Nonadiabatic effects in electronic and nuclear dynamics
Directory of Open Access Journals (Sweden)
Martin P. Bircher
2017-11-01
Full Text Available Due to their very nature, ultrafast phenomena are often accompanied by the occurrence of nonadiabatic effects. From a theoretical perspective, the treatment of nonadiabatic processes makes it necessary to go beyond the (quasi static picture provided by the time-independent Schrödinger equation within the Born-Oppenheimer approximation and to find ways to tackle instead the full time-dependent electronic and nuclear quantum problem. In this review, we give an overview of different nonadiabatic processes that manifest themselves in electronic and nuclear dynamics ranging from the nonadiabatic phenomena taking place during tunnel ionization of atoms in strong laser fields to the radiationless relaxation through conical intersections and the nonadiabatic coupling of vibrational modes and discuss the computational approaches that have been developed to describe such phenomena. These methods range from the full solution of the combined nuclear-electronic quantum problem to a hierarchy of semiclassical approaches and even purely classical frameworks. The power of these simulation tools is illustrated by representative applications and the direct confrontation with experimental measurements performed in the National Centre of Competence for Molecular Ultrafast Science and Technology.
Nonadiabatic effects in the Quantum Hall regime
International Nuclear Information System (INIS)
Page, D.A.; Brown, E.
1993-01-01
The authors consider the effect of a finite electric field on the states of a Bloch electron in two dimensions, with a uniform magnetic field present. They make use of the concept of electric time translation symmetry and treat the electric and magnetic fields symmetrically in a time dependent formalism. In addition to a wave vector k, the states are characterized by a frequency specifying the behavior under electric time translations. An effective Hamiltonian is employed to obtain the splitting of an isolated Bloch band into open-quotes frequencyclose quotes subbands. The time-averaged velocity and energy of the states are expressed in terms of the frequency dispersion. The relationship to the Stark ladder eigenstates in a scalar potential representation of the electric field is examined. This is seen to justify the use of the averaged energy in determining occupation of the states. In the weak electric field (adiabatic) limit, an expression is recovered for the quantized Hall conductivity of a magnetic subband as a topological invariant. A numerical procedure is outlined and results obtained over a range of electric field strengths. A transition between strong and weak field regimes is seen, with level repulsions between the frequencies playing an important role. The numerical results show how the magnetic subband structure and quantized Hall conductivity emerge as the electric field becomes weaker. In this regime, the behavior can be understood by comparison to the predictions of the adiabatic approximation. The latter predicts crossings in the frequencies at certain locations in wave vector space. Nonadiabatic effects are seen to produce gaps in the frequency spectrum at these locations. 35 refs., 14 figs
Nonadiabaticity of electron-tunneling-ionization processes in elliptical strong laser fields
Cai, Jun; Chen, Yan-jun; Xia, Qin-zhi; Ye, Di-fa; Liu, Jie; Fu, Li-bin
2017-09-01
We theoretically investigate the electron-tunneling process for a helium atom irradiated by an elliptical strong laser field. The momentum distribution for an electron ionized during the cycle when the laser intensity reaches its maximum is captured, such that we can ignore the interference between the wave packets ionized in different laser cycles and precisely determine the center of the momentum distribution. The quantum mechanical prediction of the center position is further compared to the semiclassical single-trajectory simulation as well as the experimental data. We find that the electron momentums along the minor axis of the laser polarization show good agreement with the nonadiabatic semiclassical calculation for a wide range of laser intensities, indicating the existence of a nonzero lateral momentum when the electron exits the barrier. On the other hand, the offset angles obtained by our quantum mechanical approach for different laser intensities are larger than the nonadiabatic semiclassical results, indicating the importance of the quantum effects during the electron's under-the-barrier dynamics.
Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields
International Nuclear Information System (INIS)
Markevitch, Alexei N.; Levis, Robert J.; Romanov, Dmitri A.; Smith, Stanley M.; Schlegel, H. Bernhard; Ivanov, Misha Yu.
2004-01-01
Electronic processes leading to dissociative ionization of polyatomic molecules in strong laser fields are investigated experimentally, theoretically, and numerically. Using time-of-flight ion mass spectroscopy, we study the dependence of fragmentation on laser intensity for a series of related molecules and report regular trends in this dependence on the size, symmetry, and electronic structure of a molecule. Based on these data, we develop a model of dissociative ionization of polyatomic molecules in intense laser fields. The model is built on three elements: (i) nonadiabatic population transfer from the ground electronic state to the excited-state manifold via a doorway (charge-transfer) transition; (ii) exponential enhancement of this transition by collective dynamic polarization of all electrons, and (iii) sequential energy deposition in both neutral molecules and resulting molecular ions. The sequential nonadiabatic excitation is accelerated by a counterintuitive increase of a large molecule's polarizability following its ionization. The generic theory of sequential nonadiabatic excitation forms a basis for quantitative description of various nonlinear processes in polyatomic molecules and ions in strong laser fields
Vibrational nonadiabaticity and tunneling effects in transition state theory
International Nuclear Information System (INIS)
Marcus, R.A.
1979-01-01
The usual quantum mechanical derivation of transition state theory is a statistical one (a quasi-equilibrium is assumed) or dynamical. The typical dynamical one defines a set of internal states and assumes vibrational adiabaticity. Effects of nonadiabaticity before and after the transition state are included in the present derivation, assuming a classical treatment of the reaction coordinate. The relation to a dynamical derivation of classical mechanical transition state theory is described, and tunneling effects are considered
How large are nonadiabatic effects in atomic and diatomic systems?
Yang, Yubo; Kylänpää, Ilkka; Tubman, Norm M; Krogel, Jaron T; Hammes-Schiffer, Sharon; Ceperley, David M
2015-09-28
With recent developments in simulating nonadiabatic systems to high accuracy, it has become possible to determine how much energy is attributed to nuclear quantum effects beyond zero-point energy. In this work, we calculate the non-relativistic ground-state energies of atomic and molecular systems without the Born-Oppenheimer approximation. For this purpose, we utilize the fixed-node diffusion Monte Carlo method, in which the nodes depend on both the electronic and ionic positions. We report ground-state energies for all systems studied, ionization energies for the first-row atoms and atomization energies for the first-row hydrides. We find the ionization energies of the atoms to be nearly independent of the Born-Oppenheimer approximation, within the accuracy of our results. The atomization energies of molecular systems, however, show small effects of the nonadiabatic coupling between electrons and nuclei.
Memory effects in nonadiabatic molecular dynamics at metal surfaces
DEFF Research Database (Denmark)
Olsen, Thomas; Schiøtz, Jakob
2010-01-01
We study the effect of temporal correlation in a Langevin equation describing nonadiabatic dynamics at metal surfaces. For a harmonic oscillator, the Langevin equation preserves the quantum dynamics exactly and it is demonstrated that memory effects are needed in order to conserve the ground state......, this approach is readily extended to anharmonic potentials. Using density functional theory, we calculate representative Langevin trajectories for associative desorption of N-2 from Ru(0001) and find that memory effects lower the dissipation of energy. Finally, we propose an ab initio scheme to calculate...
Enhanced Nonadiabaticity in Vortex Cores due to the Emergent Hall Effect
Bisig, André
2017-01-04
We present a combined theoretical and experimental study, investigating the origin of the enhanced nonadiabaticity of magnetic vortex cores. Scanning transmission x-ray microscopy is used to image the vortex core gyration dynamically to measure the nonadiabaticity with high precision, including a high confidence upper bound. We show theoretically, that the large nonadiabaticity parameter observed experimentally can be explained by the presence of local spin currents arising from a texture induced emergent Hall effect. This study demonstrates that the magnetic damping α and nonadiabaticity parameter β are very sensitive to the topology of the magnetic textures, resulting in an enhanced ratio (β/α>1) in magnetic vortex cores or Skyrmions.
Nonadiabatic effects in C-Br bond scission in the photodissociation of bromoacetyl chloride
International Nuclear Information System (INIS)
Valero, Rosendo; Truhlar, Donald G.
2006-01-01
Bromoacetyl chloride photodissociation has been interpreted as a paradigmatic example of a process in which nonadiabatic effects play a major role. In molecular beam experiments by Butler and co-workers [J. Chem. Phys. 95, 3848 (1991); J. Chem. Phys. 97, 355 (1992)], BrCH 2 C(O)Cl was prepared in its ground electronic state (S 0 ) and excited with a laser at 248 nm to its first excited singlet state (S 1 ). The two main ensuing photoreactions are the ruptures of the C-Cl bond and of the C-Br bond. A nonadiabatic model was proposed in which the C-Br scission is strongly suppressed due to nonadiabatic recrossing at the barrier formed by the avoided crossing between the S 1 and S 2 states. Recent reduced-dimensional dynamical studies lend support to this model. However, another interpretation that has been given for the experimental results is that the reduced probability of C-Br scission is a consequence of incomplete intramolecular energy redistribution. To provide further insight into this problem, we have studied the energetically lowest six singlet electronic states of bromoacetyl chloride by using an ab initio multiconfigurational perturbative electronic structure method. Stationary points (minima and saddle points) and minimum energy paths have been characterized on the S 0 and S 1 potential energy surfaces. The fourfold way diabatization method has been applied to transform five adiabatic excited electronic states to a diabatic representation. The diabatic potential energy matrix of the first five excited singlet states has been constructed along several cuts of the potential energy hypersurfaces. The thermochemistry of the photodissociation reactions and a comparison with experimental translational energy distributions strongly suggest that nonadiabatic effects dominate the C-Br scission, but that the reaction proceeds along the energetically allowed diabatic pathway to excited-state products instead of being nonadiabatically suppressed. This conclusion is
Nonequilibrium Green's function theory for nonadiabatic effects in quantum electron transport
Kershaw, Vincent F.; Kosov, Daniel S.
2017-12-01
We develop nonequilibrium Green's function-based transport theory, which includes effects of nonadiabatic nuclear motion in the calculation of the electric current in molecular junctions. Our approach is based on the separation of slow and fast time scales in the equations of motion for Green's functions by means of the Wigner representation. Time derivatives with respect to central time serve as a small parameter in the perturbative expansion enabling the computation of nonadiabatic corrections to molecular Green's functions. Consequently, we produce a series of analytic expressions for non-adiabatic electronic Green's functions (up to the second order in the central time derivatives), which depend not solely on the instantaneous molecular geometry but likewise on nuclear velocities and accelerations. An extended formula for electric current is derived which accounts for the non-adiabatic corrections. This theory is concisely illustrated by the calculations on a model molecular junction.
Non-adiabatic effect on Laughlin's argument of the quantum Hall effect
International Nuclear Information System (INIS)
Maruyama, I; Hatsugai, Y
2009-01-01
We have numerically studied a non-adiabatic charge transport in the quantum Hall system pumped by a magnetic flux, as one of the simplest theoretical realizations of non-adiabatic Thouless pumping. In the adiabatic limit, a pumped charge is quantized, known as Laughlin's argument in a cylindrical lattice. In a uniform electric field, we obtained a formula connecting quantized pumping in the adiabatic limit and no-pumping in the sudden limit. The intermediate region between the two limits is determined by the Landau gap. A randomness or impurity effect is also discussed.
la Cour Jansen, T.; Knoester, J.
2006-01-01
A method of simulating two-dimensional infrared spectra accounting for nonadiabatic effects is presented. The method is applied to the amide I modes of a dipeptide. The information necessary to construct the time-dependent Hamiltonian for the system is extracted from molecular dynamics simulations
Physics of Non-Adiabatic Transport and Field-Domain Effect in Quantum-Well Infrared Photodetectors
National Research Council Canada - National Science Library
Huang, Danhong; Cardimona, David A
2003-01-01
A previous theory for studying the distribution of non-uniform fields in multiple-quantum-well photodetectors under an ac voltage is generalized by including non-adiabatic space-charge-field effects...
Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics
Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.
2018-03-01
We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.
Measuring the Second Chern Number from Nonadiabatic Effects
Kolodrubetz, Michael
2016-07-01
The geometry and topology of quantum systems have deep connections to quantum dynamics. In this Letter, I show how to measure the non-Abelian Berry curvature and its related topological invariant, the second Chern number, using dynamical techniques. The second Chern number is the defining topological characteristic of the four-dimensional generalization of the quantum Hall effect and has relevance in systems from three-dimensional topological insulators to Yang-Mills field theory. I illustrate its measurement using the simple example of a spin-3 /2 particle in an electric quadrupole field. I show how one can dynamically measure diagonal components of the Berry curvature in an overcomplete basis of the degenerate ground state space and use this to extract the full non-Abelian Berry curvature. I also show that one can accomplish the same ideas by stochastically averaging over random initial states in the degenerate ground state manifold. Finally, I show how this system can be manufactured and the topological invariant measured in a variety of realistic systems, from superconducting qubits to trapped ions and cold atoms.
Coulomb Repulsion Effect in Two-electron Non-adiabatic Tunneling through a One-level redox Molecule
DEFF Research Database (Denmark)
Medvedev, Igor M.; Kuznetsov, Alexander M.; Ulstrup, Jens
2009-01-01
We investigated Coulomb repulsion effects in nonadiabatic (diabatic) two-electron tunneling through a redox molecule with a single electronic level in a symmetric electrochemical contact under ambient conditions, i.e., room temperature and condensed matter environment. The electrochemical contact...
Non-adiabatic effects in elementary reaction processes at metal surfaces
Alducin, M.; Díez Muiño, R.; Juaristi, J. I.
2017-12-01
Great success has been achieved in the modeling of gas-surface elementary processes by the use of the Born-Oppenheimer approximation. However, in metal surfaces low energy electronic excitations are generated even by thermal and hyperthermal molecules due to the absence of band gaps in the electronic structure. This shows the importance of performing dynamical simulations that incorporate non-adiabatic effects to analyze in which way they affect most common gas-surface reactions. Here we review recent theoretical developments in this problem and their application to the study of the effect of electronic excitations in the adsorption and relaxation of atoms and molecules in metal surfaces, in scattering processes, and also in recombinative processes between impinging atoms and adsorbates at the surface. All these studies serve us to establish what properties of the gas-surface interaction favor the excitation of low-energy electron-hole pairs. A general observation is that the nature of these excitations usually requires long lasting interactions at the surface in order to observe deviations from the adiabatic behaviour. We also provide the basis of the local density friction approximation (LDFA) that have been used in all these studies, and show how it has been employed to perform ab initio molecular dynamics with electronic friction (AIMDEF). As a final remark, we will shortly review on recent applications of the LDFA to successfully simulate desorption processes induced by intense femtosecond laser pulses.
The effect of nonadiabaticity on the efficiency of quantum memory based on an optical cavity
Veselkova, N. G.; Sokolov, I. V.
2017-07-01
Quantum efficiency is an important characteristic of quantum memory devices that are aimed at recording the quantum state of light signals and its storing and reading. In the case of memory based on an ensemble of cold atoms placed in an optical cavity, the efficiency is restricted, in particular, by relaxation processes in the system of active atomic levels. We show how the effect of the relaxation on the quantum efficiency can be determined in a regime of the memory usage in which the evolution of signals in time is not arbitrarily slow on the scale of the field lifetime in the cavity and when the frequently used approximation of the adiabatic elimination of the quantized cavity mode field cannot be applied. Taking into account the effect of the nonadiabaticity on the memory quality is of interest in view of the fact that, in order to increase the field-medium coupling parameter, a higher cavity quality factor is required, whereas storing and processing of sequences of many signals in the memory implies that their duration is reduced. We consider the applicability of the well-known efficiency estimates via the system cooperativity parameter and estimate a more general form. In connection with the theoretical description of the memory of the given type, we also discuss qualitative differences in the behavior of a random source introduced into the Heisenberg-Langevin equations for atomic variables in the cases of a large and a small number of atoms.
Henriet, Loïc; Sclocchi, Antonio; Orth, Peter P.; Le Hur, Karyn
2017-02-01
We analyze the topological deformations of the ground state manifold of a quantum spin-1/2 in a magnetic field H =H (sinθ cosϕ ,sinθ sinϕ ,cosθ ) induced by a coupling to an ohmic quantum dissipative environment at zero temperature. From Bethe ansatz results and a variational approach, we confirm that the Chern number associated with the geometry of the reduced spin ground state manifold is preserved in the delocalized phase for α <1 . We report a divergence of the Berry curvature at αc=1 for magnetic fields aligned along the equator θ =π /2 . This divergence is caused by the complete quenching of the transverse magnetic field by the bath associated with a gap closing that occurs at the localization Kosterlitz-Thouless quantum phase transition in this model. Recent experiments in quantum circuits have engineered nonequilibrium protocols to access topological properties from a measurement of a dynamical Chern number defined via the out-of-equilibrium spin expectation values. Applying a numerically exact stochastic Schrödinger approach we find that, for a fixed field sweep velocity θ (t )=v t , the bath induces a crossover from (quasi)adiabatic to nonadiabatic dynamical behavior when the spin bath coupling α increases. We also investigate the particular regime H /ωc≪v /H ≪1 with large bath cutoff frequency ωc, where the dynamical Chern number vanishes already at α =1 /2 . In this regime, the mapping to an interacting resonance level model enables us to analytically describe the behavior of the dynamical Chern number in the vicinity of α =1 /2 . We further provide an intuitive physical explanation of the bath-induced breakdown of adiabaticity in analogy to the Faraday effect in electromagnetism. We demonstrate that the driving of the spin leads to the production of a large number of bosonic excitations in the bath, which strongly affect the spin dynamics. Finally, we quantify the spin-bath entanglement and formulate an analogy with an effective
Particle pitch angle diffusion due to nonadiabatic effects in the plasma sheet
International Nuclear Information System (INIS)
Gray, P.C.; Lee, L.C.
1982-01-01
In order to understand certain aspects of the plasma sheet dynamics, a numerical study of the nonadiabatic behavior of particles in a model field geometry is performed. The particle's magnetic moment as a function of time is calculated for various initial parameters, corresponding to various particle energies and degrees of field curvature. It is shown that the magnetic moment changes as the particle passes through the plasma sheet and that the magnitude of the change is related to the curvature of the field at the middle of the plasma sheet. The relation of the magnitude of the change in magnetic moment to the particle's pitch and phase angles as it passes through the sheet is numerically resolved. The nature of the change may be considered as a mechanism for pitch angle diffusion, and the diffusion coefficient is calculated. This scattering mechanism is significant for plasma sheet ions (1--10 keV) as well as energetic electrons (>100 keV)
Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S
2015-10-14
Using a simple model Hamiltonian, the three correction terms for Born-Oppenheimer (BO) breakdown, the adiabatic diagonal correction (DC), the first-derivative momentum non-adiabatic correction (FD), and the second-derivative kinetic-energy non-adiabatic correction (SD), are shown to all contribute to thermodynamic and spectroscopic properties as well as to thermal non-diabatic chemical reaction rates. While DC often accounts for >80% of thermodynamic and spectroscopic property changes, the commonly used practice of including only the FD correction in kinetics calculations is rarely found to be adequate. For electron-transfer reactions not in the inverted region, the common physical picture that diabatic processes occur because of surface hopping at the transition state is proven inadequate as the DC acts first to block access, increasing the transition state energy by (ℏω)(2)λ/16J(2) (where λ is the reorganization energy, J the electronic coupling and ω the vibration frequency). However, the rate constant in the weakly-coupled Golden-Rule limit is identified as being only inversely proportional to this change rather than exponentially damped, owing to the effects of tunneling and surface hopping. Such weakly-coupled long-range electron-transfer processes should therefore not be described as "non-adiabatic" processes as they are easily described by Born-Huang ground-state adiabatic surfaces made by adding the DC to the BO surfaces; instead, they should be called just "non-Born-Oppenheimer" processes. The model system studied consists of two diabatic harmonic potential-energy surfaces coupled linearly through a single vibration, the "two-site Holstein model". Analytical expressions are derived for the BO breakdown terms, and the model is solved over a large parameter space focusing on both the lowest-energy spectroscopic transitions and the quantum dynamics of coherent-state wavepackets. BO breakdown is investigated pertinent to: ammonia inversion, aromaticity
Nonadiabatic electron response in the Hasegawa-Wakatani equations
International Nuclear Information System (INIS)
Stoltzfus-Dueck, T.; Scott, B. D.; Krommes, J. A.
2013-01-01
Tokamak edge turbulence is strongly influenced by parallel electron physics, which relaxes density and potential fluctuations towards electron adiabatic response. Beginning with the paradigmatic Hasegawa-Wakatani equations (HWEs) for resistive tokamak edge turbulence, a unique decomposition of the electric potential (φ) into adiabatic (a) and nonadiabatic (b) portions is derived, based on the requirement that a neither drive nor respond to the parallel current j ∥ . The form of the decomposition clarifies that, at perpendicular scales large relative to the sound radius, the electron adiabatic response controls the nonzonal φ, not the fluctuating density n. Simple energy balance arguments allow one to rigorously bound the ratio of rms nonzonal nonadiabatic fluctuations (b(tilde sign)) relative to adiabatic ones (ã). The role of the vorticity nonlinearity in transferring energy between adiabatic and nonadiabatic fluctuations aids intuitive understanding of self-sustained turbulence in the HWEs. When the normalized parallel resistivity is weak, b(tilde sign) becomes effectively slaved, allowing the reduction to an approximate one-field model that remains valid for strong turbulence. In addition to guiding physical intuition, the one-field reduction should greatly ease further analytical manipulations. Direct numerical simulation of the 2D HWEs confirms the convergence of the asymptotic formula for b(tilde sign)
Modeling non-adiabatic photoexcited reaction dynamics in condensed phases
International Nuclear Information System (INIS)
Coker, D.F.
2003-01-01
Reactions of photoexcited molecules, ions, and radicals in condensed phase environments involve non-adiabatic dynamics over coupled electronic surfaces. We focus on how local environmental symmetries can effect non-adiabatic coupling between excited electronic states and thus influence, in a possibly controllable way, the outcome of photo-excited reactions. Semi-classical and mixed quantum-classical non-adiabatic molecular dynamics methods, together with semi-empirical excited state potentials are used to probe the dynamical mixing of electronic states in different environments from molecular clusters, to simple liquids and solids, and photo-excited reactions in complex reaction environments such as zeolites
Jasper, Ahren W
2015-07-16
The appropriateness of treating crossing seams of electronic states of different spins as nonadiabatic transition states in statistical calculations of spin-forbidden reaction rates is considered. We show that the spin-forbidden reaction coordinate, the nuclear coordinate perpendicular to the crossing seam, is coupled to the remaining nuclear degrees of freedom. This coupling gives rise to multidimensional effects that are not typically included in statistical treatments of spin-forbidden kinetics. Three qualitative categories of multidimensional effects may be identified: static multidimensional effects due to the geometry-dependence of the local shape of the crossing seam and of the spin-orbit coupling, dynamical multidimensional effects due to energy exchange with the reaction coordinate during the seam crossing, and nonlocal (history-dependent) multidimensional effects due to interference of the electronic variables at second, third, and later seam crossings. Nonlocal multidimensional effects are intimately related to electronic decoherence, where electronic dephasing acts to erase the history of the system. A semiclassical model based on short-time full-dimensional trajectories that includes all three multidimensional effects as well as a model for electronic decoherence is presented. The results of this multidimensional nonadiabatic statistical theory (MNST) for the (3)O + CO → CO2 reaction are compared with the results of statistical theories employing one-dimensional (Landau-Zener and weak coupling) models for the transition probability and with those calculated previously using multistate trajectories. The MNST method is shown to accurately reproduce the multistate decay-of-mixing trajectory results, so long as consistent thresholds are used. The MNST approach has several advantages over multistate trajectory approaches and is more suitable in chemical kinetics calculations at low temperatures and for complex systems. The error in statistical
Quantum nonadiabatic dynamics of hydrogen exchange reactions
Rajagopala Rao, T.; Jayachander Rao, B.; Mahapatra, S.
2009-11-01
In continuation of our earlier effort to understand the nonadiabatic coupling effects in the prototypical H + H 2 exchange reaction [Jayachander Rao et al. Chem. Phys. 333 (2007) 135], we present here further quantum dynamical investigations on its isotopic variants. The present work also corrects a technical scaling error occurred in our previous studies on the H + HD reaction. Initial state-selected total reaction cross sections and Boltzmann averaged thermal rate constants are calculated with the aid of a time-dependent wave packet approach employing the double many body expansion potential energy surfaces of the system. The theoretical results are compared with the experimental and other theoretical data whenever available. The results re-establish our earlier conclusion, on a more general perspective, that the electronic nonadiabatic effects are negligible on the important quantum dynamical observables of these reactive systems reported here.
Quantum nonadiabatic dynamics of hydrogen exchange reactions
International Nuclear Information System (INIS)
Rajagopala Rao, T.; Jayachander Rao, B.; Mahapatra, S.
2009-01-01
In continuation of our earlier effort to understand the nonadiabatic coupling effects in the prototypical H + H 2 exchange reaction [Jayachander Rao et al. Chem. Phys. 333 (2007) 135], we present here further quantum dynamical investigations on its isotopic variants. The present work also corrects a technical scaling error occurred in our previous studies on the H + HD reaction. Initial state-selected total reaction cross sections and Boltzmann averaged thermal rate constants are calculated with the aid of a time-dependent wave packet approach employing the double many body expansion potential energy surfaces of the system. The theoretical results are compared with the experimental and other theoretical data whenever available. The results re-establish our earlier conclusion, on a more general perspective, that the electronic nonadiabatic effects are negligible on the important quantum dynamical observables of these reactive systems reported here.
International Nuclear Information System (INIS)
Soudackov, Alexander V.; Hammes-Schiffer, Sharon
2015-01-01
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton
Soudackov, Alexander V; Hammes-Schiffer, Sharon
2015-11-21
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton
A design study of non-adiabatic electron guns
International Nuclear Information System (INIS)
Barroso, J.J.; Stellati, C.
1994-01-01
The design of a non-adiabatic gun capable of producing a 10 A, 50 KeV high-quality laminar electron beam is reported. In contrast to the magnetron injection gun with a conical cathode, where the beam is generated initially with a transverse velocity component, in the non-adiabatic gun electrons are extracted in a direction parallel to the axial guide magnetic field. The beam electrons acquire cyclotron motion as result of non-adiabatic processes in a strong non uniform electric field across the modulation anode. Such an extraction method gives rise to favourable features that are explored throughout the work. An extensive numerical simulation study has also been done to minimize velocity and energy spreads. (author). 3 refs, 5 figs, 1 tab
Non-adiabatic Dynamics of Molecules in Optical Cavities
Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
Molecular systems coupled to optical cavities are promising candidates for a novel kind of photo chemistry. Strong coupling to the vacuum field of the cavity can modify the potential energy surfaces opening up new reaction pathways. We present a derivation of the non-adiabatic couplings for single molecules in the strong coupling regime. The possibilities for photo chemistry are demonstrated for a set of model systems representing typical situations found in molecules. Supported by the Alexander von Humboldt Foundation.
Finding quantum effects in strong classical potentials
Hegelich, B. Manuel; Labun, Lance; Labun, Ou Z.
2017-06-01
The long-standing challenge to describing charged particle dynamics in strong classical electromagnetic fields is how to incorporate classical radiation, classical radiation reaction and quantized photon emission into a consistent unified framework. The current, semiclassical methods to describe the dynamics of quantum particles in strong classical fields also provide the theoretical framework for fundamental questions in gravity and hadron-hadron collisions, including Hawking radiation, cosmological particle production and thermalization of particles created in heavy-ion collisions. However, as we show, these methods break down for highly relativistic particles propagating in strong fields. They must therefore be improved and adapted for the description of laser-plasma experiments that typically involve the acceleration of electrons. Theory developed from quantum electrodynamics, together with dedicated experimental efforts, offer the best controllable context to establish a robust, experimentally validated foundation for the fundamental theory of quantum effects in strong classical potentials.
Nonadiabatic transitions in electrostatically trapped ammonia molecules
International Nuclear Information System (INIS)
Kirste, Moritz; Schnell, Melanie; Meijer, Gerard; Sartakov, Boris G.
2009-01-01
Nonadiabatic transitions are known to be major loss channels for atoms in magnetic traps but have thus far not been experimentally reported upon for trapped molecules. We have observed and quantified losses due to nonadiabatic transitions for three isotopologues of ammonia in electrostatic traps by comparing the trapping times in traps with a zero and a nonzero electric field at the center. Nonadiabatic transitions are seen to dominate the overall loss rate even for the present samples that are at relatively high temperatures of 30 mK. It is anticipated that losses due to nonadiabatic transitions in electric fields are omnipresent in ongoing experiments on cold molecules.
Sources of nonadiabaticity in tokamak turbulence
International Nuclear Information System (INIS)
Thyagaraja, A.; Haas, F.A.
1993-01-01
The two-fluid equations governing the nonlinear evolution and saturation of drift wave-like turbulence and transport in tokamaks under quasi-neutral conditions in periodic cylinder geometry are investigated. Using experiment as guide and employing appropriate orderings, two non-adiabaticity parameters, Υ es and Υ em are derived as functions of the reduced frequency ωa/v thi and wave number ρ i k r characteristic of the turbulent fluctuation spectrum. These parameters correspond respectively to the electrostatic limit and the general electromagnetic case. It is shown that they must be O(1) if significant particle and ion energy transport are to be expected from the turbulence. In other words, they are measures of the departure from neo-classical particle and ion energy transport due to the turbulence. These analytic results are complementary to, and serve as guidelines for, any future direct numerical simulations of the set of seven nonlinear partial differential equations which must be solved with suitable sources of particles, momentum and energy to determine the turbulence evolution and resultant saturated power spectra of density, pressure, electrostatic potential and magnetic field. The nonadiabaticity parameters discussed suggest possible qualitative explanations of the isotope effect and reduction of anomalous transport noted in H-mode tokamak discharges. (orig.)
Wormhole effect in a strong topological insulator
Rosenberg, G.; Guo, H.-M.; Franz, M.
2010-07-01
An infinitely thin solenoid carrying magnetic flux Φ (a “Dirac string”) inserted into an ordinary band insulator has no significant effect on the spectrum of electrons. In a strong topological insulator, remarkably, such a solenoid carries protected gapless one-dimensional fermionic modes when Φ=hc/2e . These modes are spin-filtered and represent a distinct bulk manifestation of the topologically nontrivial insulator. We establish this “wormhole” effect by both general qualitative considerations and by numerical calculations within a minimal lattice model. We also discuss the possibility of experimental observation of a closely related effect in artificially engineered nanostructures.
Strong curvature effects in Neumann wave problems
DEFF Research Database (Denmark)
Willatzen, Morten; Pors, A.; Gravesen, Jens
2012-01-01
Waveguide phenomena play a major role in basic sciences and engineering. The Helmholtz equation is the governing equation for the electric field in electromagnetic wave propagation and the acoustic pressure in the study of pressure dynamics. The Schro¨dinger equation simplifies to the Helmholtz...... equation for a quantum-mechanical particle confined by infinite barriers relevant in semiconductor physics. With this in mind and the interest to tailor waveguides towards a desired spectrum and modal pattern structure in classical structures and nanostructures, it becomes increasingly important...... to understand the influence of curvature effects in waveguides. In this work, we demonstrate analytically strong curvature effects for the eigenvalue spectrum of the Helmholtz equation with Neumann boundary conditions in cases where the waveguide cross section is a circular sector. It is found that the linear...
Strong curvature effects in Neumann wave problems
International Nuclear Information System (INIS)
Willatzen, M.; Pors, A.; Gravesen, J.
2012-01-01
Waveguide phenomena play a major role in basic sciences and engineering. The Helmholtz equation is the governing equation for the electric field in electromagnetic wave propagation and the acoustic pressure in the study of pressure dynamics. The Schrödinger equation simplifies to the Helmholtz equation for a quantum-mechanical particle confined by infinite barriers relevant in semiconductor physics. With this in mind and the interest to tailor waveguides towards a desired spectrum and modal pattern structure in classical structures and nanostructures, it becomes increasingly important to understand the influence of curvature effects in waveguides. In this work, we demonstrate analytically strong curvature effects for the eigenvalue spectrum of the Helmholtz equation with Neumann boundary conditions in cases where the waveguide cross section is a circular sector. It is found that the linear-in-curvature contribution originates from parity symmetry breaking of eigenstates in circular-sector tori and hence vanishes in a torus with a complete circular cross section. The same strong curvature effect is not present in waveguides subject to Dirichlet boundary conditions where curvature contributions contribute to second-order in the curvature only. We demonstrate this finding by considering wave propagation in a circular-sector torus corresponding to Neumann and Dirichlet boundary conditions, respectively. Results for relative eigenfrequency shifts and modes are determined and compared with three-dimensional finite element method results. Good agreement is found between the present analytical method using a combination of differential geometry with perturbation theory and finite element results for a large range of curvature ratios.
Alonso, J L; Castro, A; Clemente-Gallardo, J; Echenique, P; Mazo, J J; Polo, V; Rubio, A; Zueco, D
2012-12-14
At non-zero temperature and when a system has low-lying excited electronic states, the ground-state Born-Oppenheimer approximation breaks down and the low-lying electronic states are involved in any chemical process. In this work, we use a temperature-dependent effective potential for the nuclei which can accommodate the influence of an arbitrary number of electronic states in a simple way, while at the same time producing the correct Boltzmann equilibrium distribution for the electronic part. With the help of this effective potential, we show that thermally activated low-lying electronic states can have a significant effect in molecular properties for which electronic excitations are oftentimes ignored. We study the thermal expansion of the Manganese dimer, Mn(2), where we find that the average bond length experiences a change larger than the present experimental accuracy upon the inclusion of the excited states into the picture. We also show that, when these states are taken into account, reaction-rate constants are modified. In particular, we study the opening of the ozone molecule, O(3), and show that in this case the rate is modified as much as a 20% with respect to the ground-state Born-Oppenheimer prediction.
Electronic nonadiabatic effects in low temperature radical-radical reactions. I. C(3P) + OH(2Π).
Maergoiz, A I; Nikitin, E E; Troe, J
2014-07-28
The formation of collision complexes, as a first step towards reaction, in collisions between two open-electronic shell radicals is treated within an adiabatic channel approach. Adiabatic channel potentials are constructed on the basis of asymptotic electrostatic, induction, dispersion, and exchange interactions, accounting for spin-orbit coupling within the multitude of electronic states arising from the separated reactants. Suitable coupling schemes (such as rotational + electronic) are designed to secure maximum adiabaticity of the channels. The reaction between C((3)P) and OH((2)Π) is treated as a representative example. The results show that the low temperature association rate coefficients in general cannot be represented by results obtained with a single (generally the lowest) potential energy surface of the adduct, asymptotically reaching the lowest fine-structure states of the reactants, and a factor accounting for the thermal population of the latter states. Instead, the influence of non-Born-Oppenheimer couplings within the multitude of electronic states arising during the encounter markedly increases the capture rates. This effect extends up to temperatures of several hundred K.
Spatial non-adiabatic passage using geometric phases
Energy Technology Data Exchange (ETDEWEB)
Benseny, Albert; Busch, Thomas [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Kiely, Anthony; Ruschhaupt, Andreas [University College Cork, Department of Physics, Cork (Ireland); Zhang, Yongping [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Shanghai University, Department of Physics, Shanghai (China)
2017-12-15
Quantum technologies based on adiabatic techniques can be highly effective, but often at the cost of being very slow. Here we introduce a set of experimentally realistic, non-adiabatic protocols for spatial state preparation, which yield the same fidelity as their adiabatic counterparts, but on fast timescales. In particular, we consider a charged particle in a system of three tunnel-coupled quantum wells, where the presence of a magnetic field can induce a geometric phase during the tunnelling processes. We show that this leads to the appearance of complex tunnelling amplitudes and allows for the implementation of spatial non-adiabatic passage. We demonstrate the ability of such a system to transport a particle between two different wells and to generate a delocalised superposition between the three traps with high fidelity in short times. (orig.)
Non-Adiabatic Molecular Dynamics Methods for Materials Discovery
Energy Technology Data Exchange (ETDEWEB)
Furche, Filipp [Univ. of California, Irvine, CA (United States); Parker, Shane M. [Univ. of California, Irvine, CA (United States); Muuronen, Mikko J. [Univ. of California, Irvine, CA (United States); Roy, Saswata [Univ. of California, Irvine, CA (United States)
2017-04-04
The flow of radiative energy in light-driven materials such as photosensitizer dyes or photocatalysts is governed by non-adiabatic transitions between electronic states and cannot be described within the Born-Oppenheimer approximation commonly used in electronic structure theory. The non-adiabatic molecular dynamics (NAMD) methods based on Tully surface hopping and time-dependent density functional theory developed in this project have greatly extended the range of molecular materials that can be tackled by NAMD simulations. New algorithms to compute molecular excited state and response properties efficiently were developed. Fundamental limitations of common non-linear response methods were discovered and characterized. Methods for accurate computations of vibronic spectra of materials such as black absorbers were developed and applied. It was shown that open-shell TDDFT methods capture bond breaking in NAMD simulations, a longstanding challenge for single-reference molecular dynamics simulations. The methods developed in this project were applied to study the photodissociation of acetaldehyde and revealed that non-adiabatic effects are experimentally observable in fragment kinetic energy distributions. Finally, the project enabled the first detailed NAMD simulations of photocatalytic water oxidation by titania nanoclusters, uncovering the mechanism of this fundamentally important reaction for fuel generation and storage.
Strong crystal size effect on deformation twinning
DEFF Research Database (Denmark)
Yu, Qian; Shan, Zhi-Wei; Li, Ju
2010-01-01
find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation...... plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium’s ideal strength9, 10. We develop a ‘stimulated slip’ model to explain the strong size dependence of deformation twinning....... The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence11, 12, 13, 14, 15, 16, 17 relevant for applications....
Strong coupling effects in hybrid plexitonic systems
Melnikau, Dzmitry; Esteban, Ruben; Govyadinov, Alexander A.; Savateeva, Diana; Simon, Thomas; Sánchez-Iglesias, Ana; Grzelczak, Marek; Schmidt, Mikolaj K.; Urban, Alexander S.; Liz-Marzán, Luis M.; Feldmann, Jochen; Aizpurua, Javier; Rakovich, Yury P.
2017-08-01
We investigated the interactions between localized plasmons in gold nanorods and excitons in J-aggregates and were able to track an anticrossing behavior of the hybridized modes both in the extinction and in the photoluminescence spectra of this hybrid system. We identified the nonlinear optical behavior of this system by transient absorption spectroscopy. Finally using magnetic circular dichroism spectroscopy we showed that nonmagnetic organic molecules exhibit magnetooptical response due to binding to a plasmonic nanoparticles. In our experiments we also studied the effect of detuning as well as the effect of off- and on resonance excitation on the hybrid states
Non-adiabatic perturbations in multi-component perfect fluids
Energy Technology Data Exchange (ETDEWEB)
Koshelev, N.A., E-mail: koshna71@inbox.ru [Ulyanovsk State University, Leo Tolstoy str 42, 432970 (Russian Federation)
2011-04-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.
Non-adiabatic perturbations in multi-component perfect fluids
International Nuclear Information System (INIS)
Koshelev, N.A.
2011-01-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models
Disorder effects in strongly correlated uranium compounds
International Nuclear Information System (INIS)
Suellow, S.; Maple, M.B.; Tomuta, D.; Nieuwenhuys, G.J.; Menovsky, A.A.; Mydosh, J.A.; Chau, R.
2001-01-01
Moderate levels of crystallographic disorder can dramatically affect the ground-state properties of heavy fermion compounds. In particular, the role of disorder close to a quantum critical point has been investigated in detail. However, crystallographic disorder is equally effective in altering the properties of magnetically ordered heavy fermion compounds like URh 2 Ge 2 , where disorder-induced spin-glass behavior has been observed. In this system, moreover, the magnetic ground state can be tuned from a spin-glass to a long-range ordered antiferromagnetic one by means of an annealing treatment. The transformation of the magnetic state is accompanied by a transition in the transport properties from 'quasi-insulating' (dρ/dT 2 Ge 2 will be discussed. Of particular interest is the resistivity of as-grown URh 2 Ge 2 , which resembles the Non-Fermi-liquid system UCu 4 Pd, suggesting that a common mechanism - the crystallographic disorder - controls the transport properties of these materials
Nonadiabatic particle motion in magnetic mirror traps
International Nuclear Information System (INIS)
Irie, H.; Otsuka, S.; Varma, R.K.; Watanabe, T.; Nishikawa, Kyoji.
1982-01-01
By numerical integration of the equation of single particle motion, the basic features of the actual nonadiabatic escape of particles are studied. The results are compared with the predictions of two existing theoretical models: ''diffusion'' model derived by B. V. Chirikov and ''tunneling'' model introduced by R. K. Varma. (author)
Nonadiabatic electron wavepacket dynamics behind molecular autoionization
Matsuoka, Takahide; Takatsuka, Kazuo
2018-01-01
A theoretical method for real-time dynamics of nonadiabatic reorganization of electronic configurations in molecules is developed, with dual aim that the intramolecular electron dynamics can be probed by means of direct and/or indirect photoionizations and that the physical origins behind photoionization signals attained in the time domain can be identified in terms of the language of time-dependent quantum chemistry. In doing so, we first formulate and implement a new computational scheme for nonadiabatic electron dynamics associated with molecular ionization, which well fits in the general theory of nonadiabatic electron dynamics. In this method, the total nonadiabatic electron wavepackets are propagated in time directly with complex natural orbitals without referring to Hartree-Fock molecular orbitals, and the amount of electron flux from a molecular region leading to ionization is evaluated in terms of the relevant complex natural orbitals. In the second half of this paper, we apply the method to electron dynamics in the elementary processes consisting of the Auger decay to demonstrate the methodological significance. An illustrative example is taken from an Auger decay starting from the 2a1 orbital hole-state of H2O+. The roles of nuclear momentum (kinetic) couplings in electronic-state mixing during the decay process are analyzed in terms of complex natural orbitals, which are schematically represented in the conventional language of molecular symmetry of the Hartree-Fock orbitals.
Energy Technology Data Exchange (ETDEWEB)
Mátyus, Edit, E-mail: matyus@chem.elte.hu [Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518 Budapest 112 (Hungary); Szidarovszky, Tamás [MTA-ELTE Research Group on Complex Chemical Systems, Pázmány Péter sétány 1/A, H-1117 Budapest (Hungary); Császár, Attila G., E-mail: csaszar@chem.elte.hu [Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518, Budapest 112, Hungary and MTA-ELTE Research Group on Complex Chemical Systems, Pázmány Péter sétány 1/A, H-1117 Budapest (Hungary)
2014-10-21
Introducing different rotational and vibrational masses in the nuclear-motion Hamiltonian is a simple phenomenological way to model rovibrational non-adiabaticity. It is shown on the example of the molecular ion H{sub 3}{sup +}, for which a global adiabatic potential energy surface accurate to better than 0.1 cm{sup −1} exists [M. Pavanello, L. Adamowicz, A. Alijah, N. F. Zobov, I. I. Mizus, O. L. Polyansky, J. Tennyson, T. Szidarovszky, A. G. Császár, M. Berg et al., Phys. Rev. Lett. 108, 023002 (2012)], that the motion-dependent mass concept yields much more accurate rovibrational energy levels but, unusually, the results are dependent upon the choice of the embedding of the molecule-fixed frame. Correct degeneracies and an improved agreement with experimental data are obtained if an Eckart embedding corresponding to a reference structure of D{sub 3h} point-group symmetry is employed. The vibrational mass of the proton in H{sub 3}{sup +} is optimized by minimizing the root-mean-square (rms) deviation between the computed and recent high-accuracy experimental transitions. The best vibrational mass obtained is larger than the nuclear mass of the proton by approximately one third of an electron mass, m{sub opt,p}{sup (v)}=m{sub nuc,p}+0.31224 m{sub e}. This optimized vibrational mass, along with a nuclear rotational mass, reduces the rms deviation of the experimental and computed rovibrational transitions by an order of magnitude. Finally, it is shown that an extension of the algorithm allowing the use of motion-dependent masses can deal with coordinate-dependent mass surfaces in the rovibrational Hamiltonian, as well.
Peters, William K.; Tiwari, Vivek; Jonas, David M.
2017-11-01
The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between
Fujii, Mikiya
2011-09-21
Alternative treatments of quantum and semiclassical theories for nonadiabatic dynamics are presented. These treatments require no derivative couplings and instead are based on overlap integrals between eigenstates corresponding to fast degrees of freedom, such as electronic states. Derived from mathematical transformations of the Schrödinger equation, the theories describe nonlocal characteristics of nonadiabatic transitions. The idea that overlap integrals can be used for nonadiabatic transitions stems from an article by Johnson and Levine [Chem. Phys. Lett. 13, 168 (1972)]. Furthermore, overlap integrals in path-integral form have been recently made available by Schmidt and Tully [J. Chem. Phys. 127, 094103 (2007)] to analyze nonadiabatic effects in thermal equilibrium systems. The present paper expands this idea to dynamic problems presented in path-integral form that involve nonadiabatic semiclassical propagators. Applications to one-dimensional nonadiabatic transitions have provided excellent results, thereby verifying the procedure. In principle these theories that are presented can be applied to multidimensional systems, although numerical costs could be quite expensive.
OBSERVATION OF STRONG - STRONG AND OTHER BEAM - BEAM EFFECTS IN RHIC
International Nuclear Information System (INIS)
FISCHER, W.; BLASKIEWICZ, M.; BRENNAN, J.M.; CAMERON, P.; CONNOLLY, R.; MONTAG, C.; PEGGS, S.; PILAT, F.; PTITSYN, V.; TEPIKIAN, S.; TRBOJEVIC, D.; VAN ZEIJTS, J.
2003-01-01
RHIC is currently the only hadron collider in which strong-strong beam-beam effects can be seen. For the first time, coherent beam-beam modes were observed in a bunched beam hadron collider. Other beam-beam effects in RHIC were observed in operation and in dedicated experiments with gold ions, deuterons and protons. Observations include measurements of beam-beam induced tune shifts, lifetime and emittance growth measurements with and without beam-beam interaction, and background rates as a function of tunes. During ramps unequal radio frequencies in the two rings cause the crossing points to move longitudinally. Thus bunches experience beam-beam interactions only in intervals and the tunes are modulated. In this article we summarize the most important beam-beam observations made so far
Quantum theory of strong-field frustrated tunneling
Popruzhenko, S. V.
2018-01-01
We show how the strong-field approximation, widely used for description of multiphoton and tunneling ionization, can be extended to analyse the excitation of bound states in intense low-frequency laser pulses. The proposed theory is based on the formalism of quantum trajectories and fills the gap between the numerical solution of the time-dependent Schrödinger equation and classical simulations. In particular, it allows identifying non-adiabatic and interference effects in strong-field excitation of Rydberg states.
Non-adiabatic quantum reactive scattering in hyperspherical coordinates
Kendrick, Brian K.
2018-01-01
A new electronically non-adiabatic quantum reactive scattering methodology is presented based on a time-independent coupled channel formalism and the adiabatically adjusting principal axis hyperspherical coordinates of Pack and Parker [J. Chem. Phys. 87, 3888 (1987)]. The methodology computes the full state-to-state scattering matrix for A + B2(v , j) ↔ AB(v ', j') + B and A + AB(v , j) → A + AB(v ', j') reactions that involve two coupled electronic states which exhibit a conical intersection. The methodology accurately treats all six degrees of freedom relative to the center-of-mass which includes non-zero total angular momentum J and identical particle exchange symmetry. The new methodology is applied to the ultracold hydrogen exchange reaction for which large geometric phase effects have been recently reported [B. K. Kendrick et al., Phys. Rev. Lett. 115, 153201 (2015)]. Rate coefficients for the H/D + HD(v = 4, j = 0) → H/D + HD(v ', j') reactions are reported for collision energies between 1 μK and 100 K (total energy ≈1.9 eV). A new diabatic potential energy matrix is developed based on the Boothroyd, Keogh, Martin, and Peterson (BKMP2) and double many body expansion plus single-polynomial (DSP) adiabatic potential energy surfaces for the ground and first excited electronic states of H3, respectively. The rate coefficients computed using the new non-adiabatic methodology and diabatic potential matrix reproduce the recently reported rates that include the geometric phase and are computed using a single adiabatic ground electronic state potential energy surface (BKMP2). The dramatic enhancement and suppression of the ultracold rates due to the geometric phase are confirmed as well as its effects on several shape resonances near 1 K. The results reported here represent the first fully non-adiabatic quantum reactive scattering calculation for an ultracold reaction and validate the importance of the geometric phase on the Wigner threshold behavior.
Nonadiabatic calculations on hydrogen molecule
Komasa, Jacek; Pachucki, Krzysztof
Since its infancy quantum mechanics has treated hydrogen molecule as a test bed. Contemporary spectroscopy is able to supply the dissociation energy (D0) of H2 with the accuracy of 3 . 7 .10-4cm-1 , while current theoretical predictions are 10-3cm-1 in error. Both the uncertainties are already smaller than the quantum electrodynamic (QED) effects contributing to D0, which poses a particular challenge to theoreticians. Undoubtedly, in order to increase the predictive power of theory one has to not only account for the multitude of the tiny relativistic and QED effects but, especially, significantly increase precision of the largest component of D0--the nonrelativistic contribution. We approach the problem of solving the Schroedinger equation, equipped with new methodology, with the target precision of D0 set at the level of 10-7cm-1 .
Du, Likai; Lan, Zhenggang
2015-04-14
Nonadiabatic dynamics simulations have rapidly become an indispensable tool for understanding ultrafast photochemical processes in complex systems. Here, we present our recently developed on-the-fly nonadiabatic dynamics package, JADE, which allows researchers to perform nonadiabatic excited-state dynamics simulations of polyatomic systems at an all-atomic level. The nonadiabatic dynamics is based on Tully's surface-hopping approach. Currently, several electronic structure methods (CIS, TDHF, TDDFT(RPA/TDA), and ADC(2)) are supported, especially TDDFT, aiming at performing nonadiabatic dynamics on medium- to large-sized molecules. The JADE package has been interfaced with several quantum chemistry codes, including Turbomole, Gaussian, and Gamess (US). To consider environmental effects, the Langevin dynamics was introduced as an easy-to-use scheme into the standard surface-hopping dynamics. The JADE package is mainly written in Fortran for greater numerical performance and Python for flexible interface construction, with the intent of providing open-source, easy-to-use, well-modularized, and intuitive software in the field of simulations of photochemical and photophysical processes. To illustrate the possible applications of the JADE package, we present a few applications of excited-state dynamics for various polyatomic systems, such as the methaniminium cation, fullerene (C20), p-dimethylaminobenzonitrile (DMABN) and its primary amino derivative aminobenzonitrile (ABN), and 10-hydroxybenzo[h]quinoline (10-HBQ).
Strong expectations cancel locality effects: evidence from Hindi.
Directory of Open Access Journals (Sweden)
Samar Husain
Full Text Available Expectation-driven facilitation (Hale, 2001; Levy, 2008 and locality-driven retrieval difficulty (Gibson, 1998, 2000; Lewis & Vasishth, 2005 are widely recognized to be two critical factors in incremental sentence processing; there is accumulating evidence that both can influence processing difficulty. However, it is unclear whether and how expectations and memory interact. We first confirm a key prediction of the expectation account: a Hindi self-paced reading study shows that when an expectation for an upcoming part of speech is dashed, building a rarer structure consumes more processing time than building a less rare structure. This is a strong validation of the expectation-based account. In a second study, we show that when expectation is strong, i.e., when a particular verb is predicted, strong facilitation effects are seen when the appearance of the verb is delayed; however, when expectation is weak, i.e., when only the part of speech "verb" is predicted but a particular verb is not predicted, the facilitation disappears and a tendency towards a locality effect is seen. The interaction seen between expectation strength and distance shows that strong expectations cancel locality effects, and that weak expectations allow locality effects to emerge.
Glover, William J; Mori, Toshifumi; Schuurman, Michael S; Boguslavskiy, Andrey E; Schalk, Oliver; Stolow, Albert; Martínez, Todd J
2018-04-28
The excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene (BD), has long been the subject of controversy due to its strong coupling, ultrafast time scales and the difficulties that theory faces in describing the relevant electronic states in a balanced fashion. Here we apply Ab Initio Multiple Spawning (AIMS) using state-averaged complete active space multistate second order perturbation theory [SA-3-CAS(4/4)-MSPT2] which describes both static and dynamic electron correlation effects, providing a balanced description of both the initially prepared bright 1 1 B u (ππ*) state and non-adiabatically coupled dark 2 1 A g state of BD. Importantly, AIMS allows for on-the-fly calculations of experimental observables. We validate our approach by directly simulating the time resolved photoelectron-photoion coincidence spectroscopy results presented in Paper I [A. E. Boguslavskiy et al., J. Chem. Phys. 148, 164302 (2018)], demonstrating excellent agreement with experiment. Our simulations reveal that the initial excitation to the 1 1 B u state rapidly evolves via wavepacket dynamics that follow both bright- and dark-state pathways as well as mixtures of these. In order to test the sensitivity of the AIMS results to the relative ordering of states, we considered two hypothetical scenarios biased toward either the bright 1 B u or the dark 2 1 A g state. In contrast with AIMS/SA-3-CAS(4/4)-MSPT2 simulations, neither of these scenarios yields favorable agreement with experiment. Thus, we conclude that the excited state non-adiabatic dynamics in BD involves both of these ultrafast pathways.
Leading order nonadiabatic corrections to rovibrational levels of H{sub 2}, D{sub 2}, and T{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Pachucki, Krzysztof, E-mail: krp@fuw.edu.pl [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Komasa, Jacek, E-mail: komasa@man.poznan.pl [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań (Poland)
2015-07-21
An efficient computational approach to nonadiabatic effects in the hydrogen molecule (H{sub 2}, D{sub 2}, and T{sub 2}) is presented. The electronic wave function is expanded in the James-Coolidge basis set, which enables obtaining a very high accuracy of nonadiabatic potentials. A single point convergence of the potentials with growing size of the basis set reveals a relative accuracy ranging from 10{sup −8} to 10{sup −13}. An estimated accuracy of the leading nonadiabatic correction to the rovibrational energy levels is of the order of 10{sup −7} cm{sup −1}. After a significant increase in the accuracy of the Born-Oppenheimer and adiabatic calculations, the nonadiabatic results presented in this report constitute another step towards highly accurate theoretical description of the hydrogen molecule.
Humeniuk, Alexander; Mitrić, Roland
2017-12-01
A software package, called DFTBaby, is published, which provides the electronic structure needed for running non-adiabatic molecular dynamics simulations at the level of tight-binding DFT. A long-range correction is incorporated to avoid spurious charge transfer states. Excited state energies, their analytic gradients and scalar non-adiabatic couplings are computed using tight-binding TD-DFT. These quantities are fed into a molecular dynamics code, which integrates Newton's equations of motion for the nuclei together with the electronic Schrödinger equation. Non-adiabatic effects are included by surface hopping. As an example, the program is applied to the optimization of excited states and non-adiabatic dynamics of polyfluorene. The python and Fortran source code is available at http://www.dftbaby.chemie.uni-wuerzburg.de.
Strong Gravity Effects of Rotating Black Holes: Quasiperiodic Oscillations
Aliev, Alikram N.; Esmer, Göksel Daylan; Talazan, Pamir
2012-01-01
We explore strong gravity effects of the geodesic motion in the spacetime of rotating black holes in general relativity and braneworld gravity. We focus on the description of the motion in terms of three fundamental frequencies: The orbital frequency, the radial and vertical epicyclic frequencies. For a Kerr black hole, we perform a detailed numerical analysis of these frequencies at the innermost stable circular orbits and beyond them as well as at the characteristic stable orbits, at which ...
New results on strong-interaction effects in antiprotonic hydrogen
Gotta, D; Augsburger, M A; Borchert, G L; Castelli, C M; Chatellard, D; El-Khoury, P; Egger, J P; Gorke, H; Hauser, P R; Indelicato, P J; Kirch, K; Lenz, S; Nelms, N; Rashid, K; Schult, O W B; Siems, T; Simons, L M
1999-01-01
Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the low-energy antiproton ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using charge-coupled devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction. (33 refs).
New results on strong-interaction effects in antiprotonic hydrogen
International Nuclear Information System (INIS)
Anagnostopoulos, D. F.; Augsburger, M.; Borchert, G.; Castelli, C.; Chatellard, D.; El-Khoury, P.; Egger, J.-P.; Gorke, H.; Gotta, D.; Hauser, P.; Indelicato, P.; Kirch, K.; Lenz, S.; Nelms, N.; Rashid, K.; Schult, O. W. B.; Siems, Th.; Simons, L. M.
1999-01-01
Lyman and Balmer transitions of antiprotonic hydrogen and deuterium have been measured at the Low-Energy Antiproton Ring LEAR at CERN in order to determine the strong interaction effects. The X-rays were detected using Charge-Coupled Devices (CCDs) and a reflection type crystal spectrometer. The results of the measurements support the meson-exchange models describing the medium and long range part of the nucleon-antinucleon interaction
Impact of Turbocharger Non-Adiabatic Operation on Engine Volumetric Efficiency and Turbo Lag
Directory of Open Access Journals (Sweden)
S. Shaaban
2012-01-01
Full Text Available Turbocharger performance significantly affects the thermodynamic properties of the working fluid at engine boundaries and hence engine performance. Heat transfer takes place under all circumstances during turbocharger operation. This heat transfer affects the power produced by the turbine, the power consumed by the compressor, and the engine volumetric efficiency. Therefore, non-adiabatic turbocharger performance can restrict the engine charging process and hence engine performance. The present research work investigates the effect of turbocharger non-adiabatic performance on the engine charging process and turbo lag. Two passenger car turbochargers are experimentally and theoretically investigated. The effect of turbine casing insulation is also explored. The present investigation shows that thermal energy is transferred to the compressor under all circumstances. At high rotational speeds, thermal energy is first transferred to the compressor and latter from the compressor to the ambient. Therefore, the compressor appears to be “adiabatic” at high rotational speeds despite the complex heat transfer processes inside the compressor. A tangible effect of turbocharger non-adiabatic performance on the charging process is identified at turbocharger part load operation. The turbine power is the most affected operating parameter, followed by the engine volumetric efficiency. Insulating the turbine is recommended for reducing the turbine size and the turbo lag.
Superconducting proximity effect in the strong-coupling limit
International Nuclear Information System (INIS)
Wilvert, W.
1975-01-01
A generalization of the theory of the superconducting proximity effect is presented which takes into account strong-coupling in the superconductors. The results are found to agree with a model of weak-coupled superconductors with differing Debye frequencies which are in proximity. It is found that logarithmic averaging of phonon frequencies is an improvement on the original McMillan theory (1968). Comparison of the theory with data on thin films and on eutectic alloys is found to give good agreement. 19 references
Strong dynamical effects during stick-slip adhesive peeling.
Dalbe, Marie-Julie; Santucci, Stéphane; Cortet, Pierre-Philippe; Vanel, Loïc
2014-01-07
We consider the classical problem of the stick-slip dynamics observed when peeling a roller adhesive tape at a constant velocity. From fast imaging recordings, we extract the dependence of the stick and slip phase durations on the imposed peeling velocity and peeled ribbon length. Predictions of Maugis and Barquins [in Adhesion 12, edited by K. W. Allen, Elsevier ASP, London, 1988, pp. 205-222] based on a quasistatic assumption succeed to describe quantitatively our measurements of the stick phase duration. Such a model however fails to predict the full stick-slip cycle duration, revealing strong dynamical effects during the slip phase.
Thin and superthin ion current sheets. Quasi-adiabatic and nonadiabatic models
Directory of Open Access Journals (Sweden)
L. M. Zelenyi
2000-01-01
Full Text Available Thin anisotropic current sheets (CSs are phenomena of the general occurrence in the magnetospheric tail. We develop an analytical theory of the self-consistent thin CSs. General solitions of the Grad-Shafranov equation are obtained in a quasi-adiabatic approximation which neglects the jumps of the sheet adiabatic invariant Iz This is possible if the anisotropy of the initial distribution function is not too strong. The resulting structure of the thin CSs is interpreted as a sum of negative dia- and positive paramagnetic currents flowing near the neutral plane. In the immediate vicinity of the magnetic field reversal region the paramagnetic current arising from the meandering motion of the ions on Speiser orbits dominates. The maximum CS thick-ness is achieved in the case of weak plasma anisotropy and is of the order of the thermal ion gyroradius outside the sheet. A unified picture of thin CS scalings includes both the quasi-adiabatic regimes of weak and strong anisotropies and the nonadiabatic limit of super-strong anisotropy of the source ion distribution. The later limit corresponds to the case of almost field-aligned initial distribution, when the ratio of the drift velocity outside the CS to the thermal ion velocity exceeds the ratio of the magnetic field outside the CS to its value in-side the CS (vD/vT> B0/Bn. In this regime the jumps of Iz, become essential, and the current sheet thickness is approaching to some small but finite value, which depends upon the parameter Bn /B0. Convective electric field increases the effective anisotropy of the source distribution and might produce the essential CS thinning which could have important implications for the sub-storm dynamics.
Effectiveness of Advanced Stay Strong, Stay Healthy in Community Settings
Directory of Open Access Journals (Sweden)
Emily M. Crowe MS
2015-07-01
Full Text Available The goal of this research was to investigate the effectiveness of the 10-week, University of Missouri (MU Extension strength training program Advanced Stay Strong, Stay Healthy (ASSSH. It was hypothesized that the program can improve strength, balance, agility, and flexibility—all physical measures of falling among seniors. Matched pair t tests were used to compare differences in five physical measures of health, body composition, and percent body fat (%BF. Two-way ANOVA was conducted to examine the age effects on changes in physical health from the start and finish of the exercise program. Following programming, participants significantly improved strength, flexibility, and balance, and significantly reduced %BF ( p < .05. Our data indicate that ASSSH can improve the physical health of senior citizens and can successfully be translated into community practice by MU Extension professionals.
Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics
International Nuclear Information System (INIS)
White, Alexander J.; Gorshkov, Vyacheslav N.; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry
2014-01-01
Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement
Simulation of nonadiabatic dynamics in matrix and solution
International Nuclear Information System (INIS)
Ruckenbauer, M. B.
2011-01-01
The ab-initio electronic structure program suite Columbus and the nonadiabatic molecular dynamics program Newton-X were extended with the capabilities for nonadiabatic hybrid quantum mechanic/- molecular mechanic calculations. The Columbus code was extended with the ability to include the influence of a set of point charges in the calculation of energies, gradients and nonadiabatic coupling vectors on all levels of theory available. In Newton-X a new module facilitating the organization of the hybrid energy and gradient calculations and the collection and merging of the partial results in an overall energy and gradient has been implemented. A new paradigm for the treatment of nonadiabatic coupling vectors in hybrid calculations called core control has been developed. A scheme to create hybrid initial conditions apt for thermalized nonadiabatic dynamics has been created. The Newton-X hybrid module was used in the simulation of various systems, first and foremost for the comparative study on the nonadiabatic dynamics of the penta-2,4-dien-1-iminium and the 4-methylpenta- 2,4-dien-1-iminium in gas phase and in apolar solution and for the simulation of the nonadiabatic short time dynamics of azomethane in solvents of different polarity. In collaboration with the Faculty for Computer Science a framework for the easy, flexible, secure and transparent access to local and remote computational resources has been developed and used in the computational campaigns using the Newton-X hybrid module. The created framework was used for the implementation of an automated scientific workflow. (author) [de
Nonadiabatic heating of the central plasma sheet at substorm onset
International Nuclear Information System (INIS)
Huang, C.Y.; Frank, L.A.; Rostoker, G.; Fennell, J.; Mitchell, D.G.
1992-01-01
Heating events in the plasma sheet boundary layer and central plasma sheet are found to occur at the onset of expansive phase activity. The main effect is a dramatic increase in plasma temperature, coincident with a partial dipolarization of the magnetic field. Fluxes of energetic particles increase without dispersion during these events which occur at all radial distances up to 23 R E , the apogee of the ISEIE spacecraft. A major difference between these heating events and those observed at geosynchronous distances lies in the heating mechanism which is nonadiabatic beyond 10 R E but may be adiabatic closer to Earth. The energy required to account for the increase in plasma thermal energy is comparable with that required for Joule heating of the ionosphere. The plasma sheet must be considered as a major sink in the energy balance of substorm. The authors estimate lobe magnetic pressures during these events. Changes in lobe pressure are generally not correlated with onsets or intensifications of expansive phase activity
Effect of random charge fluctuation on strongly coupled dusty Plasma
Issaad, M.; Rouiguia, L.; Djebli, M.
2008-09-01
Modeling the interaction between particles is an open issue in dusty plasma. We dealt with strongly coupled dust particles in two dimensional confined system. For small number of clusters, we investigate the effect of random charge fluctuation on background configuration. The study is conducted for a short rang as well as a long rang potential interaction. Numerical simulation is performed using Monte-Carlo simulation in the presence of parabolic confinement and at low temperature. We have studied the background configurations for a dust particles with constant charge and in the presence of random charge fluctuation due to the discrete nature of charge carriers. The latter is studied for a positively charged dust when the dominant charging process is due to photo-emission from the dust surface. It is found, for small classical cluster consisting of small number of particles, short rang potential gives the same result as long rang one. It is also found that the random charge fluctuation affect the background configurations.
Intrinsic nonadiabatic topological torque in magnetic skyrmions and vortices
Akosa, Collins Ashu
2017-03-01
We propose that topological spin currents flowing in topologically nontrivial magnetic textures, such as magnetic skyrmions and vortices, produce an intrinsic nonadiabatic torque of the form Tt∼[(∂xm×∂ym)·m]∂ym. We show that this torque, which is absent in one-dimensional domain walls and/or nontopological textures, is responsible for the enhanced nonadiabaticity parameter observed in magnetic vortices compared to one-dimensional textures. The impact of this torque on the motion of magnetic skyrmions is expected to be crucial, especially to determine their robustness against defects and pinning centers.
Nonadiabatic corrections to a quantum dot quantum computer ...
Indian Academy of Sciences (India)
The time of operation of an adiabatic quantum computer must be less than the decoherence time, otherwise the computer would be nonoperative. So far, the nonadiabatic corrections to an adiabatic quantum computer are merely theoretical considerations. By the above reason, we consider the particular case of a ...
Nonadiabatic corrections to a quantum dot quantum computer
Indian Academy of Sciences (India)
The time of operation of an adiabatic quantum computer must be less than the decoherence time, otherwise the computer would be nonoperative. So far, the nonadiabatic corrections to an adiabatic quantum computer are merely theoretical considerations. By the above reason, we consider the particular case of a ...
Nonadiabatic corrections to a quantum dot quantum computer ...
Indian Academy of Sciences (India)
2014-07-02
Jul 2, 2014 ... semiclassical limit) the number of operations of such a computer would be approximately the same as that of a classical computer. Our results suggest that for an adiabatic quantum computer to operate successfully within the decoherence times, it is necessary to take into account nonadiabatic corrections.
Non-adiabatic rotational excitation of dipolar molecule under the ...
Indian Academy of Sciences (India)
of which rotational angular momentum J ranges among various values while its projection onto the space fixed axis M is preserved to the initial value. In this respect, the non-adiabatic orientation is inherently accomplished by NAREX. An efficient method to achieve an enhanced degree of orientation is to employ delayed ...
Nonadiabatic corrections to a quantum dot quantum computer ...
Indian Academy of Sciences (India)
2014-07-02
Jul 2, 2014 ... Abstract. The time of operation of an adiabatic quantum computer must be less than the decoherence time, otherwise the computer would be nonoperative. So far, the nonadiabatic cor- rections to an adiabatic quantum computer are merely theoretical considerations. By the above reason, we consider the ...
Certain relativistic effects due to strong electromagnetic fields in plasmas
International Nuclear Information System (INIS)
Tsintsadze, N.L.
1974-01-01
It is shown that the propagation of a strong electromagnetic wave in an electron plasma can lead to a generation of a constant electron current along the direction of propagation and to a large increase in the average electron density. (Auth.)
Effective Field Theories and Strong Interactions. Final Technical Report
International Nuclear Information System (INIS)
Fleming, Sean
2011-01-01
The framework of Effective Field Theories (EFTs) allows us to describe strong interactions in terms of degrees of freedom relevant to the energy regimes of interest, in the most general way consistent with the symmetries of QCD. Observables are expanded systematically in powers of M lo /M hi , where M lo (M hi ) denotes a low-(high-)energy scale. This organizational principle is referred to as 'power counting'. Terms of increasing powers in the expansion parameter are referred to as leading order (LO), next-to-leading order (NLO), etc. Details of the QCD dynamics not included explicitly are encoded in interaction parameters, or 'low-energy constants' (LECs), which can in principle be calculated from an explicit solution of QCD - for example via lattice simulations- but can also be determined directly from experimental data. QCD has an intrinsic scale M QCD ≅ 1 GeV, at which the QCD coupling constant α s (M QCD ) becomes large and the dynamics becomes non-perturbative. As a consequence M QCD sets the scale for the masses of most hadrons, such as the nucleon mass m N ≅ 940 MeV. EFTs can roughly be divided into two categories: those that can be matched onto QCD in perturbation theory, which we call high-energy EFTs, and those that cannot be matched perturbatively, which we call low-energy EFTs. In high-energy EFTs, M QCD typically sets the low-energy scale, and all the dynamics associated with this scale reside in matrix elements of EFT operators. These non-perturbative matrix elements are the LECs and are also referred to as long-distance contributions. Each matrix element is multiplied by a short-distance coefficient, which contains the dynamics from the high scale M hi . Since M hi >> M QCD , α s (M hi ) hi ∼ M Q , the heavy-quark mass, and in addition to M QCD there are low scales associated with the typical relative momentum ∼ M Q v and energy ∼ M Q v 2 of the heavy quarks. Depending on the sizes of M Q and the heavy-quark velocity v these scales can
How strong and generalisable is the Generation Y effect?
DEFF Research Database (Denmark)
Mueller, Simone; Remaud, Hervé; Chabin, Yann
2011-01-01
alcoholic beverage consumption. A number of noticeable differences appeared between countries: wine involvement and consumption increases with age in traditional European wine markets, while they decrease in North America; environmental concerns and purchase channel usage hardly differ between generations......Purpose – This study aims to investigate how strongly Generation Y consumers differ in their values, attitudes and wine and alcoholic beverage consumption behaviour from older generations. The comparison spans seven culturally different markets. Design/methodology/approach – Large representative...
Sirjoosingh, Andrew Rajendra
Nuclear quantum effects such as zero-point energy and hydrogen tunneling play an important role in a wide variety of chemical reactions. Moreover, non-Born-Oppenheimer effects are important in reactions such as proton-coupled electron transfer (PCET), which are integral to various electrocatalytic applications and bioenzymatic processes. The breakdown of the Born-Oppenheimer approximation between electronic and nuclear motions engenders the need for accurate characterization of the degree of nonadiabaticity. Furthermore, in regimes where the inclusion of these effects is vital, as it is for PCET systems, the development of non-Born-Oppenheimer quantum chemical methods is increasingly important. In this dissertation, we present diagnostics of electron-proton nonadiabaticity that can be obtained from standard electronic structure calculations and describe their application to representative systems, highlighting the mechanistic differences between two subclasses of PCET. In addition, we describe the development of new electronic structure methods within the nuclear-electronic orbital (NEO) framework, which is an orbital-based approach that inherently includes electron-proton nonadiabaticity by treating electrons and select protons quantum mechanically on equal footing. Previous studies using NEO involved applying mean-field-based approaches, which lacked sufficient electron-proton dynamical correlation, leading to overlocalized nuclear densities. Subsequent efforts focused on the development of explicitly correlated NEO approaches which, although accurate, were too computationally intractable to be practical for the study of PCET systems. In this dissertation, we describe two approaches to develop tractable NEO methods. Firstly, we describe the formulation of a multi-component density functional theory approach within the NEO framework, which involves the derivation of several electron-proton correlation functionals to accurately account for electron
Non-adiabatic description of proton emission from the odd-odd nucleus 130Eu
Directory of Open Access Journals (Sweden)
Patial Monika
2014-03-01
Full Text Available We discuss the non-adiabatic quasiparticle approach for calculating the rotational spectra and decay width of odd-odd proton emitters. The Coriolis effects are incorporated in both the parent and daughter wave functions. Results for the two probable ground states (1+ and 2+ of the proton emitter 130Eu are discussed. With our calculations, we confirm the proton emitting state to be the Iπ = 1+ state, irrespective of the strength of the Coriolis interaction. This study provides us with an opportunity to look into the details of wave functions of deformed odd-odd nuclei to which the proton emission halflives are quite sensitive.
Spin effects in strong-field laser-electron interactions
International Nuclear Information System (INIS)
Ahrens, S; Bauke, H; Müller, T-O; Villalba-Chávez, S; Müller, C
2013-01-01
The electron spin degree of freedom can play a significant role in relativistic scattering processes involving intense laser fields. In this contribution we discuss the influence of the electron spin on (i) Kapitza-Dirac scattering in an x-ray laser field of high intensity, (ii) photo-induced electron-positron pair production in a strong laser wave and (iii) multiphoton electron-positron pair production on an atomic nucleus. We show that in all cases under consideration the electron spin can have a characteristic impact on the process properties and their total probabilities. To this end, spin-resolved calculations based on the Dirac equation in the presence of an intense laser field are performed. The predictions from Dirac theory are also compared with the corresponding results from the Klein-Gordon equation.
Radiation effects on relativistic electrons in strong external fields
International Nuclear Information System (INIS)
Iqbal, Khalid
2013-01-01
The effects of radiation of high energy electron beams are a major issue in almost all types of charged particle accelerators. The objective of this thesis is both the analytical and numerical study of radiation effects. Due to its many applications the study of the self force has become a very active and productive field of research. The main part of this thesis is devoted to the study of radiation effects in laser-based plasma accelerators. Analytical models predict the existence of radiation effects. The investigation of radiation reaction show that in laser-based plasma accelerators, the self force effects lower the energy gain and emittance for moderate energies electron beams and increase the relative energy spread. However, for relatively high energy electron beams, the self radiation and retardation (radiation effects of one electron on the other electron of the system) effects increase the transverse emittance of the beam. The energy gain decreases to even lower value and relative energy spread increases to even higher value due to high radiation losses. The second part of this thesis investigates with radiation reaction in focused laser beams. Radiation effects are very weak even for high energy electrons. The radiation-free acceleration and the simple practical setup make direct acceleration in a focused laser beam very attractive. The results presented in this thesis can be helpful for the optimization of future electron acceleration experiments, in particular in the case of laser-plasma accelerators.
Effective magnetic moment of neutrinos in strong magnetic fields
Pérez, A; Masood, S S; Gaitan, R; Rodríguez, S
2002-01-01
In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)
The Connect Effect Building Strong Personal, Professional, and Virtual Networks
Dulworth, Michael
2008-01-01
Entrepreneur and executive development expert Mike Dulworth's THE CONNECT EFFECT provides readers with a simple framework and practical tools for developing that crucial competitive advantage: a high-quality personal, professional/organizational and virtual network.
DEFF Research Database (Denmark)
Denisov, S.; Flach, S.; Ovchinnikov, A. A.
2002-01-01
We consider low-dimensional dynamical systems exposed to a heat bath and to additional ac fields. The presence of these ac fields may lead to a breaking of certain spatial or temporal symmetries, which in turn cause nonzero averages of relevant observables. Nonlinear (non)adiabatic response is em...... is employed to explain the effect. We consider a case of a particle in a periodic potential as an example and discuss the relevant symmetry breakings and the mechanisms of rectification of the current in such a system.......We consider low-dimensional dynamical systems exposed to a heat bath and to additional ac fields. The presence of these ac fields may lead to a breaking of certain spatial or temporal symmetries, which in turn cause nonzero averages of relevant observables. Nonlinear (non)adiabatic response...
Mendieta-Moreno, Jesús I; Trabada, Daniel G; Mendieta, Jesús; Lewis, James P; Gómez-Puertas, Paulino; Ortega, José
2016-11-03
The absorption of ultraviolet radiation by DNA may result in harmful genetic lesions that affect DNA replication and transcription, ultimately causing mutations, cancer, and/or cell death. We analyze the most abundant photochemical reaction in DNA, the cyclobutane thymine dimer, using hybrid quantum mechanics/molecular mechanics (QM/MM) techniques and QM/MM nonadiabatic molecular dynamics. We find that, due to its double helix structure, DNA presents a free energy barrier between nonreactive and reactive conformations leading to the photolesion. Moreover, our nonadiabatic simulations show that most of the photoexcited reactive conformations return to standard B-DNA conformations after an ultrafast nonradiative decay to the ground state. This work highlights the importance of dynamical effects (free energy, excited-state dynamics) for the study of photochemical reactions in biological systems.
Effective bounds on strong unicity in L1-approximation
DEFF Research Database (Denmark)
Kohlenbach, Ulrich; Oliva, Paulo B.
In this paper we present another case study in the general project of Proof Mining which means the logical analysis of prima facie non-effective proofs with the aim of extracting new computationally relevant data. We use techniques based on monotone functional interpretation (developed in [17]) t...
Strong delayed interactive effects of metal exposure and warming
DEFF Research Database (Denmark)
Debecker, Sara; Dinh, Khuong Van; Stoks, Robby
2017-01-01
As contaminants are often more toxic at higher temperatures, predicting their impact under global warming remains a key challenge for ecological risk assessment. Ignoring delayed effects, synergistic interactions between contaminants and warming, and differences in sensitivity across species......’ ranges could lead to an important underestimation of the risks. We addressed all three mechanisms by studying effects of larval exposure to zinc and warming before, during, and after metamorphosis in Ischnura elegans damselflies from high- and lowlatitude populations. By integrating these mechanisms...... was especially remarkable in high-latitude animals, as they appeared almost insensitive to zinc during the larval stage. Second, the well-known synergism between metals and warming was manifested not only during the larval stage but also after metamorphosis, yet notably only in low-latitude damselflies...
Effect of strong fragrance on olfactory detection threshold.
Fasunla, Ayotunde James; Douglas, David Dayo; Adeosun, Aderemi Adeleke; Steinbach, Silke; Nwaorgu, Onyekwere George Benjamin
2014-09-01
To assess the olfactory threshold of healthy volunteers at the University College Hospital, Ibadan and to investigate the effect of perfume on their olfactory detection thresholds. A quasi-experimental study on olfactory detection thresholds of healthy volunteers from September 2013 to November 2013. Tertiary health institution. A structured questionniare was administered to the participants in order to obtain information on sociodemographics, occupation, ability to perceive smell, use of perfume, effects of perfume on appetite and self-confidence, history of allergy, and previous nasal surgery. Participants subjectively rated their olfactory performance. Subsequently, they had olfactory detection threshold testing done at baseline and after exposure to perfume with varied concentrations of n-butanol in a forced triple response and staircase fashion. Healthy volunteers, 37 males and 63 females, were evaluated. Their ages ranged from 19 to 59 years with a mean of 31 years ± 8. Subjectively, 94% of the participants had excellent olfactory function. In the pre-exposure forced triple response, 88% were able to detect the odor at ≤.25 mmol/l concentration while in the post-exposure forced triple response, only 66% were able to detect the odor at ≤.25 mmol/l concentration. There is also a statistical significant difference in the olfactory detection threshold score between the pre-exposure and post-exposure period in the participants (P fragrances affects the olfactory detection threshold. Therefore patients and clinicians should be aware of this and its effects on the outcome of test of olfaction. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.
Stirling engines using working fluids with strong real gas effects
International Nuclear Information System (INIS)
Invernizzi, Costante M.
2010-01-01
Real gas effects typical of the critical region of working fluids are a powerful tool to increase the energy performances of Stirling cycles, mainly at low top temperatures. To carry out the compression near the critical region the working fluids must have a critical temperature near environmental conditions and the use of organic working substances (pure or in suitable mixtures) as a matter of fact begins compulsory. The moderate thermal stability of the organic working fluids limits the maximum temperatures to 300-400 deg. C and as a consequence, the achievable cycles efficiencies result rather low. Carbon dioxide, with a critical temperature of 31 deg. C, is, among the traditionally inorganic gases, an exception and is considered here in comparison with organic substances. But the good thermodynamics of the cycles allows, in the considered cases, conversion efficiencies of about 20%, with good specific powers. The good energy performance of real gas Stirling cycles is obtained at the cost of high maximum cycle pressure, in the range of at least 100-300 bar. These high pressures nevertheless have large positive effects on the heat power transferred per unit of pumping mechanical power, and the low top temperatures have a positive influence on the material problems for the hottest engine parts.
Strong surface effect on direct bulk flexoelectric response in solids
International Nuclear Information System (INIS)
Yurkov, A. S.; Tagantsev, A. K.
2016-01-01
In the framework of a continuum theory, it is shown that the direct bulk flexoelectric response of a finite sample essentially depends on the surface polarization energy, even in the thermodynamic limit where the body size tends to infinity. It is found that a modification of the surface energy can lead to a change in the polarization response by a factor of two. The origin of the effect is an electric field produced by surface dipoles induced by the strain gradient. The unexpected sensitivity of the polarization response to the surface energy in the thermodynamic limit is conditioned by the fact that the moments of the surface dipoles may scale as the body size
Virshup, Aaron M.; Chen, Jiahao; Martínez, Todd J.
2012-12-01
Conical intersections play a critical role in the nonadiabatic relaxation of excited electronic states. However, there are an infinite number of these intersections and it is difficult to predict which are actually relevant. Furthermore, traditional descriptors such as intrinsic reaction coordinates and steepest descent paths often fail to adequately characterize excited state reactions due to their highly nonequilibrium nature. To address these deficiencies in the characterization of excited state mechanisms, we apply a nonlinear dimensionality reduction scheme (diffusion mapping) to generate reaction coordinates directly from ab initio multiple spawning dynamics calculations. As illustrated with various examples of photoisomerization dynamics, excited state reaction pathways can be derived directly from simulation data without any a priori specification of relevant coordinates. Furthermore, diffusion maps also reveal the influence of intersection topography on the efficiency of electronic population transfer, providing further evidence that peaked intersections promote nonadiabatic transitions more effectively than sloped intersections. Our results demonstrate the usefulness of nonlinear dimensionality reduction techniques as powerful tools for elucidating reaction mechanisms beyond the statistical description of processes on ground state potential energy surfaces.
Spin-Orbit Coupling Drives Femtosecond Nonadiabatic Dynamics in a Transition Metal Compound.
Carbery, William P; Verma, Archana; Turner, Daniel B
2017-03-16
Transient absorption measurements conducted using broadband, 6 fs laser pulses reveal unexpected femtosecond dynamics in the [IrBr 6 ] 2- model system. Vibrational spectra and the X-ray crystal structure indicate that these dynamics are not induced by a Jahn-Teller distortion, a type of conical intersection typically associated with the spectral features of transition metal compounds. Two-dimensional electronic spectra of [IrBr 6 ] 2- contain 23 cross peaks, which necessarily arise from spin-orbit coupling. Real-valued 2D spectra support a spectroscopic basis where strong nonadiabatic coupling, ascribed to multiple conical intersections, mediates rapid energy relaxation to the lowest-energy excited state. Subsequent analysis gives rise to a more generalized description of a conical intersection as a degeneracy between two adiabatic states having the same total angular momentum.
Energy Technology Data Exchange (ETDEWEB)
Castro, A., E-mail: acastro@bifi.es [Institute for Biocomputation and Physics of Complex Systems (BIFI) and Zaragoza Scientific Center for Advanced Modelling (ZCAM), University of Zaragoza, 50018 Zaragoza (Spain); Isla, M. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47005 Valladolid (Spain); Martinez, Jose I. [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, ES-28049 Madrid (Spain); Alonso, J.A. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47005 Valladolid (Spain)
2012-05-03
Graphical abstract: Two trajectories for the collision of a proton with the Lithium tetramer. On the left, the proton is scattered away, and a Li{sub 2} molecule plus two isolated Lithium atoms result. On the right, the proton is captured and a LiH molecule is created. Highlights: Black-Right-Pointing-Pointer Scattering of a proton with Lithium clusters described from first principles. Black-Right-Pointing-Pointer Description based on non-adiabatic molecular dynamics. Black-Right-Pointing-Pointer The electronic structure is described with time-dependent density-functional theory. Black-Right-Pointing-Pointer The method allows to discern reaction channels depending on initial parameters. - Abstract: We have employed non-adiabatic molecular dynamics based on time-dependent density-functional theory to characterize the scattering behavior of a proton with the Li{sub 4} cluster. This technique assumes a classical approximation for the nuclei, effectively coupled to the quantum electronic system. This time-dependent theoretical framework accounts, by construction, for possible charge transfer and ionization processes, as well as electronic excitations, which may play a role in the non-adiabatic regime. We have varied the incidence angles in order to analyze the possible reaction patterns. The initial proton kinetic energy of 10 eV is sufficiently high to induce non-adiabatic effects. For all the incidence angles considered the proton is scattered away, except in one interesting case in which one of the Lithium atoms captures it, forming a LiH molecule. This theoretical formalism proves to be a powerful, effective and predictive tool for the analysis of non-adiabatic processes at the nanoscale.
Electronically Nonadiabatic Dynamics via Semiclassical Initial Value Methods
Energy Technology Data Exchange (ETDEWEB)
Miller, William H.
2008-12-11
In the late 1970's Meyer and Miller (MM) [J. Chem. Phys. 70, 3214 (1979)] presented a classical Hamiltonian corresponding to a finite set of electronic states of a molecular system (i.e., the various potential energy surfaces and their couplings), so that classical trajectory simulations could be carried out treating the nuclear and electronic degrees of freedom (DOF) in an equivalent dynamical framework (i.e., by classical mechanics), thereby describing non-adiabatic dynamics in a more unified manner. Much later Stock and Thoss (ST) [Phys. Rev. Lett. 78, 578 (1997)] showed that the MM model is actually not a 'model', but rather a 'representation' of the nuclear-electronic system; i.e., were the MMST nuclear-electronic Hamiltonian taken as a Hamiltonian operator and used in the Schroedinger equation, the exact (quantum) nuclear-electronic dynamics would be obtained. In recent years various initial value representations (IVRs) of semiclassical (SC) theory have been used with the MMST Hamiltonian to describe electronically non-adiabatic processes. Of special interest is the fact that though the classical trajectories generated by the MMST Hamiltonian (and which are the 'input' for an SC-IVR treatment) are 'Ehrenfest trajectories', when they are used within the SC-IVR framework the nuclear motion emerges from regions of non-adiabaticity on one potential energy surface (PES) or another, and not on an average PES as in the traditional Ehrenfest model. Examples are presented to illustrate and (hopefully) illuminate this behavior.
Nonadiabatic quantum Vlasov equation for Schwinger pair production
International Nuclear Information System (INIS)
Kim, Sang Pyo; Schubert, Christian
2011-01-01
Using Lewis-Riesenfeld theory, we derive an exact nonadiabatic master equation describing the time evolution of the QED Schwinger pair-production rate for a general time-varying electric field. This equation can be written equivalently as a first-order matrix equation, as a Vlasov-type integral equation, or as a third-order differential equation. In the last version it relates to the Korteweg-de Vries equation, which allows us to construct an exact solution using the well-known one-soliton solution to that equation. The case of timelike delta function pulse fields is also briefly considered.
Observational tests of non-adiabatic Chaplygin gas
Carneiro, S.; Pigozzo, C.
2014-01-01
In a previous paper it was shown that any dark sector model can be mapped into a non-adiabatic fluid formed by two interacting components, one with zero pressure and the other with equation-of-state parameter $\\omega = -1$. It was also shown that the latter does not cluster and, hence, the former is identified as the observed clustering matter. This guarantees that the dark matter power spectrum does not suffer from oscillations or instabilities. It applies in particular to the generalised Ch...
Non-adiabatic study of the Kepler subgiant KIC 6442183
Directory of Open Access Journals (Sweden)
Grosjean M.
2015-01-01
Full Text Available Thanks to the precision of Kepler observations, [3] were able to measure the linewidth and amplitude of individual modes (including mixed modes in several subgiant power spectra. We perform a forward modelling of a Kepler subgiant based on surface properties and observed frequencies. Non-adiabatic computations including a time- dependent treatment of convection give the lifetimes of radial and non-radial modes. Next, combining the lifetimes and inertias with a stochastic excitation model gives the amplitudes of the modes. We can now directly compare theoretical and observed linewidths and amplitudes of mixed-modes to obtain new constraints on our theoretical models.
International Nuclear Information System (INIS)
Auluck, S.K.H.
1982-01-01
A method of treating problems involving strongly nonadiabatic particle orbits in a magnetic field is described for the case when the system is long-lived on the collisional time scale. A canonical distribution P=Z -1 exp-β(H+Ωpsub(theta)) results from maximization of entropy subject to conservation of the Hamiltonian H and canonical angular momentum psub(theta) for an azimuthally symmetric system. By taking the MIGMA problem as an example, the method of determining the constants β,Ω,Z from the average energy, average angular momentum and the total number of particles is illustrated. Associated physical effects are discussed. (author)
Nonadiabatic Berry phase in nanocrystalline magnets
Directory of Open Access Journals (Sweden)
R. Skomski
2017-05-01
Full Text Available It is investigated how a Berry phase is created in polycrystalline nanomagnets and how the phase translates into an emergent magnetic field and into a topological Hall-effect contribution. The analysis starts directly from the spin of the conduction electrons and does not involve any adiabatic Hamiltonian. Completely random spin alignment in the nanocrystallites does not lead to a nonzero emergent field, but a modulation of the local magnetization does. As an explicit example, we consider a wire with a modulated cone angle.
The exact forces on classical nuclei in non-adiabatic charge transfer
International Nuclear Information System (INIS)
Agostini, Federica; Abedi, Ali; Suzuki, Yasumitsu; Min, Seung Kyu; Gross, E. K. U.; Maitra, Neepa T.
2015-01-01
The decomposition of electronic and nuclear motion presented in Abedi et al. [Phys. Rev. Lett. 105, 123002 (2010)] yields a time-dependent potential that drives the nuclear motion and fully accounts for the coupling to the electronic subsystem. Here, we show that propagation of an ensemble of independent classical nuclear trajectories on this exact potential yields dynamics that are essentially indistinguishable from the exact quantum dynamics for a model non-adiabatic charge transfer problem. We point out the importance of step and bump features in the exact potential that are critical in obtaining the correct splitting of the quasiclassical nuclear wave packet in space after it passes through an avoided crossing between two Born-Oppenheimer surfaces and analyze their structure. Finally, an analysis of the exact potentials in the context of trajectory surface hopping is presented, including preliminary investigations of velocity-adjustment and the force-induced decoherence effect
Effect of strong electrolytes on edible oils part III: viscosity of canola ...
African Journals Online (AJOL)
Effect of strong electrolytes on the viscosity of canola oil in 1,4 dioxane was undertaken. The viscosity of oil in 1,4 dioxane was found to increase with the concentration of oil and decrease with rise in temperature. Strong electrolytes reduce the rate of flow of oil in 1,4 dioxane. It was noted that amongst these electrolytes, ...
Yokoyama, Tomohiro; Eto, Mikio; Nazarov, Yuli
2014-03-01
We theoretically investigate the Josephson junction using quasi-one dimensional semiconductor nanowires with strong spin-orbit (SO) interaction, e.g., InSb. First, we examine a simple model using a single scatterer to describe the elastic scattering due to impurities and SO interaction in the normal region.[1] The Zeeman effect is taken into account by the spin-dependent phase shift of electron and hole through the system. The interplay between SO interaction and Zeeman effect results in a finite supercurrent even when the phase difference between two superconductors is zero. Moreover, the critical current depends on its current direction if more than one conduction channel is present in the nanowire. Next, we perform a numerical simulation by the tight-binding model for the nanowire to confirm our simple model. Then, we show that a spin-dependent Fermi velocity due to the SO interaction causes the anomalous Josephson effect.
Photodissociation of FONO: an excited state nonadiabatic dynamics study.
Hilal, Allaa R; Hilal, Rifaat
2017-03-01
The photo dissociation of nitrosyl fluorite, FONO, a potential source of atmospheric fluorine, underlies its active role in ozone depletion and other activities in the troposphere. In the present work, the electronic structure of FONO is revisited at high level of ab initio and density functional theory (DFT) theoretical levels. Several different post SCF methods were used to compute excited states, vertical excitation energies and intensities, namely configuration interaction with single excitations (CIS), equation of motion coupled cluster with single and double excitations (EOM-CCSD), and symmetry adopted cluster configuration interaction (SAC-CI) methods. The potential energy functions along two internal coordinates, namely the F-ONO bond and the FONO dihedral angle, have been computed on the ground state relaxed potential energy surface (PES) for the ground, 5A' and 5A″ excited states using the EOM-CCSD method. In the gas phase, the decay of the excited states of FONO was examined closely by calculating the UV photoabsorption cross-section spectrum and by nonadiabatic dynamics simulations. Nonadiabatic dynamics were simulated by sampling 300 trajectories in two spectral windows at 3.0 ± 0.25 and 4.5 ± 0.25 eV using the surface hopping method. Two different photodissociation reaction pathways with two main products, including multifragmentation (FO+NO) and atomic elimination (F) mechanisms were identified. For the cis-isomer, the main photochemical channel is F+NO 2 , representing 67% of all processes. For the trans-isomer, however, the main dissociation pathway is (FO+NO). Graphical Abstract Photodisscociation of nitrosyl fluorite (FONO) seems to underlie its active role in ozone depletion and other activities in the troposphere. The present research revisits the electronic structure of FONO at high level of ab initio and DFT theoretical levels. Cis-trans isomerization and dissociation in the ground and low lying excited states were examined
Strong Effect of Azodye Layer Thickness on RM-Stabilized Photoalignment
2017-05-21
Strong Effect of Azodye Layer Thickness on RM-Stabilized Photoalignment Colin McGinty*, Valerie Finnemeyer**, Robert Reich**, Harry Clark...vertical alignment on these substrates. For the thinner BY layers, we do not see this strong evidence of out of plane reorientation. The out of...In this report we show the surprising effect that thin azodye layers demonstrate improved stability over those that are thicker. Figure 6
Nonadiabatic quantum wave packet dynamics of the H + H2 reaction ...
Indian Academy of Sciences (India)
Administrator
; nonadiabatic reaction dyanamics; coriolis coupling. 1. Introduction. The H + H2 → H2 + H exchange reaction has been and still is the cornerstone in the experimental and theo- retical research in the gas phase chemical reaction dynamics. 1.
Nontrivial effects of high-frequency excitation for strongly damped mechanical systems
DEFF Research Database (Denmark)
Fidlin, Alexander; Thomsen, Jon Juel
Some nontrivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial (depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based...... on a slightly modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical...
Nontrivial effects of high-frequency excitation for strongly damped mechanical systems
DEFF Research Database (Denmark)
Fidlin, Alexander; Thomsen, Jon Juel
2008-01-01
Some non-trivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-)equilibrium states can change...... that can be substantial depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based on a slightly...... modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the nontrivial behavior of a classical optimally...
DEFF Research Database (Denmark)
Mølgaard, Carsten; Kaalund, Søren; Christensen, Marianne
of treatment with functional foot orthoses, exercises, or orthoses with exercises. The intrinsic pedal muscles play an important role in support of the medial longitudinal arch. (2) There are however very little information of the effect from specific foot exercise as an imperative part of exercise program...... adolescent females (3). Soft foot orhtoses in addition to an exercise program resulted in significantly greater improvements in pain than treatment with flat insoles and exercises over eight weeks. A study from 2004 by Wiener-Ogilvie & Jones (4) found however no difference in outcome between 8 weeks...... to PFPS patients. The purpose of this prospective single blinded randomised study was to determine the effectiveness of a standardized foot training program combined with foot orthoses in patients with patellofemoral pain. This treatment was additional to a regular conservative patellofemoral regime...
Dust acoustic solitary and shock waves in strongly coupled dusty ...
Indian Academy of Sciences (India)
between nonlinear and dispersion effects can result in the formation of symmetrical solitary waves. Also shock ... et al have studied the effect of nonadiabatic dust charge variation on the nonlinear dust acoustic wave with ..... Figure 5 presents the border between oscillatory- and monotonic-type shock waves as functions of ...
DEFF Research Database (Denmark)
Thomsen, Jon Juel
2006-01-01
Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...
International Nuclear Information System (INIS)
Gralla, Megan B.; Gladders, Michael D.; Marrone, Daniel P.; Bayliss, Matthew; Carlstrom, John E.; Greer, Christopher; Hennessy, Ryan; Koester, Benjamin; Leitch, Erik; Sharon, Keren; Barrientos, L. Felipe; Bonamente, Massimiliano; Bulbul, Esra; Hasler, Nicole; Culverhouse, Thomas; Hawkins, David; Lamb, James; Gilbank, David G.; Joy, Marshall; Miller, Amber
2011-01-01
We have measured the Sunyaev-Zel'dovich (SZ) effect for a sample of 10 strong lensing selected galaxy clusters using the Sunyaev-Zel'dovich Array (SZA). The SZA is sensitive to structures on spatial scales of a few arcminutes, while the strong lensing mass modeling constrains the mass at small scales (typically <30''). Combining the two provides information about the projected concentrations of the strong lensing clusters. The Einstein radii we measure are twice as large as expected given the masses inferred from SZ scaling relations. A Monte Carlo simulation indicates that a sample randomly drawn from the expected distribution would have a larger median Einstein radius than the observed clusters about 3% of the time. The implied overconcentration has been noted in previous studies and persists for this sample, even when we take into account that we are selecting large Einstein radius systems, suggesting that the theoretical models still do not fully describe the observed properties of strong lensing clusters.
Gao, Aihua; Li, Jianpeng; Wang, Dehua; Ma, Xiaoguang; Wang, Meishan
2018-02-01
The photoisomerization processes of the second stablest isomer in the aromatic Schiff base, N-salicilydenemethylfurylamine, in the gas phase have been studied by static electronic structure calculations and surface-hopping dynamics simulations based on the Zhu-Nakamura theory. Various stable structures are obtained in the optimization because of different orientations of methyl-furyl part with respect to the salicylaldimine part and different orientations of hydroxy group with respect to the benzene ring. Upon photoexcitation into the first excited state, bond isomerization in the salicylaldimine part is completely suppressed until the strong excited-state hydrogen bond is broken. The decay pathway involves two excited-state minima, one in cis-enol form and the other in cis-keto form. After the excited-state proton transfer, twists of bonds lead to a conical intersection between the ground and excited states. After internal conversion around a conical intersection, the molecule is stabilized in cis- or trans-keto form. If the reverse hydrogen transfer process occurs in the ground state, the molecule will finally end up in the cis-enol region. The cis-keto and trans-keto isomers are observed as photoproducts. According to our full-dimensional nonadiabatic dynamics simulations, we find the excited-state intramolecular proton transfer and torsions of three single bonds in the chain to be responsible for photoisomerization of the second stablest isomer of N-salicilydenemethylfurylamine.
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Thomsen, Jon Juel; Snaeland, Sveinn Orri
2008-01-01
The aim of this article is to investigate how highfrequency (HF) excitation, combined with strong nonlinear elastic material behavior, influences the effective material or structural properties for low-frequency excitation and wave propagation. The HF effects are demonstrated on discrete linear...... spring-mass chains with non-linear inclusions. The presented analytical and numerical results suggest that the effective material properties can easily be altered by establishing finite amplitude HF standing waves in the non-linear regions of the chain....
Effective hadronic lagrangian in the strong coupling expansion of lattice QCD with Susskind fermions
International Nuclear Information System (INIS)
Azakov, S.I.; Aliev, E.S.
1987-12-01
The effective hadronic action in lattice QCD with U(N) and SU(N) gauge groups and with Susskind fermions is constructed in the framework of the strong coupling approximation. For arbitrary finite (odd) N (in particular N=3) we find an effective potential, vacuum expectation value of the (χ-barχ) and an effective action for the physical meson field π(x). (author). 19 refs
Grant, Leslie W.; Hindman, Jennifer; Stronge, James H.
2010-01-01
This entry in the James H. Stronge Research-to-Practice Series focuses on specific strategies teachers can use to improve the quality of their instruction. Studies have shown teacher quality to be the top indicator of student achievement, with the effects of good teachers apparent even as students move on to successive grades. In this book, Grant,…
Engineering the Dynamics of Effective Spin-Chain Models for Strongly Interacting Atomic Gases
DEFF Research Database (Denmark)
Volosniev, A. G.; Petrosyan, D.; Valiente, M.
2015-01-01
We consider a one-dimensional gas of cold atoms with strong contact interactions and construct an effective spin-chain Hamiltonian for a two-component system. The resulting Heisenberg spin model can be engineered by manipulating the shape of the external confining potential of the atomic gas. We...
Effects of interaction imbalance in a strongly repulsive one-dimensional Bose gas
DEFF Research Database (Denmark)
Barfknecht, Rafael Emilio; Zinner, Nikolaj Thomas; Foerster, Angela
2018-01-01
We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate...
Parity violation effects in the hydrogen atom in the field of a strong electromagnetic wave
International Nuclear Information System (INIS)
Labzovsky, L.N.; Mitrushchenkov, A.O.
1989-01-01
The parity violation effects in the hydrogen atom in a strong electromagnetic laser field are considered. It is shown that there is the possibility of hyperrate measurements of different constants of the weak interaction in the hydrogen magnetic resonance experiments. (orig.)
Effects of interaction imbalance in a strongly repulsive one-dimensional Bose gas
DEFF Research Database (Denmark)
Barfknecht, Rafael Emilio; Zinner, Nikolaj Thomas; Foerster, Angela
2018-01-01
We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calcula...
Non-Oberbeck-Boussinesq effects in strongly turbulent Rayleigh-Bénard convection
Ahlers, Günter; Brown, Eric; Fontenele Araujo Junior, F.; Funfschilling, Denis; Grossmann, Siegfried; Lohse, Detlef
2006-01-01
Non-Oberbeck–Boussinesq (NOB) effects on the Nusselt number $Nu$ and Reynolds number $\\hbox{\\it Re}$ in strongly turbulent Rayleigh–Bénard (RB) convection in liquids were investigated both experimentally and theoretically. In the experiments the heat current, the temperature difference, and the
Heavy quark mass effects and improved tests of the flavor independence of strong interactions
Energy Technology Data Exchange (ETDEWEB)
Burrows, P.N. [Univ. of Oxford (United Kingdom); SLD Collaboration
1998-08-01
A review is given of latest results on tests of the flavor independence of strong interactions. Heavy quark mass effects are evident in the data and are now taken into account at next-to-leading order in QCD perturbation theory. The strong-coupling ratios {alpha}{sub s}{sup b}/{alpha}{sub s}{sup uds} and {alpha}{sub s}{sup c}/{alpha}{sub s}{sup uds} are found to be consistent with unity. Determinations of the b-quark mass m{sub b} (M{sub Z}) are discussed.
Strong interaction effects in high-Z K sup minus atoms
Energy Technology Data Exchange (ETDEWEB)
Batty, C.J.; Eckhause, M.; Gall, K.P.; Guss, P.P.; Hertzog, D.W.; Kane, J.R.; Kunselman, A.R.; Miller, J.P.; O' Brien, F.; Phillips, W.C.; Powers, R.J.; Roberts, B.L.; Sutton, R.B.; Vulcan, W.F.; Welsh, R.E.; Whyley, R.J.; Winter, R.G. (Rutherford-Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom (GB) College of William and Mary, Williamsburg, Virginia 23185 Boston University, Boston, Massachusetts 02215 University of Wyoming, Laramie, Wyoming 82071 California Institute of Technology, Pasadena, California 91125 Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213)
1989-11-01
A systematic experimental study of strong interaction shifts, widths, and yields from high-{ital Z} kaonic atoms is reported. Strong interaction effects for the {ital K}{sup {minus}}(8{r arrow}7) transition were measured in U, Pb, and W, and the {ital K}{sup {minus}}(7{r arrow}6) transition in W was also observed. This is the first observation of two measurably broadened and shifted kaonic transitions in a single target and thus permitted the width of the upper state to be determined directly, rather than being inferred from yield data. The results are compared with optical-model calculations.
Nonadiabatic interaction between a charged particle and an MHD pulse
Directory of Open Access Journals (Sweden)
Y. Kuramitsu
2008-03-01
Full Text Available Interaction between a magnetohydrodynamic~(MHD pulse and a charged particle is discussed both numerically and theoretically. Charged particles can be accelerated efficiently in the presence of spatially correlated MHD waves, such as short large amplitude magnetic structures, by successive mirror reflection (Fermi process. In order to understand this process, we study the reflection probability of particles by the MHD pulses, focusing on the adiabaticity on the particle motion. When the particle velocity is small (adiabatic regime, the probability that the particle is reflected by the MHD pulse is essentially determined only by the pitch angle, independent from the velocity. On the other hand, in the non-adiabatic regime, the reflection probability is inversely proportional to the square root of the normalized velocity. We discuss our numerical as well as analytical results of the interaction process with various pulse amplitude, pulse shape, and the pulse winding number. The reflection probability is universally represented as a power law function independent from above pulse properties.
Generation of helical electron beams by a nonadiabatic gun
International Nuclear Information System (INIS)
Barroso, J.J.; Stellati, C.
1996-01-01
The design of a non-adiabatic gun to produce a 10A, 50kV hollow laminar electron beam for gyrotron applications is reported. The beam is extracted from the emitting ring in a direction parallel to the axial guide magnetic field and then propagates across the radial electric field in the anode gap. The electrons are thereby given a transverse velocity upon passing through the modulation anode region where an electrostatic pumping mechanism takes place, so that a considerable amount of the electron energy is converted to transverse kinetic energy. Such a beam extraction method gives rise to favourable features that are examined throughout the work. The dynamics of hollow electron beams with gyromotion propagating down a cylindrical drift tube are also analysed. Due to the action of the beam's self-space charge field, the transverse velocity spread has an oscillatory behaviour along the drift tube wherein the spatial automodulation period shortens with increasing current. Numerical simulation results indicate that even at a 10A beam current, the resulting transverse velocity spread is still less than the spread for a zero beam current. (UK)
Auger effect in the presence of strong x-ray pulses
International Nuclear Information System (INIS)
Liu Jicai; Sun Yuping; Wang Chuankui; Aagren, Hans; Gel'mukhanov, Faris
2010-01-01
We study the role of propagation of strong x-ray free-electron laser pulses on the Auger effect. When the system is exposed to a strong x-ray pulse the stimulated emission starts to compete with the Auger decay. As an illustration we present numerical results for Ar gas with the frequency of the incident x-ray pulse tuned in the 2p 3/2 -4s resonance. It is shown that the pulse propagation is accompanied by two channels of amplified spontaneous emission, 4s-2p 3/2 and 3s-2p 3/2 , which reshape the pulse when the system is inverted. The population inversion is quenched for longer propagation distances where lasing without inversion enhances the Stokes component. The results of simulations show that the propagation of the strong x-ray pulses affect intensively the Auger branching ratio.
Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf
2015-05-07
We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to
Hollenberg, Sebastian; Päs, Heinrich
2012-01-01
The standard wave function approach for the treatment of neutrino oscillations fails in situations where quantum ensembles at a finite temperature with or without an interacting background plasma are encountered. As a first step to treat such phenomena in a novel way, we propose a unified approach to both adiabatic and nonadiabatic two-flavor oscillations in neutrino ensembles with finite temperature and generic (e.g., matter) potentials. Neglecting effects of ensemble decoherence for now, we study the evolution of a neutrino ensemble governed by the associated quantum kinetic equations, which apply to systems with finite temperature. The quantum kinetic equations are solved formally using the Magnus expansion and it is shown that a convenient choice of the quantum mechanical picture (e.g., the interaction picture) reveals suitable parameters to characterize the physics of the underlying system (e.g., an effective oscillation length). It is understood that this method also provides a promising starting point for the treatment of the more general case in which decoherence is taken into account.
Empty creditors and strong shareholders: The real effects of credit risk trading. Second draft
Colonnello, Stefano; Efing, Matthias; Zucchi, Francesca
2016-01-01
Credit derivatives give creditors the possibility to transfer debt cash flow rights to other market participants while retaining control rights. We use the market for credit default swaps (CDSs) as a laboratory to show that the real effects of such debt unbundling crucially hinge on shareholder bargaining power. We find that creditors buy more CDS protection when facing strong shareholders to secure themselves a valuable outside option in distressed renegotiations. After the start of CDS trad...
[Effects of strong reductive approach on remediation of degraded facility vegetable soil].
Zhu, Tong-Bin; Meng, Tian-Zhu; Zhang, Jin-Bo; Cai, Zu-Cong
2013-09-01
High application rate of chemical fertilizers and unreasonable rotation in facility vegetable cultivation can easily induce the occurrence of soil acidification, salinization, and serious soil-borne diseases, while to quickly and effectively remediate the degraded facility vegetable soil can considerably increase vegetable yield and farmers' income. In this paper, a degraded facility vegetable soil was amended with 0, 3.75, 7.50, and 11.3 t C x hm(-2) of air-dried alfalfa and flooded for 31 days to establish a strong reductive environment, with the variations of soil physical and chemical properties and the cucumber yield studied. Under the reductive condition, soil Eh dropped quickly below 0 mV, accumulated soil NO3(-) was effectively eliminated, soil pH was significantly raised, and soil EC was lowered, being more evident in higher alfalfa input treatments. After treated with the strong reductive approach, the cucumber yield in the facility vegetable field reached 53.3-57.9 t x hm(-2), being significantly higher than that in un-treated facility vegetable field in last growth season (10.8 t x hm(-2)). It was suggested that strong reductive approach could effectively remediate the degraded facility vegetable soil in a short term.
Matching-pursuit/split-operator Fourier-transform simulations of nonadiabatic quantum dynamics
Wu, Yinghua; Herman, Michael F.; Batista, Victor S.
2005-03-01
A rigorous and practical approach for simulations of nonadiabatic quantum dynamics is introduced. The algorithm involves a natural extension of the matching-pursuit/split-operator Fourier-transform (MP/SOFT) method [Y. Wu and V. S. Batista, J. Chem. Phys. 121, 1676 (2004)] recently developed for simulations of adiabatic quantum dynamics in multidimensional systems. The MP/SOFT propagation scheme, extended to nonadiabatic dynamics, recursively applies the time-evolution operator as defined by the standard perturbation expansion to first-, or second-order, accuracy. The expansion is implemented in dynamically adaptive coherent-state representations, generated by an approach that combines the matching-pursuit algorithm with a gradient-based optimization method. The accuracy and efficiency of the resulting propagation method are demonstrated as applied to the canonical model systems introduced by Tully for testing simulations of dual curve-crossing nonadiabatic dynamics.
The quantum dynamics of electronically nonadiabatic chemical reactions
Truhlar, Donald G.
1993-01-01
Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally
Strong Stability Preserving Explicit Runge--Kutta Methods of Maximal Effective Order
Hadjimichael, Yiannis
2013-07-23
We apply the concept of effective order to strong stability preserving (SSP) explicit Runge--Kutta methods. Relative to classical Runge--Kutta methods, methods with an effective order of accuracy are designed to satisfy a relaxed set of order conditions but yield higher order accuracy when composed with special starting and stopping methods. We show that this allows the construction of four-stage SSP methods with effective order four (such methods cannot have classical order four). However, we also prove that effective order five methods---like classical order five methods---require the use of nonpositive weights and so cannot be SSP. By numerical optimization, we construct explicit SSP Runge--Kutta methods up to effective order four and establish the optimality of many of them. Numerical experiments demonstrate the validity of these methods in practice.
Using strong nonlinearity and high-frequency vibrations to control effective mechanical stiffness
DEFF Research Database (Denmark)
Thomsen, Jon Juel
2008-01-01
High-frequency excitation (HFE) can be used to change the effective stiffness of an elastic structure, and related quanti-ties such as resonance frequencies, wave speed, buckling loads, and equilibrium states. There are basically two ways to do this: By using parametrical HFE (with or without non...... the method of direct separation of motions with results of a modified multiple scales ap-proach, valid also for strong nonlinearity, the stiffening ef-fect is predicted for a generic 1-dof system, and results are tested against numerical simulation and ((it is planned)) laboratory experiments....
Three-loop Standard Model effective potential at leading order in strong and top Yukawa couplings
Energy Technology Data Exchange (ETDEWEB)
Martin, Stephen P. [Santa Barbara, KITP
2014-01-08
I find the three-loop contribution to the effective potential for the Standard Model Higgs field, in the approximation that the strong and top Yukawa couplings are large compared to all other couplings, using dimensional regularization with modified minimal subtraction. Checks follow from gauge invariance and renormalization group invariance. I also briefly comment on the special problems posed by Goldstone boson contributions to the effective potential, and on the numerical impact of the result on the relations between the Higgs vacuum expectation value, mass, and self-interaction coupling.
Attosecond counter-rotating-wave effect in xenon driven by strong fields
Anand, M.; Pabst, Stefan; Kwon, Ojoon; Kim, Dong Eon
2017-05-01
We investigate the subfemtosecond dynamics of a highly excited xenon atom coherently driven by a strong control field at which the Rabi frequency of the system is comparable to the frequency of a driving laser. The widely used rotating-wave approximation breaks down at such fields, resulting in features such as the counter-rotating-wave (CRW) effect. We present a time-resolved observation of the CRW effect in the highly excited 4 d-1n p xenon using attosecond transient absorption spectroscopy. Time-dependent many-body theory confirms the observation and explains the various features of the absorption spectrum seen in experiment.
Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms
Ostmann, Maike; Minář, Jiří; Marcuzzi, Matteo; Levi, Emanuele; Lesanovsky, Igor
2017-12-01
Motivated by recent progress in the experimental manipulation of cold atoms in optical lattices, we study three different protocols for non-adiabatic quantum state preparation and state transport in chains of Rydberg atoms. The protocols we discuss are based on the blockade mechanism between atoms which, when excited to a Rydberg state, interact through a van der Waals potential, and rely on single-site addressing. Specifically, we discuss protocols for efficient creation of an antiferromagnetic GHZ state, a class of matrix product states including a so-called Rydberg crystal and for the state transport of a single-qubit quantum state between two ends of a chain of atoms. We identify system parameters allowing for the operation of the protocols on timescales shorter than the lifetime of the Rydberg states while yielding high fidelity output states. We discuss the effect of positional disorder on the resulting states and comment on limitations due to other sources of noise such as radiative decay of the Rydberg states. The proposed protocols provide a testbed for benchmarking the performance of quantum information processing platforms based on Rydberg atoms.
Selective excitation in a three-state system using a hybrid adiabatic-nonadiabatic interaction
Song, Yunheung; Lee, Han-gyeol; Jo, Hanlae; Ahn, Jaewook
2016-08-01
The chirped-pulse interaction in the adiabatic coupling regime induces cyclic permutations of the energy states of a three-level system in the V -type configuration, which process is known as the three-level chirped rapid adiabatic passage (RAP). Here we show that a spectral hole in a chirped pulse can turn on or off the level mixing at adiabatic crossing points of this process, reducing the system to an effective two-level system. The given hybrid adiabatic-nonadiabatic transition enables selective excitation of the three-level system, controlled by the laser intensity and spectral position of the hole, as well as the sign of the chirp parameter. Experiments performed with shaped femtosecond laser pulses and the three lowest energy levels (5 S1 /2 , 5 P1 /2 , and 5 P3 /2 ) of atomic rubidium (Rb) show good agreement with the theoretically analyzed dynamics. The result indicates that our method, when being combined with the ordinary chirped RAP, implements an adiabatic transition between the Raman-coupled excited states. Furthermore, our laser intensity-dependent control may have applications including selective excitations of atoms or ions arranged in space when being used in conjunction with laser beam profile programming.
International Nuclear Information System (INIS)
Hatcher, Elizabeth; Soudackov, Alexander; Hammes-Schiffer, Sharon
2005-01-01
The dynamical aspects of a model proton-coupled electron transfer (PCET) reaction in solution are analyzed with molecular dynamics simulations. The rate for nonadiabatic PCET is expressed in terms of a time-dependent probability flux correlation function. The impact of the proton donor-acceptor and solvent dynamics on the probability flux is examined. The dynamical behavior of the probability flux correlation function is dominated by a solvent damping term that depends on the energy gap correlation function. The proton donor-acceptor motion does not impact the dynamical behavior of the probability flux correlation function but does influence the magnitude of the rate. The approximations previously invoked for the calculation of PCET rates are tested. The effects of solvent damping on the proton donor-acceptor vibrational motion are found to be negligible, and the short-time solvent approximation, in which only equilibrium fluctuations of the solvent are considered, is determined to be valid for these types of reactions. The analysis of PCET reactions is compared to previous analyses of single electron and proton transfer reactions. The dynamical behavior is qualitatively similar for all three types of reactions, but the time scale of the decay of the probability flux correlation function is significantly longer for single proton transfer than for PCET and single electron transfer due to a smaller solvent reorganization energy for proton transfer
Feng, Guosheng; Xie, Feng; Sovkov, Vladimir B.; Ma, Jie; Xiao, Liantuan; Jia, Suotang
2018-02-01
The situation is modeled, in which two electronic states of a diatomic molecule are nonadiabatically coupled to each other as well as to other states, so that levels of the former two states can be registered, while the latter (perturbing) states are unobserved in an experiment. An example being explored is the model of the states 23Πg ˜ 41Σ g + of Rb2; the computation is done with the multichannel (3-channel, where the third channel represents an effective unobserved perturber) split operator method. Besides the typical resonance-like shifts of a part of the levels, the cases are observed, which cannot be explained within the approximation of a pair-wise resonant interaction. We tested a capability to analyze the synthetic data via an estimate of the interaction matrix element from the magnitudes of the resonance-like shifts combined with an iterative correction of the potential functions, as well as via the two-channel close-coupling calculation.
Galbraith, M C E; Smeenk, C T L; Reitsma, G; Marciniak, A; Despré, V; Mikosch, J; Zhavoronkov, N; Vrakking, M J J; Kornilov, O; Lépine, F
2017-08-02
Unraveling ultrafast dynamical processes in highly excited molecular species has an impact on our understanding of chemical processes such as combustion or the chemical composition of molecular clouds in the universe. In this article we use short (benzene molecules and probe their dynamics using few-cycle VIS/NIR laser pulses. The excited states produced by the XUV pulses lie in an especially complex spectral region where multi-electronic effects play a dominant role. We show that very fast τ ≈ 20 fs nonadiabatic processes dominate the relaxation of these states, in agreement with the timescale expected for most excited cationic states in benzene. In the CH 3 + fragmentation channel of the doubly ionized benzene cation we identify pathways that involve structural rearrangement and proton migration to a specific carbon atom. Further, we observe non-trivial transient behavior in this fragment channel, which can be interpreted either in terms of propagation of the nuclear wavepacket in the initially excited electronic state of the cation or as a two-step electronic relaxation via an intermediate state.
Interaction effects in a microscopic quantum wire model with strong spin-orbit interaction
Winkler, G. W.; Ganahl, M.; Schuricht, D.; Evertz, H. G.; Andergassen, S.
2017-06-01
We investigate the effect of strong interactions on the spectral properties of quantum wires with strong Rashba spin-orbit (SO) interaction in a magnetic field, using a combination of matrix product state and bosonization techniques. Quantum wires with strong Rashba SO interaction and magnetic field exhibit a partial gap in one-half of the conducting modes. Such systems have attracted wide-spread experimental and theoretical attention due to their unusual physical properties, among which are spin-dependent transport, or a topological superconducting phase when under the proximity effect of an s-wave superconductor. As a microscopic model for the quantum wire we study an extended Hubbard model with SO interaction and Zeeman field. We obtain spin resolved spectral densities from the real-time evolution of excitations, and calculate the phase diagram. We find that interactions increase the pseudo gap at k = 0 and thus also enhance the Majorana-supporting phase and stabilize the helical spin order. Furthermore, we calculate the optical conductivity and compare it with the low energy spiral Luttinger liquid result, obtained from field theoretical calculations. With interactions, the optical conductivity is dominated by an excotic excitation of a bound soliton-antisoliton pair known as a breather state. We visualize the oscillating motion of the breather state, which could provide the route to their experimental detection in e.g. cold atom experiments.
Charging-delay effect on longitudinal dust acoustic shock wave in strongly coupled dusty plasma
International Nuclear Information System (INIS)
Ghosh, Samiran; Gupta, M.R.
2005-01-01
Taking into account the charging-delay effect, the nonlinear propagation characteristics of longitudinal dust acoustic wave in strongly coupled collisional dusty plasma described by generalized hydrodynamic model have been investigated. In the 'hydrodynamic limit', a Korteweg-de Vries Burger (KdVB) equation with a damping term arising due to dust-neutral collision is derived in which the Burger term is proportional to the dissipation due to dust viscosity through dust-dust correlation and charging-delay-induced anomalous dissipation. On the other hand, in the 'kinetic limit', a KdVB equation with a damping term and a nonlocal nonlinear forcing term arising due to memory-dependent strong correlation effect of dust fluid is derived in which the Burger term depends only on the charging-delay-induced dissipation. Numerical solution of integrodifferential equations reveals that (i) dissipation due to dust viscosity and principally due to charging delay causes excitation of the longitudinal dust acoustic shock wave in strongly coupled dusty plasma and (ii) dust-neutral collision does not appear to play any direct role in shock formation. The condition for the generation of shock is also discussed briefly
Sharma, Ramkishor; Jagannathan, Sandhya; Seshadri, T. R.; Subramanian, Kandaswamy
2017-10-01
Models of inflationary magnetogenesis with a coupling to the electromagnetic action of the form f2Fμ νFμ ν , are known to suffer from several problems. These include the strong coupling problem, the backreaction problem and also strong constraints due to the Schwinger effect. We propose a model which resolves all these issues. In our model, the coupling function, f , grows during inflation and transits to a decaying phase post-inflation. This evolutionary behavior is chosen so as to avoid the problem of strong coupling. By assuming a suitable power-law form of the coupling function, we can also neglect backreaction effects during inflation. To avoid backreaction post-inflation, we find that the reheating temperature is restricted to be below ≈1.7 ×104 GeV . The magnetic energy spectrum is predicted to be nonhelical and generically blue. The estimated present day magnetic field strength and the corresponding coherence length taking reheating at the QCD epoch (150 MeV) are 1.4 ×10-12 G and 6.1 ×10-4 Mpc , respectively. This is obtained after taking account of nonlinear processing over and above the flux-freezing evolution after reheating. If we consider also the possibility of a nonhelical inverse transfer, as indicated in direct numerical simulations, the coherence length and the magnetic field strength are even larger. In all cases mentioned above, the magnetic fields generated in our models satisfy the γ -ray bound below a certain reheating temperature.
Extended Parrondo's game and Brownian ratchets: Strong and weak Parrondo effect
Wu, Degang; Szeto, Kwok Yip
2014-02-01
Inspired by the flashing ratchet, Parrondo's game presents an apparently paradoxical situation. Parrondo's game consists of two individual games, game A and game B. Game A is a slightly losing coin-tossing game. Game B has two coins, with an integer parameter M. If the current cumulative capital (in discrete unit) is a multiple of M, an unfavorable coin pb is used, otherwise a favorable pg coin is used. Paradoxically, a combination of game A and game B could lead to a winning game, which is the Parrondo effect. We extend the original Parrondo's game to include the possibility of M being either M1 or M2. Also, we distinguish between strong Parrondo effect, i.e., two losing games combine to form a winning game, and weak Parrondo effect, i.e., two games combine to form a better-performing game. We find that when M2 is not a multiple of M1, the combination of B (M1) and B (M2) has strong and weak Parrondo effect for some subsets in the parameter space (pb,pg), while there is neither strong nor weak effect when M2 is a multiple of M1. Furthermore, when M2 is not a multiple of M1, a stochastic mixture of game A may cancel the strong and weak Parrondo effect. Following a discretization scheme in the literature of Parrondo's game, we establish a link between our extended Parrondo's game with the analysis of discrete Brownian ratchet. We find a relation between the Parrondo effect of our extended model to the macroscopic bias in a discrete ratchet. The slope of a ratchet potential can be mapped to the fair game condition in the extended model, so that under some conditions, the macroscopic bias in a discrete ratchet can provide a good predictor for the game performance of the extended model. On the other hand, our extended model suggests a design of a ratchet in which the potential is a mixture of two periodic potentials.
Strong coupling effects between a meta-atom and MIM nanocavity
Directory of Open Access Journals (Sweden)
San Chen
2012-09-01
Full Text Available In this paper, we investigate the strong coupling effects between a meta-atom and a metal-insulator-metal (MIM nanocavity. By changing the meta-atom sizes, we achieve the meta-atomic electric dipole, quadrupole or multipole interaction with the plasmonic nanocavity, in which characteristic anticrossing behaviors demonstrate the occurrence of the strong coupling. The various interactions present obviously different splitting values and behaviors of dependence on the meta-atomic position. The largest Rabi-type splittings, about 360.0 meV and 306.1 meV, have been obtained for electric dipole and quadrupole interaction, respectively. We attribute the large splitting to the highly-confined cavity mode and the large transition dipole of the meta-atom. Also the Rabi-type oscillation in time domain is given.
International Nuclear Information System (INIS)
Chen Shu; Yin Xiangguo; Guan Liming; Guan Xiwen; Batchelor, M. T.
2010-01-01
A significant feature of the one-dimensional super Tonks-Girardeau gas is its metastable gas-like state with a stronger Fermi-like pressure than for free fermions which prevents a collapse of atoms. This naturally suggests a way to search for such strongly correlated behavior in systems of interacting fermions in one dimension. We thus show that the strongly attractive Fermi gas without polarization can be effectively described by a super Tonks-Girardeau gas composed of bosonic Fermi pairs with attractive pair-pair interaction. A natural description of such super Tonks-Girardeau gases is provided by Haldane generalized exclusion statistics. In particular, they are equivalent to ideal particles obeying more exclusive statistics than Fermi-Dirac statistics.
Effects of Strong Correlations on the Disorder-Induced Zero Bias Anomaly
Atkinson, William; Song, Yun; Bulut, Sinan; Wortis, Rachel
2009-03-01
In conventional metals and semiconductors, density of states anomalies result from the interplay between disorder and interactions. Motivated by a number of experiments that find zero bias anomalies (ZBA) in transition metal oxides, we have performed calculations to determine the effect of strong correlations on the ZBA in disordered interacting systems. We use a self-consistent mean-field theory that incorporates strong correlations and treats spatial fluctuations of the disorder potential exactly. We discuss both the Anderson-Hubbard model and the extended Anderson-Hubbard model. We find that, even for a zero-range interaction, nonlocal self-energy corrections lead to the formation of an Altshuler-Aronov-like ZBA. In the extended Anderson-Hubbard model, Efros-Shklovskii-like physics dominates at large disorder.
Simulation of Reaction Dynamics: Nonadiabatic and Solvation Effects
National Research Council Canada - National Science Library
Hammes-Schiffer, Sharon
2001-01-01
This research involved four projects centered on the design of theoretical and computational approaches to predict promising energetic materials and to guide the efficient synthesis of these materials...
The Effective Potential Energy Surfaces of the Nonadiabatic Collision
2009-03-01
critical role photobiochemical processed such as in photosynthesis in plants , vision, and the photochemistry of DNA.4 The ability to accurately model...by ringing from the cubic spline interpolation. The PES values were mapped to a color palette containing 200 values with bins ranging from the...interpolation. The PES values were mapped to a color palette containing 200 values with bins ranging from the minimum value of the PES to the maximum
Nonadiabatic production of spinor condensates with a quadrupole-Ioffe-configuration trap
International Nuclear Information System (INIS)
Zhang, P.; Xu, Z.; You, L.
2006-01-01
Motivated by the recent experimental observation of multicomponent spinor condensates via a time-dependent quadrupole-Ioffe-configuration trap, we provide a general framework for the investigation of nonadiabatic Landau-Zener dynamics of a hyperfine spin, e.g., from an atomic magnetic dipole moment coupled to a weak time-dependent magnetic (B-) field. The spin flipped population distribution, or the so-called Majorona formula, is expressed in terms of system parameters and experimental observables; thus, the distribution provides much needed insight into the underlying mechanism for the production of spinor condensates due to nonadiabatic level crossings
Gor'kov, Lev P.
2016-02-01
We analyze the mathematical structure of equations for temperature TC of the superconductivity transition in a gas of interacting Fermi particles or at the phonon-mediated pairing in a metal in the case of nonadiabatic conditions ω0≥EF , i.e., when the characteristic phonon frequency ω0 is comparable or larger than the Fermi energy EF. As the methods of calculating TC in common superconductors are not applicable in the nonadiabatic regime, the integral equations for TC are derived in the logarithmic approximation. The new equations contain no divergent terms in the antiadiabatic limit. The results can be immediately generalized to anisotropic band superconductors.
Effective action for superfluid Fermi systems in the strong-coupling limit
International Nuclear Information System (INIS)
Dupuis, N.
2005-01-01
We derive the low-energy effective action for three-dimensional superfluid Fermi systems in the strong-coupling limit, where superfluidity originates from Bose-Einstein condensation of composite bosons. Taking into account density and pairing fluctuations on the same footing, we show that the effective action involves only the fermion density ρ r and its conjugate variable, the phase θ r of the pairing order parameter Δ r . We recover the standard action of a Bose superfluid of density ρ r /2, where the bosons have a mass m B =2m and interact via a repulsive contact potential with amplitude g B =4πa B /m B ,a B =2a (a the s-wave scattering length associated to the fermion-fermion interaction in vacuum). For lattice models, the derivation of the effective action is based on the mapping of the attractive Hubbard model onto the Heisenberg model in a uniform magnetic field, and a coherent state path integral representation of the partition function. The effective description of the Fermi superfluid in the strong-coupling limit is a Bose-Hubbard model with an intersite hopping amplitude t B =J/2 and an on-site repulsive interaction U B =2Jz, where J=4t 2 /U (t and -U are the intersite hopping amplitude and the on-site attraction in the (fermionic) Hubbard model, z the number of nearest-neighbor sites)
Effective action for superfluid Fermi systems in the strong-coupling limit
Dupuis, N.
2005-07-01
We derive the low-energy effective action for three-dimensional superfluid Fermi systems in the strong-coupling limit, where superfluidity originates from Bose-Einstein condensation of composite bosons. Taking into account density and pairing fluctuations on the same footing, we show that the effective action involves only the fermion density ρr and its conjugate variable, the phase θr of the pairing order parameter Δr . We recover the standard action of a Bose superfluid of density ρr/2 , where the bosons have a mass mB=2m and interact via a repulsive contact potential with amplitude gB=4πaB/mB,aB=2a ( a the s -wave scattering length associated to the fermion-fermion interaction in vacuum). For lattice models, the derivation of the effective action is based on the mapping of the attractive Hubbard model onto the Heisenberg model in a uniform magnetic field, and a coherent state path integral representation of the partition function. The effective description of the Fermi superfluid in the strong-coupling limit is a Bose-Hubbard model with an intersite hopping amplitude tB=J/2 and an on-site repulsive interaction UB=2Jz , where J=4t2/U ( t and -U are the intersite hopping amplitude and the on-site attraction in the (fermionic) Hubbard model, z the number of nearest-neighbor sites).
Effects of strong radiation reaction and quantum-electrodynamics on relativistic transparency
Zhang, Peng; Thomas, A. G. R.; Ridgers, C. P.
2013-10-01
Relativistic transparency is the process that optically switches the overdense plasma from opaque to transparent and enables light propagation through the otherwise opaque plasma, when light of sufficient intensity drives the electrons in the plasma to near light speeds. We study the relativistic transparency in radiation dominant and strong quantum electrodynamic (QED) regime, for the interaction of high-intensity laser pulses with a thin foil solid target. We analytically study the simplified motion of an electron in a circularly polarized plane wave to understand the physics of the transmissivity and absorption in the presence of classical and quantum-corrected, semiclassical radiation-reaction forces and the trapping of particles in nodes of laser standing wave through radiative cooling. These arguments are supported by both one dimensional and two dimensional particle-in-cell calculations including strong field QED effects. Measurement of the transmission of these pulses would be experimentally feasible and a robust test of the strong field QED particle-in-cell framework.
Drag Effect of Kompsat-1 During Strong Solar and Geomagnetic Activity
Directory of Open Access Journals (Sweden)
J. Park
2007-06-01
Full Text Available In this paper, we analyze the orbital variation of the KOrea Multi-Purpose SATellite-1(KOMPSAT-1 in a strong space environment due to satellite drag by solar and geomagnetic activities. The satellite drag usually occurs slowly, but becomes serious satellite drag when the space environment suddenly changes via strong solar activity like a big flare eruption or coronal mass ejections(CMEs. Especially, KOMPSAT-1 as a low earth orbit satellite has a distinct increase of the drag acceleration by the variations of atmospheric friction. We consider factors of solar activity to have serious effects on the satellite drag from two points of view. One is an effect of high energy radiation when the flare occurs in the Sun. This radiation heats and expands the upper atmosphere of the Earth as the number of neutral particles is suddenly increased. The other is an effect of Joule and precipitating particle heating caused by current of plasma and precipitation of particles during geomagnetic storms by CMEs. It also affects the density of neutral particles by heating the upper atmosphere. We investigate the satellite drag acceleration associated with the two factors for five events selected based on solar and geomagnetic data from 2001 to 2002. The major results can be summarized as follows. First, the drag acceleration started to increase with solar EUV radiation with the best cross-correlation (r = 0.92 for 1 day delayed F10.7. Second, the drag acceleration and Dst index have similar patterns when the geomagnetic storm is dominant and the drag acceleration abruptly increases during the strong geomagnetic storm. Third, the background variation of the drag accelerations is governed by the solar radiation, while their short term (less than a day variations is governed by geomagnetic storms.
Poly-ϵ-caprolactone/chitosan nanoparticles provide strong adjuvant effect for hepatitis B antigen.
Jesus, Sandra; Soares, Edna; Borchard, Gerrit; Borges, Olga
2017-10-01
This work aims to investigate the adjuvant effect of poly-ϵ-caprolactone/chitosan nanoparticles (NPs) for hepatitis B surface antigen (HBsAg) and the plasmid DNA encoding HBsAg (pRC/CMV-HBs). Both antigens were adsorbed onto preformed NPs. Vaccination studies were performed in C57BL/6 mice. Transfection efficiency was investigated in A549 cell line. HBsAg-adsorbed NPs generated strong anti-HBsAg IgG titers, mainly of IgG1 isotype, and induced antigen-specific IFN-γ and IL-17 secretion by spleen cells. The addition of pRC/CMV-HBs to the HBsAg-adsorbed NPs inhibited IL-17 secretion but had minor effect on IFN-γ levels. Lastly, pRC/CMV-HBs-loaded NPs generated a weak serum antibody response. Poly-ϵ-caprolactone/chitosan NPs provide a strong humoral adjuvant effect for HBsAg and induce a Th1/Th17-mediated cellular immune responses worth explore for hepatitis B virus vaccination.
Dispersion of Co/CNTs via strong electrostatic adsorption method: Thermal treatment effect
Energy Technology Data Exchange (ETDEWEB)
Akbarzadeh, Omid, E-mail: omid.akbarzadeh63@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my; Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Zabidi, Noor Asmawati Mohd, E-mail: noorasmawati-mzabidi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)
2015-07-22
The effect of different thermal treatment temperature on the structure of multi-walled carbon nanotubes (MWCNTs) and Co particle dispersion on CNTs support is studied using Strong electrostatic adsorption (SEA) method. The samples tested by N{sub 2}-adsorption, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). N{sub 2}-adsorption results showed BET surface area increased using thermal treatment and TEM images showed that increasing the thermal treatment temperature lead to flaky CNTs and defects introduced on the outer surface and Co particle dispersion increased.
Gain length fitting formula for free-electron lasers with strong space-charge effects
Directory of Open Access Journals (Sweden)
G. Marcus
2011-08-01
Full Text Available We present a power-fit formula, obtained from a variational analysis using three-dimensional free-electron laser theory, for the gain length of a high-gain free-electron laser’s fundamental mode in the presence of diffraction, uncorrelated energy spread, and longitudinal space-charge effects. The approach is inspired by the work of Xie [Nucl. Instrum. Methods Phys. Res., Sect. A 445, 59 (2000NIMAER0168-900210.1016/S0168-9002(0000114-5], and provides a useful shortcut for calculating the gain length of the fundamental Gaussian mode of a free-electron laser having strong space-charge effects in the 3D regime. The results derived from analytic theory are in good agreement with detailed numerical particle simulations that also include higher-order space-charge effects, supporting the assumptions made in the theoretical treatment and the variational solutions obtained in the single-mode limit.
STRONG FIELD EFFECTS ON EMISSION LINE PROFILES: KERR BLACK HOLES AND WARPED ACCRETION DISKS
International Nuclear Information System (INIS)
Wang Yan; Li Xiangdong
2012-01-01
If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.
Non trivial effect of strong high-frequency excitation on a nonlinear controlled system
DEFF Research Database (Denmark)
Fidlin, A.; Thomsen, Jon Juel
2004-01-01
due to control is usually high compared to uncontrolled systems. A standard optimal controller for a standard nonlinear system (a movable cart used to balance a pendulum vertically) is shown to exhibit pronounced bias error in presence of HF-excitation. The bias increases with increased excitation......Nontrivial effects of high-frequency excitation on mechanical uncontrolled systems have been investigated intensively in the last decade. Some of these effects are usually used in controlled systems in form of dither to smoothen out undesired friction and hysteresis. However the level of damping...... intensity, but it also increases with the increased control power. Analytic prediction for the bias shows, the interaction between fast excitation and strong damping terms in the control system to be the cause of the permanent control error. A "slow observer" ignoring fast motions is shown...
Trapped in the extinction vortex? Strong genetic effects in a declining vertebrate population
Directory of Open Access Journals (Sweden)
Larsson Mikael
2010-02-01
Full Text Available Abstract Background Inbreeding and loss of genetic diversity are expected to increase the extinction risk of small populations, but detailed tests in natural populations are scarce. We combine long-term population and fitness data with those from two types of molecular markers to examine the role of genetic effects in a declining metapopulation of southern dunlins Calidris alpina schinzii, an endangered shorebird. Results The decline is associated with increased pairings between related individuals, including close inbreeding (as revealed by both field observations of parentage and molecular markers. Furthermore, reduced genetic diversity seems to affect individual fitness at several life stages. Higher genetic similarity between mates correlates negatively with the pair's hatching success. Moreover, offspring produced by related parents are more homozygous and suffer from increased mortality during embryonic development and possibly also after hatching. Conclusions Our results demonstrate strong genetic effects in a rapidly declining population, emphasizing the importance of genetic factors for the persistence of small populations.
Strong matrix effect in low-energy He+ ion scattering from carbon
International Nuclear Information System (INIS)
Mikhailov, S.N.; Van den Oetelaar, L.C.A.; Brongersma, H.H.
1994-01-01
In low-energy ion scattering the contribution of neutralization processes to the scattered ion yield is very important in quantification. Neutralization of low-energy (1-3.5 keV) He + ions by carbon is found to be much stronger for graphitic than for carbidic carbon. The ion fraction for graphitic carbon for 2.5 keV 3 He + scattering over 136 is about 60 times lower than that for carbidic carbon. For the 4 He + isotope the effect is even larger. Such a strong matrix effect for one element has not been measured before in low-energy (1-3.5 keV) inert-gas ion scattering. The neutralization behaviour is discussed in terms of a special quasi-resonant neutralization process for graphite. ((orig.))
Energy Technology Data Exchange (ETDEWEB)
Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation)
2009-06-15
Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh{sub 2}Si{sub 2}.
International Nuclear Information System (INIS)
Shaginyan, V.R.; Amusia, M.Ya.; Popov, K.G.
2009-01-01
Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh 2 Si 2 .
Non-adiabatic dynamics of pyrrole: Dependence of deactivation mechanisms on the excitation energy
Czech Academy of Sciences Publication Activity Database
Barbatti, M.; Pittner, Jiří; Pederzoli, Marek; Werner, U.; Mitrić, R.; Bonačić-Koutecký, V.; Lischka, H.
2010-01-01
Roč. 375, č. 1 (2010), s. 26-34 ISSN 0301-0104 R&D Projects: GA AV ČR IAA400400810 Institutional research plan: CEZ:AV0Z40400503 Keywords : non-adiabatic dynamics * ultrafast phenomena * pyrrole Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.017, year: 2010
Nonadiabatic quantum reactive scattering of the OH(A 2Σ+)+D2
Zhang, Pei-Yu; Lu, Rui-Feng; Chu, Tian-Shu; Han, Ke-Li
2010-11-01
The seams of conical intersection exist between the ground (1 A2') and the first-excited (2 A2') electronic potential energy surfaces (PESs) of OH(A Σ2+,X Π2)+H2 system. This intersection induces the nonadiabatic quenching of OH(A Σ2+) by D2. We present nonadiabatic quantum dynamics study for OH(A Σ2+)+D2 on new five-dimensional coplanar PESs. The ab initio calculations of PESs are based on multireference configuration interaction (MRCI)/aug-cc-pVQZ level. A back-propagation neural network is utilized to fit the PESs and nonadiabatic coupling. High degrees of rotational excitation of quenched OH(X Π2) products are found in nonreactive quenching channel, and the quenched D2 products are vibrationally excited up to quantum number v2'=8. The theoretical results of nonadiabatic time-dependent wave-packet calculation are in good agreement with the existing experimental data.
Ideal quantum gas in an expanding cavity: nature of nonadiabatic force.
Nakamura, K; Avazbaev, S K; Sobirov, Z A; Matrasulov, D U; Monnai, T
2011-04-01
We consider a quantum gas of noninteracting particles confined in the expanding cavity and investigate the nature of the nonadiabatic force which is generated from the gas and acts on the cavity wall. First, with use of the time-dependent canonical transformation, which transforms the expanding cavity to the nonexpanding one, we can define the force operator. Second, applying the perturbative theory, which works when the cavity wall begins to move at time origin, we find that the nonadiabatic force is quadratic in the wall velocity and thereby does not break the time-reversal symmetry, in contrast with general belief. Finally, using an assembly of the transitionless quantum states, we obtain the nonadiabatic force exactly. The exact result justifies the validity of both the definition of the force operator and the issue of the perturbative theory. The mysterious mechanism of nonadiabatic transition with the use of transitionless quantum states is also explained. The study is done for both cases of the hard- and soft-wall confinement with the time-dependent confining length. ©2011 American Physical Society
Non-adiabatic collisions in H + O2 system: An ab initio study
Indian Academy of Sciences (India)
WINTEC
Abstract. An ab initio study on the low-lying potential energy surfaces of H+ + O2 system for different orientations (γ) of H+ have been undertaken employing the multi-reference configuration interaction. (MRCI) method and Dunning's cc-pVTZ basis set to examine their role in influencing the collision dyna- mics. Nonadiabatic ...
Non-adiabatic molecular dynamic simulations of opening reaction of molecular junctions
Czech Academy of Sciences Publication Activity Database
Zobač, Vladimír; Lewis, J.P.; Jelínek, Pavel
2016-01-01
Roč. 27, č. 28 (2016), 1-8, č. článku 285202. ISSN 0957-4484 R&D Projects: GA ČR(CZ) GA14-02079S Institutional support: RVO:68378271 Keywords : non-adiabatic molecular dynamics * molecular junctions * molecular switches * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.440, year: 2016
Between ethylene and polyenes--the non-adiabatic dynamics of cis-dienes
DEFF Research Database (Denmark)
Kuhlman, Thomas Scheby; Glover, William J; Mori, Toshifumi
2012-01-01
Using Ab Initio Multiple Spawning (AIMS) with a Multi-State Multi-Reference Perturbation theory (MS-MR-CASPT2) treatment of the electronic structure, we have simulated the non-adiabatic excited state dynamics of cyclopentadiene (CPD) and 1,2,3,4-tetramethyl-cyclopentadiene (Me4-CPD) following...
TREATMENT OF NONADIABATIC TRANSITIONS BY DENSITY-MATRIX EVOLUTION AND MOLECULAR-DYNAMICS SIMULATIONS
MAVRI, J; BERENDSEN, HJC
1994-01-01
A density matrix evolution (DME) method (H.J.C. Berendsen and J. Mavri, J. Phys. Chem., 97 (1993) 13469) to simulate the dynamics of quantum systems embedded in a classical environment is presented. The DME method allows treatment of nonadiabatic transitions. As numerical examples the collinear
Non-adiabatic radiative collapse of a relativistic star under different ...
Indian Academy of Sciences (India)
We examine the role of space-time geometry in the non-adiabatic collapse of a star dissipating energy in the form of radial heat flow, studying its evolution under different initial conditions. The collapse of a star filled with a homogeneous perfect fluid is compared with that of a star filled with inhomogeneous imperfect fluid ...
Bactericidal Effect of Strong Acid Electrolyzed Water against Flow Enterococcus faecalis Biofilms.
Cheng, Xiaogang; Tian, Yu; Zhao, Chunmiao; Qu, Tiejun; Ma, Chi; Liu, Xiaohua; Yu, Qing
2016-07-01
This study evaluated the bactericidal effect of strong acid electrolyzed water (SAEW) against flow Enterococcus faecalis biofilm and its potential application as a root canal irrigant. Flow E. faecalis biofilms were generated under a constant shear flow in a microfluidic system. For comparison, static E. faecalis biofilms were generated under a static condition on coverslip surfaces. Both the flow and static E. faecalis biofilms were treated with SAEW. Sodium hypochlorite (NaOCl, 5.25%) and normal saline (0.9%) were included as the controls. Bacterial reductions were evaluated using confocal laser scanning microscopy and the cell count method. Morphological changes of bacterial cells were observed using scanning electron microscopy. The confocal laser scanning microscopic and cell count results showed that SAEW had a bactericidal effect similar to that of 5.25% NaOCl against both the flow and static E. faecalis biofilms. The scanning electron microscopic results showed that smooth, consecutive, and bright bacteria surfaces became rough, shrunken, and even lysed after treated with SAEW, similar to those in the NaOCl group. SAEW had an effective bactericidal effect against both the flow and static E. faecalis biofilms, and it might be qualified as a root canal irrigant for effective root canal disinfection. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Long-term effects of the strong African American families program on youths' alcohol use.
Brody, Gene H; Chen, Yi-Fu; Kogan, Steven M; Murry, Velma McBride; Brown, Anita C
2010-04-01
This report extends earlier accounts by addressing the effects of the Strong African American Families (SAAF) program across 65 months. Two hypotheses were tested: (a) Rural African American youths randomly assigned to participate in SAAF would demonstrate lower rates of alcohol use than would control youths more than 5 years later, and (b) SAAF's effects on deterring the onset of alcohol use in early adolescence would carry forward to mediate the program's long-term effects. African American youths in rural Georgia (mean age at pretest = 10.8 years) were assigned randomly to the SAAF group (n = 369) or to a control group (n = 298). Past-month alcohol use was assessed at pretest and at 9, 18, 29, 53, and 65 months after pretest. SAAF participants increased their alcohol use at a slower rate than did adolescents in the control condition across the follow-up assessments. At the 65-month assessment, SAAF participants reported having drunk alcohol half as often as did youths in the control group. Consistent with the second hypothesis, SAAF's effects on deterring initiation carried forward to account for its effects on alcohol use across time. Training in protective parenting processes and self-regulatory skills during preadolescence may contribute to a self-sustaining trajectory of disinterest in and avoidance of alcohol use during adolescence when peers begin to model and sanction it. (c) 2010 APA, all rights reserved
Heilbron, Karl; Toll-Riera, Macarena; Kojadinovic, Mila; MacLean, R Craig
2014-07-01
Our understanding of the evolutionary consequences of mutation relies heavily on estimates of the rate and fitness effect of spontaneous mutations generated by mutation accumulation (MA) experiments. We performed a classic MA experiment in which frequent sampling of MA lines was combined with whole genome resequencing to develop a high-resolution picture of the effect of spontaneous mutations in a hypermutator (ΔmutS) strain of the bacterium Pseudomonas aeruginosa. After ∼644 generations of mutation accumulation, MA lines had accumulated an average of 118 mutations, and we found that average fitness across all lines decayed linearly over time. Detailed analyses of the dynamics of fitness change in individual lines revealed that a large fraction of the total decay in fitness (42.3%) was attributable to the fixation of rare, highly deleterious mutations (comprising only 0.5% of fixed mutations). Furthermore, we found that at least 0.64% of mutations were beneficial and probably fixed due to positive selection. The majority of mutations that fixed (82.4%) were base substitutions and we failed to find any signatures of selection on nonsynonymous or intergenic mutations. Short indels made up a much smaller fraction of the mutations that were fixed (17.4%), but we found evidence of strong selection against indels that caused frameshift mutations in coding regions. These results help to quantify the amount of natural selection present in microbial MA experiments and demonstrate that changes in fitness are strongly influenced by rare mutations of large effect. Copyright © 2014 by the Genetics Society of America.
Directory of Open Access Journals (Sweden)
Oleg Kirichek
Full Text Available The nucleation and growth of crystalline ice during cooling, and further crystallization processes during re-warming are considered to be key processes determining the success of low temperature storage of biological objects, as used in medical, agricultural and nature conservation applications. To avoid these problems a method, termed vitrification, is being developed to inhibit ice formation by use of high concentration of cryoprotectants and ultra-rapid cooling, but this is only successful across a limited number of biological objects and in small volume applications. This study explores physical processes of ice crystal formation in a model cryoprotective solution used previously in trials on vitrification of complex biological systems, to improve our understanding of the process and identify limiting biophysical factors. Here we present results of neutron scattering experiments which show that even if ice crystal formation has been suppressed during quench cooling, the water molecules, mobilised during warming, can crystallise as detectable ice. The crystallisation happens right after melting of the glass phase formed during quench cooling, whilst the sample is still transiting deep cryogenic temperatures. We also observe strong water isotope effects on ice crystallisation processes in the cryoprotectant mixture. In the neutron scattering experiment with a fully protiated water component, we observe ready crystallisation occurring just after the glass melting transition. On the contrary with a fully deuteriated water component, the process of crystallisation is either completely or substantially supressed. This behaviour might be explained by nuclear quantum effects in water. The strong isotope effect, observed here, may play an important role in development of new cryopreservation strategies.
Effect of Floodplain Inundation on River Pollution in Taiwan's Strong Monsoonal Climate
Hester, E. T.; Lin, A. Y. C.
2017-12-01
River-floodplain interaction provides important benefits such as flood mitigation, provision of ecological habitat, and improved water quality. Human actions have historically reduced such interaction and associated benefits by diking, floodplain fill, and river regulation. In response, floodplain restoration has become popular in North America and Europe, but is less practiced in Asia. In Taiwan, unusually strong monsoons and steep terrain alter floodplain dynamics relative to elsewhere around the world, and provide a unique environment for floodplain management. We used numerical models of flow, transport, and reaction in river channels and floodplains to quantify the effect of river-floodplain interaction on water quality in Taiwan's strong monsoon and high topographic relief. We conducted sensitivity analyses of parameters such as river slope, monsoon severity, reservoir operation mode, degree of floodplain reconnection, contaminant reaction rate, and contaminant reaction type on floodplain connectivity and contaminant mitigation. We found significant differences in floodplain hydraulics and residence times in Taiwan's steep monsoonal environment relative to the shallower non-monsoonal environment typical of the eastern USA, with significant implications for water quality. For example, greater flashiness of floodplain inundation in Taiwan provides greater challenges for reconnecting sufficient floodplain volume to handle monsoonal runoff. Yet longer periods when floodplains are reliably dry means that such lands may have greater value for seasonal use such as parks or agriculture. The potential for floodplain restoration in Taiwan is thus significant, but qualitatively different than in the eastern USA.
Mental health care and average happiness: strong effect in developed nations.
Touburg, Giorgio; Veenhoven, Ruut
2015-07-01
Mental disorder is a main cause of unhappiness in modern society and investment in mental health care is therefore likely to add to average happiness. This prediction was checked in a comparison of 143 nations around 2005. Absolute investment in mental health care was measured using the per capita number of psychiatrists and psychologists working in mental health care. Relative investment was measured using the share of mental health care in the total health budget. Average happiness in nations was measured with responses to survey questions about life-satisfaction. Average happiness appeared to be higher in countries that invest more in mental health care, both absolutely and relative to investment in somatic medicine. A data split by level of development shows that this difference exists only among developed nations. Among these nations the link between mental health care and happiness is quite strong, both in an absolute sense and compared to other known societal determinants of happiness. The correlation between happiness and share of mental health care in the total health budget is twice as strong as the correlation between happiness and size of the health budget. A causal effect is likely, but cannot be proved in this cross-sectional analysis.
Biodiversity effects in the wild are common and as strong as key drivers of productivity
Duffy, J. Emmett; Godwin, Casey M.; Cardinale, Bradley J.
2017-09-01
More than 500 controlled experiments have collectively suggested that biodiversity loss reduces ecosystem productivity and stability. Yet the importance of biodiversity in sustaining the world’s ecosystems remains controversial, largely because of the lack of validation in nature, where strong abiotic forcing and complex interactions are assumed to swamp biodiversity effects. Here we test this assumption by analysing 133 estimates reported in 67 field studies that statistically separated the effects of biodiversity on biomass production from those of abiotic forcing. Contrary to the prevailing opinion of the previous two decades that biodiversity would have rare or weak effects in nature, we show that biomass production increases with species richness in a wide range of wild taxa and ecosystems. In fact, after controlling for environmental covariates, increases in biomass with biodiversity are stronger in nature than has previously been documented in experiments and comparable to or stronger than the effects of other well-known drivers of productivity, including climate and nutrient availability. These results are consistent with the collective experimental evidence that species richness increases community biomass production, and suggest that the role of biodiversity in maintaining productive ecosystems should figure prominently in global change science and policy.
Biodiversity effects in the wild are common and as strong as key drivers of productivity.
Duffy, J Emmett; Godwin, Casey M; Cardinale, Bradley J
2017-09-14
More than 500 controlled experiments have collectively suggested that biodiversity loss reduces ecosystem productivity and stability. Yet the importance of biodiversity in sustaining the world's ecosystems remains controversial, largely because of the lack of validation in nature, where strong abiotic forcing and complex interactions are assumed to swamp biodiversity effects. Here we test this assumption by analysing 133 estimates reported in 67 field studies that statistically separated the effects of biodiversity on biomass production from those of abiotic forcing. Contrary to the prevailing opinion of the previous two decades that biodiversity would have rare or weak effects in nature, we show that biomass production increases with species richness in a wide range of wild taxa and ecosystems. In fact, after controlling for environmental covariates, increases in biomass with biodiversity are stronger in nature than has previously been documented in experiments and comparable to or stronger than the effects of other well-known drivers of productivity, including climate and nutrient availability. These results are consistent with the collective experimental evidence that species richness increases community biomass production, and suggest that the role of biodiversity in maintaining productive ecosystems should figure prominently in global change science and policy.
The strong specific effect of coions on micellar growth from molecular-thermodynamic theory.
Koroleva, S V; Victorov, A I
2014-09-07
Viscoelastic solutions of ionic surfactants with an added salt exhibit a surprisingly strong dependence of their behavior on the nature of the added coion. We apply a recently proposed molecular-thermodynamic model to elucidate the effect of a coion's specificity on the aggregation of cationic and anionic surfactants. We show that micellar growth and branching are opposed by penetration of coions inside a micelle's corona leading to an increase of the aggregate's preferential curvature. These effects result from hydration/dehydration and dispersion attraction of coions and are only important at high salinity where electrostatic repulsion of coions from the micelle is screened and where branching of micelles and viscosity maxima are observed. At low and medium salinity, the coion plays a minor role; its effect on critical micelle concentration and sphere-to-rod transitions is insignificant. Our molecular-thermodynamic approach describes the specific effects of both counterions and coions and their different roles at different salinity levels based on a unified physical picture.
Room temperature strong coupling effects from single ZnO nanowire microcavity
Das, Ayan
2012-05-01
Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non-linearity in the polariton emission characteristics is observed at room temperature with a low threshold of 1.63 ?J/cm2, which corresponds to a polariton density an order of magnitude smaller than that for the Mott transition. The momentum distribution of the lower polaritons shows evidence of dynamic condensation and the absence of a relaxation bottleneck. The polariton relaxation dynamics were investigated by timeresolved measurements, which showed a progressive decrease in the polariton relaxation time with increase in polariton density. © 2012 Optical Society of America.
Global dynamics and bifurcation analysis of a host-parasitoid model with strong Allee effect.
Khan, Abdul Qadeer; Ma, Jiying; Xiao, Dongmei
2017-12-01
In this paper, we study the global dynamics and bifurcations of a two-dimensional discrete time host-parasitoid model with strong Allee effect. The existence of fixed points and their stability are analysed in all allowed parametric region. The bifurcation analysis shows that the model can undergo fold bifurcation and Neimark-Sacker bifurcation. As the parameters vary in a small neighbourhood of the Neimark-Sacker bifurcation condition, the unique positive fixed point changes its stability and an invariant closed circle bifurcates from the positive fixed point. From the viewpoint of biology, the invariant closed curve corresponds to the periodic or quasi-periodic oscillations between host and parasitoid populations. Furthermore, it is proved that all solutions of this model are bounded, and there exist some values of the parameters such that the model has a global attractor. These theoretical results reveal the complex dynamics of the present model.
Strong-field effects in Rabi oscillations between a single state and a superposition of states
International Nuclear Information System (INIS)
Zhdanovich, S.; Milner, V.; Hepburn, J. W.
2011-01-01
Rabi oscillations of quantum population are known to occur in two-level systems driven by spectrally narrow laser fields. In this work we study Rabi oscillations induced by shaped broadband femtosecond laser pulses. Due to the broad spectral width of the driving field, the oscillations are initiated between a ground state and a coherent superposition of excited states, or a ''wave packet,'' rather than a single excited state. Our experiments reveal an intricate dependence of the wave-packet phase on the intensity of the laser field. We confirm numerically that the effect is associated with the strong-field nature of the interaction and provide a qualitative picture by invoking a simple theoretical model.
Channel-closing effects in strong-field ionization by a bicircular field
Milošević, D. B.; Becker, W.
2018-03-01
Channel-closing effects, such as threshold anomalies and resonantlike intensity-dependent enhancements in strong-field ionization by a bicircular laser field are analyzed. A bicircular field consists of two coplanar corotating or counter-rotating circularly polarized fields having different frequencies. For the total detachment rate of a negative ion by a bicircular field we observe threshold anomalies and explain them using the Wigner threshold law and energy and angular momentum conservation. For the corotating bicircular case, these effects are negligible, while for the counter-rotating case they are pronounced and their position depends on the magnetic quantum number of the initial state. For high-order above-threshold ionization of rare-gas atoms by a counter-rotating bicircular laser field we observe very pronounced intensity-dependent enhancements. We find all four types of threshold anomalies known from collision theory. Contrary to the case of linear polarization, channel-closing effects for a bicircular field are visible also in the cutoff region of the electron energy spectrum, which is explained using quantum-orbit theory.
Strong quantum-confined stark effect in germanium quantum-well structures on silicon
International Nuclear Information System (INIS)
Kuo, Y.; Lee, Y. K.; Gei, Y.; Ren, S; Roth, J. E.; Miller, D. A.; Harris, J. S.
2006-01-01
Silicon is the dominant semiconductor for electronics, but there is now a growing need to integrate such component with optoelectronics for telecommunications and computer interconnections. Silicon-based optical modulators have recently been successfully demonstrated but because the light modulation mechanisms in silicon are relatively weak, long (for example, several millimeters) devices or sophisticated high-quality-factor resonators have been necessary. Thin quantum-well structures made from III-V semiconductors such as GaAs, InP and their alloys exhibit the much stronger Quantum-Confined Stark Effect (QCSE) mechanism, which allows modulator structures with only micrometers of optical path length. Such III-V materials are unfortunately difficult to integrate with silicon electronic devices. Germanium is routinely integrated with silicon in electronics, but previous silicon-germanium structures have also not shown strong modulation effects. Here we report the discovery of the QCSE, at room temperature, in thin germanium quantum-well structures grown on silicon. The QCSE here has strengths comparable to that in III-V materials. Its clarity and strength are particularly surprising because germanium is an indirect gap semiconductor, such semiconductors often display much weak optical effects than direct gap materials (such as the III-V materials typically used for optoelectronics). This discovery is very promising for small, high-speed, low-power optical output devices fully compatible with silicon electronics manufacture. (author)
Strong mechanically induced effects in DC current-biased suspended Josephson junctions
McDermott, Thomas; Deng, Hai-Yao; Isacsson, Andreas; Mariani, Eros
2018-01-01
Superconductivity is a result of quantum coherence at macroscopic scales. Two superconductors separated by a metallic or insulating weak link exhibit the AC Josephson effect: the conversion of a DC voltage bias into an AC supercurrent. This current may be used to activate mechanical oscillations in a suspended weak link. As the DC-voltage bias condition is remarkably difficult to achieve in experiments, here we analyze theoretically how the Josephson effect can be exploited to activate and detect mechanical oscillations in the experimentally relevant condition with purely DC current bias. We unveil how changing the strength of the electromechanical coupling results in two qualitatively different regimes showing dramatic effects of the oscillations on the DC-voltage characteristic of the device. These include the appearance of Shapiro-type plateaus for weak coupling and a sudden mechanically induced retrapping for strong coupling. Our predictions, measurable in state-of-the-art experimental setups, allow the determination of the frequency and quality factor of the resonator using DC only techniques.
International Nuclear Information System (INIS)
Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo
2011-01-01
Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields. (author)
Yamaguchi-Sekino, Sachiko; Sekino, Masaki; Ueno, Shoogo
2011-01-01
Humans are exposed daily to artificial and naturally occurring magnetic fields that originate from many different sources. We review recent studies that examine the biological effects of and medical applications involving electromagnetic fields, review the properties of static and pulsed electromagnetic fields that affect biological systems, describe the use of a pulsed electromagnetic field in combination with an anticancer agent as an example of a medical application that incorporates an electromagnetic field, and discuss the recently updated safety guidelines for static electromagnetic fields. The most notable modifications to the 2009 International Commission on Non-Ionizing Radiation Protection guidelines are the increased exposure limits, especially for those who work with or near electromagnetic fields (occupational exposure limits). The recommended increases in exposure were determined using recent scientific evidence obtained from animal and human studies. Several studies since the 1994 publication of the guidelines have examined the effects on humans after exposure to high static electromagnetic fields (up to 9.4 tesla), but additional research is needed to ascertain further the safety of strong electromagnetic fields.
Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum
Fujiwara, Yoshihisa; Tomishige, Masahiko; Itoh, Yasuhiro; Fujiwara, Masao; Shibata, Naho; Kosaka, Toshikazu; Hosoya, Hiroshi; Tanimoto, Yoshifumi
2006-05-01
Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum was studied by using a superconducting magnet. Around a centre of a round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic field (MF) of 8 T were observed. Near a wall of the vessel, however, swimming round and round along the wall at 0 T and aligned swimming of turning at right angles upon collision with the wall, which was remarkable around 1-4 T, were detected. It was experimentally revealed that the former MF-induced parallel swimming at the vessel centre was caused physicochemically by the parallel magnetic orientation of the cell itself. From magnetic field dependence of the extent of the orientation, the magnetic susceptibility anisotropy (χ ∥-χ ⊥) was first obtained to be 3.4× 10-23 emu cell-1 at 298 K for Paramecium caudatum. The orientation of the cell was considered to result from the magnetic orientation of the cell membrane. On the other hand, although mechanisms of the latter swimming near the vessel wall regardless of the absence and presence of the magnetic field are unclear at present, these experimental results indicate that whether the cell exists near the wall alters the magnetic field effect on the swimming in the horizontal magnetic field.
Hole dynamics and spin currents after ionization in strong circularly polarized laser fields
International Nuclear Information System (INIS)
Barth, Ingo; Smirnova, Olga
2014-01-01
We apply the time-dependent analytical R-matrix theory to develop a movie of hole motion in a Kr atom upon ionization by strong circularly polarized field. We find rich hole dynamics, ranging from rotation to swinging motion. The motion of the hole depends on the final energy and the spin of the photoelectron and can be controlled by the laser frequency and intensity. Crucially, hole rotation is a purely non-adiabatic effect, completely missing in the framework of quasistatic (adiabatic) tunneling theories. We explore the possibility to use hole rotation as a clock for measuring ionization time. Analyzing the relationship between the relative phases in different ionization channels we show that in the case of short-range electron-core interaction the hole is always initially aligned along the instantaneous direction of the laser field, signifying zero delays in ionization. Finally, we show that strong-field ionization in circular fields creates spin currents (i.e. different flow of spin-up and spin-down density in space) in the ions. This phenomenon is intimately related to the production of spin-polarized electrons in strong laser fields Barth and Smirnova (2013 Phys. Rev. A 88 013401). We demonstrate that rich spin dynamics of electrons and holes produced during strong field ionization can occur in typical experimental conditions and does not require relativistic intensities or strong magnetic fields. (paper)
Rahpeyma, Sahar
2016-08-11
The rock site characterization for earthquake engineering applications in Iceland is common due to the easily exposed older bedrock and more recent volcanic lava rock. The corresponding site amplification is generally assumed to be low but has not been comprehensively quantified, especially for volcanic rock. The earthquake strong-motion of the Mw6.3 Ölfus earthquake on 29 May 2008 and 1705 of its aftershocks recorded on the first small-aperture strong-motion array (ICEARRAY I) in Iceland showed consistent and significant variations in ground motion amplitudes over short distances (<2 km) in an urban area located mostly on lava rock. This study analyses the aftershock recordings to quantify the local site effects using the Horizontal to Vertical Spectral Ratio (HVSR) and Standard Spectral Ratio (SSR) methods. Additionally, microseismic data has been collected at array stations and analyzed using the HVSR method. The results between the methods are consistent and show that while the amplification levels remain relatively low, the predominant frequency varies systematically between stations and is found to correlate with the geological units. In particular, for stations on lava rock the underlying geologic structure is characterized by repeated lava-soil stratigraphy characterized by reversals in the shear wave velocity with depth. As a result, standard modeling of HVSR using vertically incident body waves does not apply. Instead, modeling the soil structure as a two-degree-of-freedom dynamic system is found to capture the observed predominant frequencies of site amplification. The results have important implications for earthquake resistant design of structures on rock sites characterized by velocity reversals. © 2016 Elsevier Ltd
Beyond Ehrenfest: correlated non-adiabatic molecular dynamics
International Nuclear Information System (INIS)
Horsfield, Andrew P; Bowler, D R; Fisher, A J; Todorov, Tchavdar N; Sanchez, Cristian G
2004-01-01
A method for introducing correlations between electrons and ions that is computationally affordable is described. The central assumption is that the ionic wavefunctions are narrow, which makes possible a moment expansion for the full density matrix. To make the problem tractable we reduce the remaining many-electron problem to a single-electron problem by performing a trace over all electronic degrees of freedom except one. This introduces both one- and two-electron quantities into the equations of motion. Quantities depending on more than one electron are removed by making a Hartree-Fock approximation. Using the first-moment approximation, we perform a number of tight binding simulations of the effect of an electric current on a mobile atom. The classical contribution to the ionic kinetic energy exhibits cooling and is independent of the bias. The quantum contribution exhibits strong heating, with the heating rate proportional to the bias. However, increased scattering of electrons with increasing ionic kinetic energy is not observed. This effect requires the introduction of the second moment
Effective potential in the strong-coupling lattice QCD with next-to-next-to-learning order effects
International Nuclear Information System (INIS)
Nakano, Takashi Z.; Miura, Kohtaroh; Ohnishi, Akira
2010-01-01
We derive an analytic expression of the effective potential at finite temperature (T) and chemical potential (μ) in the strong-coupling lattice QCD for color SU(3) including next-to-next-to-leading order (NNLO) effects in the strong coupling expansion. NNLO effective action terms are systematically evaluated in the leading order of the large dimensional (1/d) expansion, and are found to come from some types of connected two-plaquette configurations. We apply the extended Hubbard-Stratonovich transformation and a gluonic-dressed fermion technique to the effective action, and obtain the effective potential as a function of T, μ, and two order parameters: chiral condensate and vector potential field. The next-to-leading order (NLO) and NNLO effects result in modifications of the wave function renormalization factor, quark mass, and chemical potential. We find that T c,μ =0 and μ c,T =0 are similar to the NLO results, whereas the position of the critical point is sensitive to NNLO corrections. (author)
Disorder effects on helical edge transport in graphene under a strong tilted magnetic field
Huang, Chunli; Cazalilla, Miguel A.
2015-10-01
In a recent experiment, Young et al. [Nature (London) 505, 528 (2014), 10.1038/nature12800] observed a metal to insulator transition as well as transport through helical edge states in monolayer graphene under a strong, tilted magnetic field. Under such conditions, the bulk is a magnetic insulator which can exhibit metallic conduction through helical edges. It was found that the two-terminal conductance of the helical channels deviates from the expected quantized value (=e2/h per edge, at zero temperature). Motivated by this observation, we study the effect of disorder on the conduction through the edge channels. We show that, unlike for helical edges of topological insulators in semiconducting quantum wells, a disorder Rashba spin-orbit coupling does not lead to backscattering, at least to leading order. Instead, we find that the lack of perfect antialignment of the electron spins in the helical channels to be the most likely cause for backscattering arising from scalar (i.e., spin-independent) impurities. The intrinsic spin-orbit coupling and other time-reversal symmetry-breaking and/or sublattice parity-breaking potentials also lead to (subleading) corrections to the channel conductance.
Effect of dipole polarizability on positron binding by strongly polar molecules
International Nuclear Information System (INIS)
Gribakin, G F; Swann, A R
2015-01-01
A model for positron binding to polar molecules is considered by combining the dipole potential outside the molecule with a strongly repulsive core of a given radius. Using existing experimental data on binding energies leads to unphysically small core radii for all of the molecules studied. This suggests that electron–positron correlations neglected in the simple model play a large role in determining the binding energy. We account for these by including the polarization potential via perturbation theory and non-perturbatively. The perturbative model makes reliable predictions of binding energies for a range of polar organic molecules and hydrogen cyanide. The model also agrees with the linear dependence of the binding energies on the polarizability inferred from the experimental data (Danielson et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235203). The effective core radii, however, remain unphysically small for most molecules. Treating molecular polarization non-perturbatively leads to physically meaningful core radii for all of the molecules studied and enables even more accurate predictions of binding energies to be made for nearly all of the molecules considered. (paper)
Strong gravity effects of rotating black holes: quasi-periodic oscillations
International Nuclear Information System (INIS)
Aliev, Alikram N; Esmer, Göksel Daylan; Talazan, Pamir
2013-01-01
We explore strong gravity effects of the geodesic motion in the spacetime of rotating black holes in general relativity and braneworld gravity. We focus on the description of the motion in terms of three fundamental frequencies: the orbital frequency, the radial and vertical epicyclic frequencies. For a Kerr black hole, we perform a detailed numerical analysis of these frequencies at the innermost stable circular orbits and beyond them as well as at the characteristic stable orbits, at which the radial epicyclic frequency attains its highest value. We find that the values of the epicyclic frequencies for a class of stable orbits exhibit good qualitative agreement with the observed frequencies of the twin peaks quasi-periodic oscillations (QPOs) in some black hole binaries. We also find that at the characteristic stable circular orbits, where the radial (or the vertical) epicyclic frequency has maxima, the vertical and radial epicyclic frequencies exhibit an approximate 2:1 ratio even in the case of near-extreme rotation of the black hole. Next, we perform a similar analysis of the fundamental frequencies for a rotating braneworld black hole and argue that the existence of such a black hole with a negative tidal charge, whose angular momentum exceeds the Kerr bound in general relativity, does not confront with the observations of high-frequency QPOs. (paper)
International Nuclear Information System (INIS)
Tehranizadeh, M.; Hamedi, F.
2002-01-01
The characteristics of earthquake ground motion have great influences on the response of structures to the earthquakes. Peak ground motions, duration of strong motions and frequency content are important characteristics of earthquakes, which are studied in this paper. The relation between peak ground acceleration, velocity and displacement have been taken into account and the effects of magnitude, epicentral distance and recorded duration of earthquakes on peak ground acceleration have been presented as graphs. The frequency content of ground motion can be examined by power spectral density of accel ero grams. In this study the power spectral density of the records have been determined and normalized power spectral densities are compared. There are different formulas for the smoothed power spectral density function such as Kanai-Tajimi's model. In this study, comparing with Kanai-Tajim's formula, the extreme value model is suggested for the spectral density function. This model is evaluated for accel ero grams on different soil conditions and the smoothed mean power spectral density function are determined for each soil groups. The central frequency and predominant period of earthquakes are also estimated
Strong mutagenic effects of diesel engine emissions using vegetable oil as fuel.
Bünger, Jürgen; Krahl, Jürgen; Munack, Axel; Ruschel, Yvonne; Schröder, Olaf; Emmert, Birgit; Westphal, Götz; Müller, Michael; Hallier, Ernst; Brüning, Thomas
2007-08-01
Diesel engine emissions (DEE) are classified as probably carcinogenic to humans. In recent years every effort was made to reduce DEE and their content of carcinogenic and mutagenic polycyclic aromatic compounds. Since 1995 we observed an appreciable reduction of mutagenicity of DEE driven by reformulated or newly designed fuels in several studies. Recently, the use of rapeseed oil as fuel for diesel engines is rapidly growing among German transportation businesses and agriculture due to economic reasons. We compared the mutagenic effects of DEE from two different batches of rapeseed oil (RSO) with rapeseed methyl ester (RME, biodiesel), natural gas derived synthetic fuel (gas-to-liquid, GTL), and a reference diesel fuel (DF). The test engine was a heavy-duty truck diesel running the European Stationary Cycle. Particulate matter from the exhaust was sampled onto PTFE-coated glass fibre filters and extracted with dichloromethane in a soxhlet apparatus. The gas phase constituents were sampled as condensates. The mutagenicity of the particle extracts and the condensates was tested using the Salmonella typhimurium/mammalian microsome assay with tester strains TA98 and TA100. Compared to DF the two RSO qualities significantly increased the mutagenic effects of the particle extracts by factors of 9.7 up to 59 in tester strain TA98 and of 5.4 up to 22.3 in tester strain TA100, respectively. The condensates of the RSO fuels caused an up to factor 13.5 stronger mutagenicity than the reference fuel. RME extracts had a moderate but significant higher mutagenic response in assays of TA98 with metabolic activation and TA100 without metabolic activation. GTL samples did not differ significantly from DF. In conclusion, the strong increase of mutagenicity using RSO as diesel fuel compared to the reference DF and other fuels causes deep concern on future usage of this biologic resource as a replacement of established diesel fuels.
Autler-Townes effect in a strongly driven electromagnetically induced transparency resonance
International Nuclear Information System (INIS)
Yang Lijun; Zhang Lianshui; Li Xiaoli; Han Li; Fu Guangsheng; Manson, Neil B.; Suter, Dieter; Wei Changjiang
2005-01-01
In this paper we study the nonlinear behavior of an electromagnetically induced transparency (EIT) resonance subject to a coherent driving field. The EIT is associated with a Λ three-level system where two hyperfine levels within an electronic ground state are coupled to a common excited state level by a coupling field and a probe field. In addition there is an radio-frequency (rf) field driving a hyperfine transition within the ground state. The paper contrasts two different situations. In one case the rf-driven transition shares a common level with the probed transition and in the second case it shares a common level with the coupled transition. In both cases the EIT resonance is split into a doublet and the characteristics of the EIT doublet are determined by the strength and frequency of the rf-driving field. The doublet splitting originates from the rf-field induced dynamic Stark effect and has close analogy with the Autler-Townes effect observed in three-level pump-probe spectroscopy study. The situation changes when the rf field is strong and the two cases are very different. One is analogous to two Λ three-level systems with EIT resonance associated with each. The other corresponds to a doubly driven three-level system with rf-field-induced electromagnetically induced absorption resonance. The two situations are modeled using numerical solutions of the relevant equation of motion of density matrix. In addition a physical account of their behaviors is given in terms of a dressed state picture
Shvetsov-Shilovski, N. I.; Lein, M.
2018-01-01
Using the semiclassical two-step model for strong-field ionization we investigate the interference structures emerging in strong-field photoelectron holography, taking into account the Coulomb potential of the atomic core. For every kind of the interference pattern predicted by the three-step model, we calculate the corresponding structure in the presence of the Coulomb field, showing that the Coulomb potential modifies the interference patterns significantly.
Tiwari, Vivek; Peters, William K; Jonas, David M
2017-10-21
Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.
General laser interaction theory in atom-diatom systems for both adiabatic and nonadiabatic cases.
Li, Xuan; Brue, Daniel A; Parker, Gregory A; Chang, Sin-Tarng
2006-04-27
This paper develops the general theory for laser fields interacting with bimolecular systems. In this study, we choose to use the multipolar gauge on the basis of gauge invariance. We consider both the adiabatic and nonadiabatic cases and find they produce similar interaction pictures. As an application of this theory, we present the study of rovibrational energy transfer in Ar + CO collisions in the presence of an intense laser field.
Nonadiabatic analysis of strange-modes in hot massive stars with time-dependent convection
Directory of Open Access Journals (Sweden)
Sonoi Takafumi
2015-01-01
Full Text Available We carry out nonadiabatic analysis of strange-modes in hot massive stars with time-dependent convection (TDC. We find that the instability of the modes excited at the Fe bump is weaker with TDC than with frozen-in convection (FC. But the instability still remains with TDC, and could be a possible candidate for the trigger of luminous blue variable (LBV phenomena.
Song, Cai; Liu, Bai-Ping; Zhang, Yong-Ping; Peng, Zhilan; Wang, JiaJia; Collier, Adam D; Echevarria, David J; Savelieva, Katerina V; Lawrence, Robert F; Rex, Christopher S; Meshalkina, Darya A; Kalueff, Allan V
2018-02-02
Chronic stress is the major pathogenetic factor of human anxiety and depression. Zebrafish (Danio rerio) have become a novel popular model species for neuroscience research and CNS drug discovery. The utility of zebrafish for mimicking human affective disorders is also rapidly growing. Here, we present a new zebrafish model of clinically relevant, prolonged unpredictable strong chronic stress (PUCS). The 5-week PUCS induced overt anxiety-like and motor retardation-like behaviors in adult zebrafish, also elevating whole-body cortisol and proinflammatory cytokines - interleukins IL-1β and IL-6. PUCS also elevated whole-body levels of the anti-inflammatory cytokine IL-10 and increased the density of dendritic spines in zebrafish telencephalic neurons. Chronic treatment of fish with an antidepressant fluoxetine (0.1mg/L for 8days) normalized their behavioral and endocrine phenotypes, as well as corrected stress-elevated IL-1β and IL-6 levels, similar to clinical and rodent data. The CNS expression of the bdnf gene, the two genes of its receptors (trkB, p75), and the gfap gene of glia biomarker, the glial fibrillary acidic protein, was unaltered in all three groups. However, PUCS elevated whole-body BDNF levels and the telencephalic dendritic spine density (which were corrected by fluoxetine), thereby somewhat differing from the effects of chronic stress in rodents. Together, these findings support zebrafish as a useful in-vivo model of chronic stress, also calling for further cross-species studies of both shared/overlapping and distinct neurobiological responses to chronic stress. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of strong bite force on the facial vertical dimension of pembarong performers
Directory of Open Access Journals (Sweden)
C. Christina
2017-06-01
Full Text Available Background: A pembarong performer is a reog dancer who bites on a piece of wood inserted into his/her mouth in order to support a 60 kg Barongan or Dadak Merak mask. The teeth supporting this large and heavy mask are directly affected, as the strong bite force exerted during a dance could affect their vertical and sagital facial dimensions. Purpose: This study aimed to examine the influence of the bite force of pembarong performers due to their vertical and sagital facial dimensions. Methods: The study reported here involved fifteen pembarong performers and thirteen individuals with normal occlusion (with specific criteria. The bite force of these subjects was measured with a dental prescale sensor during its centric occlusion. A cephalometric variation measurement was subsequently performed on all subjects with its effects on their vertical and sagital facial dimensions being measured. Results: The bite force value of the pembarong performers was 394.3816 ± 7.68787 Newtons, while the normal occlusion was 371.7784 ± 4.77791 Newtons. There was no correlation between the bite force and the facial sagital dimension of these subjects. However, a significant correlation did exist between bite force and lower facial height/total facial height (LFH/TFH ratio (p = 0.013. Conversely, no significant correlation between bite force and posterior facial height/total facial height (PFH/TFH ratio (p = 0.785 was detected. There was an inverse correlation between bite force and LFH/TFH ratio (r = -.464. Conclusion: Bite force is directly related to the decrease in LFH/TFH ratio. Occlusal pressure exerted by the posterior teeth on the alveolar bone may increase bone density at the endosteal surface of cortical bone.
Strong and nonlinear effects of fragmentation on ecosystem service provision at multiple scales
Mitchell, Matthew G. E.; Bennett, Elena M.; Gonzalez, Andrew
2015-09-01
Human actions, such as converting natural land cover to agricultural or urban land, result in the loss and fragmentation of natural habitat, with important consequences for the provision of ecosystem services. Such habitat loss is especially important for services that are supplied by fragments of natural land cover and that depend on flows of organisms, matter, or people across the landscape to produce benefits, such as pollination, pest regulation, recreation and cultural services. However, our quantitative knowledge about precisely how different patterns of landscape fragmentation might affect the provision of these types of services is limited. We used a simple, spatially explicit model to evaluate the potential impact of natural land cover loss and fragmentation on the provision of hypothetical ecosystem services. Based on current literature, we assumed that fragments of natural land cover provide ecosystem services to the area surrounding them in a distance-dependent manner such that ecosystem service flow depended on proximity to fragments. We modeled seven different patterns of natural land cover loss across landscapes that varied in the overall level of landscape fragmentation. Our model predicts that natural land cover loss will have strong and unimodal effects on ecosystem service provision, with clear thresholds indicating rapid loss of service provision beyond critical levels of natural land cover loss. It also predicts the presence of a tradeoff between maximizing ecosystem service provision and conserving natural land cover, and a mismatch between ecosystem service provision at landscape versus finer spatial scales. Importantly, the pattern of landscape fragmentation mitigated or intensified these tradeoffs and mismatches. Our model suggests that managing patterns of natural land cover loss and fragmentation could help influence the provision of multiple ecosystem services and manage tradeoffs and synergies between services across different human
Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states
Energy Technology Data Exchange (ETDEWEB)
Nelson, Tammie [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Naumov, Artem [Skolkovo Institute of Science and Technology, Moscow 143026 (Russian Federation); Fernandez-Alberti, Sebastian [Universidad Nacional de Quilmes, Roque Saenz Pea 352, B1876BXD Bernal (Argentina); Tretiak, Sergei, E-mail: serg@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2016-12-20
The simulation of nonadiabatic dynamics in extended molecular systems involving hundreds of atoms and large densities of states is particularly challenging. Nonadiabatic coupling terms (NACTs) represent a significant numerical bottleneck in surface hopping approaches. Rather than using unreliable NACT cutting schemes, here we develop “on-the-fly” state limiting methods to eliminate states that are no longer essential for the non-radiative relaxation dynamics as a trajectory proceeds. We propose a state number criteria and an energy-based state limit. The latter is more physically relevant by requiring a user-imposed energy threshold. For this purpose, we introduce a local kinetic energy gauge by summing contributions from atoms within the spatial localization of the electronic wavefunction to define the energy available for upward hops. The proposed state limiting schemes are implemented within the nonadiabatic excited-state molecular dynamics framework to simulate photoinduced relaxation in poly-phenylene vinylene (PPV) and branched poly-phenylene ethynylene (PPE) oligomers for benchmark evaluation.
Nonadiabatic electron dynamics in the exit channel of Na-molecule optical collisions.
Rebentrost, F; Figl, C; Goldstein, R; Hoffmannn, O; Spelsberg, D; Grosser, J
2008-06-14
We study optical collisions of Na atoms with N(2), CO, C(2)H(2), and CO(2) molecules in a crossed-beam experiment. Excited electronic states of the collision complex are selectively populated during the collision. We measure the relative population of the Na(3p) fine-structure levels after the collision and observe in this way the nonadiabatic transitions occuring in the final phase of the collision process. For the NaCO, NaC(2)H(2), and NaCO(2) systems new ab initio potential surfaces were generated. The theoretical analysis of the nonadiabatic electron dynamics on the excited potential surfaces is made within the classical-path formalism. The results are in good qualitative agreement with the experimental data and provide insight into the nonadiabatic mechanisms prevailing during the evolution in the upper 3p manifold. The differences between the different collisional systems are related to the presence and system-specific locations of conical intersections and avoided crossing seams in the excited potential surfaces.
Kirilyuk, A.; Knippels, G.M.H.; van der Meer, A. F. G.; Renard, S.; Rasing, T.; Heskamp, I. R.; Lodder, J. C.
2000-01-01
We have observed very strong magnetization-induced changes of the infrared-visible sum-frequency generation (SFG) intensity from thin magnetic films using a free electron laser as a tunable infrared source. With the help of a magnetic grating a clear resonance is observed due to the excitation of
Flavor changing strong interaction effects on top quark physics at the CERN LHC
International Nuclear Information System (INIS)
Ferreira, P.M.; Santos, R.; Oliveira, O.
2006-01-01
We perform a model independent analysis of the flavor changing strong interaction vertices relevant to the LHC. In particular, the contribution of dimension six operators to single top production in various production processes is discussed, together with possible hints for identifying signals and setting bounds on physics beyond the standard model
Interference effects at photoionization of Rydberg atoms by a strong electromagnetic field
International Nuclear Information System (INIS)
Movsesyan, A.M.; Fedorov, M.V.
1989-01-01
The photoionization of Rydberg atoms in a strong electromagnetic field is considered. Degeneration of the levels with respect to the orbital moment, their Stark splitting and the possibility of resonant interaction with levels of lower energy are taken into account. The complex quasi-energies of the system, photoelectron spectrum in the limit of an infinite duration of interaction and the time dependence of the total ionization probability are found. It is shown that a narrowing of the quasi-energy levels occurs in a strong field. Against a background of the quasi- continuum the quasi-energy spectrum consists of more or less narrow levels. In this case the photoelectron spectrum acquires a multi-peak form. With increasing field strength the height of the peaks increases, whereas their width decreases. The ionization rate decreases with increasing field strength. The presence of a quasi-continuum is the cause of the partially non-exponential nature of the atomic disintegration
Carrier envelope phase effects in molecular dissociation by few-cycle strong laser fields
Energy Technology Data Exchange (ETDEWEB)
Dimitriou, K I [Hellenic Army Academy, Department of Natural Science and Applications, Vari (Greece); Constantoudis, V [Institute of Microelectronics, NCSR ' Demokritos' , Athens (Greece); Mercouris, Th [Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens (Greece); Nicolaides, C A, E-mail: dimi@eie.g [Physics Department, National Technical University, Athens (Greece)
2009-11-01
Multiphoton molecular dissociation produced by few-cycle strong laser fields of mid-infrared wave lengths is studied theoretically. The dependence of the carrier envelope phase (CEP) on the photodissociation dynamics is investigated using both quantum and classical nonperturbative approaches. Our results show that dissociation is affected by the changes of the CEP. A detailed analysis shows that this dependence is sensitive to the duration and to the shape of the pulse.
Effects of strong cathodic polarization of the Ni-YSZ interface
DEFF Research Database (Denmark)
Hansen, Karin Vels; Chen, Ming; Jacobsen, Torben
2016-01-01
Long-term strong cathodic polarization experiments of down to -2.4 V vs. E°(O2) of the Ni-YSZ interface were performed at 900°C in 97% H2/3% H2O on model electrodes. The Ni-YSZ interface underwent extensive changes and a large affected volume with a complex microstructure and phase distribution r...
Tang, Yihao; Hassanaly, Malik; Raman, Venkat
2015-11-01
In the development of highly efficient gas turbine combustion system, using high-hydrogen-content fuels is a new solution that limits pollutant emissions but also triggers flame stabilization issues. One promising concept to handle such instabilities within a large range of operating conditions is the FLOX® burner. A noticeable feature of the FLOX® burner is that it discharges high momentum jets without swirl, and flame stabilization is achieved in the shear layer around the jets. Experimental investigations have concluded that low velocity zones were absent and the flashback propensity was effectively decreased. It is proposed to study the stabilization mechanism to understand what physical phenomena are decisive in the process. In a preliminary numerical study, an adiabatic flamelet table was used along with LES simulations. Although the flow field's main features were captured, the simulation had issues in accurately predicting some important thermochemical quantities, including near wall quenching effects and OH mass fraction distribution. This work focuses on the effect of the adiabatic hypothesis on the flame stabilization mechanism. A non-adiabatic flamelet model is implemented and the impact on the stabilization mechanism is being quantified.
Energy Technology Data Exchange (ETDEWEB)
Shaw, K.C.; Bitzer, R.J.; Galliart, L. [Iowa State Univ., Ames, IA (United States)] [and others
1995-05-01
We investigated the effect of a strong, DC-induced electromagnetic field (EMF) on the circadian singing activity of the house cricket, Acheta domesticus (L.). Groups of 10 crickets were exposed to strong, DC-induced EMFs under two light regimes, 12:12 (L:D) h and 0:24 (L:D) h. Exposure to the strong EMF resulted in an increase in mean time per hour during which one or more crickets were singing and in number of crickets singing per hour. Correcting for phase shift during O:24 (L:D) h, the daily pattern of singing was apparently unaffected by any treatment. The greatest percentage of singing and number of crickets singing per hour occurred during actual or expected scotophase. This is the first report of an increase in insect activity during exposure to a strong DC-induced EMF.
International Nuclear Information System (INIS)
Hanasaki, Kota; Takatsuka, Kazuo
2010-01-01
Real-time dynamics in electron-nucleus coupled systems in molecules is studied using the path-integral formalism, with a special emphasis on nonadiabatic interactions. We first establish a formal path-integral description of the entire system. Applying the stationary phase approximation, we then derive coupled equations for the mixed quantum-classical treatment of the system: the equations of motion for electron wave-packet dynamics and those for nuclear dynamics driven by what we call the force form. Thus the present theory also serves as a general theory for dynamics in mixed quantum and classical systems. On this theoretical foundation, we analyze two theories of nonadiabatic electron-nucleus coupled systems from the viewpoint of path branching: the semiclassical Ehrenfest theory and the recently developed method of phase-space averaging and natural branching [T. Yonehara, S. Takahashi, and K. Takatsuka, J. Chem. Phys. 130, 214113 (2009)]. We give a unified account of the essential feature of their physical implications and limitations. Path-integral formalism leads to further refinement of the idea of path branching caused by nonadiabatic coupling, thus giving deeper insight into the nonadiabatic dynamics. Further, we study the conservation laws for energy, linear momentum, and angular momentum in the general mixed quantum-classical representation. We also extend the present path-integral formulation so as to handle nonadiabatic dynamics in laser fields.
International Nuclear Information System (INIS)
Lahiri, B B; Ranoo, Surojit; Philip, John
2017-01-01
Magnetic fluid hyperthermia (MFH) is becoming a viable cancer treatment methodology where the alternating magnetic field induced heating of magnetic fluid is utilized for ablating the cancerous cells or making them more susceptible to the conventional treatments. The heating efficiency in MFH is quantified in terms of specific absorption rate (SAR), which is defined as the heating power generated per unit mass. In majority of the experimental studies, SAR is evaluated from the temperature rise curves, obtained under non-adiabatic experimental conditions, which is prone to various thermodynamic uncertainties. A proper understanding of the experimental uncertainties and its remedies is a prerequisite for obtaining accurate and reproducible SAR. Here, we study the thermodynamic uncertainties associated with peripheral heating, delayed heating, heat loss from the sample and spatial variation in the temperature profile within the sample. Using first order approximations, an adiabatic reconstruction protocol for the measured temperature rise curves is developed for SAR estimation, which is found to be in good agreement with those obtained from the computationally intense slope corrected method. Our experimental findings clearly show that the peripheral and delayed heating are due to radiation heat transfer from the heating coils and slower response time of the sensor, respectively. Our results suggest that the peripheral heating is linearly proportional to the sample area to volume ratio and coil temperature. It is also observed that peripheral heating decreases in presence of a non-magnetic insulating shielding. The delayed heating is found to contribute up to ∼25% uncertainties in SAR values. As the SAR values are very sensitive to the initial slope determination method, explicit mention of the range of linear regression analysis is appropriate to reproduce the results. The effect of sample volume to area ratio on linear heat loss rate is systematically studied and
Lahiri, B. B.; Ranoo, Surojit; Philip, John
2017-11-01
Magnetic fluid hyperthermia (MFH) is becoming a viable cancer treatment methodology where the alternating magnetic field induced heating of magnetic fluid is utilized for ablating the cancerous cells or making them more susceptible to the conventional treatments. The heating efficiency in MFH is quantified in terms of specific absorption rate (SAR), which is defined as the heating power generated per unit mass. In majority of the experimental studies, SAR is evaluated from the temperature rise curves, obtained under non-adiabatic experimental conditions, which is prone to various thermodynamic uncertainties. A proper understanding of the experimental uncertainties and its remedies is a prerequisite for obtaining accurate and reproducible SAR. Here, we study the thermodynamic uncertainties associated with peripheral heating, delayed heating, heat loss from the sample and spatial variation in the temperature profile within the sample. Using first order approximations, an adiabatic reconstruction protocol for the measured temperature rise curves is developed for SAR estimation, which is found to be in good agreement with those obtained from the computationally intense slope corrected method. Our experimental findings clearly show that the peripheral and delayed heating are due to radiation heat transfer from the heating coils and slower response time of the sensor, respectively. Our results suggest that the peripheral heating is linearly proportional to the sample area to volume ratio and coil temperature. It is also observed that peripheral heating decreases in presence of a non-magnetic insulating shielding. The delayed heating is found to contribute up to ~25% uncertainties in SAR values. As the SAR values are very sensitive to the initial slope determination method, explicit mention of the range of linear regression analysis is appropriate to reproduce the results. The effect of sample volume to area ratio on linear heat loss rate is systematically studied and the
International Nuclear Information System (INIS)
Chung, D.H.; Bernreuter, D.L.
1981-10-01
Attenuation is caused by geometric spreading and absorption. Geometric spreading is almost independent of crustal geology and physiographic region, but absorption depends strongly on crustal geology and the state of the earth's upper mantle. Except for very high frequency waves, absorption does not affect ground motion at distances less than about 25 to 50 km. Thus, in the near-field zone, the attenuation in the eastern United States is similar to that in the western United States. Beyond the near field, differences in ground motion can best be accounted for by differences in attenuation caused by differences in absorption. The stress drop of eastern earthquakes may be higher than for western earthquakes of the same seismic moment, which would affect the high-frequency spectral content. But we believe this factor is of much less significance than differences in absorption in explaining the differences in ground motion between the East and the West. The characteristics of strong ground motion in the conterminous United States are discussed in light of these considerations, and estimates are made of the epicentral ground motions in the central and eastern United States. (author)
arXiv Strong reduction of the effective radiation length in an oriented PWO scintillator crystal
Bandiera, L.; Romagnoni, M.; Argiolas, N.; Bagli, E.; Ballerini, G.; Berra, A.; Brizzolani, C.; Camattari, R.; De Salvador, D.; Haurylavets, V.; Mascagna, V.; Mazzolari, A.; Prest, M.; Soldani, M.; Sytov, A.; Vallazza, E.
We measured a considerable increase of the emitted radiation by 120 GeV/c electrons in an axially oriented lead tungstate scintillator crystal, if compared to the case in which the sample was not aligned with the beam direction. This enhancement resulted from the interaction of particles with the strong crystalline field. The data collected at the external lines of CERN SPS were critically compared to Monte Carlo simulations based on the Baier Katkov quasiclassical method, highlighting a reduction of the scintillator radiation length by a factor of five in case of beam alignment with the [001] crystal axes. As a consequence, oriented scintillator crystals may be profitably exploited to reduce the amount of material in electromagnetic calorimeters/detectors for fixed-target experiments in high-energy physics, as well as for satellite-borne gamma-telescopes in astrophysics.
Effects of weak and strong localization in tunnel characteristics of contacts on HTSC base
International Nuclear Information System (INIS)
Revenko, Yu.V.; Svistunov, V.M.; Grigut', O.V.; Belogolovskij, M.A.; Khachaturov, A.I.
1992-01-01
It is found that a phenomena governed by the electronic processes in the disordered surface normal layer of material are observed in the tunnel contatcs bases on metal oxide superconductors of 1-2-3 group. Measured characteristics σ(U)=dI/dU ore determined both by contact's barrier properties and conductivity in the disordered region of metal oxides in the vicinity of a barrier. As regards high-temperature contacts σ(U) value at high temperatures us determined by the Schottky barrier and at low temperatures - by activation processes of charge transfer over strongly localized states in near-the-barrier region of the contact. Crossing over towards logarithmic dependence in the tunnel conductuvity σ(U) of low-Ohmic transitions are attributed to the occurrence of 2D state density conditions in the tunnel surface layers of metal oxides
van Driel, H.M.; Hoekstra, Hugo; Stoffer, Remco; Yudistira, D.
The effect of sandwiching a slab waveguide in air between two omnidirectional mirrors on the local density of modes is investigated theoretically. Design aspects of such a structure are considered, and it is shown that the local density of modes other than the slab-guided mode can be strongly
Systematic Magnus-Based Approach for Suppressing Leakage and Nonadiabatic Errors in Quantum Dynamics
Ribeiro, Hugo; Baksic, Alexandre; Clerk, Aashish A.
2017-01-01
We present a systematic, perturbative method for correcting quantum gates to suppress errors that take the target system out of a chosen subspace. Our method addresses the generic problem of nonadiabatic errors in adiabatic evolution and state preparation, as well as general leakage errors due to spurious couplings to undesirable states. The method is based on the Magnus expansion: By correcting control pulses, we modify the Magnus expansion of an initially given, imperfect unitary in such a way that the desired evolution is obtained. Applications to adiabatic quantum state transfer, superconducting qubits, and generalized Landau-Zener problems are discussed.
Ryabinkin, Ilya G; Nagesh, Jayashree; Izmaylov, Artur F
2015-11-05
We have developed a numerical differentiation scheme that eliminates evaluation of overlap determinants in calculating the time-derivative nonadiabatic couplings (TDNACs). Evaluation of these determinants was the bottleneck in previous implementations of mixed quantum-classical methods using numerical differentiation of electronic wave functions in the Slater determinant representation. The central idea of our approach is, first, to reduce the analytic time derivatives of Slater determinants to time derivatives of molecular orbitals and then to apply a finite-difference formula. Benchmark calculations prove the efficiency of the proposed scheme showing impressive several-order-of-magnitude speedups of the TDNAC calculation step for midsize molecules.
Energy Technology Data Exchange (ETDEWEB)
Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (United States)
1995-11-01
Volume 2 of the ``Survey of Strong Motion Earthquake Effects on Thermal Power Plants in California with Emphasis on Piping Systems`` contains Appendices which detail the detail design and seismic response of several power plants subjected to strong motion earthquakes. The particular plants considered include the Ormond Beach, Long Beach and Seal Beach, Burbank, El Centro, Glendale, Humboldt Bay, Kem Valley, Pasadena and Valley power plants. Included is a typical power plant piping specification and photographs of typical power plant piping specification and photographs of typical piping and support installations for the plants surveyed. Detailed piping support spacing data are also included.
International Nuclear Information System (INIS)
Novelli, Anna; Belzig, Wolfgang; Nitzan, Abraham
2015-01-01
The time evolution and the asymptotic outcome of a Landau–Zener–Stueckelberg–Majorana (LZ) process under continuous weak non-selective measurement is analyzed. We compare two measurement protocols in which the populations of either the adiabatic or the non-adiabatic levels are (continuously and weakly) monitored. The weak measurement formalism, described using a Gaussian Kraus operator, leads to a time evolution characterized by a Markovian dephasing process, which, in the non-adiabatic measurement protocol is similar to earlier studies of LZ dynamics in a dephasing environment. Casting the problem in the language of measurement theory makes it possible for us to compare diabatic and adiabatic measurement scenarios, to consider engineered dephasing as a control device and to examine the manifestation of the Zeno effect under the different measurement protocols. In particular, under measurement of the non-adiabatic populations, the Zeno effect is manifested not as a freezing of the measured system in its initial state, but rather as an approach to equal asymptotic populations of the two diabatic states. This behavior can be traced to the way by which the weak measurement formalism behaves in the strong measurement limit, with a built-in relationship between measurement time and strength. (paper)
Photogeneration of neutrino and axions under stimulating effect of strong magnetic field
Skobelev, V V
2001-01-01
The processes of the neutrino and axions photoproduction on the gamma(Ze) -> gamma(nu nu-bar), gamma alpha nuclei, as well as the photon inelastic scattering on the gamma gamma -> gamma(nu nu-bar), gamma alpha photon are considered within the frames of the developed two-dimensional co-variant theory for calculating the matrix of the Feynman diagrams in the strong magnetic field. The contribution of the neutrino radiative photoproduction on the nuclei to the luminosity of the magnetic neutron stars on the early stages of their evolution may compete with the URCA-processes, because the matrix elements in the four-pole diagram depend linearly on the induction of B magnetic field by the B values approx 10 sup 3 -10 sup 4 B sub 0 (B sub 0 = m sub e sup 2 /|e| = 4.41 x 10 sup 1 sup 3 Gs). The evaluation of the axion mass upper boundary, compatible with other independent results, is obtained from the condition of the neutrino luminosity prevailing over the axion one at supposed temperature and magnetic field inducti...
Groot, Maartje P; Kubisch, Alexander; Ouborg, N Joop; Pagel, Jörn; Schmid, Karl J; Vergeer, Philippine; Lampei, Christian
2017-08-01
Transgenerational environmental effects can trigger strong phenotypic variation. However, it is unclear how cues from different preceding generations interact. Also, little is known about the genetic variation for these life history traits. Here, we present the effects of grandparental and parental mild heat, and their combination, on four traits of the third-generation phenotype of 14 Arabidopsis thaliana genotypes. We tested for correlations of these effects with climate and constructed a conceptual model to identify the environmental conditions that favour the parental effect on flowering time. We observed strong evidence for genotype-specific transgenerational effects. On average, A. thaliana accustomed to mild heat produced more seeds after two generations. Parental effects overruled grandparental effects in all traits except reproductive biomass. Flowering was generally accelerated by all transgenerational effects. Notably, the parental effect triggered earliest flowering in genotypes adapted to dry summers. Accordingly, this parental effect was favoured in the model when early summer heat terminated the growing season and environments were correlated across generations. Our results suggest that A. thaliana can partly accustom to mild heat over two generations and genotype-specific parental effects show non-random evolutionary divergence across populations that may support climate change adaptation in the Mediterranean. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
The effect of whole body irradiation on the action of strong analgesics of mice
International Nuclear Information System (INIS)
Cvetkovicj, M.; Milovanovicj, A.; Tanasijevicj, D.
1987-01-01
The effect of whole body irradiation of male mice with single doses of 3 and 7 Gy ( 60 Co source) on analgesic action of three morphine-like drugs was studied. Over the first 6 days after irradiation, the analgesic effect of alfentanil and fentanyl was significantly less pronounced in irradiated animals than in control ones. During the subsequent period of 24 days till the end of experiment, the analgesic effect in irradiated animals gradually increased reaching and exceeding the control values. On the contrary, the analgesic effect of butorphanole was less pronounced in irradiated animals than in control ones, although the difference was not significantly. The difference between butorphanole and other two drugs are probably due to chemical structure and the metabolic fate in the body. (author) 8 refs.; 2 figs
Zhang, C.; Feng, T.; Raabe, N.; Rottke, H.
2018-02-01
Strong-field ionization (SFI) of the homonuclear noble gas dimer Xe2 is investigated and compared with SFI of the Xe atom and of the ArXe heteronuclear dimer by using ultrashort Ti:sapphire laser pulses and photoelectron momentum spectroscopy. The large separation of the two nuclei of the dimer allows the study of two-equivalent-center interference effects on the photoelectron momentum distribution. Comparing the experimental results with a new model calculation, which is based on the strong-field approximation, actually reveals the influence of interference. Moreover, the comparison indicates that the presence of closely spaced gerade and ungerade electronic state pairs of the Xe2 + ion at the Xe2 ionization threshold, which are strongly dipole coupled, affects the photoelectron momentum distribution.
International Nuclear Information System (INIS)
Galilo, Bogdan V.; Nedelko, Sergei N.
2011-01-01
The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.
Perspective has a strong effect on the calculation of historical contributions to global warming
Skeie, Ragnhild B.; Fuglestvedt, Jan; Berntsen, Terje; Peters, Glen P.; Andrew, Robbie; Allen, Myles; Kallbekken, Steffen
2017-02-01
The politically contentious issue of calculating countries’ contributions to climate change is strongly dependent on methodological choices. Different principles can be applied for distributing efforts for reducing human-induced global warming. According to the ‘Brazilian Proposal’, industrialized countries would reduce emissions proportional to their historical contributions to warming. This proposal was based on the assumption that the political process would lead to a global top-down agreement. The Paris Agreement changed the role of historical responsibilities. Whereas the agreement refers to equity principles, differentiation of mitigation efforts is delegated to each country, as countries will submit new national contributions every five years without any international negotiation. It is likely that considerations of historical contributions and distributive fairness will continue to play a key role, but increasingly so in a national setting. Contributions to warming can be used as a background for negotiations to inform and justify positions, and may also be useful for countries’ own assessment of what constitutes reasonable and fair contributions to limiting warming. Despite the fact that the decision from COP21 explicitly rules out compensation in the context of loss and damage, it is likely that considerations of historical responsibility will also play a role in future discussions. However, methodological choices have substantial impacts on calculated contributions to warming, including rank-ordering of contributions, and thus support the view that there is no single correct answer to the question of how much each country has contributed. There are fundamental value-related and ethical questions that cannot be answered through a single set of calculated contributions. Thus, analyses of historical contributions should not present just one set of results, but rather present a spectrum of results showing how the calculated contributions vary with a
Strong synergistic effects in PLA/PCL blends: Impact of PLA matrix viscosity.
Ostafinska, Aleksandra; Fortelný, Ivan; Hodan, Jiří; Krejčíková, Sabina; Nevoralová, Martina; Kredatusová, Jana; Kruliš, Zdeněk; Kotek, Jiří; Šlouf, Miroslav
2017-05-01
Blends of two biodegradable polymers, poly(lactic acid) (PLA) and poly(ϵ-caprolactone) (PCL), with strong synergistic improvement in mechanical performance were prepared by melt-mixing using the optimized composition (80/20) and the optimized preparation procedure (a melt-mixing followed by a compression molding) according to our previous study. Three different PLA polymers were employed, whose viscosity decreased in the following order: PLC ≈ PLA1 > PLA2 > PLA3. The blends with the highest viscosity matrix (PLA1/PCL) exhibited the smallest PCL particles (d∼0.6μm), an elastic-plastic stable fracture (as determined from instrumented impact testing) and the strongest synergistic improvement in toughness (>16× with respect to pure PLA, exceeding even the toughness of pure PCL). According to the available literature, this was the highest toughness improvement in non-compatiblized PLA/PCL blends ever achieved. The decrease in the matrix viscosity resulted in an increase in the average PCL particle size and a dramatic decrease in the overall toughness: the completely stable fracture (for PLA1/PCL) changed to the stable fracture followed by unstable crack propagation (for PLA2/PCL) and finally to the completely brittle fracture (for PLA3/PCL). The stiffness of all blends remained at well acceptable level, slightly above the theoretical predictions based on the equivalent box model. Despite several previous studies, the results confirmed that PLA and PCL could behave as compatible polymers, but the final PLA/PCL toughness is extremely sensitive to the PCL particle size distribution, which is influenced by both processing conditions and PLA viscosity. PLA/PCL blends with high stiffness (due to PLA) and toughness (due to PCL) are very promising materials for medical applications, namely for the bone tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of a parental program for preventing underage drinking - The NGO program strong and clear
Directory of Open Access Journals (Sweden)
Eriksson Charli
2011-04-01
Full Text Available Abstract Background The present study is an evaluation of a 3-year parental program aiming to prevent underage drinking. The intervention was implemented by a non-governmental organization and targeted parents with children aged 13-16 years old and included recurrent activities during the entire period of secondary school. The program consisted of four different types of group and self-administered activities: parent meetings, family dialogues, friend meetings, and family meetings. Methods A quasi-experimental design was used following parents and children with questionnaires during the three years of secondary school. The analytic sample consisted of 509 dyads of parents and children. Measures of parental attitudes and behaviour concerning underage drinking and adolescents' lifetime alcohol consumption and drunkenness were used. Three socio-demographic factors were included: parental education, school, and gender of the child. A Latent Growth Modelling (LGM approach was used to examine changes in parental behaviour regarding youth drinking and in young people's drinking behaviour. To test for the pre-post test differences in parental attitudes repeated measures ANOVA were used. Results The results showed that parents in the program maintained their restrictive attitude toward underage drinking to a higher degree than non-participating parents. Adolescents of participants were on average one year older than adolescents with non-participating parents when they made their alcohol debut. They were also less likely to have ever been drunk in school year 9. Conclusion The results of the study suggested that Strong and Clear contributed to maintaining parents' restrictive attitude toward underage drinking during secondary school, postponing alcohol debut among the adolescents, and significantly reducing their drunkenness.
How strong is the edge effect in the adsorption of anticancer drugs on a graphene cluster?
Rungnim, Chompoonut; Chanajaree, Rungroj; Rungrotmongkol, Thanyada; Hannongbua, Supot; Kungwan, Nawee; Wolschann, Peter; Karpfen, Alfred; Parasuk, Vudhichai
2016-04-01
The adsorption of nucleobase-analog anticancer drugs (fluorouracil, thioguanine, and mercaptopurine) on a graphene flake (C54H18) was investigated by shifting the site at which adsorption occurs from one end of the sheet to the other end. The counterpoise-corrected M06-2X/cc-pVDZ binding energies revealed that the binding stability decreases in the sequence thioguanine > mercaptopurine > fluorouracil. We found that adsorption near the middle of the sheet is more favorable than adsorption near the edge due to the edge effect. This edge effect is stronger for the adsorption of thioguanine or mercaptopurine than for fluorouracil adsorption. However, the edge effect reduces the binding energy of the drug to the flake by only a small amount, <5 kcal/mol, depending on the adsorption site and the alignment of the drug at this site.
Strong excitonic effects in CuAlO2 delafossite transparent conductive oxides
DEFF Research Database (Denmark)
Laskowski, Robert; Christensen, Niels Egede; Blaha, Peter
2009-01-01
The imaginary part of the dielectric function of CuAlO2 has been calculated including the electron-hole correlation effects within Bethe-Salpeter formalism (BSE). In the initial step of the BSE solver the band structure was calculated within density-functional theory plus an orbital field (LDA/GG...
Luo, Jun-Wei; Li, Shu-Shen; Zunger, Alex
2017-09-22
The electric field manipulation of the Rashba spin-orbit coupling effects provides a route to electrically control spins, constituting the foundation of the field of semiconductor spintronics. In general, the strength of the Rashba effects depends linearly on the applied electric field and is significant only for heavy-atom materials with large intrinsic spin-orbit interaction under high electric fields. Here, we illustrate in 1D semiconductor nanowires an anomalous field dependence of the hole (but not electron) Rashba effect (HRE). (i) At low fields, the strength of the HRE exhibits a steep increase with the field so that even low fields can be used for device switching. (ii) At higher fields, the HRE undergoes a rapid transition to saturation with a giant strength even for light-atom materials such as Si (exceeding 100 meV Å). (iii) The nanowire-size dependence of the saturation HRE is rather weak for light-atom Si, so size fluctuations would have a limited effect; this is a key requirement for scalability of Rashba-field-based spintronic devices. These three features offer Si nanowires as a promising platform for the realization of scalable complementary metal-oxide-semiconductor compatible spintronic devices.
Effect of strong electrolytes on edible oils part 1: viscosity of ...
African Journals Online (AJOL)
The energy of activation (ΔEv), latent heat of vapourization (ΔLv) and molar volume of oil (Vm) were also calculated. Effect of electrolytes show that, the concentration of electrolytes increases the value of (ΔEv) and (ΔLv) whereas the value of molar volume (Vm) decrease with the concentration of oil and electrolytes. In brief ...
Effect of strong electrolytes on edible oils part II: vViscosity of maize ...
African Journals Online (AJOL)
The electrolytes behave as structure breaker. The effect of temperature was also determined in terms of fluidity parameters, energy of activation, latent heat of vaporization, molar volume of oil and free energy change of activation for viscous flow. Journal of Applied Sciences and Environmental Management Vol. 10 (3) 2006: ...
Faraday effect in rare-earth ferrite garnets located in strong magnetic fields
International Nuclear Information System (INIS)
Valiev, U.V.; Zvezdin, A.K.; Krinchik, G.S.; Levitin, R.Z.; Mukimov, K.M.; Popov, A.I.
1983-01-01
The Faraday effect is investigated experimentally in single crystal specimens of rare earth iron garnets (REIG) R 3 Fe 5 O 12 (R=Y, Gd, Tb, Dy, Er, Tm, Yb, Eu, Sm and Ho) and also in mixed iron garnets Rsub(x)Ysub(3-x)Fesub(5)Osub(12) (R=Tb, Dy). The m.easurements are carried out in pulsed magnetic fields of intensity up to 200 kOe, in a temperature range from 4.2 to 300 K and at a wavelength of the light lambda=1.15 μm. The field dependence of the Faraday effect observed in the REIG cannot be explained if only the usually considered ''paramagnetic'' contribution to the Faraday effect is taken into account. A theory is developed which, besides the paramagnetic mechanism, takes into account a diamagnetic mechanism and also the mixing of the wave functions of the ground and excited multiplets. The contributions of each of these three mechanisms to the angle of rotation of the plane of polarization by the rare earth sublattice of the iron garnet are estimated theoretically. It is concluded that the mixing mechanism contributes significantly to the field and temperature dependences of the Faraday effect in REIG
Effect of inter-fibre bonding on the fracture of fibrous networks with strong interactions
DEFF Research Database (Denmark)
Goutianos, Stergios; Mao, Rui; Peijs, Ton
2017-01-01
Abstract The mechanical response of cellulose nanopaper composites is investigated using a three-dimensional (3D) finite element fibrous network model with focus on the effect of inter-fibre bonds. It is found that the Young’s modulus and strength, for fixed fibre properties, are mainly controlle...
Adiabatic temperature change from non-adiabatic measurements
Czech Academy of Sciences Publication Activity Database
Carvalho, A.M.G.; Mejía, C.S.; Ponte, C.A.; Silva, L.E.L.; Kaštil, Jiří; Kamarád, Jiří; Gomes, A.M.
2016-01-01
Roč. 122, č. 3 (2016), s. 1-5, č. článku 246. ISSN 0947-8396 Institutional support: RVO:68378271 Keywords : magnetocaloric effect * adiabatic temperature change * calorimetric device * gadolinium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.455, year: 2016
Fourier heat conduction as a strong kinetic effect in one-dimensional hard-core gases
Zhao, Hanqing; Wang, Wen-ge
2018-01-01
For a one-dimensional (1D) momentum conserving system, intensive studies have shown that generally its heat current autocorrelation function (HCAF) tends to decay in a power-law manner and results in the breakdown of the Fourier heat conduction law in the thermodynamic limit. This has been recognized to be a dominant hydrodynamic effect. Here we show that, instead, the kinetic effect can be dominant in some cases and leads to the Fourier law for finite-size systems. Usually the HCAF undergoes a fast decaying kinetic stage followed by a long slowly decaying hydrodynamic tail. In a finite range of the system size, we find that whether the system follows the Fourier law depends on whether the kinetic stage dominates. Our Rapid Communication is illustrated by the 1D hard-core gas models with which the HCAF is derived analytically and verified numerically by molecular dynamics simulations.
Approximations to the non-adiabatic particle response in toroidal geometry
International Nuclear Information System (INIS)
Schep, T.J.; Braams, B.J.
1981-08-01
The non-adiabatic part of the particle response to low-frequency electromagnetic modes with long parallel wavelengths is discussed. Analytic approximations to the kernels of the integrals that relate the amplitudes of the perturbed potentials to the non-adiabatic part of the perturbed density in an axisymmetric toroidal configuration are presented and the results are compared with numerical calculations. It is shown that both in the plane slab and in toroidal geometry the kernel contains a logarithmic singularity. This singularity is associated with particles with vanishing parallel velocity so that, in toroidal geometry, it is related with the behaviour of trapped particles near their turning points. In contrast to the plane slab, in toroidal geometry this logarithmic singularity is mainly real and associated with non-resonant particles. Apart from this logarithmic term, the kernel contains a complex regular part arising from resonant as well as from non-resonant particles. The analytic approximations that will be presented make the dispersion relation of drift-type modes in toroidal geometry amenable to analytic as well as to simpler numerical calculation of the growth rate and of the spatial mode structure
Franck--Condon factors in studies of dynamics of chemical reactions. IV. Nonadiabatic collisions
International Nuclear Information System (INIS)
Zvijac, D.J.; Ross, J.
1978-01-01
We investigate the application of the Franck--Condon approach to nonadiabatic molecular scattering processes. Computationally simple, analytic formulas are developed to describe the energy dependence of quenching of electronically excited atoms by atoms and molecules. These formulas include the dependence of the Franck--Condon factors on the translational wavefunctions as well as the wavefunctions for the internal degrees of freedom. We use these formulas to evaluate the translational energy dependence of the fine structure transition cross sections for F( 2 P/sub 3/2/)+X→F( 2 P/sub 1/2/)+X, where X= Xe, H + , and H 2 . The cross sections generally increase as the initial translational energy increases. Our results agree semiquantiatively (or better) with those obtained from other theoretical techniques. In the case of F+H + we find that the absolute cross section is sensitive to the analytic form used for the nonadiabatic coupling but our model gives the correct energy dependence. At the energies of our calculations we find only a small amount of vibrational excitation of H 2 . Finally, we use our expressions to interpret some trends of available experimental results on the quenching of Hg ( 3 P 2 → 3 P 1 ) by several molecules. We find that collisional excitation of the internal modes of the molecule becomes more important as the initial translational energy increases. However, these modes do not contribute to the quenching cross section in a statistical fashion
Biological Maturity Status Strongly Intensifies the Relative Age Effect in Alpine Ski Racing.
Directory of Open Access Journals (Sweden)
Lisa Müller
Full Text Available The relative age effect (RAE is a well-documented phenomenon in youth sports. This effect exists when the relative age quarter distribution of selected athletes shows a biased distribution with an over-representation of relatively older athletes. In alpine ski racing, it exists in all age categories (national youth levels up to World Cup. Studies so far could demonstrate that selected ski racers are relatively older, taller and heavier. It could be hypothesized that relatively younger athletes nearly only have a chance for selection if they are early maturing. However, surprisingly this influence of the biological maturity status on the RAE could not be proven, yet. Therefore, the aim of the present study was to investigate the influence of the biological maturity status on the RAE in dependence of the level of competition. The study investigated 372 elite youth ski racers: 234 provincial ski racers (P-SR; high level of competition and 137 national ski racers (N-SR; very high level of competition. Anthropometric characteristics were measured to calculate the age at peak height velocity (APHV as an indicator of the biological maturity status. A significant RAE was present among both P-SR and N-SR, with a larger effect size among the latter group. The N-SR significantly differed in APHV from the P-SR. The distribution of normal, early and late maturing athletes significantly differed from the expected normal distribution among the N-SR, not among the P-SR. Hardly any late maturing N-SR were present; 41.7% of the male and 34% of the female N-SR of the last relative age quarter were early maturing. These findings clearly demonstrate the significant influence of the biological maturity status on the selection process of youth alpine ski racing in dependence of the level of competition. Relatively younger athletes seem to have a chance of selection only if they are early maturing.
Biological Maturity Status Strongly Intensifies the Relative Age Effect in Alpine Ski Racing.
Müller, Lisa; Müller, Erich; Hildebrandt, Carolin; Raschner, Christian
2016-01-01
The relative age effect (RAE) is a well-documented phenomenon in youth sports. This effect exists when the relative age quarter distribution of selected athletes shows a biased distribution with an over-representation of relatively older athletes. In alpine ski racing, it exists in all age categories (national youth levels up to World Cup). Studies so far could demonstrate that selected ski racers are relatively older, taller and heavier. It could be hypothesized that relatively younger athletes nearly only have a chance for selection if they are early maturing. However, surprisingly this influence of the biological maturity status on the RAE could not be proven, yet. Therefore, the aim of the present study was to investigate the influence of the biological maturity status on the RAE in dependence of the level of competition. The study investigated 372 elite youth ski racers: 234 provincial ski racers (P-SR; high level of competition) and 137 national ski racers (N-SR; very high level of competition). Anthropometric characteristics were measured to calculate the age at peak height velocity (APHV) as an indicator of the biological maturity status. A significant RAE was present among both P-SR and N-SR, with a larger effect size among the latter group. The N-SR significantly differed in APHV from the P-SR. The distribution of normal, early and late maturing athletes significantly differed from the expected normal distribution among the N-SR, not among the P-SR. Hardly any late maturing N-SR were present; 41.7% of the male and 34% of the female N-SR of the last relative age quarter were early maturing. These findings clearly demonstrate the significant influence of the biological maturity status on the selection process of youth alpine ski racing in dependence of the level of competition. Relatively younger athletes seem to have a chance of selection only if they are early maturing.
A systematic review of drug treatment of vulvodynia: evidence of a strong placebo effect.
Varella Pereira, Glaucia Miranda; Marcolino, Milena Soriano; Nogueira Reis, Zilma Silveira; de Castro Monteiro, Marilene Vale
2018-03-23
Vulvodynia is the most common type of chronic pelvic pain and dyspareunia in premenopausal women. The effect of drugs for the treatment of vulvodynia remains poorly discussed. To conduct a systematic review of randomised controlled studies which assess medications used to treat vulvar pain in vulvodynia. Web of Science, Cochrane Library, EBSCO Academic, LILACS and MEDLINE were searched from 1985 to September 2016. Randomised controlled trials comparing any kind of medication for vulvodynia treatment with placebo or with another medication in adult patients were included. The two investigators independently conducted data extraction. The synthesis was provided by the pain reduction index. Study quality assessment was performed using the Cochrane Handbook for Systematic Reviews of Intervention and analysis of publication bias was conducted. Five studies were included in qualitative synthesis with a number of the participants varied from 30 to 133 among the eligible studies resulting 297. The pain reduction rates of patients with vulvodynia assessed by Q-tipped Cotton Test and visual analogue scale varied between studies. Placebo was shown to be as effective as any medication. There is a need for further studies evaluating topical monotherapy for the treatment of vulvodynia, since they are the main drugs used in clinical practice. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DEFF Research Database (Denmark)
Møller, Niels Martin
We study the dimensional asymptotics of the effective actions, or functional determinants, for the Dirac operator D and Laplacians \\Delta +\\beta R on round S^n. For Laplacians the behavior depends on ``the coupling strength'' \\beta, and one cannot in general expect a finite limit of \\zeta'(0), an...... spheres to unit volume, since \\lim_{k\\to\\infty}\\det(\\Delta, S_\\mathrm{rescaled}^{2k+1})=\\frac{1}{2\\pi e}....
Effects of strong network modifiers on Fe3+/Fe2+ in silicate melts: an experimental study
Borisov, Alexander; Behrens, Harald; Holtz, Francois
2017-05-01
The effect of CaO, Na2O, and K2O on ferric/ferrous ratio in model multicomponent silicate melts was investigated in the temperature range 1450-1550 °C at 1-atm total pressure in air. It is demonstrated that the addition of these network modifier cations results in an increase of Fe3+/Fe2+ ratio. The influence of network modifier cations on the ferric/ferrous ratio increases in the order Ca SiO2-TiO2-Al2O3-FeO-Fe2O3-MgO-CaO-Na2O-K2O-P2O5 melts at air conditions.
Energy Technology Data Exchange (ETDEWEB)
Aguirre, R.M.; Paoli, A.L. de [Universidad Nacional de La Plata, and IFLP, Departamento de Fisica, Facultad de Ciencias Exactas, La Plata (Argentina)
2016-11-15
We obtain the covariant propagator at finite temperature for interacting baryons immersed in a strong magnetic field. The effect of the intrinsic magnetic moments on the Green function are fully taken into account. We make an expansion in terms of eigenfunctions of a Dirac field, which leads us to a compact form of its propagator. We present some simple applications of these propagators, where the statistical averages of nuclear currents and energy density are evaluated. (orig.)
Absence of strong strain effects in behavioral analyses of Shank3-deficient mice
Directory of Open Access Journals (Sweden)
Elodie Drapeau
2014-06-01
Full Text Available Haploinsufficiency of SHANK3, caused by chromosomal abnormalities or mutations that disrupt one copy of the gene, leads to a neurodevelopmental syndrome called Phelan-McDermid syndrome, symptoms of which can include absent or delayed speech, intellectual disability, neurological changes and autism spectrum disorders. The SHANK3 protein forms a key structural part of the post-synaptic density. We previously generated and characterized mice with a targeted disruption of Shank3 in which exons coding for the ankyrin-repeat domain were deleted and expression of full-length Shank3 was disrupted. We documented specific deficits in synaptic function and plasticity, along with reduced reciprocal social interactions, in Shank3 heterozygous mice. Changes in phenotype owing to a mutation at a single locus are quite frequently modulated by other loci, most dramatically when the entire genetic background is changed. In mice, each strain of laboratory mouse represents a distinct genetic background and alterations in phenotype owing to gene knockout or transgenesis are frequently different across strains, which can lead to the identification of important modifier loci. We have investigated the effect of genetic background on phenotypes of Shank3 heterozygous, knockout and wild-type mice, using C57BL/6, 129SVE and FVB/Ntac strain backgrounds. We focused on observable behaviors with the goal of carrying out subsequent analyses to identify modifier loci. Surprisingly, there were very modest strain effects over a large battery of analyses. These results indicate that behavioral phenotypes associated with Shank3 haploinsufficiency are largely strain-independent.
Effects of strong electron correlations in Ti8C12 Met-Car
International Nuclear Information System (INIS)
Varganov, Sergey A.; Gordon, Mark S.
2006-01-01
The results of multireference configuration interaction (MRCI) with single and double excitations and single reference coupled cluster (CCSD(T)) calculations on Ti 8 C 12 metallocarbohedryne (Met-Car) are reported. The distortions of the T d structure to D 2d and C 3v structures due to the Jahn-Teller effect are studied. It is shown that the Ti 8 C 12 wave function has significant multireference character. The choice of the active space for multireference self-consistent field (MCSCF) calculations is discussed. The failure of multireference perturbation theory with a small active space is attributed to multiple intruder states. A new, novel type of MCSCF calculation, ORMAS (occupation restricted multiple active spaces) with a large active space are carried out for several electronic states of Ti 8 C 12 . The Jahn-Teller distorted D 2d 1 A 1 (nearly T d ) structure is predicted to be the Ti 8 C 12 ground state. Predictions of the Ti 8 C 12 ionization potential with different ab initio methods are presented
Aghighi, Alireza; Comtois, Philippe
2017-09-01
Self-organization of spontaneous activity of a network of active elements is important to the general theory of reaction-diffusion systems as well as for pacemaking activity to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes, consisting of resting and pacemaker cells, exhibit spontaneous activation of their electrical activity. Similarly, one proposed approach to the development of biopacemakers as an alternative to electronic pacemakers for cardiac therapy is based on heterogeneous cardiac cells with resting and spontaneously beating phenotypes. However, the combined effect of pacemaker characteristics, density, and spatial distribution of the pacemaker cells on spontaneous activity is unknown. Using a simple stochastic pattern formation algorithm, we previously showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of pacemaker cells. In this study, we show that this behavior is dependent on the pacemaker cell characteristics, with weaker pacemaker cells requiring higher density and larger clusters to sustain multicellular activity. These multicellular structures also demonstrated an increased sensitivity to voltage noise that favored spontaneous activity at lower density while increasing temporal variation in the period of activity. This information will help researchers overcome the current limitations of biopacemakers.
DEFF Research Database (Denmark)
Ding, Ming
; and the control groups received vehicle. After sacrifice, the left tibiae were harvested and micro-CT scanned, followed by mechanical testing and collagen and mineral determination. Results: The HA-treated groups had almost normal cartilage, whereas the control groups had typical osteoarthrosis (OA......-term study, these latter changes were more pronounced, with an additionally significant decrease in connectivity and bone surface density. HA groups had greater bone mineral concentration and mineral density, lower collagen to mineral ratio, and preserved the mechanical properties of cancellous bone...... level, and effectively changes the subchondral bone tissue microarchitecture, collagen and mineral content and density without altering the mechanical properties of cancellous bone. The most striking features are the microarchitectural changes in the subchondral cancellous bone that lead to lower bone...
Janke, Svenja M; Auerbach, Daniel J; Wodtke, Alec M; Kandratsenka, Alexander
2015-09-28
We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H-Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.
A Solar Eruption from a Weak Magnetic Field Region with Relatively Strong Geo-Effectiveness
Wang, R.
2017-12-01
A moderate flare eruption giving rise to a series of geo-effectiveness on 2015 November 4 caught our attentions, which originated from a relatively weak magnetic field region. The associated characteristics near the Earth are presented, which indicates that the southward magnetic field in the sheath and the ICME induced a geomagnetic storm sequence with a Dst global minimum of 90 nT. The ICME is indicated to have a small inclination angle by using a Grad-Shafranov technique, and corresponds to the flux rope (FR) structure horizontally lying on the solar surface. A small-scale magnetic cancelling feature was detected which is beneath the FR and is co-aligned with the Atmospheric Imaging Assembly (AIA) EUV brightening prior to the eruption. Various magnetic features for space-weather forecasting are computed by using a data product from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region Patches (SHARPs), which help us identify the changes of the photospheric magnetic fields during the magnetic cancellation process and prove that the magnetic reconnection associated with the flux cancellation is driven by the magnetic shearing motion on the photosphere. An analysis on the distributions at different heights of decay index is carried out. Combining with a filament height estimation method, the configurations of the FR is identified and a decay index critical value n = 1 is considered to be more appropriate for such a weak magnetic field region. Through a comprehensive analysis to the trigger mechanisms and conditions of the eruption, a clearer scenario of a CME from a relatively weak region is presented.
Louis, J.J.J.; Kok, Jacobus B.W.; Klein, S.A.
2001-01-01
A model is presented to predict nonadiabatic combustion of syngas under gas turbine conditions. Mixing, combustion, and heat loss are described with four independent scalar variables. These are the mixture fraction, an enthalpy variable and two reaction progress variables for combustion of hydrogen
DEFF Research Database (Denmark)
Bochenkova, Anastasia; Andersen, Lars Henrik
2013-01-01
The anionic wild-type Green Fluorescent Protein (GFP) chromophore defines the entire class of naturally occurring chromophores, which are based on the oxydized tyrosine side chain. The GFP chromophore exhibits an enriched photoinduced non-adiabatic dynamics in the multiple excited-state decay cha...
International Nuclear Information System (INIS)
Ghosh, Jayanta; Bhattacharya, Atanu
2016-01-01
Highlights: • Decomposition mechanisms of model energetic salt, guanidium triazolate, are explored. • Decomposition pathways are electronically nonadiabatic. • CASPT2, CASMP2 and CASSCF methodologies are employed. • N 2 and NH 3 are predicted to be the most possible initial decomposition products. - Abstract: Electronically nonadiabatic decomposition pathways of guanidium triazolate are explored theoretically. Nonadiabatically coupled potential energy surfaces are explored at the complete active space self-consistent field (CASSCF) level of theory. For better estimation of energies complete active space second order perturbation theories (CASPT2 and CASMP2) are also employed. Density functional theory (DFT) with B3LYP functional and MP2 level of theory are used to explore subsequent ground state decomposition pathways. In comparison with all possible stable decomposition products (such as, N 2 , NH 3 , HNC, HCN, NH 2 CN and CH 3 NC), only NH 3 (with NH 2 CN) and N 2 are predicted to be energetically most accessible initial decomposition products. Furthermore, different conical intersections between the S 1 and S 0 surfaces, which are computed at the CASSCF(14,10)/6-31G(d) level of theory, are found to play an essential role in the excited state deactivation process of guanidium triazolate. This is the first report on the electronically nonadiabatic decomposition mechanisms of isolated guanidium triazolate salt.
Maturity Status Strongly Influences the Relative Age Effect in International Elite Under-9 Soccer
Directory of Open Access Journals (Sweden)
Lisa Müller, Josef Gehmaier, Christoph Gonaus, Christian Raschner, Erich Müller
2018-06-01
Full Text Available The aim of the study was to assess the role of the relative age effect (RAE and to investigate the influence of the biological maturity status on the RAE in international under-9 soccer. The birth dates of 222 male participants of the U9 Eurochampionship Soccer Tournament in Vienna in 2016 were analyzed and divided into four relative age quarters (Q1-Q4 and the biological maturity status was assessed with the age at peak height velocity (APHV method. Based on the mean±standard deviation of the APHV, the athletes were divided into three groups of maturity: early, normal and late maturing. Chi-Square-tests were used to assess the difference between the observed and the expected even relative age quarter distribution and to evaluate the difference between the observed distribution of early, normal and late maturing athletes and the expected normal distribution. A univariate analysis of variance was performed to assess differences in the APHV between the relative age quarters. A RAE was present (χ2 = 23.87; p < 0.001; ω = 0.33. A significant difference was found in APHV between the four relative age quarters (F = 9.906; p < 0.001; relatively older athletes were significantly less mature. A significant difference was found between the distribution of early, normal and late maturing athletes and the expected normal distribution for athletes of Q1 (high percentage of late maturing athletes: 27%; χ2 = 17.69; p < 0.001; ω = 0.46 and of Q4 (high percentage of early maturing soccer players: 31%; χ2 = 12.08; p = 0.002; ω = 0.58. These findings demonstrated that the selection process in international soccer, with athletes younger than 9 years, seems to be associated with the biological maturity status and the relative age. Relatively younger soccer players seem to have a better chance for selection for international tournaments, if they enter puberty at an earlier age, whereas relatively older athletes seem to have an increased likelihood for
Self-assembly of a novel beta-In2S3 nanostructure exhibiting strong quantum confinement effects.
Zhang, Wu; Ma, Dekun; Huang, Zhen; Tang, Qun; Xie, Qin; Qian, Yitai
2005-05-01
The 3D beta-In2S3 flowerlike architecture assembled from nanoflakes was prepared via a novel complex-precursor assisted (CPA) solvothermal route. The as-prepared beta-In2S3 powder was characterized by X-ray diffraction pattern (XRD), X-ray photoelectron spectra (XPS), transition electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), ultraviolet-visible light (UV-vis) spectra, and photoluminescence spectrum. The novel 3D beta-In2S3 nanostructure exhibit a strong quantum confinement effect. FT-IR spectra were used to investigate the coordinative chemical effect in the complex. A possible mechanism was discussed.
International Nuclear Information System (INIS)
Martin, L. N.; Dmitruk, P.; Gomez, D. O.
2010-01-01
In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al., Phys. Plasmas 15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.
Directory of Open Access Journals (Sweden)
Ali Akbar Akhtari
2010-03-01
Full Text Available Bends along open channels always pose difficulties for water transfer systems. One undesirable effect of bends in such channels, i.e. separation of water from inner banks, was studied. For the purposes of this study, the literature on the subject was first reviewed, and a strongly-curved open channel was designed and constructed on the laboratory scale. Several tests were performed to evaluate the accuracy of the lab model, data homogeneity, and systematic errors. The model was then calibrated and the influence of curvature on flow pattern past the curve was investigated. Also, for the first time, the influence of separation walls on flow pattern was investigated. Experimental results on three strongly-curved open channels with a curvature radius to channel width ratio of 1.5 and curvature angles of 30°, 60°, and 90° showed that, in all the cases studied, the effect of flow separation could be observed immediately after the curve. In addition, the greatest effect of flow separation was seen at a distance equal to channel width from the bend end. In the presence of middle walls and flow separation, the effect of water separation reduced at the bend, especially for a curvature of 90°.
Finite-size effect of η-deformed AdS5×S5 at strong coupling
Directory of Open Access Journals (Sweden)
Changrim Ahn
2017-04-01
Full Text Available We compute Lüscher corrections for a giant magnon in the η-deformed (AdS5×S5η using the su(2|2q-invariant S-matrix at strong coupling and compare with the finite-size effect of the corresponding string state, derived previously. We find that these two results match and confirm that the su(2|2q-invariant S-matrix is describing world-sheet excitations of the η-deformed background.
Finite-size effect of η-deformed AdS5 × S5 at strong coupling
Ahn, Changrim
2017-04-01
We compute Lüscher corrections for a giant magnon in the η-deformed (AdS5×S5)η using the su(2 | 2) q-invariant S-matrix at strong coupling and compare with the finite-size effect of the corresponding string state, derived previously. We find that these two results match and confirm that the su(2 | 2) q-invariant S-matrix is describing world-sheet excitations of the η-deformed background.
Nonadiabatic tapered optical fiber sensor for measuring interaction nicotine with DNA
Zibaii, M. I.; Latifi, H.; Pourbeyram, H.; Gholami, M.; Taghipour, Z.; Saeedian, Z.; Hosseini, S. M.
2011-05-01
A nonadiabatic tapered optical fiber sensor was utilized for studying of bimolecular interactions including DNA-DNA and DNA-Drug interaction. This work presents a simple evanescent wave sensing system based on an interferometric approach, suitable to meet the requirements of lable-free sensor systems for detecting biomolecular interactions. We have demonstrated the measuring refractive index and the real time detection of interactions between biomolecules. Furthermore basic experiments were carried out, for detecting the hybridization of 25-mer DNA with an immobilized counterpart on the surface. The overall shift after the successful DNA hybridization was 9.5 nm. In this work, a new approach for studying DNA-drug interactions was successfully tested. Nicotine as a carcinogenic compound in cigarette smoke plays an important role in interaction with DNA. Different concentrations of nicotine were applied to observe the Longmuir interaction with DNA.
Nonadiabatic quantum dynamics and laser control of Br2 in solid argon.
Accardi, A; Borowski, A; Kühn, O
2009-07-02
A five-dimensional reaction surface-vibronic coupling model is introduced to describe the B- to C-state predissociation dynamics of Br(2) occupying a double substitutional lattice site in a face-centered cubic argon crystal at low temperatures. The quantum dynamics driven by a Franck-Condon vertical excitation is investigated, revealing the role of matrix cage compression for efficient nonadiabatic transitions. Vibrational preexcitation of the Br(2) bond in the electronic ground state can be used to access a different regime of predissociation which does not require substantial matrix compression because the Franck-Condon window shifts into the energetic range of the B-C level crossing. Using optimal control theory, it is shown how vibrational preexcitation can be achieved via a pump-dump-type mechanism involving the repulsive C state.
Mean field ring polymer molecular dynamics for electronically nonadiabatic reaction rates.
Duke, Jessica Ryan; Ananth, Nandini
2016-12-22
We present a mean field ring polymer molecular dynamics method to calculate the rate of electron transfer (ET) in multi-state, multi-electron condensed-phase processes. Our approach involves calculating a transition state theory (TST) estimate to the rate using an exact path integral in discrete electronic states and continuous Cartesian nuclear coordinates. A dynamic recrossing correction to the TST rate is then obtained from real-time dynamics simulations using mean field ring polymer molecular dynamics. We employ two different reaction coordinates in our simulations and show that, despite the use of mean field dynamics, the use of an accurate dividing surface to compute TST rates allows us to achieve remarkable agreement with Fermi's golden rule rates for nonadiabatic ET in the normal regime of Marcus theory. Further, we show that using a reaction coordinate based on electronic state populations allows us to capture the turnover in rates for ET in the Marcus inverted regime.
Energy Technology Data Exchange (ETDEWEB)
Nelson, Tammie Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tretiak, Sergei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-01-06
Understanding and controlling excited state dynamics lies at the heart of all our efforts to design photoactive materials with desired functionality. This tailor-design approach has become the standard for many technological applications (e.g., solar energy harvesting) including the design of organic conjugated electronic materials with applications in photovoltaic and light-emitting devices. Over the years, our team has developed efficient LANL-based codes to model the relevant photophysical processes following photoexcitation (spatial energy transfer, excitation localization/delocalization, and/or charge separation). The developed approach allows the non-radiative relaxation to be followed on up to ~10 ps timescales for large realistic molecules (hundreds of atoms in size) in the realistic solvent dielectric environment. The Collective Electronic Oscillator (CEO) code is used to compute electronic excited states, and the Non-adiabatic Excited State Molecular Dynamics (NA-ESMD) code is used to follow the non-adiabatic dynamics on multiple coupled Born-Oppenheimer potential energy surfaces. Our preliminary NA-ESMD simulations have revealed key photoinduced mechanisms controlling competing interactions and relaxation pathways in complex materials, including organic conjugated polymer materials, and have provided a detailed understanding of photochemical products and intermediates and the internal conversion process during the initiation of energetic materials. This project will be using LANL-based CEO and NA-ESMD codes to model nonradiative relaxation in organic and energetic materials. The NA-ESMD and CEO codes belong to a class of electronic structure/quantum chemistry codes that require large memory, “long-queue-few-core” distribution of resources in order to make useful progress. The NA-ESMD simulations are trivially parallelizable requiring ~300 processors for up to one week runtime to reach a meaningful restart point.
Strong diffusion effect of charm quarks on J/ψ production in Pb-Pb collisions at the LHC
Zhao, Jiaxing; Chen, Baoyi
2018-01-01
We study the J / ψ production based on coalescence model at √{sNN } = 2.76 and 5.02 TeV Pb-Pb collisions. With the colliding energy increasing from 2.76 TeV to 5.02 TeV, the number of charm pairs is enhanced by more than 50%. However, the ratio of J / ψ inclusive nuclear modification factors RAA5.02 TeV / RAA2.76 TeV is only about 1.1 ∼ 1.2. We find that the regeneration of J / ψ is proportional to the densities of charm and anti-charm quarks, instead of their total numbers. The charm quark density is diluted by the strong expansion of quark gluon plasma, which suppresses the combination probability of heavy quarks and J / ψ regeneration. This effect is more important in higher colliding energies where QGP expansion is strong. We also propose the ratio NJ/ψ /(Nc) 2 as a measurement of c and c bar coalescence probability, which is only affected by the heavy quark diffusions in QGP, and does not depend on the inputs such as cold nuclear matter effects and cross sections of charm quark production. Further more, we give the predictions at the energy of Future Circular Collider (√{sNN } = 39 TeV).
Panáček, Aleš; Smékalová, Monika; Kilianová, Martina; Prucek, Robert; Bogdanová, Kateřina; Večeřová, Renata; Kolář, Milan; Havrdová, Markéta; Płaza, Grażyna Anna; Chojniak, Joanna; Zbořil, Radek; Kvítek, Libor
2015-12-28
The resistance of bacteria towards traditional antibiotics currently constitutes one of the most important health care issues with serious negative impacts in practice. Overcoming this issue can be achieved by using antibacterial agents with multimode antibacterial action. Silver nano-particles (AgNPs) are one of the well-known antibacterial substances showing such multimode antibacterial action. Therefore, AgNPs are suitable candidates for use in combinations with traditional antibiotics in order to improve their antibacterial action. In this work, a systematic study quantifying the synergistic effects of antibiotics with different modes of action and different chemical structures in combination with AgNPs against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus was performed. Employing the microdilution method as more suitable and reliable than the disc diffusion method, strong synergistic effects were shown for all tested antibiotics combined with AgNPs at very low concentrations of both antibiotics and AgNPs. No trends were observed for synergistic effects of antibiotics with different modes of action and different chemical structures in combination with AgNPs, indicating non-specific synergistic effects. Moreover, a very low amount of silver is needed for effective antibacterial action of the antibiotics, which represents an important finding for potential medical applications due to the negligible cytotoxic effect of AgNPs towards human cells at these concentration levels.
Directory of Open Access Journals (Sweden)
Aleš Panáček
2015-12-01
Full Text Available The resistance of bacteria towards traditional antibiotics currently constitutes one of the most important health care issues with serious negative impacts in practice. Overcoming this issue can be achieved by using antibacterial agents with multimode antibacterial action. Silver nano-particles (AgNPs are one of the well-known antibacterial substances showing such multimode antibacterial action. Therefore, AgNPs are suitable candidates for use in combinations with traditional antibiotics in order to improve their antibacterial action. In this work, a systematic study quantifying the synergistic effects of antibiotics with different modes of action and different chemical structures in combination with AgNPs against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus was performed. Employing the microdilution method as more suitable and reliable than the disc diffusion method, strong synergistic effects were shown for all tested antibiotics combined with AgNPs at very low concentrations of both antibiotics and AgNPs. No trends were observed for synergistic effects of antibiotics with different modes of action and different chemical structures in combination with AgNPs, indicating non-specific synergistic effects. Moreover, a very low amount of silver is needed for effective antibacterial action of the antibiotics, which represents an important finding for potential medical applications due to the negligible cytotoxic effect of AgNPs towards human cells at these concentration levels.
Kodama, Yukinobu; Shiokawa, Yumi; Nakamura, Tadahiro; Kurosaki, Tomoaki; Aki, Keisei; Nakagawa, Hiroo; Muro, Takahiro; Kitahara, Takashi; Higuchi, Norihide; Sasaki, Hitoshi
2014-01-01
We developed a novel small interfering RNA (siRNA) delivery system using a ternary complex with polyethyleneimine (PEI) and γ-polyglutamic acid (γ-PGA), which showed silencing effect and no cytotoxicity. The binary complexes of siRNA with PEI were approximately 73-102 nm in particle size and 45-52 mV in ζ-potential. The silencing effect of siRNA/PEI complexes increased with an increase of PEI, and siRNA/PEI complexes with a charge ratio greater than 16 showed significant luciferase knockdown in a mouse colon carcinoma cell line regularly expressing luciferase (Colon26/Luc cells). However, strong cytotoxicity and blood agglutination were observed in the siRNA/Lipofectamine complex and siRNA/PEI16 complex. Recharging cationic complexes with an anionic compound was reported to be a promising method for overcoming these toxicities. We therefore prepared ternary complexes of siRNA with PEI (charge ratio 16) by the addition of γ-PGA to reduce cytotoxicity and deliver siRNA. As expected, the cytotoxicity of the ternary complexes decreased with an increase of γ-PGA content, which decreased the ζ-potential of the complexes. A strong silencing effect comparable to siRNA/Lipofectamine complex was discovered in ternary complexes including γ-PGA with an anionic surface charge. The high incorporation of ternary complexes into Colon26/Luc cells was confirmed with fluorescence microcopy. Having achieved knockdown of an exogenously transfected gene, the ability of the complex to mediate knockdown of an endogenous housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), was assessed in B16-F10 cells. The ternary complex (siRNA/PEI16/γ-PGA12 complex) exhibited a significant GAPDH knockdown effect. Thus, we developed a useful siRNA delivery system.
Smith-Ray, Renae L; Fitzgibbon, Marian L; Tussing-Humphreys, Lisa; Schiffer, Linda; Shah, Amy; Huber, Gail M; Braunschweig, Carol; Campbell, Richard T; Hughes, Susan L
2014-03-01
Osteoarthritis (OA) is the most common chronic condition and principal cause of disability among older adults. The current obesity epidemic has contributed to this high prevalence rate. Fortunately both OA symptoms and obesity can be ameliorated through lifestyle modifications. Physical activity (PA) combined with weight management improves physical function among obese persons with knee OA but evidence-based interventions that combine PA and weight management are limited for this population. This paper describes a comparative effectiveness trial testing an evidence-based PA program for adults with lower extremity (LE) OA, Fit and Strong!, against an enhanced version that also addresses weight management based on the evidence-based Obesity Reduction Black Intervention Trial (ORBIT). Adult participants (n=400) with LE OA, age 60+, overweight/obese, and not meeting PA requirements of ≥ 150 min per week, are randomized to one of the two programs. Both 8-week interventions meet 3 times per week and include 60 min of strength, flexibility, and aerobic exercise instruction followed by 30 min of education/group discussion. The Fit and Strong! education sessions focus on using PA to manage OA; whereas Fit and Strong! Plus addresses PA and weight loss management strategies. Maintenance of behavior change is reinforced in both groups during months 3-24 through telephone calls and mailed newsletters. Outcomes are assessed at baseline, and 2, 6, 12, 18, and 24 months. Primary outcomes are dietary change at 2 months followed by weight loss at 6 months that is maintained at 24 months. Secondary outcomes assess PA, physical performance, and anxiety/depression. Copyright © 2014 Elsevier Inc. All rights reserved.
Yao, Feng-juan; He, Ming-rong; Li, Fei; Xu, Liang-liang; Huang, Chuan-hua; Qu, Mu
2008-12-01
In order to investigate the effects of post-anthesis irrigation frequency on the grain quality of strong gluten winter wheat, two cultivars Jimai 20 and Gaocheng 8901 were subjected to a series of irrigation frequencies under rainfall proof conditions, with their grain yield and grain quality (farinograph parameters and loaf volume) and protein composition evaluated. The results indicated that with increasing irrigation frequency, the grain yield of the two cultivars, their wheat flour dough development time, dough stability time, and loaf volume were noted to be increased first but decreased then. The grain yield and quality of Gaocheng 8901 were the highest when irrigated once after anthesis, while those of Jimai 20 were the best when irrigated twice after anthesis, respectively. The contents of monomeric protein, soluble glutenin, insoluble glutenin, total glutenin, flour protein, and wet gluten in the grains displayed the similar trends. Stepwise regression analysis showed that under the test post-anthesis irrigation frequencies, the key factor affecting dough stability time was insoluble glutenin content, and loaf volume was significantly correlated with total glutenin content. It was suggested that to maintain the quality stability of high grade strong gluten winter wheat, irrigation management should take the improvement of grain protein composition, and glutenin in particular, as the target.
Directory of Open Access Journals (Sweden)
Leila Karhunen
2012-01-01
Full Text Available This study aimed to investigate factors associated with weight management, especially whether satiety value of food as a part of a weight-maintenance diet would affect self-regulation of food intake and weight management. Altogether 82 obese subjects completed the study consisting of weight-loss and weight-maintenance (WM periods. During the WM, subjects were randomized into higher- and lower-satiety food groups. No differences were observed in the changes in body weight, energy intake, or eating behaviour between the groups, even despite the different macronutrient compositions of the diets. However, when regarding all study subjects, success in WM was most strongly associated with a greater increase in the flexible control of eating and experience of greater easiness of WM and control of food intake and a greater decrease in uncontrollable eating and psychological distress. Psychobehavioural factors seem to be more strongly associated with successful weight management than the predetermined satiety effect or other characteristics of the diet.
A device to measure the effects of strong magnetic fields on the image resolution of PET scanners
Burdette, D; Chesi, E; Clinthorne, N H; Cochran, E; Honscheid, K; Huh, S S; Kagan, H; Knopp, M; Lacasta, C; Mikuz, M; Schmalbrock, P; Studen, A; Weilhammer, P
2009-01-01
Very high resolution images can be achieved in small animal PET systems utilizing solid state silicon pad detectors. As these systems approach sub-millimeter resolutions, the range of the positron is becoming the dominant contribution to image blur. The size of the positron range effect depends on the initial positron energy and hence the radioactive tracer used. For higher energy positron emitters, such as and , which are gaining importance in small animal studies, the width of the annihilation point distribution dominates the spatial resolution. This positron range effect can be reduced by embedding the field of view of the PET scanner in a strong magnetic field. In order to confirm this effect experimentally, we developed a high resolution PET instrument based on silicon pad detectors that can operate in a 7 T magnetic field. In this paper, we describe the instrument and present initial results of a study of the effects of magnetic fields up to 7 T on PET image resolution for and point sources.
Be'er, Shay; Assaf, Michael; Meerson, Baruch
2015-06-01
We study the dynamics of colonization of a territory by a stochastic population at low immigration pressure. We assume a sufficiently strong Allee effect that introduces, in deterministic theory, a large critical population size for colonization. At low immigration rates, the average precolonization population size is small, thus invalidating the WKB approximation to the master equation. We circumvent this difficulty by deriving an exact zero-flux solution of the master equation and matching it with an approximate nonzero-flux solution of the pertinent Fokker-Planck equation in a small region around the critical population size. This procedure provides an accurate evaluation of the quasistationary probability distribution of population sizes in the precolonization state and of the mean time to colonization, for a wide range of immigration rates. At sufficiently high immigration rates our results agree with WKB results obtained previously. At low immigration rates the results can be very different.
Be'er, Shay; Assaf, Michael; Meerson, Baruch
2015-06-01
We study the dynamics of colonization of a territory by a stochastic population at low immigration pressure. We assume a sufficiently strong Allee effect that introduces, in deterministic theory, a large critical population size for colonization. At low immigration rates, the average precolonization population size is small, thus invalidating the WKB approximation to the master equation. We circumvent this difficulty by deriving an exact zero-flux solution of the master equation and matching it with an approximate nonzero-flux solution of the pertinent Fokker-Planck equation in a small region around the critical population size. This procedure provides an accurate evaluation of the quasistationary probability distribution of population sizes in the precolonization state and of the mean time to colonization, for a wide range of immigration rates. At sufficiently high immigration rates our results agree with WKB results obtained previously. At low immigration rates the results can be very different.
Strong spin-filtering and spin-valve effects in a molecular V–C60–V contact
Directory of Open Access Journals (Sweden)
Mohammad Koleini
2012-08-01
Full Text Available Motivated by the recent achievements in the manipulation of C60 molecules in STM experiments, we study theoretically the structure and electronic properties of a C60 molecule in an STM tunneljunction with a magnetic tip and magnetic adatom on a Cu(111 surface using first-principles calculations. For the case of a vanadium tip/adatom, we demonstrate how spin coupling between the magnetic V atoms, mediated by the C60, can be observed in the electronic transport, which display a strong spin-filtering effect, allowing mainly majority-spin electrons to pass (>95%. Moreover, we find a significant change in the conductance between parallel and anti-parallel spin polarizations in the junction (86% which suggests that STM experiments should be able to characterize the magnetism and spin coupling for these systems.
Noise-induced extinction for a ratio-dependent predator-prey model with strong Allee effect in prey
Mandal, Partha Sarathi
2018-04-01
In this paper, we study a stochastically forced ratio-dependent predator-prey model with strong Allee effect in prey population. In the deterministic case, we show that the model exhibits the stable interior equilibrium point or limit cycle corresponding to the co-existence of both species. We investigate a probabilistic mechanism of the noise-induced extinction in a zone of stable interior equilibrium point. Computational methods based on the stochastic sensitivity function technique are applied for the analysis of the dispersion of random states near stable interior equilibrium point. This method allows to construct a confidence domain and estimate the threshold value of the noise intensity for a transition from the coexistence to the extinction.
Energy Technology Data Exchange (ETDEWEB)
Kamble, Ramesh B., E-mail: rbk.physics@coep.ac.in [Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka (India); Department of Physics, College of Engineering, Pune 411005, Maharashtra (India); Tanty, Narendra; Patra, Ananya; Prasad, V. [Department of Physics, Indian Institute of Science, Bangalore 560012, Karnataka (India)
2016-08-22
We report the potential field emission of highly conducting metallic perovskite lanthanum nickelate (LaNiO{sub 3}) from the nanostructured pyramidal and whisker shaped tips as electron emitters. Nano particles of lanthanum nickelate (LNO) were prepared by sol-gel route. Structural and morphological studies have been carried out. Field emission of LNO exhibited high emission current density, J = 3.37 mA/cm{sup 2} at a low threshold electric field, E{sub th} = 16.91 V/μm, obeying Fowler–Nordheim tunneling. The DC electrical resistivity exhibited upturn at 11.6 K indicating localization of electron at low temperature. Magnetoresistance measurement at different temperatures confirmed strong localization in nanostructured LNO obeying Anderson localization effect at low temperature.
Zhou, Xue; Li, Mingzhu; Wang, Kang; Li, Huizeng; Li, Yanan; Li, Chang; Yan, Yongli; Zhao, Yongsheng; Song, Yanlin
2018-03-25
Stimulated emission in perovskite-embedded polymer opal structures is investigated. A polymer opal structure is filled with a perovskite, and perovskite photonic crystals are prepared. The spontaneous emission of the perovskite embedded in the polymer opal structures exhibits clear signatures of amplified spontaneous emission (ASE) via gain modulation. The difference in refractive-index contrast between the perovskite and the polymer opal is large enough for retaining photonic-crystals properties. The photonic band gap has a strong effect on the fluorescence emission intensity and lifetime. The stimulated emission spectrum exhibits a narrow ASE rather than a wide fluorescence peak in the thin film. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DEFF Research Database (Denmark)
Karhunen, Leila; Lyly, Marika; Lapveteläinen, Anja
2012-01-01
This study aimed to investigate factors associated with weight management, especially whether satiety value of food as a part of a weight-maintenance diet would affect self-regulation of food intake and weight management. Altogether 82 obese subjects completed the study consisting of weight...... factors seem to be more strongly associated with successful weight management than the predetermined satiety effect or other characteristics of the diet.......-loss and weight-maintenance (WM) periods. During theWM, subjects were randomized into higher- and lower-satiety food groups. No differences were observed in the changes in body weight, energy intake, or eating behaviour between the groups, even despite the different macronutrient compositions of the diets...
Strong spin-filtering and spin-valve effects in a molecular V-C-60-V contact
DEFF Research Database (Denmark)
Koleini, Mohammad; Brandbyge, Mads
2012-01-01
Motivated by the recent achievements in the manipulation of C-60 molecules in STM experiments, we study theoretically the structure and electronic properties of a C-60 molecule in an STM tunneljunction with a magnetic tip and magnetic adatom on a Cu(111) surface using first-principles calculations....... For the case of a vanadium tip/adatom, we demonstrate how spin coupling between the magnetic V atoms, mediated by the C-60, can be observed in the electronic transport, which display a strong spin-filtering effect, allowing mainly majority-spin electrons to pass (>95%). Moreover, we find a significant change...... in the conductance between parallel and anti-parallel spin polarizations in the junction (86%) which suggests that STM experiments should be able to characterize the magnetism and spin coupling for these systems....
DEFF Research Database (Denmark)
Bak, Keld L.; Jørgensen, Poul; Jensen, H.J.A.
1992-01-01
A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response of a ref......A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response...... electrons many correlating orbitals are required in the MCSCF reference state calculation to accurately describe the FO-NACME. FO-NACME between various states of H-2, MgH2, and BH are presented. These calculations show that the method is capable of giving quantitatively correct results that converge...
Gupta, Akanksha; Ganesh, Rajaraman
2018-01-01
We study compressibility effects on the two-dimensional strongly coupled dusty plasma by means of computational fluid dynamics (CFD) with the Kolmogorov flow as an initial shear flow profile. Nonlinear compressible vortex flow dynamics and other linear and nonlinear properties of such flow in the presence of variable density, pressure, and electrostatic potential are addressed using a generalised compressible hydrodynamic model. The stabilizing effect of compressibility on the unstable shear flows in the presence of strong correlation ( τm>0 ) is presented. Increasing the Mach number relatively reduces the growth-rate of perturbation. On the other hand, strong correlation makes the medium to be more unstable and increases the growth rate. Using an eigen value solver, various linear properties of compressible Kolmogorov flow have been investigated for a range of variable parameters, for example, Mach number, Reynolds number, and viscoelastic coefficient (τm). Compressible Kolmogorov flow becomes unstable above a critical value of the Reynolds number (Rc), and below Rc, the shear flow is found to be neutrally stable. In this study, it is found that the viscoelasticity reduces the value of Rc. For our choice of parameters, at τm=τmc , the compressible Kolmogorov flow becomes unconditionally unstable and no Rc exists for values of τm higher than τmc . To address the nonlinear properties, for example, mode-mode interaction due to the presence of nonlinearity in the fluid, vortex formation, etc., a massively parallelized Advanced Generalized SPECTral Code (AG-Spect) has been developed. AG-Spect, a newly developed code, is an efficient tool to solve any set of nonlinear fluid dynamic equations. A good agreement in linear growth rates obtained from the eigen value solver and time dependent simulation (AG-Spect) is found. In our CFD study, the suppression of instability, elongated vortex structures, pattern formation, nonlinear saturation, and visco
Directory of Open Access Journals (Sweden)
David Leitsch
2017-12-01
Full Text Available The microaerophilic parasites Entamoeba histolytica, Trichomonas vaginalis, and Giardia lamblia annually cause hundreds of millions of human infections which are treated with antiparasitic drugs. Metronidazole is the most often prescribed drug but also other drugs are in use, and novel drugs with improved characteristics are constantly being developed. One of these novel drugs is auranofin, originally an antirheumatic which has been relabelled for the treatment of parasitic infections. Drug effectivity is arguably the most important criterion for its applicability and is commonly assessed in susceptibility assays using in vitro cultures of a given pathogen. However, drug susceptibility assays can be strongly affected by certain compounds in the growth media. In the case of microaerophilic parasites, cysteine which is added in large amounts as an antioxidant is an obvious candidate because it is highly reactive and known to modulate the toxicity of metronidazole in several microaerophilic parasites.In this study, it was attempted to reduce cysteine concentrations as far as possible without affecting parasite viability by performing drug susceptibility assays under strictly anaerobic conditions in an anaerobic cabinet. Indeed, T. vaginalis and E. histolytica could be grown without any cysteine added and the cysteine concentration necessary to maintain G. lamblia could be reduced to 20%. Susceptibilities to metronidazole were found to be clearly reduced in the presence of cysteine. With auranofin the protective effect of cysteine was extreme, providing protection to concentrations up to 100-fold higher as observed in the absence of cysteine. With three other drugs tested, albendazole, furazolidone and nitazoxanide, all in use against G. lamblia, the effect of cysteine was less pronounced. Oxygen was found to have a less marked impact on metronidazole and auranofin than cysteine but bovine bile which is standardly used in growth media for G
Strong Quantum Confinement Effects and Chiral Excitons in Bio-Inspired ZnO–Amino Acid Cocrystals
Muhammed, Madathumpady Abubaker Habeeb
2018-02-20
Elucidating the underlying principles behind band gap engineering is paramount for the successful implementation of semiconductors in photonic and optoelectronic devices. Recently it has been shown that the band gap of a wide and direct band gap semiconductor, such as ZnO, can be modified upon cocrystallization with amino acids, with the role of the biomolecules remaining unclear. Here, by probing and modeling the light-emitting properties of ZnO-amino acid cocrystals, we identify the amino acids\\' role on this band gap modulation and demonstrate their effective chirality transfer to the interband excitations in ZnO. Our 3D quantum model suggests that the strong band edge emission blue-shift in the cocrystals can be explained by a quasi-periodic distribution of amino acid potential barriers within the ZnO crystal lattice. Overall, our findings indicate that biomolecule cocrystallization can be used as a truly bio-inspired means to induce chiral quantum confinement effects in quasi-bulk semiconductors.
Lee, Yang-Jin; Park, Chang-Eun; Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Jung, Suk-Yul; Shin, Ho-Joon
2011-09-01
Naegleria fowleri, a ubiquitous free-living ameba, causes fatal primary amebic meningoencephalitis in humans. N. fowleri trophozoites are known to induce cytopathic changes upon contact with microglial cells, including necrotic and apoptotic cell death and pro-inflammatory cytokine release. In this study, we treated rat microglial cells with amebic lysate to probe contact-independent mechanisms for cytotoxicity, determining through a combination of light microscopy and scanning and transmission electron microscopy whether N. fowleri lysate could effect on both necrosis and apoptosis on microglia in a time- as well as dose-dependent fashion. A (51)Cr release assay demonstrated pronounced lysate induction of cytotoxicity (71.5%) toward microglial cells by 24 hr after its addition to cultures. In an assay of pro-inflammatory cytokine release, microglial cells treated with N. fowleri lysate produced TNF-α, IL-6, and IL-1β, though generation of the former 2 cytokines was reduced with time, and that of the last increased throughout the experimental period. In summary, N. fowleri lysate exerted strong cytopathic effects on microglial cells, and elicited pro-inflammatory cytokine release as a primary immune response.
International Nuclear Information System (INIS)
Wang, Yinling; Wang, Zhangcui; Wu, Xiaoqin; Liu, Xiaowang; Li, Maoguo
2016-01-01
Highlights: • CoAl-LDHs were synthesized on the surface of graphene oxide in situ. • The oxygen reduction reaction activity of the catalyst was investigated. • The synergistic effect between CoAl-LDHs and rGO is discussed in detail. • The roles of Co 2+ in the LDHs were clarified. - Abstract: Precious metal-free electrocatalysts with high efficiency and durability for the oxygen reduction reaction (ORR) are strongly desired in the field of energy technology. Herein, the CoAl layered double hydroxides (CoAl-LDHs)/reduced graphene oxide (rGO) composites were successfully prepared by growing CoAl-LDHs on the surface of GO in situ via coprecipitation and subsequently hydrothermal treatment. The structure, composition, morphology and ORR catalytic activity of the CoAl-LDHs/rGO composites were investigated as a function of mass ratios of CoAl-LDHs and GO. The results show that there is an optimum mass ratio of CoAl-LDHs and GO (w CoAl-LDHs :w GO = 1:5) for the ORR catalytic activity, where the electron transfer number for ORR at the CoAl-LDHs/rGO composites reaches to 3.5, closing to the full four-electron process. The synergistic effect between CoAl-LDHs and rGO is discussed in detail and the discussion is instructive for the construction of the better transition metal oxides/carbon composite-based ORR catalysts.
Effects of strong interactions between Ti and ceria on the structures of Ti/CeO2.
Yao, Xiao-Dan; Zhu, Kong-Jie; Teng, Bo-Tao; Yu, Cao-Ming; Zhang, Yun-Lei; Liu, Ya; Fan, Maohong; Wen, Xiao-Dong
2016-11-30
The effects of strong interactions between Ti and ceria on the structures of Ti/CeO 2 (111) are systematically investigated by density functional theory calculation. To our best knowledge, the adsorption energy of a Ti atom at the hollow site of CeO 2 is the highest value (-7.99 eV) reported in the literature compared with those of Au (-0.88--1.26 eV), Ag (-1.42 eV), Cu (-2.69 eV), Pd (-1.75 eV), Pt (-2.62 eV) and Sn (-3.68 eV). It is very interesting to find that Ti adatoms disperse at the hollow site of CeO 2 (111) to form surface TiO x species, instead of aggregating to form Ti metal clusters for the Ti-CeO 2 interactions that are much stronger than those of Ti-Ti ones. Ti adatoms are completely oxidized to Ti 4+ ions if they are monatomically dispersed on the next near hollow sites of CeO 2 (111) (xTi-NN-hollow); while Ti 3+ ions are observed when they locate at the near hollow sites (xTi-N-hollow). Due to the electronic repulsive effects among Ti 3+ ions, the adsorption energies of xTi-N-hollow are slightly weaker than those of xTi-NN-hollow. Simultaneously, the existence of unstable Ti 3+ ions on xTi-N-hollow also leads to the restructuring of xTi-N-hollow by surface O atoms of ceria transferring to the top of Ti 3+ ions, or oxidation by O 2 adsorption and dissociation. Both processes improve the stability of the xTi/CeO 2 system by Ti 3+ oxidation. Correspondingly, surface TiO 2 -like species form. This work sheds light into the structures of metal/CeO 2 catalysts with strong interactions between the metal and the ceria support.
Directory of Open Access Journals (Sweden)
Lizanne Janssens
Full Text Available Interactions between pollutants and suboptimal environmental conditions can have severe consequences for the toxicity of pollutants, yet are still poorly understood. To identify patterns across environmental conditions and across fitness-related variables we exposed Enallagma cyathigerum damselfly larvae to the pesticide chlorpyrifos at two food levels or at two temperatures and quantified four fitness-related variables (larval survival, development time, mass at emergence and adult cold resistance. Food level and temperature did not affect survival in the absence of the pesticide, yet the pesticide reduced survival only at the high temperature. Animals reacted to the pesticide by accelerating their development but only at the high food level and at the low temperature; at the low food level, however, pesticide exposure resulted in a slower development. Chlorpyrifos exposure resulted in smaller adults except in animals reared at the high food level. Animals reared at the low food level and at the low temperature had a higher cold resistance which was not affected by the pesticide. In summary our study highlight that combined effects of exposure to chlorpyrifos and the two environmental conditions (i were mostly interactive and sometimes even reversed in comparison with the effect of the environmental condition in isolation, (ii strongly differed depending on the fitness-related variable under study, (iii were not always predictable based on the effect of the environmental condition in isolation, and (iv bridged metamorphosis depending on which environmental condition was combined with the pesticide thereby potentially carrying over from aquatic to terrestrial ecosystems. These findings are relevant when extrapolating results of laboratory tests done under ideal environmental conditions to natural communities.
Katz, Louise; Joyner, John W.; Seaman, Nancy
1999-01-01
Students completed either the Strong Interest Inventory (n=114) or Myers-Briggs Type Indicator (n=108), both (n=99), or none (n=106). Twelve weeks after interpretation, those who completed both showed more change, specificity, or certainty in their career goal. The Myers-Briggs proved as helpful as Strong in career decision making. (SK)
Energy Technology Data Exchange (ETDEWEB)
JAMES N. BRUNE AND ABDOLRASOOL ANOOSHEHPOOR
1998-02-23
We report results of foam-rubber modeling of the effect of a shallow weak layer on ground motion from strike-slip ruptures. Computer modeling of strong ground motion from strike-slip earthquakes has involved somewhat arbitrary assumptions about the nature of slip along the shallow part of the fault (e.g., fixing the slip to be zero along the upper 2 kilometers of the fault plane) in order to match certain strong motion accelerograms. Most modeling studies of earthquake strong ground motion have used what is termed kinematic dislocation modeling. In kinematic modeling the time function for slip on the fault is prescribed, and the response of the layered medium is calculated. Unfortunately, there is no guarantee that the model and the prescribed slip are physically reasonable unless the true nature of the medium and its motions are known ahead of time. There is good reason to believe that in many cases faults are weak along the upper few kilometers of the fault zone and may not be able to maintain high levels of shear strain required for high dynamic energy release during earthquakes. Physical models of faulting, as distinct from numerical or mathematical models, are guaranteed to obey static and dynamic mechanical laws. Foam-rubber modeling studies have been reported in a number of publications. The object of this paper is to present results of physical modeling using a shallow weak layer, in order to verify the physical basis for assuming a long rise time and a reduced high frequency pulse for the slip on the shallow part of faults. It appears a 2-kilometer deep, weak zone along strike-slip faults could indeed reduce the high frequency energy radiated from shallow slip, and that this effect can best be represented by superimposing a small amplitude, short rise-time pulse at the onset of a much longer rise-time slip. A weak zone was modeled by inserting weak plastic layers of a few inches in thickness into the foam rubber model. For the 15 cm weak zone the average
Ion temperature gradient driven turbulence with strong trapped ion resonance
Energy Technology Data Exchange (ETDEWEB)
Kosuga, Y., E-mail: kosuga@riam.kyushu-u.ac.jp [Institute for Advanced Study, Kyushu University, Fukuoka (Japan); Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan); Itoh, S.-I. [Research Center for Plasma Turbulence, Kyushu University, Fukuoka (Japan); Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan); Diamond, P. H. [CASS and CMTFO, University of California at San Diego, La Jolla, California 92093 (United States); WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon (Korea, Republic of); Itoh, K. [National Institute for Fusion Science, Gifu (Japan); Research Center for Plasma Turbulence, Kyushu University, Fukuoka (Japan); Lesur, M. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan)
2014-10-15
A theory to describe basic characterization of ion temperature gradient driven turbulence with strong trapped ion resonance is presented. The role of trapped ion granulations, clusters of trapped ions correlated by precession resonance, is the focus. Microscopically, the presence of trapped ion granulations leads to a sharp (logarithmic) divergence of two point phase space density correlation at small scales. Macroscopically, trapped ion granulations excite potential fluctuations that do not satisfy dispersion relation and so broaden frequency spectrum. The line width from emission due only to trapped ion granulations is calculated. The result shows that the line width depends on ion free energy and electron dissipation, which implies that non-adiabatic electrons are essential to recover non-trivial dynamics of trapped ion granulations. Relevant testable predictions are summarized.
International Nuclear Information System (INIS)
Kharfi, F.; Bastuerk, M.; Boucenna, A.
2006-01-01
The characterization of neutron absorbing materials as well as quantification of neutron attenuation through matter is very essential in various fields, namely in shielding calculation. The objective of this work is to describe an experimental procedure to be used for the determination of neutron transmission through different materials. The proposed method is based on the relation between the gray value measured on neutron radiography image and the corresponding inducing neutron beam. For such a purpose, three kinds of materials (in shape of plate) were investigated using thermal neutrons: (1) boron-alloyed stainless steel as strong absorber; (2) copper and steel as fair absorbers and (3) aluminum as weak absorber. This work is not limited to the determination of neutron transmission through matters; it is also spread out to the measure of the surface density of the neutron absorbing elements (ρ s ) as a function of thickness of neutron absorbing material such as boron-alloyed stainless steel. The beam hardening effect depending on material thickness was also studied using the neutron transmission measurements. A theoretical approach was used to interpret the experimental results. The neutron transmission measurements were performed at the Neutron Radiography and Tomography facility of the Atomic Institute of the Austrian Universities in Vienna. Finally, a Maxwellian neutron distribution of incident neutron beam was used in the theoretical calculations of neutron energy shift in order to compare with experiments results. The obtained experimental results are in a good agreement with the developed theoretical approach
Kharfi, F.; Bastuerk, M.; Boucenna, A.
2006-09-01
The characterization of neutron absorbing materials as well as quantification of neutron attenuation through matter is very essential in various fields, namely in shielding calculation. The objective of this work is to describe an experimental procedure to be used for the determination of neutron transmission through different materials. The proposed method is based on the relation between the gray value measured on neutron radiography image and the corresponding inducing neutron beam. For such a purpose, three kinds of materials (in shape of plate) were investigated using thermal neutrons: (1) boron-alloyed stainless steel as strong absorber; (2) copper and steel as fair absorbers and (3) aluminum as weak absorber. This work is not limited to the determination of neutron transmission through matters; it is also spread out to the measure of the surface density of the neutron absorbing elements (ρs) as a function of thickness of neutron absorbing material such as boron-alloyed stainless steel. The beam hardening effect depending on material thickness was also studied using the neutron transmission measurements. A theoretical approach was used to interpret the experimental results. The neutron transmission measurements were performed at the Neutron Radiography and Tomography facility of the Atomic Institute of the Austrian Universities in Vienna. Finally, a Maxwellian neutron distribution of incident neutron beam was used in the theoretical calculations of neutron energy shift in order to compare with experiments results. The obtained experimental results are in a good agreement with the developed theoretical approach.
Coherent state mapping ring polymer molecular dynamics for non-adiabatic quantum propagations
Chowdhury, Sutirtha N.; Huo, Pengfei
2017-12-01
We introduce the coherent-state mapping ring polymer molecular dynamics (CS-RPMD), a new method that accurately describes electronic non-adiabatic dynamics with explicit nuclear quantization. This new approach is derived by using coherent-state mapping representation for the electronic degrees of freedom (DOF) and the ring-polymer path-integral representation for the nuclear DOF. The CS-RPMD Hamiltonian does not contain any inter-bead coupling term in the state-dependent potential and correctly describes electronic Rabi oscillations. A classical equation of motion is used to sample initial configurations and propagate the trajectories from the CS-RPMD Hamiltonian. At the time equivalent to zero, the quantum Boltzmann distribution (QBD) is recovered by reweighting the sampled distribution with an additional phase factor. In a special limit that there is one bead for mapping variables and multiple beads for nuclei, CS-RPMD satisfies detailed balance and preserves an approximate QBD. Numerical tests of this method with a two-state model system show very good agreement with exact quantum results over a broad range of electronic couplings.
Non-adiabatic quantum evolution: The S matrix as a geometrical phase factor
International Nuclear Information System (INIS)
Saadi, Y.; Maamache, M.
2012-01-01
We present a complete derivation of the exact evolution of quantum mechanics for the case when the underlying spectrum is continuous. We base our discussion on the use of the Weyl eigendifferentials. We show that a quantum system being in an eigenstate of an invariant will remain in the subspace generated by the eigenstates of the invariant, thereby acquiring a generalized non-adiabatic or Aharonov–Anandan geometric phase linked to the diagonal element of the S matrix. The modified Pöschl–Teller potential and the time-dependent linear potential are worked out as illustrations. -- Highlights: ► In this Letter we study the exact quantum evolution for continuous spectra problems. ► We base our discussion on the use of the Weyl eigendifferentials. ► We give a generalized Lewis and Riesenfeld phase for continuous spectra. ► This generalized phase or Aharonov–Anandan geometric phase is linked to the S matrix. ► The modified Pöschl–Teller and the linear potential are worked out as illustrations.
Nonadiabatic semiclassical dynamics in the mixed quantum-classical initial value representation
Church, Matthew S.; Hele, Timothy J. H.; Ezra, Gregory S.; Ananth, Nandini
2018-03-01
We extend the Mixed Quantum-Classical Initial Value Representation (MQC-IVR), a semiclassical method for computing real-time correlation functions, to electronically nonadiabatic systems using the Meyer-Miller-Stock-Thoss (MMST) Hamiltonian in order to treat electronic and nuclear degrees of freedom (dofs) within a consistent dynamic framework. We introduce an efficient symplectic integration scheme, the MInt algorithm, for numerical time evolution of the phase space variables and monodromy matrix under the non-separable MMST Hamiltonian. We then calculate the probability of transmission through a curve crossing in model two-level systems and show that MQC-IVR reproduces quantum-limit semiclassical results in good agreement with exact quantum methods in one limit, and in the other limit yields results that are in keeping with classical limit semiclassical methods like linearized IVR. Finally, exploiting the ability of the MQC-IVR to quantize different dofs to different extents, we present a detailed study of the extents to which quantizing the nuclear and electronic dofs improves numerical convergence properties without significant loss of accuracy.
Non-adiabatic quantum evolution: The S matrix as a geometrical phase factor
Energy Technology Data Exchange (ETDEWEB)
Saadi, Y., E-mail: S_yahiadz@yahoo.fr [Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des Sciences, Université Ferhat Abbas de Sétif, Sétif 19000 (Algeria); Maamache, M. [Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des Sciences, Université Ferhat Abbas de Sétif, Sétif 19000 (Algeria)
2012-03-19
We present a complete derivation of the exact evolution of quantum mechanics for the case when the underlying spectrum is continuous. We base our discussion on the use of the Weyl eigendifferentials. We show that a quantum system being in an eigenstate of an invariant will remain in the subspace generated by the eigenstates of the invariant, thereby acquiring a generalized non-adiabatic or Aharonov–Anandan geometric phase linked to the diagonal element of the S matrix. The modified Pöschl–Teller potential and the time-dependent linear potential are worked out as illustrations. -- Highlights: ► In this Letter we study the exact quantum evolution for continuous spectra problems. ► We base our discussion on the use of the Weyl eigendifferentials. ► We give a generalized Lewis and Riesenfeld phase for continuous spectra. ► This generalized phase or Aharonov–Anandan geometric phase is linked to the S matrix. ► The modified Pöschl–Teller and the linear potential are worked out as illustrations.
Greene, Samuel M; Batista, Victor S
2017-09-12
We introduce the "tensor-train split-operator Fourier transform" (TT-SOFT) method for simulations of multidimensional nonadiabatic quantum dynamics. TT-SOFT is essentially the grid-based SOFT method implemented in dynamically adaptive tensor-train representations. In the same spirit of all matrix product states, the tensor-train format enables the representation, propagation, and computation of observables of multidimensional wave functions in terms of the grid-based wavepacket tensor components, bypassing the need of actually computing the wave function in its full-rank tensor product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT method as applied to propagation of 24-dimensional wave packets, describing the S 1 /S 2 interconversion dynamics of pyrazine after UV photoexcitation to the S 2 state. Our results show that the TT-SOFT method is a powerful computational approach for simulations of quantum dynamics of polyatomic systems since it avoids the exponential scaling problem of full-rank grid-based representations.
Feng, Jieling; Li, Ning; Zhang, Zhengtao; Chen, Xi
2017-08-15
Vegetation phenology changes have been widely applied in the disaster risk assessments of the spring dust storms, and vegetation green-up date shifts have a strong influence on dust storms. However, the effect of earlier vegetation green-up dates due to climate warming on the evaluation of dust storms return periods remains an important, but poorly understood issue. In this study, we evaluate the spring dust storm return period (February to June) in Inner Mongolia, Northern China, using 165 observations of severe spring dust storm events from 16 weather stations, and regional vegetation green-up dates as an integrated factor from NDVI (Normalized Difference Vegetation Index), covering a period from 1982 to 2007, by building the bivariate Copula model. We found that the joint return period showed better fitting results than without considering the integrated factor when the actual dust storm return period is longer than 2years. Also, for extremely severe dust storm events, the gap between simulation result and actual return period can be narrowed up to 0.4888years by using integrated factor. Furthermore, the risk map based on the return period results shows that the Mandula, Zhurihe, Sunitezuoqi, Narenbaolige stations are identified as high risk areas. In this study area, land surface is extensively covered by grasses and shrubs, vegetation green-up date can play a significant role in restraining spring dust storm outbreaks. Therefore, we suggest that Copula method can become a useful tool for joint return period evaluation and risk analysis of severe dust storms. Copyright © 2017 Elsevier B.V. All rights reserved.
Efimov, D K
2016-05-18
We consider Penning ionization of Rydberg atom pairs as an Auger-type process induced by the dipole-dipole interaction and employ semiclassical formulae for dipole transitions to calculate the autoionization width as a function of the principal quantum numbers, n d, n i, of both atoms. While for symmetric atom pairs with the well-known increase of the autoionization width with increasing n 0 is obtained, the result for asymmetric pairs is counterintuitive - for a fixed n i of the ionizing atom of the pair, the autoionization width strongly increases with decreasing n d of the de-excited atom. For H Rydberg atoms this increase reaches two orders of magnitude at the maximum of the n d dependence, and the same type of counterintuitive behavior is exhibited also by Na, Rb and Cs atoms. This is a purely quantum-mechanical effect, which points towards existence of optimal (we call them \\'Tom\\' and \\'Jerry\\' for \\'big\\' and \\'small\\') pairs of Rydberg atoms with respect to autoionization efficiency. Building on the model of population redistribution in cold Rydberg gases proposed in [1], we demonstrate that population evolution following the initial laser excitation of Rydberg atoms in state n 0 would eventually lead to the formation of such Tom-Jerry pairs with which feature autoionization widths that are enhanced by several orders of magnitude compared to that of two atoms in the initial laser-excited state n 0. We also show that in the high-density regime of cold Rydberg gas experiments the ionization rate of Tom-Jerry pairs can be substantially larger than the blackbody radiation-induced photoionization rate. © 2016 IOP Publishing Ltd.
Energy Technology Data Exchange (ETDEWEB)
Fechner, Peer Cornelis
2015-07-21
The central topic of this thesis is the experimental observation and the theoretical modeling of non-adiabatic three-body dissociation of H{sub 3} and D{sub 3} neutral triatomic hydrogen molecules. Our goal is to lend a meaning to the observed momentum vector correlation (MVC) of the three emerging ground state hydrogen atoms, for example H{sub 3}→H(1s)+H(1s)+H(1s), in terms of symmetries of the nuclear molecular wave function and of the non-adiabatic coupling which initiates this decay. In many experiments carried out over the years, a wealth of state specific MVCs was collected by different research groups. The MVCs are imaged in form of so-called Dalitz plots which show a rich structure of maxima and nodal lines, depending on the initial state of the triatomic hydrogen neutral. Theory was slow to catch up with experiment and only by this year, 2015, a general agreement was accomplished. Nevertheless, these models lack of an easy understanding of the underlying physics as many numerical calculations are involved. The theoretical model presented in this thesis follows a different approach which is more guided by the imaging character of our experiments. We concentrate on a rather qualitative treatment by limiting ourselves to the essential ingredients only. This proceeding contributes to giving a physical interpretation of the structures in the Dalitz plots in the following form: Three-particle coincident imaging offers a direct view of the emerging spatial continuum wave function of a predissociating triatomic molecule as it evolves from molecular spatial dimensions into the realm of independent free particles. This latter result is discussed in the context of the so-called Imaging Theorem, the second main part of this work. A third major part of this thesis pertains to obtaining molecular momentum wave functions in separated degrees-of-freedom via Fourier transformation. Even for triatomic hydrogen - the most simple polyatomic molecule - this is a challenging
Troitskaya, Yuliya; Sergeev, Daniil; Vdovin, Maxim; Kandaurov, Alexander; Ermakova, Olga; Kazakov, Vassily
2015-04-01
The most important characteristics that determine the interaction between atmosphere and ocean are fluxes of momentum, heat and moisture. For their parameterization the dimensionless exchange coefficients (the surface drag coefficient CD and the heat transfer coefficient or the Stanton number CT) are used. Numerous field and laboratory experiments show that CD increases with increasing wind speed at moderate and strong wind, and as it was shows recently CD decreases at hurricane wind speed. Waves are known to increase the sea surface resistance due to enhanced form drag, the sea spray is considered as a possible mechanism of the 'drag reduction' at hurricane conditions. The dependence of heat transfer coefficient CD on the wind speed is not so certain and the role of the mechanism associated with the wave disturbances in the mass transfer is not completely understood. Observations and laboratory data show that this dependence is weaker than for the CD, and there are differences in the character of the dependence in different data sets. The purpose of this paper is investigation of the effect of surface waves on the turbulent exchange of momentum and heat within the laboratory experiment, when wind and wave parameters are maintained and controlled. The effect of spray on turbulent exchange at strong winds is also estimated. A series of experiments to study the processes of turbulent exchange of momentum and heat in a stably stratified temperature turbulent boundary layer air flow over waved water surface were carried out at the Wind - wave stratified flume of IAP RAS, the peculiarity of this experiment was the option to change the surface wave parameters regardless of the speed of the wind flow in the channel. For this purpose a polyethylene net with the variable depth (0.25 mm thick and a cell of 1.6 mm × 1.6mm) has been stretched along the channel. The waves were absent when the net was located at the level of the undisturbed water surface, and had maximum
Long, Run; Prezhdo, Oleg V
2011-11-30
Following recent experiments [Science 2010, 328, 1543; PNAS 2011, 108, 965], we report an ab initio nonadiabatic molecular dynamics (NAMD) simulation of the ultrafast photoinduced electron transfer (ET) from a PbSe quantum dot (QD) into the rutile TiO(2) (110) surface. The system forms the basis for QD-sensitized semiconductor solar cells and demonstrates that ultrafast interfacial ET is instrumental for achieving high efficiencies in solar-to-electrical energy conversion. The simulation supports the observation that the ET successfully competes with energy losses due to electron-phonon relaxation. The ET proceeds by the adiabatic mechanism because of strong donor-acceptor coupling. High frequency polar vibrations of both QD and TiO(2) promote the ET, since these modes can rapidly influence the donor-acceptor state energies and coupling. Low frequency vibrations generate a distribution of initial conditions for ET, which shows a broad variety of scenarios at the single-molecule level. Compared to the molecule-TiO(2) interfaces, the QD-TiO(2) system exhibits pronounced differences that arise due to the larger size and higher rigidity of QDs relative to molecules. Both donor and acceptor states are more delocalized in the QD system, and the ET is promoted by optical phonons, which have relatively low frequencies in the QD materials composed of heavy elements. In contrast, in molecular systems, optical phonons are not thermally accessible under ambient conditions. Meanwhile, TiO(2) acceptor states resemble surface impurities due to the local influence of molecular chromophores. At the same time, the photoinduced ET at both QD-TiO(2) and molecule-TiO(2) interfaces is ultrafast and occurs by the adiabatic mechanism, as a result of strong donor-acceptor coupling. The reported state-of-the-art simulation generates a detailed time-domain atomistic description of the interfacial ET process that is fundamental to a wide variety of applications.
DEFF Research Database (Denmark)
Ou, Haiyan; Rottwitt, Karsten
2008-01-01
Standard silica-on-silicon waveguides with a core doped by Ge nanocrystals were fabricated using PECVD and RIE. Transmission of the waveguide was measured, and strong absorption peaks at 1056.8 nm, 1406 nm and 1263.2 nm were observed.......Standard silica-on-silicon waveguides with a core doped by Ge nanocrystals were fabricated using PECVD and RIE. Transmission of the waveguide was measured, and strong absorption peaks at 1056.8 nm, 1406 nm and 1263.2 nm were observed....
Hu, D; Hannah, J; Gray, R S; Jablonski, K A; Henderson, J A; Robbins, D C; Lee, E T; Welty, T K; Howard, B V
2000-09-01
To examine the relationship between obesity and lipoprotein profiles and compare the effects of total obesity and central adiposity on lipids/lipoproteins in American Indians. Participants were 773 nondiabetic American Indian women and 739 men aged 45 to 74 years participating in the Strong Heart Study. Total obesity was estimated using body mass index (BMI). Central obesity was measured as waist circumference. Lipoprotein measures included triglycerides, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, apolipoprotein AI (apoAI), and apolipoprotein B (apoB). Partial and canonical correlation analyses were used to examine the associations between obesity and lipids/ lipoproteins. Women were more obese than men in Arizona (median BMI 32.1 vs. 29.2 kg/m2) and South Dakota and North Dakota (28.3 vs. 28.0 kg/m2), but there was no sex difference in waist circumference. Men had higher apoB and lower apoAI levels than did women. In women, when adjusted for center, gender, and age, BMI was significantly related to HDL cholesterol (r = -0.24, p HDL cholesterol (r = -0.23, p correlated with triglycerides (r = 0.30, p correlated with HDL cholesterol (r = -0.35, p HDL cholesterol decreased with waist circumference (r = -0.36, p correlation analysis, waist circumference received a greater weight (0.86) than did BMI (0.17) in women. However, the canonical weights were similar for waist (0.46) and BMI (0.56) in men. Only HDL cholesterol (-1.02) carried greater weight in women, whereas in men, triglycerides (0.50), and HDL cholesterol (-0.64) carried a large amount of weight. All the correlation coefficients between BMI, waist circumference, and the first canonical variable of lipids/lipoproteins or between the individual lipid/lipoprotein variables and the first canonical variable of obesity were smaller in women than in men. Triglycerides and HDL cholesterol showed clinically meaningful changes with BMI and waist circumference in men. All
The role of magnetic field fluctuations in nonadiabatic acceleration of ions during dipolarization
Ono, Y.; Nosé, M.; Christon, S. P.; Lui, A. T. Y.
2009-05-01
We statistically examine changes in the composition of two different ion species, proton and oxygen ions, in the near-Earth plasma sheet (X = -16 R E ˜ -6 R E ) during substorm-associated dipolarization. We use 10 years of energetic (9-212 keV/e) ion data obtained by the suprathermal ion composition spectrometer (STICS) sensor of the energetic particles and ion composition (EPIC) instrument on board the Geotail spacecraft. The results are as follows: (1) Although the percentage increase in the energy density of O+ ions before and after a dipolarization exceeds that of H+ ions in the low-energy range (9-36 keV/e), this property is not evident in the high-energy range (56-212 keV/e); (2) the energy spectrum of H+ and that of O+ become harder after dipolarization in almost all events; and (3) in some events the energy spectrum of O+ becomes harder than that of H+ as reported by previous studies, and, importantly, in other events, the spectrum of H+ becomes harder than that of O+. In order to investigate what mechanism causes these observational results, we focus on magnetic field fluctuations during dipolarization. It is found that the increase of the spectrum slope is positively correlated with the power of waves whose frequencies are close to the gyrofrequency of H+ or O+, respectively (the correlation coefficient is 0.48 for H+ and 0.68 for O+). In conclusion, ions are nonadiabatically accelerated by the electric field induced by the magnetic field fluctuations whose frequencies are close to their gyrofrequencies.
Quantum Nuclear Extension of Electron Nuclear Dynamics on Folded Effective-Potential Surfaces
DEFF Research Database (Denmark)
Hall, B.; Deumens, E.; Ohrn, Y.
2014-01-01
A perennial problem in quantum scattering calculations is accurate theoretical treatment of low energy collisions. We propose a method of extracting a folded, nonadiabatic, effective potential energy surface from electron nuclear dynamics (END) trajectories; we then perform nuclear wave packet...
PANNEMAN, HJ; BEENACKERS, AACM
1992-01-01
The liquid-phase hydration of cyclohexene, a pseudo first order reversible reaction catalyzed by a strong acid ion exchange resin, macroporous Amberlite XE 307, was investigated in solvent mixtures of water and sulfolane. A decrease by a factor of 3 and 6 is observed in the experimentally measured
Wood, Robert G.; McConnell, Sheena; Moore, Quinn; Clarkwest, Andrew; Hsueh, JoAnn
2012-01-01
This article examines the impacts of Building Strong Families, a healthy marriage and relationship skills education program serving unmarried parents who were expecting or had recently had a baby. Based on a random assignment research design, the analysis uses survey data from more than 4,700 couples across eight research sites to estimate program…
Zibaii, M. I.; Latifi, H.; Asadollahi, A.; Noraeipoor, Z.; Dargahi, L.
2014-05-01
Real-time observation of intracellular process of signal transduction is very useful for biomedical and pharmaceutical applications as well as for basic research work of cell biology. For feasible and reagentless observation of intracellular alterations in real time, we examined the use of a nonadiabatic tapered optical fiber (NATOF) biosensor for monitoring of intracellular signal transduction that was mainly translocation of protein kinase C via refractive index change in PC12 cells adhered on tapered fiber sensor without any indicator reagent. PC12 cells were stimulated with KCl . Our results suggest that complex intracellular reactions could be real-time monitored and characterized by NATOF biosensor.
International Nuclear Information System (INIS)
Vallurupalli, Pramodh; Scott, Lincoln; Williamson, James R.; Kay, Lewis E.
2007-01-01
Simulation and experiment have been used to establish that significant artifacts can be generated in X-pulse CPMG relaxation dispersion experiments recorded on heteronuclear ABX spin-systems, such as 13 C i - 13 C j - 1 H, where 13 C i and 13 C j are strongly coupled. A qualitative explanation of the origin of these artifacts is presented along with a simple method to significantly reduce them. An application to the measurement of 1 H CPMG relaxation dispersion profiles in an HIV-2 TAR RNA molecule where all ribose sugars are protonated at the 2' position, deuterated at all other sugar positions and 13 C labeled at all sugar carbons is presented to illustrate the problems that strong 13 C- 13 C coupling introduces and a simple solution is proposed
Energy Technology Data Exchange (ETDEWEB)
Costa-Quintana, J.; Sanchez-Lopez, M.M.; Lopez-Aguilar, F. [Grup d`Electromagnetisme, Edifici Cn, Universitat Autonoma de Barcelona 08193, Bellaterra, Barcelona (Spain)
1996-10-01
We give a method to obtain the quasiparticle band structure and renormalized density of states by diagonalizing the interacting system Green function. This method operates for any self-energy approximation appropriated to strongly correlated systems. Application to CeSi{sub 2} and YBa{sub 2}Cu{sub 3}O{sub 7} is analyzed as a probe for this band calculation method. {copyright} {ital 1996 The American Physical Society.}
Hatzell, Marta C.
2014-12-02
© 2014 American Chemical Society. The amount of salinity-gradient energy that can be obtained through capacitive mixing based on double layer expansion depends on the extent the electric double layer (EDL) is altered in a low salt concentration (LC) electrolyte (e.g., river water). We show that the electrode-rise potential, which is a measure of the EDL perturbation process, was significantly (P = 10^{-5}) correlated to the concentration of strong acid surface functional groups using five types of activated carbon. Electrodes with the lowest concentration of strong acids (0.05 mmol g^{-1}) had a positive rise potential of 59 ± 4 mV in the LC solution, whereas the carbon with the highest concentration (0.36 mmol g^{-1}) had a negative rise potential (-31 ± 5 mV). Chemical oxidation of a carbon (YP50) using nitric acid decreased the electrode rise potential from 46 ± 2 mV (unaltered) to -6 ± 0.5 mV (oxidized), producing a whole cell potential (53 ± 1.7 mV) that was 4.4 times larger than that obtained with identical electrode materials (from 12 ± 1 mV). Changes in the EDL were linked to the behavior of specific ions in a LC solution using molecular dynamics and metadynamics simulations. The EDL expanded in the LC solution when a carbon surface (pristine graphene) lacked strong acid functional groups, producing a positive-rise potential at the electrode. In contrast, the EDL was compressed for an oxidized surface (graphene oxide), producing a negative-rise electrode potential. These results established the linkage between rise potentials and specific surface functional groups (strong acids) and demonstrated on a molecular scale changes in the EDL using oxidized or pristine carbons.
Zhang, Yang; Sun, Yan; Yang, Hao; Železný, Jakub; Parkin, Stuart P. P.; Felser, Claudia; Yan, Binghai
2017-02-01
We have carried out a comprehensive study of the intrinsic anomalous Hall effect and spin Hall effect of several chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh and Pt) by ab initio band structure and Berry phase calculations. These studies reveal large and anisotropic values of both the intrinsic anomalous Hall effect and spin Hall effect. The Mn3X materials exhibit a noncollinear antiferromagnetic order which, to avoid geometrical frustration, forms planes of Mn moments that are arranged in a Kagome-type lattice. With respect to these Kagome planes, we find that both the anomalous Hall conductivity (AHC) and the spin Hall conductivity (SHC) are quite anisotropic for any of these materials. Based on our calculations, we propose how to maximize AHC and SHC for different materials. The band structures and corresponding electron filling, that we show are essential to determine the AHC and SHC, are compared for these different compounds. We point out that Mn3Ga shows a large SHC of about 600 (ℏ /e ) (Ωcm) -1 . Our work provides insights into the realization of strong anomalous Hall effects and spin Hall effects in chiral antiferromagnetic materials.
International Nuclear Information System (INIS)
Glushkov, A. V.; Khetselius, O. Yu.; Svinarenko, A. A.; Lovett, L.
2010-01-01
A consistent energy approach to nuclei and atoms in a strong electromagnetic (laser) field is presented. The photon emission and absorption lines are described by the moments of different orders, which are calculated with the use of the Gell-Mann and Low S-matrix adiabatic formalism. In relativistic version the Gell-Mann and Low formulae expresses an imaginary part of the energy shift ImE through the scattering matrix, including interaction of quantum system as with laser field as with a field of photon vacuum.
Cao, Ting-Ting; Wang, Yuan-Jing; Zhang, Yu-Qing
2013-01-01
Strongly alkaline electrolyzed water (SAEW) was prepared by electrolysis of tap water in a laboratory-made water electrolyzer. The pH of stored SAEW was stable for more than one month. The hardness of the electrolyzed water was 30% lower and the Na(+) concentration was 18% higher than those of the tap water. Silkworm cocoon shells were boiled in pH 11.50 SAEW at a ratio of 1∶40∼80 (W/V) for 20 min and the sericin layers around the silk fibroin fibers were removed completely. The tensile prope...
Kelly, Aaron; Brackbill, Nora; Markland, Thomas E
2015-03-07
In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.
DEFF Research Database (Denmark)
Bak, Keld L.; Jørgensen, Poul; Jensen, H.J.A.
1992-01-01
A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response of a ref......A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response...... of a reference MCSCF wave function and the excitation vectors of response theory. Advantages of the method are that the reference state is fully optimized and that the excited states, represented by the excitation vectors, are strictly orthogonal to each other and to the reference state. In a single calculation...... electrons many correlating orbitals are required in the MCSCF reference state calculation to accurately describe the FO-NACME. FO-NACME between various states of H-2, MgH2, and BH are presented. These calculations show that the method is capable of giving quantitatively correct results that converge...
Kelly, Aaron; Brackbill, Nora; Markland, Thomas E.
2015-03-01
In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.
Arakawa, Naoya
2016-11-01
I propose the emergence of the spin-orbital-coupled vector chirality in a nonfrustrated Mott insulator with the strong spin-orbit coupling due to a b -plane's inversion-symmetry (IS) breaking. I derive the superexchange interactions for a t2 g-orbital Hubbard model on a square lattice with the strong spin-orbit coupling and the IS-breaking-induced hopping integrals, and explain the microscopic origins of the Dzyaloshinsky-Moriya (DM) -type and the Kitaev-type interactions. Then, by adopting the mean-field approximation to a minimal model including only the Heisenberg-type and the DM-type nearest-neighbor interactions, I show that the IS breaking causes the spin-orbital-coupled chirality as a result of stabilizing the screw state. I also highlight the limit of the hard-pseudospin approximation in discussing the stability of the screw states in the presence of both the DM-type and the Kitaev-type interactions, and discuss its meaning. I finally discuss the effects of tetragonal crystal field and Jeff=3/2 states, and the application to the iridates near the [001 ] surface of Sr2IrO4 and the interface between Sr2IrO4 and Sr3Ir2O7 .
Aerts, R; Callaghan, T V; Dorrepaal, E; van Logtestijn, R S P; Cornelissen, J H C
2012-11-01
Litter decomposition and nutrient mineralization in high-latitude peatlands are constrained by low temperatures. So far, little is known about the effects of seasonal components of climate change (higher spring and summer temperatures, more snow which leads to higher winter soil temperatures) on these processes. In a 4-year field experiment, we manipulated these seasonal components in a sub-arctic bog and studied the effects on the decomposition and N and P dynamics of leaf litter of Calamagrostis lapponica, Betula nana, and Rubus chamaemorus, incubated both in a common ambient environment and in the treatment plots. Mass loss in the controls increased in the order Calamagrostis Litter chemistry showed within each incubation environment only a few and species-specific responses. Compared to the interspecific differences, they resulted in only moderate climate treatment effects on mass loss and these differed among seasons and species. Neither N nor P mineralization in the litter were affected by the incubation environment. Remarkably, for all species, no net N mineralization had occurred in any of the treatments during 4 years. Species differed in P-release patterns, and summer warming strongly stimulated P release for all species. Thus, moderate changes in summer temperatures and/or winter snow addition have limited effects on litter decomposition rates and N dynamics, but summer warming does stimulate litter P release. As a result, N-limitation of plant growth in this sub-arctic bog may be sustained or even further promoted.
Dvali, Gia
2009-01-01
We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...
Strong-coupling approximations
International Nuclear Information System (INIS)
Abbott, R.B.
1984-03-01
Standard path-integral techniques such as instanton calculations give good answers for weak-coupling problems, but become unreliable for strong-coupling. Here we consider a method of replacing the original potential by a suitably chosen harmonic oscillator potential. Physically this is motivated by the fact that potential barriers below the level of the ground-state energy of a quantum-mechanical system have little effect. Numerically, results are good, both for quantum-mechanical problems and for massive phi 4 field theory in 1 + 1 dimensions. 9 references, 6 figures
International Nuclear Information System (INIS)
Ebata, T.
1981-01-01
With an assumed weak multiplet structure for bosonic hadrons, which is consistent with the ΔI = 1/2 rule, it is shown that the strong interaction effective hamiltonian is compatible with the weak SU(2) x U(1) gauge transformation. Especially the rho-meson transforms as a triplet under SU(2)sub(w), and this is the origin of the rho-photon analogy. It is also shown that the existence of the non-vanishing Cabibbo angle is a necessary condition for the absence of the exotic hadrons. (orig.)
Luo, Sizuo; Zhou, Shushan; Hu, Wenhui; Li, Xiaokai; Ma, Pan; Yu, Jiaqi; Zhu, Ruihan; Wang, Chuncheng; Liu, Fuchun; Yan, Bing; Liu, Aihua; Yang, Yujun; Guo, Fuming; Ding, Dajun
2017-12-01
Controlling the molecular axis offers additional ways to study molecular ionization and dissociation in strong laser fields. We measure the ionization and dissociation yields of aligned polar CH3X (X =I , Br) molecules in a linearly polarized femtosecond laser field. The current data show that maximum ionization occurs when the laser polarization is perpendicular to the molecular C -X axis, and dissociation prefers to occur at the laser polarization parallel to the C -X axis. The observed angular distributions suggest that the parent ions are generated by ionization from the HOMO. The angular distribution of fragment ions indicates that dissociation occurs mainly from an ionic excited state produced by ionization from the HOMO-1.
Effect of the strong coupling on the exchange bias field in IrMn/Py/Ru/Co spin valves
Tarazona, H. S.; Alayo, W.; Landauro, C. V.; Quispe-Marcatoma, J.
2018-01-01
The IrMn/Py/Ru/Co (Py = Ni81Fe19) spin valves have been produced by sputtering deposition and analyzed by magnetization measurements and a theoretical modelling of their exchange interactions, based on the macro-spin model. The Ru thickness was grown between 6 and 22 Å, which is small enough to promote strong indirect coupling between Py and Co. Results of measurements showed a large and gradual change in the shape of hysteresis loops when the Ru thickness was varied. The theoretical analysis, using numerical calculations based on the gradient conjugate method, provides the exchange coupling constants (bilinear and biquadratic), the exchange anisotropy fields and the magnetic anisotropy fields (uniaxial and rotatable). The exchange bias fields of spin valves were compared to that of a IrMn/Py bilayer. We found that the difference between these fields oscillates with Ru thickness in the same manner as the bilinear coupling constants.
Loi, Shyeh Tjing; Papaloizou, John C. B.
2018-04-01
The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the "dipole dichotomy" problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localised region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g-modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organisation of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetised region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.
Flow of CO2 ethanol and of CO2 methanol in a non-adiabatic microfluidic T-junction at high pressures
Blanch Ojea, R.; Tiggelaar, Roald M.; Pallares, J.; Grau, F.X.; Gardeniers, Johannes G.E.
2012-01-01
In this work, an experimental investigation of the single- and multiphase flows of two sets of fluids, CO2–ethanol and CO2–methanol, in a non-adiabatic microfluidic T-junction is presented. The operating conditions ranged from 7 to 18 MPa, and from 294 to 474 K. The feed mass fraction of CO2 in the
Directory of Open Access Journals (Sweden)
Shingo Nakamura
2017-10-01
Full Text Available Wild barley (Hordeum vulgare ssp. spontaneum has strong grain dormancy, a trait that may enhance its survival in non-cultivated environments; by contrast, cultivated barley (Hordeum vulgare ssp. vulgare has weaker dormancy, allowing uniform germination in cultivation. Malting barley cultivars have been bred for especially weak dormancy to optimize their use in malt production. Here, we analyzed the genetic mechanism of this difference in seed dormancy, using recombinant inbred lines (RILs derived from a cross between the wild barley accession ‘H602’ and the malting barley cultivar ‘Kanto Nakate Gold (KNG’. Grains of H602 and KNG harvested at physiological maturity and dried at 30°C for 7 days had germination of approximately 0 and 100%, respectively. Analysis of quantitative trait loci (QTL affecting grain dormancy identified the well-known major dormancy QTL SD1 and SD2 (located near the centromeric region and at the distal end of the long arm of chromosome 5H, respectively, and QTL at the end of the long arm of chromosome 4H and in the middle of the long arm of chromosome 5H. We designated these four QTL Qsd1-OK, Qsd2-OK, Qsdw-4H, and Qsdw-5H, and they explained approximately 6, 38, 3, and 13% of the total phenotypic variation, respectively. RILs carrying H602 alleles showed increased dormancy levels for all QTL. The QTL acted additively and did not show epistasis or QTL–environment interactions. Comparison of QTL locations indicated that all QTL except Qsdw-5H are likely the same as the QTL previously detected in the doubled haploid population from a cross between the malting cultivar ‘Haruna Nijo’ and ‘H602.’ We further examined Qsd2-OK and Qsdw-5H by analyzing the segregation of phenotypes and genotypes of F2 progenies derived from crosses between RILs carrying specific segments of chromosome 5H from H602 in the KNG background. This analysis confirmed that the two genomic regions corresponding to these QTL are involved in
Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Sameri, Mohammad; Sato, Kazuhiro; Komatsuda, Takao
2017-01-01
Wild barley ( Hordeum vulgare ssp. spontaneum ) has strong grain dormancy, a trait that may enhance its survival in non-cultivated environments; by contrast, cultivated barley ( Hordeum vulgare ssp. vulgare ) has weaker dormancy, allowing uniform germination in cultivation. Malting barley cultivars have been bred for especially weak dormancy to optimize their use in malt production. Here, we analyzed the genetic mechanism of this difference in seed dormancy, using recombinant inbred lines (RILs) derived from a cross between the wild barley accession 'H602' and the malting barley cultivar 'Kanto Nakate Gold (KNG)'. Grains of H602 and KNG harvested at physiological maturity and dried at 30°C for 7 days had germination of approximately 0 and 100%, respectively. Analysis of quantitative trait loci (QTL) affecting grain dormancy identified the well-known major dormancy QTL SD1 and SD2 (located near the centromeric region and at the distal end of the long arm of chromosome 5H, respectively), and QTL at the end of the long arm of chromosome 4H and in the middle of the long arm of chromosome 5H. We designated these four QTL Qsd1-OK , Qsd2-OK , Qsdw-4H , and Qsdw-5H , and they explained approximately 6, 38, 3, and 13% of the total phenotypic variation, respectively. RILs carrying H602 alleles showed increased dormancy levels for all QTL. The QTL acted additively and did not show epistasis or QTL-environment interactions. Comparison of QTL locations indicated that all QTL except Qsdw-5H are likely the same as the QTL previously detected in the doubled haploid population from a cross between the malting cultivar 'Haruna Nijo' and 'H602.' We further examined Qsd2-OK and Qsdw-5H by analyzing the segregation of phenotypes and genotypes of F 2 progenies derived from crosses between RILs carrying specific segments of chromosome 5H from H602 in the KNG background. This analysis confirmed that the two genomic regions corresponding to these QTL are involved in the regulation of
Zotov, O. D.; Zavyalov, A. D.; Guglielmi, A. V.; Lavrov, I. P.
2018-01-01
Based on the observation data for hundreds of the main shocks and thousands of aftershocks, the existence of effect of round-the-world surface seismic waves is demonstrated (let us conditionally refer to them as a round-the-world seismic echo) and the manifestations of this effect in the dynamics of the repeated shocks of strong earthquakes are analyzed. At the same time, we by no means believe this effect has been fully proven. We only present a version of our own understanding of the physical causes of the observed phenomenon and analyze the regularities in its manifestation. The effect is that the surface waves excited in the Earth by the main shock make a full revolution around the Earth and excite a strong aftershock in the epicentral zone of the main shock. In our opinion, the physical nature of this phenomenon consists in the fact that the superposition leads to a concentration of wave energy when the convergent surface waves reach the epicentral zone (cumulative effect). The effect of the first seismic echo is most manifest. Thus, the present work supports our hypothesis of the activation of rock failure under the cumulative impact of an round-the-world seismic echo on the source area which is releasing ("cooling") after the main shock. The spatial regularities in the manifestations of this effect are established, and the independence of the probability of its occurrence on the main shock magnitude is revealed. The effect of a round-the-world seismic echo can be used to improve the reliability of the forecasts of strong aftershocks in determining the scenario for the seismic process developing in the epicentral zone of a strong earthquake that has taken place.
International Nuclear Information System (INIS)
Doddy Kastanya; Paul Turinsky
2002-01-01
A Newton-BICGSTAB solver has been developed to reduce the CPU execution time of BWR core simulators. The new solver treats the strong non-linearities in the problem explicitly using the Newton's method, replacing the traditionally used nested iterative approach. The Newton's method provides the solver with a higher-than-linear convergence rate, assuming that a good initial estimate of the unknowns is provided. Within each Newton iteration, an appropriately preconditioned BICGSTAB method is utilized for solving the linearized system of equations. Taking advantage of the higher convergence rate provided by the Newton's method and utilizing an efficient preconditioned BICGSTAB solver, we have developed a computationally efficient Newton-BICGSTAB solver to evaluate the three-dimensional, two-group neutron diffusion equations coupled with a two-phase flow model within a BWR core simulator. The robustness of the solver has been tested against numerous BWR core configurations and consistent results have been observed each time. The Newton-BICGSTAB solver provides an overall speedup of around 1.7 to the core simulator, with reference to the traditional approach. Isolating the solver portion of the core simulator, one can see that the new algorithm actually provides a speedup of around 1.9, of which 48% can be attributed to the BICGSTAB solver and the remaining 52% to Newton's method
Directory of Open Access Journals (Sweden)
Hanna Björkelund
Full Text Available The interaction of the epidermal growth factor (EGF with its receptor (EGFR is known to be complex, and the common over-expression of EGF receptor family members in a multitude of tumors makes it important to decipher this interaction and the following signaling pathways. We have investigated the affinity and kinetics of (125I-EGF binding to EGFR in four human tumor cell lines, each using four culturing conditions, in real time by use of LigandTracer®.Highly repeatable and precise measurements show that the overall apparent affinity of the (125I-EGF - EGFR interaction is greatly dependent on cell line at normal culturing conditions, ranging from K(D ≈ 200 pM on SKBR3 cells to K(D≈8 nM on A431 cells. The (125I-EGF - EGFR binding curves (irrespective of cell line have strong signs of multiple simultaneous interactions. Furthermore, for the cell lines A431 and SKOV3, gefitinib treatment increases the (125I-EGF - EGFR affinity, in particular when the cells are starved. The (125I-EGF - EGFR interaction on cell line U343 is sensitive to starvation while as on SKBR3 it is insensitive to gefitinib and starvation.The intriguing pattern of the binding characteristics proves that the cellular context is important when deciphering how EGF interacts with EGFR. From a general perspective, care is advisable when generalizing ligand-receptor interaction results across multiple cell-lines.
Smirnov, S. E.; Mikhailova, G. A.; Mikhailov, Yu. M.; Kapustina, O. V.
2017-09-01
The diurnal variations in electrical (quasistatic electric field and electrical conductivity) and meteorological (temperature, pressure, relative humidity of the atmosphere, and wind speed) parameters, measured simultaneously before strong earthquakes in Kamchatka region (November 15, 2006, M = 8.3; January 13, 2007, M = 8.1; January 30, 2016, M = 7.2), are studied for the first time in detail. It is found that a successively anomalous increase in temperature, despite the negative regular trend in these winter months, was observed in the period of six-seven days before the occurrences of earthquakes. An anomalous temperature increase led to the formation of "winter thunderstorm" conditions in the near-surface atmosphere of Kamchatka region, which was manifested in the appearance of an anomalous, type 2 electrical signal, the amplification of and intensive variations in electrical conductivity, heavy precipitation (snow showers), high relative humidity of air, storm winds, and pressure changes. With the weak flow of natural heat radiation in this season, the observed dynamics of electric and meteorological processes can likely be explained by the appearance of an additional heat source of seismic nature.
Directory of Open Access Journals (Sweden)
Ting-Ting Cao
Full Text Available Strongly alkaline electrolyzed water (SAEW was prepared by electrolysis of tap water in a laboratory-made water electrolyzer. The pH of stored SAEW was stable for more than one month. The hardness of the electrolyzed water was 30% lower and the Na(+ concentration was 18% higher than those of the tap water. Silkworm cocoon shells were boiled in pH 11.50 SAEW at a ratio of 1∶40∼80 (W/V for 20 min and the sericin layers around the silk fibroin fibers were removed completely. The tensile properties and thermal decomposition temperature of a single filament of silk fibroin obtained by the SAEW method were almost the same as those for the fiber obtained by the neutral soap, and much higher than those for the fiber obtained by Na2CO3 degumming. The results demonstrate that SAEW is an environmentally friendly and pollution-free silk degumming agent that allows highly efficient, low cost recovery of sericin.
Cao, Ting-Ting; Wang, Yuan-Jing; Zhang, Yu-Qing
2013-01-01
Strongly alkaline electrolyzed water (SAEW) was prepared by electrolysis of tap water in a laboratory-made water electrolyzer. The pH of stored SAEW was stable for more than one month. The hardness of the electrolyzed water was 30% lower and the Na(+) concentration was 18% higher than those of the tap water. Silkworm cocoon shells were boiled in pH 11.50 SAEW at a ratio of 1∶40∼80 (W/V) for 20 min and the sericin layers around the silk fibroin fibers were removed completely. The tensile properties and thermal decomposition temperature of a single filament of silk fibroin obtained by the SAEW method were almost the same as those for the fiber obtained by the neutral soap, and much higher than those for the fiber obtained by Na2CO3 degumming. The results demonstrate that SAEW is an environmentally friendly and pollution-free silk degumming agent that allows highly efficient, low cost recovery of sericin.
Cost-effectiveness of the strong African American families-teen program: 1-year follow-up.
Ingels, Justin B; Corso, Phaedra S; Kogan, Steve M; Brody, Gene H
2013-12-01
Alcohol use poses a major threat to the health and well being of rural African American adolescents by negatively impacting academic performance, health, and safety. However, rigorous economic evaluations of prevention programs targeting this population are scarce. Cost-effectiveness analyses were conducted of SAAF-T relative to an attention-control intervention (ACI), as part of a randomized prevention trial. Outcomes of interest were the number of alcohol use and binge drinking episodes prevented, one year following the intervention. Incremental cost-effectiveness ratios (ICERs) and cost-effectiveness acceptability curves (CEACs) were used to determine the cost-effectiveness of SAAF-T compared to the ACI intervention. For the 473 participating youth completing baseline and follow-up assessments, the incremental per participant costs were $168, while the incremental per participant effects were 3.39 episodes of alcohol use prevented and 1.36 episodes of binge drinking prevented. Compared to the ACI intervention, the SAAF-T program cost $50 per reduction in an alcohol use episode and $123 per reduced episode of binge drinking. For the CEACs, at thresholds of $100 and $440, SAAF-T has at least a 90% probability of being cost-effective, relative to the ACI, for reductions in alcohol use and binge drinking episodes, respectively. The SAAF-T intervention provides a potentially cost-effective means for reducing the African American youths' alcohol use and binge drinking episodes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Mizuno, Yuta; Arasaki, Yasuki; Takatsuka, Kazuo
2016-01-01
A complicated yet interesting induced photon emission can take place by a nonadiabatic intramolecular electron transfer system like LiF under an intense CW laser [Y. Arasaki, S. Scheit, and K. Takatsuka, J. Chem. Phys. 138, 161103 (2013)]. Behind this phenomena, the crossing point between two potential energy curves of covalent and ionic natures in diabatic representation is forced to oscillate, since only the ionic potential curve is shifted significantly up and down repeatedly (called the Dynamical Stark effect). The wavepacket pumped initially to the excited covalent potential curve frequently encounters such a dynamically moving crossing point and thereby undergoes very complicated dynamics including wavepacket bifurcation and deformation. Intramolecular electron transfer thus driven by the coupling between nonadiabatic state-mixing and laser fields induces irregular photon emission. Here in this report we discuss the complicated spectral features of this kind of photon emission induced by infrared laser. In the low frequency domain, the photon emission is much more involved than those of ultraviolet/visible driving fields, since many field-dressed states are created on the ionic potential, which have their own classical turning points and crossing points with the covalent counterpart. To analyze the physics behind the phenomena, we develop a perturbation theoretic approach to the Riccati equation that is transformed from coupled first-order linear differential equations with periodic coefficients, which are supposed to produce the so-called Floquet states. We give mathematical expressions for the Floquet energies, frequencies, and intensities of the photon emission spectra, and the cutoff energy of their harmonic generation. Agreement between these approximate quantities and those estimated with full quantum calculations is found to be excellent. Furthermore, the present analysis provides with notions to facilitate deeper understanding for the physical and
McDonagh, S T J; Wylie, L J; Winyard, P G; Vanhatalo, A; Jones, A M
2015-12-01
Chlorhexidine-containing mouthwash (STRONG), which disturbs oral microflora, has been shown to diminish the rise in plasma nitrite concentration ([NO2-]) and attenuate the reduction in resting blood pressure (BP) typically seen after acute nitrate (NO3-) ingestion. We aimed to determine whether STRONG and weaker antiseptic agents attenuate the physiological effects of chronic NO3- supplementation using beetroot juice (BR). 12 healthy volunteers mouth-rinsed with STRONG, non-chlorhexidine mouthwash (WEAK) and deionised water (CON) 3 times a day, and ingested 70 mL BR (6.2 mmol NO3-), twice a day, for 6 days. BP (at rest and during 10 min of treadmill walking) and plasma and salivary [NO3-] and [NO2-] were measured prior to and on day 6 of supplementation. The change in salivary [NO3-] 4 h post final ingestion was higher (P0.05). However, during treadmill walking, the increase in systolic and mean arterial BP was higher 4 h after the final nitrate bolus in STRONG compared with CON (P<0.05) but not WEAK. The results indicate that both strong and weak antibacterial agents suppress the rise in plasma [NO2-] observed following the consumption of a high NO3- diet and the former can influence the BP response during low-intensity exercise. © Georg Thieme Verlag KG Stuttgart · New York.
Directory of Open Access Journals (Sweden)
Sébastien Chalencon
Full Text Available Competitive swimming as a physical activity results in changes to the activity level of the autonomic nervous system (ANS. However, the precise relationship between ANS activity, fatigue and sports performance remains contentious. To address this problem and build a model to support a consistent relationship, data were gathered from national and regional swimmers during two 30 consecutive-week training periods. Nocturnal ANS activity was measured weekly and quantified through wavelet transform analysis of the recorded heart rate variability. Performance was then measured through a subsequent morning 400 meters freestyle time-trial. A model was proposed where indices of fatigue were computed using Banister's two antagonistic component model of fatigue and adaptation applied to both the ANS activity and the performance. This demonstrated that a logarithmic relationship existed between performance and ANS activity for each subject. There was a high degree of model fit between the measured and calculated performance (R(2=0.84±0.14,p<0.01 and the measured and calculated High Frequency (HF power of the ANS activity (R(2=0.79±0.07, p<0.01. During the taper periods, improvements in measured performance and measured HF were strongly related. In the model, variations in performance were related to significant reductions in the level of 'Negative Influences' rather than increases in 'Positive Influences'. Furthermore, the delay needed to return to the initial performance level was highly correlated to the delay required to return to the initial HF power level (p<0.01. The delay required to reach peak performance was highly correlated to the delay required to reach the maximal level of HF power (p=0.02. Building the ANS/performance identity of a subject, including the time to peak HF, may help predict the maximal performance that could be obtained at a given time.
Sekanina, Zdenek; Kracht, Rainer
2015-03-01
We investigate the relationships among the angular orbital elements—the longitude of the ascending node Ω, the inclination i, and the argument of perihelion ω—of the Kreutz system’s faint, dwarf sungrazers observed only with the Solar and Heliospheric Observatory/STEREO coronagraphs; their published orbits were derived using a parabolic, purely gravitational approximation. In a plot of i against Ω the bright Kreutz sungrazers (such as C/1843 D1, C/1882 R1, C/1963 R1, etc.) fit a curve of fixed apsidal orientation, whereas the dwarf members are distributed along a curve that makes with the apsidal curve an angle of 15°. The dwarf sungrazers’ perihelion longitude is statistically invariable, but their perihelion latitude increases systematically with Ω. We find that this trend can be explained by a strong erosion-driven nongravitational acceleration normal to the orbit plane, confirmed for several test dwarf Kreutz sungrazers by orbital solutions with nongravitational terms incorporated directly in the equations of motion on a condition of fixed apsidal orientation. Proceeding in three steps, we first apply Marsden et al.'s standard formalism, solving for the normal acceleration only, and eventually relax additional constraints on the nongravitational law and the acceleration’s radial and transverse components. The resulting nongravitational accelerations on the dwarf sungrazers exceed the maximum for cataloged comets in nearly parabolic orbits by up to three orders of magnitude, topping in exceptional cases the Sun’s gravitational acceleration! A mass-loss model suggests that the dwarf sungrazers’ nuclei fragment copiously and their dimensions diminish rapidly near the Sun, implying the objects’ imminent demise shortly before they reach perihelion.
Energy Technology Data Exchange (ETDEWEB)
Pelaez, Jose R
1998-12-14
We present a brief pedagogical introduction to the Effective Electroweak Chiral Lagrangians, which provide a model independent description of the WW interactions in the strong regime. When it is complemented with some unitarization or a dispersive approach, this formalism allows the study of the general strong scenario expected at the LHC, including resonances.
Energy Technology Data Exchange (ETDEWEB)
Flakus, Henryk T., E-mail: flakus@ich.us.edu.pl [Institute of Chemistry, University of Silesia, 9 Szkolna Street, Pl-40-006 Katowice (Poland); Tyl, Aleksandra; Jablonska, Magdalena [Institute of Chemistry, University of Silesia, 9 Szkolna Street, Pl-40-006 Katowice (Poland)
2009-10-16
This paper presents the results of the re-investigation of polarized IR spectra of adipic acid and of its d{sub 2}, d{sub 8} and d{sub 10} deuterium derivative crystals. The spectra were measured at 77 K by a transmission method using polarized light for two different crystalline faces. Theoretical analysis concerned linear dichroic effects and H/D isotopic effects observed in the spectra of the hydrogen and deuterium bonds in adipic acid crystals at the frequency ranges of the {nu}{sub O-H} and the {nu}{sub O-D} bands. The two-branch fine structure pattern of the {nu}{sub O-H} and {nu}{sub O-D} bands and the basic linear dichroic effects characterizing them were ascribed to the vibronic mechanism of vibrational dipole selection rule breaking for IR transitions in centrosymmetric hydrogen bond dimers. It was proved that for isotopically diluted crystalline samples of adipic acid, a non-random distribution of protons and deuterons occurs in the dimers (H/D isotopic 'self-organization' effect). This effect results from the dynamical co-operative interactions involving the dimeric hydrogen bonds.
Flakus, Henryk T.; Tyl, Aleksandra; Jablońska, Magdalena
2009-10-01
This paper presents the results of the re-investigation of polarized IR spectra of adipic acid and of its d2, d8 and d10 deuterium derivative crystals. The spectra were measured at 77 K by a transmission method using polarized light for two different crystalline faces. Theoretical analysis concerned linear dichroic effects and H/D isotopic effects observed in the spectra of the hydrogen and deuterium bonds in adipic acid crystals at the frequency ranges of the νO-H and the νO-D bands. The two-branch fine structure pattern of the νO-H and νO-D bands and the basic linear dichroic effects characterizing them were ascribed to the vibronic mechanism of vibrational dipole selection rule breaking for IR transitions in centrosymmetric hydrogen bond dimers. It was proved that for isotopically diluted crystalline samples of adipic acid, a non-random distribution of protons and deuterons occurs in the dimers (H/D isotopic " self-organization" effect). This effect results from the dynamical co-operative interactions involving the dimeric hydrogen bonds.
De Brauwer, Jolien; Duyck, Wouter; Brysbaert, Marc
2008-03-01
We present new evidence that word translation involves semantic mediation. It has been shown that participants react faster to small numbers with their left hand and to large numbers with their right hand. This SNARC (spatial-numerical association of response codes) effect is due to the fact that in Western cultures the semantic number line is oriented from left (small) to right (large). We obtained a SNARC effect when participants had to indicate the parity of second-language (L2) number words, but not when they had to indicate whether L2 number words contained a particular sound. Crucially, the SNARC effect was also obtained in a translation verification task, indicating that this task involved the activation of number magnitude.
Cuco, Ana P; Santos, Joana I; Abrantes, Nelson; Gonçalves, Fernando; Wolinska, Justyna; Castro, Bruno B
2017-12-01
Given the importance of pollutant effects on host-parasite relationships and disease spread, the main goal of this study was to assess the influence of different exposure scenarios for the fungicide tebuconazole (concentration×timing of application) on a Daphnia-microparasitic yeast experimental system. Previous results had demonstrated that tebuconazole is able to suppress Metschnikowia bicuspidata infection at ecologically-relevant concentrations; here, we aimed to obtain an understanding of the mechanism underlying the anti-parasitic (fungicidal or fungistatic) action of tebuconazole. We exposed the Daphnia-yeast system to four nominal tebuconazole concentrations at four timings of application (according to the predicted stage of parasite development), replicated on two Daphnia genotypes, in a fully crossed experiment. An "all-or-nothing" effect was observed, with tebuconazole completely suppressing infection from 13.5μgl -1 upwards, independent of the timing of tebuconazole application. A follow-up experiment confirmed that the suppression of infection occurred within a narrow range of tebuconazole concentrations (3.65-13.5μgl -1 ), although a later application of the fungicide had to be compensated for by a slight increase in concentration to elicit the same anti-parasitic effect. The mechanism behind this anti-parasitic effect seems to be the inhibition of M. bicuspidata sporulation, since tebuconazole was effective in preventing ascospore production even when applied at a later time. However, this fungicide also seemed to affect the vegetative growth of the yeast, as demonstrated by the enhanced negative effect of the parasite (increasing mortality in one of the host genotypes) at a later time of application of tebuconazole, when no signs of infection were observed. Fungicide contamination can thus affect the severity and spread of disease in natural populations, as well as the inherent co-evolutionary dynamics in host-parasite systems. Copyright © 2017
Czech Academy of Sciences Publication Activity Database
Borunda, M.F.; Liu, X.; Kovalev, A.A.; Liu, X.-J.; Jungwirth, Tomáš; Sinova, J.
2008-01-01
Roč. 78, č. 24 (2008), 245315/1-245315/9 ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA AV ČR KAN400100652; GA ČR GEFON/06/E002 EU Projects: European Commission(XE) 015728 - NANOSPIN Institutional research plan: CEZ:AV0Z10100521 Keywords : Aharonov-Casher effect * spin Hall effect * spin-orbit interaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008
Yamamoto, Junkoh; Hirano, Toru; Li, Shaoyi; Koide, Masayo; Kohno, Eiji; Inenaga, Chikanori; Tokuyama, Tsutomu; Yokota, Naoki; Yamamoto, Seiji; Terakawa, Susumu; Namba, Hiroki
2005-11-01
We investigated the feasibility of a novel photosensitizer, ATX-S10.Na (II), in photodynamic therapy (PDT) for glioma. First, PDT was performed in various brain tumor cell lines in vitro. Cytotoxicity depended upon both drug concentration and laser energy and the 50% inhibitory concentration ranged from 3.5 to 20 microg/ml. Next, PDT was performed in the subcutaneous and intracranial 9L tumor models in Fischer rats using ATX-S10.Na (II) and light from a 670-nm diode laser delivered by intratumoral insertion of an optical fiber. The effect of PDT on brain tumors was evaluated using magnetic resonance imaging. Sequential changes of the ATX-S10.Na (II) concentrations were also measured quantitatively by fluorospectrometry up to 12 h after intravenous administration in rats with intracranial and subcutaneous tumors. The concentration of ATX-S10.Na (II) in the brain tumor reached a maximum at 2 h after administration and the tumor/normal brain concentration ratio was as high as 131 at 8 h. Intratumoral PDT for intracranial tumors irradiated at this timing showed an obvious anti-tumor effect without severe side effects. The present study demonstrated the highly selective accumulation of ATX-S10.Na (II) in tumor tissue and its potent photodynamic effect in an experimental malignant glioma model.
Tanaka, Atsunori; Chen, Renjie; Jungjohann, Katherine L.; Dayeh, Shadi A.
2015-11-01
Advanced semiconductor devices often utilize structural and geometrical effects to tailor their characteristics and improve their performance. We report here detailed understanding of such geometrical effects in the epitaxial selective area growth of GaN on sapphire substrates and utilize them to enhance light extraction from GaN light emitting diodes. Systematic size and spacing effects were performed side-by-side on a single 2” sapphire substrate to minimize experimental sampling errors for a set of 144 pattern arrays with circular mask opening windows in SiO2. We show that the mask opening diameter leads to as much as 4 times increase in the thickness of the grown layers for 20 μm spacings and that spacing effects can lead to as much as 3 times increase in thickness for a 350 μm dot diameter. We observed that the facet evolution in comparison with extracted Ga adatom diffusion lengths directly influences the vertical and lateral overgrowth rates and can be controlled with pattern geometry. Such control over the facet development led to 2.5 times stronger electroluminescence characteristics from well-faceted GaN/InGaN multiple quantum well LEDs compared to non-faceted structures.
Mettrop, I.S.; Rutte, M.D.; Kooijman, A.M.; Lamers, L.P.M.
2015-01-01
Since the re-establishment of a more natural water regime is considered by water management in wetlands with artificially stable water levels, the biogeochemical and ecological effects of water level fluctuation with different nutrient loads should be investigated. This is particularly important for
<strong>Relative Biological Effect of Antiprotonsstrong>> strong>
DEFF Research Database (Denmark)
Bassler, Niels; Holzscheiter, Michael
purpose/objective The AD-4/ACE collaboration has recently performed experiments to directly measure the RBE of antiprotons. Antiprotons have very similar stopping power compared to protons, but when they come to rest, antiprotons will annihilate on a target nucleus and thereby release almost 2 Ge......V of energy. About 30 MeV of this energy is deposited in the vicinity of the Bragg-peak, thereby significantly enhancing it. It is furthermore expected that this additional energy is deposited by radiation which carries a high-LET component. This will have a significant influence on the radiobiological...... nuclear research facility CERN. A beam of 126 MeV antiprotons, corresponding to about 12 cm range in water, was spread out to a SOBP with a width of 1 cm. Dosimetry experiments were carried out with ionization chambers, alanine pellets and radiochromic film, and the results were used for benchmarking...
Keren, Yonatan; Borisover, Mikhail; Schaumann, Gabriele E.; Diehl, Dörte; Tamimi, Nisreen; Bukhanovsky, Nadezhda
2017-04-01
Sorption interactions with soils are well known to control the environmental fate of multiple organic compounds including pesticides. Pesticide-soil interactions may be affected by organic amendments or organic matter (OM)-containing wastewater brought to the field. Specifically, land spreading of olive mill wastewater (OMW), occurring intentionally or not, may also influence pesticide-soil interactions. The effects of the OMW disposed in the field on soil properties, including their ability to interact with pesticides, become of great interest due to the increasing demand for olive oil and a constant growth of world oil production. This paper summarizes some recent findings related to the effect of prior OMW land application on the ability of soils to interact with the organic compounds including pesticides, diuron and simazine. The major findings are as following: (1) bringing OMW to the field increases the potential of soils to sorb non-ionized pesticides; (2) this sorption increase may not be related solely to the increase in soil organic carbon content but it can reflect also the changes in the soil sorption mechanisms; (3) increased pesticide interactions with OMW-affected soils may become irreversible, due, assumedly, to the swelling of some components of the OMW-treated soil; (4) enhanced pesticide-soil interactions mitigate with the time passed after the OMW application, however, in the case of diuron, the remaining effect could be envisioned at least 600 days after the normal OMW application; (5) the enhancement effect of OMW application on soil sorption may increase with soil depth, in the 0-10 cm interval; (6) at higher pesticide (diuron) concentrations, larger extents of sorption enhancement, following the prior OMW-soil interactions, may be expected; (7) disposal of OMW in the field may be seasonal-dependent, and, in the case studied, it led to more distinct impacts on sorption when carried out in spring and winter, as compared with summer. It appears
Testing strong interaction theories
International Nuclear Information System (INIS)
Ellis, J.
1979-01-01
The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)
Czech Academy of Sciences Publication Activity Database
Hofmeister, J.; Hošek, J.; Brabec, Marek; Hédl, Radim; Modrý, M.
2013-01-01
Roč. 15, č. 6 (2013), s. 293-303 ISSN 1433-8319 Grant - others:GA MŽP(CZ) SM/6/69/05; GA MŽP(CZ) SP/2D3/139/07 Institutional support: RVO:67985807 ; RVO:67985939 Keywords : ancient forest * edge effect * habitat fragmentation * light condition * soil nutrients * species richness Subject RIV: BB - Applied Statistics, Operational Research; EH - Ecology, Behaviour (BU-J) Impact factor: 3.324, year: 2013
Cuco, A. P.; Santos, J. I.; Abrantes, N.; Gonçalves, F.; Castro, Bruno B.
2017-01-01
Given the importance of pollutant effects on host-parasite relationships and disease spread, the main goal of this study was to assess the influence of different exposure scenarios for the fungicide tebuconazole (concentration × timing of application) on a Daphnia-microparasitic yeast experimental system. Previous results had demonstrated that tebuconazole is able to suppress Metschnikowia bicuspidata infection at ecologically-relevant concentrations; here, we aimed to obtain an understanding...
Moe, Stein R.; Eldegard, Katrine; Rannestad, Ole Tobias; Okullo, Paul; Lindtjørn, Ommund; Støen, Ole Gunnar; Dale, Svein
2017-01-01
Abstract Vast areas of the African savanna landscapes are characterized by tree‐covered Macrotermes termite mounds embedded within a relatively open savanna matrix. In concert with termites, large herbivores are important determinants of savanna woody vegetation cover. The relative cover of woody species has considerable effects on savanna function. Despite the potentially important ecological relationships between termite mounds, woody plants, large herbivores, and birds, these associations ...
Xie, Changjian; Guo, Hua
2018-01-01
The choice of the active degrees of freedom (DOFs) is a pivotal issue in a reduced-dimensional model of quantum dynamics when a full-dimensional one is not feasible. Here, several five-dimensional (5D) models are used to investigate the nonadiabatic photodissociation dynamics of the hydroxymethyl (CH2OH) radical, which possesses nine internal DOFs, in its lowest absorption band. A normal-mode based scheme is used to identify the active and spectator modes, and its predictions are confirmed by 5D quantum dynamical calculations. Our results underscore the important role of the CO stretching mode in the photodissociation dynamics of CH2OH, originating from the photo-induced promotion of an electron from the half-occupied π*CO antibonding orbital to a carbon Rydberg orbital.
Zhang, Peng; Le, Son T.; Hou, Xiaoxiao; Zaslavsky, A.; Perea, Daniel E.; Dayeh, Shadi A.; Picraux, S. T.
2014-08-01
We report on room-temperature negative transconductance (NTC) in axial Si/Ge hetero-nanowire tunneling field-effect transistors. The NTC produces a current peak-to-valley ratio >45, a high value for a Si-based device. We characterize the NTC over a range of gate VG and drain VD voltages, finding that NTC persists down to VD = -50 mV. The physical mechanism responsible for the NTC is the VG-induced depletion in the p-Ge section that eventually reduces the maximum electric field that triggers the tunneling ID, as confirmed via three-dimensional (3D) technology computer-aided design simulations.
Shao, Qiming
2016-11-18
The electronic and optoelectronic properties of two-dimensional materials have been extensively explored in graphene and layered transition metal dichalcogenides (TMDs). Spintronics in these two-dimensional materials could provide novel opportunities for future electronics, for example, efficient generation of spin current, which should enable the efficient manipulation of magnetic elements. So far, the quantitative determination of charge current-induced spin current and spin-orbit torques (SOTs) on the magnetic layer adjacent to two-dimensional materials is still lacking. Here, we report a large SOT generated by current-induced spin accumulation through the Rashba-Edelstein effect in the composites of monolayer TMD (MoS or WSe)/CoFeB bilayer. The effective spin conductivity corresponding to the SOT turns out to be almost temperature-independent. Our results suggest that the charge-spin conversion in the chemical vapor deposition-grown large-scale monolayer TMDs could potentially lead to high energy efficiency for magnetization reversal and convenient device integration for future spintronics based on two-dimensional materials.
Directory of Open Access Journals (Sweden)
Aurelian Pantea
2013-04-01
Full Text Available In this paper, the macroseismic effects of the subcrustal earthquake in Vrancea (Romania that occurred on March 4, 1977, have been re-evaluated. This was the second strongest seismic event that occurred in this area during the twentieth century, following the event that happened on November 10, 1940. It is thus of importance for our understanding of the seismicity of the Vrancea zone. The earthquake was felt over a large area, which included the territories of the neighboring states, and it produced major damage. Due to its effects, macroseismic studies were developed by Romanian researchers soon after its occurrence, with foreign scientists also involved, such as Medvedev, the founder of the Medvedev-Sponheuer-Karnik (MSK seismic intensity scale. The original macroseismic questionnaires were re-examined, to take into account the recommendations for intensity assessments according to the MSK-64 macroseismic scale used in Romania. After the re-evaluation of the macroseismic field of this earthquake, the intensity dataset was obtained for 1,620 sites in Romanian territory. The re-evaluation was necessary as it has confirmed that the previous macroseismic map was underestimated. On this new map, only the intensity data points are plotted, without tracing the isoseismals.
Czech Academy of Sciences Publication Activity Database
Sauvan, P.; Dalimier, E.; Riconda, C.; Oks, E.; Renner, Oldřich; Weber, S.
2010-01-01
Roč. 1, č. 2 (2010), s. 123-128 ISSN 2229-3159 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-plasma interaction * PIC plasma model ing * strong quasimonochromatic electric fields * x-ray line broadening * stark effect * floquet theory Subject RIV: BH - Optics, Masers, Lasers http://www.auburn.edu/academic/cosam/departments/physics/iramp/1_2/sauvan_et_al.pdf
CO J = 6-5 IN Arp 220: STRONG EFFECTS OF DUST ON HIGH-J CO LINES
International Nuclear Information System (INIS)
Papadopoulos, Padeli P.; Isaak, Kate; Van der Werf, Paul
2010-01-01
We report new single dish CO J = 6-5 line observations for the archetypal Ultra Luminous Infrared Galaxy (ULIRG) Arp 220 with the James Clerk Maxwell Telescope atop Mauna Kea in Hawaii. The J = 6-5 line is found to be faint, with brightness temperature ratios (6-5)/(1-0), (6-5)/(3-2) of R 65/10 = 0.080 ± 0.017 and R 65/32 = 0.082 ± 0.019, suggesting very low excitation conditions that cannot be reconciled with the warm and very dense molecular gas present in one of the most extreme starbursts in the local universe. We find that an optically thick dust continuum, with τ(ν ∼> 350 GHz) ∼> 1 for the bulk of the warm dust and gas in Arp 220, submerges this line to an almost black body curve, reducing its flux, and affecting its CO spectral line energy distribution at high frequencies. This also resolves the C + line deficiency in this object, first observed by Infrared Space Observatory: the near absence of that line is a dust optical depth effect, not a dense photodissociation region phenomenon. Finally, we briefly comment on the possibility of such extreme interstellar medium (ISM) states in other ULIRGs in the distant universe, and their consequences for the diagnostic utility of high frequency molecular and atomic ISM lines in such systems. In the case of Arp 220, we anticipate that the now spaceborne Herschel Space Observatory will find faint high-J CO lines at ν ∼> 690 GHz that would appear as sub-thermally excited with respect to the low-J ones as a result of the effects of dust absorption.
Moe, Stein R; Eldegard, Katrine; Rannestad, Ole Tobias; Okullo, Paul; Lindtjørn, Ommund; Støen, Ole Gunnar; Dale, Svein
2017-12-01
Vast areas of the African savanna landscapes are characterized by tree-covered Macrotermes termite mounds embedded within a relatively open savanna matrix. In concert with termites, large herbivores are important determinants of savanna woody vegetation cover. The relative cover of woody species has considerable effects on savanna function. Despite the potentially important ecological relationships between termite mounds, woody plants, large herbivores, and birds, these associations have previously received surprisingly little attention. We experimentally studied the effects of termites and large herbivores on the avian community in Lake Mburo National Park, Uganda, where woody vegetation is essentially limited to termite mounds. Our experiment comprised of four treatments in nine replicates; unfenced termite mounds, fenced mounds (excluding large mammals), unfenced adjacent savanna, and fenced savanna. We recorded species identity, abundance, and behavior of all birds observed on these plots over a two-month period, from late dry until wet season. Birds used termite mounds almost exclusively, with only 3.5% of observations occurring in the treeless intermound savanna matrix. Mean abundance and species richness of birds doubled on fenced (large herbivores excluded) compared to unfenced mounds. Feeding behavior increased when large mammals were excluded from mounds, both in absolute number of observed individuals, and relative to other behaviors. This study documents the fundamental positive impact of Macrotermes termites on bird abundance and diversity in an African savanna. Birds play crucial functional roles in savanna ecosystems, for example, by dispersing fruits or regulating herbivorous insect populations. Thus, the role of birds in savanna dynamics depends on the distribution and abundance of termite mounds.
International Nuclear Information System (INIS)
Stevenson, J.D.
1995-11-01
Since 1982, there has been a major effort expended to evaluate the susceptibility of nuclear Power plant equipment to failure and significant damage during seismic events. This was done by making use of data on the performance of electrical and mechanical equipment in conventional power plants and other similar industrial facilities during strong motion earthquakes. This report is intended as an extension of the seismic experience data collection effort and a compilation of experience data specific to power plant piping and supports designed and constructed US power piping code requirements which have experienced strong motion earthquakes. Eight damaging (Richter Magnitude 7.7 to 5.5) California earthquakes and their effects on 8 power generating facilities in use natural gas and California were reviewed. All of these facilities were visited and evaluated. Seven fossel-fueled (dual use natural gas and oil) and one nuclear fueled plants consisting of a total of 36 individual boiler or reactor units were investigated. Peak horizontal ground accelerations that either had been recorded on site at these facilities or were considered applicable to these power plants on the basis of nearby recordings ranged between 0.20g and 0.5lg with strong motion durations which varied from 3.5 to 15 seconds. Most US nuclear power plants are designed for a safe shutdown earthquake peak ground acceleration equal to 0.20g or less with strong motion durations which vary from 10 to 15 seconds
Directory of Open Access Journals (Sweden)
Fatemeh Taherian
2014-07-01
Full Text Available Introduction: Previous studies have demonstrated that the &beta-adrenergic receptor antagonist propranolol impairs fear memory reconsolidation in experimental animals. There are experimental parameters such as the age and the strength of memory that can interact with pharmacological manipulations of memory reconsolidation. In this study, we investigated the ability of the age and the strength of memory to influence the disrupting effects of propranolol on fear memory reconsolidation in rats. Methods: The rats were trained in a contextual fear conditioning using two (weak training or five (strong training footshocks (1mA. Propranolol (10mg/kg injection was immediately followed retrieval of either a one-day recent (weak or strong or 36-day remote (weak or strong contextual fear memories. Results: We found that propranolol induced a long-lasting impairment of subsequent expression of recent and remote memories with either weak or strong strength. We also found no memory recovery after a weak reminder shock. Furthermore, no significant differences were found on the amount of memory deficit induced by propranolol among memories with different age and strength. Discussion: Our data suggest that the efficacy of propranolol in impairing fear memory reconsolidation is not limited to the age or strength of the memory.
Probing strong-field electron-nuclear dynamics of polyatomic molecules using proton motion
International Nuclear Information System (INIS)
Markevitch, Alexei N.; Smith, Stanley M.; Levis, Robert J.; Romanov, Dmitri A.
2007-01-01
Proton ejection during Coulomb explosion is studied for several structure-related organic molecules (anthracene, anthraquinone, and octahydroanthracene) subjected to 800 nm, 60 fs laser pulses at intensities from 0.50 to 4.0x10 14 W cm -2 . The proton kinetic energy distributions are found to be markedly structure specific. The distributions are bimodal for anthracene and octahydroanthracene and trimodal for anthraquinone. Maximum (cutoff) energies of the distributions range from 50 eV for anthracene to 83 eV for anthraquinone. The low-energy mode (∼10 eV) is most pronounced in octahydroanthracene. The dependence of the characteristic features of the distributions on the laser intensity provides insights into molecular specificity of such strong-field phenomena as (i) nonadiabatic charge localization and (ii) field-mediated restructuring of polyatomic molecules polarized by a strong laser field
Goker, A.; Gedik, E.
2013-09-01
We investigate the effect of contact material on the instantaneous thermoelectric response of a quantum dot pushed suddenly into the Kondo regime via a gate voltage using time dependent non-crossing approximation and linear response Onsager relations. We utilize graphene and metal contacts for this purpose. Instantaneous thermopower displays sinusoidal oscillations whose frequency is proportional to the energy separation between the van Hove singularity in the contact density of states and the Fermi level for both cases, regardless of the asymmetry factor at the onset of the Kondo timescale. The amplitude of the oscillations increases with decreasing temperature, saturating around the Kondo temperature. We also calculate the instantaneous figure of merit and show that the oscillations taking place at temperatures above the Kondo temperature are enhanced more than the ones occurring at lower temperatures due to the violation of the Wiedemann-Franz law. Graphene emerges as a more promising electrode candidate than ordinary metals in single electron devices since it can minimize these oscillations.
Huang, Ying-Ying; Choi, Hwanjun; Kushida, Yu; Bhayana, Brijesh; Wang, Yuguang; Hamblin, Michael R
2016-09-01
Photocatalysis describes the excitation of titanium dioxide nanoparticles (a wide-band gap semiconductor) by UVA light to produce reactive oxygen species (ROS) that can destroy many organic molecules. This photocatalysis process is used for environmental remediation, while antimicrobial photocatalysis can kill many classes of microorganisms and can be used to sterilize water and surfaces and possibly to treat infections. Here we show that addition of the nontoxic inorganic salt potassium iodide to TiO2 (P25) excited by UVA potentiated the killing of Gram-positive bacteria, Gram-negative bacteria, and fungi by up to 6 logs. The microbial killing depended on the concentration of TiO2, the fluence of UVA light, and the concentration of KI (the best effect was at 100 mM). There was formation of long-lived antimicrobial species (probably hypoiodite and iodine) in the reaction mixture (detected by adding bacteria after light), but short-lived antibacterial reactive species (bacteria present during light) produced more killing. Fluorescent probes for ROS (hydroxyl radical and singlet oxygen) were quenched by iodide. Tri-iodide (which has a peak at 350 nm and a blue product with starch) was produced by TiO2-UVA-KI but was much reduced when methicillin-resistant Staphylococcus aureus (MRSA) cells were also present. The model tyrosine substrate N-acetyl tyrosine ethyl ester was iodinated in a light dose-dependent manner. We conclude that UVA-excited TiO2 in the presence of iodide produces reactive iodine intermediates during illumination that kill microbial cells and long-lived oxidized iodine products that kill after light has ended. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Strong and persistent effect on liver fat with a Paleolithic diet during a two-year intervention.
Otten, J; Mellberg, C; Ryberg, M; Sandberg, S; Kullberg, J; Lindahl, B; Larsson, C; Hauksson, J; Olsson, T
2016-05-01
Our objective was to investigate changes in liver fat and insulin sensitivity during a 2-year diet intervention. An ad libitum Paleolithic diet (PD) was compared with a conventional low-fat diet (LFD). Seventy healthy, obese, postmenopausal women were randomized to either a PD or a conventional LFD. Diet intakes were ad libitum. Liver fat was measured with proton magnetic resonance spectroscopy. Insulin sensitivity was evaluated with oral glucose tolerance tests and calculated as homeostasis model assessment-insulin resistance (HOMA-IR)/liver insulin resistance (Liver IR) index for hepatic insulin sensitivity and oral glucose insulin sensitivity (OGIS)/Matsuda for peripheral insulin sensitivity. All measurements were performed at 0, 6 and 24 months. Forty-one women completed the examinations for liver fat and were included. Liver fat decreased after 6 months by 64% (95% confidence interval: 54-74%) in the PD group and by 43% (27-59%) in the LFD group (P<0.01 for difference between groups). After 24 months, liver fat decreased 50% (25-75%) in the PD group and 49% (27-71%) in the LFD group. Weight reduction between baseline and 6 months was correlated to liver fat improvement in the LFD group (rs=0.66, P<0.01) but not in the PD group (rs=0.07, P=0.75). Hepatic insulin sensitivity improved during the first 6 months in the PD group (P<0.001 for Liver IR index and HOMA-IR), but deteriorated between 6 and 24 months without association with liver fat changes. A PD with ad libitum intake had a significant and persistent effect on liver fat and differed significantly from a conventional LFD at 6 months. This difference may be due to food quality, for example, a higher content of mono- and polyunsaturated fatty acids in the PD. Changes in liver fat did not associate with alterations in insulin sensitivity.
Shirai, Hisaya; Kaido, Toshimi; Hamaguchi, Yuhei; Yao, Siyuan; Kobayashi, Atsushi; Okumura, Shinya; Kamo, Naoko; Yagi, Shintaro; Okajima, Hideaki; Uemoto, Shinji
2018-01-01
This study investigated the effect of preoperative sarcopenia on cardiopulmonary function in patients undergoing living donor liver transplantation (LDLT). A retrospective analysis was performed of 207 patients who underwent LDLT between January 2008 and April 2015. The quantity and quality of skeletal muscle were evaluated by the psoas muscle mass index (PMI) and intramuscular adipose tissue content (IMAC), respectively, using preoperative computed tomography imaging. The correlations between preoperative cardiopulmonary function and sarcopenic factors (PMI, IMAC, and grip strength [GS]) were examined. Moreover, overall survival (OS) rates according to preoperative pulmonary function and risk factors were analyzed. No significant differences were found between ejection fraction (EF) and these sarcopenic factors. In contrast, preoperative vital capacity (VC) and forced expiratory volume (FEV) 1.0 were significantly correlated with PMI (P < 0.001, P < 0.001), IMAC (P = 0.024, P = 0.013), and GS (P = 0.006, P = 0.033) in males. Preoperative VC and FEV1.0 were significantly correlated with IMAC (P = 0.002, P = 0.001) and GS (P = 0.002, P = 0.001) in females. Moreover, %VC, VC, and FEV1.0 in the preoperative low muscle mass group were significantly lower than in the normal muscle mass group (P = 0.004, P < 0.001, P < 0.001, respectively) in males. Multivariate analysis revealed that preoperative low PMI and preoperative restrictive ventilatory impairment were independent risk factors (P = 0.046 and P = 0.014, respectively). Preoperative low muscle mass was closely involved with pulmonary dysfunction in patients undergoing LDLT. Copyright © 2017 Elsevier Inc. All rights reserved.
Strong effect of SNP rs4988300 of the LRP5 gene on bone phenotype of Caucasian postmenopausal women.
Horváth, Péter; Balla, Bernadett; Kósa, János P; Tóbiás, Bálint; Szili, Balázs; Kirschner, Gyöngyi; Győri, Gabriella; Kató, Karina; Lakatos, Péter; Takács, István
2016-01-01
The purpose of this study was to identify relationships between single nucleotide polymorphisms (SNPs) in the genes of the Wnt pathway and bone mineral density (BMD) of postmenopausal women. We chose this pathway due to its importance in bone metabolism that was underlined in several studies. DNA samples of 932 Hungarian postmenopausal women were studied. First, their BMD values at different sites (spine, total hip) were measured, using a Lunar Prodigy DXA scanner. Thereafter, T-score values and the patients' body mass indices (BMIs) were calculated, while information about the fracture history of the sample population was also collected. We genotyped nine SNPs of the following three genes: LRP5, GPR177, and SP7, using a Sequenom MassARRAY Analyzer 4 instrument. The genomic DNA samples used for genotyping were extracted from the buccal mucosa of the subjects. Statistical analyses were carried out using the SPSS 21 and R package. The results of this analysis showed a significant association between SNP rs4988300 of the LRP5 gene and total hip BMD values. We could not reveal any associations between the markers of GPR177, SP7, and bone phenotypes. We found no effect of these genotypes on fracture risk. We could demonstrate a significant gene-gene interaction between two SNPs of LRP5 (rs4988300 and rs634008, p = 0.009) which was lost after Bonferroni correction. We could firmly demonstrate a significant association between rs4988300 of the LRP5 gene and bone density of the hip on the largest homogeneous postmenopausal study group analyzed to date. Our finding corroborates the relationship between LRP5 genotype and bone phenotype in postmenopausal women, however, the complete mechanism of this relationship requires further investigations.
Bacher, Felix; Dömötör, Orsolya; Chugunova, Anastasia; Nagy, Nóra V; Filipović, Lana; Radulović, Siniša; Enyedy, Éva A; Arion, Vladimir B
2015-05-21
In this study, 2-formylpyridine thiosemicarbazones and three different heterocyclic pharmacophores were combined to prepare thiosemicarbazone–piperazine mPip-FTSC (HL1) and mPip-dm-FTSC (HL2), thiosemicarbazone–morpholine Morph-FTSC (HL3) and Morph-dm-FTSC (HL4), thiosemicarbazone–methylpyrrole-2-carboxylate hybrids mPyrr-FTSC (HL5) and mPyrr-dm-FTSC (HL6) as well as their copper(II) complexes [CuCl(mPipH-FTSC-H)]Cl (1 + H)Cl, [CuCl(mPipH-dm-FTSC-H)]Cl (2 + H)Cl, [CuCl(Morph-FTSC-H)] (3), [CuCl(Morph-dm-FTSC-H)] (4), [CuCl(mPyrr-FTSC-H)(H2O)] (5) and [CuCl(mPyrr-dm-FTSC-H)(H2O)] (6). The substances were characterized by elemental analysis, one- and two-dimensional NMR spectroscopy (HL1–HL6), ESI mass spectrometry, IR and UV–vis spectroscopy and single crystal X-ray diffraction (1–5). All compounds were prepared in an effort to generate potential antitumor agents with an improved therapeutic index. In addition, the effect of structural alterations with organic hybrids on aqueous solubility and copper(II) coordination ability was investigated. Complexation of ligands HL2 and HL4 with copper(II) was studied in aqueous solution by pH-potentiometry, UV–vis spectrophotometry and EPR spectroscopy. Proton dissociation processes of HL2 and HL4 were also characterized in detail and microscopic constants for the Z/E isomers were determined. While the hybrids HL5, HL6 and their copper(II) complexes 5 and 6 proved to be insoluble in aqueous solution, precluding antiproliferative activity studies, the thiosemicarbazone–piperazine and thiosemicarbazone–morpholine hybrids HL1–HL4, as well as copper(II) complexes 1–4 were soluble in water enabling cytotoxicity assays. Interestingly, the metal-free hybrids showed very low or even a lack of cytotoxicity (IC50 values > 300 μM) in two human cancer cell lines HeLa (cervical carcinoma) and A549 (alveolar basal adenocarcinoma), whereas their copper(II) complexes were cytotoxic showing IC50 values from 25.5 to 65.1
International Nuclear Information System (INIS)
Olaniyi, B.; Shor, A.; Cheng, S.C.; Dugan, G.; Wu, C.S.
1981-05-01
The effective quadrupole moments Q sub(eff) of the nuclei of 165 Ho, 175 Lu, 176 Lu, 179 Hf and 181 Ta were accurately measured by detecting the pionic atom 5g-4f x-rays of the elements. The spectroscopic quadrupole moments, Q sub(spec), were obtained by correcting Q sub(eff) for nuclear finite size effect, distortion of the pion wave function by the pion-nucleus strong interaction, and contribution to the energy level splittings by the strong interaction. The intrinsic quadrupole moments, Q 0 , were obtained by projecting Q sub(spec) into the frame of reference fixed on the nucleus. The shift, epsilon 0 , and broadening, GAMMA 0 , of the 4f energy level due to the strong interactions between the pion and the nucleons for all the elements were also measured. Theoretical values of epsilon 0 and GAMMA 0 were calculated and compared to the experimental values. The measured values of Q 0 were compared with the existing results in muonic and pionic atoms. The measured values of epsilon 0 and GAMMA 0 were also compared with existing values. (auth)
<strong>Neuroeconomics and Human Resource Developmentstrong>/>
DEFF Research Database (Denmark)
Larsen, Torben
2009-01-01
threats and personal stress. So far, the evidence-based findings on human resource development (HRD) seem not to match these huge challenges. The aim of this study is to identify cost-effective means of mental training to recover sufficiently from the present bias to enable more sustainable decisions...... making as required to meet the global challenges in study as confirmed by an intercultural neuroeconomic comparative study between Asian and Western cultures. However, a cultural barrier in the Western cultural tradition against meditative introversion has to be overcome to improve the time horizon...... meditation, Harvard relaxation procedure, ACEM meditation and Autogenic training. IV. Broad health effects of regular medical meditation are evidenced by RCT and even reviews/meta-analysis in more medical meditation settings: Recovery from basal anxiety Stabilization of plasma cortisol Independence...
<strong>Neuroeconomics and Health Economicsstrong>/>
DEFF Research Database (Denmark)
Larsen, Torben
2009-01-01
activation of Amygdala - a key center in our emotional arousal (limbic system) - as shaped in the elder stone-age with many acute threats. II. In general, the Hawthorne-effect of management is explained as the result of supportive job-relations reinforcing the homeostatic properties of the limbic system...... with de-stressing benefits as reduced anxiety, less use of stimulants and a reduction of blood pressure which in all increase life-expectancy. Conclusion: Neuroeconomics helps economists to identify dominant health economic interventions that may be overlooked by traditional discipålines [i] This part...
PANNEMAN, HJ; BEENACKERS, AACM
The liquid-phase hydration of cyclohexene, a pseudo-first-order reversible reaction catalyzed by a strong acid ion-exchange resin, was investigated in solvent mixtures of water and sulfolane. Macroporous Amberlite XE 307 was used because of its superior catalytic activity. Chemical equilibrium
<strong>Neuroeconomics and behavioral health economicsstrong>/>
DEFF Research Database (Denmark)
Larsen, Torben
2009-01-01
dissemination of relaxation procedures is evident in industrialized countries since about 1970 both inside the medical healthcare system and as NGO-settings in a market-alike competition. However, a serious barrier to the dissemination of meditative de-stressing is the lack of general knowledge of the action...... for explanation of the neural dynamics of normal decision making. Secondly, the literature is reviewed for evidence on hypothesized applications of NeM in behavioral health. Results I. The present bias as documented by neuroeconomic game-trials is explained by NeM as rooted in the basal activation of Amygdala...... - a key center in our emotional arousal (limbic system) - as shaped in the elder stone-age with many acute threats. II. In general, the Hawthorne-effect of human-relations management is explained as the result of supportive job-relations relaxing Amygdala for better emotional integration...
<strong>Neuroeconomics and behavioral health economicsstrong>/>
DEFF Research Database (Denmark)
Larsen, Torben
2009-01-01
- a key center in our emotional arousal (limbic system) - as shaped in the elder stone-age with many acute threats. II. In general, the Hawthorne-effect of human-relations management is explained as the result of supportive job-relations relaxing Amygdala for better emotional integration...... some are rooted in the religious tradition while other aim to be post-religious. Medical meditation across settings combines savings on health care costs with de-stressing benefits as reduced anxiety, less use of stimulants and a reduction of blood pressure which in all increase life...... is met by a meso-strategy aiming the formation of an international, multidisciplinary network which might organize regional workshops for representatives for all involved parties in order to prepare local implementation projects. Regarding de-stressing by medical meditation a relatively fast...
2017-09-26
exact nonadiabatic eigenfunctions are computed for a two-dimensional conical intersection with circular symmetry, for which a pseudorotation quantum ... quantum numbers j. Essential nodes of absolute order (|j| − 1/2) are located on the conical intersection for |j| greater than or equal to 3/2. The...of Berry’s geometric phase6,7) and a half- odd-integer quantum number8 for what is now called pseudorotation.9 Conical intersections and their higher
Energy Technology Data Exchange (ETDEWEB)
Ohta, Ayumi; Kobayashi, Osamu; Danielache, Sebastian O.; Nanbu, Shinkoh, E-mail: shinkoh.nanbu@sophia.ac.jp
2015-09-28
Highlights: • The photoisomerization between cyclohexadiene and hexatriene was simulated. • Nonadiabatic ab initio MD simulations were employed to elucidate the mechanism. • Each excitations to S{sub 1} and S{sub 2} were simulated using full-dimensional model. • Specific molecular motions at CoIns and molecular vibrations on S{sub 1} PES were found. • The one-sided product branching ratio was obtained at the photoexcitation to S{sub 2}. - Abstract: The photoisomerization process between 1,3-cyclohexadiene (CHD) and 1,3,5-cis-hexatriene (HT) has been studied by nonadiabatic ab initio molecular dynamics based on trajectory surface-hopping approach with a full-dimensional reaction model. The quantum chemical calculations were treated at MS-MR-CASPT2 level for 8 electrons in 8 orbitals with the cc-pVDZ basis set. The Zhu–Nakamura formula was employed to evaluate nonadiabatic transition probabilities. S{sub 1} and S{sub 2} states were included in the photoisomerization dynamics. Lifetimes and CHD:HT branching ratios were computationally estimated on the basis of statistical analysis of multiple executed trajectories. The analysis of trajectories suggested that the nonadiabatic transitions at the S{sub 0}/S{sub 1} and S{sub 1}/S{sub 2} conical intersections (CoIn) are correlated to the Kekulé-type vibration and the C3–C4–C5 bending motion, respectively. The one-sided branching ratio was obtained by excitations to the S{sub 2} state; 70:30. The critical branching process was found to be dominated by the location of CoIn in potential energy hypersurface of the excited state.
Energy Technology Data Exchange (ETDEWEB)
Yarkony, D.R. [Johns Hopkins Univ., Baltimore, MD (United States)
1993-12-01
This research program focusses on studies of spin-forbidden and electronically nonadiabatic processes involving radical species relevant to combustion reactions and combustion diagnostics. To study the electronic structure aspects of these processes a unique and powerful system of electronic structure programs, developed over the past nine years, the BROOKLYN codes, is employed. These programs enable the authors to address questions basic to the understanding of elementary combustion processes not tractable using more standard quantum chemistry codes.
Troost, Joachim; Tatami, Shinji; Tsuda, Yasuhiro; Mattheus, Michaela; Mehlburger, Ludwig; Wein, Martina; Michel, Martin C
2011-01-01
AIM To determine the effect of the strong CYP2D6 inhibitor paroxetine and strong CYP3A4 inhibitor ketoconazole on the pharmacokinetics and safety (orthostatic challenge) of tamsulosin. METHODS Two open-label, randomized, two-way crossover studies were conducted in healthy male volunteers (extensive CYP2D6 metabolizers). RESULTS Co-administration of multiple oral doses of 20 mg paroxetine once daily with a single oral dose of the 0.4 mg tamsulosin HCl capsule increased the adjusted geometric mean (gMean) values of Cmax and AUC(0,∞) of tamsulosin by factors of 1.34 (90% CI 1.21, 1.49) and 1.64 (90% CI 1.44, 1.85), respectively, and increased the terminal half-life (t1/2) of tamsulosin HCl from 11.4 h to 15.3 h. Co-administration of multiple oral doses of 400 mg ketoconazole once dailywith a single oral dose of the 0.4 mg tamsulosin increased the gMean values of Cmax and AUC(0,∞) of tamsulosin by a factor of 2.20 (90% CI 1.96, 2.45) and 2.80 (90% CI 2.56, 3.07), respectively. The terminal half-life was slightly increased from 10.5 h to 11.8 h. These pharmacokinetic changes were not accompanied by clinically significant alterations of haemodynamic responses during orthostatic stress testing. CONCLUSION The exposure to tamsulosin is increased upon co-administration of strong CYP2D6 inhibitors and even more so of strong 3A4 inhibitors, but neither PK alteration was accompanied by clinically significant haemodynamic changes during orthostatic stress testing. PMID:21496064
Strongly Correlated Topological Insulators
2016-02-03
Strongly Correlated Topological Insulators In the past year, the grant was used for work in the field of topological phases, with emphasis on finding...surface of topological insulators. In the past 3 years, we have started a new direction, that of fractional topological insulators. These are materials...in which a topologically nontrivial quasi-flat band is fractionally filled and then subject to strong interactions. The views, opinions and/or
Bera, Anupam; Ghosh, Jayanta; Bhattacharya, Atanu
2017-07-28
Conical intersections are now firmly established to be the key features in the excited electronic state processes of polyatomic energetic molecules. In the present work, we have explored conical intersection-mediated nonadiabatic chemical dynamics of a simple analogue nitramine molecule, dimethylnitramine (DMNA, containing one N-NO 2 energetic group), and its complex with an iron atom (DMNA-Fe). For this task, we have used the ab initio multiple spawning (AIMS) dynamics simulation at the state averaged-complete active space self-consistent field(8,5)/6-31G(d) level of theory. We have found that DMNA relaxes back to the ground (S 0 ) state following electronic excitation to the S 1 excited state [which is an (n,π*) excited state] with a time constant of approximately 40 fs. This AIMS result is in very good agreement with the previous surface hopping-result and femtosecond laser spectroscopy result. DMNA does not dissociate during this fast internal conversion from the S 1 to the S 0 state. DMNA-Fe also undergoes extremely fast relaxation from the upper S 1 state to the S 0 state; however, this relaxation pathway is dissociative in nature. DMNA-Fe undergoes initial Fe-O, N-O, and N-N bond dissociations during relaxation from the upper S 1 state to the ground S 0 state through the respective conical intersection. The AIMS simulation reveals the branching ratio of these three channels as N-N:Fe-O:N-O = 6:3:1 (based on 100 independent simulations). Furthermore, the AIMS simulation reveals that the Fe-O bond dissociation channel exhibits the fastest (time constant 24 fs) relaxation, while the N-N bond dissociation pathway features the slowest (time constant 128 fs) relaxation. An intermediate time constant (30 fs) is found for the N-O bond dissociation channel. This is the first nonadiabatic chemical dynamics study of metal-contained energetic molecules through conical intersections.
Isenberg, James
2017-01-01
The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.
<strong>PRAYER INDUCED ANALGESIAstrong>
DEFF Research Database (Denmark)
Jegindø, Else-Marie Elmholdt
moderators (personality, absorption and coping) and mediators (expectations, desire for pain relief and anxiety) were included in the study design in order to explore the influence of psychological mechanisms involved in the potential analgesic effect of prayer as a coping strategy. RESULTS: TBA (it...
Zhao, Yu-Chen; Liu, Jiang-Fan; Song, Zhong-Guo; Xi, Xiao-Li
2014-12-01
Multi-needle zinc oxide whisker (M-ZnOw) includes tetrapod-needle ZnOw (T-ZnOw), flower-shaped ZnOw, and other similar ZnOw architectures. The unique three-dimensional (3D) and multi-needle-shaped structures give the special performance of M-ZnOw, but make it difficult to calculate the effective electromagnetic parameters of M-ZnOw composites. In this paper, based on the equivalent spherical particle and the strong fluctuation theory, three different closed-form expressions are presented to calculate the effective electromagnetic parameters of M-ZnOw composites. To start with, because of the macroscopic isotropic nature of M-ZnOw composites and lossy properties of M-ZnOw itself, an equivalent spherical particle is introduced in the scheme to simplify the unique microscopic structures of M-ZnOw, and the possible limitations of the presented equivalent spherical particle are discussed qualitatively. In addition, different closed-form expressions to calculate the effective electromagnetic parameter are obtained by means of representing the physical situations of conductive network as different correlation functions in the strong fluctuation theory. Finally, the effective permeability of a T-ZnOw/Fe - paraffin composite is calculated by these three expressions in 2-18 GHz frequency range. Very good agreement between the calculated and experimental results on one hand verifies the rationality of presented expressions, and on the other hand indicates that the correlation function plays an important role in improving the performance of the presented expression.
He 2++ molecular ion in a strong time-dependent magnetic field: a current-density functional study.
Vikas
2011-08-01
The He 2++ molecular ion exposed to a strong ultrashort time-dependent (TD) magnetic field of the order of 10(9) G is investigated through a quantum fluid dynamics (QFD) and current-density functional theory (CDFT) based approach using vector exchange-correlation (XC) potential and energy density functional that depend not only on the electronic charge-density but also on the current density. The TD-QFD-CDFT computations are performed in a parallel internuclear-axis and magnetic field-axis configuration at the field-free equilibrium internuclear separation R = 1.3 au with the field-strength varying between 0 and 10(11) G. The TD behavior of the exchange- and correlation energy of the He 2++ is analyzed and compared with that obtained using a [B-TD-QFD-density functional theory (DFT)] approach based on the conventional TD-DFT under similar computational constraints but using only scalar XC potential and energy density functional dependent on the electronic charge-density alone. The CDFT based approach yields TD exchange- and correlation energy and TD electronic charge-density significantly different from that obtained using the conventional TD-DFT based approach, particularly, at typical magnetic field strengths and during a typical time period of the TD field. This peculiar behavior of the CDFT-based approach is traced to the TD current-density dependent vector XC potential, which can induce nonadiabatic effects causing retardation of the oscillating electronic charge density. Such dissipative electron dynamics of the He 2++ molecular ion is elucidated by treating electronic charge density as an electron-"fluid" in the terminology of QFD. Copyright © 2011 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Kyoko Ueda
Full Text Available Tannins, plant-derived polyphenols and other related compounds, have been utilized for a long time in many fields such as the food industry and manufacturing. In this study, we investigated the anti-viral effects of tannins on 12 different viruses including both enveloped viruses (influenza virus H3N2, H5N3, herpes simplex virus-1, vesicular stomatitis virus, Sendai virus and Newcastle disease virus and non-enveloped viruses (poliovirus, coxsachievirus, adenovirus, rotavirus, feline calicivirus and mouse norovirus. We found that extracts from persimmon (Diospyros kaki, which contains ca. 22% of persimmon tannin, reduced viral infectivity in more than 4-log scale against all of the viruses tested, showing strong anti-viral effects against a broad range of viruses. Other tannins derived from green tea, acacia and gallnuts were effective for some of the viruses, while the coffee extracts were not effective for any of the virus. We then investigated the mechanism of the anti-viral effects of persimmon extracts by using mainly influenza virus. Persimmon extracts were effective within 30 seconds at a concentration of 0.25% and inhibited attachment of the virus to cells. Pretreatment of cells with the persimmon extracts before virus infection or post-treatment after virus infection did not inhibit virus replication. Protein aggregation seems to be a fundamental mechanism underlying the anti-viral effect of persimmon tannin, since viral proteins formed aggregates when purified virions were treated with the persimmon extracts and since the anti-viral effect was competitively inhibited by a non-specific protein, bovine serum albumin. Considering that persimmon tannin is a food supplement, it has a potential to be utilized as a safe and highly effective anti-viral reagent against pathogenic viruses.
Ghosh, Arnab; Koestner, Wolfgang; Hapke, Martin; Schlaphoff, Verena; Länger, Florian; Baumann, Rolf; Koenecke, Christian; Cornberg, Markus; Welte, Karl; Blazar, Bruce R; Sauer, Martin G
2009-04-30
Antigen-presenting cells (APCs) of host origin drive graft-versus-leukemia (GVL) effects but can also trigger life-threatening graft-versus-host disease (GVHD) after hematopoietic cell transplantation (HCT) across major histocompatibility complex (MHC) barriers. We show that in vitro priming of donor lymphocytes can circumvent the need of recipient-derived APCs in vivo for mediating robust GVL effects and significantly diminishes the risk of severe GVHD. In vitro, generated and expanded T cells (ETCs) mediate anti-leukemia effects only when primed on recipient-derived APCs. Loading of APCs in vitro with leukemia cell lysate, chimerism status of the recipient, and timing of adoptive transfer after HCT are important factors determining the outcome. Delayed transfer of ETCs resulted in strong GVL effects in leukemia-bearing full chimera (FC) and mixed chimera (MC) recipients, which were comparable with the GVL/GVHD rates observed after the transfer of naive donor lymphocyte infusion (DLI). Upon early transfer, GVL effects were more pronounced with ETCs but at the expense of significant GVHD. The degree of GVHD was most severe in MCs after transfer of ETCs that had been in vitro primed either on nonpulsed recipient-derived APCs or with donor-derived APCs.
Kaestner, Bernd; Kashcheyevs, Vyacheslavs
2015-10-01
Precise manipulation of individual charge carriers in nanoelectronic circuits underpins practical applications of their most basic quantum property--the universality and invariance of the elementary charge. A charge pump generates a net current from periodic external modulation of parameters controlling a nanostructure connected to source and drain leads; in the regime of quantized pumping the current varies in steps of [Formula: see text] as function of control parameters, where [Formula: see text] is the electron charge and f is the frequency of modulation. In recent years, robust and accurate quantized charge pumps have been developed based on semiconductor quantum dots with tunable tunnel barriers. These devices allow modulation of charge exchange rates between the dot and the leads over many orders of magnitude and enable trapping of a precise number of electrons far away from equilibrium with the leads. The corresponding non-adiabatic pumping protocols focus on understanding of separate parts of the pumping cycle associated with charge loading, capture and release. In this report we review realizations, models and metrology applications of quantized charge pumps based on tunable-barrier quantum dots.
Espinoza, Benjamin; Gartside, Paul; Kovan-Bakan, Merve; Mamatelashvili, Ana
2012-01-01
A space is `n-strong arc connected' (n-sac) if for any n points in the space there is an arc in the space visiting them in order. A space is omega-strong arc connected (omega-sac) if it is n-sac for all n. We study these properties in finite graphs, regular continua, and rational continua. There are no 4-sac graphs, but there are 3-sac graphs and graphs which are 2-sac but not 3-sac. For every n there is an n-sac regular continuum, but no regular continuum is omega-sac. There is an omega-sac ...
Abortion: Strong's counterexamples fail
DEFF Research Database (Denmark)
Di Nucci, Ezio
2009-01-01
This paper shows that the counterexamples proposed by Strong in 2008 in the Journal of Medical Ethics to Marquis's argument against abortion fail. Strong's basic idea is that there are cases--for example, terminally ill patients--where killing an adult human being is prima facie seriously morally......'s scenarios have some valuable future or admitted that killing them is not seriously morally wrong. Finally, if "valuable future" is interpreted as referring to objective standards, one ends up with implausible and unpalatable moral claims....
Strong interaction at finite temperature
Indian Academy of Sciences (India)
Abstract. We review two methods discussed in the literature to determine the effective parameters of strongly interacting particles as they move through a heat bath. The first one is the general method of chiral perturbation theory, which may be readily applied to this problem. The other is the method of thermal QCD sum rules ...
International Nuclear Information System (INIS)
Marier, D.
1992-01-01
This article presents the results of a financial rankings survey which show a strong economic activity in the independent energy industry. The topics of the article include advisor turnover, overseas banks, and the increase in public offerings. The article identifies the top project finance investors for new projects and restructurings and rankings for lenders
Cassidy, Tali; Bowman, Brett; McGrath, Chloe; Matzopoulos, Richard
2016-10-01
We present a brief report on a systematic review which identified, assessed and synthesized the existing evidence of the effectiveness of media campaigns in reducing youth violence. Search strategies made use of terms for youth, violence and a range of terms relating to the intervention. An array of academic databases and websites were searched. Although media campaigns to reduce violence are widespread, only six studies met the inclusion criteria. There is little strong evidence to support a direct link between media campaigns and a reduction in youth violence. Several studies measure proxies for violence such as empathy or opinions related to violence, but the link between these measures and violence perpetration is unclear. Nonetheless, some evidence suggests that a targeted and context-specific campaign, especially when combined with other measures, can reduce violence. However, such campaigns are less cost-effective to replicate over large populations than generalised campaigns. It is unclear whether the paucity of evidence represents a null effect or methodological challenges with evaluating media campaigns. Future studies need to be carefully planned to accommodate for methodological difficulties as well as to identify the specific elements of campaigns that work, especially in lower and middle income countries. Copyright © 2016 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Zhou, Xiao-Yan; Jia, Dian-Yong; Dai, Xing-Long; He, Ming-Rong
2013-09-01
Taking two winter wheat (Triticum aestivum L.) cultivars (Gaocheng 8901 and Jimai 20) with high quality strong gluten as test materials, a 2-year field experiment was conducted to study the grain glutenin macropolymer (GMP)'s content and size distribution, grain quality, and grain yield under effects of different irrigation schemes. The schemes included no irrigation in whole growth period (W0), irrigation once at jointing stage (W1), irrigation two times at wintering and jointing stages (W2), respectively, and irrigation three times at wintering, jointing, and filling stages (W3), respectively, with the irrigation amount in each time being 675 m3 x hm(-2). Among the test irrigation schemes, W2 had the best effects on the dough development time, dough stability time, loaf volume, grain yield, GMP content, weighted average surface area of particle D(3,2), weighted average volume of particle D(4,3), and volume percent and surface area percent of particle size >100 microm of the two cultivars. The dough development time, dough stability time, and loaf volume were negatively correlated with the volume percent of GMP particle size 100 microm, D(3,2), and D(4,3). It was suggested that both water deficit and water excess had detrimental effects on the grain yield and grain quality, and irrigation level could affect the wheat grain quality through altering GMP particle size distribution.
Strong Electroweak Symmetry Breaking
Grinstein, Benjamin
2011-01-01
Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...
Directory of Open Access Journals (Sweden)
John Foerster
Full Text Available Narrowband NB-UVB phototherapy (NB-UVB is an effective treatment for psoriasis, as demonstrated by clinical trials. However, due to required infrastructure and need for treatment attendance opinions on the value of offering this treatment in routine practice vary. AIMS: To provide high quality large-scale and long-term data on the efficacy of NB-UVB for psoriasis under real-world conditions in order to assist in management decisions.The following resources were employed: (1 complete and prospectively recorded prescription drug records for a population of 420,000 marked by low demographic mobility, (2 prospectively recorded clinical treatment outcomes for all NB-UVB treatment episodes occurring in the local population; (3 complete dermatology electronic treatment records of all psoriasis patients, allowing cross-validation of diagnoses and treatment records. Using these data sets, we analysed all first-ever initial NB-UVB treatment episodes occurring over 79 months (n = 1749 for both clinical outcomes and the effect of NB-UVB on the use of topical treatments for psoriasis.Around 75% of patients both achieved a status of "clear/minimal disease" and used fewer topical treatments. NB-UVB treatment led to a strong reduction for both steroid creams (25% and psoriasis-specific topicals, e.g. vitamin-D products (30% during the 12-month period following NB-UVB treatment. The effects measured were specific as no effect of NB-UVB was noted on drug prescriptions unrelated to psoriasis. Results were independent of individuals administering and/or scoring treatment, as they were highly similar between four geographically separate locations.NB-UVB treatment is highly effective and leads to a remarkable reduction in the need for topical cream treatments for a period of at least 12 months.
Plasmons in strong superconductors
International Nuclear Information System (INIS)
Baldo, M.; Ducoin, C.
2011-01-01
We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.
An undulator with non-adiabatic tapering for the IFEL project
Varfolomeev, A A; Yarovoi, T V; Musumeci, P; Pellegrini, C; Rosenzweig, J
2002-01-01
We describe the design of a planar undulator with unusually strong tapering, for the inverse FEL experiment to be carried out in Neptune Lab. (Nucl. Instr. and Meth. A 410 (1998) 437) at UCLA. A powerful TW CO sub 2 laser will be used to accelerate electrons up to 50-60 MeV in 50 cm long undulator. A strong undulator tapering is needed because of the short Rayleigh length of the laser beam. Both the magnetic field and the undulator period are tapered to provide synchronicity of the laser beam interaction with a captured electron bunch along the whole undulator length. The most critical part of the undulator is the region near the laser focus. The main characteristics of the IFEL, such as the percentage of trapped electrons, energy of accelerated electrons and sensitivity to the laser focus transverse position, are given. The general principles of the design of this undulator construction can also be useful for high efficiency FEL amplifiers of intense laser modes.
Chew, S Y; Cheah, Y K; Seow, H F; Sandai, D; Than, L T L
2015-05-01
This study investigates the antagonistic effects of the probiotic strains Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 against vulvovaginal candidiasis (VVC)-causing Candida glabrata. Growth inhibitory activities of Lact. rhamnosus GR-1 and Lact. reuteri RC-14 strains against C. glabrata were demonstrated using a spot overlay assay and a plate-based microtitre assay. In addition, these probiotic lactobacilli strains also exhibited potent candidacidal activity against C. glabrata, as demonstrated by a LIVE/DEAD yeast viability assay performed using confocal laser scanning microscopy. The metabolic activities of all C. glabrata strains were completely shut down in response to the challenges by the probiotic lactobacilli strains. In addition, both probiotic lactobacilli strains exhibited strong autoaggregation and coaggregation phenotypes in the presence of C. glabrata, which indicate that these lactobacilli strains may exert their probiotic effects through the formation of aggregates and, thus the consequent prevention of colonization by C. glabrata. Probiotic Lact. rhamnosus GR-1 and Lact. reuteri RC-14 strains exhibited potent antagonistic activities against all of the tested C. glabrata strains. These lactobacilli exhibited antifungal effects, including those attributed to their aggregation abilities, and their presence caused the cessation of growth and eventual cell death of C. glabrata. This is the first study to report on the antagonistic effects of these probiotic lactobacilli strains against the non-Candida albicans Candida (NCAC) species C. glabrata. © 2015 The Authors published by John Wiley & Sons Ltd on behalf of Society for Applied Microbiology.
International Nuclear Information System (INIS)
Loon, L.R. van; Hummel, W.
1999-01-01
The most important water-soluble products of the radiolytic degradation of anion exchange resins in a cementitious environment are ammonia and methylamines. These ligands do not form complexes with most radionuclides. Exceptions are Ni, Ag, and Pd, which form strong complexes with amines. Other degradation products of anion and mixed-bed ion-exchange resins are of no importance concerning the complexation of trivalent radionuclides. This is shown indirectly by adsorption experiments: The degradation products do not have a significant effect on the adsorption of Eu(III) on calcite. The effect of ammonia and methylamines on the complexation of Ni, Ag, and Pd is investigated by chemical modeling. For Ni and Ag, rather reliable predictions can be made using available thermodynamic data. In the case of Pd, large uncertainties are encountered due to unreliable data and gaps in the set of important species. The system Pd(II)-ammonia-water is explored in detail. Predominant species are inferred by chemical analogy, and their thermodynamic data are estimated. The uncertainty in these estimated and measured but unreliable data is bound by qualitative and quantitative chemical reasoning
Cardazone, Gina; U Sy, Angela; Chik, Ivan; Corlew, Laura Kate
2014-06-01
Network analysis and GIS enable the presentation of meaningful data about organizational relationships and community characteristics, respectively. Together, these tools can provide a concrete representation of the ecological context in which coalitions operate, and may help coalitions identify opportunities for growth and enhanced effectiveness. This study uses network analysis and GIS mapping as part of an evaluation of the One Strong 'Ohana (OSO) campaign. The OSO campaign was launched in 2012 via a partnership between the Hawai'i Children's Trust Fund (HCTF) and the Joyful Heart Foundation. The OSO campaign uses a collaborative approach aimed at increasing public awareness of child maltreatment and protective factors that can prevent maltreatment, as well as enhancing the effectiveness of the HCTF Coalition. This study focuses on three elements of the OSO campaign evaluation: (1) Network analysis exploring the relationships between 24 active Coalition member organizations, (2) GIS mapping of responses to a randomized statewide phone survey (n = 1,450) assessing awareness of factors contributing to child maltreatment, and (3) Combined GIS maps and network data, illustrating opportunities for geographically-targeted coalition building and public awareness activities.
Li, Xi; Fautrelle, Yves; Gagnoud, Annie; Moreau, Rene; Du, Dafan; Ren, Zhongming; Lu, Xionggang
2016-03-01
The effect of a strong magnetic field on the microstructure and crystallography of the primary and eutectic Al3Ni phases in Al-Ni alloys was investigated by using EBSD. The results show that the magnetic field significantly affected the microstructures and crystallography during both volume and directional solidification. As a result, the Al3Ni primary phases were aligned with the crystal direction along the magnetic field and formed a layer-like structure. The magnetic field intensity, solidification temperature, growth speed, and alloy composition played important roles during the alignment process of the Al3Ni primary phase. Indeed, the alignment degree increased with the magnetic field and the solidification temperature during normal solidification. Moreover, the effect of the magnetic field on the crystallography of the Al-Al3Ni eutectic in the Al-Ni alloys was also studied. The applied magnetic field modified the orientation of the preferred growth direction of the Al3Ni eutectic fiber and the crystallographic orientation relationship of the Al-Al3Ni eutectic. The orientation of the preferred growth direction of the Al3Ni eutectic fiber depended mainly on the solidification direction and the alignment of the Al3Ni primary phase. Furthermore, a method for controlling the crystallization process by adjusting the angle between the solidification direction and the magnetic field was proposed.
Sebold, Miriam; Schad, Daniel J; Nebe, Stephan; Garbusow, Maria; Jünger, Elisabeth; Kroemer, Nils B; Kathmann, Norbert; Zimmermann, Ulrich S; Smolka, Michael N; Rapp, Michael A; Heinz, Andreas; Huys, Quentin J M
2016-07-01
Behavioral choice can be characterized along two axes. One axis distinguishes reflexive, model-free systems that slowly accumulate values through experience and a model-based system that uses knowledge to reason prospectively. The second axis distinguishes Pavlovian valuation of stimuli from instrumental valuation of actions or stimulus-action pairs. This results in four values and many possible interactions between them, with important consequences for accounts of individual variation. We here explored whether individual variation along one axis was related to individual variation along the other. Specifically, we asked whether individuals' balance between model-based and model-free learning was related to their tendency to show Pavlovian interferences with instrumental decisions. In two independent samples with a total of 243 participants, Pavlovian-instrumental transfer effects were negatively correlated with the strength of model-based reasoning in a two-step task. This suggests a potential common underlying substrate predisposing individuals to both have strong Pavlovian interference and be less model-based and provides a framework within which to interpret the observation of both effects in addiction.
Minezawa, Noriyuki; Gordon, Mark S.
2012-07-01
Solvent effects on a potential energy surface crossing are investigated by optimizing a conical intersection (CI) in solution. To this end, the analytic energy gradient has been derived and implemented for the collinear spin-flip density functional theory (SFDFT) combined with the effective fragment potential (EFP) solvent model. The new method is applied to the azomethane-water cluster and the chromophore of green fluorescent protein in aqueous solution. These applications illustrate not only dramatic changes in the CI geometries but also strong stabilization of the CI in a polar solvent. Furthermore, the CI geometries obtained by the hybrid SFDFT/EFP scheme reproduce those by the full SFDFT, indicating that the SFDFT/EFP method is an efficient and promising approach for understanding nonadiabatic processes in solution.
Aerts, R.; Callaghan, T.V.; Dorrepaal, E.; van Logtestijn, R.S.P; Cornelissen, J.H.C.
2012-01-01
Litter decomposition and nutrient mineralization in high-latitude peatlands are constrained by low temperatures. So far, little is known about the effects of seasonal components of climate change (higher spring and summer temperatures, more snow which leads to higher winter soil temperatures) on
Olafsdottir, Thorunn A.; Alexandersson, Kristjan F.; Sveinbjornsson, Gardar; Lapini, Giulia; Palladino, Laura; Montomoli, Emanuele; Del Giudice, Giuseppe; Gudbjartsson, Daniel F.; Jonsdottir, Ingileif
2018-01-01
Influenza vaccination remains the best strategy for the prevention of influenza virus-related disease and reduction of disease severity and mortality. However, there is large individual variation in influenza vaccine responses. In this study, we investigated the effects of gender, age, underlying diseases, and medication on vaccine responses in 1,852 Icelanders of broad age range who received trivalent inactivated influenza virus vaccination in 2012, 2013, or 2015. Hemagglutination inhibition (HAI) and microneutralization (MN) titers were measured in pre- and post-vaccination sera. Of the variables tested, the strongest association was with level of pre-vaccination titer that explained a major part of the variance observed in post-vaccination titers, ranging from 19 to 29%, and from 7 to 21% in fold change (FC), depending on the strain and serological (HAI or MN) analysis performed. Thus, increasing pre-vaccination titer associated with decreasing FC (P = 1.1 × 10−99–8.6 × 10−30) and increasing post-vaccination titer (P = 2.1 × 10−159–1.1 × 10−123). Questionnaires completed by 87% of the participants revealed that post-vaccination HAI titer showed association with repeated previous influenza vaccinations. Gender had no effect on vaccine response whereas age had a strong effect and explained 1.6–3.1% of HAI post-vaccination titer variance and 3.1% of H1N1 MN titer variance. Vaccine response, both fold increase and seroprotection rate (percentage of individuals reaching HAI ≥ 40 or MN ≥ 20), was higher in vaccinees ≤37 years of age (YoA) than all other age groups. Furthermore, a reduction was observed in the H1N1 MN titer in people ≥63 YoA, demonstrating a decreased neutralizing functionality of vaccine-induced antibodies at older age. We tested the effects of underlying autoimmune diseases, asthma and allergic diseases and did not observe significant associations with vaccine responses. Intake of immune
Directory of Open Access Journals (Sweden)
Thorunn A. Olafsdottir
2018-01-01
Full Text Available Influenza vaccination remains the best strategy for the prevention of influenza virus-related disease and reduction of disease severity and mortality. However, there is large individual variation in influenza vaccine responses. In this study, we investigated the effects of gender, age, underlying diseases, and medication on vaccine responses in 1,852 Icelanders of broad age range who received trivalent inactivated influenza virus vaccination in 2012, 2013, or 2015. Hemagglutination inhibition (HAI and microneutralization (MN titers were measured in pre- and post-vaccination sera. Of the variables tested, the strongest association was with level of pre-vaccination titer that explained a major part of the variance observed in post-vaccination titers, ranging from 19 to 29%, and from 7 to 21% in fold change (FC, depending on the strain and serological (HAI or MN analysis performed. Thus, increasing pre-vaccination titer associated with decreasing FC (P = 1.1 × 10−99–8.6 × 10−30 and increasing post-vaccination titer (P = 2.1 × 10−159–1.1 × 10−123. Questionnaires completed by 87% of the participants revealed that post-vaccination HAI titer showed association with repeated previous influenza vaccinations. Gender had no effect on vaccine response whereas age had a strong effect and explained 1.6–3.1% of HAI post-vaccination titer variance and 3.1% of H1N1 MN titer variance. Vaccine response, both fold increase and seroprotection rate (percentage of individuals reaching HAI ≥ 40 or MN ≥ 20, was higher in vaccinees ≤37 years of age (YoA than all other age groups. Furthermore, a reduction was observed in the H1N1 MN titer in people ≥63 YoA, demonstrating a decreased neutralizing functionality of vaccine-induced antibodies at older age. We tested the effects of underlying autoimmune diseases, asthma and allergic diseases and did not observe significant associations with vaccine responses. Intake
Pang, Xiaojuan; Cui, Xueyan; Hu, Deping; Jiang, Chenwei; Zhao, Di; Lan, Zhenggang; Li, Fuli
2017-02-16
Photoisomerization dynamics of a light-driven molecular rotary motor, 9-(2-methyl-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-ylidene)-9H-fluorene, is investigated with trajectory surface-hopping dynamics at the semiempirical OM2/MRCI level. The rapid population decay of the S 1 excited state for the M isomer is observed, with two different decay time scales (500 fs and 1.0 ps). By weighting the contributions of fast and slow decay trajectories, the averaged lifetime of the S 1 excited state is about 710 fs. The calculated quantum yield of the M-to-P photoisomerization of this molecular rotary motor is about 59.9%. After the S 0 → S 1 excitation, the dynamical process of electronic decay is followed by twisting about the central C═C double bond and the motion of pyramidalization at the carbon atom of the stator-axle linkage. Although two S 0 /S 1 minimum-energy conical intersections are obtained at the OM2/MRCI level, only one conical intersection is found to be responsible for the nonadiabatic dynamics. The existence of "dark state" in the molecular rotary motor is confirmed through the simulated time-resolved fluorescence emission spectrum. Both quenching and red shift of fluorescence emission spectrum observed by Conyard et al. [ Conyard, J.; Addison, K.; Heisler, I. A.; Cnossen, A.; Browne, W. R.; Feringa, B. L.; Meech, S. R. Nat. Chem. 2012 , 4 , 547 - 551 ; Conyard, J.; Conssen, A.; Browne, W. R.; Feringa, B. L.; Meech, S. R. J. Am. Chem. Soc. 2014 , 136 , 9692 - 9700 ] are well understood. We find that this "dark state" in the molecular rotary motor is not a new electronic state, but the "dark region" with low oscillator strength on the initial S 1 state.
Rajbhandari-Thapa, Janani; Bennett, Ashley; Keong, Farrah; Palmer, Wendy; Hardy, Trisha; Welsh, Jean
The goal of the Strong4Life School Nutrition Program is to promote healthy eating in school cafeterias in Georgia by training school nutrition managers and staff members to implement changes in the cafeteria to nudge children to make healthier choices. The objective of our study was to evaluate program effect on (1) school nutrition manager and staff member knowledge of evidence-based strategies and their self-efficacy to make positive changes, (2) the school cafeteria environment, and (3) National School Lunch Program participation. We assessed changes in participant knowledge, beliefs, and self-efficacy by administering a survey before and after training (February-July 2015); a follow-up survey (3 school months posttraining) assessed changes in the cafeteria. A total of 842 school nutrition managers and staff members were trained and completed pre- and posttraining surveys; 325 managers completed the follow-up survey. We used cafeteria records from a subsample of the first schools trained (40 intervention and 40 control) to assess National School Lunch Program participation. From pretraining to posttraining, we found a significant increase in manager and staff member (n = 842) knowledge of strategies for enhancing taste perception through the use of creative menu item names (from 78% to 95%, P food placement in the lunch line influences food selection (from 78% to 95%, P cafeteria environment (from 91% to 96%, P 2 locations, P School Lunch Program participation did not change significantly. Training cafeteria managers and staff members in Smarter Lunchrooms Movement techniques may be an effective way to make changes in the school cafeteria environment to encourage healthier choices among students. Additional studies allowing time for more complex changes to be implemented are needed to assess the full effect of the program.
Directory of Open Access Journals (Sweden)
David Levy
Full Text Available Brazil has reduced its smoking rate by about 50% in the last 20 y. During that time period, strong tobacco control policies were implemented. This paper estimates the effect of these stricter policies on smoking prevalence and associated premature mortality, and the effect that additional policies may have.The model was developed using the SimSmoke tobacco control policy model. Using policy, population, and smoking data for Brazil, the model assesses the effect on premature deaths of cigarette taxes, smoke-free air laws, mass media campaigns, marketing restrictions, packaging requirements, cessation treatment programs, and youth access restrictions. We estimate the effect of past policies relative to a counterfactual of policies kept to 1989 levels, and the effect of stricter future policies. Male and female smoking prevalence in Brazil have fallen by about half since 1989, which represents a 46% (lower and upper bounds: 28%-66% relative reduction compared to the 2010 prevalence under the counterfactual scenario of policies held to 1989 levels. Almost half of that 46% reduction is explained by price increases, 14% by smoke-free air laws, 14% by marketing restrictions, 8% by health warnings, 6% by mass media campaigns, and 10% by cessation treatment programs. As a result of the past policies, a total of almost 420,000 (260,000-715,000 deaths had been averted by 2010, increasing to almost 7 million (4.5 million-10.3 million deaths projected by 2050. Comparing future implementation of a set of stricter policies to a scenario with 2010 policies held constant, smoking prevalence by 2050 could be reduced by another 39% (29%-54%, and 1.3 million (0.9 million-2.0 million out of 9 million future premature deaths could be averted.Brazil provides one of the outstanding public health success stories in reducing deaths due to smoking, and serves as a model for other low and middle income nations. However, a set of stricter policies could further reduce
Directory of Open Access Journals (Sweden)
Partha Mandal
2017-12-01
Full Text Available In this work, we analyze a bi-dimensional differential equation system obtained by considering Holling type II functional response in prey–predator model with strong Allee effect in prey. One of the important consequence of this modification is the existence of separatrix curve which divides the behaviour of the trajectories in the phase plane. The results show that the origin is an attractor for any set of parameter values. Axial equilibrium points are stable or unstable according to the different parametric restrictions. The unique positive equilibrium point, if it exists, can be either an attractor or a repeller surrounded by a limit cycle, whose stability and uniqueness are also established. Therefore long-term coexistence of both populations is possible or they can go to extinction. Conditions on the parameter values are derived to show that the positive equilibrium point can be emerged or annihilated through transcritical bifurcation at axial equilibrium points. The existence of two heteroclinic curves is also established. It is also demonstrated that the origin is a global attractor in the phase plane for some parameter values, which implies that there are satisfying conditions where both populations can go to extinction. Ecological interpretations of all analytical results are provided thoroughly.
Yan, Cui-ping; Zhang, Yong-qing; Zhang, Ding-yi; Dang, Jian-you
2008-08-01
In a field experiment with split-split plot design, the effects of sowing date and planting density on the grain's protein component and quality of strong gluten wheat cultivar Linyou 145 and medium gluten wheat cultivar Linyou 2018 were studied. The results showed that proper sowing date brought the highest protein content and yield in wheat grain. With sowing date postponed, the grain's gliadin and glutenin contents of Linyou 145 increased obviously, while those of Linyou 2018 changed little. The grain quality of Linyou 145 was more affected by sowing date, compared with that of Linyou 2018. When sowing at proper date, the grain's protein and glutenin contents had significant correlations with its wet gluten content, sedimentation value, dough stability time, softness, and evaluation value; while when the sowing date postponed, there existed a positive correlation between the contents of gliadin and wet gluten. The change of the proportions of different protein components in wheat grain induced by the variation of sowing date could be the main reason of the improvement in wheat grain quality. Within the test range (2.25 million - 3.75 million plants x hm(-2)) of planting density, the grain's protein content was less affected, but the grain quality of Linyou 145 was affected to a certain extent. Low planting density (2.25 million plants x hm(-2)) brought the best grain quality of Linyou 2018.
Kametani, F; Jiang, J; Scheuerlein, C; Malagoli, A; Di Michiel, M; Huang, Y; Miao, H; Parrell, J A; Hellstrom, E E; Larbalestier, D C
2011-01-01
Most studies of Bi2Sr2CaCu2Ox (Bi2212) show that the critical current density Jc is limited by the connectivity of the filaments, but what determines the connectivity is still elusive. Here we report on the role played by filament porosity in limiting Jc. By a microstructural investigation of wires quenched from the melt state, we find that porosity in the unreacted wire agglomerates into bubbles that segment the Bi2212 melt within the filaments into discrete sections. These bubbles do not disappear during subsequent processing because they are only partially filled by Bi2212 grains as the Bi2212 forms on cooling. Correlating the microstructure of quenched wires to their final, fully processed Jc values shows an inverse relation between Jc and bubble density. Bubbles are variable between conductors and perhaps from sample to sample, but they occur frequently and almost completely fill the filament diameter, so they exert a strongly variable but always negative effect on Jc. Bubbles reduce the continuous Bi221...
Antonella Del Rosso
2016-01-01
Twenty years of designing, building and testing a number of innovative technologies, with the strong belief that the endeavour would lead to a historic breakthrough. The Bulletin publishes an abstract of the Courier’s interview with Barry Barish, one of the founding fathers of LIGO. The plots show the signals of gravitational waves detected by the twin LIGO observatories at Livingston, Louisiana, and Hanford, Washington. (Image: Caltech/MIT/LIGO Lab) On 11 February, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo collaborations published a historic paper in which they showed a gravitational signal emitted by the merger of two black holes. These results come after 20 years of hard work by a large collaboration of scientists operating the two LIGO observatories in the US. Barry Barish, Linde Professor of Physics, Emeritus at the California Institute of Technology and former Director of the Global Design Effort for the Internat...
Ohno, Shinji; Shirogane, Yuta; Suzuki, Satoshi O.; Koga, Ritsuko
2014-01-01
ABSTRACT Subacute sclerosing panencephalitis (SSPE) is caused by persistent measles virus (MV) infection in the central nervous system (CNS). Since human neurons, its main target cells, do not express known MV receptors (signaling lymphocyte activation molecule [SLAM] and nectin 4), it remains to be understood how MV infects and spreads in them. We have recently reported that fusion-enhancing substitutions in the extracellular domain of the MV fusion (F) protein (T461I and S103I/N462S/N465S), which are found in multiple SSPE virus isolates, promote MV spread in human neuroblastoma cell lines and brains of suckling hamsters. In this study, we show that hyperfusogenic viruses with these substitutions also spread efficiently in human primary neuron cultures without inducing syncytia. These substitutions were found to destabilize the prefusion conformation of the F protein trimer, thereby enhancing fusion activity. However, these hyperfusogenic viruses exhibited stronger cytopathology and produced lower titers at later time points in SLAM- or nectin 4-expressing cells compared to the wild-type MV. Although these viruses spread efficiently in the brains of SLAM knock-in mice, they did not in the spleens. Taken together, the results suggest that enhanced fusion activity is beneficial for MV to spread in neuronal cells where no cytopathology occurs, but detrimental to other types of cells due to strong cytopathology. Acquisition of enhanced fusion activity through substitutions in the extracellular domain of the F protein may be crucial for MV's extensive spread in the CNS and development of SSPE. IMPORTANCE Subacute sclerosing panencephalitis (SSPE) is a fatal disease caused by persistent measles virus (MV) infection in the central nervous system (CNS). Its cause is not well understood, and no effective therapy is currently available. Recently, we have reported that enhanced fusion activity of MV through the mutations in its fusion protein is a major determinant of
International Nuclear Information System (INIS)
Jana, Debasis; Datta, Dipayan; Mukherjee, Debashis
2006-01-01
We present and implement in this paper a novel spin-free valence-universal multi-reference coupled cluster (VU-MRCC) formalism for energy differences which can capture orbital relaxation and correlation relaxation to all orders. Unlike in the traditional normal ordered cluster Ansatz for computing energy differences, this cluster expansion formalism allows contractions between various valence excitation operators with valence spectator lines. These contractions simulate the orbital relaxation and correlation relaxation effects for the ionized/excited states via Thouless-like exponential type of operators. Generally such operators are non-commuting. To ensure that each distinct excitation generated by contracted composites formed by these operators appear only once in the wave-operators, the factors accompanying these composites have to be judiciously chosen. Hence, the combinatoric factors accompanying such contracted composites are not taken to be 1/n! for nth-power, but rather the inverse of the automorphic factor (the number of ways the n operators can be connected in various permutations generating the same composite). It is shown that this Ansatz leads to a set of VU-MRCC equations for the valence cluster amplitudes, in which all the cluster operators are attached to the hamiltonian by at least one non-spectator line (a strongly connected series). The series is thus terminating at the quartic power. Illustrative applications are presented by computing electron affinity of neutral doublet radicals (viz., NH 2 , OH, F, BO and CN), where the orbital relaxation effect attendant on the anion formation is considerable. Several basis-sets capable of describing the anions have been studied. It has been found that aug-cc-pVTZ basis gives the best overall results, while aug-cc-pVQZ overestimates the electron affinity, presumably because of an imbalance in describing the neutral radicals. The method performs consistently much better then the one with the traditional
Segura, Antígona; Walkowicz, Lucianne M; Meadows, Victoria; Kasting, James; Hawley, Suzanne
2010-09-01
Main sequence M stars pose an interesting problem for astrobiology: their abundance in our galaxy makes them likely targets in the hunt for habitable planets, but their strong chromospheric activity produces high-energy radiation and charged particles that may be detrimental to life. We studied the impact of the 1985 April 12 flare from the M dwarf AD Leonis (AD Leo), simulating the effects from both UV radiation and protons on the atmospheric chemistry of a hypothetical, Earth-like planet located within its habitable zone. Based on observations of solar proton events and the Neupert effect, we estimated a proton flux associated with the flare of 5.9 × 10⁸ protons cm⁻² sr⁻¹ s⁻¹ for particles with energies >10 MeV. Then we calculated the abundance of nitrogen oxides produced by the flare by scaling the production of these compounds during a large solar proton event called the Carrington event. The simulations were performed with a 1-D photochemical model coupled to a 1-D radiative/convective model. Our results indicate that the UV radiation emitted during the flare does not produce a significant change in the ozone column depth of the planet. When the action of protons is included, the ozone depletion reaches a maximum of 94% two years after the flare for a planet with no magnetic field. At the peak of the flare, the calculated UV fluxes that reach the surface, in the wavelength ranges that are damaging for life, exceed those received on Earth during less than 100 s. Therefore, flares may not present a direct hazard for life on the surface of an orbiting habitable planet. Given that AD Leo is one of the most magnetically active M dwarfs known, this conclusion should apply to planets around other M dwarfs with lower levels of chromospheric activity.
Wickens, F
Our friend and colleague John Strong was cruelly taken from us by a brain tumour on Monday 31st July, a few days before his 65th birthday John started his career working with a group from Westfield College, under the leadership of Ted Bellamy. He obtained his PhD and spent the early part of his career on experiments at Rutherford Appleton Laboratory (RAL), but after the early 1970s his research was focussed on experiments in CERN. Over the years he made a number of notable contributions to experiments in CERN: The Omega spectrometer adopted a system John had originally developed for experiments at RAL using vidicon cameras to record the sparks in the spark chambers; He contributed to the success of NA1 and NA7, where he became heavily involved in the electronic trigger systems; He was responsible for the second level trigger system for the ALEPH detector and spent five years leading a team that designed and built the system, which ran for twelve years with only minor interventions. Following ALEPH he tur...
Stirring Strongly Coupled Plasma
Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim
2009-01-01
We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...
Strong-interaction nonuniversality
International Nuclear Information System (INIS)
Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.
1989-01-01
The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements
Nonadiabatic quantum wave packet dynamics of the H + H2 reaction ...
Indian Academy of Sciences (India)
Administrator
Abstract. The effect of coriolis coupling on the dynamics of H + H2 reaction is examined by calculating the initial state-selected and energy resolved reaction probabilities on the coupled manifold of its degenerate 2p (E′) ground electronic state. H3 in this state is prone to the Jahn–Teller (JT) instability and consequently the ...
Adiabatic and non-adiabatic electron oscillations in a static electric field
International Nuclear Information System (INIS)
Wahlberg, C.
1977-03-01
The influence of a static electric field on the oscillations of a one-dimensional stream of electrons is investigated. In the weak field limit the oscillations are adiabatic and mode coupling negligible, but becomes significant if the field is tronger. The latter effect is believed to be of importance for the stability of e.g. potential double layers
Directory of Open Access Journals (Sweden)
Sebastian Oeder
Full Text Available Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling.To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols.Through an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO or cleaner-burning diesel fuel (DF. Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses.The HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon ("soot". Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification.Despite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the use of HFO and DF we recommend a
Dilger, Marco; Paur, Hanns-Rudolf; Schlager, Christoph; Mülhopt, Sonja; Diabaté, Silvia; Weiss, Carsten; Stengel, Benjamin; Rabe, Rom; Harndorf, Horst; Torvela, Tiina; Jokiniemi, Jorma K.; Hirvonen, Maija-Riitta; Schmidt-Weber, Carsten; Traidl-Hoffmann, Claudia; BéruBé, Kelly A.; Wlodarczyk, Anna J.; Prytherch, Zoë; Michalke, Bernhard; Krebs, Tobias; Prévôt, André S. H.; Kelbg, Michael; Tiggesbäumker, Josef; Karg, Erwin; Jakobi, Gert; Scholtes, Sorana; Schnelle-Kreis, Jürgen; Lintelmann, Jutta; Matuschek, Georg; Sklorz, Martin; Klingbeil, Sophie; Orasche, Jürgen; Richthammer, Patrick; Müller, Laarnie; Elsasser, Michael; Reda, Ahmed; Gröger, Thomas; Weggler, Benedikt; Schwemer, Theo; Czech, Hendryk; Rüger, Christopher P.; Abbaszade, Gülcin; Radischat, Christian; Hiller, Karsten; Buters, Jeroen T. M.; Dittmar, Gunnar; Zimmermann, Ralf
2015-01-01
Background Ship engine emissions are important with regard to lung and cardiovascular diseases especially in coastal regions worldwide. Known cellular responses to combustion particles include oxidative stress and inflammatory signalling. Objectives To provide a molecular link between the chemical and physical characteristics of ship emission particles and the cellular responses they elicit and to identify potentially harmful fractions in shipping emission aerosols. Methods Through an air-liquid interface exposure system, we exposed human lung cells under realistic in vitro conditions to exhaust fumes from a ship engine running on either common heavy fuel oil (HFO) or cleaner-burning diesel fuel (DF). Advanced chemical analyses of the exhaust aerosols were combined with transcriptional, proteomic and metabolomic profiling including isotope labelling methods to characterise the lung cell responses. Results The HFO emissions contained high concentrations of toxic compounds such as metals and polycyclic aromatic hydrocarbon, and were higher in particle mass. These compounds were lower in DF emissions, which in turn had higher concentrations of elemental carbon (“soot”). Common cellular reactions included cellular stress responses and endocytosis. Reactions to HFO emissions were dominated by oxidative stress and inflammatory responses, whereas DF emissions induced generally a broader biological response than HFO emissions and affected essential cellular pathways such as energy metabolism, protein synthesis, and chromatin modification. Conclusions Despite a lower content of known toxic compounds, combustion particles from the clean shipping fuel DF influenced several essential pathways of lung cell metabolism more strongly than particles from the unrefined fuel HFO. This might be attributable to a higher soot content in DF. Thus the role of diesel soot, which is a known carcinogen in acute air pollution-induced health effects should be further investigated. For the
Wang, Jun; Huang, Jing; Du, Likai; Lan, Zhenggang
2015-07-09
The photoinduced intramolecular excited-state energy-transfer (EET) process in conjugated polymers has received a great deal of research interest because of its important role in the light harvesting and energy transport of organic photovoltaic materials in photoelectric devices. In this work, the silylene-bridged biphenyl and stilbene (SBS) system was chosen as a simplified model system to obtain physical insight into the photoinduced intramolecular energy transfer between the different building units of the SBS copolymer. In the SBS system, the vinylbiphenyl and vinylstilbene moieties serve as the donor (D) unit and the acceptor (A) unit, respectively. The ultrafast excited-state dynamics of the SBS system was investigated from the point of view of nonadiabatic dynamics with the surface-hopping method at the TDDFT level. The first two excited states (S1 and S2) are characterized by local excitations at the acceptor (vinylstilbene) and donor (vinylbiphenyl) units, respectively. Ultrafast S2-S1 decay is responsible for the intramolecular D-A excitonic energy transfer. The geometric distortion of the D moiety play an essential role in this EET process, whereas the A moiety remains unchanged during the nonadiabatic dynamics simulation. The present work provides a direct dynamical approach to understand the ultrafast intramolecular energy-transfer dynamics in SBS copolymers and other similar organic photovoltaic copolymers.
Li, Xusong; Xie, Yu; Hu, Deping; Lan, Zhenggang
2017-10-10
On-the-fly trajectory-based nonadiabatic dynamics simulation has become an important approach to study ultrafast photochemical and photophysical processes in recent years. Because a large number of trajectories are generated from the dynamics simulation of polyatomic molecular systems with many degrees of freedom, the analysis of simulation results often suffers from the large amount of high-dimensional data. It is very challenging but meaningful to find dominating active coordinates from very complicated molecular motions. Dimensionality reduction techniques provide ideal tools to realize this purpose. We apply two dimensionality reduction approaches (classical multidimensional scaling and isometric feature mapping) to analyze the results of the on-the-fly surface-hopping nonadiabatic dynamics simulation. Two representative model systems, CH 2 NH 2 + and the phytochromobilin chromophore model, are chosen to examine the performance of these dimensionality reduction approaches. The results show that these approaches are very promising, because they can extract the major molecular motion from complicated time-dependent molecular evolution without preknown knowledge.
PREFACE: Strongly correlated electron systems Strongly correlated electron systems
Saxena, Siddharth S.; Littlewood, P. B.
2012-07-01
This special section is dedicated to the Strongly Correlated Electron Systems Conference (SCES) 2011, which was held from 29 August-3 September 2011, in Cambridge, UK. SCES'2011 is dedicated to 100 years of superconductivity and covers a range of topics in the area of strongly correlated systems. The correlated electronic and magnetic materials featured include f-electron based heavy fermion intermetallics and d-electron based transition metal compounds. The selected papers derived from invited presentations seek to deepen our understanding of the rich physical phenomena that arise from correlation effects. The focus is on quantum phase transitions, non-Fermi liquid phenomena, quantum magnetism, unconventional superconductivity and metal-insulator transitions. Both experimental and theoretical work is presented. Based on fundamental advances in the understanding of electronic materials, much of 20th century materials physics was driven by miniaturisation and integration in the electronics industry to the current generation of nanometre scale devices. The achievements of this industry have brought unprecedented advances to society and well-being, and no doubt there is much further to go—note that this progress is founded on investments and studies in the fundamentals of condensed matter physics from more than 50 years ago. Nevertheless, the defining challenges for the 21st century will lie in the discovery in science, and deployment through engineering, of technologies that can deliver the scale needed to have an impact on the sustainability agenda. Thus the big developments in nanotechnology may lie not in the pursuit of yet smaller transistors, but in the design of new structures that can revolutionise the performance of solar cells, batteries, fuel cells, light-weight structural materials, refrigeration, water purification, etc. The science presented in the papers of this special section also highlights the underlying interest in energy-dense materials, which
Directory of Open Access Journals (Sweden)
James Avery Sauls
2015-06-01
Full Text Available Recent theories of Sr2RuO4 based on the interplay of strong interactions, spin-orbit coupling and multi-band anisotropy predict chiral or helical ground states with strong anisotropy of the pairing states, with deep minima in the excitation gap, as well as strong phase anisotropy for the chiral ground state. We develop time-dependent mean field theory to calculate the Bosonic spectrum for the class of 2D chiral superconductors spanning 3He-A to chiral superconductors with strong anisotropy. Chiral superconductors support a pair of massive Bosonic excitations of the time-reversed pairs labeled by their parity under charge conjugation. These modes are degenerate for 2D 3He-A. Crystal field anisotropy lifts the degeneracy. Strong anisotropy also leads to low-lying Fermions, and thus to channels for the decay of the Bosonic modes. Selection rules and phase space considerations lead to large asymmetries in the lifetimes and hybridization of the Bosonic modes with the continuum of un-bound Fermion pairs. We also highlight results for the excitation of the Bosonic modes by microwave radiation that provide clear signatures of the Bosonic modes of an anisotropic chiral ground state.
Strongly Interacting Light Dark Matter
Directory of Open Access Journals (Sweden)
Sebastian Bruggisser, Francesco Riva, Alfredo Urbano
2017-09-01
Full Text Available In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM can appear weakly coupled at small energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo Nambu-Goldstone Bosons and Goldstini are interesting targets for LHC missing-energy searches.
Strongly interacting light dark matter
International Nuclear Information System (INIS)
Bruggisser, Sebastian; Riva, Francesco; Urbano, Alfredo
2016-07-01
In the presence of approximate global symmetries that forbid relevant interactions, strongly coupled light Dark Matter (DM) can appear weakly coupled at small-energy and generate a sizable relic abundance. Fundamental principles like unitarity restrict these symmetries to a small class, where the leading interactions are captured by effective operators up to dimension-8. Chiral symmetry, spontaneously broken global symmetries and non-linearly realized supersymmetry are examples of this. Their DM candidates (composite fermions, pseudo-Nambu-Goldstone Bosons and Goldstini) are interesting targets for LHC missing-energy searches.
Application of strong phosphoric acid to radiochemistry
International Nuclear Information System (INIS)
Terada, Kikuo
1977-01-01
Not only inorganic and organic compounds but also natural substrances, such as accumulations in soil, are completely decomposed and distilled by heating with strong phosphoric acid for 30 to 50 minutes. As applications of strong phosphoric acid to radiochemistry, determination of uranium and boron by use of solubilization effect of this substance, titration of uranyl ion by use of sulfuric iron (II) contained in this substance, application to tracer experiment, and determination of radioactive ruthenium in environmental samples are reviewed. Strong phosphoric acid is also applied to activation analysis, for example, determination of N in pyrographite with iodate potassium-strong phosphoric acid method, separation of Os and Ru with sulfuric cerium (IV) - strong phosphoric acid method or potassium dechromate-strong phosphoric acid method, analysis of Se, As and Sb rocks and accumulations with ammonium bromide, sodium chloride and sodium bromide-strong phosphoric acid method. (Kanao, N.)
Strong interaction phenomenology
International Nuclear Information System (INIS)
Giffon, M.
1989-01-01
A brief review of high energy hadronic data (Part I)is followed by an introduction to the standard (Weinberg Salam Glashow) model of electroweak interactions and its extension to the hadrons (Part II). Rudiments of QCD and of the parton model area given in Part III together with a quick review of the spectroscopy of heavy flavours whereas Part IV is devoted to the introduction to deep inelastic scattering and to the so-called EMC effects. (author)
Ghosh, Jayanta; Banerjee, Shaibal; Bhattacharya, Atanu
2017-09-01
To gain insight into the ultrafast electronically nonadiabatic chemistry of azido-based energetic plasticizer, we have explored the nonadiabatic chemical dynamics of an azido-based model analog molecule, methyl azide (MAz), using ab initio multiple spawning (AIMS) simulation and electronic structure theory calculations. Molecular nitrogen (N2) is predicted to be the initial product of MAz following its electronic excitation to the S1 electronically excited state. AIMS-based simulation reveals that electronically excited azido-based molecules undergo extremely fast (approximately in 40 femtoseconds) relaxation to the ground state via the (S1/S0)CI conical intersection. Furthermore, this relaxation process involves the Nsbnd N bond elongation along with the bending of N3 moiety. This is the first report on the electronically non-adiabatic chemical dynamics (in ultrafast time domain) of methyl azide. Finally, using ultraviolet-visible (UV-VIS) spectroscopy, we comment on the electronically nonadiabatic chemistry of azido-based energetic plasticizer, bis(1,3-diazido prop-2-yl)malonate.
Directory of Open Access Journals (Sweden)
Kawasaki Masahiro
2012-02-01
Full Text Available The plateau of 7Li abundance as a function of the iron abundance by spectroscopic observations of metal-poor halo stars (MPHSs indicates its primordial origin. The observed abundance levels are about a factor of three smaller than the primordial 7Li abundance predicted in the standard Big Bang Nucleosynthesis (BBN model. This discrepancy might originate from exotic particle and nuclear processes operating in BBN epoch. Some particle models include heavy (m >> 1 GeV long-lived colored particles which would be confined inside exotic heavy hadrons, i.e., strongly interacting massive particles (SIMPs. We have found reactions which destroy 7Be and 7Li during BBN in the scenario of BBN catalyzed by a long-lived sub-strongly interacting massive particle (sub-SIMP, X. The reactions are non radiative X captures of 7 Be and 7Li which can be operative if the X particle interacts with nuclei strongly enough to drive 7 Be destruction but not strongly enough to form a bound state with 4 He of relative angular momentum L = 1. We suggest that 7Li problem can be solved as a result of a new process beyond the standard model through which the observable signature was left on the primordial Li abundance.
Strongly coupled dust coulomb clusters
International Nuclear Information System (INIS)
Juan Wentau; Lai Yingju; Chen Mingheng; I Lin
1999-01-01
The structures and motions of quasi-2-dimensional strongly coupled dust Coulomb clusters with particle number N from few to hundreds in a cylindrical rf plasma trap are studied and compared with the results from the molecular dynamic simulation using more ideal models. Shell structures with periodic packing in different shells and intershell rotational motion dominated excitations are observed at small N. As N increases, the boundary has less effect, the system recovers to the triangular lattice with isotropic vortex type cooperative excitations similar to an infinite N system except the outer shell region. The above generic behaviors are mainly determined by the system symmetry and agree with the simulation results. The detailed interaction form causes minor effect such as the fine structure of packing
Physics of Strongly Coupled Plasma
Energy Technology Data Exchange (ETDEWEB)
Kraeft, Wolf-Dietrich [Universitat Rostock (Germany)
2007-07-15
Strongly coupled plasmas (or non-ideal plasmas) are multi-component charged many-particle systems, in which the mean value of the potential energy of the system is of the same order as or even higher than the mean value of the kinetic energy. The constituents are electrons, ions, atoms and molecules. Dusty (or complex) plasmas contain still mesoscopic (multiply charged) particles. In such systems, the effects of strong coupling (non-ideality) lead to considerable deviations of physical properties from the corresponding properties of ideal plasmas, i.e., of plasmas in which the mean kinetic energy is essentially larger than the mean potential energy. For instance, bound state energies become density dependent and vanish at higher densities (Mott effect) due to the interaction of the pair with the surrounding particles. Non-ideal plasmas are of interest both for general scientific reasons (including, for example, astrophysical questions), and for technical applications such as inertially confined fusion. In spite of great efforts both experimentally and theoretically, satisfactory information on the physical properties of strongly coupled plasmas is not at hand for any temperature and density. For example, the theoretical description of non-ideal plasmas is possible only at low densities/high temperatures and at extremely high densities (high degeneracy). For intermediate degeneracy, however, numerical experiments have to fill the gap. Experiments are difficult in the region of 'warm dense matter'. The monograph tries to present the state of the art concerning both theoretical and experimental attempts. It mainly includes results of the work performed in famous Russian laboratories in recent decades. After outlining basic concepts (chapter 1), the generation of plasmas is considered (chapter 2, chapter 3). Questions of partial (chapter 4) and full ionization (chapter 5) are discussed including Mott transition and Wigner crystallization. Electrical and
Pelzer, Kenley; Greenman, Loren; Gidofalvi, Gergely; Mazziotti, David A
2011-06-09
Polyaromatic hydrocarbons (PAHs) are a class of organic molecules with importance in several branches of science, including medicine, combustion chemistry, and materials science. The delocalized π-orbital systems in PAHs require highly accurate electronic structure methods to capture strong electron correlation. Treating correlation in PAHs has been challenging because (i) traditional wave function methods for strong correlation have not been applicable since they scale exponentially in the number of strongly correlated orbitals, and (ii) alternative methods such as the density-matrix renormalization group and variational two-electron reduced density matrix (2-RDM) methods have not been applied beyond linear acene chains. In this paper we extend the earlier results from active-space variational 2-RDM theory [Gidofalvi, G.; Mazziotti, D. A. J. Chem. Phys. 2008, 129, 134108] to the more general two-dimensional arrangement of rings--acene sheets--to study the relationship between geometry and electron correlation in PAHs. The acene-sheet calculations, if performed with conventional wave function methods, would require wave function expansions with as many as 1.5 × 10(17) configuration state functions. To measure electron correlation, we employ several RDM-based metrics: (i) natural-orbital occupation numbers, (ii) the 1-RDM von Neumann entropy, (iii) the correlation energy per carbon atom, and (iv) the squared Frobenius norm of the cumulant 2-RDM. The results confirm a trend of increasing polyradical character with increasing molecular size previously observed in linear PAHs and reveal a corresponding trend in two-dimensional (arch-shaped) PAHs. Furthermore, in PAHs of similar size they show significant variations in correlation with geometry. PAHs with the strictly linear geometry (chains) exhibit more electron correlation than PAHs with nonlinear geometries (sheets).
International Nuclear Information System (INIS)
Du Luchun; Mei Dongcheng
2011-01-01
The non-adiabatic regime of stochastic resonance (SR) in a bistable system with time delay, an additive white noise and a periodic signal was investigated. The signal power amplification η was employed to characterize the SR of the system. The simulation results indicate that (i) in the case of intermediate frequency Ω of the periodic signal, the typical behavior of SR is lowered monotonically by increasing the delay time τ; in the case of large Ω, τ weakens the SR behavior and then enhances it, with a non-monotonic behavior as a function of time delay; (ii) time delay induces SR when A is above the threshold, whereas no such resonance exists in the absence of time delay; (iii) time delay induces a transition from bimodal to unimodal configuration of η; (iv) varying the particular form of time delay results in different phenomena.
Søndergaard, Anders Aspegren; Shepperson, Benjamin; Stapelfeldt, Henrik
2017-07-07
We present an efficient, noise-robust method based on Fourier analysis for reconstructing the three-dimensional measure of the alignment degree, ⟨cos 2 θ⟩, directly from its two-dimensional counterpart, ⟨cos 2 θ 2D ⟩. The method applies to nonadiabatic alignment of linear molecules induced by a linearly polarized, nonresonant laser pulse. Our theoretical analysis shows that the Fourier transform of the time-dependent ⟨cos 2 θ 2D ⟩ trace over one molecular rotational period contains additional frequency components compared to the Fourier transform of ⟨cos 2 θ⟩. These additional frequency components can be identified and removed from the Fourier spectrum of ⟨cos 2 θ 2D ⟩. By rescaling of the remaining frequency components, the Fourier spectrum of ⟨cos 2 θ⟩ is obtained and, finally, ⟨cos 2 θ⟩ is reconstructed through inverse Fourier transformation. The method allows the reconstruction of the ⟨cos 2 θ⟩ trace from a measured ⟨cos 2 θ 2D ⟩ trace, which is the typical observable of many experiments, and thereby provides direct comparison to calculated ⟨cos 2 θ⟩ traces, which is the commonly used alignment metric in theoretical descriptions. We illustrate our method by applying it to the measurement of nonadiabatic alignment of I 2 molecules. In addition, we present an efficient algorithm for calculating the matrix elements of cos 2 θ 2D and any other observable in the symmetric top basis. These matrix elements are required in the rescaling step, and they allow for highly efficient numerical calculation of ⟨cos 2 θ 2D ⟩ and ⟨cos 2 θ⟩ in general.
Janeček, Ivan; Janča, Tomáš; Naar, Pavel; Kalus, René; Gadea, Florent Xavier
2013-01-28
A multiscale approach is proposed to address short-time nonadiabatic dynamics and long-time decay. We show the role of both radiative and non-radiative processes in cluster decay mechanisms on examples of rare-gas cluster fragmentation after electron impact ionization. Nonadiabatic molecular dynamics is used as an efficient tool for theoretical study on femto- and picosecond scales and a multiscale approach based on kinetic rates of radiative as well as non-radiative transitions, both considered as parallel reaction channels, is used for the analysis of the long-time system relaxation spanning times over microseconds to infinity. While the radiative processes are typically slow, the system relaxation through non-radiative electronic transitions connected with electron-nuclear interchange of energy may, on the other hand, significantly vary in kinetic rates according to kinetic couplings between relevant adiabatic states. While the predictions of picosecond molecular dynamics themselves fail, the results of the multiscale model for the electron-impact post-ionization fragmentation of krypton and xenon tetramers are in agreement with experiment, namely, in leading to the conclusion that charged monomers prevail. More specifically, on microsecond and longer scales, mainly slow radiative processes are substantial for krypton cluster decay, while for xenon the radiative and slow non-radiative processes compete. In general, the role of slow decay processes through non-radiative transitions is comparable with the role of radiative decay mechanism. The novel multiscale model substantially improves theoretical predictions for the xenon tetramer decay and also further improves the good agreement between theory and experiment we reached previously for krypton.
Energy Technology Data Exchange (ETDEWEB)
Stevens, A.E.; Beauchamp, J.L.
1979-10-10
In this communication the formation, properties and reactions of the gas phase carbenes MnCH/sub 2//sup +/, (CO)/sub 5/MnCH/sub 2//sup +/, and (CO)/sub 4/MnCH/sub 2//sup +/ are described. Reported results include observation of metathesis and abstraction reactions of the methylene ligand with olefins and the first experimental determination of metal-carbene bond dissociation energies. Important points are that: (a) metal-methylene bond energies are extremely strong; and (b) the Mn/sup +/-methylene bond energy is decreased substantially on addition of five carbonyls to the metal center. If the metal-carbene bond energy exceeds 100 kcal/mol, then transfer of the carbene to an olefin to give a cyclopropane or new olefin will be endothermic and thus will not compete with the metathesis reaction. In order to avoid low turnover numbers resulting from consumption of carbene intermediates, strong metal-carbene bonds are a desirable feature of practical metathesis catalysts. (DP)
Sukharev, Maxim; Pachter, Ruth
2018-03-01
We study theoretically the optical response of a WS2 monolayer located near periodic metal nanostructured arrays in two and three dimensions. The emphasis of the simulations is on the strong coupling between excitons supported by WS2 and surface plasmon-polaritons supported by various periodic plasmonic interfaces. It is demonstrated that a monolayer of WS2 placed in close proximity of periodic arrays of either slits or holes results in a Rabi splitting of the corresponding surface plasmon-polariton resonance as revealed in calculated transmission and reflection spectra. The nonlinear regime, at which the few-layer WS2 exhibits experimentally third harmonic generation (THG), is studied in detail. Monolayer transition metal dichalcogenides (TMDs) do not exhibit THG because they are non-centrosymmetric, but here we use the monolayer as an approximation to a thin TMD nanostructure. We show that in the strong coupling regime the third harmonic signal is significantly affected by plasmon-polaritons and the symmetry of hybrid exciton-plasmon modes. It is also shown that the local electromagnetic field induced by plasmons is the major contributor to the enhancement of the third harmonic signal in three dimensions. The local electromagnetic fields resulting from the third harmonic generation are greatly localized and highly sensitive to the environment, thus making it a great tool for nano-probes.
DEFF Research Database (Denmark)
Liu, Yuan; Wu, Weimin; He, Yuanbin
2016-01-01
A high-order (LCL or LLCL) power filter with a small grid-side inductor is becoming more preferred for a grid-tied inverter due to less total inductance and reduced costs. In a microgrid, the background harmonic voltage (BHV) may distort the injected currents of the grid-tied inverters. In order......-current-feedback AD. Based on this, a single-loop current control with a hybrid damper is proposed for a single-phase LCLor LLCL-filter-based grid-tied inverter. A step-by-step design of the controller method is also introduced in detail. Experiments on a 2-kW prototype fully demonstrate the strong robustness...
Directory of Open Access Journals (Sweden)
B BOUHAFS
2003-12-01
Full Text Available The attractive potential energy between the atoms of rubidium vapor and a dielectric wall has been investigated by monitoring the reflection light at the interface. The atom- wall interaction potential of the form V(z = - C /z3 (z: atom-wall allows to predict experimental results only for weak regime, i.e., where C<< 0.2 kHzmm3. In the strong interaction case, the dispersive line shape is turned into an absorption-type line shape. The influence of atomic density on the shift of the selective reflection resonance relatively to the frequency of unperturbed atomic transition is found to be red with a negative slope. This technique opens the way to characterize the windows made of different materials thin films.
Dunaevskij, S M
2001-01-01
The calculation of the E(k) dispersion curves of the charge carriers in the LaMnO sub 3 -type perovskites for the basic types of the Mn sublattice squinted antiferromagnetic ordering is carried out within the frames of the strong coupling method. The calculation of the E(k) spectrum of the antiferromagnetic structures is accomplished for the first time with an account of the manganese e sub g -level degeneration and the Jahn-Teller distortion of the perovskite cubic structure, which required diagonalization of the eight order Hamiltonian matrices. The analytical expressions for the E(k) functions in the separate points and on the individual lines of the corresponding Brillouin zone are obtained. The accomplished calculations showed, that there can be no electron-hole symmetry of properties in the La sub 1 sub - sub x Ca sub x MnO sub 3 system
Kim, Kilyoung; Johnson, Alan M; Powell, Amber L; Mitchell, Deborah G; Sevy, Eric T
2014-12-21
Collisional energy transfer between vibrational ground state CO2 and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm(-1)) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E' = ∼41,000 cm(-1) was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S1→S0*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO2 via collisions was measured by probing the scattered CO2 using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO2 were measured and used to determine the energy transfer probability distribution function, P(E,E'), in the large ΔE region. P(E,E') was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E') and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E') and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E'). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.
Directory of Open Access Journals (Sweden)
Lijing Shao
2017-10-01
Full Text Available Pulsar timing and laser-interferometer gravitational-wave (GW detectors are superb laboratories to study gravity theories in the strong-field regime. Here, we combine these tools to test the mono-scalar-tensor theory of Damour and Esposito-Farèse (DEF, which predicts nonperturbative scalarization phenomena for neutron stars (NSs. First, applying Markov-chain Monte Carlo techniques, we use the absence of dipolar radiation in the pulsar-timing observations of five binary systems composed of a NS and a white dwarf, and eleven equations of state (EOSs for NSs, to derive the most stringent constraints on the two free parameters of the DEF scalar-tensor theory. Since the binary-pulsar bounds depend on the NS mass and the EOS, we find that current pulsar-timing observations leave scalarization windows, i.e., regions of parameter space where scalarization can still be prominent. Then, we investigate if these scalarization windows could be closed and if pulsar-timing constraints could be improved by laser-interferometer GW detectors, when spontaneous (or dynamical scalarization sets in during the early (or late stages of a binary NS (BNS evolution. For the early inspiral of a BNS carrying constant scalar charge, we employ a Fisher-matrix analysis to show that Advanced LIGO can improve pulsar-timing constraints for some EOSs, and next-generation detectors, such as the Cosmic Explorer and Einstein Telescope, will be able to improve those bounds for all eleven EOSs. Using the late inspiral of a BNS, we estimate that for some of the EOSs under consideration, the onset of dynamical scalarization can happen early enough to improve the constraints on the DEF parameters obtained by combining the five binary pulsars. Thus, in the near future, the complementarity of pulsar timing and direct observations of GWs on the ground will be extremely valuable in probing gravity theories in the strong-field regime.
Cumulative effects in inflation with ultra-light entropy modes
Energy Technology Data Exchange (ETDEWEB)
Achúcarro, Ana; Atal, Vicente [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, 2333 CA Leiden (Netherlands); Germani, Cristiano [Institut de Ciéncies del Cosmos, Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona (Spain); Palma, Gonzalo A., E-mail: achucar@lorentz.leidenuniv.nl, E-mail: vicente.atal@icc.ub.edu, E-mail: germani@icc.ub.edu, E-mail: gpalmaquilod@ing.uchile.cl [Grupo de Cosmología y Astrofísica Teórica, Departamento de Física, FCFM, Universidad de Chile, Blanco Encalada 2008, Santiago (Chile)
2017-02-01
In multi-field inflation one or more non-adiabatic modes may become light, potentially inducing large levels of isocurvature perturbations in the cosmic microwave background. If in addition these light modes are coupled to the adiabatic mode, they influence its evolution on super horizon scales. Here we consider the case in which a non-adiabatic mode becomes approximately massless (''ultralight') while still coupled to the adiabatic mode, a typical situation that arises with pseudo-Nambu-Goldstone bosons or moduli. This ultralight mode freezes on super-horizon scales and acts as a constant source for the curvature perturbation, making it grow linearly in time and effectively suppressing the isocurvature component. We identify a Stückelberg-like emergent shift symmetry that underlies this behavior. As inflation lasts for many e -folds, the integrated effect of this source enhances the power spectrum of the adiabatic mode, while keeping the non-adiabatic spectrum approximately untouched. In this case, towards the end of inflation all the fluctuations, adiabatic and non-adiabatic, are dominated by a single degree of freedom.
Quantum electrodynamics of strong fields
International Nuclear Information System (INIS)
Greiner, W.
1983-01-01
Quantum Electrodynamics of Strong Fields provides a broad survey of the theoretical and experimental work accomplished, presenting papers by a group of international researchers who have made significant contributions to this developing area. Exploring the quantum theory of strong fields, the volume focuses on the phase transition to a charged vacuum in strong electric fields. The contributors also discuss such related topics as QED at short distances, precision tests of QED, nonperturbative QCD and confinement, pion condensation, and strong gravitational fields In addition, the volume features a historical paper on the roots of quantum field theory in the history of quantum physics by noted researcher Friedrich Hund
Pereira, Jorge F B; Barber, Patrick S; Kelley, Steven P; Berton, Paula; Rogers, Robin D
2017-10-11
The properties of double salt ionic liquids based on solutions of cholinium acetate ([Ch][OAc]), ethanolammonium acetate ([NH 3 (CH 2 ) 2 OH][OAc]), hydroxylammonium acetate ([NH 3 OH][OAc]), ethylammonium acetate ([NH 3 CH 2 CH 3 ][OAc]), and tetramethylammonium acetate ([N(CH 3 ) 4 ][OAc]) in 1-ethyl-3-methylimidazolium acetate ([C 2 mim][OAc]) were investigated by NMR spectroscopy and X-ray crystallography. Through mixture preparation, the solubility of [N(CH 3 ) 4 ][OAc] is the lowest, and [Ch][OAc] shows a 3-fold lower solubility than the other hydroxylated ammonium acetate-based salts in [C 2 mim][OAc] at room temperature. NMR and X-ray crystallographic studies of the pure salts suggest that the molecular-level mechanisms governing such miscibility differences are related to the weaker interactions between the -NH 3 groups and [OAc] - , even though three of these salts possess the same strong 1 : 1 hydrogen bonds between the cation -OH group and the [OAc] - ion. The formation of polyionic clusters between the anion and those cations with unsatisfied hydrogen bond donors seems to be a new tool by which the solubility of these salts in [C 2 mim][OAc] can be controlled.
Yaremko, A. M.; Ratajczak, H.; Barnes, A. J.; Baran, J.; Durlak, P.; Latajka, Z.
2009-10-01
The vibrational spectra of polycrystalline benzoic acid (BA) and its deuterated derivative were studied over the wide frequency region 4000-10 cm -1 by IR and Raman methods. A theoretical analysis of the hydrogen bond frequency region and calculations at the B3LYP/6-311++G(2d, 2p) level for the benzoic acid cyclic dimer in the gas phase were made. In order to study the dynamics of proton transfer two formalisms were applied: Car-Parrinello Molecular Dynamics (CPMD) and Path Integrals Molecular Dynamics (PIMD). It was shown that the experimentally observed very broad ν-OH band absorption is the result of complex anharmonic interaction: Fermi resonance between the OH-stretching and bending vibrations and strong interaction of the ν-OH stretching with the low frequency phonons. The theoretical analysis in the framework of such an approach gave a good correlation with experiment. From the CPMD calculations it was confirmed that the O-H⋯O bridge is not rigid, with the O⋯O distance being described by a large amplitude motion. For the benzoic acid dimer we observed stepwise (asynchronous) proton transfer.
Energy Technology Data Exchange (ETDEWEB)
Johnson, J. D. (ProStat, Mesa, AZ); Oberkampf, William Louis; Helton, Jon Craig (Arizona State University, Tempe, AZ)
2007-05-01
Weak link (WL)/strong link (SL) systems constitute important parts of the overall operational design of high consequence systems, with the SL system designed to permit operation of the system only under intended conditions and the WL system designed to prevent the unintended operation of the system under accident conditions. Degradation of the system under accident conditions into a state in which the WLs have not deactivated the system and the SLs have failed in the sense that they are in a configuration that could permit operation of the system is referred to as loss of assured safety. The probability of such degradation conditional on a specific set of accident conditions is referred to as probability of loss of assured safety (PLOAS). Previous work has developed computational procedures for the calculation of PLOAS under fire conditions for a system involving multiple WLs and SLs and with the assumption that a link fails instantly when it reaches its failure temperature. Extensions of these procedures are obtained for systems in which there is a temperature-dependent delay between the time at which a link reaches its failure temperature and the time at which that link actually fails.
McCullough, Sheila M; Constable, Peter D
2003-08-01
To determine values for the total concentration of nonvolatile weak acids (Atot) and effective dissociation constant of nonvolatile weak acids (Ka) in plasma of cats. Convenience plasma samples of 5 male and 5 female healthy adult cats. Cats were sedated, and 20 mL of blood was obtained from the jugular vein. Plasma was tonometered at 37 degrees C to systematically vary PCO2 from 8 to 156 mm Hg, thereby altering plasma pH from 6.90 to 7.97. Plasma pH, PCO2, and concentrations of quantitatively important strong cations (Na+, K+, and Ca2+), strong anions (Cl-, lactate), and buffer ions (total protein, albumin, and phosphate) were determined. Strong ion difference was estimated from the measured strong ion concentrations and nonlinear regression used to calculate Atot and Ka from the measured pH and PCO2 and estimated strong ion difference. Mean (+/- SD) values were as follows: Atot = 24.3 +/- 4.6 mmol/L (equivalent to 0.35 mmol/g of protein or 0.76 mmol/g of albumin); Ka = 0.67 +/- 0.40 x 10(-7); and the negative logarithm (base 10) of Ka (pKa) = 7.17. At 37 degrees C, pH of 7.35, and a partial pressure of CO2 (PCO2) of 30 mm Hg, the calculated venous strong ion difference was 30 mEq/L. These results indicate that at a plasma pH of 7.35, a 1 mEq/L decrease in strong ion difference will decrease pH by 0.020, a 1 mm Hg decrease in PCO2 will increase plasma pH by 0.011, and a 1 g/dL decrease in albumin concentration will increase plasma pH by 0.093.
Ghosh, Arnab; Koestner, Wolfgang; Hapke, Martin; Schlaphoff, Verena; Länger, Florian; Baumann, Rolf; Koenecke, Christian; Cornberg, Markus; Welte, Karl; Blazar, Bruce R.; Sauer, Martin G.
2009-01-01
Antigen-presenting cells (APCs) of host origin drive graft-versus-leukemia (GVL) effects but can also trigger life-threatening graft-versus-host disease (GVHD) after hematopoietic cell transplantation (HCT) across major histocompatibility complex (MHC) barriers. We show that in vitro priming of donor lymphocytes can circumvent the need of recipient-derived APCs in vivo for mediating robust GVL effects and significantly diminishes the risk of severe GVHD. In vitro, generated and expanded T cel...
EDITORIAL: Strongly correlated electron systems Strongly correlated electron systems
Ronning, Filip; Batista, Cristian
2011-03-01
Strongly correlated electrons is an exciting and diverse field in condensed matter physics. This special issue aims to capture some of that excitement and recent developments in the field. Given that this issue was inspired by the 2010 International Conference on Strongly Correlated Electron Systems (SCES 2010), we briefly give some history in order to place this issue in context. The 2010 International Conference on Strongly Correlated Electron Systems was held in Santa Fe, New Mexico, a reunion of sorts from the 1989 International Conference on the Physics of Highly Correlated Electron Systems that also convened in Santa Fe. SCES 2010—co-chaired by John Sarrao and Joe Thompson—followed the tradition of earlier conferences, in this century, hosted by Buzios (2008), Houston (2007), Vienna (2005), Karlsruhe (2004), Krakow (2002) and Ann Arbor (2001). Every three years since 1997, SCES has joined the International Conference on Magnetism (ICM), held in Recife (2000), Rome (2003), Kyoto (2006) and Karlsruhe (2009). Like its predecessors, SCES 2010 topics included strongly correlated f- and d-electron systems, heavy-fermion behaviors, quantum-phase transitions, non-Fermi liquid phenomena, unconventional superconductivity, and emergent states that arise from electronic correlations. Recent developments from studies of quantum magnetism and cold atoms complemented the traditional subjects and were included in SCES 2010. 2010 celebrated the 400th anniversary of Santa Fe as well as the birth of astronomy. So what's the connection to SCES? The Dutch invention of the first practical telescope and its use by Galileo in 1610 and subsequent years overturned dogma that the sun revolved about the earth. This revolutionary, and at the time heretical, conclusion required innovative combinations of new instrumentation, observation and mathematics. These same combinations are just as important 400 years later and are the foundation of scientific discoveries that were discussed
Energy Technology Data Exchange (ETDEWEB)
Johnson, Traci L.; Sharon, Keren, E-mail: tljohn@umich.edu [University of Michigan, Department of Astronomy, 1085 South University Avenue, Ann Arbor, MI 48109-1107 (United States)
2016-11-20
Until now, systematic errors in strong gravitational lens modeling have been acknowledged but have never been fully quantified. Here, we launch an investigation into the systematics induced by constraint selection. We model the simulated cluster Ares 362 times using random selections of image systems with and without spectroscopic redshifts and quantify the systematics using several diagnostics: image predictability, accuracy of model-predicted redshifts, enclosed mass, and magnification. We find that for models with >15 image systems, the image plane rms does not decrease significantly when more systems are added; however, the rms values quoted in the literature may be misleading as to the ability of a model to predict new multiple images. The mass is well constrained near the Einstein radius in all cases, and systematic error drops to <2% for models using >10 image systems. Magnification errors are smallest along the straight portions of the critical curve, and the value of the magnification is systematically lower near curved portions. For >15 systems, the systematic error on magnification is ∼2%. We report no trend in magnification error with the fraction of spectroscopic image systems when selecting constraints at random; however, when using the same selection of constraints, increasing this fraction up to ∼0.5 will increase model accuracy. The results suggest that the selection of constraints, rather than quantity alone, determines the accuracy of the magnification. We note that spectroscopic follow-up of at least a few image systems is crucial because models without any spectroscopic redshifts are inaccurate across all of our diagnostics.
International Nuclear Information System (INIS)
DeSantis, G.N.
1995-01-01
The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch
Energy Technology Data Exchange (ETDEWEB)
DeSantis, G.N.
1995-03-06
The calculation decides the integrity of the safety latch that will hold the strong-back to the pump during lifting. The safety latch will be welded to the strong-back and will latch to a 1.5-in. dia cantilever rod welded to the pump baseplate. The static and dynamic analysis shows that the safety latch will hold the strong-back to the pump if the friction clamps fail and the pump become free from the strong-back. Thus, the safety latch will meet the requirements of the Lifting and Rigging Manual for under the hook lifting for static loading; it can withstand shock loads from the strong-back falling 0.25 inch.
DEFF Research Database (Denmark)
Kulminski, Alexander M; Arbeev, Konstantin G; Culminskaya, Irina
2014-01-01
cohorts and the Long Life Family Study (LLFS) to investigate gender-specific effects of the ApoE4 allele on human survival in a wide range of ages from midlife to extreme old ages, and the sensitivity of these effects to cardiovascular disease (CVD), cancer, and neurodegenerative disorders (ND.......6 × 10(-6)) in the FHS cohorts. Major human diseases including CVD, ND, and cancer, whose risks can be sensitive to the e4 allele, do not mediate the association of this allele with lifespan in large FHS samples. Non-skin cancer non-additively increases mortality of the FHS women with moderate lifespans...
Vidovic, Sinisa; Elder, Jeff; Medihala, Prabhakara; Lawrence, John R; Predicala, Bernardo; Zhang, Haixia; Korber, Darren R
2015-01-01
In this study, we tested the antimicrobial activity of three metal nanoparticles (NPs), ZnO, MgO, and CaO NPs, against Salmonella enterica serovar Enteritidis in liquid medium and on solid surfaces. Out of the three tested metal NPs, ZnO NPs exhibited the most significant antimicrobial effect both in liquid medium and when embedded on solid surfaces. Therefore, we focused on revealing the mechanisms of surface-associated ZnO biocidal activity. Using the global proteome approach, we report that a great majority (79%) of the altered proteins in biofilms formed by Salmonella enterica serovar Enteritidis were downregulated, whereas a much smaller fraction (21%) of proteins were upregulated. Intriguingly, all downregulated proteins were enzymes involved in a wide range of the central metabolic pathways, including translation; amino acid biosynthetic pathways; nucleobase, nucleoside, and nucleotide biosynthetic processes; ATP synthesis-coupled proton transport; the pentose phosphate shunt; and carboxylic acid metabolic processes, indicating that ZnO NPs exert a panmetabolic toxic effect on this prokaryotic organism. In addition to their panmetabolic toxicity, ZnO NPs induced profound changes in cell envelope morphology, imposing additional necrotic effects and triggering the envelope stress response of Salmonella serovar Enteritidis. The envelope stress response effect activated periplasmic chaperones and proteases, transenvelope complexes, and regulators, thereby facilitating protection of this prokaryotic organism against ZnO NPs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Batty, G D; Shipley, M J; Gale, C R; Mortensen, L H; Deary, I J
2008-12-01
To compare the strength of the relation of two measurements of IQ and 11 established risk factors with total and cardiovascular disease (CVD) mortality. Cohort study of 4166 US male former army personnel with data on IQ test scores (in early adulthood and middle age), a range of established risk factors and 15-year mortality surveillance. When CVD mortality (n = 61) was the outcome of interest, the relative index of inequality (RII: hazard ratio; 95% CI) for the most disadvantaged relative to the advantaged (in descending order of magnitude of the first six based on age-adjusted analyses) was: 6.58 (2.54 to 17.1) for family income; 5.55 (2.16 to 14.2) for total cholesterol; 5.12 (2.01 to 13.0) for body mass index; 4.70 (1.89 to 11.7) for IQ in middle age; 4.29 (1.70 to 10.8) for blood glucose and 4.08 (1.63 to 10.2) for high-density lipoprotein cholesterol (the RII for IQ in early adulthood was ranked tenth: 2.88; 1.19 to 6.97). In analyses featuring all deaths (n = 233), the RII for risk factors most strongly related to this outcome was 7.46 (4.54 to 12.3) for family income; 4.41 (2.77 to 7.03) for IQ in middle age; 4.02 (2.37 to 6.83) for smoking; 3.81 (2.35 to 6.17) for educational attainment; 3.40 (2.14 to 5.41) for pulse rate and 3.26 (2.06 to 5.15) for IQ in early adulthood. Multivariable adjustment led to marked attenuation of these relations, particularly those for IQ. Lower scores on measures of IQ at two time points were associated with CVD and, particularly, total mortality, at a level of magnitude greater than several other established risk factors.
Peiner, E; Wehmann, H H
2002-01-01
The effect of threading dislocations on the optical and electrical properties of InP and GaAs heteroepitaxial layers on (001) silicon was investigated. Charged deep states act as scattering centres for electrons, thus affecting the electron mobility at low temperatures. The electric field arising from charged dislocations causes enhanced optical absorption at wavelengths near the fundamental absorption edge. The mean charge of the threading dislocations in GaAs/Si was found to be considerably higher than that for InP/Si. A model is described relating this effect to a regular arrangement of alpha-type 60 deg. dislocations at extended twin defects which were observed in InP/Si but were absent in GaAs/Si.
Directory of Open Access Journals (Sweden)
Piero Addis
2013-09-01
Full Text Available From April to June Atlantic bluefin tuna, Thunnus thynnus, migrate along the western Sardinian coastline in a southward direction, where they are intercepted by the trap fishery. Fishermen claim that Mistral episodes facilitate the entry of tuna schools towards the traps, thus increasing capture rates. To test the fishermen’s hypothesis we conducted underwater visual counts of tuna in the trap chambers and analysed these data under the effect of wind. The results indicate a “stair-step” pattern in the abundance of tuna, demonstrating that major increases in abundance are associated with the Mistral. The second analytical approach involved a longer time scale to test whether higher Mistral occurrences corresponded to periods when higher captures were recorded. Using a linear regression model we found a significant correlation (p 15 knots seemed to have a negative effect on captures. This pattern may be caused by wind-induced advection of coastal waters generating a physical boundary that may have had a deterrent effect on tuna schools.
International Nuclear Information System (INIS)
Allen, P.B.; Chakraborty, B.
1981-01-01
Metals with high resistivity (approx.100 μΩ cm) seem to show weaker variation of resistivity (as a function of temperature and perhaps also static disorder) than predicted by semiclassical (Bloch-Boltzmann) theory (SBT). We argue that the effect is not closely related to Anderson localization, and therefore does not necessarily signify a failure of the independent collision approximation. Instead we propose a failure of the semiclassical acceleration and conduction approximations. A generalization of Boltzmann theory is made which includes quantum (interband) acceleration and conduction, as well as a complete treatment of interband-collision effects (within the independent-collision approximation). The interband terms enhance short-time response to E fields (because the theory satisfies the exact f-sum rule instead of the semiclassical approximation to it). This suggests that the additional conductivity, as expressed phenomenologically by the shunt resistor model, is explained by interband effects. The scattering operator is complex, its imaginary parts being related to energy-band renormalization caused by the disorder. Charge conservation is respected and thermal equilibrium is restored by the collision operator. The theory is formally solved for the leading corrections to SBT, which have the form of a shunt resistor model. At infrared frequencies, the conductivity mostly obeys the Drude law sigma(ω)approx.sigma(0)(1-iωtau) -1 , except for one term which goes as (1-iωtau) -2
Titanium: light, strong, and white
Woodruff, Laurel; Bedinger, George
2013-01-01
Titanium (Ti) is a strong silver-gray metal that is highly resistant to corrosion and is chemically inert. It is as strong as steel but 45 percent lighter, and it is twice as strong as aluminum but only 60 percent heavier. Titanium dioxide (TiO2) has a very high refractive index, which means that it has high light-scattering ability. As a result, TiO2 imparts whiteness, opacity, and brightness to many products. ...Because of the unique physical properties of titanium metal and the whiteness provided by TiO2, titanium is now used widely in modern industrial societies.
International Nuclear Information System (INIS)
Dejardin, Pierre-Michel; Kalmykov, Yuri P.
2010-01-01
The nonlinear ac stationary response of the magnetization of noninteracting uniaxial single-domain ferromagnetic particles acted on by superimposed dc and ac magnetic fields applied along the anisotropy axis is evaluated from the Fokker-Planck equation, expressed as an infinite hierarchy of recurrence equations for Fourier components of the relaxation functions governing longitudinal relaxation of the magnetization. The exact solution of this hierarchy comprises a matrix continued fraction, allowing one to evaluate the ac nonlinear response and reversal time of the magnetization. For weak ac fields, the results agree with perturbation theory. It is shown that the dc bias field changes substantially the magnetization dynamics leading to new nonlinear effects. In particular, it is demonstrated that for a nonzero bias field as the magnitude of the ac field increases the reversal time first increases and having attained its maximum at some critical value of the ac field, decreases exponentially.
Murthy, Appala Venkata Ramana; Guyomarc'h, Fanny; Paboeuf, Gilles; Vié, Véronique; Lopez, Christelle
2015-10-01
The biological membrane that surrounds the milk fat globules exhibits phase separation of polar lipids that is poorly known. The objective of this study was to investigate the role played by cholesterol in the organization of monolayers prepared as models of the milk fat globule membrane (MFGM). Differential scanning calorimetry and X-ray diffraction experiments allowed characterization of the gel to liquid crystalline phase transition temperature of lipids, Tm ~35°C, in vesicles prepared with a MFGM lipid extract. For temperature below Tm, atomic force microscopy revealed phase separation of lipids at 30 mN·m(-1) in Langmuir-Blodgett monolayers of the MFGM lipid extract. The high Tm lipids form liquid condensed (LC) domains that protrude by about 1.5 nm from the continuous liquid expanded (LE) phase. Cholesterol was added to the MFGM extract up to 30% of polar lipids (cholesterol/milk sphingomyelin (MSM) molar ratio of 50/50). Compression isotherms evidenced the condensing effect of the cholesterol onto the MFGM lipid monolayers. Topography of the monolayers showed a decrease in the area of the LC domains and in the height difference H between the LC domains and the continuous LE phase, as the cholesterol content increased in the MFGM lipid monolayers. These results were interpreted in terms of nucleation effects of cholesterol and decrease of the line tension between LC domains and LE phase in the MFGM lipid monolayers. This study revealed the major structural role of cholesterol in the MFGM that could be involved in biological functions of this interface (e.g. mechanisms of milk fat globule digestion). Copyright © 2015 Elsevier B.V. All rights reserved.
Ghosh, Jayanta; Gajapathy, Harshad; Konar, Arindam; Narasimhaiah, Gowrav M; Bhattacharya, Atanu
2017-11-28
other characteristics of sub-500 fs nonadiabatic decay of energetic molecules are discussed. In the end, many unresolved issues associated with the ultrafast nonadiabatic chemical dynamics of energetic molecules are presented.
Yamamoto, Kentaro; Takatsuka, Kazuo
2016-08-01
In this perspective article, we review, along with presenting new results, a series of our theoretical analyses on the excited-state mechanism of charge separation (proton-electron pair creation) relevant to the photoinduced water-splitting reaction (2H2O → 4H+ + 4e- + O2) in organic and biological systems, which quite often includes Mn clusters in various molecular configurations. The present mechanism is conceived to be universal in the triggering process of the photoexcited water splitting dynamics. In other words, any Mn-based catalytic charge separation is quite likely to be initiated according to this mechanism. As computationally tractable yet realistic models, we examine a series of systems generally expressed as X-Mn-OH2⋯A, where X = (OH, Ca(OH)3) and A = (N-methylformamidine, guanidine, imidazole or ammonia cluster) in terms of the theory of nonadiabatic electron wavepacket dynamics. We first find both an electron and a proton are simultaneously transferred to the acceptors through conical intersections upon photoexcitation. In this mechanism, the electron takes different pathways from that of the proton and reaches the densely lying Rydberg-like states of the acceptors in the end, thereby inducing charge separation. Therefore the presence of the Rydberg-like diffused unoccupied states as an electron acceptor is critical for this reaction to proceed. We also have found another crucial nonadiabatic process that deteriorates the efficiency of charge separation by rendering the created pair of proton and electron back to the originally donor site through the states of d-d band originated from Mn atom. Repetition of this process gradually annihilates the created pair of proton and electron in a way different from the usual charge recombination process. We address this dynamics by means of our proposed path-branching representation. The dynamical roles of a doped Ca atom are also uncovered, which are relevant to controlling the pathways of electron
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Kentaro, E-mail: kyamamoto@fukui.kyoto-u.ac.jp; Takatsuka, Kazuo, E-mail: kaztak@fukui.kyoto-u.ac.jp
2016-08-22
Graphical abstract: Asymptotic biradical state produced by the excited-state coupled proton–electron transfer (CPET), resulting in charge separation (proton–electron pair creation) on a proton–electron acceptor A, in a series of photochemical systems generally denoted as X–Mn–OH{sub 2}⋯A, where X = (OH, Ca(OH){sub 3}) and A = (N-methylformamidine, guanidine, imidazole, or ammonia clusters). - Abstract: In this perspective article, we review, along with presenting new results, a series of our theoretical analyses on the excited-state mechanism of charge separation (proton–electron pair creation) relevant to the photoinduced water-splitting reaction (2H{sub 2}O → 4H{sup +} + 4e{sup −} + O{sub 2}) in organic and biological systems, which quite often includes Mn clusters in various molecular configurations. The present mechanism is conceived to be universal in the triggering process of the photoexcited water splitting dynamics. In other words, any Mn-based catalytic charge separation is quite likely to be initiated according to this mechanism. As computationally tractable yet realistic models, we examine a series of systems generally expressed as X–Mn–OH{sub 2}⋯A, where X = (OH, Ca(OH){sub 3}) and A = (N-methylformamidine, guanidine, imidazole or ammonia cluster) in terms of the theory of nonadiabatic electron wavepacket dynamics. We first find both an electron and a proton are simultaneously transferred to the acceptors through conical intersections upon photoexcitation. In this mechanism, the electron takes different pathways from that of the proton and reaches the densely lying Rydberg-like states of the acceptors in the end, thereby inducing charge separation. Therefore the presence of the Rydberg-like diffused unoccupied states as an electron acceptor is critical for this reaction to proceed. We also have found another crucial nonadiabatic process that deteriorates the efficiency of charge separation by rendering the created pair of proton
Ghosh, Jayanta; Gajapathy, Harshad; Konar, Arindam; Narasimhaiah, Gowrav M.; Bhattacharya, Atanu
2017-11-01
sub-500 fs nonadiabatic decay of energetic molecules are discussed. In the end, many unresolved issues associated with the ultrafast nonadiabatic chemical dynamics of energetic molecules are presented.
Topics in strong Langmuir turbulence
International Nuclear Information System (INIS)
Skoric, M.M.
1981-01-01
This thesis discusses certain aspects of the turbulence of a fully ionised non-isothermal plasma dominated by the Langmuir mode. Some of the basic properties of strongly turbulent plasmas are reviewed. In particular, interest is focused on the state of Langmuir turbulence, that is the turbulence of a simple externally unmagnetized plasma. The problem of the existence and dynamics of Langmuir collapse is discussed, often met as a non-linear stage of the modulational instability in the framework of the Zakharov equations (i.e. simple time-averaged dynamical equations). Possible macroscopic consequences of such dynamical turbulent models are investigated. In order to study highly non-linear collapse dynamics in its advanced stage, a set of generalized Zakharov equations are derived. Going beyond the original approximation, the author includes the effects of higher electron non-linearities and a breakdown of slow-timescale quasi-neutrality. He investigates how these corrections may influence the collapse stabilisation. Recently, it has been realised that the modulational instability in a Langmuir plasma will be accompanied by the collisionless-generation of a slow-timescale magnetic field. Accordingly, a novel physical situation has emerged which is investigated in detail. The stability of monochromatic Langmuir waves in a self-magnetized Langmuir plasma, is discussed, and the existence of a novel magneto-modulational instability shown. The wave collapse dynamics is investigated and a physical interpretation of the basic results is given. A problem of the transient analysis of an interaction of time-dependent electromagnetic pulses with linear cold plasma media is investigated. (Auth.)
Including virtual photons in strong interactions
International Nuclear Information System (INIS)
Rusetsky, A.
2003-01-01
In the perturbative field-theoretical models we investigate the inclusion of the electromagnetic interactions into the purely strong theory that describes hadronic processes. In particular, we study the convention for splitting electromagnetic and strong interactions and the ambiguity of such a splitting. The issue of the interpretation of the parameters of the low-energy effective field theory in the presence of electromagnetic interactions is addressed, as well as the scale and gauge dependence of the effective theory couplings. We hope, that the results of these studies are relevant for the electromagnetic sector of ChPT. (orig.)
Azevedo, Adriana S.; Gonçalves, Antônio J. S.; Archer, Marcia; Freire, Marcos S.; Galler, Ricardo; Alves, Ada M. B.
2013-01-01
The dengue envelope glycoprotein (E) is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2) and a chimeric yellow fever/dengue 2 virus (YF17D-D2). The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes. PMID:23472186
Azevedo, Adriana S; Gonçalves, Antônio J S; Archer, Marcia; Freire, Marcos S; Galler, Ricardo; Alves, Ada M B
2013-01-01
The dengue envelope glycoprotein (E) is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2) and a chimeric yellow fever/dengue 2 virus (YF17D-D2). The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.
Beach, Steven R H; Barton, Allen W; Lei, Man Kit; Brody, Gene H; Kogan, Steven M; Hurt, Tera R; Fincham, Frank D; Stanley, Scott M
2014-12-01
African American couples (n = 331) with children, 89% of whom were married, were assigned to either (a) a culturally sensitive couple- and parenting-enhancement program (ProSAAF) or (b) an information-only control condition in which couples received self-help materials. Husbands averaged 41 years of age and wives averaged 39 years. We found significant effects of program participation in the short term on couple communication, which was targeted by the intervention, as well as over the long term, on self-reported arguing in front of children. Long-term parenting outcomes were fully mediated by changes in communication for wives, but not for husbands. For husbands, positive change depended on amount of wife reported change. We conclude that wives' changes in communication from baseline to posttest may be more pivotal for the couples' long-term experience of decreased arguing in front of children than are husbands' changes, with wives' changes leading to changes in both partners' reports of arguments in front of children. © 2014 Family Process Institute.
Directory of Open Access Journals (Sweden)
Adriana S Azevedo
Full Text Available The dengue envelope glycoprotein (E is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2 and a chimeric yellow fever/dengue 2 virus (YF17D-D2. The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.
Pagano, Marc
2017-04-01
Groupe COZOMED: R. Arfi (1), A. Atoui (2), H. Ayadi (6), B. Bejaoui (1), N. Bhairy (1), N. Barraj (2), M. Belhassen (2), S. Benismail (2), M.Y Benkacem (2), J. Blanchot (1), M. Cankovic(5), F. Carlotti (1), C. Chevalier (1), I Ciglenecki-Jusic (5), D. Couet (1), N. Daly Yahia (3), L. Dammak (2), J.-L. Devenon (1), Z. Drira (6), A. Hamza (2), S. Kmia (6), N. Makhlouf (3), M. Mahfoudi (2), M. Moncef (4), M. Pagano (1), C. Sammari (2), H. Smeti (2), A. Zouari (2) The COZOMED-MERMEX project aims at understanding how hydrodynamic forcing (currents, tides, winds) combine with anthropogenic forcing and climate to affect the variability of coastal Mediterranean zooplankton communities under contrasting tidal influence. This study includes (i) a zero state of knowledge via a literature review of existing data and (ii) a case study on the system Boughrara lagoon - Gulf of Gabes. This ecosystem gives major services for Tunisia (about 65% of national fish production) but is weakened by its situation in a heavily anthropized area and under influence of urban, industrial and agricultural inputs. Besides this region is subject to specific climate forcing (Sahelian winds, scorching heat, intense evaporation, flooding) which possible changes will be considered. The expected issues are (i) to improve our knowledge of hydrodynamic forcing on zooplankton and ultimately on the functioning of coastal Mediterranean ecosystems impacted by anthropogenic and climatic effects and (ii) to elaborate management tools to help preserving good ecological status of these ecosystems: hydrodynamic circulation model, mapping of isochrones of residence times, mapping of the areas of highest zooplankton abundances (swarms), and sensitive areas, etc. This project strengthens existing scientific collaborations within the MERMEX program (The MerMex Group, 2011) and in the frame of an international joint laboratory (COSYS-Med) created in 2014. A first field mulidisciplinary campaign was performed in October
Patterns of Strong Coupling for LHC Searches
Liu, Da; Rattazzi, Riccardo; Riva, Francesco
2016-11-23
Even though the Standard Model (SM) is weakly coupled at the Fermi scale, a new strong dynamics involving its degrees of freedom may conceivably lurk at slightly higher energies, in the multi TeV range. Approximate symmetries provide a structurally robust context where, within the low energy description, the dimensionless SM couplings are weak, while the new strong dynamics manifests itself exclusively through higher-derivative interactions. We present an exhaustive classification of such scenarios in the form of effective field theories, paying special attention to new classes of models where the strong dynamics involves, along with the Higgs boson, the SM gauge bosons and/or the fermions. The IR softness of the new dynamics suppresses its effects at LEP energies, but deviations are in principle detectable at the LHC, even at energies below the threshold for production of new states. Our construction provides the so far unique structurally robust context where to motivate several searches in Higgs physics, d...
Electronic Structure of Strongly Correlated Materials
Anisimov, Vladimir
2010-01-01
Electronic structure and physical properties of strongly correlated materials containing elements with partially filled 3d, 4d, 4f and 5f electronic shells is analyzed by Dynamical Mean-Field Theory (DMFT). DMFT is the most universal and effective tool used for the theoretical investigation of electronic states with strong correlation effects. In the present book the basics of the method are given and its application to various material classes is shown. The book is aimed at a broad readership: theoretical physicists and experimentalists studying strongly correlated systems. It also serves as a handbook for students and all those who want to be acquainted with fast developing filed of condensed matter physics.
Aperture averaging in strong oceanic turbulence
Gökçe, Muhsin Caner; Baykal, Yahya
2018-04-01
Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.
Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E; Santra, Robin; Buth, Christian; Leone, Stephen R
2007-04-06
Femtosecond high-order harmonic transient absorption spectroscopy is used to resolve the complete |j,m quantum state distribution of Xe+ produced by optical strong-field ionization of Xe atoms at 800 nm. Probing at the Xe N4/5 edge yields a population distribution rhoj,|m| of rho3/2,1/2ratiorho1/2,1/2ratiorho3/2,3/2=75+/-6 :12+/-3 :13+/-6%. The result is compared to a tunnel ionization calculation with the inclusion of spin-orbit coupling, revealing nonadiabatic ionization behavior. The sub-50-fs time resolution paves the way for tabletop extreme ultraviolet absorption probing of ultrafast dynamics.
Energy Technology Data Exchange (ETDEWEB)
Marshall, P.
2005-01-03
Basic considerations of lens detection and identification indicate that a wide field survey of the types planned for weak lensing and Type Ia SNe with SNAP are close to optimal for the optical detection of strong lenses. Such a ''piggy-back'' survey might be expected even pessimistically to provide a catalogue of a few thousand new strong lenses, with the numbers dominated by systems of faint blue galaxies lensed by foreground ellipticals. After sketching out our strategy for detecting and measuring these galaxy lenses using the SNAP images, we discuss some of the scientific applications of such a large sample of gravitational lenses: in particular we comment on the partition of information between lens structure, the source population properties and cosmology. Understanding this partitioning is key to assessing strong lens cosmography's value as a cosmological probe.
International Nuclear Information System (INIS)
Aoki, Ken-ichi
1988-01-01
Existence of a strong coupling phase in QED has been suggested in solutions of the Schwinger-Dyson equation and in Monte Carlo simulation of lattice QED. In this article we recapitulate the previous arguments, and formulate the problem in the modern framework of the renormalization theory, Wilsonian renormalization. This scheme of renormalization gives the best understanding of the basic structure of a field theory especially when it has a multi-phase structure. We resolve some misleading arguments in the previous literature. Then we set up a strategy to attack the strong phase, if any. We describe a trial; a coupled Schwinger-Dyson equation. Possible picture of the strong coupling phase QED is presented. (author)
Habershon, Scott
2013-09-14
We introduce a new approach for calculating quantum time-correlation functions and time-dependent expectation values in many-body thermal systems; both electronically adiabatic and non-adiabatic cases can be treated. Our approach uses a path integral simulation to sample an initial thermal density matrix; subsequent evolution of this density matrix is equivalent to solution of the time-dependent Schrödinger equation, which we perform using a linear expansion of Gaussian wavepacket basis functions which evolve according to simple classical-like trajectories. Overall, this methodology represents a formally exact approach for calculating time-dependent quantum properties; by introducing approximations into both the imaginary-time and real-time propagations, this approach can be adapted for complex many-particle systems interacting through arbitrary potentials. We demonstrate this method for the spin Boson model, where we find good agreement with numerically exact calculations. We also discuss future directions of improvement for our approach with a view to improving accuracy and efficiency.
Nonlinear Electron Waves in Strongly Magnetized Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans; Juul Rasmussen, Jens
1980-01-01
Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...
Strong-coupling diffusion in relativistic systems
Indian Academy of Sciences (India)
hanced values needed to interpret the data at higher energies point towards the importance of strong-coupling effects. ... when all secondary particles have been created. For short times in the initial phase ... It is decisive for a proper representation of the available data for relativistic heavy-ion collisions at and beyond SPS.