas, Jaime, E-mail: j.gomezrivas@differ.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dutch Institute for Fundamental Energy Research DIFFER, P.O. Box 6336, 5600 HH Eindhoven (Netherlands)
2016-03-21
The emission from nanowires can couple to waveguide modes supported by the nanowire geometry, thus governing the far-field angular pattern. To investigate the geometry-induced coupling of the emission to waveguide modes, we acquire Fourier microscopy images of the photoluminescence of nanowires with diameters ranging from 143 to 208 nm. From the investigated diameter range, we conclude that a few nanometers difference in diameter can abruptly change the coupling of the emission to a specific mode. Moreover, we observe a diameter-dependent width of the Gaussian-shaped angular pattern in the far-field emission. This dependence is understood in terms of interference of the guided modes, which emit at the end facets of the nanowire. Our results are important for the design of quantum emitters, solid state lighting, and photovoltaic devices based on nanowires.
Two-qubit gate operations in superconducting circuits with strong coupling and weak anharmonicity
International Nuclear Information System (INIS)
Lü Xinyou; Ashhab, S; Cui Wei; Wu Rebing; Nori, Franco
2012-01-01
We theoretically study the implementation of two-qubit gates in a system of two coupled superconducting qubits. In particular, we analyze two-qubit gate operations under the condition that the coupling strength is comparable with or even larger than the anharmonicity of the qubits. By numerically solving the time-dependent Schrödinger equation under the assumption of negligible decoherence, we obtain the dependence of the two-qubit gate fidelity on the system parameters in the case of both direct and indirect qubit-qubit coupling. Our numerical results can be used to identify the ‘safe’ parameter regime for experimentally implementing two-qubit gates with high fidelity in these systems. (paper)
Strong climate coupling of terrestrial and marine environments in the Miocene of northwest Europe
Donders, T.H.; Weijers, J.W.H.; Munsterman, D.K.; Kloosterboer-van Hoeve, M.L.; Buckles, L.K.; Pancost, R.D.; Schouten, S.; Sinninghe Damsté, J.S.; Brinkhuis, H.
2009-01-01
A palynological and organic geochemical record from a shallow marine paleoenvironmental setting in SE Netherlands documents the coupled marine and terrestrial climate evolution from the late Burdigalian (∼ 17 Ma) through the early Zanclean (∼ 4.5 Ma). Proxy climate records show several coeval
Can the couplings in the fermion-Higgs sector of the standard model be strong?
International Nuclear Information System (INIS)
Bock, W.; Frick, C.; Smit, J.; Vink, J.C.
1993-01-01
We present results for the renormalized quartic self-coupling λ R and the Yukawa coupling y R in a lattice fermion-Higgs model with two SU(2) L doublets, mostly for large values of the bare couplings. One-component ('reduced') staggered fermions are used in a numerical simulation with the Hybrid Monte Carlo algorithm. The fermion and Higgs masses and the renormalized scalar field expectation value are computed on L 3 24 lattices where L ranges from 6 to 16. In the scaling region these quantities are found to have a 1/L 2 dependence, which is used to determine their values in the infinite-volume limit. We then calculate the y R and λ R from their tree-level definitions in terms of the masses and renormalized scalar field expectation value, extrapolated to infinite volume. The scalar field propagators can be described momenta up to the cut-off by one-fermion-loop renormalized perturbation theory and the results for λ R and y R come out to be close to the tree-level unitarity bounds. There are no signs that are in contradiction with the triviality of the Yukawa and quartic self-coupling. (orig.)
Inversion of Qubit Energy Levels in Qubit-Oscillator Circuits in the Deep-Strong-Coupling Regime
Yoshihara, F.; Fuse, T.; Ao, Z.; Ashhab, S.; Kakuyanagi, K.; Saito, S.; Aoki, T.; Koshino, K.; Semba, K.
2018-05-01
We report on experimentally measured light shifts of superconducting flux qubits deep-strongly coupled to L C oscillators, where the coupling constants are comparable to the qubit and oscillator resonance frequencies. By using two-tone spectroscopy, the energies of the six lowest levels of each circuit are determined. We find huge Lamb shifts that exceed 90% of the bare qubit frequencies and inversions of the qubits' ground and excited states when there are a finite number of photons in the oscillator. Our experimental results agree with theoretical predictions based on the quantum Rabi model.
Zhang, Yu-Yu; Chen, Xiang-You
2017-12-01
An unexplored nonperturbative deep strong coupling (npDSC) achieved in superconducting circuits has been studied in the anisotropic Rabi model by the generalized squeezing rotating-wave approximation. Energy levels are evaluated analytically from the reformulated Hamiltonian and agree well with numerical ones in a wide range of coupling strength. Such improvement ascribes to deformation effects in the displaced-squeezed state presented by the squeezed momentum variance, which are omitted in previous displaced states. The atom population dynamics confirms the validity of our approach for the npDSC strength. Our approach offers the possibility to explore interesting phenomena analytically in the npDSC regime in qubit-oscillator experiments.
The strong running coupling from an approximate gluon Dyson-Schwinger equation
International Nuclear Information System (INIS)
Alkofer, R.; Hauck, A.
1996-01-01
Using Mandelstam's approximation to the gluon Dyson-Schwinger equation we calculate the gluon self-energy in a renormalisation group invariant fashion. We obtain a non-perturbative Β function. The scaling behavior near the ultraviolet stable fixed point is in good agreement with perturbative QCD. No further fixed point for positive values of the coupling is found: α S increases without bound in the infrared
Negative tunneling magneto-resistance in quantum wires with strong spin-orbit coupling.
Han, Seungju; Serra, Llorenç; Choi, Mahn-Soo
2015-07-01
We consider a two-dimensional magnetic tunnel junction of the FM/I/QW(FM+SO)/I/N structure, where FM, I and QW(FM+SO) stand for a ferromagnet, an insulator and a quantum wire with both magnetic ordering and Rashba spin-orbit (SOC), respectively. The tunneling magneto-resistance (TMR) exhibits strong anisotropy and switches sign as the polarization direction varies relative to the quantum-wire axis, due to interplay among the one-dimensionality, the magnetic ordering, and the strong SOC of the quantum wire.
International Nuclear Information System (INIS)
Mirtschink, André; Gori-Giorgi, Paola; Umrigar, C. J.; Morgan, John D.
2014-01-01
Anions and radicals are important for many applications including environmental chemistry, semiconductors, and charge transfer, but are poorly described by the available approximate energy density functionals. Here we test an approximate exchange-correlation functional based on the exact strong-coupling limit of the Hohenberg-Kohn functional on the prototypical case of the He isoelectronic series with varying nuclear charge Z − and to capture in general the physics of loosely bound anions, with a tendency to strongly overbind that can be proven mathematically. We also include corrections based on the uniform electron gas which improve the results
Wang, Wei; Sun, Jiafa; Li, Bin; He, Junqi
2017-09-01
First-principles pseudopotential calculations on phonon and electronic properties of β -pyrochlore superconductor KOs2O6 are performed. The imaginary soft-phonon modes with a special double-well potential for the lowest Eu(1) mode and the second lowest T1u(1) mode are reported, which indicates the dynamical instability in KOs2O6. However, the double wells are too small to induce a structural phase transformation in KOs2O6. The strong anharmonicity especially for K T2g(1) phonon mode is got, which is approved to be from the strong electron-phonon coupling that supports the superconductivity in KOs2O6.
Puebla, Ricardo; Casanova, Jorge; Plenio, Martin B.
2018-03-01
The dynamics of the quantum Rabi model (QRM) in the deep strong coupling regime is theoretically analyzed in a trapped-ion set-up. Recognizably, the main hallmark of this regime is the emergence of collapses and revivals, whose faithful observation is hindered under realistic magnetic dephasing noise. Here, we discuss how to attain a faithful implementation of the QRM in the deep strong coupling regime which is robust against magnetic field fluctuations and at the same time provides a large tunability of the simulated parameters. This is achieved by combining standing wave laser configuration with continuous dynamical decoupling. In addition, we study the role that amplitude fluctuations play to correctly attain the QRM using the proposed method. In this manner, the present work further supports the suitability of continuous dynamical decoupling techniques in trapped-ion settings to faithfully realize different interacting dynamics.
International Nuclear Information System (INIS)
Song, Mi-Young; Jung, Young-Dae
2003-01-01
Quantum screening effects on the occurrence scattering time advance for elastic electron-ion collisions in strongly coupled semiclassical plasmas are investigated using the second-order eikonal analysis. The electron-ion interaction in strongly coupled semiclassical plasmas is obtained by the pseudopotential model taking into account the plasma screening and quantum effects. It is found that the quantum-mechanical effects significantly reduce the occurrence scattering time advance. It is also found that the occurrence scattering time advance increases with increasing Debye length. It is quite interesting to note that the domain of the maximum occurrence time advance is localized for the forward scattering case. The region of the scaled thermal de Broglie wave length (λ-bar) for the maximum occurrence time advance is found to be 0.4≤λ-bar≤1.4
Energy Technology Data Exchange (ETDEWEB)
Malaescu, B. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Starovoitov, P. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-03-15
We perform a determination of the strong coupling constant using the latest ATLAS inclusive jet cross section data, from proton-proton collisions at {radical}(s)=7 TeV, and their full information on the bin-to-bin correlations. Several procedures for combining the statistical information from the different data inputs are studied and compared. The theoretical prediction is obtained using NLO QCD, and it also includes non-perturbative corrections. Our determination uses inputs with transverse momenta between 45 and 600 GeV, the running of the strong coupling being also tested in this range. Good agreement is observed when comparing our result with the world average at the Z-boson scale, as well as with the most recent results from the Tevatron. (orig.)
Highly Anisotropic Magnon Dispersion in Ca_{2}RuO_{4}: Evidence for Strong Spin Orbit Coupling.
Kunkemöller, S; Khomskii, D; Steffens, P; Piovano, A; Nugroho, A A; Braden, M
2015-12-11
The magnon dispersion in Ca_{2}RuO_{4} has been determined by inelastic neutron scattering on single crytals containing 1% of Ti. The dispersion is well described by a conventional Heisenberg model suggesting a local moment model with nearest neighbor interaction of J=8 meV. Nearest and next-nearest neighbor interaction as well as interlayer coupling parameters are required to properly describe the entire dispersion. Spin-orbit coupling induces a very large anisotropy gap in the magnetic excitations in apparent contrast with a simple planar magnetic model. Orbital ordering breaking tetragonal symmetry, and strong spin-orbit coupling can thus be identified as important factors in this system.
Directory of Open Access Journals (Sweden)
Jeng Hei Chow
2016-07-01
Full Text Available An implicit method of solving the six degree-of-freedom rigid body motion equations based on the second order Adams-Bashforth-Moulten method was utilised as an improvement over the leapfrog scheme by making modifications to the rigid body motion solver libraries directly. The implementation will depend on predictor-corrector steps still residing within the hybrid Pressure Implicit with Splitting of Operators - Semi-Implicit Method for Pressure Linked Equations (PIMPLE outer corrector loops to ensure strong coupling between fluid and motion. Aitken's under-relaxation is also introduced in this study to optimise the convergence rate and stability of the coupled solver. The resulting coupled solver ran on a free floating object tutorial test case when converged matches the original solver. It further allows a varying 70%–80% reduction in simulation times compared using a fixed under-relaxation to achieve the required stability.
Magnetic properties of Hf177 and Hf180 in the strong-coupling deformed model
Muto, S.; Stone, N. J.; Bingham, C. R.; Stone, J. R.; Walker, P. M.; Audi, G.; Gaulard, C.; Köster, U.; Nikolov, J.; Nishimura, K.; Ohtsubo, T.; Podolyak, Z.; Risegari, L.; Simpson, G. S.; Veskovic, M.; Walters, W. B.
2014-04-01
This paper reports NMR measurements of the magnetic dipole moments of two high-K isomers, the 37/2-, 51.4 m, 2740 keV state in Hf177 and the 8-, 5.5 h, 1142 keV state in Hf180 by the method of on-line nuclear orientation. Also included are results on the angular distributions of γ transitions in the decay of the Hf177 isotope. These yield high precision E2/M1 multipole mixing ratios for transitions in bands built on the 23/2+, 1.1 s, isomer at 1315 keV and on the 9/2+, 0.663 ns, isomer at 321 keV. The new results are discussed in the light of the recently reported finding of systematic dependence of the behavior of the gR parameter upon the quasiproton and quasineutron make up of high-K isomeric states in this region.
Schneebeli, L.; Kira, M.; Koch, S. W.
2008-08-01
It is shown that spectrally resolved photon-statistics measurements of the resonance fluorescence from realistic semiconductor quantum-dot systems allow for high contrast identification of the two-photon strong-coupling states. Using a microscopic theory, the second-rung resonance of Jaynes-Cummings ladder is analyzed and optimum excitation conditions are determined. The computed photon-statistics spectrum displays gigantic, experimentally robust resonances at the energetic positions of the second-rung emission.
Causality of the quasi-particle pole in strong coupling theories
International Nuclear Information System (INIS)
Henning, P.A.
1993-01-01
Conflicting statements on the boundary condition for the causal propagation of quasi-particles are related to a consistency criterion for perturbation theory in strong fields. It is shown, that the two descriptions coincide in the commonly accepted physical region. (orig.)
International Nuclear Information System (INIS)
Rimberg, A J; Blencowe, M P; Armour, A D; Nation, P D
2014-01-01
We propose a scheme involving a Cooper pair transistor (CPT) embedded in a superconducting microwave cavity, where the CPT serves as a charge tunable quantum inductor to facilitate ultra-strong coupling between photons in the cavity and a nano- to meso-scale mechanical resonator. The mechanical resonator is capacitively coupled to the CPT, such that mechanical displacements of the resonator cause a shift in the CPT inductance and hence the cavity's resonant frequency. The amplification provided by the CPT is sufficient for the zero point motion of the mechanical resonator alone to cause a significant change in the cavity resonance. Conversely, a single photon in the cavity causes a shift in the mechanical resonator position on the order of its zero point motion. As a result, the cavity-Cooper pair transistor coupled to a mechanical resonator will be able to access a regime in which single photons can affect single phonons and vice versa. Realizing this ultra-strong coupling regime will facilitate the creation of non-classical states of the mechanical resonator, as well as the means to accurately characterize such states by measuring the cavity photon field. (paper)
Energy Technology Data Exchange (ETDEWEB)
Gattringer, Christof, E-mail: christof.gattringer@uni-graz.at; Marchis, Carlotta, E-mail: carla.marchis@uni-graz.at
2017-03-15
We propose a new approach to strong coupling series and dual representations for non-abelian lattice gauge theories using the SU(2) case as an example. The Wilson gauge action is written as a sum over “abelian color cycles” (ACC) which correspond to loops in color space around plaquettes. The ACCs are complex numbers which can be commuted freely such that the strong coupling series and the dual representation can be obtained as in the abelian case. Using a suitable representation of the SU(2) gauge variables we integrate out all original gauge links and identify the constraints for the dual variables in the SU(2) case. We show that the construction can be generalized to the case of SU(2) gauge fields with staggered fermions. The result is a strong coupling series where all gauge integrals are known in closed form and we discuss its applicability for possible dual simulations. The abelian color cycle concept can be generalized to other non-abelian gauge groups such as SU(3).
Non-perturbative computation of the strong coupling constant on the lattice
International Nuclear Information System (INIS)
Sommer, Rainer; Humboldt-Universitaet, Berlin; Wolff, Ulli
2015-01-01
We review the long term project of the ALPHA collaboration to compute in QCD the running coupling constant and quark masses at high energy scales in terms of low energy hadronic quantities. The adapted techniques required to numerically carry out the required multiscale non-perturbative calculation with our special emphasis on the control of systematic errors are summarized. The complete results in the two dynamical flavor approximation are reviewed and an outlook is given on the ongoing three flavor extension of the programme with improved target precision.
A bridge between weak and strong coupling regions: BRS symmetries as a guiding principle
International Nuclear Information System (INIS)
Shintani, M.
1987-04-01
By imposing extended BRS symmetries on the Yang-Mills Lagrangian, we obtained two types of BRS invariant Lagrangians, i.e. Lagrangians of the non-gauge type and the gauge type. A Lagrangian of the non-gauge type, which was previously obtained by us, can yield the linearly rising potential between a quark and anti-quark pair at the one-loop level. By smoothly relating the running coupling constant in the confining region to that in the asymptotically free region, we deduce a relationship between the string tensions and Λ QCD , which shows good agreement with experiments. (author). 20 refs, 1 fig
Energy Technology Data Exchange (ETDEWEB)
Cao, X [Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, 361005 (China); You, J Q; Nori, F [Advanced Science Institute, RIKEN, Wako-shi 351-0198 (Japan); Zheng, H, E-mail: xfcao@xmu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)
2011-07-15
We investigate the spontaneous emission (SE) spectrum of a qubit in a lossy resonant cavity. We use neither the rotating-wave approximation nor the Markov approximation. For the weak-coupling case, the SE spectrum of the qubit is a single peak, with its location depending on the spectral density of the qubit environment. Then, the asymmetry (of the location and heights of the two peaks) of the two SE peaks (which are related to the vacuum Rabi splitting) changes as the qubit-cavity coupling increases. Explicitly, for a qubit in a low-frequency intrinsic bath, the height asymmetry of the splitting peaks is enhanced as the qubit-cavity coupling strength increases. However, for a qubit in an Ohmic bath, the height asymmetry of the spectral peaks is inverted compared to the low-frequency bath case. With further increasing the qubit-cavity coupling to the ultra-strong regime, the height asymmetry of the left and right peaks is slightly inverted, which is consistent with the corresponding case of a low-frequency bath. This inversion of the asymmetry arises from the competition between the Ohmic bath and the cavity bath. Therefore, after considering the anti-rotating terms, our results explicitly show how the height asymmetry in the SE spectrum peaks depends on the qubit-cavity coupling and the type of intrinsic noise experienced by the qubit.
Strong coupling of an NV- spin ensemble to a superconducting resonator
International Nuclear Information System (INIS)
Amsuess, R.
2012-01-01
This thesis is motivated by the idea of hybrid quantum systems, one promising approach to exploit quantum mechanics for information processing. The main challenge in this field is to counteract decoherence - an inevitable companion of every quantum system. Indeed some quantum systems are intrinsically better isolated from their environment and are therefore less prone to the loss of coherence. But it's the ambivalent nature of decoherence that these highly isolated systems are usually very difficult to interact with and coherently control. To overcome these obstacles ideas were born to combine or hybridize different quantum systems with mutually opposing properties - fast control and long coherence times - and take advantage of the prospective better behavior of the combined system. In this thesis, defects in single crystal diamond - negatively-charged nitrogen-vacancy centers (NV - centers) - are chosen as the quantum memory medium. Because an NV - center constitutes a defect in a solid, its combination with other solid-state quantum systems, as electrical circuits based on Josephson junctions, appears natural. In our work we aimed at the integration of a large number of NV - centers in a circuit quantum electrodynamics (cQED) set-up. These circuits, operating at microwave frequencies, are extremely fast and versatile quantum processors but suffer from short coherence times. Usually single microwave photons stored in a resonant circuit act as information carrier between different parts of the chip. As a main result we observe the coherent energy exchange between the NV - color centers and the electromagnetic field of a microwave resonator. We study in detail a number of important aspects of collective magnetic spin-field coupling as the characteristic scaling with the square root of the number of emitters. Additionally we measure weak coupling to 13C nuclear spins mediated by the hyperfine coupling to the NV - electron spins. The quantum memory capabilities of
Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots
Prado, Silvio J.; Marques, Gilmar E.; Alcalde, Augusto M.
2017-11-01
In this work we show the calculation of optimized efficiencies of intermediate band solar cells (IBSCs) based on Mn-doped II-VI CdTe/CdMnTe coupled quantum dot (QD) structures. We focus our attention on the combined effects of geometrical and Mn-doping parameters on optical properties and solar cell efficiency. In the framework of {k \\cdot p} theory, we accomplish detailed calculations of electronic structure, transition energies, optical selection rules and their corresponding intra- and interband oscillator strengths. With these results and by following the intermediate band model, we have developed a strategy which allows us to find optimal photovoltaic efficiency values. We also show that the effects of band admixture which can lead to degradation of optical transitions and reduction of efficiency can be partly minimized by a careful selection of the structural parameters and Mn-concentration. Thus, the improvement of band engineering is mandatory for any practical implementation of QD systems as IBSC hardware. Finally, our calculations show that it is possible to reach significant efficiency, up to ∼26%, by selecting a restricted space of parameters such as quantum dot size and shape and Mn-concentration effects, to improve the modulation of optical absorption in the structures.
Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots.
Prado, Silvio J; Marques, Gilmar E; Alcalde, Augusto M
2017-11-08
In this work we show the calculation of optimized efficiencies of intermediate band solar cells (IBSCs) based on Mn-doped II-VI CdTe/CdMnTe coupled quantum dot (QD) structures. We focus our attention on the combined effects of geometrical and Mn-doping parameters on optical properties and solar cell efficiency. In the framework of [Formula: see text] theory, we accomplish detailed calculations of electronic structure, transition energies, optical selection rules and their corresponding intra- and interband oscillator strengths. With these results and by following the intermediate band model, we have developed a strategy which allows us to find optimal photovoltaic efficiency values. We also show that the effects of band admixture which can lead to degradation of optical transitions and reduction of efficiency can be partly minimized by a careful selection of the structural parameters and Mn-concentration. Thus, the improvement of band engineering is mandatory for any practical implementation of QD systems as IBSC hardware. Finally, our calculations show that it is possible to reach significant efficiency, up to ∼26%, by selecting a restricted space of parameters such as quantum dot size and shape and Mn-concentration effects, to improve the modulation of optical absorption in the structures.
Wave failure at strong coupling in intracellular C a2 + signaling system with clustered channels
Li, Xiang; Wu, Yuning; Gao, Xuejuan; Cai, Meichun; Shuai, Jianwei
2018-01-01
As an important intracellular signal, C a2 + ions control diverse cellular functions. In this paper, we discuss the C a2 + signaling with a two-dimensional model in which the inositol 1,4,5-trisphosphate (I P3 ) receptor channels are distributed in clusters on the endoplasmic reticulum membrane. The wave failure at large C a2 + diffusion coupling is discussed in detail in the model. We show that with varying model parameters the wave failure is a robust behavior with either deterministic or stochastic channel dynamics. We suggest that the wave failure should be a general behavior in inhomogeneous diffusing systems with clustered excitable regions and may occur in biological C a2 + signaling systems.
Khadzhi, P. I.; Nad'kin, L. Yu.; Markov, D. A.
2018-04-01
The double-pulse interaction with excitons and biexcitons in semiconductors is studied theoretically. It is shown that the dispersion law of carrier wave has three branches under the action of a powerful pumping in the region of the M-band of luminescence. Values of parameters at which the dispersion law branches can intersect due to the degeneration of the exciton level energy have been found. The effect of a significant change in the force of coupling between the exciton and photon of a weak pulse with a change in the pumping intensity is predicted.
Earth-Atmospheric Coupling Prior to Strong Earthquakes Analyzed by IR Remote Sensing Data
Freund, F.; Ouzounov, D.
2001-12-01
Earth-atmosphere interactions during major earthquakes (M>5) are the subject of this study. A mechanism has recently been proposed to account for the appearance of hole-type electronic charge carriers in rocks subjected to transient stress [Freund, 2000]. If such charge carriers are activated in the crust prior to large earthquakes, the predictable consequences are: injection of currents into the rocks, low frequency electromagnetic emission, changes in ground potentials, corona discharges with attendant light emission from high points at the surface of the Earth, and possibly an enhanced emission in the 8-12 μ m region similar to the thermal emission observed during laboratory rock deformation experiments [Geng et al., 1999]. Using data from MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission & Reflection radiometer) onboard NASA's TERRA satellite launched in Dec. 1999 we have begun analyzing vertical atmospheric profiles, land surface and kinetic temperatures. We looked for correlations between atmospheric dynamics and solid Earth processes prior to the Jan. 13, 2001 earthquake in El Salvador (M=7.6) and the Jan. 26, 2001 Gujarat earth-quake in India (M=7.7). With MODIS covering the entire Earth every 1-2 days in 36 wavelength bands (20 visible and 16 infrared) at different spatial resolutions (250 m, 500 m, and 1 km) we find evidence for a thermal anomaly pattern related to the pre-seismic activity. We also find evidence for changes in the aerosol content and atmospheric instability parameters, possibly due to changes in the ground potential that cause ion emission and lead to the formation of a thin near-ground aerosol layer. We analyze the aerosol content, atmospheric pressure, moisture profile and lifted index.
Exciton broadening and band renormalization due to Dexter-like intervalley coupling
Bernal-Villamil, Ivan; Berghäuser, Gunnar; Selig, Malte; Niehues, Iris; Schmidt, Robert; Schneider, Robert; Tonndorf, Philipp; Erhart, Paul; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf; Knorr, Andreas; Malic, Ermin
2018-04-01
A remarkable property of atomically thin transition metal dichalcogenides (TMDs) is the possibility to selectively address single valleys by circularly polarized light. In the context of technological applications, it is very important to understand possible intervalley coupling mechanisms. Here, we show how the Dexter-like intervalley coupling mixes A and B states from opposite valleys leading to a significant broadening γB_{1s} of the B1s exciton. The effect is much more pronounced in tungsten-based TMDs, where the coupling excitonic states are quasi-resonant. We calculate a ratio γB_{1s}/γA_{1s}≈ 4.0 , which is in good agreement with the experimentally measured value of 3.9+/-0.7 . In addition to the broadening effect, the Dexter-like intervalley coupling also leads to a considerable energy renormalization resulting in an increased energetic distance between A1s and B1s states.
TRACE/VALKIN: a neutronics-thermohydraulics coupled code to analyze strong 3D transients
Energy Technology Data Exchange (ETDEWEB)
Rafael Miro; Gumersindo Verdu; Ana Maria Sanchez [Chemical and Nuclear Engineering Department. Polytechnic University of Valencia. Cami de Vera s/n. 46022 Valencia (Spain); Damian Ginestar [Applied Mathematics Department. Polytechnic University of Valencia. Cami de Vera s/n. 46022 Valencia (Spain)
2005-07-01
Full text of publication follows: A nuclear reactor simulator consists mainly of two different blocks, which solve the models used for the basic physical phenomena taking place in the reactor. In this way, there is a neutronic module which simulates the neutron balance in the reactor core, and a thermal-hydraulics module, which simulates the heat transfer in the fuel, the heat transfer from the fuel to the water, and the different condensation and evaporation processes taking place in the reactor core and in the condenser systems. TRACE is a two-phase, two-fluid thermal-hydraulic reactor systems analysis code. The TRACE acronym stands for TRAC/RELAP Advanced Computational Engine, reflecting its ability to run both RELAP5 and TRAC legacy input models. It includes a three-dimensional kinetics module called PARCS for performing advanced analysis of coupled core thermal-hydraulic/kinetics problems. TRACE-VALKIN code is a new time domain analysis code to study transients in LWR reactors. This code uses the best estimate code TRACE to give account of the heat transfer and thermal-hydraulic processes, and a 3D neutronics module. This module has two options, the MODKIN option that makes use of a modal method based on the assumption that the neutronic flux can be approximately expanded in terms of the dominant lambda modes associated with a static configuration of the reactor core, and the NOKIN option that uses a one-step backward discretization of the neutron diffusion equation. The lambda modes are obtained using the Implicit Restarted Arnoldi approach or the Jacob-Davidson algorithm. To check the performance of the coupled code TRACE-VALKIN against complex 3D neutronic transients, using the cross-sections tables generated with the translator SIMTAB from SIMULATE to TRACE/VALKIN, the Cofrentes NPP SCRAM-61 transient is simulated. Cofrentes NPP is a General Electric BWR-6 design located in Valencia-land (Spain). It is in operation since 1985 and currently in its fifteenth
International Nuclear Information System (INIS)
Yodo, Tokuo; Yona, Hiroaki; Ando, Hironori; Nosei, Daiki; Harada, Yoshiyuki
2002-01-01
We observed strong band edge luminescence at 8.5-200 K from 200-880 nm thick InN films grown on 10 nm thick InN buffer layers on Si(001) and Si(111) substrates by electron cyclotron resonance-assisted molecular beam epitaxy. The InN film on the Si(001) substrate exhibited strong band edge photoluminescence (PL) emission at 1.814 eV at 8.5 K, tentatively assigned as donor to acceptor pair [DAP (α-InN)] emission from wurtzite-InN (α-InN) crystal grains, while those on Si(111) showed other stronger band edge PL emissions at 1.880, 2.081 and 2.156 eV, tentatively assigned as donor bound exciton [D 0 X(α-InN)] from α-InN grains, DAP (β-InN) and D 0 X (β-InN) emissions from zinc blende-InN (β-InN) grains, respectively
Bridging the Gap for High-Coherence, Strongly Coupled Superconducting Qubits
Yoder, Jonilyn; Kim, David; Baldo, Peter; Day, Alexandra; Fitch, George; Holihan, Eric; Hover, David; Samach, Gabriel; Weber, Steven; Oliver, William
Crossovers can play a critical role in increasing superconducting qubit device performance, as long as device coherence can be maintained even with the increased fabrication and circuit complexity. Specifically, crossovers can (1) enable a fully-connected ground plane, which reduces spurious modes and crosstalk in the circuit, and (2) increase coupling strength between qubits by facilitating interwoven qubit loops with large mutual inductances. Here we will describe our work at MIT Lincoln Laboratory to integrate superconducting air bridge crossovers into the fabrication of high-coherence capacitively-shunted superconducting flux qubits. We will discuss our process flow for patterning air bridges by resist reflow, and we will describe implementation of air bridges within our circuits. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.
Quasinormal modes of a strongly coupled nonconformal plasma and approach to criticality
Betzios, Panagiotis; Gürsoy, Umut; Järvinen, Matti; Policastro, Giuseppe
2018-04-01
We study fluctuations around equilibrium in a class of strongly interacting nonconformal plasmas using holographic techniques. In particular, we calculate the quasinormal mode spectrum of black hole backgrounds that approach Chamblin-Reall plasmas in the IR. In a specific limit, related to the exact linear-dilaton background in string theory, we observe that the plasma approaches criticality and we obtain the quasinormal spectrum analytically. We regulate the critical limit by gluing the IR geometry that corresponds to the nonconformal plasma to a part of AdS space-time in the UV. Near criticality, the spectrum can still be computed analytically and we find two sets of quasinormal modes, related to the IR and UV parts of the geometry. In the critical limit, the quasinormal modes accumulate to form a branch cut in the correlators of the energy-momentum tensor on the real axis of the complex frequency plane.
Li, Guang-Hui; Wang, An-Bang; Feng, Ye; Wang, Yang
2010-07-01
This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show that both of the two lasers' outputs synchronize with their input chaotic carriers. In addition, simulations demonstrate that this kind of synchronization can be used to realize bidirectional communications without delay line. Further studies indicate that within a small deviation in message amplitudes of two sides (±6%), the message can be extracted with signal-noise-ratio more than 10 dB; and the signal-noise-ratio is extremely sensitive to the message rates mismatch of two sides, which may be used as a key of bidirectional communication.